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Abstract—As technology has advanced, society has witnessed
and participated in the creation of robots that can walk, talk, and
recognize speech. To facilitate communication and collaboration
between humans and humanoid robots, we develop a teaching-
learning framework for human beings to teach humanoid robots
to complete object identification and operation tasks. The robots
learn from their human partners based on the transfer learning
approach and can assist humans using their learned knowledge.
Experimental results and evaluations suggest the success and
efficiency of the developed approach in smart service contexts for
human-robot partnerships. The future work of this study is also
discussed.
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1. INTRODUCTION

Over the past several decades, robots have become
increasingly popular in different fields [1]. Humanoid robots
are becoming exceedingly more popular due to their human-
like nature and ability to walk, talk, and even function as
humans do. Essentially, they are borderline humans, but they
cannot think and feel like humans. They may be governed by
some algorithm that lets them think and process commands.
One of the earliest applications of humanoid robot applications
came in the 1940s. This robot had 6 degrees of freedom and
was used to move highly radioactive objects [2]. This robot
would lead to many robotics advancements, including the
creation of modern humanoid robots. The application of robots
ranges over many different fields. They can greatly benefit
companies and governments to save time, reduce production
costs, and make production efficient, which means more profit
for companies. A typical workplace where people may be able
to find humanoid robots is in factories and industrial plants.
One example of a robot fit for such a setting is the ARMAR-6,
a humanoid bot with over 27 degrees of freedom that is
making way for humanoid robots in industrial spaces [3]. This
robot was made for handling tools and helping humans in
factories. It can recognize when people need help, carry heavy
objects while simultaneously following a path, and can detect
if something is near its arm to keep humans safe. Robots such
as these can provide humans with the aid, they need to
maintain a safe and efficient workspace.
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Humanoid robots can also be used in healthcare, assisting
doctors and nurses. These robots can handle communication
with patients and move patients if needed. Robots are even
proving helpful in education, where humanoid robots can act
as teaching assistants and make learning environments more
interactive [4, 5]. Human-robot collaboration can apply to
many fields, even one's own home. Robots, with their assistive
technology, can help those with disabilities or who are older
live their lives independently. They will not need human aid,
nor will they need to live in a nursing home. While these
robots are beneficial here on Earth, they may also prove useful
beyond Earth and into space. Humans and robots can work
alongside each other in space, completing tedious tasks [6].

There are several different approaches to humanoid robot
programming. One of them is through learning from human
beings during human-robot interaction. In this case, a robot
will watch a human perform a specific action, such as passing
boxes or picking something up, and then try to replicate the
action. Every time the robot watches or interacts with the
human, it will slowly get "smarter" and better at practicing
moving the item. An earlier example of this is the Association
for the Advancement of Artificial Intelligence's (AAAI) Robot
Competition held in 1999. In this competition, robots acted as
if they were attendees at a conference and had to find the
correct time and place of the panel they wished to attend [7].
Despite their groundbreaking technology, there are limitations
on humanoid robots learning from human beings in
collaborative tasks, especially in smart service contexts. This
is due to several different factors. One of the main reasons is
that humans all function differently from one another [8]. The
habits of one person may be totally different from another. If
one were to create a dataset for a humanoid robot to learn
from, it would require hundreds, if not thousands, of samples
of behavior from people who range in a multitude of different
factors such as height, disability, and even the culture they
come from. Achieving the dataset would be one task in itself,
but conducting the research could prove more challenging.

Participants may be needed to run some of these
experiments, but some people may have trust concerns with
the robots during the interaction process [9]. For example,
trying to test robots in a healthcare setting could be difficult

2693-8340/23/$31.00 ©2023 IEEE 344
DOI 10.1109/SMARTCOMP58114.2023.00083
Authorized licensed use limited to: Montclair State University. Downloaded on September 01,2023 at 13:57:19 UTC from IEEE Xplore. Restrictions apply.



since patients may not trust the robots. Robots do not have
empathy, emotion, or the same decision-making processes that
humans do. This may result in a difficult challenge for
researchers who need human participants to validate their
proposed approaches. In social situations, humans will always
act more naturally. Humans are comforting in nature,
especially with touch. A simple pat on the back or a hug can
make people feel better. Robots, however, cannot produce the
same "empathy" that humans can produce. Their touch is not
comforting and may even be awkward for some people [10].
Robots may have the upper hand in automation tasks, but they
are unable to surpass humans when it comes to comfort. When
it comes to medical fields, robots may be at a disadvantage
because they are unable to produce the emotional response
that humans create. Overall, these different issues combined
make human-robot interaction research, especially on humanoid
robots, be confronted with uncertain challenges.

Motivated by the above issues, in this study, to facilitate
communication and collaboration between humans and
humanoid robots, we develop a teaching-learning framework
for human beings to intuitively teach humanoid robots to
complete collaborative tasks in smart service contexts. NAO
robots will work alongside humans in collaborative teaching
tasks. The robots learn from their human partners based on the
transfer learning approach and can assist humans using their
learned knowledge to identify, pick up, and deliver objects
that the human requested by speech instructions. Experimental
results and evaluations demonstrate the success and efficiency
of the developed approach in smart service environments for
human-robot partnerships.

II. APPROACHES

A. Overview of the Proposed Approach

In this study, the focus will be on expanding human-robot
interaction. As shown in Fig 1, the human will teach a NAO
robot to identify different kinds of objects. Then the robot will
employ its obtained knowledge to pick up an item and hand it
off to its human partner. In the learning process, the developed
approach begins running and waits for an object name to be
received through a verbal command for the human. All
listening is done through a speech recognition system [11].
This process will loop through different kinds of objects (in
this work chips, plates, cups, and toys are used). Through a
computer vision system developed by a camera, the robot will
observe and identify the quadrant that the item is in. In the
learning process, the transfer learning method is used to train
the robot to recognize the class of each object. The module
that controls object recognition will use a TCP socket to send
the quadrant number to the NAO’s motion control system.
Once the NAO receives the human requests after learning, it
will then begin the retrieval process using its learned
strategies. Depending on the item's quadrant, it will move to a
predetermined position, either between quadrants 1 and 2 or
between quadrants 3 and 4. The NAO will then pick up the
requested object. Depending on the object, the NAO will
perform a specific hand and arm movement. If the NAO needs
to pick up a cup, plate, or chips, it will use the general
grasping function. If the item is a toy, the NAO will use a
grasping function specific to the toy, since it's a bit of a
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different shape compared to the other three objects, and then
return it to the requested user.

Camera

Fig. 1. The experimental platform.

B. Teaching Robots through Transfer Learning

This project requires a specific model that could accurately
and successfully predict given objects in the human-robot
collaboration process. Transfer learning is used by the human
to teach the robot to identify different categories of objects.
Transfer learning is one way to transfer data from one domain
to another to improve learning capabilities [12]. It is an
example of machine learning that can be used with robots to
make human-robot collaboration run smoothly. Transfer
learning involves creating models that are specific to a certain
data set. Typically, transfer learning relies on the deep
convolutional neural network (CNN) that provides a pre-
trained model. The CNN’s pre-trained model compares the
data set it is fed to its own data set and begins building a new
model based on older learning models [13]. The pre-trained
model is used to create the new model and its weights can be
adjusted based on the data set. The new model will contain the
necessary data based on its pre-trained model and the data set
provided. The data is then transferred to become a new model
that can be used in other tasks. The newly built model for this
study contains all the data related to a cup, plate, toy, and
chips, so each object can be identified in real-time through an
external camera.

In transfer learning, the task (7) is made up of the label
space Y and the prediction function F, which can be expressed
as T = {Y, F} whereas the domain (D) is made up of a feature
space X and the marginal probability distribution P(X) express
as D = {x, P (X)}. Reusing data from the source domain to
enhance the performance of the target domain is how
knowledge is transferred from the source domain and task to
the target domain and task. Transfer learning speeds up the
learning process and makes the model more accurate [14]. To
increase learning efficiency and performance, transfer learning
essentially takes the knowledge acquired in one domain and
applies it to another that is related.
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C. ResNet50

To train the model, ResNet50 is used in this work. It is a
deep convolutional neural network that helps train datasets for
image classification. Convolutional neural networks work well
for image classification because they can pick out details
about items, such as edges or curves [15]. This helps with
image recognition, and using a model produced with
ResNet50 in combination with image processing tools such as
OpenCV allows for real-time object detection. ResNet stands
for residual network and is a way to create models through
datasets of images. When creating a model based on images
for this study, there is no need for advanced machine learning
processes. ResNet can solve complex tasks and increase the
model's accuracy with little time and effort [16].

D. Data Collection

The data set for this study contains five different objects, a
cup, plate, toy, chips, and “blank”. Blank serves as the control
of the group and is shown when the camera does not see any
of the four main items. The data collection process is elaborated
in Fig. 2. The data set was created by our developed program
that would automatically store photos into a file called
“dataset”. The program would first check if the data set folder
existed. If it did not, a folder would be created but if the folder
did exist the program would continue. From there a connection
between the computer running the program and the camera
would be established through OpenCV and the region of
interest (ROI) would be built as 180 by 180 pixels. Images
would then be created and stored into the dataset folder. Each
item contains about 1700 images and includes different
rotations of the object as well as different background colors.

|
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|
| Image of Object | | Connect to Camera |

T

Date; Set |

Computer
Folder on Running
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Fig. 2. Data collection for robot learning.

E.  Robot Learning

The objective of this study is to have the robot work in
conjunction with its human companion via a computer vision
system to recognize and find their requested object. Transfer
learning, along with ResNet50, helps create a new model for
the NAO robot to learn from. A top camera aids in the
computer vision system and object recognition since there is a
limit to accessing the NAQO's camera directly to run OpenCV.
The NAO will receive information through a program that
controls the motion of the NAO. This program will only
execute once the computer vision system sends the quadrant
number and item name from the external camera. The robot can
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locate and retrieve items for its human companion in
combination with its learned strategies based on transfer
learning. In the robot learning process, the ResNet50 produces
(1 - 1) outputs, which are then used in the next layer denoted by
(x; - 1). Layers and activation functions are then added, which
can vary [17]. This study used ReLU 512, 256, 128, 64, and
Softmax 5 as the activation functions. Adding the activation
functions results in an output of F(x;7). From there, the output
becomes x;, which can be represented as x; = F(x-1) + xr-1.

III. EXPERIMENTAL SETUP

A.  Experimental Platform

As shown in Fig. 1, the experimental platform involves
several components including a white background, household
objects, a NAO robot, a web camera, and a camera stand. A
whiteboard is laid out on the floor, and each item is placed in a
quadrant. The objects include a cup, a plate, a toy ring, and a
small bag of chips. Each item has a piece of nylon string taped
to both sides to form a handle. This acts as a way for the NAO
to grab the object without having to elevate the white platform
and figure out the exact heights at which the NAO could grab
each object. This modification is made because, although the
NAO robots can "sit" and "crouch", they do not have the
physical capability to bend over, which limits their range of
motion in terms of picking things up off the ground. To
combat this issue, we attach a nylon string to each object. This
way, the NAO can assume the crouching position to pick up
objects and move them from their position to the final
objective. The camera stand is attached to a table, and the
camera looks down to give an aerial view of the four objects.
In front of the objects is the NAO robot. Our developed
approach is run on a workstation (through Ubuntu 16.04)
configured with a 3.60 GHz Intel® Xeon® W-2223 Processor
and an NVIDIA® RTX™ A4000 Graphic Card.

B.  Task Description

At the beginning of the experiment, voice recognition will
start through the camera's microphone. The human user will
request an object by saying its name, such as "Toy", "Cup",
"Plate", or "Chips". Once the system recognizes the word
through the speech recognition library, it will begin the search
process. The frame is divided into four smaller quadrants, and
the system will continuously loop through them to locate the
requested object. Once the object is identified, the loop will
break. The quadrants are labeled 1 - 4 when viewed from an
aerial perspective. The name and quadrant number of the
current item will be recorded. For example, quadrant 3
contains a bag of chips, so "quad3" will be stored in the
quadrant variable, and "chips" will be stored in the item
variable. This data will be sent through a TCP socket to the
program controlling the NAO. Upon receiving the name of the
item and the quadrant, the NAO will move to the quadrant
where the object is found. Depending on the quadrant number,
the NAO will move a certain distance so it is either between
quadrants 1 and 2 or 3 and 4. The NAO will then crouch, and
its arm will move behind the object. It will swing the arm forward
to catch the nylon string in its hand and then close its hand. It
will return to its standing position and then move back to the
starting point by walking backward. The NAO will then turn,
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lift the object, rotate its wrist so that its hand is facing upwards,
and open its hand for its human companion to take the object.

IV. RESULTS AND ANALYSIS

A.  Training and Cross-Validation Accuracy

To train the new model, a dataset of different objects was
used, which were split into five categories: toy, cup, plate,
chips, and blank. As presented in Fig. 3, both the training
accuracy and the cross-validation accuracy reached up to
100%. The model can predict images on both black and white
backgrounds, as well as predict the item without a background
(i.e., the item is so close to the camera that the background is
not visible). The figure resulting from the model training
shows that the model could work well and accurately.
Occasionally, the model may declare an object as something it
is not, but such occasions are rare and infrequent.
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Fig. 3. Training and cross-validation accuracy.
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Fig. 4. Training and cross-validation loss.

B.  Training and Cross-Validation Loss

The dataset used to create the model holds over 8500
images, around 1700 per item with different background
colors and rotations to ensure the most accurate results when
using the computer vision system. The pictures need to be more
general; they cannot be specific to a certain condition. If they
were, that certain condition would need to be recreated every
single time which makes the work tedious. Through general
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pictures, the model can be accurate to less specific conditions.
The conditions in which the model is created, or the experiment
is run do not have to be specific. Training and cross-validation
losses are significant to verify the robustness of the model and
ensure that it can generalize on new input images. The smaller
the loss is, the better the trained model will be. We utilized the
cross-entropy function to evaluate the training and cross-
validation losses. As presented in Fig. 4, both the training loss
and the cross-validation loss attain a value of 0.

C. Confusion Matrix

To evaluate which object the model has an issue with
interpreting, a confusion matrix can be used to help this. The
rows of the confusion matrix represent the true values of the
objects, while the columns represent the predicted object
information. As shown in Fig. 5, the numbers of the correctly
identified objects are denoted by the middle diagonal. The
numbers outside of the diagonal stand for misrecognized
objects. If the model’s prediction for an item is different from
its true value, a number would appear in place of zero on the
confusion matrix. For example, if there is a number in place of
a zero between the intersection of true ‘chips’ and predicted
‘blank’, the model would be confusing the number of ‘blank’
images with its true value, ‘chips’. The confusion matrix in
Fig. 5 indicates that the trained object recognition model for
the NAO robot is robust.

True label

4gh

o
Predicted label
Fig. 5. The confusion matrix.

D. Real-World Human-Robot Collaboration

As presented in Fig. 6, the developed approach is validated
in real-world human-robot collaboration. This process involves
the instructions that the NAO robot receives for the object it is
asked to pick up. Fig. 6 provides an example of the NAO robot
working through the object recognition, picking up, and
delivery processes. Fig. 6(a) shows the NAO robot is receiving
its human partner’s command “Cup”. Then the robot will
identify the requested object based on its learned knowledge
through the camera. After finding the object, as presented in
Fig. 6(b)-(d), the NAO moves forward to the corresponding
quadrant where the item is in. The robot crouches once it has
reached the specific position. It then positions its arm behind
the nylon string and quickly moves it forward to catch and
close its hand around the nylon to pick up the cup. From here,
The NAO returns by walking backward to its original position
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and delivers the requested object to its human partner by
rotating its wrist and opening its hand (Fig 6.(e)-(h)).

Fig. 6. Real-world verification in human-robot collaboration.

V. CONCLUSIONS AND FUTURE WORK

In this work, we have developed a teaching-learning
framework for human beings to intuitively teach humanoid
robots to complete collaborative tasks in smart service
contexts. The proposed approach can effectively facilitate
communication and collaboration between humans and
humanoid robots. Transfer learning and ResNet50 are used for
the NAO robot to create a newly learned model based on
certain household objects. In real-world human-robot
collaboration experiments, the NAO robot can pick up objects
and return them to the human who requested the object. The
results and evaluations suggest the success and efficiency of
the developed approach in smart service environments for
human-robot partnerships. In the future, this study could be
expanded upon to add more advanced techniques where the
NAO’s built-in camera is used as the primary vision system
and the distance between the NAO and objects can be
evaluated. This would make the experiments run smoothly and
be more accurate since the NAO could position itself right
next to the object. The developed approach could also be
improved upon. A new methodology could be created so the
NAO can pick the item up off the floor. This would eliminate
the nylon string that was used and decrease the chance of the
NAO falling over. Spatial awareness could also be
implemented. Currently, the NAO cannot -calculate its
surrounding environment. If this information were to be
determined, the NAO could correctly position itself and be
aware of other objects around it. That way it can pick the
object up without stepping on objects and possibly falling.
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