N)
)
Check for
updates

SLABCITY: Whole-Query Optimization using Program Synthesis

Rui Dong”*
University of Michigan
ruidong@umich.edu

Cong Yan
Microsoft Research
cong.yan@microsoft.com

ABSTRACT

Query rewriting is often a prerequisite for effective query optimiza-
tion, particularly for poorly-written queries. Prior work on query
rewriting has relied on a set of “rules” based on syntactic pattern-
matching. Whether relying on manual rules or auto-generated ones,
rule-based query rewriters are inherently limited in their ability to
handle new query patterns. Their success is limited by the quality
and quantity of the rules provided to them.

To our knowledge, we present the first synthesis-based query
rewriting technique, SLABCITY, capable of whole-query optimization
without relying on any rewrite rules. SLABCITY directly searches
the space of SQL queries using a novel query synthesis algorithm
that leverages a new concept called query dataflows. We evaluate
SLABCITY on four workloads, including a newly curated benchmark
with more than 1000 real-life queries. We show that not only can
SLABCITY optimize more queries than state-of-the-art query rewrit-
ing techniques, but interestingly, it also leads to queries that are
significantly faster than those generated by rule-based systems.

PVLDB Reference Format:

Rui Dong, Jie Liu, Yuxuan Zhu, Cong Yan, Barzan Mozafari, Xinyu Wang.
SLABCITY: Whole-Query Optimization using Program Synthesis. PVLDB,
16(11): 3151 - 3164, 2023.

doi:10.14778/3611479.3611515

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/eidos06/SlabCity.

1 INTRODUCTION

Poorly-written database queries are a major problem in the indus-
try [37, 51, 53-55, 62, 71]. Whether generated automatically by
software (e.g., database-backed web apps [68]) or written manu-
ally by less experienced users (e.g., self-service Bl users [1, 3, 6]),
poorly-written queries significantly hinder the effectiveness of typ-
ical query optimizations performed by database systems [22, 68],
whereby an optimal query plan is chosen for the given query. Query

"Rui Dong and Jie Liu contributed equally to this work.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 11 ISSN 2150-8097.
doi:10.14778/3611479.3611515

Jie Liu*
University of Michigan
jiezzliu@umich.edu

Barzan Mozafari
University of Michigan
mozafari@umich.edu

3151

Yuxuan Zhu
University of Michigan
yuxuanzh@umich.edu

Xinyu Wang
University of Michigan
xwangsd@umich.edu

Inpust Query StaBCiTY
() Query Synthesizer
00’7’6»@
-
Candidate(> Counterexample Ol/e,y
Query DB
Integrity Equivalence Example DB & Query Pair _)
Constraint Checker < Poir of Query Outputs g
02 DBMS
Equivalent
l Queries
Faster &
Equivalent €—— Performance
Query Ranker :3:

Figure 1: Schematic workflow of SLaBCITY.

rewriting — which transforms a query into another that is semanti-
cally equivalent but faster [31-33] — is thus a critical step in facili-
tating effective query optimization [23, 31-33, 41, 45, 46, 67, 68, 72].

Rule-based query rewriting. Query rewriting typically relies on
a set of “rewrite rules” — crafted manually by experts or discovered
automatically by tools — which essentially define an equivalence
relation between queries. Specifically, given a query Q and a rewrite
rule, if the pattern expressed in the rule matches Q, the rule would
modify Q by replacing the matched part with a counterpart, gener-
ating a semantically equivalent query Q’ that is likely to run faster.
Examples of recent rule-based query rewriting techniques include
WETUNE [68] and Apache Calcite [17].

Drawback of rule-based query rewriting. Unfortunately, the
effectiveness of rule-based approaches! hinges on the quality and
quantity of the rewrite rules provided to them [68]. Yet, curating a
large collection of high-quality rules is a very tedious, error-prone
and time-consuming process that also requires deep expertise [31-
33, 41, 45, 46]. While automated rule discovery techniques might
help lessen the manual burden [68], they are fundamentally limited
to situations where the input query has to match one of the patterns
captured by their rules. In other words — as we will also show in
this paper later — state-of-the-art rule-based query rewriters (e.g.,
WETUNE [68]) miss many optimization opportunities when faced
with new query patterns they have not seen before. We also provide
several motivating examples from both real-life and benchmark
workloads in Section 2 that demonstrate these drawbacks.

Synthesis-based query rewriting. Motivated by the fundamen-
tally incomplete nature of rewrite rules, in this paper, we propose

!Rule-based query rewriting should not be confused with rule-based query optimization;
the latter is simpler, and hence much more common in practice [30].

https://doi.org/10.14778/3611479.3611515
https://github.com/eidos06/SlabCity
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3611479.3611515
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.14778%2F3611479.3611515&domain=pdf&date_stamp=2023-08-24

a new query rewriting approach that does not need rewrite rules.
Instead, it uses program synthesis to directly search for equiva-
lent and faster queries. To our best knowledge, there are only two
prior works? that use program synthesis for source-to-source query
rewriting [67, 72], but they still either require rewrite rules or only
allow local changes. Specifically, FGH-rule [67] first uses a rule to
match a recursion pattern from the input Datalog query Q and gen-
erate an output query template with an unknown expression H, and
then uses program synthesis to generate H such that the completed
output query is equivalent to Q. The rule defines the search space
for synthesis, and hence the overall effectiveness of this approach
relies on the rule. The second work, Sia [72], uses synthesis to add
additional predicates to the query, but is restricted to making only
local changes in the WHERE clause and cannot optimize or restruc-
ture the rest of the query. To the best of our knowledge, we are the
first to develop a synthesis-based query rewriting technique that
(i) is capable of whole-query optimization and (ii) does not require
any rewrite rules. We therefore call our technique, SLABCITY.

High-level workflow of SLABCITY. As schematically shown in
Figure 1, SLABCITY takes a query Q;, and an integrity constraint
¢; it returns a semantically equivalent query Q that is likely to run
faster. SLABCITY is composed of three key components: (1) Query
Synthesizer, (2) Equivalence Checker, and (3) Performance Ranker.
Here, (1) and (2) form a counterexample-guided inductive synthesis
(CEGIS) loop [58]: the query synthesizer (1) proposes a candidate
query that is guaranteed to produce the same outputs as Q;, on a set
of counterexample DBs, and the equivalence checker (2) validates
its semantic equivalence to Q;y, against all inputs.

The equivalence checker uses three types of techniques, in their
increasing order of overhead: a tester, a bounded verifier, and a full
verifier (see Section 4.4 for the difference). If any of them finds a
counterexample DB for a candidate query Q, then Q is rejected and
the DB is given as feedback to the synthesizer. If the full verifier can
prove equivalence (within a user-set timeout), then Q is marked
“fully verified”; otherwise, Q would receive a “bounded verification”
flag indicating it is correct only in a bounded sense (i.e., not fully).
Equivalent queries with both types of flags will be ranked by the
performance ranker (3) based on Q’s latency (estimated by EXPLAIN
or actual execution on a DBMS). At the end, if the (fastest) returned
query has a “bounded verification” flag, users can manually inspect
it to ensure its correctness. If it is “fully verified”, no manual check
is needed and the query can be safely used immediately. The tester,
bounded verifier, and manual inspection are safeguards to address
the limitations of full verification which is applicable to a subset
of all rewrites (about 17%). We discuss the implications of this in
detail in Section 5.5.

Target workload and use case. Our motivating use case is any
scenario where either (1) the same query is written once but rerun
many times, such as Bl dashboards or database-backed web apps,
or (2) the query is run once but its latency is much longer than
several seconds (e.g., 5 seconds), such as ad-hoc or OLAP queries
against big data. While SLABCrITY’s time budget can be specified
by users, in this work we use 5 seconds (that is, we have up to
5 seconds to rewrite a query into a faster one). This search cost

2See Section 6 for more applications of synthesis in the databases literature.
3Slab City is a spot in California known as the last free place in America, with no rules.

3152

is well justified and negligible in the aforementioned situations.
For example, a developer creates a BI dashboard (and the queries
therein) once, which is then used hundreds of times a day across the
entire organization by various business users. Likewise, developers
hardcode their queries in their web apps which are then invoked
thousands of times as visitors interact with the website. In these
scenarios, developers can invoke SLABCITY as a final step to identify
any optimizations before deploying their dashboard or web apps.
Similarly, queries in modern data warehouses against terabytes of
data will often take minutes and therefore spending an additional 5
seconds upfront to check if it can be rewritten into a more optimized
form will be worthwhile even if the query will only run once. In
terms of the query dialect, SLABCITY supports an expressive subset
of SQL, including nested queries and arbitrary join patterns (see
the formal language definition in Section 3).

Challenges. However, SLABCITY’s key advantage of not relying
on rules comes with three major challenges. First, given the expres-
siveness of our SQL language, searching for an equivalent query is
a non-trivial task. A brute-force approach (e.g., enumerating pro-
grams in the order of program size) from the program synthesis
literature [36, 65] would not scale. Second, during synthesis, non-
equivalent queries need to be disproved by a verifier which typically
involves Satisfiability Modulo Theory (SMT) solving and thus is
in general costly. Finally, it is insufficient to find any equivalent
query; we have to find one that is both equivalent and faster. This
makes our problem even more challenging — we may need to find
multiple equivalent queries in order to select a faster one.

Intuition. To address these challenges, our first key insight is that
a query’s dataflow — i.e., information that flows through different
query operations — can be used to prioritize query search. In other
words, dataflows of the input query could serve as a hint to help
significantly reduce the number of queries to be enumerated. The
intuition is that if a query Q is equivalent to Q;p, Q typically exhibits
dataflows that are also manifested in Q;,. For example, if Q filters an
aggregated column (e.g., using HAVING SUM), the same computations
(e.g., calculating SUM) likely would also show up in Qjy. On the other
hand, a query Q’ that does not involve such dataflows is less likely
to be equivalent and therefore can be de-prioritized. Our second
insight is that we can leverage a lightweight testing approach to
significantly lower the frequency of invoking a costly equivalence
verifier. These insights combined allow us to develop a new CEGIS-
based technique: the checker runs a tester before invoking an SMT-
based verifier, and the query synthesizer utilizes dataflows to speed
up the search. In particular, our synthesis technique stratifies the
search space using a novel dataflow-based scoring function; we will
expand on the technical details in Section 4.2.

Contributions. In summary, we make the following contributions.

We propose the first synthesis-based query rewriting technique
capable of whole-query optimization without requiring prede-
fined rewrite rules.

To the best of our knowledge, we are the first to define dataflows
for SQL queries and exploit them for efficient query synthesis.
We contribute a new benchmark to facilitate research on query
rewriting research by curating more than 1000 real-life queries
from LeetCode participants.

Table 1: Q; is human-written. Q; is generated by SLaBCiTY.

SELECT DISTINCT sl.gender, s1.day, SUM (s2.score)
FROM scores AS s1 JOIN scores AS s2

(o] ON sl.gender = s2.gender
WHERE s2.day <= sl.day
GROUP BY s1.gender, s1.day
SELECT gender, day,
0, SUM (score) OVER (PARTITION BY gender ORDER BY day)

FROM scores

Our comprehensive evaluation on a wide range of workloads and
databases shows that, SLABCITY can not only rewrite 7-68% more
queries than state-of-the-art query rewriters, but also generate
queries that are significantly faster (up to 4 orders of magnitude).

2 MOTIVATING EXAMPLES

In this section, we present a few examples to highlight the inherent
limitations of rule-based query rewriting techniques and motivate
the need for a synthesis-based whole-query optimization approach.
All examples in this section are from two workloads: (1) real-life
queries written by LeetCode users, and (2) benchmark queries from
the Apache Calcite project [12]. We later present more comprehen-
sive experiments on both workloads among others in Section 5.

Example 1. Optimization with window functions. Consider
LeetCode problem #1308: a competition is held among teams of
different genders. Given the table called scores with three columns
(gender,day, score) where (gender, day) is the primary key, the
goal is to find the running total score for each gender on each day. Q1
in Table 1 is the human-written solution for this problem (submitted
by LeetCode participants) while Qy is SLABCITY’s automatically
generated query after rewriting Q. Q2 is more than 2000x faster
than Q7 on a database randomly populated with 1 million rows.

Q1 is slow for two reasons. First, it uses a self-join to compute
the running total, which generates a massive intermediate result.
The same running total can be obtained using a window function
as shown in Qy. Second, the use of DISTINCT in Q; is redundant,
since (gender,day) is the primary key.

It is difficult to express any local rewrite rule to do this kind of op-
timization for Q1 because nearly every part of the query would have
to change. Moreover, anticipating these kinds of patterns in advance
and writing a rule for each would be tedious (if not impossible). Even
if one can create rules for a query like Q1, many constraints would
need to be met to ensure correctness, necessitating a potentially
very complex pattern-matching. However, SLABCITY’s synthesis-
based optimization can deal with such cases easily because, instead
of doing constraint checking and pattern-matching, SLaABCrTY di-
rectly searches the query language (as defined in Figure 2), allowing
it to discover semantically equivalent and faster queries that may
be quite different syntactically. For these reasons, none of the state-
of-the-art rule-based rewriters, such as LearnedRewrite (LR) [76]
and WETUNE (WT) [68], were able to optimize Q1.4

Example 2. Exploiting integrity constraints. The following
is LeetCode problem #1821. Given table customers with columns
(cid,year,revenue) and (cid, year) as its primary key, the goal
is to report customers with positive revenue in the year 2021. Q3

4We explain how these state-of-the-art query rewriters work in more detail and report
comprehensive experimental results in Section 5.

3153

Table 2: Q3 is human-written. Q) and Q4 are discovered by
SLABCITY (Q4 is the final output as its faster than Q).

SELECT cid
FROM (SELECT cid, SUM (revenue)
OVER (PARTITION BY cid, year) AS r
FROM customers WHERE year = 2021) AS tmp
WHERE r > 0
SELECT cid FROM customers
WHERE year = 2021
GROUP BY cid HAVING SUM (revenue) > 0
SELECT cid FROM customers
WHERE year = 2021 AND revenue > 0

Qs

Q

Q4

from Table 2 is the human-written solution® for this task, while
Qj and Qg4 are SLABCITY’s automatically generated queries for Q3,
which are 1.27x and 5.47x faster respectively (on a database with
1M rows). SLABCITY can generate both Q) and Q4 but returns the
latter due to its superior performance.

Qs is slow because it uses an unnecessary window function
with PARTITION BY. Q; achieves the same goal faster by replacing
the window function with aggregation and GROUP BY. This is be-
cause (cid,year) is the primary key — once year is fixed, there
is only a tuple for each unique value of cid. That is, partitioning
by (cid, year) and grouping by cid when year=2021 leads to the
same groups. Exploiting this integrity constraint further, SLABC1TY
is able to find an even more optimized query Q4. This is because
each (cid,year) will also determine a unique revenue, making
the summation unnecessary. However, none of the state-of-the-art
rule-based techniques could optimize or even rewrite Q3 to any-
thing. Capturing this kind of rewrite for rule-based techniques is
nearly impossible, as they heavily rely on pattern-matching and
their ability to exploit integrity constraints is largely limited to local
changes (e.g., removing redundant grouping columns or redundant
left joins). In contrast, because SLABCITY is not restricted to rewrite
rules fundamentally, as long as there is a better query in the query
space, it will eventually find it.

Example 3. Eliminating redundant joins. Calcite comes with a
rich set of test cases to check if its rewrite rules function properly.
Qs in Table 3 is one of those test cases (“testPushAggregateThrough-
OuterJoin14”) where Calcite rewrites Qs to Qg. Here, emp is a table
with three columns (empno, ename,mgr) with empno as its primary
key. Qs performs a full self-join of emp on the mgr column, grouped
by the join key. This is essentially equivalent to using DISTINCT to
return only distinct values. Qg is the optimized query using Calcite
rules, which is 926x faster than Q5 on a database with 4M rows. Q7
is the query automatically generated by SLaBCrTy, which is 1833x
faster than Qs on the same database.

Qe is significantly faster than Qs because pushing GROUP BY be-
fore the self-join leads to significantly smaller join operands and
thus a more efficient execution; however, this is still not the best
rewrite possible. Interestingly, self-join can be eliminated altogether
in this case, leading to an even more significant speed-up, which is
exactly what SLABC1TY does by rewriting Qs into Q7. In fact, this is

SWhile a database expert might be surprised why the user missed the integrity con-
straint and wrote such an inefficient query in the first place, situations like this are
quite common in the industry for two reasons: (1) most queries are rewritten by users
who are not SQL proficient, such as business users and financial analysts [51, 62] , and
(2) modern warehouses have hundreds of tables, and the knowledge of the schema
and integrity constraints are thus scattered across different teams, especially in larger
organizations [16, 59].

Table 3: Qs is a test query from Calcite, Qg is the rewritten
version of Qs using Calcite rules, and Q7 is SLABCITY’s output.

SELECT e0.mgr AS mgr0, el.mgr AS mgr1

FROM emp AS €0 FULL JOIN emp AS el ON e0.mgr = el.mgr

GROUP BY e0.mgr, el.mgr

SELECT e0.mgr AS mgr0, el.mgr AS mgr1

FROM (SELECT mgr FROM emp GROUP BY mgr) AS e0
FULL JOIN (SELECT mgr FROM emp GROUP BY mgr) AS el
ON e0.mgr = el.mgr

GROUP BY e0.mgr, el.mgr

SELECT mgr AS mgr0, mgr AS mgr1

FROM emp

GROUP BY mgr

Qs

Qs

Qs

Table 4: Qg is a test query from Calcite, Qo is the rewrite using
Calcite rules, and Qj9 is SLABCITY’s output.

SELECT ename, MIN (empno) AS e FROM (
SELECT * FROM emp
UNION ALL
SELECT * FROM emp
) AS t GROUP BY ename
SELECT ename, MIN (e) AS e FROM (
SELECT ename, MIN (empno) AS e FROM emp GROUP BY ename
UNION ALL
SELECT ename, MIN (empno) AS e FROM emp GROUP BY ename
) AS t GROUP BY ename
SELECT ename, MIN (e) AS e
FROM (SELECT ename, MIN (empno) AS e
FROM emp
GROUP BY ename) AS t
GROUP BY ename

Os

Q9

not limited to Calcite: none of the state-of-the-art rule-based query
rewriters found this opportunity,® simply because they fail to cap-
ture the information that the joined columns may come from the
same table and hence be identical — a fact that could be exploited to
eliminate redundancy. Similar to Examples 1 and 2, it is tedious, if
not impossible, to create rewrite rules for this type of optimization.
In particular, identifying self-joins requires semantic information
that the two joined operands are essentially the same relation. Even
if one wrote a very specific rule for

FROM T AS T1 JOIN T AS T2

to find self-joins syntactically, they would still miss out on queries
expressed as

FROM T AS T1 JOIN (SELECT * from T) AS T2

In contrast, because of using query synthesis, Q7 is naturally within
SLABCITY's search space and SLABCITY can successfully find it as a
query with minimal redundancy and best performance.

Example 4. Optimizating set operations. Qg in Table 4 is yet an-
other test case (“testPushMinThroughUnion”) from Calcite, which
is rewritten to Qg using Calcite rules, slightly improving its latency
(+2%) by pushing GROUP BY past UNION ALL. On the other hand,
SLABCITY rewrites Qg to Qj0, which is 1.7x faster.

Similar to Example 3, state-of-the-art rule-based rewriters fail
to exploit the fact that both sides of UNION ALL are identical, and
thus fail to eliminate the redundant computation. In fact, neither
LearnedRewrite nor WETUNE were able to optimize Qs (the former
could rewrite it to Q9 whereas the latter was not even able to rewrite

®Similar to Calcite, LearnedRewrite [76] was only able to rewrite Qs into Qg but did
not eliminate the self-join. WeTune was not able to rewrite Qs at all.

3154

it to anything at all). Again, because SLABCITY uses query synthesis,
it is able to find Q19 which is both equivalent and faster.

Discussion. In our evaluation, we have come across many other
interesting examples where state-of-the-art query rewriting tech-
niques were not able to optimize the input query or even rewrite
it at all, while SLABCITY could (see Section 5.2). Even when they
were able to optimize the query, SLABCITY’s output oftentimes was
significantly faster (see Section 5.3). Note that in this paper, we
differentiate two terms optimize vs. rewrite: the former means the
technique can rewrite the input query to an output query that is
faster, whereas the latter means the technique can rewrite to some
query which may or may not be faster. In other words, optimizing
is harder than rewriting. Our intention of sharing these motivating
examples in Section 2 is to demonstrate why it is inherently difficult
and error-prone to create enough rules that can handle complex and
unseen situations. In contrast, a synthesis-based approach does not
need a supply of hard-coded rules and can discover optimization
opportunities by searching the SQL language directly.

3 PROBLEM SETUP

This section presents the query language and integrity constraints
considered by SLABCr1TyY, followed by our problem definition.

Query space. See Figure 2 for the formal language that supports a
wide subset of SQL such as arbitrary nesting and join patterns.

Integrity constraints. Below are the types of integrity constraints
SLABCITY currently supports:

e Primary and foreign keys.

e Comparisons within a row — e.g., T.StartTime < T.EndTime.

e Implication constraints within a row. For example, T.EmailType #
spam — T.action = NULL.

Whether or not a column can be NULL.

e Range constraints (for columns of integer or numeric types).

e Enum types (e.g., column Device can draw from { S8, iPhone }).

Problem statement. Now we are ready to define our problem.

Definition 3.1. Given a query Q;, and an integrity constraint ¢,
find a query Q from our query language, such that the following
two conditions hold:

(1) Q is semantically equivalent to Q;, with respect to ¢. That is, Q
and Q;, produce the same output on any database D that meets
the integrity constraint ¢.

(2) Q runs faster than Q;,. Here, query performance is measured
using EXPLAIN or the actual execution of the query.

4 SYNTHESIS-AIDED QUERY OPTIMIZATION
4.1 Top-Level Algorithm

Our top-level algorithm is shown in Algorithm 1. It accepts as input
a query Q;, and an integrity constraint ¢, and returns an output
query Q that is semantically equivalent to and faster than Q. Q is
1 if it does not find one such query within the given time limit.
Let us explain Algorithm 1 in more detail. At a high-level, our
algorithm is a new instantiation of the counterexample-guided in-
ductive synthesis (CEGIS) paradigm [58] — which has found great
success in the programming languages community — for our query

Query Q == an input table
| SELECT L FROM Q WHERE ¢/
| SELECT L FROM Q GROUP BY cols HAVING ¢/
| SELECT L FROM Q ORDER BY cols
| O INNER JOIN Q ON
| O LEFT JOIN Q ON ¢/
Target List L == [t AS alias, - - - ,t AS alias]
| DISTINCT [# AS alias, - - - ,t AS alias]
Target t == col | a(col) | a(DISTINCT col)
| a(col) OVER(PARTITION BY cols ORDER BY cols)
| w OVER(PARTITION BY cols ORDER BY cols)
Column List cols == [col,- - - ,col]
Column col ::= alias | a column from an input table
Condition ¢ == EopE|¢YyAY |y VY
Expression E = col | a(col) | a(DISTINCT col) | const
Agg. Func. a == MAX | MIN | AVG | SUM | COUNT
Window Func. « == DENSE_RANK | RANK
Figure 2: Syntax of our query language.

optimization problem. Our approach consists of (a) an inductive
synthesizer (i.e., our query synthesizer) that aims to find a query Q
which satisfies a set & of counterexamples and (b) a query checker
(i.e., our equivalence checker) which checks whether or not Q is
equivalent to Q;, and generates a counterexample E if not. One key
advantage of using CEGIS is to enable efficient checking: checking a
candidate query against & (line 4) is typically significantly cheaper
than calling an equivalence checker (line 5, e.g., SPES [74]). In other
words, verification is used parsimoniously only when necessary. In
our context, a counterexample E is an input DB together with the
desired output table returned by Qjp,.

In addition to using counterexamples, SLABCITY also uses a novel
score function that defines dataflows for queries in order to guide
the query synthesis process. While we defer the formal definition of
score to Section 4.2, from a high-level, it assigns a non-positive inte-
ger score’ to each query Q such that, Q with a higher score is more
likely to be an optimized query (i.e., semantically equivalent to and
faster than Q;,) and vice versa. Initially, & has no counterexamples
and Q is a empty set that stores equivalent queries (line 1). Then,
we enter a CEGIS loop (lines 2-7). At line 3, it lazily enumerates
all queries in non-ascending order of their scores. In other words,
SLABCITY prioritizes the search for candidate queries Q that are
likely to optimize Q;y (i.e., with a higher score). Line 4 checks if Q
meets &: if not, it continues to the next candidate. If Q passes &, we
invoke the equivalence checker (line 5) to see if Q is equivalent —
it returns a new counterexample E if not equivalent, or returns null
otherwise. For the latter case, line 6 adds Q to é; for the former,
line 7 adds E to &. Upon termination, we rank queries in Q (line 8)
and return a “best” query that we believe can optimize Q.

Example 4.1. Suppose Qin is query Q1 from Table 1. Our CEGIS-
based algorithm will begin with query candidates with score 0: Q’
below is one such query. Q’ is obviously not equivalent to Q;y, and
our equivalence checker gives a counterexample E below. Note that
E consists of an input DB D and the output that Q;, returns on D. A
query eventually returned by our tool will pass this counterexample.

"While non-positive scores may seem counter-intuitive, they can be viewed as the
negation of the cost, i.e., the higher the score, the lower the cost.

3155

Algorithm 1 Top-level algorithm of SLaBCiTY.

procedure OpTIMIZE (Qjn, §)
input: An input query Q;, and an integrity constraint ¢.
output: An equivalent and faster output query Q.

1: &:=0; é::@;

2: while not timed out do

for all Q € LAzZYENUMERATE(Q;,,) do > (1) Query synthesizer.
if Q doesn’t pass & then continue; > Check against counterexs.
E := CHECKEQUIVALENCE(Q, Qin, §); > @ Equivalence checker.

if E = null then Q.add(Q)
else &.add(E); _
Q := RANKPERFORMANCE(Q, Qi)
return Q;

> null means Q is equivalent to Qjy.
> Otherwise, E is a new counterexample.

3
4
5
6:
7
8: > @ Performance Ranker.
9:

A counterexample E consists of an input database D (left)
and an output table of Q;,, on D.

Q" : SELECT gender, day,
SUM (score)
OVER (PARTITION BY gender
ORDER BY day)
FROM scores
GROUP BY gender, day

Q’ : SELECT gender, day,
SUM (score)
FROM scores
GROUP BY gender, day

gender | day | score
a 1 1
a 2

gender | day | score
a 1 1
a 2

On the other hand, the query Q” next to Q above is equivalent to
Qin. However, Q” is determined to be slower than Q, from Table 1
by our performance ranker. SLABCITY was able to find both Q3 and
Q" which are added to é; however, SLABCITY returns Q; in the
end, since it is ranked the highest.

4.2 Dataflow-Based Query Score Function

As we can see, a key challenge underlying the success of Algorithm 1
is how to design a good score function as well as how to develop an
algorithm that can effectively use the score function to prioritize
the search. This section first addresses the score function design.

Key idea: scoring queries based on dataflows. Recall that we
use a score function to quantitatively rank queries in terms of their
likelihood of optimizing a user-provided input query Qj,. That is,
given Q;n and Q, a desired score function should assign Q with a
higher score if Q is indeed semantically equivalent to and faster
than Q;p,. At the same time, it should minimize false positives: that
is, it should not assign high scores to too many inequivalent queries.

To design such a score function, our key insight is that, a query Q
that indeed optimizes Q;, typically exhibits dataflows that are also
manifested in Qj,. For example, if Q filters an aggregated column
(e.g., using HAVING SUM), the same computations (e.g., calculating
SUM) likely would also show up in Qjp, although the computations
might be organized syntactically differently (e.g., first calculating
SUM in SELECT and then using WHERE to filter, which is slower). In
other words, our dataflow-based score function is designed to favor
queries Q that involve dataflows from Q;, — the rationale is that,
since Qj, is functionally correct, its underlying computations are
likely sufficient for generating an optimized query.

However, we do not require Q to use up all dataflows from Qjy,.
In other words, Q;;, may exhibit redundant dataflows that are not
necessary for computing the same result and thus can be optimized

3

== an input table | a column from an input table
[a(@,-.80) lwl|[d,-+-.8]10p(8,8) | SAS|SVS
| PARTITION BY(S) | ORDER BY(S) | GROUP BY(S)

Figure 3: Dataflow language.

away. For example, if Q;, involves a redundant JOIN, an optimized
query Q may contain only dataflows from one branch of the JOIN.

Finally, if a query Q' contains dataflows that are not exhibited
in Qin, oftentimes Q’ is not equivalent and hence we can assign it
with a lower score. For example, suppose Q;, calculates SUM over a
column. It is less likely that a query Q’ can accomplish the same
goal with only AVG. Similarly, if Q;;, and Q’ both perform filtering
but on two different columns that are unrelated, it is more plausible
to believe they are not semantically equivalent.

Note that, since our score is calculated based on semantic infor-
mation (i.e., dataflows) instead of syntactic features, a syntactically
simpler query (e.g., one with fewer lines) may receive a lower score
than a more complex query. In other words, our algorithm first pri-
oritizes generating queries with higher scores, and then prioritizes
syntactically smaller queries when their scores are the same (see
Section 4.3). This is an advantage since it will allow us to uncover
non-trivial rewrites sooner if they are more promising.

Dataflows. Our observations suggest a score function design that
takes two queries (i.e., Qi to be optimized and Q to be scored),
extracts dataflows for each, and calculates the score based on these
dataflows. In what follows, we first formalize the notion of dataflow.
Then, we present the dataflow extraction algorithm.

Definition 4.2 (Dataflow). A dataflow § (defined in Figure 3) for a
given query Q is a sequence of SQL operations that are performed
during Q’s execution on one or more input tables or their columns.

Let us explain our dataflow language more formally (see Figure 3).
In the base cases, a dataflow § is either an input table T or a column
from an input table. In the recursive cases, § captures operations
performed on top of such base dataflows. For example, a(§, - - - ,)
describes the application of an aggregate function over dataflows
for argument columns. [§, - -, d] is the composition of columns
to form a table (e.g., via SELECT). Expressions, such as = and <,
involves comparison logics, which is what op(J, §) is designed for.
The language also includes boolean combinations of dataflows in
order to represent dataflows from the filtering conditions in a query.
Finally, we capture other SQL operations, such as PARTITION BY,
ORDER BY, GROUP BY, etc.

Example 4.3. In this example, we show some sample dataflows
for Qi from Example 4.1:

{scores.score, scores.day < scores.day, SUM (scores.score), - - - }

We have scores. score because Qj;, uses data from score column
in scores table. We have SUM (scores. score), since Q;, performs
summation on this column. Similarly, scores.day < scores.day
because an intermediate step of Q;, does a comparison between
these two columns.

Extracting dataflows from queries. Now let us talk about how
to extract a set A of dataflows from a query Q. Figure 4 shows how
to extract dataflows where we use a judgment of the form:

Qctx F ALLDFS(P): A

3156

This means: given a “context” Qs associated with P, A is the set
of all dataflows that are manifested in P. Here, P may be a query, a
condition, a target list, etc. In general, P is associated with a context
Qcix — e.g., if P is a target list, Q. is the query that produces the
table that the targets in P correspond to. Having a context allows
us to trace the flow of data to the original input tables.

Let us first explain how to extract dataflows for a query Q. The
first rule in Figure 4 concerns the base case where Q is an input table
T: in this case, the result is a singleton set with T. Intuitively, this
means, the computation in Q involves only T and nothing else. The
next one concerns selection — it states that, the dataflow set A of a
SELECT query is the union of three sets: A; for the query Q to select
from, Ay for the filtering condition i, and A3 for the target list L.
Conceptually, A; contains dataflows manifested in all components
of Q; that is, if Q is a nested query, A1 would also include dataflows
from the sub-queries. Similarly, Az and A3 capture computations
performed in ¢ and L. (3) is very similar to (2) in that it also takes
the union of dataflow sets for each of the arguments of JOIN. The
join logic is implicitly captured in A3 for the join condition .

Next, let us examine the extraction rules for a condition 1/, which
can be used as a join condition or used in WHERE or HAVING. Looking
at (4), for a boolean combination lop (e.g., V) of multiple conditions,
we would first recursively invoke ALLDFs to obtain all dataflows
A; for each ¢;. In addition, since lop itself performs a logical opera-
tion, the final dataflow set also includes lop(d1, 82): here, §; is the
dataflow for ¢; that (different from A;) does not include dataflows
from ¥;’s components, and we use a separate function DF (different
from ALLDFs) to compute ;. The key difference between ALLDFs
and Dr is that, the former includes all dataflows for all components
in P, whereas the latter only concerns one dataflow for P itself. The
next rule (5) takes care of the base case where the condition ¢ is an
application of op (e.g., =) over expressions (e.g., columns). It also
makes use of DF to retrieve the dataflow for an expression E;.

Let us dive a little deeper to see how DF works. (6) states that the
dataflow of a logical operation (e.g., A) is composed of dataflows of
the two arguments i1, 2. (7) is very similar except that it concerns
comparison operations (like =) and it invokes DF on expressions E;
such as a column, an aggregate function applied to a column, or a
constant. (8)-(13) detail how to extract dataflows for expressions. (8)
says the dataflow for a constant is the constant itself. (9) states that,
given an input table T, the dataflow for its column col is T.col. (10)
considers extracting the dataflow for a column col — which may
be a column alias — given a JOIN query: it recursively extracts the
dataflow for col given Q; that col comes from. (11) is similar: it first
identifies the target t from the target list L that corresponds to col
and then invokes DF on t given the query Q being selected from.
Finally, (12) and (13) extract dataflows for aggregate functions.

Example 4.4. Let us explain how to extract the dataflows for the
following component (i.e., a comparison) in Q; from Table 1.

s2.day <= sl1.day

The dataflow set of this expression is the union of three sets of
dataflows: (1) the dataflows of its left argument ({scores.day}), (2)
the dataflows of the right argument (namely {scores.day}), and (3)
the dataflow of the comparison (i.e., {scores.day < scores.day}).
This essentially means that the query uses data from day column of

’ ALLDFS algorithm that extracts all dataflows for queries ‘

T is an input table F ALLDFS(Q): Ay Q F ALLDFs(¢): Ay

Q+ AuLDrs(L): A3

(1)
+ AuLDrs(T): {T}

’ ALLDFs algorithm that extracts all dataflows for conditions ‘

@ QF ALDFs(¢;): A; Q +FDr(¥;): 5;)

+ ALLDFs(SELECT L FROM Q WHERE 1/): Ay U Ay U A3

) F ALLDFS(Q;1): Ay F ALLDFs(Q3): Ay Qp JOIN Q; + ALLDFS(Y) : As
F ALLDFs(Q7 JOIN Q; ON ¢/) : A; U Ay U As

QF AuDFs(E;): A; Q +Dr(E;): 5;

Q + ALLDFs (Y lop) : Ay U Ay U {lop(81,2) }

’ Dr algorithm that extracts dataflows for conditions, expressions and targets

QFDr(Yi): &

O+ Dr(E;): &;

Q + ALLDFs(Eq op Ez): Ay U Ay U {0p(81,62) }

T is an input table col € Corumns(Q;) Q; + Dr(col): 5;

(6)

QO +Dr(Yy lopyp): lop(61,8;) O+ Dr(E; op Ez): 0p(d1, 52)

(tAScol) e L QrDr(t):d Q+Dr(col): &

Q + DF(const) : const

T + Dr(col): T.col Q1 JOIN Q, ON ¢/ + DF(col): &;

Q+Dr(col): 8

(11) (12) (13)
SELECT L FROM Q WHERE ¢ + Dr(col): & Q+Dr(a(col)): a(d)

Q + Dr(a(col) OVER(PARTITION BY cols; ORDER BY cols;)): a(5)

Figure 4: Inference rules that explain how dataflow extraction works for some key constructs in our query language.

the input scores table and performs a comparison where the left
and right arguments come from the day column of scores table as
well. This provides clues to guide the search.

Dataflow-based scoring. Now we define our score function, which
scores a program P (potentially associated with a context Qczx) with
respect to an input query Q;n. First, it extracts two sets of dataflows,
ie., Ajp and A, for Q;, and P respectively using the algorithm from
Figure 4. Then, it computes the set difference, i.e., Adiﬁf = A\ Ain,
which gives the dataflows in P but not in Q;y,. Finally, we define
score(P|Qetx Qin) = —|Ad,ﬁv|. As we can see, 0 is the highest possible
score: in this case, all of P’s dataflows are from Q;,,. For brevity, we
use notation score(P|Qcc) when Qjy, is clear from the context.

Monotonicity. An important property of our score function is that
it is monotonic. That is, given Qj, and Qcy, for any component P’ of
P (e.g., P’ is a sub-query of query P), score(P’|Qctx) > score(P|Qcrx)-
The proof is obvious due to the monotonic nature of our dataflow
extraction algorithm and our score function: the dataflow set for P’
is always a subset of that for P, hence P’s score is no less than P’s.
The implication is: when composing multiple programs Py, - -, Py
to form a bigger program P, P’s score is never higher than the score
of any P;’s. The next Section 4.3 presents an algorithm that uses
this property to effectively guide the query synthesis process.

4.3 Prioritizing Search using Score Function

Our key idea is to leverage the monotonicity property of our score
function to develop a stratified search algorithm that enumerates
programs in layers: it first finds all queries with score 0 (i.e., the
highest possible score) without considering those with lower scores,
then generates all queries with score —1 (i.e., the second highest)
again without constructing those with lower scores, and so on.

In particular, to generate all queries Qs whose score is exactly
S, we track only those queries 525 whose score is at least S, be-
cause according to the monotonicity property, éz s is sufficient to
construct Qs. This allows for a dynamic programming design that
lazily enumerates queries, as presented in Algorithm 2. It takes the
input query Q;, and returns a stream of queries in a non-ascending
order of their scores. Line 1 initializes Qs 1 to empty set since the
highest possible score is 0. Then, the loop at lines 2-8 populates

3157

Algorithm 2 LAzYENUMERATE search algorithm.

procedure LAZYENUMERATE (Qin)
input: Input query Qjy.
output: A stream of candidate queries in non-ascending order of scores.

1: (521 =0 > All queries scored at least 1, which is empty.
2: for~5 =0,-1,-2,--- do _

3: Qss:=05s5415 > All queries scored > S, initially set to Q> s41.
4: while true do _

5: Q% = NEWQUERIESWITHSCORES (Qin, Q> 5, S);

6: if é; = () then break; > Exit if no more new queries scored S.
7 yield Q¢;

8 st = ézs u é'q > All queries scored at least S so far.

0i€0ss Y€ l://;S(Q) score(Q") =S
(Q' =01 JOINQ, N) € Q)

E; € E>s(Q) score(y/|Q) > S

T is input table score(T) =S
TeQ
(3) Y V=5(Q) score(V/1Q) > S 4
(¥ =4 lop) € Y>5(Q) (' =E1 op Ez) € Y>5(Q)
col € Cols(Q) score(col|Q) = S
col € E>5(Q)

Qe0ss Lel:s(Q) ¥eyss(Q) score(Q) =S
(Q' = SELECT L FROM Q WHERE ¢/) € Q)

(1) (2)

(4)

const is used in Qjp

const € Ess(Q)

(6)

(7)

t; € t>5(Q) alias; is a fresh column alias score(L|Q) > S

(L = [t; AS aliasy, - - - , tn AS alias,]) € Lss(Q)

(®)

Figure 5: Inference rules for NEwWQUERIESWITHSCORES.

each éz s for all possible scores in descending order from 0. Specif-
ically, given S, éz s is initialized to @2 s+1 (line 3). The inner loop
(lines 4:8) iteratively constructs new queries é’s with score exactly
S from Q5 s (line 5) until no more new queries are generated (line 6).
Line 7 yields new queries Q; which are then added to Qs s at line 8.
Note that the while loop in Algorithm 2 may be non-terminating
if the score function is based on sets of dataflows: it is possible
to keep generating new queries with the same set of dataflows
(hence the same score). To ensure termination, dataflows from a
program are represented as a multiset where duplicate dataflows
are counted multiple times; therefore, one cannot keep constructing
new queries without decreasing the score.

Next, let us explain how NEWQUERIESWITHSCORES (invoked at
line 5 of Algorithm 2) works. Due to space limit, Figure 5 shows a

key subset of inference rules that describe how to construct a new
query Q’ with score S from an existing set éz s of queries with at
least score S. Rule 1 is the base case stating that an input table T
is generated if T has score S. Rule 2 describes a recursive case: we
join Q1 and Q7 using condition ¥ to generate a JOIN query Q if Oy
and Q3 are both in 625, 1 has a score of at least S given context Q,
and the score of Q’ is exactly S. Rules 3-6 explain how conditions
with a score of at least S can be generated, where Rules 5-6 provide
the base cases and Rules 3—4 recursively build larger conditions.
Rule 7 is an example to illustrate how to generate SELECT queries,
which additionally involves generating target lists L with score at
least S. Rule 8 explains how to generate such target lists. Note that,
while implicit in the rule specification, we return Q” only if it is not
already in @2 S-

In summary, new queries are generated in a bottom-up manner.
That is, when synthesizing queries with score S, we only use queries
with a score of at least S as building blocks. Further, among queries
with the same score, we prioritize syntactically smaller queries.

4.4 Checking Query Equivalence

So far, we have seen how the inductive synthesizer in the CEGIS-
based algorithm works. In this section, we explain how the equiva-
lence checker works. As mentioned earlier, SLABCITY incorporates
a range of SQL query equivalence checking techniques, including
empirical testing as well as formal verification. These techniques are
complementary to each other: testing is relatively cheap but cannot
prove equivalence, while verification can provide an equivalence
guarantee but tends to be significantly more expensive.

Syntax-based query testing. To the best of our knowledge, there
is little work on query equivalence testing for an expressive SQL lan-
guage like ours. Thus, we develop a new tester specifically targeting
our complex language. Given an input query Q;, and a candidate
query Q, as well as an integrity constraint ¢, the tester returns ei-
ther (1) a database D which satisfies ¢ such that Q;;, and Q produce
different tables on D or (2) “unknown” indicating it is not able to
find a counterexample. In the latter case, it is possible that Q;, and
Q are indeed equivalent, or they are not equivalent but the tester is
not able to disprove it. The key challenge is how to disprove many
non-equivalent query pairs from an expressive language without
being too costly. Randomly generating test inputs does not work.
Our key observation is that, we can extract hints from Q;, and
Q using a mostly syntactic analysis to effectively guide the input
generation process. Below are some of our key insights.

o Leveraging filter conditions. We observe that databases producing
non-empty outputs tend to be useful for disproving equivalence.
Therefore, we extract filter conditions (such as those in WHERE)
from Q;, and populate the test database with rows that satisfy
these conditions. We also collect the JOIN conditions to generate
inputs that do not produce empty intermediate join results.

Duplicating non-key values. A second source of non-equivalence
that we have observed is from wrong logic around operations like
addition/removal and from certain keywords such as DISTINCT
being placed in a wrong location. Therefore, our tester identifies
such operations and keywords to generate potentially useful test

8For the complete set of rules, please see [11].

3158

inputs accordingly. For example, if Q has DISTINCT on a column
C, we will generate a test DB with duplicated values in C, with
the goal of triggering the DISTINCT logic.

Duplicating GROUP BY columns. Similar to the previous insight,
we also observed a common class of incorrect query candidates
with wrong GROUP BY clauses. While certain grouping strategies
definitely lead to equivalent queries that are significantly faster,
some of them produce non-equivalent ones. Therefore, our tester
looks for columns in GROUP BY of Q that are different from those
in Qjpn. Then, it generates test DBs that contain duplicated values
in such columns.

In general, each insight above leads to a set of test input DBs, all
of which are encoded into a logical formula ¢;. We also encode the
integrity constraint into a formula ¢2. We use a constraint solver
(such as Microsoft Z3) to generate satisfying assignments for ¢ A@a,
where each satisfying assignment corresponds to one DB instance.
If ¢1 and ¢ are contradictory (i.e., 1 A @2 is unsatisfiable), it means
no valid test inputs can be generated to differentiate Q;;, and Q. In
that case, we resort to subsequent verification approaches.

Bounded verification. In addition to testing, we also use a bounded
verifier to check equivalence and find counterexamples: it considers
all inputs in a bounded space and thus is more exhaustive than our
tester. SLABCITY incorporates existing bounded verifiers (i.e., those
in COSETTE [26, 66]). In particular, if verified, it guarantees that Q;p,
and Q produce the same output for all input databases that have
up to k rows (k is set to 2 in SLABCITY and can be customized by
users), though cell values are not bounded. These queries will then
be sent to our full verifier which we explain next.

Full verification. SLABCITY incorporates state-of-the-art full-fledged
verifiers from CoseTTE [26] and SPES [74] — which can prove query
equivalence against all possible inputs. They are most suitable for
common queries (such as select-project-join) and give the highest
possible guarantee; as a result, they are also more expensive. SLABC-
1TY uses full verification parsimoniously, only when our tester and
bounded verifier are not able to disprove a query.

4.5 Performance Ranking

Our ultimate goal is to find equivalent queries that are faster. We
thus use a performance ranker to select a query with the best perfor-
mance among the equivalent ones. In this paper, we use EXPLAIN
cost estimates as a proxy for the actual performance. However,
SLABCITY can also use the actual query latency by running candi-
date queries against a small sample of the data (or even the entire
data, when the overhead can be well-justified, e.g., for reporting
dashboards where the same query will run many times). The choice
of how to estimate query performance is an orthogonal question
and is not essential to our synthesis-based algorithm. In Section 5.4,
we present an ablation study to see the impact of using EXPLAIN
cost estimates on the latency of the final synthesized queries.

5 EVALUATION
Our experiments are designed to answer the following questions:

e Coverage: How does SLABCITY’s coverage compare against that
of state-of-the-art query rewriting techniques? That is, which
technique can optimize more queries? (Section 5.2)

WT [SC Fs9 LR mmm WT

Latency ratio

of queries optimized

0

50th
(b) Latency reduction: left is on 100K, middle is 1M, and right is 10M. “GM” means geometric mean.

100K 1M 10M
(a) Coverage (# of queries).

75th 99th GM

Latency ratio

1 scC F*d [R HEE WT SC [*<d LR = WT

12193.1

1010.7

177.1

Latency ratio

50th

75th 99th GM

50th

75th 99th GM

Figure 6: LeetCode results across all data sizes with uniform distribution.

Latency ratio

—1 1

3, 1111
50th

o0
75th

of queries optimized

+3
GM
(b) Latency reduction: left is on 250K, middle is 1M, right is 4M. “GM” means geometric mean.

99th

(a) Coverage (# of queries).

Latency ratio

3 sC 3 LR mmm WT C3JsC C3JLR mmm WT
17876.8
10 100
3796 o
10° g86.4 E 10
fl54.4 >
102 2 102
2
10! 6 7.2 ® 10t
100 B 1-2 1v2 100 11 1.1 2
N L)
50th 75th 99th GM 50th 75th 99th GM

Figure 7: Calcite results across all data sizes with uniform distribution.

Query latency reduction: How does SLABCITY compare to
state-of-the-art query rewriters in terms of the efficiency of the
generated queries? That is, for input queries that can be rewritten,
which technique leads to faster queries? (Section 5.3)

Ablation study: How important are various ideas in SLABCITY?
(Section 5.4)

5.1 Experimental Setup

Testbed. All of our experiments (including running SLABCITY and
baselines as well as executing queries) are conducted on Amazon
EC2 r5.large instances, with 16GB RAM, 200GB gp2 SSD and Xeon
E5-2686 v4 CPU running Ubuntu 22.04. We use PostgreSQL 12.13.

Workloads. We use a wide range of different workloads:

o LeetCode. These are SQL queries, written by actual developers
to solve different problems on LeetCode [9]. Specifically, we first
crawled all publicly available SQL queries accepted by LeetCode
as “correct” solutions. However, a number of them are actually
incorrect due to missing tests on LeetCode. Hence, we manually
filtered out as many incorrect queries as we could. In the end,
we were left with a curated suite of 1131 queries overall. Some of
these solutions are poorly-written and therefore slow-running
(which we hypothesize were authored by SQL novices) - this
makes our LeetCode dataset especially valuable for evaluating
query rewriting techniques. We also formalized the schemas and
integrity constraints for all LeetCode tasks.

Calcite. Our second workload is constructed from the Calcite’s
optimization rules test suite [2], which is used in prior work [68]
for evaluating query rewriting. We include all 794 queries.
TPC. Finally, we also use queries from the standard TPC-H [14]
and TPC-DS [13] workloads.

Data generation. We generate large databases for each workload.
For LeetCode, we use three data sizes (100K, 1M, and 10M). For
Calcite, we use 250K, 1M, and 4M (4M is the largest data size that can
fit in 16G memory). For both workloads, we follow prior work [68]

3159

and use two different data distributions: uniform and Zipfian (with
a skewed parameter of 1.25, as used in [68]). We also make sure the
generated data meets the integrity constraints. For TPC-H and TPC-
DS workloads, we use their official data generation script with the
same scale factor as in LearnedRewrite [76] (which is 1, meaning
1G data size).

Baselines. We compare SLABCITY against two state-of-the-art rule-
based query rewriting techniques:

e LearnedRewrite (or LR, VLDB 2022 [8, 76]) is a state-of-the-art
rule-based query rewriter which uses Monte Carlo Tree Search
to guide the rule-based rewriting process. In particular, LR uses
rewrite rules from Calcite and was shown to outperform multiple
existing techniques from prior work [17, 49].

WETUNE (or WT, SIGMOD 2022 [15, 68]) is the state-of-the-art
automated query rewrite rule generator. It had discovered dozens
of new rules, previously missing from existing rule-sets. These
new rules were shown to lead to new optimizations previously
not considered by existing systems (such as MS SQL Server).

5.2 Coverage

This section reports the number of queries from each workload that
SLABCITY can optimize, and compare it with baselines.

Setup. Given each query Q; (and the corresponding schema) from
each workload, we run SLABCITY (using a 5-second timeout) and
obtain an output query Q. Then, we check whether or not Q indeed
optimizes Qj; in terms of latency: if Q has a smaller latency than
Qin, we say Q optimizes Q;,. We run each query (both input and
rewritten queries) 3 times and take their average as the final latency
value. Before each run, we restart the PostgreSQL service and clear
the database cache. We use 10 hours as the timeout; output queries
that do not terminate before timeout are marked as “not optimized”.
The same setup is used for the baselines.

SLABCITY can optimize more queries across different workloads.

Table 6: LeetCode and Calcite results with Zipfian distribution.

‘ Coverage (# of queries) ‘ Latency ratio (geometric mean)

LeetCode Calcite LeetCode Calcite
100K 1M 10M|250K 1M 4M|100K 1M 10M|250K 1M 4M
SiaBCrTY | 318 269 186 101 99 96| 3.1x 2.7x 2.2x| 5.4x 8.8x 12.8x
LR 262 243 154 95 94 86| 1.1x 1.2x 1Ix| 1.2x 1.3x 13x
WT 24 23 24 20 23 18| 1.4x 1l.6x 1l.6x| 1.2x 1.2x 1.2x

Results. Figure 6(a) and Figure 7(a) present the coverage results for
all techinques (including SLABCrITY and baselines) across LeetCode
and Calcite workloads (using a uniform distribution). For example,
looking at Figure 6(a), for 10M, SLABCITY can optimize 222 input
queries, whereas LearnedRewrite and WETUNE can only optimize
132 and 20 queries, respectively. We also note that since SLABCITY’s
checker can fully verify only a subset of its output queries, we man-
ually inspected all the remaining queries that only pass the tester
and bounded verifier (see Section 5.5 for a detailed discussion on the
limitation of full verification) and confirmed the optimizations in-
cluded in our results are indeed correct (i.e., all input-output query
pairs are equivalent). For the Zipfian distribution, we obtain similar
results, as shown in Table 6. Overall, SLABCITY significantly out-
performs existing rule-based systems, highlighting the superiority
of a whole-query synthesis-based approach.

For the TPC-H workload, SLABCITY is able to optimize 2 (out of
22) input queries (#17 and #20) in less than 5 seconds. LR is able
to optimize the same two queries, while WT cannot optimize any.
The TPC-DS queries are far more complex, but SLABCITY can still
optimize three queries (#1, #30 and #81) within 5 seconds. LR can
optimize two (#1, #30) but LR’s output queries are much slower than
SLABCITY’s. Again, WT is not able to optimize any.

Discussion. The gap between SLABCITY’s coverage and baselines’
on LeetCode is much higher than that on Calcite: we believe this
highlights the usefulness of our LeetCode dataset and the advantage
of our synthesis-based technique over rule-based ones in optimiz-
ing new query patterns. In particular, LeetCode has more queries
that are larger and use more aggregation and window functions
than those in Calcite. While SLABCITY’s coverage is considerably
higher than all baselines, there are still some queries covered by
baselines and not covered by SLABCITY. Some of these queries in-
volve operators (e.g., coalesce) that are not yet supported by our
prototype. Another reason has to do with our 5s timeout. Our plan
for future improvement of our prototype (e.g., supporting more
operators and optimizing the performance such as by parallelizing
the search) should help with both reasons.

5.3 Query Latency Reduction

In this section, we compare the performance of queries synthesized
by SLABCITY with those generated by (rule-based) baselines. Higher
coverage (Section 5.2) means SLABCITY can optimize more queries,
but does it also lead to better (i.e., faster) queries than baselines?

Setup. We use the same setup as in Section 5.2 and measure the
reduction ratio in query latencies across each technique’s output
queries. For example, given Q;y, and its corresponding output query
Q synthesized by SLaBCITY, a latency reduction of 5x means Q is
5x faster than Qj,. We still use 10 hours as the timeout — in case of

3160

Table 7: Time breakdown on average and other statistics.

% of time spent on ‘ LeetCode Calcite

query search (line 3) 37.4% 6.9%

checking against counterexamples (line 4) 10.8% 0.9%
equivalence checking (line 5) 51.4% 92.2%
performance ranking (line 8) 0.4% 0.1%

avg # of queries enumerated 437 104

avg # of counterexamples generated 1.4 1.2

avg # of equivalent queries synthesized 66 15

a timeout, we use 10 hours as the latency; however, if both Q;, and
Q time out, we do not include this data point.

SLABCITY generates faster queries across different workloads.

Results. We present the latency reduction results for LeetCode and
Calcite workloads (using a uniform distribution) in Figure 6(b) and
Figure 7(b). For example, looking at Figure 6(b), for 10M (rightmost
figure), on average, SLABCITY achieves a 50.3x latency reduction
ratio across all output queries, whereas LR is 1.4x and WT is 12x. We
also report additional statistics: median (50th) and 75th percentiles.
As we can see, SLABCITY always outperforms baselines by a sig-
nificant margin across both workloads and for all data sizes. For
output queries that can be covered (i.e., optimized) by SLABCITY,
the median is as high as 1.9x for LeetCode and 2.2x for Calcite. For
the Zipfian distribution, SLABCrITY also outperforms all baselines;
see Table 6 for more details.

For TPC-H, SLABCITY and LR achieve similar latency speed-ups
(both by more than an order of magnitude). For TPC-DS, SLaBCITY
can optimize one query that LR is not able to optimize. For the two
TPC-DS queries that both can optimize, SLABCITY outputs faster
queries compared to LR’s. For all three TPC-DS queries, SLABC1TY
can speed-up the original queries by at least one order of magnitude.

Discussion. Similar to Section 5.2, SLABCITY’s margins of improve-
ment on LeetCode are even more significant than on Calcite, which
we believe is due to the same reasons mentioned earlier: existing
rule-based systems and LearnedRewrite’s rule-set are specifically
designed based on Calcite queries and LeetCode is a useful dataset to
evaluate query rewriters. Careful readers may observe that SLABC-
1TY s reduction on LeetCode 10M is lower than that on 1M. This
is due to 15 input queries (all from problem #1308) which do not
terminate within 10 hours on both sizes. Surprisingly, SLABCITY is
able to optimize these queries: the fastest output query terminates
in 3 seconds on 1M but takes more than 30 seconds on 10M. As we
used 10 hours as the latency for the timed-out input query in both
cases, this makes the reduction on 10M lower than that on 1M.

5.4 Detailed Analysis and Ablation Study

Time breakdown. Table 7 shows the breakdown of how much time
on average SLABCITY spends in each component (such as search
and equivalence checking) and other statistics (such as the average
number of queries generated during synthesis). In general, query
equivalence checking (including both testing and verification) takes
the majority of the time.

Synthesis efficiency. While SLABCITY uses a 5s timeout, many of
its output queries are discovered much earlier. Specifically, 58% of its

Table 8: Running time statistics to generate rewrites (in
seconds).For SLABCITY, we report the time when an output
query (synthesized using 5-second timeout) is found.

Table 9: Coverage (# of queries) and geometric mean of latency reduction:
using EXPLAIN vs. using exact latencies.

‘ Coverage (# of queries) ‘ Latency ratio (geometric mean)

LeetCode Calcite
median max | median max LeetCode Calcite LeetCode Calcite
100K 1M 10M|250K 1M 4M|100K 1M 10M|250K 1M 4M
SraBCITY 0.84 4.84 0.74 4.81
LearnedRewrite| 003 073| 025 3.75 w/ EXPLAIN 315 301 222| 106 101 97| 27x 2.2x 2.Ix| 5.2x 7.2x 10.1x
WETUNE 0.24 046 0.001 0.17 w/ exact latencies| 401 373 351| 121 117 112| 2.9x 2.6x 2.2x| 4.8x 6.7x 10.4x

output queries (generated using 5s timeout) are found within 1 sec-
ond. In the words, the actual synthesis time to find the output query
is shorter. Table 8 presents the median and max of SLABCITY’s ac-
tual synthesis time for LeetCode and Calcite queries that SLABCITY
can rewrite. As expected, rule-based approaches are generally faster,
though LR’s max time on Calcite is much slower. For TPC-H and
TPC-DS, SLABCITY takes 4-5 seconds for all queries it can optimize.

Impact of CEGIS. How beneficial is the use of CEGIS? That is, if
we do not re-use counterexamples when disproving queries, how
inefficient would SLABCITY become? For LeetCode, with CEGIS, on
average, SLABCITY can search 437 queries in 5 seconds, where 1.4
counterexamples are generated; however, without re-using these
examples, it can only search 175 queries on average within the same
amount of time. This is because the tester spends extra time generat-
ing new counterexamples which are later dropped, but clearly they
can be re-used to disprove other queries. This validates the obser-
vation made in prior work that CEGIS helps boost efficiency [58].

Impact of query testing. It is critical to reduce the frequency of
invoking query verification. For instance, for LeetCode, on average
our tester can disprove several dozens of queries within 1 second,
whereas the verifier typically can handle at most a couple of queries
within the same amount of time.

Impact of using dataflows to guide search. A variant of SLABCITY
that uses a naive search algorithm (that enumerates queries based
on query size) was not able to optimize any of our input queries
within 5 seconds. This highlights the importance of using dataflows
to significantly accelerate query synthesis.

Impact of using cost estimates for ranking. EXPLAIN is known
to give inaccurate cost estimates. We study a variant of SLABCITY
where, instead of EXPLAIN, we use the actual latency for each query
(by running it against the database). While this variant is clearly
impractical, it helps us understand how much SLABCITY could be
improved if we had access to a perfect predictor that could give the
exact latency values. Table 9 compares SLABCITY w/ exact latency
against our current SLABCITY w/ EXPLAIN in terms of coverage;
Table 9 compares them in terms of latency reduction. In general,
using exact latencies yields slightly higher coverage and latency
reduction ratios, which is expected as that is the perfect predictor.
However, we notice that using EXPLAIN to estimate query latency
gives very close results and we believe this is a reasonable trade-off.

Percentage of fully verified rewrites. A subset of SLABCITY’s
rewrites can be fully verified by the full verifier — meaning queries
in this subset are guaranteed to be equivalent to their corresponding
input queries, for all possible inputs. For example, for LeetCode 100K,
17% of the queries can be fully verified by CoseTTE and SPES. We
explain the implications in the next Section 5.5.

3161

5.5 Discussion

While SLABCITY’s percentage of fully verified rewrites (about 17%)
might sound low, one must remember that the vast majority of
rewrite rules in existing rule-based techniques are not fully veri-
fied [25, 27] and rely on human verification, which is error-prone.
In fact, a considerable fraction (about 5%) of rewrites generated by
LearnedRewrite using the Calcite rule-set were proved incorrect
by SLABCITY’s checker. In contrast, all of SLABCITY’s rewrites pass
the checker. Even those few prior approaches that do offer formal
guarantees, they do so for a much smaller number of queries than
SLABCITY (e.g., 7 queries in the FGH work [67]).

In reality, the percentage of rewrites that can benefit from full
verification has little impact on SLABCITY’s specific use case, which,
as explained in Section 1, is any scenario where a query is rerun
many times, such as BI dashboard queries. In such scenarios, many
rewrites receiving a “bounded verification” flag is not a hindrance
since the human inspection can be performed at the time of defining
the queries and before deploying the dashboard to production.

Furthermore, SLABCITY’s use of a tester and a bounded verifier
in conjunction with full verification offers two key improvements.
First, they can very effectively eliminate incorrect rewrites (by more
than 80%) and hence allow human experts to focus their effort on
inspecting a much smaller set of high-quality rewrites. For example,
as mentioned earlier, our checker proves 5% of LR’s rewrites to be
wrong. Second, rewrites that pass our tester and bounded verifier
are highly likely to be correct: among SLABCITY’s rewrites that pass,
97% of them are confirmed to be correct (either via full verification
or manual inspection) and only 3% are found to be incorrect.

Finally, SLABCITY is an important step in the right direction:
there are many use cases that are not covered by state-of-the-art
techniques, and SLABCITY can discover non-trivial whole-query
optimizations for many of those cases. SLABCITY can also be used
to augment existing approaches, whereby one can still rely on rule-
based rewriting when applicable and invoke SLABCITY otherwise.

6 RELATED WORK

Rule-based query rewriting. There is significant work on rule-
based query rewriting [17, 24, 28, 29, 42, 50, 68]. The rules are either
crafted by databases experts over decades [17], which grow very
slowly and cannot handle unanticipated patterns, or discovered
by automated tools [68], which can only handle a small subset of
simple SQL queries. In light of the recent interest [76] in adopting
deep learning in query optimization [39, 43, 70], there is also some
work on using deep learning for query rewriting [76]. Given a
SQL query and a set of rewrite rules, LearnedRewrite [76] decides
the order in which the rewrite rules should be applied using the
Monte Carlo Tree method with learned cost models. However, both

traditional and learning techniques are fundamentally limited by
the incomplete nature of rules and pattern-matching; thus, they
may miss valuable rewrite opportunities (see Section 2).

Leveraging constraints for query optimization. Prior work
explores semantic query rewriting by considering additional con-
straints. For instance, leveraging NOT NULL and key constraints to
eliminate joins [7], using NOT NULL constraint to optimize queries
with disjunction [5], considering key constraints to get rid of unnec-
essary DISTINCT [38], and more [4, 10]. However, they mostly rely
on pattern-matching rules to identify rewriting opportunities that
leverage relatively simple constraints (e.g., foreign or primary keys),
while SLABCITY can flexibly use more complex forms of integrity
constraints during query synthesis.

Checking query equivalence. There is a body of prior work on
the automatic verification of query equivalence. Cosette [26] lever-
ages proof assistants (e.g., Coq) to interactively construct mech-
anized proofs for equivalent query pairs or generate counterex-
amples for inequivalent pairs. EQUITAS [73, 74] executes queries
symbolically to generate a logical formula that encodes the query
semantics, and then uses an SMT solver to verify the query. It can
be applied for a subset of SQL queries (SPJ and some outer join
and aggregate). SLABCITY is orthogonal to these techniques as it
focuses on quickly finding examples that eliminate inequivalent
query candidates. On top of that, SLABCITY leverages these tech-
niques to check the equivalence of its candidate queries and provide
formal guarantees of rewrite correctness.

There is also work, from the software engineering and testing
literature, that uses mutation-based testing techniques to identify
common failure patterns of queries [20, 57]. They use hard-coded
constraint rules [57] or specifications [20] to generate test databases
with the goal of killing as many query mutants as possible. These
techniques consider a small query language that cannot express
complex queries that arise from our workloads. EvoSQL [19] applies
an evolutionary search algorithm that can test query correctness,
in an offline manner, guided by the predicate coverage metric pro-
posed by Tuya et al. [63]. In contrast, the tester is SLABCITY is
guided by a set of common patterns that lead to incorrect rewrites.
In other words, our approach is customized to our problem do-
main of query rewriting and can identify counterexamples more
efficiently in an online fashion during the CEIGS-based synthesis
process. RATest [44] uses a provenance-based algorithm to find a
minimal database that can distinguish and explain incorrect queries;
however, it is quite expensive and can only support a limited SQL
language, which makes it not suitable for our domain.

Program synthesis for databases. Program synthesis techniques
have been used in the area of databases. For example, Blitz [40, 56]
synthesizes user-defined operators from Spark programs for bet-
ter parallel query execution across operators. Chestnut [69] uses
synthesis to find a new data layout as well as a query plan to exe-
cute on that layout. Unlike SLABCITY, they focus on non-relational
queries rather than optimizing core SQL queries. SICKLE [75] and
Scythe [65] synthesize analytical queries for end users given input-
output examples, which lowers the burden on the user to remember
the finer details of SQL. Program synthesis has also been used to

3162

test database applications [47, 48, 61, 64], where the goal is to auto-
matically construct a more diverse set of test databases in order to
improve the application code coverage.

Data provenance. We also briefly discuss how data provenance
is related to (and different from) the concept of query dataflow
in this paper, since they might look similar to each other. There
is a large body of work on data provenance in various sub-fields
of database systems, such as probabilistic databases [35, 60], view
maintenance [18], and explanation of query results [21, 34]. More
recently, data provenance has also been used to guide the synthesis
of Datalog programs [52] and SQL queries [75] from input-output
examples. Data provenance is concerned with where every piece
of data originates and how it is computed. In contrast, our notion
of query dataflow is based on a coarser-grained, column-level flow
of information within the input query. As such, computing query
dataflow is significantly more tractable than data provenance, yet
sufficient enough to help guide SLABCITY through its search.

7 CONCLUSION AND FUTURE WORK

In this work, we presented SLABCITY, the first synthesis-based query
rewriting technique that is capable of whole-query optimization
without requiring rewrite rules. SLABCITY is not restricted to a given
set of rewrite rules, and therefore is able to explore a larger space
of candidate queries for more fruitful optimizations. In particular,
our evaluation shows that, not only can SLABCITY optimize many
more (up to 1.7x more) queries than state-of-the-art query rewriters,
but it also generates more interesting queries that are significantly
faster (by up to 4 orders of magnitude).

We believe our general framework of using dataflows to synthe-
size rewrites is applicable to discovering rewrite rules as well akin
to WETUNE [68]. Specifically, given a query Q;, with an integrity
constraint ¢, one can first use SLABCITY to obtain a faster query Q.
Then, this specific transformation Qi —¢4 Q can be generalized
to a pattern Tj, —y T where T and T are query templates and
is a more general constraint such that this more general transfor-
mation still preserves equivalence. One can leverage the verifier in
WETUNE to check equivalence of Tj; and T under .

We also note that query rewriting is orthogonal to traditional
query optimization and query tuning techniques, and thus, SLABC-
ITY can be leveraged alongside such techniques. In general, given
the same amount of time and engineering resources, it should be eas-
ier to tune a rewritten query than the original one since the query
optimizer starts with a more optimal query plan than it would with
apoorly expressed query. In other words, the set of query plans that
can be uncovered with traditional query optimization techniques
is heavily limited by the starting query, which is the main reason
query rewriting techniques have been a subject of much research
in the field. However, a more comprehensive study to quantify the
impact of better query rewriting on the effectiveness of traditional
query tuning will make for an interesting future work.

ACKNOWLEDGMENTS

We thank Lin Ma, and the anonymous reviewers for the helpful feed-
back. This work was supported by the National Science Foundation
under Grant No. CCF-2210832.

REFERENCES

(1]

(2]

(3]
(4]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[26]

[27]

[28]

[29]

[30]

[31]

49 Shocking Business Intelligence Statistics for 2021 . https://www.trustradius.
com/vendor-blog/business-intelligence- statistics-and-trends (Accessed: 31 Jan-
uary 2023).

Apache Calcite Test Suite. https://github.com/apache/calcite/blob/main/core/
src/test/java/org/apache/calcite/test/RelOptRulesTest.java (Accessed: 31 January
2023).

Avoiding The Most Frequent Problems in BI Projects. https://bi-survey.com/bi-
avoiding-problems (Accessed: 31 January 2023).

DB2 query optimization using constraint. https://github.com/prestodb/presto/
issues/16413 (Accessed: 31 January 2023).

Disjunctive subquery optimization. https://nenadnoveljic.com/blog/disjunctive-
subquery-optimization/ (Accessed: 31 January 2023).

How to Succeed in Self-Service BL https://www.harnham.com/post/2018-10/
how-to-succeed- in-self-service-bi-2 (Accessed: 31 January 2023).

Join elimination. https://blog.jooq.org/2017/09/01/join-elimination-an-essential-
optimiser-feature-for-advanced-sql-usage/ (Accessed: 31 January 2023).
LearnedRewrite source code. https://github.com/zhouxh19/LearnedRewrite (Ac-
cessed: 31 January 2023).

LeetCode website. https://leetcode.com/ (Accessed: 31 January 2023).
PrestoDB query optimization using constraint. https://www.ibm.com/docs/en/
db2/11.5?topic=performance-using- constraints-improve-query-optimization
(Accessed: 31 January 2023).

SlabCity technical report. https://ruidong.pl/files/slabcity-extended.pdf.

The Calcite project. https://calcite.apache.org/ (Accessed: 31 January 2023).
TPC-DS. https://www.tpc.org/tpeds/ (Accessed: 31 January 2023).

TPC-H. https://www.tpc.org/tpch/ (Accessed: 31 January 2023).

WeTune source code. https://ipads.se.sjtu.edu.cn:1312/opensource/wetune (Ac-
cessed: 31 January 2023).

Meenakshi Arora and Anjana Gosain. 2011. Schema evolution for data warehouse:
a survey. International Journal of Computer Applications 22, 6 (2011), 6-14.
Edmon Begoli, Jesis Camacho-Rodriguez, Julian Hyde, Michael J Mior, and
Daniel Lemire. 2018. Apache calcite: A foundational framework for optimized
query processing over heterogeneous data sources. In Proceedings of the 2018
International Conference on Management of Data. 221-230.

Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. 2002. On propagation of
deletions and annotations through views. In Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems. 150-158.
Jeroen Castelein, Mauricio Aniche, Mozhan Soltani, Annibale Panichella, and
Arie van Deursen. 2018. Search-based test data generation for SQL queries. In
Proceedings of the 40th international conference on software engineering. 1220—
1230.

Bikash Chandra, Bhupesh Chawda, Biplab Kar, KV Maheshwara Reddy, Shetal
Shah, and S Sudarshan. 2015. Data generation for testing and grading SQL
queries. The VLDB Journal 24, 6 (2015), 731-755.

Adriane Chapman and HV Jagadish. 2009. Why not?. In Proceedings of the 2009
ACM SIGMOD International Conference on Management of data. 523-534.
Surajit Chaudhuri. 1998. An overview of query optimization in relational systems.
In Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on
Principles of database systems. 34-43.

Jack Chen, Samir Jindel, Robert Walzer, Rajkumar Sen, Nika Jimsheleishvilli, and
Michael Andrews. 2016. The MemSQL Query Optimizer: A modern optimizer for
real-time analytics in a distributed database. Proceedings of the VLDB Endowment
9,13 (2016), 1401-1412.

Jack Chen, Samir Jindel, Robert Walzer, Rajkumar Sen, Nika Jimsheleishvilli, and
Michael Andrews. 2016. The MemSQL Query Optimizer: A Modern Optimizer
for Real-Time Analytics in a Distributed Database. Proc. VLDB Endow. 9, 13 (sep
2016), 1401-1412. https://doi.org/10.14778/3007263.3007277

Shumo Chu, Brendan Murphy, Jared Roesch, Alvin Cheung, and Dan Suciu. 2018.
Axiomatic foundations and algorithms for deciding semantic equivalences of
SQL queries. arXiv preprint arXiv:1802.02229 (2018).

Shumo Chu, Chenglong Wang, Konstantin Weitz, and Alvin Cheung. 2017.
Cosette: An Automated Prover for SQL.. In CIDR.

Shumo Chu, Konstantin Weitz, Alvin Cheung, and Dan Suciu. 2017. HoTTSQL:
Proving query rewrites with univalent SQL semantics. ACM SIGPLAN Notices
52, 6 (2017), 510-524

Prashanth Dintyala, Arpit Narechania, and Joy Arulraj. 2020. SQLCheck: auto-
mated detection and diagnosis of SQL anti-patterns. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. 2331-2345.
Beatrice Finance and Georges Gardarin. 1991. A rule-based query rewriter in
an extensible dbms. In Proceedings. Seventh International Conference on Data
Engineering. IEEE Computer Society, 248-249.

Goetz Graefe. 1987. Rule-based query optimization in extensible database systems.
Technical Report. University of Wisconsin-Madison Department of Computer
Sciences.

Goetz Graefe. 1995. The cascades framework for query optimization. IEEE Data
Eng. Bull. 18,3 (1995), 19-29

3163

(32

(33]

(34]

(35]

[36

[37

(38]

[39

[41]
[42]

[43]

[44]

[45

[47

(48]

[49

[50]

[51]

[52]

[53

[54]
(5]

[56

[57

(58]

[59]

Goetz Graefe and David] DeWitt. 1987. The EXODUS optimizer generator. In
Proceedings of the 1987 ACM SIGMOD international conference on Management of
data. 160-172.

Goetz Graefe and William J McKenna. 1993. The volcano optimizer genera-
tor: Extensibility and efficient search. In Proceedings of IEEE 9th international
conference on data engineering. IEEE, 209-218.

Todd J Green, Grigoris Karvounarakis, and Val Tannen. 2007. Provenance semir-
ings. In Proceedings of the twenty-sixth ACM SIGMOD-SIGACT-SIGART sympo-
sium on Principles of database systems. 31-40.

Todd J Green and Val Tannen. 2006. Models for incomplete and probabilistic
information. In Current Trends in Database Technology—-EDBT 2006: EDBT 2006
Workshops PhD, DataX, IIDB, IIHA, ICSNW, QLQP, PIM, PaRMA, and Reactivity on
the Web, Munich, Germany, March 26-31, 2006, Revised Selected Papers 10. Springer,
278-296.

Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. 2017. Program synthesis.
Foundations and Trends® in Programming Languages 4, 1-2 (2017), 1-119.
Jyotsana Gupta. How slow database queries can negatively impact your busi-
ness. https://wire19.com/how-slow-database-queries-can-negatively-impact-
your-business/ (Accessed: 31 January 2023).

Jean Habimana. 2015. Query optimization techniques-tips for writing efficient
and faster SQL queries. International Journal of Scientific & Technology Research
4,10 (2015), 22-26

Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein, and Ion
Stoica. 2018. Learning to optimize join queries with deep reinforcement learning.
arXiv preprint arXiv:1808.03196 (2018).

Jyoti Leeka and Kaushik Rajan. 2019. Incorporating Super-Operators in Big-Data
Query Optimizers. Proc. VLDB Endow. 13, 3 (nov 2019), 348-361.

Alon Y Levy, Inderpal Singh Mumick, and Yehoshua Sagiv. 1994. Query opti-
mization by predicate move-around. In VLDB. 96-107.

Guy M Lohman. 1988. Grammar-like functional rules for representing query
optimization alternatives. ACM SIGMOD Record 17, 3 (1988), 18-27.

Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A learned
query optimizer. arXiv preprint arXiv:1904.03711 (2019).

Zhengjie Miao, Sudeepa Roy, and Jun Yang. 2019. Explaining wrong queries
using small examples. In Proceedings of the 2019 International Conference on
Management of Data. 503-520.

Inderpal Singh Mumick, Sheldon J Finkelstein, Hamid Pirahesh, and Raghu
Ramakrishnan. 1990. Magic is relevant. ACM SIGMOD Record 19, 2 (1990),
247-258.

M Muralikrishna et al. 1992. Improved unnesting algorithms for join aggregate
SQL queries. In VLDB, Vol. 92. Citeseer, 91-102.

Kai Pan, Xintao Wu, and Tao Xie. 2013. Automatic Test Generation for Mutation
Testing on Database Applications. In ASE. 111-117.

Kai Pan, Xintao Wu, and Tao Xie. 2014. Guided Test Generation for Database
Applications via Synthesized Database Interactions. ACM Trans. Softw. Eng.
Methodol. 23, 2, Article 12 (apr 2014), 27 pages.

Hamid Pirahesh, Joseph M Hellerstein, and Waqar Hasan. 1992. Extensible/rule
based query rewrite optimization in Starburst. ACM Sigmod Record 21, 2 (1992),
39-48.

Hamid Pirahesh, Joseph M. Hellerstein, and Waqar Hasan. 1992. Extensible/Rule
Based Query Rewrite Optimization in Starburst. In Proceedings of the 1992 ACM
SIGMOD International Conference on Management of Data (San Diego, California,
USA) (SIGMOD ’92). Association for Computing Machinery, New York, NY, USA,
39-48. https://doi.org/10.1145/130283.130294

Quora. What-industries-typically-have-slow-or-complex-SQL-queries.
https://www.quora.com/What-industries-typically-have- slow-or-complex-
SQL-queries (Accessed: 31 January 2023).

Mukund Raghothaman, Jonathan Mendelson, David Zhao, Mayur Naik, and
Bernhard Scholz. 2020. Provenance-guided synthesis of Datalog programs. Proc.
ACM Program. Lang. 4, POPL (2020), 62-1.

Mark Robbins. Time is money — what is the business impact of a slow
query?. https://www.linkedin.com/pulse/time-money-what-business-impact-
slow-query-mark-robbins/ (Accessed: 31 January 2023).

Devan Sabaratnam. Finding and fixing slow queries. https://devan.codes/blog/
2021/1/17/finding- fixing- slow-queries (Accessed: 31 January 2023).

Nikolay Samokhvalov. What is a slow SQL query?. https://postgres.ai/blog/
20210909-what-is-a-slow-sql-query (Accessed: 31 January 2023).

Matthias Schlaipfer, Kaushik Rajan, Akash Lal, and Malavika Samak. 2017. Op-
timizing Big-Data Queries Using Program Synthesis. In Proceedings of the 26th
Symposium on Operating Systems Principles (SOSP) (SOSP °17). 631-646.

Shetal Shah, S Sudarshan, Suhas Kajbaje, Sandeep Patidar, Bhanu Pratap Gupta,
and Devang Vira. 2011. Generating test data for killing SQL mutants: A constraint-
based approach. In 2011 IEEE 27th International Conference on Data Engineering.
IEEE, 1175-1186.

Armando Solar-Lezama. 2008. Program synthesis by sketching. University of
California, Berkeley.

Brian Stein and Alan Morrison. 2014. The enterprise data lake: Better integration
and deeper analytics. PwC Technology Forecast: Rethinking integration 1, 1-9

https://www.trustradius.com/vendor-blog/business-intelligence-statistics-and-trends
https://www.trustradius.com/vendor-blog/business-intelligence-statistics-and-trends
https://github.com/apache/calcite/blob/main/core/src/test/java/org/apache/calcite/test/RelOptRulesTest.java
https://github.com/apache/calcite/blob/main/core/src/test/java/org/apache/calcite/test/RelOptRulesTest.java
https://bi-survey.com/bi-avoiding-problems%20
https://bi-survey.com/bi-avoiding-problems%20
https://github.com/prestodb/presto/issues/16413
https://github.com/prestodb/presto/issues/16413
https://nenadnoveljic.com/blog/disjunctive-subquery-optimization/
https://nenadnoveljic.com/blog/disjunctive-subquery-optimization/
https://www.harnham.com/post/2018-10/how-to-succeed-in-self-service-bi-2
https://www.harnham.com/post/2018-10/how-to-succeed-in-self-service-bi-2
https://blog.jooq.org/2017/09/01/join-elimination-an-essential-optimiser-feature-for-advanced-sql-usage/
https://blog.jooq.org/2017/09/01/join-elimination-an-essential-optimiser-feature-for-advanced-sql-usage/
https://github.com/zhouxh19/LearnedRewrite
https://leetcode.com/
https://www.ibm.com/docs/en/db2/11.5?topic=performance-using-constraints-improve-query-optimization
https://www.ibm.com/docs/en/db2/11.5?topic=performance-using-constraints-improve-query-optimization
https://ruidong.pl/files/slabcity-extended.pdf
https://calcite.apache.org/
https://www.tpc.org/tpcds/
https://www.tpc.org/tpch/
https://ipads.se.sjtu.edu.cn:1312/opensource/wetune
https://doi.org/10.14778/3007263.3007277
https://wire19.com/how-slow-database-queries-can-negatively-impact-your-business/
https://wire19.com/how-slow-database-queries-can-negatively-impact-your-business/
https://doi.org/10.1145/130283.130294
https://www.quora.com/What-industries-typically-have-slow-or-complex-SQL-queries
https://www.quora.com/What-industries-typically-have-slow-or-complex-SQL-queries
https://www.linkedin.com/pulse/time-money-what-business-impact-slow-query-mark-robbins/
https://www.linkedin.com/pulse/time-money-what-business-impact-slow-query-mark-robbins/
https://devan.codes/blog/2021/1/17/finding-fixing-slow-queries
https://devan.codes/blog/2021/1/17/finding-fixing-slow-queries
https://postgres.ai/blog/20210909-what-is-a-slow-sql-query
https://postgres.ai/blog/20210909-what-is-a-slow-sql-query

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

(2014), 18

Dan Suciu, Dan Olteanu, Christop Koch, and Christoph Koch. 2011. Probabilistic
databases. Morgan & Claypool Publishers.

Haruto Tanno, Xiaojing Zhang, Takashi Hoshino, and Koushik Sen. 2015. TesMa
and CATG: automated test generation tools for models of enterprise applications.
In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
Vol. 2. IEEE, 717-720.

Alan Troyan. Possibly the most poorly written query in the history of
mankind. https://dba.stackexchange.com/questions/96819/sql-query-possibly-
the-most-poorly-written-query-in-the-history- of-mankind/96854 (Accessed:
31 January 2023).

Javier Tuya, Maria José Suarez-Cabal, and Claudio De La Riva. 2010. Full predicate
coverage for testing SQL database queries. Software Testing, Verification and
Reliability 20, 3 (2010), 237-288.

Margus Veanes, Nikolai Tillmann, and Jonathan de Halleux. 2010. Qex: Sym-
bolic SQL query explorer. In International Conference on Logic for Programming
Artificial Intelligence and Reasoning. Springer, 425-446.

Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017. Synthesizing highly
expressive SQL queries from input-output examples. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation.
452-466.

Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2018. Speeding up sym-
bolic reasoning for relational queries. Proceedings of the ACM on Programming
Languages 2, OOPSLA (2018), 1-25.

Yisu Remy Wang, Mahmoud Abo Khamis, Hung Q Ngo, Reinhard Pichler, and
Dan Suciu. 2022. Optimizing Recursive Queries with Program Synthesis. (2022),
79-93.

Zhaoguo Wang, Zhou Zhou, Yicun Yang, Haoran Ding, Gansen Hu, Ding Ding,
Chuzhe Tang, Haibo Chen, and Jinyang Li. 2022. WeTune: Automatic Discovery

3164

[69]

[70

[73

(74]

[75]

=
2

and Verification of Query Rewrite Rules. In Proceedings of the 2022 International
Conference on Management of Data (SIGMOD °22). Association for Computing
Machinery, New York, NY, USA, 94-107. https://doi.org/10.1145/3514221.3526125
Cong Yan and Alvin Cheung. 2019. Generating Application-Specific Data Layouts
for in-Memory Databases. Proc. VLDB Endow. 12, 11 (jul 2019), 1513-1525.
Zongheng Yang, Wei-Lin Chiang, Sifei Luan, Gautam Mittal, Michael Luo, and Ion
Stoica. 2022. Balsa: Learning a Query Optimizer Without Expert Demonstrations.
In Proceedings of the 2022 International Conference on Management of Data. 931-
944.

James Yeh. Debugging an Unexpectedly Slow SQL Query Powering our
Dashboards. https://abnormalsecurity.com/blog/debugging- slow-sql-query-
powering-dashboards (Accessed: 31 January 2023).

Qi Zhou, Joy Arulraj, Shamkant Navathe, William Harris, and Jinpeng Wu. 2021.
SIA: Optimizing Queries using Learned Predicates. In Proceedings of the 2021
International Conference on Management of Data. 2169-2181.

Qi Zhou, Joy Arulraj, Shamkant Navathe, William Harris, and Dong Xu. 2019.
Automated verification of query equivalence using satisfiability modulo theories.
Proceedings of the VLDB Endowment 12, 11 (2019), 1276-1288.

Qi Zhou, Joy Arulraj, Shamkant B Navathe, William Harris, and Jinpeng Wu.
2022. SPES: A Symbolic Approach to Proving Query Equivalence Under Bag
Semantics. In 2022 IEEE 38th International Conference on Data Engineering (ICDE).
IEEE, 2735-2748.

Xiangyu Zhou, Rastislav Bodik, Alvin Cheung, and Chenglong Wang. 2022. Syn-
thesizing analytical SQL queries from computation demonstration. In Proceedings
of the 43rd ACM SIGPLAN International Conference on Programming Language
Design and Implementation. 168—-182.

Xuanhe Zhou, Guoliang Li, Chengliang Chai, and Jianhua Feng. 2021. A learned
query rewrite system using monte carlo tree search. Proceedings of the VLDB
Endowment 15, 1 (2021), 46-58.

https://dba.stackexchange.com/questions/96819/sql-query-possibly-the-most-poorly-written-query-in-the-history-of-mankind/96854
https://dba.stackexchange.com/questions/96819/sql-query-possibly-the-most-poorly-written-query-in-the-history-of-mankind/96854
https://doi.org/10.1145/3514221.3526125
https://abnormalsecurity.com/blog/debugging-slow-sql-query-powering-dashboards
https://abnormalsecurity.com/blog/debugging-slow-sql-query-powering-dashboards

	Abstract
	1 Introduction
	2 Motivating Examples
	3 Problem Setup
	4 Synthesis-Aided Query Optimization
	4.1 Top-Level Algorithm
	4.2 Dataflow-Based Query Score Function
	4.3 Prioritizing Search using Score Function
	4.4 Checking Query Equivalence
	4.5 Performance Ranking

	5 Evaluation
	5.1 Experimental Setup
	5.2 Coverage
	5.3 Query Latency Reduction
	5.4 Detailed Analysis and Ablation Study
	5.5 Discussion

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

