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Abstract: Spatial interpolation techniques play an important role in hydrology, as many point obser-
vations need to be interpolated to create continuous surfaces. Despite the availability of several tools
and methods for interpolating data, not all of them work consistently for hydrologic applications.
One of the techniques, the Laplace Equation, which is used in hydrology for creating flownets, has
rarely been used for data interpolation. The objective of this study is to examine the efficiency of
Laplace formulation (LF) in interpolating data used in hydrologic applications (hydrologic data)
and compare it with other widely used methods such as inverse distance weighting (IDW), natural
neighbor, and ordinary kriging. The performance of LF interpolation with other methods is evaluated
using quantitative measures, including root mean squared error (RMSE) and coefficient of determina-
tion (R?) for accuracy, visual assessment for surface quality, and computational cost for operational
efficiency and speed. Data related to surface elevation, river bathymetry, precipitation, temperature,
and soil moisture are used for different areas in the United States. RMSE and R? results show that LF
is comparable to other methods for accuracy. LF is easy to use as it requires fewer input parameters
compared to inverse distance weighting (IDW) and Kriging. Computationally, LF is faster than other
methods in terms of speed when the datasets are not large. Overall, LF offers a robust alternative to
existing methods for interpolating various hydrologic data. Further work is required to improve its
computational efficiency.

Keywords: spatial interpolation; hydrologic data; Laplace equation; IDW; natural neighbor;
ordinary kriging

1. Introduction

Accurate simulation of hydrologic processes is essential for addressing various societal
issues related to water management, flood forecasting, and agricultural production. The
spatial description of natural variables, including topography, precipitation, temperature,
and soil moisture, plays a crucial role in hydrologic simulations. For instance, precipitation
drives the hydrologic cycle, and an accurate representation of its spatial pattern and
dynamics is necessary for reliable simulations [1,2]. Soil moisture representation affects the
partitioning of rainfall into infiltration and direct runoff [3-5]. Topography influences the
representation of the stream network and other watershed characteristics, such as slope
and flow length, which impact water movement on the surface [6,7]. Climate variables
such as temperature and relative humidity are essential for estimating evaporation and
evapotranspiration [8]. While continuous topographic datasets are often available for many
regions, continuous weather datasets, including rainfall, soil moisture, and temperature,
are primarily derived from satellite imagery or simulation models and may not be as
accurate as ground observations [9-14]. Therefore, spatial interpolation of ground data,
where available, is preferred for hydrologic applications at the watershed scale.

Spatial interpolation methods are actively researched for rainfall due to their crit-
ical role as the primary input to hydrologic models [15-19]. This research is primarily
driven by the need to accurately represent the spatio-temporal dynamics of rainfall from
a limited number of ground observations under multiple geographic and topographic
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conditions [17,20,21]. Deterministic methods such as Inverse Distance Weighting (IDW)
and Thiessen polygons are commonly used due to their simplicity, while Kriging and
its variants are widely employed as geostatistical approaches for rainfall interpolation.
However, the performance of these methods varies depending on the spatial and temporal
scale of the data and the topography of the region [15,22,23]. In certain situations, advanced
techniques that combine multiple data sources (e.g., ground observations and satellite
products) and interpolation methods are utilized to improve accuracy [24-26].

Interpolation methods for temperature data have been widely studied, with var-
ious approaches explored. These include simple methods such as IDW and natu-
ral neighbor [27-29], as well as more sophisticated techniques such as Kriging and
co-kriging [28,30]. Regression-based methods, such as geographically weighted regression,
have also been utilized [31,32]. Soil moisture is another variable commonly interpolated
in hydrologic applications. Chen et al. [15] compared four different approaches for soil
moisture interpolation in southwest China and determined that IDW was the most suitable
method for their study area. However, the interpolation of soil moisture is also influenced
by the terrain characteristics of the region. In situations involving complex terrain, hybrid
regression kriging has been shown to produce optimal soil moisture interpolations [33].

In addition to rainfall, temperature, and soil moisture, other datasets, such as river bed
elevations, require interpolation at a much finer spatial resolution. Various studies have
been conducted to explore different interpolation methods for the construction of riverbed
terrain [34-38]. These datasets are unique because they exhibit anisotropic characteristics
and are available in different spatial configurations, including cross-sections, sparsely
arranged irregular points from boat surveys, or gridded sets from multi-beam surveys.
Merwade et al. [36] introduced elliptical inverse distance weighting (EIDW) as a method to
account for anisotropy in bathymetry data, and it was found to be more accurate than other
complex methods such as Kriging. In the case of larger rivers, simple methods such as
inverse distance weighting (IDW) can also yield satisfactory results for generating riverbed
surfaces [38]. However, even at smaller scales, the interpolation of river bathymetry is
influenced by factors such as river size and geometry. Consequently, different methods have
been reported to have superior performance depending on the specific characteristics of
the dataset and the interpolation requirements. These methods include regression-kriging
(RK) [35], Topo to Raster (TopoR) [34], Radial basis function (RBF), and the anisotropic
form of ordinary kriging [37].

Existing literature demonstrates that no single method consistently works for every
variable used in hydrologic applications, and their performance varies geographically.
Complex methods such as Kriging and spline are not easily implemented, and many meth-
ods require multiple input parameters, which are subjectively selected [39]. Given these
considerations, this study aims to explore a simpler approach to interpolating hydrologic
data and evaluate its performance in comparison to widely used methods. Specifically,
the focus of this investigation is on the utilization of the Laplace formulation [30-42] as
a means of interpolating data used in hydrologic applications, referred to hereafter as
hydrologic data. Traditionally employed in groundwater hydrology to establish a network
of equipotential and flow lines, known as flownets, the Laplace formulation has previously
demonstrated its effectiveness in studies conducted by Hess [43] and Lai [44] for estimating
tidal constituents and river channel streamlines, respectively. This investigation seeks to
extend and assess the broader applicability of the Laplace formulation for interpolating
hydrologic variables.

The objectives of this study are as follows:

1. To apply the Laplace formulation for interpolating topography, climate, and soil data
at multiple locations within the United States.

2. To compare the performance of the Laplace formulation with commonly used interpo-
lation methods, including inverse distance weighting, natural neighbor, and ordinary
kriging, in terms of accuracy, computational speed, and ease of implementation.
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The primary contribution of this work is to propose a very simple approach, Laplace
Formulation, for interpolation. The novelty of this approach lies in its simplicity because,
unlike other methods, it does not use distance/area-based weights or high-order polynomi-
als for interpolation.

2. Materials and Methods
2.1. Interpolation Methods

This section briefly describes the methods used for interpolating the data used in this
study, with more details provided for the application of the Laplace formulation.

2.1.1. Inverse Distance Weighting (IDW)

The IDW interpolation method assumes that the influence of sampled points on
estimates at an unsampled point decreases with distance [45]. The value at an unsampled
point, therefore, can be determined using an inverse distance weighted average of a set
of sample points within a circle of neighborhood with a defined search radius (Figure 1a)
according to Equation (1).

2 =) L Wizi 1)
1P
di
wij = 2)
n 1
i=1 (dip )

where z; 1=1,2, ..., N) is observed value at a sample point i, d; is the distance between
the ith sampled point (z;) and the unsampled point (zj) and the parameter p is the weight
parameter as an exponent to the distance. The larger the power, the stronger the weight
of nearby points, so defining a higher value for power leads to less influence for points
farther away.

Thiessen polygons

Z Triangulation

P3 s Z3

(a) () ()

Figure 1. (a) IDW with a circular neighborhood; (b) natural neighbor with Thiessen polygon network;
(c) natural neighbor with Thiessen polygons after insertion of point z; [36].

2.1.2. Natural Neighbor

Natural neighbor provides estimates at unsampled points by giving weights to sur-
rounding input sampled points according to the proportionate areas of Theissen/Voronoi
polygons [46]. Thus, weights in natural neighbor interpolation are based on areas of
Thiessen polygons. If there is a Voronoi diagram constructed based on some sample points
(z1, 22, ..., z_n), represented by the Thiessen/Voronoi polygons shown in Figure 1b, an
unsampled point (zj) inserted into the dataset will cause the voronoi diagram areas of the
sample points to be reduced (Figure 1c). If p; and q; are the Voronoi diagram areas of the
sample points z; before and after the insertion of z;, the weight for the sample point z; is
given by:
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wi = bi— G (3)
Pi
Once the weight is determined, Equation (1) is used by natural neighbor to predict the
value of z;.

2.1.3. Ordinary Kriging

Kriging is a geostatistical method that uses spatial correlation between sample points to
interpolate values at unsampled points [47]. It is similar to IDW in that it also uses weights,
but these are not based on the inverse distance between the sampled and unsampled
points. Instead, weights are computed based on the statistical relationship between the
sampled points.

The weight for each point is decided under the condition that the estimation variance:

o’ = var(2 — z) 4)
is minimum and that the interpolation is unbiased, which is warranted with unit sum weights:
Y wi=1 ®)

where E[] is the expectation operator. Ordinary kriging assumes the model:
Z=WU+¢€ 7)

where z is the measured value, the constant mean (i) is unknown, ¢ is a zero mean
representing the variation around the mean with the existing semivariogram y(h) [48]. The
estimator z; can be expressed as Equation (1) if weight values (w;) are determined for each
sampled point.

It is assumed that the datasets are part of a realization of an intrinsic random function
with an empirical semivariogram y(h) that helps to quantify the spatial correlation between
measured points. Several functions (e.g., circular, spherical, exponential, and linear) are
available to choose from for modeling the empirical semivariogram. In this study, the
most commonly used spherical model [49] is fitted to the semivariogram as given by the
following equation:

3
c0+c(%—%(}a‘—3>) 0<h<a
v(h) = co+c¢ h>a ®)
0 h=0

where h is the lag vector, ¢y is the nugget, c is the partial sill value, and a is the range of
the model.

2.1.4. Laplace Formulation
The Laplace equation is used to describe steady-state situations that are independent

of time. In hydrology, a two-dimensional steady-state flow through a saturated, isotropic
porous medium can be described by the Laplace Equation, as shown below.

Fh  &h
where h is the hydraulic head, and x and y indicate the coordinates of the point in the
flow field. Equation (9) can be solved to get a function h(x, y) that will give the value of
hydraulic head h at any point in a two-dimensional flow region. This solution can also be
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used to present a two-dimensional groundwater system with equipotential surfaces and
corresponding flowlines, which together are referred to as the flow net.

The Laplace equation can be solved by analytic solutions that are exact. However,
their complexity and the limitation that solutions are available only for simple boundary
conditions make this method less practical [50]. Numerical methods are widely used
for solving these equations. If the errors of approximation from a computer solution are
acceptable, powerful computers and software are able to compute the results effectively.
The numerical methods to solve the Laplace equation rely on the discretization of the flow
field, where the flow region is divided into a finite number of blocks, as shown in Figure 2a.
Each block has its own hydrogeologic properties and has a node at the center at which the
hydraulic head is defined for the entire block. Consider one interior node and its neighbors,
as shown in Figure 2a. Assuming the length of the side of each block in the y direction is
Ay and that in the x direction is Ax, the hydraulic gradient (slope) between points (i — 1, j)
and (i, j) is:

dh  hi_1;—hj;

X - Ax (10)

where h;j and h;_1; are the hydraulic heads for each block. The hydraulic gradient between
points (i+1, j) and (i, j) is:

dh  hij—hi;
ox Ax ()
Therefore, the differential of hydraulic gradient in the x direction is:
& _ hioyj —hij  hjj—hipg) 1 _ hi_1j —2hj; — hjpq 12)
ox2 Ax Ax Ax ( Ax)2
Similarly, the differential of hydraulic gradient in the y direction is:
82721 _ hija— 2hi,j2_ hiji1 13)
% (Ay)
According to the Laplace equation, the sum of Equations (12) and (13) leads to:
hi_1; —2hj; —hj4q;  hyio1 —2hi; —hy;
i—1, ,]2 i+1,j + ij—1 1,]2 ij+1 -0 (14)
(Ax) (Ay)
If Ax = Ay, then
1
hij=7 (hijs1 +hitj+hijo1 +hig) (15)

In summary, the hydraulic head at any node is the average of its four surrounding values.
For points along the boundary, such as point (i, j) in Figure 2b, the value of the point
above point (i, j), which is an imaginary point, is the same as that of point (i, j — 1). Thus,

hij = (2hij—1 +hit;+hi_1;) /4 (16)

For a corner point such as point (i, j) in Figure 2c, its value is the average of four sur-
rounding points, and the value of an imaginary point at the left side and above the point (i, j)
would be the same as points (i, j — 1) and (i + 1, j), respectively.

hij = (20, +2hisa) /4 (17)

To generalize the application of the Laplace formulation for interpolation, h in the
above equations can be replaced with the variable of interest, including elevation, tempera-
ture, precipitation, and soil moisture. The application of Laplace interpolation is described
by considering a simple example with scatter measurements of variable z, as shown in
Figure 2d. Let us assume that these measurements need to be interpolated to create a raster
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or grid with a value in each cell, as shown in Figure 2e. If one or more measurements fall
within a cell, that cell gets the average value of those measurements (clear cells), and all
other cells are assigned an initial value of zero (shaded cells), as shown in Figure 2f. If the
nodal grid has N unmeasured nodes (zero cells), it is possible to produce N linear, algebraic
equations in N unknowns. To solve these N equations effectively, an iterative process called
the relaxation method [51] is used.

Each internal cell’s value with a zero value (shaded cell) is computed by taking the
average of its four neighboring cells (Equation (15)). Equations (16) and (17) are used to com-
pute values for shaded cells along the boundary. In the first iteration, Equations (15)—(17)
are used to compute values for all unknown cells. Equations (15)—(17) are solved again
for all unknown cells (next iteration), and the new values are compared with the previous
values. If the difference between the new value and the previous value (residual) is greater
than the specified threshold, the iterations will continue until the residual is less than or
equal to the specified threshold, as shown in Figure 3. Consider the highlighted cell, which
gets a value of 5 in the second iteration, 7.13 in the next iteration. Finally, it attains a value
of 9.64 after several iterations to get a residual of 0.47, which is less than the specified
threshold of 1.
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(e)

Figure 2. Hypothetical flow region showing: (a) Laplace equation application at internal nodes; (b)
Laplace equation application at the boundary; (c) Laplace equation application at the corner; (d)
scatter measures; (e) grid with center nodes; (f) scatter points interpolated in the grid.
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6 10| 12| o | 12 Sample grid with elevation

known/estimated for some cells and values

2 4 15 0 19 at unknown cells is zero

1 3 4 6 |125

(b)
6 10 11 9.75 12 [teration 2: i(65 + 2+ 5 + 15)
3 7 7.75 8 9

=713

3.75 S 7.13 75 8

2 4 15 10.5 19
2.5 3.25 4 6 12.5
()

6 10 | 112 |975 | 12
Final Grid with values estimated for all

3.75 5 9.64 | 10.12 | 11.93 unknown cells

2 4 15 | 1246 19
2.83 3.7 4 6 12.5
(d)

Figure 3. Example of the process for iteration: (a) grid with initial values; (b) grid after first iteration;
(c) grid after second iteration; (d) final grid.
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2.2. Study Area and Data

Data representing various hydrologic variables at different geographic locations
(Figure 4 and Table 1) are used in this study to compare Laplace interpolation with
other methods.
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Figure 4. Gauging stations location.
Table 1. Summary of data used for interpolation in this study.
Location Data Type Total Points  Area (km?) Min. Max. Mean SD Unit

Nebraska Plain 3291 32 946.13 984.55 955.7 6.93 m

Oregon Coastal area 7475 6.8 129.39 494.08 299.52 80.09 m

Idaho Mountain 13,230 441 2143.54 3079.62 2559.3 213.97 m
South Dakota Precipitation 184 233,100 211.4 654.5 427.63 92.53 mm/10
Arizona Precipitation 275 322,400 50.9 535.5 183.17 84.16 mm/10

South Dakota Temperature 113 233,100 45 10.6 8.11 1.28 °C

Arizona Temperature 135 322,400 6.1 25.1 15.51 4.92 °C
Towa Soil moisture 23 141,000 4.15 45.51 29.94 10.42 m3/m3
Utah Soil moisture 33 221,400 1.68 30.22 11.23 6.09 m3/m3
Texas Soil moisture 2453 254,908 0.2 0.42 0.33 0.05 m3/m?3
New Mexico ~ Soil moisture 2505 252,477 0.19 0.39 0.23 0.02 m3/m3

Brazos river 1 River channel 3529 0.16 4.58 12.06 9.59 1.45 m

Brazos river 2 River channel 3162 0.31 6.84 13.19 11.37 1.16 m

Brazos river 3 River channel 3713 0.2 8.9 13.19 114 1.1 m

Notes: SD, standard deviation.

For topography, gridded elevation points from the USGS National Elevation Dataset
(USGS, NED, 2020) from three regions representing plains, coastal, or mountainous areas
are used (Figure 4). Using a gridded elevation dataset, which is already interpolated,
is not ideal. However, considering the overall goal of this study, which is to investigate
whether Laplace formulation provides a reasonably simple alternative to other interpolation
methods, using an already gridded dataset is assumed to be reasonable. For bathymetry,
irregularly spaced survey data points from the Texas Water Development Board (TWDB)
for three locations along a reach of the Brazos River in Texas are used. These data were
collected using a single-beam boat-mounted acoustic depth sounder linked to a global
positioning system [52].
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For climate variables, annual precipitation and mean annual temperature datasets
in 2020 from the National Oceanic and Atmospheric Administration (NOAA) weather
stations are used. Figure 5c,d represents the maps of precipitation and temperature data,
respectively. Depth-averaged soil moisture values, which represent the amount of water
present in a specific soil layer beneath the surface, are used in this study. Two datasets,
representing daily average 12-inch depth soil volumetric water content in 2020 from the
Iowa State University soil (ISU) moisture network, and annually averaged 2-inch depth soil
moisture at a location in Utah from 2016 to 2020 from the Soil Climate Analysis Network
(SCAN), are used. Given the limited number of soil observations from these two sites,
data from the Famine Early Warning Systems Network (FEWS NET), and the Land Data
Assimilation System (FLDAS) are also utilized in this study. The values of the data with a
resolution of 10 km are the average soil moisture in January 2019 from New Mexico, and
Texas. The depth of the layer of data in this study is 0 to 10 cm [53]. Besides elevation and the
FEWS NET soil data, which are estimates, all other datasets represent field measurements.
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Figure 5. Map of different datasets: (a) topography data in Nebraska; (b) Brazos River bathymetry;
(c) precipitation data in South Dakota; (d) temperature data in Arizona; (e) soil moisture data in Iowa.

2.3. Research Methods

The methodology involves the following steps: (1) Data processing to split each dataset
into test and validation datasets; (2) interpolating test data using IDW, natural neighbor,
Kriging, and LF; and (3) comparing the results from LF with IDW, natural neighbor,
and Kriging. The data are randomly separated using a 70/30 split to create testing and
validation samples for each dataset. The testing sample is then used for interpolation using
the selected methods. Interpolation using IDW, natural neighbor, and kriging is conducted
in ArcGIS Pro 2.8.2, and interpolation using Laplace formulation (LF) is coded in Python.
The estimates from interpolation using each method are then evaluated using points in
the validation sample. This random sampling, interpolation, and validation is repeated
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five times to capture the variability in the data and avoid any bias that may result from a
single sample. All interpolation methods to create grids or raster surfaces are impacted
by the cell size used in creating the final surface [54]. Different cell sizes were used in the
present study for each dataset to investigate its impact on the final results. It was found
that the performance of each method was consistent among the different cell sizes used,
and thus for each dataset, a suitable cell size was chosen to create a representative surface
by capturing sufficient information from the testing datasets. Accordingly, a cell size of
30 m and 2 m is used for topography and bathymetry surfaces, respectively. A cell size of
10 km is used for precipitation, temperature, and soil moisture surfaces.

After interpolating each variable using the testing dataset, the interpolated values
are compared with values in the validation dataset using RMSE (Equation (18)) and R?
(Equation (19)) for quantitative assessment.

(18)

where n is the number of points in the validation dataset, z; and 2; is the interpolated value
and observed value at point I, respectively.

R2—1_ (SSTES> (19)

where SSy.s is the sum of squares of residuals, which is the difference between the observed
values and predicted values, and S5 is the total sum of squares, which is the difference
between observed values and their mean.

Besides RMSE and R?, the interpolated surfaces from each technique are compared
visually through differentiation and scatter plots. The methods are also compared in
terms of their ease of implementation, including the number of input parameters and
computational speed.

3. Results
3.1. Quantitative Assessment

RMSE, R? values, and scatter plots for all techniques using the validation dataset for
each sample are presented in Tables 2 and 3, and Figures 6-8, respectively.

Table 2. Table showing RMSE values from interpolation for all variables.

Location IDW NN Kriging LF Unit
Nebraska 1.24 1.06 1 1.08 m
Topography Oregon 5.77 4.22 4.55 4.24 m
Idaho 4.66 3.54 2.87 3.16 m
Brazos river 1 0.3 0.25 0.43 0.28 m
Bathymetry Brazos river 2 0.17 0.13 0.28 0.18 m
Brazos river 3 0.29 0.22 0.26 0.31 m
Precipitati Arizona 53.57 53.69 50.87 54.86 mm/10
reciprtation South Dakota 61.08 61.58 62.41 58.43 mm/10
Temperature Arizona 2.55 2.55 2.5 2.47 °C
p South Dakota 0.85 0.81 0.83 0.78 °C
Iowa 991 7.38 11.08 11.39 %
Soil Moi Utah 7.35 5.62 7.72 7.58 %
oil Moisture New Mexico 1.31 1.27 1.36 1.23 %

Texas 0.87 0.86 0.86 0.85 Y%
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Table 3. Table showing R? values from interpolation of all variables.

Location IDW NN Kriging LF

Nebraska 0.97 0.98 0.98 0.98

Topography Oregon 1.00 1.00 1.00 1.00
Idaho 1.00 1.00 1.00 1.00

Brazos river 1 0.96 0.97 0.92 0.96

Bathymetry Brazos river 2 0.98 0.99 0.95 0.98
Brazos river 3 0.97 0.98 0.97 0.97

Precinitati Arizona 0.94 0.94 0.94 0.93
reciprtation South Dakota 0.95 0.95 0.95 0.92
T 1 Arizona 0.92 0.91 0.92 0.91
emperature South Dakota 0.95 0.90 0.94 0.92
Iowa 0.71 0.74 0.70 0.72

Soil Moi Utah 0.77 0.78 0.76 0.76
oil Moisture New Mexico 0.87 0.88 0.86 0.88
Texas 0.98 0.98 0.98 0.98

3.1.1. Topography

The increase in RMSE of IDW compared to Laplace formulation (LF) ranges from
0.16 m for the plains to 1.53 m for the coastal dataset. The change in RMSE of LF compared
to natural neighbor and kriging is within 0.4 m. The change in R? is minimal. Overall, the
performance of LF in interpolating topography data is quite comparable to that of natural
neighbor and kriging, which is also visible in the scatter plot results (Figure 6).
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Figure 6. Scatterplot showing the relationship between observation and estimates of different
methods for topography data in: (a) Nebraska; (b) Oregon; (c) Idaho, bathymetry data in: (d) Brazos
River 1; (e) Brazos River 2; (f) Brazos River 3. The y = x line is utilized to determine the performance
of each method.
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3.1.2. Bathymetry

Unlike the results for topography data, the change in RMSE for IDW is less than 0.2 m
for bathymetry, indicating similar performance between LF and IDW. RMSE results for
natural neighbor show a relative decrease from 0.03 m to 0.09 m, which means that natural
neighbor performs slightly better than LF. The increases in RMSE of kriging are 0.15 and
0.1 for Brazos River 1 and 2, indicating a better performance of LF compared to kriging.
The change in the R? percentage is minimal, within 0.4. Overall, the performance of LF is
again comparable to other methods for interpolating bathymetry data. The scatter plots for
bathymetry also show an equal spread of over and under estimation for all methods, except
for Kriging (Figure 6). The Kriging method under- and overestimated more bathymetry
points compared to other methods for Brazos River 1 and 2.

3.1.3. Climate

The change in RMSE for both precipitation and temperature is small for IDW, Kriging,
and NN compared to LE. Overall, LF performed better than other methods for the Arizona
dataset, but the performance of LF is relatively poorer for the South Dakota dataset, but
again, the relative change is smaller than 3.99 mm/10. All three methods exhibited slightly
better performance than LF in terms of interpolating temperature data, with a minimal
change in RMSE and R2. The scatter plots for both precipitation and temperature show an
equal spread of overestimation and underestimation for all methods (Figure 7). Overall
results show that each method performed similarly, and the accuracy of the prediction for
all methods is limited by the relatively smaller number of testing points.
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Figure 7. Scatterplot showing the relationship of observation and estimates of different methods for
precipitation data in: (a) Arizona; (b) South Dakota, and temperature data in: (c) Arizona; (d) South
Dakota. The y = x line is utilized to determine the performance of each method.

3.1.4. Soil Moisture

Interpolation results from soil moisture show that the performance of LF is mixed
in terms of RMSE compared to other methods. For example, the RMSE results for LF are
similar, but NN outperforms other methods for both datasets in Iowa and Utah. IDW also
outperforms Kriging for the lowa dataset, but the results for Utah are comparable. The
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decrease for places that have more observation points ranges from 0.01 to 0.13%, indicating
that LF performed slightly better than other methods. It is observed from the scatterplots
of soil moisture data in Iowa and Utah that most points are far above or below the identity
line. However, the distribution of points for each method in the other two places with more
observed data (FEWS NET) is similar (Figure 8). The number of testing points shown in
Table 1 is 23 and 33 for Iowa and Utah, respectively. Therefore, the scarcity of testing points
causes the inaccurate prediction. This is also the reason that the percentage change in R?
in Iowa and Utah is greater than in other places. The number of observation points has a
significant impact on the performance of interpolation methods for soil moisture data.
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Figure 8. Scatterplot showing the relationship of observation and estimates of different methods
for soil moisture data in: (a) lowa; (b) Utah; (c) New Mexico; (d) Texas. The y = x line is utilized to
determine the performance of each method.

3.2. Visual Analysis

Visual analysis helps identify specific issues, such as spikes or depressions in an
interpolated surface, that are not easily revealed through quantitative assessment. For
this purpose, difference plots, obtained by simply subtracting the base surface from the
interpolated surface, are used to analyze the performance of each method. The base surface
was created using Kriging to interpolate all observed points, including testing and valida-
tion points. Kriging was used because it is reported to perform better than other methods
from past studies for interpolating many variables used in hydrology [19,36,55,56]. Overall,
the difference plots show that there are no obvious spots or mismatching spatial trends
among the interpolated surfaces of precipitation, temperature, and soil data (Figure 9). For
bathymetry data, LF underestimates values at some locations along the banks, as indicated
by dark areas (circled in Figure 10). Upon inspection, it is found that these locations have
relatively fewer testing points than others, and that may have impacted the performance of
LF at these locations.
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Figure 9. Interpolated surface of: (a) topography data in Nebraska; (b) precipitation data in South

Dakota; (c) temperature data in South Dakota; (d) soil moisture data in Utah.
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Figure 10. Interpolated surface of bathymetry at: (a) Brazos River 1; (b) Brazos River 2; (c) Brazos River 3.
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3.3. Computational Needs

In terms of implementation, natural neighbor does not need any input parameter, LF
needs error tolerance, IDW needs both the power (2 is common) and search radius, and
Kriging needs input for the semi-variogram model for fitting the data and search radius.
Overall, in terms of implementation, Natural neighbor is the easiest, followed by LF, IDW,
and Kriging. A comparison of the computational time for all methods shows that the
computationally LF is faster for topography, soil, precipitation, and temperature data (see
Table 4). For bathymetry data, LF is much slower compared to other methods. The main
factor that affected the computational results for LF was the smaller cell size of 2 m for
bathymetry points. Table 5 presents the results of the computational time for a finer size,
revealing that LF is considerably slower in comparison to other methods. This is due to
the fact that a smaller cell size leads to an increase in the number of unknown points that
require computation, resulting in a slower overall computational speed.

Table 4. Computational time for all data in second.

IDW NN Kriging LF Cell Size (m)
Topography 1.03 1.19 1.45 091 30
Soil moisture 1.32 0.90 0.95 0.18 104
Precipitation 1.11 0.80 0.84 0.31 10*
Temperature 1.07 0.77 0.79 0.22 104
Bathymetry 1.14 1.27 1.30 5.36 2

Table 5. Computational time for all data in second for finer cell size.

IDW NN Kriging LF Cell Size (m)
Topography 1.41 1.28 2.46 65.95 5
Soil moisture 2.13 2.1 2.89 9.84 500
Precipitation 1.14 0.95 1.03 0.53 500
Temperature 1.15 0.93 1.06 0.65 500
Bathymetry 1.41 2.5 2.21 54.47 1

In addition, smaller tolerances would result in slower computational speed for LF
because smaller tolerances require more iterations to reach convergence. For example, the
running time of LF is 5.4, 16.8, and 27.9 s using tolerances of 0.001, 0.0001, and 0.00001 m
to interpolate bathymetry data of Brazos River 1, respectively. Kriging is computationally
more intensive compared to other methods [39,57], which, however, is not found in the
present study. The number of points in different datasets is only several thousand or less,
as shown in Table 1, indicating that the relatively small data size can be the reason why the
computational speed of every method is quite comparable.

4. Discussion and Conclusions

The main objective of this study is to assess the applicability of the Laplace Formula-
tion (LF) for interpolating hydrologic data, which has been sparsely explored in previous
literature, with only two known studies by Hess [43] and Lai [44] utilizing this approach.
Unlike commonly used methods such as inverse distance weighting (IDW), natural neigh-
bor (NN), and Kriging that rely on distance or area-based weighting, LF is based on the
spatial behavior of surrounding points. Specifically, it tries to maintain the smoothness
or surface curvature based on surrounding points. The objective of this study is accom-
plished by interpolating different types of hydrologic data from diverse regions using the
LF method. The interpolated results are then quantitatively and qualitatively compared
to those obtained using IDW, NN, and Kriging. The evaluation, based on RMSE and R?,
revealed that LF produced interpolated values for topography data that are comparable
to the other methods. Specifically, its RMSE values are close to those of Kriging and NN,
and it outperformed IDW. These findings align with those of Arun [58]. Kriging considers
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autocorrelation in elevations, enabling the determination of optimal weights, and NNs
generate a smooth estimated surface, except for points with discontinuous derivatives [59].
LFE, which also attempts to create a smooth surface, performed similarly to Kriging and
NN. Scatterplots and corresponding R? values depicting the relationship between observa-
tions and estimates indicated similar performance among the techniques for estimating
topography data.

With respect to bathymetry data, LF yielded RMSE results comparable to those of
NN and IDW. However, upon examining the difference plots, it was observed that LF
tended to underestimate values along the riverbanks, where data points were relatively
sparse. Previous studies have suggested that Kriging is a more suitable interpolator for
bathymetry data [37,60-62]. In this specific case, the limited availability of data points
along the riverbanks of the Brazos River 1 and 2 contributed to the poorer performance of
Kriging. For precipitation data, LF demonstrated slightly better performance than other
methods in Arizona but slightly poorer performance in South Dakota. This difference can
be explained by the variability in the precipitation data in these regions. The precipitation
data for South Dakota have a slightly higher standard deviation (92.53 mm/10) compared
to that of Arizona (84.16 mm/10). This may affect the LF, given its property of creating a
smoother surface. However, it is difficult to generalize this given the limited datasets used
in this study. Additionally, the difference in RMSE results, within 4 mm of precipitation,
is not outside the variability observed among RMSE from all methods. Studies have
shown that the performance of different interpolation methods varies across different
locations. Ordinary Kriging is generally considered a superior method for interpolation
precipitation, but some studies have found that IDW can produce similar results compared
to Kriging [22,63,64].

For temperature data, previous studies have suggested that IDW is the most suitable
method [65,66]. The lack of observational data points in this study may explain why all
methods yielded similar performance. The results for soil data varied across the methods
for the four regions used in this study. Except for lowa, LF performance is comparable to all
other methods. Even for Iowa, its RMSE results are close to those of Kriging but higher than
those of IDW and NN. Similar to precipitation data, the relative poorer performance of LF
for the Iowa region can be attributed to the higher variance in the data. However, there may
be other factors playing a role in the overall performance. According to previous studies,
when the land is complex, IDW and ordinary Kriging are not recommended due to the low
spatial autocorrelation of soil moisture [33,67]. All the locations analyzed in this study had
diverse landscapes across the states, with different types of land cover and topography.

Computational speed analysis revealed that LF performed similarly to the other
methods for most sample datasets in this study, but its performance was adversely affected
as the number of data points increased. While all interpolation results were computed
using the Python environment, it should be noted that there are packages available for other
methods that may be optimized for computational efficiency. The current code for LF that is
implemented in this study needs further work to improve its efficiency. Specifically, the role
of spatial configuration, including regular versus irregular spacing of data points, spatial
density, and sample size, requires a more comprehensive investigation. These factors can
potentially affect the accuracy and reliability of LF interpolation. While this study identified
data size and error tolerance as potential challenges for LF, these issues can be mitigated by
parallelizing the code, thus facilitating future studies and applications.

The overall goal of this study was to propose LF as a simpler approach to commonly
used existing methods and evaluate its performance. In conclusion, the findings suggest
that LF offers a viable alternative for interpolating hydrologic variables, providing com-
parable results to commonly used methods such as IDW, NN, and Kriging. LF offers the
advantage of simpler implementation and reduced user input requirements. However,
careful consideration is required when using LF for datasets with sparse data points or high
computational demands. Interpolation methods are often used by practitioners to process
and prepare data for input into hydrologic analyses and models. The literature suggests
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using different methods for interpolating different variables. Often, these methods provide
the best results when the choice of parameters, such as search radius, distance or area
weights, and semi-variogram type, associated with their implementation is correct. In the
absence of background knowledge about different methods, practitioners use the default
settings, which may or may not provide the best results. The simple LF formulation does
not involve the selection of any parameters and avoids subjectivity in its implementation,
thus providing a simpler and more robust alternative to existing methods. In addition, LF
offers an interesting path for researchers because of its theoretical background in hydrology.
It is used in hydrology for describing flow fields (flownet), and what this study shows is
that it may be suitable for creating or describing other scalar fields in hydrology.
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