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Abstract— Gene regulatory networks (GRNs) play crucial
roles in various cellular processes, including stress response,
DNA repair, and the mechanisms involved in complex diseases
such as cancer. Biologists are involved in most biological
analyses. Thus, quantifying their policies reflected in available
biological data can significantly help us to better understand
these complex systems. The primary challenges preventing
the utilization of existing machine learning, particularly in-
verse reinforcement learning techniques, to quantify biologists’
knowledge are the limitations and huge amount of uncer-
tainty in biological data. This paper leverages the network-
like structure of GRNs to define expert reward functions that
contain exponentially fewer parameters than regular reward
models. Numerical experiments using mammalian cell cycle
and synthetic gene-expression data demonstrate the superior
performance of the proposed method in quantifying biologists’
policies.

I. INTRODUCTION

Gene regulatory networks (GRNs) are crucial for a range

of cellular functions, including stress response, DNA repair,

and mechanisms that contribute to complex diseases like

cancer [1]–[11]. Despite the rapid advances in statistical

and computational techniques in systems biology, biologists

remain integral components of most genomics analyses. Bi-

ologists are skilled at extracting knowledge from experience,

which is evident in the acquired data following interventions

such as drug prescriptions or perturbations. The biologists’

decisions represent their understanding of the mechanisms

of complex systems. Therefore, effectively quantifying that

knowledge can significantly aid in various biological analy-

ses.

Various techniques have been developed in the field of

inverse reinforcement learning (IRL) to quantify expert poli-

cies in the presence of large amounts of expert-acquired

data [12]–[21]. These techniques have found success in areas

such as computer games by leveraging large amounts of ex-

pert data and employing methods such as maximum entropy

IRL and other nonlinear reward function IRL techniques,

such as neural networks. However, biological data is often

extremely limited and carries a huge amount of uncertainty,

which limit the applicability of existing techniques.

This paper introduces the network-based structure of

GRNs to develop reward models that require significantly
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fewer parameters than regular reward models for non-

structured systems. Specifically, our proposed models have

a linear parameter growth rate based on the size of the

GRN, which captures biological objectives, and enables

the quantification of biologist policies in large GRNs with

limited biological data.

II. MATHEMATICAL PRELIMINARIES

The GRN model can be represented by a Markov decision

process (MDP) [22]–[28]. This MDP model of GRNs with d
genes can be formally defined by a 5-tuple ⟨X ,A, T ,R, γ⟩,
where X = {0,1}d is the state space, A is the action space,

T ∶ X × A × X is the state transition probability function

such that T (x,a,x′) = p(x′ ∣ x,a) represents the probability

of moving to state x′ after taking action a in state x, R ∶X ×A → R is a bounded reward function such that R(x,a)
encodes the reward earned when action a is taken in state

x, and 0 < γ < 1 is a discount factor.

A deterministic stationary policy π for an MDP is a

mapping π ∶ X → A from states to actions. The expected

discounted reward function at state x ∈ X after taking action

a ∈ A and following policy π afterward is defined as:

Qπ(x,a)=E⎡⎢⎢⎢⎣
∞∑
t=0

γtR(xt,at) ∣ x0 = x,a0 = a,a1∶∞ ∼ π⎤⎥⎥⎥⎦.
(1)

According to (1), the expected return under the optimal

policy π∗(x) = argmaxπ∈ΠQπ(x,a), for all x ∈ X and

a ∈ A. An optimal stationary policy π∗ attains the maximum

expected return for all states as: π∗(x) = maxa∈AQ∗(x,a).
III. THE PROPOSED FRAMEWORK

Let DT contain all available realizations of an ex-

pert/biologist, denoted by:

DT = {(x̃1, ã1), (x̃2, ã2), ..., (x̃T , ãT )} , (2)

where ãr is the taken action/intervention by a biologist at the

state x̃r at time step r. These actions could be interventions

in genomics, that are often drugs that flip the value of single

or multiple genes to alter the dynamics of these systems.

Consider the mammalian cell cycle with 10 genes shown

in Fig. 1(a) [29]. This gene expression contains 210 = 1,024
possible states: x1 = [00⋯0]T ,x2 = [00⋯1]T , ...,x1,024 =[11⋯1]T . Let also a1 = [00⋯0]T and a2 = [00⋯01]T be

the actions/interventions available to biologists during the

interventional process, where a1 denotes no intervention, and

a2 alters the state value of CycB gene. A typical linear model

for the expert reward function contains elements with the
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Fig. 1: (a) Pathway diagram for the cell-cycle mammalian network; (b) the normalized MSE of the inferred and the true model; (c) the
mismatch between the inferred biologist policy and the true policy.

size of state space, such as Rθ(x,a) = θ11x=x1 + θ21x=x2 +⋯ + θ10231x=x2023 + θ10241x=x1024 + θ10251a=a2 , where θi

denotes the reward value if the system is at state xi, for

i = 1, ...,1,024. The positive values of θi correspond to

the desirability of being at xi, whereas negative values are

associated with the undesirability of being at xi (e.g., xi is

associated with cancer). Meanwhile, θ1025 denotes the cost

of taking action a2, which could come from real expenses

associated with action a2 (i.e., drug cost) or possible side

effects of taking this action. The parameters of typical reward

models for non-structured systems often grow with the num-

ber of states (e.g., exponentially with the number of genes).

For instance, the simplest linear reward model for a GRN

with d genes and m actions contains 2d+m parameters. This

large number of parameters prevents reliable quantification

of biologists’ knowledge, given often limited biological data.

In genomics, the desirable or undesirable activities of

one or some specific genes often correspond to undesirable

conditions. Taking advantage of this biological knowledge

and the network-like structure of GRNs, the expert reward

function can be represented component-wise as: Rθ(x,a) =
θ1x(1) + θ2x(2) + ⋯ + θ10x(10) + θ111a=a2 , where θi ∈[−1,1] corresponds to desirability or undesirability of the

activation of the ith gene (for i ≤ 10) and θ11 denotes the

action cost. This reward model represented the mammalian

cell cycle network with 10 genes and 2 actions consist-

ing of 11 parameters (instead of 1025 parameters in non-

structured cases). It should be noted that the biologically-

inspired reward model can be more complex (e.g., nonlinear

and stochastic), depending on the available prior biological

knowledge and the application.

We model the biologists as semi-optimal decision-makers,

where the imperfections of their decisions are taken into ac-

count for quantifying the relevant biological objective. Given

the available biologist-acquired data, DT in (2), the optimal

quantification of biological knowledge can be expressed as:

θ∗ = argmax
θ∈Θ

logP (DT ∣ θ), (3)

where P (.) is a probability mass function, and

logP (DT ∣ θ) = T∑
k=1

logP (ãk ∣ x̃k,θ)
Boltzmann:

= T∑
k=1

log

⎡⎢⎢⎢⎢⎣
exp (ηQ∗θ(x̃k, ãk))
∑a∈A exp (ηQ∗θ(x̃k,a))

⎤⎥⎥⎥⎥⎦
ε-greedy:

= T∑
k=1

log
⎡⎢⎢⎢⎣(1−ε +

ε

∣A∣)1ãk=π
∗

θ
(x̃k)+ ε

∣A∣1ãk≠π
∗

θ
(x̃k)

⎤⎥⎥⎥⎦

(4)

The π∗θ and Q∗θ in (4) are the optimal policy and Q-value

associated with the reward function parameterized by θ (i.e.,

Rθ). The Boltzmann policy models the expert decisions as

p(a ∣ x,θ) ∝ exp (ηQ∗θ(x,a)), where η models the exert

imperfectness, whereas the ε-greedy model considers taking

optimal action (i.e., π∗θ) with probability 1−ε and random ac-

tions with probability ε. These two well-known models allow

for the quantification of non-optimal biologists. Meanwhile,

the parameters representing the expert confidence (η and ε)
can also be included as part of parameter θ and be inferred

during the optimization in (3).

The performance of the proposed framework is examined

using the mammalian cell-cycle network using 40 gene-

expression data acquired by a biologist during intervention

with the goal of suppressing the activation of CycD and Rb

genes. i.e., θ∗ = [−1,−1,0,⋯,0,0]. Fig. 1(b)-(c) represents

the normalized mean square error (MSE) of inferred and true

reward function and policy mismatch between the inferred

biologist’s policy and the expert’s true policy. One can

see that the policy mismatch and normalized MSE values

decrease with each iteration of the proposed method. This

reduction is significant for policy mismatch, indicating that

despite a relatively large normalized MSE in the early steps,

the policy under those inferred biologist reward functions

becomes similar to the policy under the true reward function.

IV. CONCLUSION

In conclusion, this paper developed a framework for quan-

tifying biologists’ knowledge using limited and uncertain

biological data. By leveraging the network-like structure
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of gene regulatory networks, this paper introduces expert

reward functions with exponentially fewer parameters than

traditional models. This alleviates the challenges of utilizing

machine learning techniques, specifically inverse reinforce-

ment learning, and enables the quantification of biologists’

knowledge. Through numerical experiments on mammalian

cell cycle and synthetic gene-expression data, the proposed

method has shown to be highly effective in quantifying biolo-

gists’ policies, thus paving the way for a better understanding

of complex biological systems.
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