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Abstract—Human-robot collaboration has been one of the
main focuses for both research and usage in advanced
manufacturing. In human-robot partnerships, instead of static
collaboration for repetitive tasks, it is more significant for the
robot to dynamically understand its human partner’s intentions
and collaborate with them to complete the shared tasks.
Motivated by these issues, we develop a model for the robot to
learn to complete tasks by watching and analyzing human
demonstrations. This allows the robot to become more accurate
and customizable with each human’s personalized working
preference. Based on the long short-term memory method, we
propose a new approach to have the robot recognize objects,
understand ongoing human actions, and predict human
intentions. This will allow the robot to automatically adjust its
motions and dynamically pick up and deliver the object to its
human partner in the collaborative task. Experimental results
suggest that the proposed model can enable robots, like
humans, to learn and predict humans’ intentions dynamically
and intelligently to accommodate customized and personalized
collaborative tasks. Future work of this study is also discussed.

Keywords— Robotics, human-robot collaboration, learning
from demonstrations, smart manufacturing.

I. INTRODUCTION

Robots have served as humans’ assistants in numerous
application fields [1]. In a manufacturing context, for
example, robots working alongside humans to complete
shared tasks is not an uncommon sight [2-4]. Robots can
handle repetitive tasks, freeing up human workers to focus on
more complex and creative work. It is also used in healthcare,
where robots can be used to assist with surgery or to provide
physical therapy to patients [5]. Education is also a field that
has been integrating robots to provide tangible and
personalized learning experiences to students [6]. In the
entertainment industry, robots can be used to create
immersive and interactive experiences for audiences [7]. The
use of collaborative robots to assist human workers in the
assembly and manufacturing of cars is a widely adopted
practice in the automotive industry. Assembling tasks have
led to the development of highly specialized robotic systems
designed to operate safely when near human co-workers.
However, ensuring effective human-robot collaboration
while guaranteeing the safety of the human co-worker
remains a persistent challenge that researchers and engineers
are continuously seeking to overcome. The need to develop
robust and reliable control algorithms, coupled with the
incorporation of advanced sensing and perception
capabilities, is imperative in the design and development of
collaborative robots that can operate alongside humans while
maintaining safety and task efficiency.

Efficient robot programming improves the productivity
and reliability of human-robot collaboration. It also reduces
the costs in a wide range of industries [8-10]. Robot
programming can be a complex and time-consuming process
that requires specialized knowledge and expertise. However,
advances in machine learning and artificial intelligence are
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making it possible to teach robots to perform tasks through
human demonstration, which can significantly improve the
efficiency of the programming process [11]. This approach
involves a human demonstrating a task to the robot, which
then learns how to perform the task through imitation. In a
manufacturing setting, for example, human co-workers can
demonstrate tasks to robots, in turn, producing tasks
independently. This approach is able to save time and lower
costs by reducing the need for extensive programming and
improving the deployment of robot systems.

To facilitate effective human-robot collaboration, it is
crucial to have robots work seamlessly with humans while
minimizing the risks to human safety. One approach to
achieve this is using human intention prediction. This
involves developing robots to accurately predict human
intentions, thereby enabling them to work in harmony with
human partners. Predicting human intentions will improve
the speed and accuracy of human-robot collaboration, as well
as enhance overall task efficiency. There are different ways
to predict human intentions, and recent advances in artificial
intelligence and machine learning have made it possible to
develop systems that can learn and adapt to human behaviors
[12]. For instance, a robot can use machine learning
algorithms to analyze human movements and gestures,
enabling it to anticipate the next move of its human partner
[13]. Additionally, robots can use natural language
processing to understand human speech, allowing them to
respond appropriately to instructions given by humans [14].
Overall, the development of robotic systems that can predict
human intentions and adapt to human actions is essential to
enable effective and safe human-robot collaboration. With
continued research and development in this area, the potential
applications for collaborative robots across a wide range of
industries will only continue to expand.

Human-robot collaboration has been expanding in recent
years, but it is still a relatively new field that has many
limitations with the current implementation. One limitation is
the complexity of the programming process for collaborative
robots. While advances in the latest technologies have made
it possible to teach robots through human demonstration, the
process is still time-consuming and requires specialized
expertise. Additionally, the programming of collaborative
robots needs to account for the dynamic nature of human
behaviors, which can be difficult to predict. Moreover, there
is a need to investigate more flexible and adaptable robot
systems that can work effectively across a range of different
applications and environments [15]. The current research
progress has primarily focused on specific use cases, such as
manufacturing or healthcare. However, there are still some
gaps in developing more generalized systems and approaches
to deploy robots across multiple industries and scenarios.

To this end, we propose a teaching-learning-prediction-
collaboration (TLPC) model for the robot to learn from
human demonstrations of how to cooperatively complete a



task and become more accurate and customizable with each
human’s personalized working preference. In our approach,
the robot can learn different strategies to complete a task
using a finite-state machine model. Based on the long
short-term memory algorithm, we develop a new approach to
have the robot recognize objects, understand ongoing human
actions, and predict human intentions. This will allow the
robot to automatically adjust its motions and dynamically
pick up and deliver the object to its human partner in the
collaborative task.

II. DEVELOPMENT OF THE TLPC MODEL

A. Approach Overview

The overarching vision of this work is to enable robots,
like humans, to learn and predict humans’ intentions
dynamically and intelligently to accommodate customized
and personalized collaborative tasks. As shown in Fig. 1, the
TLPC model includes human teaching, robot learning,
human intention prediction, and human-robot collaboration.
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Fig. 1 The teaching-learning-prediction-collaboration (TLPC) model.

In the teaching process, the human demonstrates a task
(e.g., assembling a product) and the robot captures the
demonstration into video data through a vision system. This
data is then processed by a Long Short-Term Memory
(LSTM) neural network to identify the locations of the parts
required for executing the task. In the learning section, the
coordinates of each part are tracked throughout the human
demonstration and their movements are fed to an algorithm
that creates a finite-state machine to build task knowledge for
the robot. A finite-state machine can be used to represent a
system or process as a set of states and transitions between
those states. In the context of this work, the states represent
different configurations of the task (e.g., different positions
of the parts) and the transitions represent the movements of
the parts between those configurations. In the prediction and
collaboration processes, the robot predicts the next state of
the task that the human partner wants to operate based on the
finite-state machine. By observing which part of the task the
human starts with, the robot will collaborate with the human
partner by handing the next most suitable part required for
completing the task.

This design allows the TLPC model to not require a high
level of knowledge from the human to teach the robot to
assist the human in collaborative tasks, which makes it a
user-friendly and adaptable solution. Additionally, not using
any wearable sensors and only using a vision system to identify

the tasks and human intentions enhances the naturalness and
ease of communication in human-robot partnerships. Overall,
the proposed approach has the potential to improve the
quality and speed of manufacturing processes, leading to
greater productivity and profitability. The TLPC model also
has the ability to identify different human participants’
working preferences and customize the robot’s responses
based on how each individual is most likely to complete the
task, further increasing efficiency and effectiveness.

B. Long Short-term Memory

The Long Short-Term Memory (LSTM) neural network is
utilized in the TLPC model to process the video data obtained
from human demonstrations and identify the locations of the
parts required for executing the task. The LSTM is a type of
recurrent neural network that is particularly useful for
modeling sequential data. It can retain information over long
periods, making it well-suited for tasks where past inputs are
important in making predictions. Fig. 2 shows the basic
structure of the LSTM neural network, where X is the current
input, C; is the new updated memory, #, is the current output,
Cr.11s the memory from the last LSTM unit, 4, is the output
of the last LSTM unit. In the LSTM, a forget gate layer
decides what information to keep. Then, an input gate layer
and tanh layer determine new information to add. The old
state is then updated by forgetting selected information and
adding new information. Finally, a sigmoid layer filters the
output based on the cell state [16].
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Fig. 2. Structure of the LSTM neural network.

C. Human Teaching and Robot Learning

A web camera is used in the robot vision system to
process the human worker’s operation movements and the
sequence of events required to complete a task in the teaching
process. The minimal amount of equipment needed for this
method allows for cost reduction and facilitates pairing with
other algorithms and technologies to enhance long-term
human-robot collaboration. In the robot learning process, we
aim to minimize the requirements and dependencies for
implementing human-robot collaboration while maintaining
stability and consistency. This ensures optimal results in
terms of productivity and natural communication in
human-robot partnerships. Based on the LSTM, the
mathematical representation of human teaching and robot
learning is described as follows:

rl_k(t) = LSTM(hd_v(1), d_i(1), I(1)) (1)

where r/ _k(t) is the robot’s learned knowledge at time ¢,
hd_v(t) means the LSTM processes the video data of the
human demonstrations at time ¢ to identify the location of
each part in a 3x3 grid and highlights the corresponding
blocks, d_i(?) denotes the LSTM tracks the movements of the
parts and detects it when a part is operated, d_i(¢) = I if parti
is missing at time 7 and 0 otherwise, and /() = [d_1(t), d_2(1),



d _3(t), d_4(t)] represents the LSTM registers each missing
part in a list at time ¢. Based on its learned knowledge and the
missing parts, the robot then determines the appropriate actions
and sequences to complete the task with its human partner.

D. Human Intention Prediction

In the human intention prediction process, a finite-state
machine (FSM) is created for the robot to build task strategies
and predict human intentions based on the working
preference of a specific human worker employed in the
teaching process. To create a finite-state machine for a task,
as shown in Fig. 3, we follow 5 main steps. The created
finite-state machine is expressed as:

M= (S’ I1 O,f g SO) (2)

which includes a finite set S of states, a finite input /, a finite
output O, a transition function f (f: S x I — S), an output
function g (g - S x I — O), and an initial state so[17].
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* Define States: Thisiswherethe distinct stages or phases of the task
are identified and modeled as states. With only one state being
active at a time.
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# Draw Transitions: This step involves drawing arrows or lines
between the states to represent how the machine transitions from
one state to another. Transitions can be triggered by various inputs,
such as useractions, system events, or external factors.
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throughoutthe state machine.
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Fig. 3. Steps to create a finite-state machine for human intention prediction.

E. Human-robot Collaboration

Based on the robot’s prediction of human intentions in
shared tasks, we design a human-robot collaboration model
for the robot to accommodate its human partners’ working
preferences and assist humans. This model is not only
flexible and adaptable but also easily customizable to suit the
specific needs of other human-robot -collaborative
applications. The collaboration model building process based
on the TLPC framework is presented in Fig. 4.

As shown in Fig. 4, Human_demonstration represents the
input data provided by the human participant to demonstrate
a task to the robot. Robot translate( ) is a function that
translates the human demonstration into video data, which is
assigned to the variable Video data. LSTM( ) is a function
that processes the Video data using an LSTM neural network
to identify the locations of the parts required for executing the
task. The output of this function is assigned to the variable
LSTM processing. Track _coordinates( ) is a function that
tracks the coordinates of each part throughout the human
demonstration, and assigns the tracked coordinates to the

variable Coordinates_tracking. FSM _information( ) is a
function that takes in the Coordinates tracking data and
builds a finite-state machine to create task knowledge for the
robot. The output of this function is assigned to the variable
FSM building. Predict next state( ) is a function that uses
the FSM_building and Human_demonstration data to predict
the next state that the human participant wants to move to
based on the finite-state machine. The output of this function
is assigned to the variable Next state prediction to predict
the human intention in the task. Collaborate with Human( )
is a function for the robot to collaborate with its human
partner by handing the next most suitable part required for
completing the task.

Video_data =
Robot_translate(Human_demonstration)

l

LSTM_processing = LSTM(Video_data)

|

Coordinates_tracking =
Track_coordinates(Human_demonstration)

|

FSM_building =
FSM_information(Coordinates_tracking)

l

Next_state_prediction =
Predict_next_state(FSM,
Human_demonstration)

l

A
Collaboration=Collaborate_with_Human(Ne
xt_state_prediction)

y

Fig. 4. The collaboration model building process based on the TLPC
framework.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Platform

We develop a high-fidelity advanced manufacturing
context to testify the proposed model. As shown in Fig. 5, the
experimental platform includes a collaborative robot, a
vehicle model to be assembled, a web camera, and a shared
workspace. The human participant will assemble the parts of
the vehicle to teach the robot how to perform the task
alongside the human participant the next time the human
participant is performing the task. The robot used is a Franka
Emika Panda robot, which is a 7-DoF collaborative robot [18].
The web camera used is a generic webcam. A ThinkStation
P520 workstation is employed to process human demonstration
data, run the TLPC model, and send robot control commands
in the human-robot collaborative experiments. The Robot
Operating System (ROS) is utilized in managing our robot
system [19]. ROS 1is an open-source framework for
inter-platform maneuvering and communication on a large
scale. In addition, this work utilizes Movelt! and runs it with



the ROS operating system [20]. To plan the robot’s
movements in human-robot collaborative tasks, the control
commands are sent to the libfranka interface, which is a ROS
package that allows the collaborative robot to communicate
with the FCI controller. The FCI will provide the current
robot states and enable the robot to be directly controlled by
the commands derived from the TLPC model.

Fig. 5. Experimental platform.

B. Task Description

In this work, we design a typical co-assembly task in
advanced manufacturing contexts, in which the robot learns
from its human partner to assemble a vehicle model and
assists the human in the task through predicting their
intentions based on the learned knowledge. The flow of our
experiment is the same as our proposed TLPC model.
Starting with human teaching where the human participant
would perform the given task which in this case is assembling
a vehicle model that has four parts (the proposed model is
also applicable for more parts). The program starts by asking
the user if it should go into the knowledge-building mode
where the robot would observe the human participants'
operational actions and learn from them how to perform the
task or to predict and collaborate with the human participant
using the knowledge it accumulated so far. During our
experiment, we ran the program in the knowledge-building
mode where the webcam fed the LSTM model with real-time
human demonstration video data and the LSTM recognized
the locations of the vehicle parts. For each part the human
participant assembled, the robot built its knowledge with the
sequence of how the task was achieved. Following that, we
went into prediction and collaboration mode showcasing how
the robot learned from human demonstrations. By having the
robot observe the human participants' operation movements,
it could help the human participant with the following parts
based on the learned task strategies. The robot can predict
based on as many demonstrations as previously given. Once
the whole task course is learned, the human would start the
collaborative task with the robot to assemble the vehicle.

C. Results and Analysis of Learning from Demonstrations

The results of robot learning from human demonstrations
are shown in Fig. 6. The system uses a camera to capture
video data of a human participant performing a task. The
video data is then sent to a Long Short-Term Memory
(LSTM) to identify the location of each part in a 3x3 grid and
highlight the corresponding blocks (the blue parts in each
subfigure). This allows the system to track the movement of
each part and identify when a part is operated. Following that
the human participant starts with the task in any possible
route according to his assembly preference and the LSTM

tracks the movements of the parts and detects when they are
absent. Each time a part is picked up, the LSTM registers this
information in a list. Once all parts are out of the camera
range, the LSTM writes the created route into a file. The
output file is then used to construct a finite-state machine to
build the robot’s task knowledge. Fig. 6 indicates that the
robot accurately learns the task execution procedure

Fig. 6. Learning task from human demonstrations.

D. Results and Analysis of Human Intention Prediction and
Human-robot Collaboration

Fig. 7 presents the results of human intention prediction
and human-robot collaboration of a co-assembly route for the
vehicle model in real-world contexts. In the prediction and
collaboration mode of our approach, the robot waits for the
human participant to start the task (Fig. 7(1)). Once the first
part’s movement from its original location is detected (Fig.
7(2)), the robot predicts and picks up what the next part the
human participant will require to continue the assembly
based on its learned task knowledge (Fig. 7(3)). Then the
robot hands it to the human participant to help with
conducting the task (Fig. 7(4)). As shown in Fig. 7(5), the
human picks up another part to continue the assembly task.
After that, the robot picks up the following predicted part
(Fig. 7(6)) and delivers it to its human partner to accomplish
the task (Fig. 7(7) and Fig. 7(8)). The more demonstrations
and assembly routes the robot learns, the more accurate
personalized strategies it can employ to assist the human in
collaborative tasks. While the human participant is
assembling the parts, the robot anticipates and provides the
next required part based on the human's assembly preference,
thereby facilitating task completion in an optimal time.

The proposed approach enhances collaboration between
humans and robots, enabling them to work together more
efficiently and effectively. By predicting and delivering the
required parts accurately, the robot saves time and effort that
would otherwise be spent searching for and retrieving parts.
The results of our study evince the successful implementation
of our TLPC model in real-world scenarios. Our findings
show that the TLPC model can significantly improve existing
solutions, advancing efficient human-robot collaboration
across diverse shared tasks. In this experiment, we tested the
effectiveness of the proposed model by assembling a
four-part vehicle, which may appear to be a straightforward
task; however, our results demonstrate that the TLPC model
is scalable for more complex tasks.



Fig. 7. Human intention prediction and human-robot collaboration for
vehicle model assembly.

IV. CONCLUSIONS AND FUTURE WORK

In this study, we have developed a TLPC model, which is
an effective solution to program robots to collaborate with
humans on tasks that can be completed in different ways. The
model utilizes machine learning techniques to identify the
locations of parts required for executing a task and employs a
finite-state machine-based approach to predict the next state
of the shared task in the human-robot collaboration process.
This prediction feature allows the robot to collaborate with
humans in many ways by handing over the next most suitable
part/object required for completing the task, thereby reducing
task errors and improving collaboration productivity. One of
the significant advantages of the TLPC model is its ability to
be customized by human participants according to their
working preferences while executing a task. This
customization enhances the naturalness and ease of
communication between humans and robots to improve the
quality and speed of manufacturing processes, leading to
greater productivity and profitability. The use of an LSTM
neural network to process video data obtained from human
demonstrations allows the TLPC model to retain information
over long periods, making it well-suited for tasks where past
inputs are important in making current predictions.
Experimental results suggest that the TLPC model could
minimize the requirements for implementing human-robot
collaboration while maintaining the stability and consistency
of the partnership. This approach eliminates the need for
wearable sensors and allows the model to be implemented
with minimal equipment, helping to cut costs or pair it with
other algorithms and technologies to improve human-robot
collaboration in the long term. In our future work, first, we
will verify it with more complex tasks in different scenarios.
Additionally, we will explore more metrics and conduct
subjective evaluation experiments by recruiting participants
from various backgrounds and working preferences to assess
the developed model, collect their feedback, and iteratively
enhance the performance of our approach.
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