
Teaching Humanoid Robots to Assist Humans for 

Collaborative Tasks 

Abstract—As technology has advanced, society has witnessed 
and participated in the creation of robots that can walk, talk, and 
recognize speech. To facilitate communication and collaboration 
between humans and humanoid robots, we develop a teaching-
learning framework for human beings to teach humanoid robots 
to complete object identification and operation tasks. The robots 
learn from their human partners based on the transfer learning 
approach and can assist humans using their learned knowledge. 
Experimental results and evaluations suggest the success and 
efficiency of the developed approach in smart service contexts for 
human-robot partnerships. The future work of this study is also 
discussed.  

Keywords—Humanoid robots, smart service systems, human-
robot collaboration, transfer learning, vision system. 

I. INTRODUCTION 

Over the past several decades, robots have become 
increasingly popular in different fields [1]. Humanoid robots 
are becoming exceedingly more popular due to their human-
like nature and ability to walk, talk, and even function as 
humans do. Essentially, they are borderline humans, but they 
cannot think and feel like humans. They may be governed by 
some algorithm that lets them think and process commands. 
One of the earliest applications of humanoid robot applications 
came in the 1940s. This robot had 6 degrees of freedom and 
was used to move highly radioactive objects [2]. This robot 
would lead to many robotics advancements, including the 
creation of modern humanoid robots. The application of robots 
ranges over many different fields. They can greatly benefit 
companies and governments to save time, reduce production 
costs, and make production efficient, which means more profit 
for companies. A typical workplace where people may be able 
to find humanoid robots is in factories and industrial plants. 
One example of a robot fit for such a setting is the ARMAR-6, 
a humanoid bot with over 27 degrees of freedom that is 
making way for humanoid robots in industrial spaces [3]. This 
robot was made for handling tools and helping humans in 
factories. It can recognize when people need help, carry heavy 
objects while simultaneously following a path, and can detect 
if something is near its arm to keep humans safe. Robots such 
as these can provide humans with the aid, they need to 
maintain a safe and efficient workspace. 

Humanoid robots can also be used in healthcare, assisting 
doctors and nurses. These robots can handle communication 
with patients and move patients if needed. Robots are even 
proving helpful in education, where humanoid robots can act 
as teaching assistants and make learning environments more 
interactive [4, 5]. Human-robot collaboration can apply to 
many fields, even one's own home. Robots, with their assistive 
technology, can help those with disabilities or who are older 
live their lives independently. They will not need human aid, 
nor will they need to live in a nursing home. While these 
robots are beneficial here on Earth, they may also prove useful 
beyond Earth and into space. Humans and robots can work 
alongside each other in space, completing tedious tasks [6]. 

There are several different approaches to humanoid robot 
programming. One of them is through learning from human 
beings during human-robot interaction. In this case, a robot 
will watch a human perform a specific action, such as passing 
boxes or picking something up, and then try to replicate the 
action. Every time the robot watches or interacts with the 
human, it will slowly get "smarter" and better at practicing 
moving the item. An earlier example of this is the Association 
for the Advancement of Artificial Intelligence's (AAAI) Robot 
Competition held in 1999. In this competition, robots acted as 
if they were attendees at a conference and had to find the 
correct time and place of the panel they wished to attend [7]. 
Despite their groundbreaking technology, there are limitations 
on humanoid robots learning from human beings in 
collaborative tasks, especially in smart service contexts. This 
is due to several different factors. One of the main reasons is 
that humans all function differently from one another [8]. The 
habits of one person may be totally different from another. If 
one were to create a dataset for a humanoid robot to learn 
from, it would require hundreds, if not thousands, of samples 
of behavior from people who range in a multitude of different 
factors such as height, disability, and even the culture they 
come from. Achieving the dataset would be one task in itself, 
but conducting the research could prove more challenging. 

 Participants may be needed to run some of these 
experiments, but some people may have trust concerns with 
the robots during the interaction process [9]. For example, 
trying to test robots in a healthcare setting could be difficult 
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since patients may not trust the robots. Robots do not have 
empathy, emotion, or the same decision-making processes that 
humans do. This may result in a difficult challenge for 
researchers who need human participants to validate their 
proposed approaches. In social situations, humans will always 
act more naturally. Humans are comforting in nature, 
especially with touch. A simple pat on the back or a hug can 
make people feel better. Robots, however, cannot produce the 
same "empathy" that humans can produce. Their touch is not 
comforting and may even be awkward for some people [10]. 
Robots may have the upper hand in automation tasks, but they 
are unable to surpass humans when it comes to comfort. When 
it comes to medical fields, robots may be at a disadvantage 
because they are unable to produce the emotional response 
that humans create. Overall, these different issues combined 
make human-robot interaction research, especially on humanoid 
robots, be confronted with uncertain challenges. 

Motivated by the above issues, in this study, to facilitate 
communication and collaboration between humans and 
humanoid robots, we develop a teaching-learning framework 
for human beings to intuitively teach humanoid robots to 
complete collaborative tasks in smart service contexts. NAO 
robots will work alongside humans in collaborative teaching 
tasks. The robots learn from their human partners based on the 
transfer learning approach and can assist humans using their 
learned knowledge to identify, pick up, and deliver objects 
that the human requested by speech instructions. Experimental 
results and evaluations demonstrate the success and efficiency 
of the developed approach in smart service environments for 
human-robot partnerships. 

II. APPROACHES  

A. Overview of the Proposed Approach 
In this study, the focus will be on expanding human-robot 

interaction. As shown in Fig 1, the human will teach a NAO 
robot to identify different kinds of objects. Then the robot will 
employ its obtained knowledge to pick up an item and hand it 
off to its human partner. In the learning process, the developed 
approach begins running and waits for an object name to be 
received through a verbal command for the human. All 
listening is done through a speech recognition system [11]. 
This process will loop through different kinds of objects (in 
this work chips, plates, cups, and toys are used). Through a 
computer vision system developed by a camera, the robot will 
observe and identify the quadrant that the item is in. In the 
learning process, the transfer learning method is used to train 
the robot to recognize the class of each object. The module 
that controls object recognition will use a TCP socket to send 
the quadrant number to the NAO’s motion control system. 
Once the NAO receives the human requests after learning, it 
will then begin the retrieval process using its learned 
strategies. Depending on the item's quadrant, it will move to a 
predetermined position, either between quadrants 1 and 2 or 
between quadrants 3 and 4. The NAO will then pick up the 
requested object. Depending on the object, the NAO will 
perform a specific hand and arm movement. If the NAO needs 
to pick up a cup, plate, or chips, it will use the general 
grasping function. If the item is a toy, the NAO will use a 
grasping function specific to the toy, since it's a bit of a 

different shape compared to the other three objects, and then 
return it to the requested user. 

 

Fig. 1. The experimental platform. 

B. Teaching Robots through Transfer Learning 
This project requires a specific model that could accurately 

and successfully predict given objects in the human-robot 
collaboration process. Transfer learning is used by the human 
to teach the robot to identify different categories of objects. 
Transfer learning is one way to transfer data from one domain 
to another to improve learning capabilities [12]. It is an 
example of machine learning that can be used with robots to 
make human-robot collaboration run smoothly. Transfer 
learning involves creating models that are specific to a certain 
data set. Typically, transfer learning relies on the deep 
convolutional neural network (CNN) that provides a pre-
trained model. The CNN’s pre-trained model compares the 
data set it is fed to its own data set and begins building a new 
model based on older learning models [13]. The pre-trained 
model is used to create the new model and its weights can be 
adjusted based on the data set. The new model will contain the 
necessary data based on its pre-trained model and the data set 
provided. The data is then transferred to become a new model 
that can be used in other tasks. The newly built model for this 
study contains all the data related to a cup, plate, toy, and 
chips, so each object can be identified in real-time through an 
external camera. 

In transfer learning, the task (T) is made up of the label 
space Y and the prediction function F, which can be expressed 
as T = {Y, F} whereas the domain (D) is made up of a feature 
space X and the marginal probability distribution P(X) express 
as D = {x, P (X)}. Reusing data from the source domain to 
enhance the performance of the target domain is how 
knowledge is transferred from the source domain and task to 
the target domain and task. Transfer learning speeds up the 
learning process and makes the model more accurate [14]. To 
increase learning efficiency and performance, transfer learning 
essentially takes the knowledge acquired in one domain and 
applies it to another that is related. 

345

Authorized licensed use limited to: Montclair State University. Downloaded on September 01,2023 at 13:57:19 UTC from IEEE Xplore.  Restrictions apply. 



C. ResNet50 
To train the model, ResNet50 is used in this work. It is a 

deep convolutional neural network that helps train datasets for 
image classification. Convolutional neural networks work well 
for image classification because they can pick out details 
about items, such as edges or curves [15]. This helps with 
image recognition, and using a model produced with 
ResNet50 in combination with image processing tools such as 
OpenCV allows for real-time object detection. ResNet stands 
for residual network and is a way to create models through 
datasets of images. When creating a model based on images 
for this study, there is no need for advanced machine learning 
processes. ResNet can solve complex tasks and increase the 
model's accuracy with little time and effort [16]. 

D. Data Collection 
The data set for this study contains five different objects, a 

cup, plate, toy, chips, and “blank”. Blank serves as the control 
of the group and is shown when the camera does not see any 
of the four main items. The data collection process is elaborated 
in Fig. 2. The data set was created by our developed program 
that would automatically store photos into a file called 
“dataset”. The program would first check if the data set folder 
existed. If it did not, a folder would be created but if the folder 
did exist the program would continue. From there a connection 
between the computer running the program and the camera 
would be established through OpenCV and the region of 
interest (ROI) would be built as 180 by 180 pixels. Images 
would then be created and stored into the dataset folder. Each 
item contains about 1700 images and includes different 
rotations of the object as well as different background colors. 

 

Fig. 2. Data collection for robot learning. 

E. Robot Learning 
The objective of this study is to have the robot work in 

conjunction with its human companion via a computer vision 
system to recognize and find their requested object. Transfer 
learning, along with ResNet50, helps create a new model for 
the NAO robot to learn from. A top camera aids in the 
computer vision system and object recognition since there is a 
limit to accessing the NAO's camera directly to run OpenCV. 
The NAO will receive information through a program that 
controls the motion of the NAO. This program will only 
execute once the computer vision system sends the quadrant 
number and item name from the external camera. The robot can 

locate and retrieve items for its human companion in 
combination with its learned strategies based on transfer 
learning. In the robot learning process, the ResNet50 produces 
(l - 1) outputs, which are then used in the next layer denoted by 
(xl - 1). Layers and activation functions are then added, which 
can vary [17]. This study used ReLU 512, 256, 128, 64, and 
Softmax 5 as the activation functions. Adding the activation 
functions results in an output of F(xl-1). From there, the output 
becomes xl, which can be represented as xl = F(xl-1) + xl-1. 

III. EXPERIMENTAL SETUP 

A. Experimental Platform 
As shown in Fig. 1, the experimental platform involves 

several components including a white background, household 
objects, a NAO robot, a web camera, and a camera stand. A 
whiteboard is laid out on the floor, and each item is placed in a 
quadrant. The objects include a cup, a plate, a toy ring, and a 
small bag of chips. Each item has a piece of nylon string taped 
to both sides to form a handle. This acts as a way for the NAO 
to grab the object without having to elevate the white platform 
and figure out the exact heights at which the NAO could grab 
each object. This modification is made because, although the 
NAO robots can "sit" and "crouch", they do not have the 
physical capability to bend over, which limits their range of 
motion in terms of picking things up off the ground. To 
combat this issue, we attach a nylon string to each object. This 
way, the NAO can assume the crouching position to pick up 
objects and move them from their position to the final 
objective. The camera stand is attached to a table, and the 
camera looks down to give an aerial view of the four objects. 
In front of the objects is the NAO robot. Our developed 
approach is run on a workstation (through Ubuntu 16.04) 
configured with a 3.60 GHz Intel® Xeon® W-2223 Processor 
and an NVIDIA® RTX™ A4000 Graphic Card. 

B. Task Description 
At the beginning of the experiment, voice recognition will 

start through the camera's microphone. The human user will 
request an object by saying its name, such as "Toy", "Cup", 
"Plate", or "Chips". Once the system recognizes the word 
through the speech recognition library, it will begin the search 
process. The frame is divided into four smaller quadrants, and 
the system will continuously loop through them to locate the 
requested object. Once the object is identified, the loop will 
break. The quadrants are labeled 1 - 4 when viewed from an 
aerial perspective. The name and quadrant number of the 
current item will be recorded. For example, quadrant 3 
contains a bag of chips, so "quad3" will be stored in the 
quadrant variable, and "chips" will be stored in the item 
variable. This data will be sent through a TCP socket to the 
program controlling the NAO. Upon receiving the name of the 
item and the quadrant, the NAO will move to the quadrant 
where the object is found. Depending on the quadrant number, 
the NAO will move a certain distance so it is either between 
quadrants 1 and 2 or 3 and 4. The NAO will then crouch, and 
its arm will move behind the object. It will swing the arm forward 
to catch the nylon string in its hand and then close its hand. It 
will return to its standing position and then move back to the 
starting point by walking backward. The NAO will then turn, 
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lift the object, rotate its wrist so that its hand is facing upwards, 
and open its hand for its human companion to take the object. 

IV. RESULTS AND ANALYSIS 

A. Training and Cross-Validation Accuracy  
To train the new model, a dataset of different objects was 

used, which were split into five categories: toy, cup, plate, 
chips, and blank. As presented in Fig. 3, both the training 
accuracy and the cross-validation accuracy reached up to 
100%. The model can predict images on both black and white 
backgrounds, as well as predict the item without a background 
(i.e., the item is so close to the camera that the background is 
not visible). The figure resulting from the model training 
shows that the model could work well and accurately. 
Occasionally, the model may declare an object as something it 
is not, but such occasions are rare and infrequent. 

 

Fig. 3. Training and cross-validation accuracy. 

 

Fig. 4. Training and cross-validation loss. 

B. Training and Cross-Validation Loss 
The dataset used to create the model holds over 8500 

images, around 1700 per item with different background 
colors and rotations to ensure the most accurate results when 
using the computer vision system. The pictures need to be more 
general; they cannot be specific to a certain condition. If they 
were, that certain condition would need to be recreated every 
single time which makes the work tedious. Through general 

pictures, the model can be accurate to less specific conditions. 
The conditions in which the model is created, or the experiment 
is run do not have to be specific. Training and cross-validation 
losses are significant to verify the robustness of the model and 
ensure that it can generalize on new input images. The smaller 
the loss is, the better the trained model will be. We utilized the 
cross-entropy function to evaluate the training and cross-
validation losses. As presented in Fig. 4, both the training loss 
and the cross-validation loss attain a value of 0. 

C. Confusion Matrix 
To evaluate which object the model has an issue with 

interpreting, a confusion matrix can be used to help this. The 
rows of the confusion matrix represent the true values of the 
objects, while the columns represent the predicted object 
information. As shown in Fig. 5, the numbers of the correctly 
identified objects are denoted by the middle diagonal. The 
numbers outside of the diagonal stand for misrecognized 
objects. If the model’s prediction for an item is different from 
its true value, a number would appear in place of zero on the 
confusion matrix. For example, if there is a number in place of 
a zero between the intersection of true ‘chips’ and predicted 
‘blank’, the model would be confusing the number of ‘blank’ 
images with its true value, ‘chips’. The confusion matrix in 
Fig. 5 indicates that the trained object recognition model for 
the NAO robot is robust. 

Tr
ue

 la
be

l

Predicted  label  

Fig. 5. The confusion matrix. 

D. Real-World Human-Robot Collaboration 
As presented in Fig. 6, the developed approach is validated 

in real-world human-robot collaboration. This process involves 
the instructions that the NAO robot receives for the object it is 
asked to pick up. Fig. 6 provides an example of the NAO robot 
working through the object recognition, picking up, and 
delivery processes. Fig. 6(a) shows the NAO robot is receiving 
its human partner’s command “Cup”. Then the robot will 
identify the requested object based on its learned knowledge 
through the camera. After finding the object, as presented in 
Fig. 6(b)-(d), the NAO moves forward to the corresponding 
quadrant where the item is in. The robot crouches once it has 
reached the specific position. It then positions its arm behind 
the nylon string and quickly moves it forward to catch and 
close its hand around the nylon to pick up the cup. From here, 
The NAO returns by walking backward to its original position 
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and delivers the requested object to its human partner by 
rotating its wrist and opening its hand (Fig 6.(e)-(h)). 

 

Fig. 6. Real-world verification in human-robot collaboration. 

V. CONCLUSIONS AND FUTURE WORK 

In this work, we have developed a teaching-learning 
framework for human beings to intuitively teach humanoid 
robots to complete collaborative tasks in smart service 
contexts. The proposed approach can effectively facilitate 
communication and collaboration between humans and 
humanoid robots. Transfer learning and ResNet50 are used for 
the NAO robot to create a newly learned model based on 
certain household objects. In real-world human-robot 
collaboration experiments, the NAO robot can pick up objects 
and return them to the human who requested the object. The 
results and evaluations suggest the success and efficiency of 
the developed approach in smart service environments for 
human-robot partnerships. In the future, this study could be 
expanded upon to add more advanced techniques where the 
NAO’s built-in camera is used as the primary vision system 
and the distance between the NAO and objects can be 
evaluated. This would make the experiments run smoothly and 
be more accurate since the NAO could position itself right 
next to the object. The developed approach could also be 
improved upon. A new methodology could be created so the 
NAO can pick the item up off the floor. This would eliminate 
the nylon string that was used and decrease the chance of the 
NAO falling over. Spatial awareness could also be 
implemented. Currently, the NAO cannot calculate its 
surrounding environment. If this information were to be 
determined, the NAO could correctly position itself and be 
aware of other objects around it. That way it can pick the 
object up without stepping on objects and possibly falling. 
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