
Abstract—Human-robot collaboration has been one of the 
main focuses for both research and usage in advanced 
manufacturing. In human-robot partnerships, instead of static 
collaboration for repetitive tasks, it is more significant for the 
robot to dynamically understand its human partner’s intentions 
and collaborate with them to complete the shared tasks. 
Motivated by these issues, we develop a model for the robot to 
learn to complete tasks by watching and analyzing human 
demonstrations. This allows the robot to become more accurate 
and customizable with each human’s personalized working 
preference. Based on the long short-term memory method, we 
propose a new approach to have the robot recognize objects, 
understand ongoing human actions, and predict human 
intentions. This will allow the robot to automatically adjust its 
motions and dynamically pick up and deliver the object to its 
human partner in the collaborative task. Experimental results 
suggest that the proposed model can enable robots, like 
humans, to learn and predict humans’ intentions dynamically 
and intelligently to accommodate customized and personalized 
collaborative tasks. Future work of this study is also discussed. 

Keywords— Robotics, human-robot collaboration, learning 
from demonstrations, smart manufacturing. 

I. INTRODUCTION 
Robots have served as humans’ assistants in numerous 

application fields [1]. In a manufacturing context, for 
example, robots working alongside humans to complete 
shared tasks is not an uncommon sight [2-4]. Robots can 
handle repetitive tasks, freeing up human workers to focus on 
more complex and creative work. It is also used in healthcare, 
where robots can be used to assist with surgery or to provide 
physical therapy to patients [5]. Education is also a field that 
has been integrating robots to provide tangible and 
personalized learning experiences to students [6]. In the 
entertainment industry, robots can be used to create 
immersive and interactive experiences for audiences [7]. The 
use of collaborative robots to assist human workers in the 
assembly and manufacturing of cars is a widely adopted 
practice in the automotive industry. Assembling tasks have 
led to the development of highly specialized robotic systems 
designed to operate safely when near human co-workers. 
However, ensuring effective human-robot collaboration 
while guaranteeing the safety of the human co-worker 
remains a persistent challenge that researchers and engineers 
are continuously seeking to overcome. The need to develop 
robust and reliable control algorithms, coupled with the 
incorporation of advanced sensing and perception 
capabilities, is imperative in the design and development of 
collaborative robots that can operate alongside humans while 
maintaining safety and task efficiency. 

Efficient robot programming improves the productivity 
and reliability of human-robot collaboration. It also reduces 
the costs in a wide range of industries [8-10]. Robot 
programming can be a complex and time-consuming process 
that requires specialized knowledge and expertise. However, 
advances in machine learning and artificial intelligence are 

making it possible to teach robots to perform tasks through 
human demonstration, which can significantly improve the 
efficiency of the programming process [11]. This approach 
involves a human demonstrating a task to the robot, which 
then learns how to perform the task through imitation. In a 
manufacturing setting, for example, human co-workers can 
demonstrate tasks to robots, in turn, producing tasks 
independently. This approach is able to save time and lower 
costs by reducing the need for extensive programming and 
improving the deployment of robot systems. 

To facilitate effective human-robot collaboration, it is 
crucial to have robots work seamlessly with humans while 
minimizing the risks to human safety. One approach to 
achieve this is using human intention prediction. This 
involves developing robots to accurately predict human 
intentions, thereby enabling them to work in harmony with 
human partners. Predicting human intentions will improve 
the speed and accuracy of human-robot collaboration, as well 
as enhance overall task efficiency. There are different ways 
to predict human intentions, and recent advances in artificial 
intelligence and machine learning have made it possible to 
develop systems that can learn and adapt to human behaviors 
[12]. For instance, a robot can use machine learning 
algorithms to analyze human movements and gestures, 
enabling it to anticipate the next move of its human partner 
[13]. Additionally, robots can use natural language 
processing to understand human speech, allowing them to 
respond appropriately to instructions given by humans [14]. 
Overall, the development of robotic systems that can predict 
human intentions and adapt to human actions is essential to 
enable effective and safe human-robot collaboration. With 
continued research and development in this area, the potential 
applications for collaborative robots across a wide range of 
industries will only continue to expand. 

Human-robot collaboration has been expanding in recent 
years, but it is still a relatively new field that has many 
limitations with the current implementation. One limitation is 
the complexity of the programming process for collaborative 
robots. While advances in the latest technologies have made 
it possible to teach robots through human demonstration, the 
process is still time-consuming and requires specialized 
expertise. Additionally, the programming of collaborative 
robots needs to account for the dynamic nature of human 
behaviors, which can be difficult to predict. Moreover, there 
is a need to investigate more flexible and adaptable robot 
systems that can work effectively across a range of different 
applications and environments [15]. The current research 
progress has primarily focused on specific use cases, such as 
manufacturing or healthcare. However, there are still some 
gaps in developing more generalized systems and approaches 
to deploy robots across multiple industries and scenarios. 

To this end, we propose a teaching-learning-prediction- 
collaboration (TLPC) model for the robot to learn from 
human demonstrations of how to cooperatively complete a 
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task and become more accurate and customizable with each 
human’s personalized working preference. In our approach, 
the robot can learn different strategies to complete a task 
using a finite-state machine model. Based on the long 
short-term memory algorithm, we develop a new approach to 
have the robot recognize objects, understand ongoing human 
actions, and predict human intentions. This will allow the 
robot to automatically adjust its motions and dynamically 
pick up and deliver the object to its human partner in the 
collaborative task.  

II. DEVELOPMENT OF THE TLPC MODEL 

A. Approach Overview 
The overarching vision of this work is to enable robots, 

like humans, to learn and predict humans’ intentions 
dynamically and intelligently to accommodate customized 
and personalized collaborative tasks. As shown in Fig. 1, the 
TLPC model includes human teaching, robot learning, 
human intention prediction, and human-robot collaboration. 

 
Fig. 1 The teaching-learning-prediction-collaboration (TLPC) model. 

In the teaching process, the human demonstrates a task 
(e.g., assembling a product) and the robot captures the 
demonstration into video data through a vision system. This 
data is then processed by a Long Short-Term Memory 
(LSTM) neural network to identify the locations of the parts 
required for executing the task. In the learning section, the 
coordinates of each part are tracked throughout the human 
demonstration and their movements are fed to an algorithm 
that creates a finite-state machine to build task knowledge for 
the robot. A finite-state machine can be used to represent a 
system or process as a set of states and transitions between 
those states. In the context of this work, the states represent 
different configurations of the task (e.g., different positions 
of the parts) and the transitions represent the movements of 
the parts between those configurations. In the prediction and 
collaboration processes, the robot predicts the next state of 
the task that the human partner wants to operate based on the 
finite-state machine. By observing which part of the task the 
human starts with, the robot will collaborate with the human 
partner by handing the next most suitable part required for 
completing the task. 

This design allows the TLPC model to not require a high 
level of knowledge from the human to teach the robot to 
assist the human in collaborative tasks, which makes it a 
user-friendly and adaptable solution. Additionally, not using 
any wearable sensors and only using a vision system to identify 

the tasks and human intentions enhances the naturalness and 
ease of communication in human-robot partnerships. Overall, 
the proposed approach has the potential to improve the 
quality and speed of manufacturing processes, leading to 
greater productivity and profitability. The TLPC model also 
has the ability to identify different human participants’ 
working preferences and customize the robot’s responses 
based on how each individual is most likely to complete the 
task, further increasing efficiency and effectiveness. 

B. Long Short-term Memory 
The Long Short-Term Memory (LSTM) neural network is 

utilized in the TLPC model to process the video data obtained 
from human demonstrations and identify the locations of the 
parts required for executing the task. The LSTM is a type of 
recurrent neural network that is particularly useful for 
modeling sequential data. It can retain information over long 
periods, making it well-suited for tasks where past inputs are 
important in making predictions. Fig. 2 shows the basic 
structure of the LSTM neural network, where Xt is the current 
input, Ct is the new updated memory, ht is the current output, 
Ct-1 is the memory from the last LSTM unit, ht-1 is the output 
of the last LSTM unit. In the LSTM, a forget gate layer 
decides what information to keep. Then, an input gate layer 
and tanh layer determine new information to add. The old 
state is then updated by forgetting selected information and 
adding new information. Finally, a sigmoid layer filters the 
output based on the cell state [16]. 

 
Fig. 2. Structure of the LSTM neural network. 

C. Human Teaching and Robot Learning 
A web camera is used in the robot vision system to 

process the human worker’s operation movements and the 
sequence of events required to complete a task in the teaching 
process. The minimal amount of equipment needed for this 
method allows for cost reduction and facilitates pairing with 
other algorithms and technologies to enhance long-term 
human-robot collaboration. In the robot learning process, we 
aim to minimize the requirements and dependencies for 
implementing human-robot collaboration while maintaining 
stability and consistency. This ensures optimal results in 
terms of productivity and natural communication in 
human-robot partnerships. Based on the LSTM, the 
mathematical representation of human teaching and robot 
learning is described as follows: 

rl_k(t) = LSTM(hd_v(t), d_i(t), l(t))              (1) 

where rl_k(t) is the robot’s learned knowledge at time t, 
hd_v(t) means the LSTM processes the video data of the 
human demonstrations at time t to identify the location of 
each part in a 3x3 grid and highlights the corresponding 
blocks, d_i(t) denotes the LSTM tracks the movements of the 
parts and detects it when a part is operated, d_i(t) = 1 if part i 
is missing at time t and 0 otherwise, and l(t) = [d_1(t), d_2(t), 



d_3(t), d_4(t)] represents the LSTM registers each missing 
part in a list at time t. Based on its learned knowledge and the 
missing parts, the robot then determines the appropriate actions 
and sequences to complete the task with its human partner. 

D. Human Intention Prediction 
In the human intention prediction process, a finite-state 

machine (FSM) is created for the robot to build task strategies 
and predict human intentions based on the working 
preference of a specific human worker employed in the 
teaching process. To create a finite-state machine for a task, 
as shown in Fig. 3, we follow 5 main steps. The created 
finite-state machine is expressed as: 

M = (S, I, O, f, g, s0)                           (2) 

which includes a finite set S of states, a finite input I, a finite 
output O, a transition function f (f : S × I → S), an output 
function g (g : S × I → O), and an initial state s0 [17]. 

 
Fig. 3. Steps to create a finite-state machine for human intention prediction.  

E. Human-robot Collaboration 
Based on the robot’s prediction of human intentions in 

shared tasks, we design a human-robot collaboration model 
for the robot to accommodate its human partners’ working 
preferences and assist humans. This model is not only 
flexible and adaptable but also easily customizable to suit the 
specific needs of other human-robot collaborative 
applications. The collaboration model building process based 
on the TLPC framework is presented in Fig. 4. 

As shown in Fig. 4, Human_demonstration represents the 
input data provided by the human participant to demonstrate 
a task to the robot. Robot_translate( ) is a function that 
translates the human demonstration into video data, which is 
assigned to the variable Video_data. LSTM( ) is a function 
that processes the Video_data using an LSTM neural network 
to identify the locations of the parts required for executing the 
task. The output of this function is assigned to the variable 
LSTM_processing. Track_coordinates( ) is a function that 
tracks the coordinates of each part throughout the human 
demonstration, and assigns the tracked coordinates to the 

variable Coordinates_tracking. FSM_information( ) is a 
function that takes in the Coordinates_tracking data and 
builds a finite-state machine to create task knowledge for the 
robot. The output of this function is assigned to the variable 
FSM_building. Predict_next_state( ) is a function that uses 
the FSM_building and Human_demonstration data to predict 
the next state that the human participant wants to move to 
based on the finite-state machine. The output of this function 
is assigned to the variable Next_state_prediction to predict 
the human intention in the task. Collaborate_with_Human( ) 
is a function for the robot to collaborate with its human 
partner by handing the next most suitable part required for 
completing the task. 

 
Fig. 4. The collaboration model building process based on the TLPC 

framework. 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experimental Platform 
We develop a high-fidelity advanced manufacturing 

context to testify the proposed model. As shown in Fig. 5, the 
experimental platform includes a collaborative robot, a 
vehicle model to be assembled, a web camera, and a shared 
workspace. The human participant will assemble the parts of 
the vehicle to teach the robot how to perform the task 
alongside the human participant the next time the human 
participant is performing the task. The robot used is a Franka 
Emika Panda robot, which is a 7-DoF collaborative robot [18]. 
The web camera used is a generic webcam. A ThinkStation 
P520 workstation is employed to process human demonstration 
data, run the TLPC model, and send robot control commands 
in the human-robot collaborative experiments. The Robot 
Operating System (ROS) is utilized in managing our robot 
system [19]. ROS is an open-source framework for 
inter-platform maneuvering and communication on a large 
scale. In addition, this work utilizes MoveIt! and runs it with 



the ROS operating system [20]. To plan the robot’s 
movements in human-robot collaborative tasks, the control 
commands are sent to the libfranka interface, which is a ROS 
package that allows the collaborative robot to communicate 
with the FCI controller. The FCI will provide the current 
robot states and enable the robot to be directly controlled by 
the commands derived from the TLPC model. 

 
Fig. 5. Experimental platform. 

B. Task Description 
In this work, we design a typical co-assembly task in 

advanced manufacturing contexts, in which the robot learns 
from its human partner to assemble a vehicle model and 
assists the human in the task through predicting their 
intentions based on the learned knowledge. The flow of our 
experiment is the same as our proposed TLPC model. 
Starting with human teaching where the human participant 
would perform the given task which in this case is assembling 
a vehicle model that has four parts (the proposed model is 
also applicable for more parts). The program starts by asking 
the user if it should go into the knowledge-building mode 
where the robot would observe the human participants' 
operational actions and learn from them how to perform the 
task or to predict and collaborate with the human participant 
using the knowledge it accumulated so far. During our 
experiment, we ran the program in the knowledge-building 
mode where the webcam fed the LSTM model with real-time 
human demonstration video data and the LSTM recognized 
the locations of the vehicle parts. For each part the human 
participant assembled, the robot built its knowledge with the 
sequence of how the task was achieved. Following that, we 
went into prediction and collaboration mode showcasing how 
the robot learned from human demonstrations. By having the 
robot observe the human participants' operation movements, 
it could help the human participant with the following parts 
based on the learned task strategies. The robot can predict 
based on as many demonstrations as previously given. Once 
the whole task course is learned, the human would start the 
collaborative task with the robot to assemble the vehicle.   

C. Results and Analysis of Learning from Demonstrations 
The results of robot learning from human demonstrations 

are shown in Fig. 6. The system uses a camera to capture 
video data of a human participant performing a task. The 
video data is then sent to a Long Short-Term Memory 
(LSTM) to identify the location of each part in a 3x3 grid and 
highlight the corresponding blocks (the blue parts in each 
subfigure). This allows the system to track the movement of 
each part and identify when a part is operated. Following that 
the human participant starts with the task in any possible 
route according to his assembly preference and the LSTM 

tracks the movements of the parts and detects when they are 
absent. Each time a part is picked up, the LSTM registers this 
information in a list. Once all parts are out of the camera 
range, the LSTM writes the created route into a file. The 
output file is then used to construct a finite-state machine to 
build the robot’s task knowledge. Fig. 6 indicates that the 
robot accurately learns the task execution procedure.   

 
Fig. 6. Learning task from human demonstrations. 

D. Results and Analysis of Human Intention Prediction and 
Human-robot Collaboration  

Fig. 7 presents the results of human intention prediction 
and human-robot collaboration of a co-assembly route for the 
vehicle model in real-world contexts. In the prediction and 
collaboration mode of our approach, the robot waits for the 
human participant to start the task (Fig. 7(1)). Once the first 
part’s movement from its original location is detected (Fig. 
7(2)), the robot predicts and picks up what the next part the 
human participant will require to continue the assembly 
based on its learned task knowledge (Fig. 7(3)). Then the 
robot hands it to the human participant to help with 
conducting the task (Fig. 7(4)). As shown in Fig. 7(5), the 
human picks up another part to continue the assembly task. 
After that, the robot picks up the following predicted part 
(Fig. 7(6)) and delivers it to its human partner to accomplish 
the task (Fig. 7(7) and Fig. 7(8)). The more demonstrations 
and assembly routes the robot learns, the more accurate 
personalized strategies it can employ to assist the human in 
collaborative tasks. While the human participant is 
assembling the parts, the robot anticipates and provides the 
next required part based on the human's assembly preference, 
thereby facilitating task completion in an optimal time.  

The proposed approach enhances collaboration between 
humans and robots, enabling them to work together more 
efficiently and effectively. By predicting and delivering the 
required parts accurately, the robot saves time and effort that 
would otherwise be spent searching for and retrieving parts. 
The results of our study evince the successful implementation 
of our TLPC model in real-world scenarios. Our findings 
show that the TLPC model can significantly improve existing 
solutions, advancing efficient human-robot collaboration 
across diverse shared tasks. In this experiment, we tested the 
effectiveness of the proposed model by assembling a 
four-part vehicle, which may appear to be a straightforward 
task; however, our results demonstrate that the TLPC model 
is scalable for more complex tasks. 
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Fig. 7. Human intention prediction and human-robot collaboration for 

vehicle model assembly.   

IV. CONCLUSIONS AND FUTURE WORK 
In this study, we have developed a TLPC model, which is 

an effective solution to program robots to collaborate with 
humans on tasks that can be completed in different ways. The 
model utilizes machine learning techniques to identify the 
locations of parts required for executing a task and employs a 
finite-state machine-based approach to predict the next state 
of the shared task in the human-robot collaboration process. 
This prediction feature allows the robot to collaborate with 
humans in many ways by handing over the next most suitable 
part/object required for completing the task, thereby reducing 
task errors and improving collaboration productivity. One of 
the significant advantages of the TLPC model is its ability to 
be customized by human participants according to their 
working preferences while executing a task. This 
customization enhances the naturalness and ease of 
communication between humans and robots to improve the 
quality and speed of manufacturing processes, leading to 
greater productivity and profitability. The use of an LSTM 
neural network to process video data obtained from human 
demonstrations allows the TLPC model to retain information 
over long periods, making it well-suited for tasks where past 
inputs are important in making current predictions.  
Experimental results suggest that the TLPC model could 
minimize the requirements for implementing human-robot 
collaboration while maintaining the stability and consistency 
of the partnership. This approach eliminates the need for 
wearable sensors and allows the model to be implemented 
with minimal equipment, helping to cut costs or pair it with 
other algorithms and technologies to improve human-robot 
collaboration in the long term. In our future work, first, we 
will verify it with more complex tasks in different scenarios. 
Additionally, we will explore more metrics and conduct 
subjective evaluation experiments by recruiting participants 
from various backgrounds and working preferences to assess 
the developed model, collect their feedback, and iteratively 
enhance the performance of our approach. 
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