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Abstract— Gene regulatory networks (GRNs) play crucial
roles in various cellular processes, including stress response,
DNA repair, and the mechanisms involved in complex diseases
such as cancer. Biologists are involved in most biological
analyses. Thus, quantifying their policies reflected in available
biological data can significantly help us to better understand
these complex systems. The primary challenges preventing
the utilization of existing machine learning, particularly in-
verse reinforcement learning techniques, to quantify biologists’
knowledge are the limitations and huge amount of uncer-
tainty in biological data. This paper leverages the network-
like structure of GRNs to define expert reward functions that
contain exponentially fewer parameters than regular reward
models. Numerical experiments using mammalian cell cycle
and synthetic gene-expression data demonstrate the superior
performance of the proposed method in quantifying biologists’
policies.

I. INTRODUCTION

Gene regulatory networks (GRNs) are crucial for a range
of cellular functions, including stress response, DNA repair,
and mechanisms that contribute to complex diseases like
cancer [1]-[11]. Despite the rapid advances in statistical
and computational techniques in systems biology, biologists
remain integral components of most genomics analyses. Bi-
ologists are skilled at extracting knowledge from experience,
which is evident in the acquired data following interventions
such as drug prescriptions or perturbations. The biologists’
decisions represent their understanding of the mechanisms
of complex systems. Therefore, effectively quantifying that
knowledge can significantly aid in various biological analy-
ses.

Various techniques have been developed in the field of
inverse reinforcement learning (IRL) to quantify expert poli-
cies in the presence of large amounts of expert-acquired
data [12]-[21]. These techniques have found success in areas
such as computer games by leveraging large amounts of ex-
pert data and employing methods such as maximum entropy
IRL and other nonlinear reward function IRL techniques,
such as neural networks. However, biological data is often
extremely limited and carries a huge amount of uncertainty,
which limit the applicability of existing techniques.

This paper introduces the network-based structure of
GRNs to develop reward models that require significantly
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fewer parameters than regular reward models for non-
structured systems. Specifically, our proposed models have
a linear parameter growth rate based on the size of the
GRN, which captures biological objectives, and enables
the quantification of biologist policies in large GRNs with
limited biological data.

II. MATHEMATICAL PRELIMINARIES

The GRN model can be represented by a Markov decision
process (MDP) [22]-[28]. This MDP model of GRNs with d
genes can be formally defined by a 5-tuple (X, A, T, R,~),
where X = {0,1} is the state space, A is the action space,
T: X x Ax X is the state transition probability function
such that T'(x,a,x") = p(x’ | x,a) represents the probability
of moving to state x’ after taking action a in state x, R :
X x A — R is a bounded reward function such that R(x,a)
encodes the reward earned when action a is taken in state
x, and 0 <y <1 is a discount factor.

A deterministic stationary policy m for an MDP is a
mapping 7 : X — A from states to actions. The expected
discounted reward function at state x € X after taking action
a € A and following policy 7 afterward is defined as:

Q" (x,a)=E I:Z'th(xt,at) | x0 =x,a0 = a,a1:00 ~ 7T:|.

=0

ey
According to (1), the expected return under the optimal
policy 7*(x) = argmax, . Q7 (x,a), for all x € X and
a € A. An optimal stationary policy 7* attains the maximum
expected return for all states as: 7°(x) = maxaeca Q*(x,a).

III. THE PROPOSED FRAMEWORK

Let D¢ contain all available realizations of an ex-
pert/biologist, denoted by:

Dy = {()21,51),()22,52),...7(iT,éT)}, ()

where a, is the taken action/intervention by a biologist at the
state X, at time step r. These actions could be interventions
in genomics, that are often drugs that flip the value of single
or multiple genes to alter the dynamics of these systems.
Consider the mammalian cell cycle with 10 genes shown
in Fig. 1(a) [29]. This gene expression contains 20 = 1,024
possible states: x! = [00---0]7,x? = [00--1]7 ..., x}0%% =
[11---1]T. Let also a! = [00---0]T and a2 = [00---01]T be
the actions/interventions available to biologists during the
interventional process, where al! denotes no intervention, and
a? alters the state value of CycB gene. A typical linear model
for the expert reward function contains elements with the
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Fig. 1: (a) Pathway diagram for the cell-cycle mammalian network; (b) the normalized MSE of the inferred and the true model; (c) the

mismatch between the inferred biologist policy and the true policy.

size of state space, such as Rg(x,a) = 011, y1 + 0215 y2 +
e+ 910231x=x2023 + 910241x=x“’24 + 9102513:32’ where 9L
denotes the reward value if the system is at state x*, for
1 =1,...,1,024. The positive values of 0 correspond to
the desirability of being at x’, whereas negative values are
associated with the undesirability of being at x’ (e.g., x' is
associated with cancer). Meanwhile, 6'°%° denotes the cost
of taking action a2, which could come from real expenses
associated with action a? (i.e., drug cost) or possible side
effects of taking this action. The parameters of typical reward
models for non-structured systems often grow with the num-
ber of states (e.g., exponentially with the number of genes).
For instance, the simplest linear reward model for a GRN
with d genes and m actions contains 2 +m, parameters. This
large number of parameters prevents reliable quantification
of biologists’ knowledge, given often limited biological data.

In genomics, the desirable or undesirable activities of
one or some specific genes often correspond to undesirable
conditions. Taking advantage of this biological knowledge
and the network-like structure of GRNs, the expert reward
function can be represented component-wise as: Rg(x,a) =
0'x(1) + 02x(2) + - + 0'%%(10) + 0*11,_,2, where 0° €
[-1,1] corresponds to desirability or undesirability of the
activation of the ith gene (for ¢ < 10) and #'! denotes the
action cost. This reward model represented the mammalian
cell cycle network with 10 genes and 2 actions consist-
ing of 11 parameters (instead of 1025 parameters in non-
structured cases). It should be noted that the biologically-
inspired reward model can be more complex (e.g., nonlinear
and stochastic), depending on the available prior biological
knowledge and the application.

‘We model the biologists as semi-optimal decision-makers,
where the imperfections of their decisions are taken into ac-
count for quantifying the relevant biological objective. Given
the available biologist-acquired data, D7 in (2), the optimal
quantification of biological knowledge can be expressed as:

6* = argmaxlog P(Dr | 0), 3)
0cO
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where P(.) is a probability mass function, and

T
log P(Dr | 0) = Z log P(ay | xx,0)

k=1
Boltzmann:
< log eXP(UQ?;(ik,fE\k)) @
g | Sacaexp (nQy(Xx,a))

e-greedy:

T € €
= k_llog l-€e+ m lék:ﬂ.;(ik)+mlék¢ﬂ.;(;{k)

The mp and @ in (4) are the optimal policy and Q-value
associated with the reward function parameterized by 6 (i.e.,
Rp). The Boltzmann policy models the expert decisions as
p(a|x,0) o exp(nQj(x,a)), where n models the exert
imperfectness, whereas the e-greedy model considers taking
optimal action (i.e., my) with probability 1—¢ and random ac-
tions with probability €. These two well-known models allow
for the quantification of non-optimal biologists. Meanwhile,
the parameters representing the expert confidence (7 and ¢)
can also be included as part of parameter 8 and be inferred
during the optimization in (3).

The performance of the proposed framework is examined
using the mammalian cell-cycle network using 40 gene-
expression data acquired by a biologist during intervention
with the goal of suppressing the activation of CycD and Rb
genes. i.e., 8% = [-1,-1,0,--,0,0]. Fig. 1(b)-(c) represents
the normalized mean square error (MSE) of inferred and true
reward function and policy mismatch between the inferred
biologist’s policy and the expert’s true policy. One can
see that the policy mismatch and normalized MSE values
decrease with each iteration of the proposed method. This
reduction is significant for policy mismatch, indicating that
despite a relatively large normalized MSE in the early steps,
the policy under those inferred biologist reward functions
becomes similar to the policy under the true reward function.

IV. CONCLUSION

In conclusion, this paper developed a framework for quan-
tifying biologists’ knowledge using limited and uncertain
biological data. By leveraging the network-like structure
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of gene regulatory networks, this paper introduces expert
reward functions with exponentially fewer parameters than
traditional models. This alleviates the challenges of utilizing
machine learning techniques, specifically inverse reinforce-
ment learning, and enables the quantification of biologists’
knowledge. Through numerical experiments on mammalian
cell cycle and synthetic gene-expression data, the proposed
method has shown to be highly effective in quantifying biolo-
gists’ policies, thus paving the way for a better understanding
of complex biological systems.
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