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1. Introduction

Proposed by Lasry and Lions [34] and independently by Caines, Huang, and Malhamé [30], the mean-field game models
an infinite number of identical agents’ interactions in a mean-field manner, characterizing the equilibrium state of the
system. Thanks to its substantial descriptive ability, the MFG becomes an important approach to studying complex systems
with large populations of interacting agents, such as crowd dynamics, financial markets, power systems, pandemics, etc.
[19,20,33,6,7,32,41,40]. The mean-field planning is a class of MFGs where the distribution of agents at the terminal time
is imposed [50]. On the other hand, the Benamou-Brenier dynamic formulation [10] of the optimal transport problem
connects with the variational form of the potential mean-field games. It can be treated as a special case of the mean-field
planning problem, which aims to find an efficient way of moving one probability distribution to another. Along with the
empirical success of MFG and OT in modeling and real-world applications, the study of mean-field games is also expanding.
From the PDE view, the mean-field game model can be described by a system of coupled partial differential equations: a
forward-in-time Fokker-Planck (FP) equation governs the evolution of the population, and a backward-in-time Hamilton-
Jacobi-Bellman (HJB) equation for the value function that characterizes the control problem. For a review of MFG theory, we
refer to [35,27,16,26]. In particular, a concept of displacement convexities of mean-field games has been recently studied
in [23,24].
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With such a wide range of applications, computational methods play a crucial role since most MFG and OT problems
do not have analytical solutions. While some recent computational approaches take advantage of machine learning methods
and game theories [51,45,4,21,37,28,17,29], classical numerical methods are mostly developed discretization using finite
difference schemes or semi-Lagrangian schemes. In [1], the MFG system is discretized using a finite difference scheme and
then solved by Newton’s method. Semi-Lagrangian methods are studied in [18]. As for MFGs and OTs that can be written in
a variational form, optimization methods, such as augmented Lagrangian, primal-dual hybrid gradient, alternating direction
method of multipliers, are applied to solve the discretized system [10,11,49,3,8,14,46]. For dynamic optimal transport, the
convergence of the discretized problem to the continuous one has been studied in [25,38,48] for different discretization
approaches. In [39], dynamical optimal transport is applied to interpolate probability distribution on a discrete surface.
Recently, the computation of MFGs on manifolds has been investigated in [54]. For the survey of the numerical methods,
we refer to [2,36]. Within the augmented Lagrangian framework, the (low-order) finite element discretization has been used
frequently; see, e.g., [10,11,5,31].

Pioneering works on computational OT/MFG focus on first or second order methods; the general high order method
is not well studied. Yet, high order methods generally have faster convergence rates in numerical analysis and provide
more accurate solutions on a much coarse computational mesh than low order methods. Therefore, exploring high order
computational methods for mean-field games and optimal transport problems is vital.

In this work, we propose a general high order numerical method for solving the optimal transportation problem and
mean-field game (control) problems using the finite element method. More precisely,

1. We discretize the augmented Lagrangian formulations of the MFP and MFG systems using high-order space-time finite
elements. Considering derivation information used in the saddle point formulation, we approximate the value function
(dual variable) ¢ using high order H!-conforming finite elements, while the density and momentum (primal vari-
ables) p, m are approximated via a high-order (discontinuous) integration rule space which only records values on the
high-order (space-time) integration points. Our discrete saddle-point problem is then solved via the ALG2 algorithm,
following [11]. To the best of our knowledge, this is the first time high-order schemes with more than second order
accuracy being applied.

2. We present a series of comprehensive experiments to showcase the efficacy and efficiency of the proposed numerical
algorithms. These experiments numerically validate the convergence rate of the algorithms as a function of mesh size
and polynomial degree. In particular, we show a high-order method on a coarse mesh is more accurate than a low
order method on a fine mesh with the same number of degrees of freedom. Furthermore, we apply the finite element
scheme to a set of mean-field planning and mean-field game problems on non-rectangular domains (with obstacles)
and computational graphics, demonstrating the validity and practicality of our method.

We would like to point out that there are two separate convergence issues related to our high-order algorithm. The first
one is the convergence of the ALG2 optimization solver, while the second one is the convergence towards mesh refinement
of the proposed FEM discretization. While per iteration cost is low, the convergence issue for ALG2 is well-known as it re-
quires a lot of iterations to achieve high accuracy [13]. We present numerical results to support the high-order convergence
towards mesh refinements of our FEM discretization for the optimal transport problems. The detailed theoretical/computa-
tional studies of these issues will be the subject of our future work.

This paper is organized as follows. Section 2 reviews the dynamic formulation of optimal transportation, mean-field plan-
ning, and mean-field games. Section 3 presents the high-order schemes we designed for computing the above problems and
the companion algorithm. Section 4 demonstrates the effectiveness of the high-order method with numerical experiments.
Finally, we make some conclusions and remarks in Section 5.

2. OT, MFP, and MFG

In this section, we briefly review the formulation of mean-field planning problems involving dynamic mean-field control
and potential MFG problems (also referred as mean-field control problems) studied in this work.

2.1. Dynamic mean-field planning problems (MFP)

Consider the model on time interval [0, 1] and space region © Cc RP. Let p be the density of agents through t € [0, 1],
m be the flux of the density which models strategies (control) of the agents, and (p,m) € C:

(p,m):p:[0,1] x Q2 — ]R*,/,o(t,x)dx: 1,vte[0,1],
Q

C:= (2.1)
m:[0,1] x Q— RP s Lebesgue measurable,

We are interested in p with given initial and terminal density pg, 01 and (p, m) satisfying zero boundary flux and mass
conservation law, which satisfies the constraint set C(pg, 01):
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(2.2)

(p,m) :0;p +divym =0,
m-n=0forxed, p(0,-)=po, p(1,)=p1. |

C(po, p1):=CN {

where the equation hold in the sense of distribution.

We denote L: R+ x R? — R := RU{oo} as the dynamic cost function and A : R — R as a function modeling interaction
cost. The goal of MFP is to minimize the total cost among all feasible (p,m) € C(po, p1). Therefore, the problem can be
formulated as

1
inf //L(p(t,x),m(t,x))+A(p(t,x))dxdt. (2.3)
(p,m)eC(po,pl)O 2

It is clear to see C(po, p1) is convex. In addition, the mass conservation law 9;p + divym = 0 and zero flux boundary
condition m-n=0,x € 9Q imply that C(po, p1) # ¥ if and only if [, po = [, p1. Once C(po, p1) is non-empty, the existence
and uniqueness of the optimizer depend on L and A. In this paper, we consider a typical dynamic cost function L by

2
B it o >0

L(Bo,B1) =10 iffp=0,8,=0 - (24)
+oo  iffp=0,8; #0.

Various choices of the interaction function will be given in the numerics section. We note that our proposed numerical
scheme works for more general dynamic cost L, like the ones used in [12]. However, this manuscript exclusively focuses on
the quadratic case in (2.4).

If the interaction cost function A =0, the MFP becomes the dynamic formulation of optimal transport problem:

1
(0T) min //L(,o(t,x), m(t, x))dxdt. (2.5)
p-meC(po,01)
0 Q

Since m = pv, this definition of L makes sure that m = 0 wherever p = 0. OT can be viewed as a special case of MFP where
masses move freely in  through t € [0, 1].

To simplify notation, we denote an element in the set C as « := (xp, 1) € C. Introducing the Lagrangian multiplier
¢ :[0,1] x Q for the constraint (2.2), the MFP problem (2.3) can be reformulated as the following saddle-point problem:

infsup F (o) — G(¢p) — (e, Vi x), (2.6a)
@y
where

1

Fla):= f/L(ao(t,x),a1(t,x))+A(oco(t,x))dxdt, (2.6b)
0 Q

6@)i= [ ~0(1.2001(0)+ 6 0. 00w (260)
Q

Vi x = (0, grady) is the space-time gradient operator, and (o, B) := ]01 an - Bdxdt is the space-time integral. The KKT
system for this saddle-point system (with cost function L in (2.4)) is the following PDE system on the space-time domain
[0,1] x

otp + divym =0, (2.7a)
M gradp —o, (2.7b)
P
m?>
*p+ —— =A(p), (2.7¢)
2p

with boundary conditions

m-n=0, on[0,1]x 3%, (2.7d)
p0,x)=po(x), p(1,%)= p1(x) onQ. (2.7e)
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We would like to point out that the above equations (2.7a)-(2.7c) are the standard PDE formulation for MFG [35]. Moreover,
equation (2.7b) and boundary condition (2.7d) implies the following boundary condition for the dual variable: p(grad,¢ -
n) =00n[0, 1] x 9. Denoting [L + A]*(a*) as the convex conjugate (Legendre transformation) of L(ag, &¢1) + A(ctg) with L
given in (2.4), i.e.,

[L+ AT"(a*) = supe - o™ — L(cg, 1) — A(o)
o

= supayg - (af + |} |?) — L(co, ctoex}) —A(xo)
[o%) e e’

1
=3 aolocf|?

* 1 *2
= supag - (og + Eloﬁl ) — A(ao)
o

1
= A%(ag + Slef ),
where in the second equality, we used the optimality condition e¢1 = apee}. By duality, we have
1
L(ag, 0t1) + A(ag) =supo - o™ —A*(a6‘+§|a’{|2). (2.8)
a*

Using the above relation, we have the following dual formulation of the saddle-point problem (2.6a):

Supdjnf F*(e*) + G(¢) + (@, Vexp — &™), (2.9)

o ¢.o*
where
/ 1
F*(oc*):f/A*(a(;Jr§|oe’{|2)dxdt.
0 Q
Introducing the augmented Lagrangian
* * * * r * *

Li(g, 0, 0") :=F" (") + G(P) + (&, Ve xp —a™) + E(Vt,x¢ —o", Ve xp — o),
where r is a positive parameter, it is clear that the corresponding saddle-point problem

sup inf Ly (¢, o, o) (2.10)

a ¢.oF

has the same solution as (2.9).
2.2. Dynamic potential mean-field games (MFG)

For potential MFG, the terminal density p; is not explicitly provided but satisfies a given preference. The goal of MFG is
to minimize the total cost among all feasible (p,m) € C(po):

inf F((p,m))—i—/[‘(p(l,x))dx, (2.11)
(p.m)C(po) J

:=R(p(1,")

where I': R — R is the terminal cost, and the constraint set C(pp) is similar to C(pg, p1):

(p,m) :9;p + divam =0,
C(po) :==C N ‘ * : (2.12)
m-n=0forxed, p(0,-) = po,
Similar to MFP, we reformulate the problem (2.11) into a saddle-point problem:
nf SUp F@) + R(p1) + (1. $(1,)) = (p0. 9(0.)) = (e, Ve.xh). (213)

in which (o, ) := fQ o B dx is the spatial integration. Here the KKT system of the saddle-point problem (2.13) is simply the
MEP system (2.7) with boundary condition (2.7e) replaced by the following:

p©0,%) = po®), ¢(1,x)= —T'(p1(x)) onQ.
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Introducing the dual variables a* and pj for & and p1, respectively, we get the following equivalent saddle-point prob-
lem:

sup inf F*(a™) + (e, Vi x¢p — ™)
.01 ¢.0%,0F

where R*(p) := fQ '™ (p1(x))dx, with I'* being the convex conjugate of T'.
The augmented Lagrangian reformulation of (2.14) is the following:

sup inf F*(a®) + R*(0}) + (0o, #(0, )
a,p1 ¢,0%, p]

0y

+ (o, Ve xp — ™) + 7 Vex¢ — o, Ve xp — o)

—(p1. (1) + p}) + %(aﬁ(l, Y+ pf (1) + pb), (2.15)

where r1, 1, are two positive parameters. Here we allow the augmented Lagrangian parameters ry and r, to be different. In
the numerical experiments, we simply take r{ =1, = 1.

Remark 2.1. Following the seminal works in [9,11], we propose our high-order schemes for MFP and MFG based on the
augmented Lagrangian formulations (2.10). and (2.15). The discrete saddle-point problem is then solved using the ALG2
algorithm [22]. The major novelty of our scheme is the use of high-order space-time finite elements for the discretization
of the variables in (2.10) and (2.15). This is the first time high-order schemes with more than second order accuracy being
applied to such problems.

3. High-order schemes for OT, MFP and MFG

In this section, we discretize the augmented Lagrangian problems (2.10) and (2.15) using high-order space-time finite
element spaces. We start with notation including the mesh and definition of finite element spaces to be used. We then
formulate the discrete saddle-point problems using these finite element spaces, which is solved iteratively using the ALG2
algorithm [22]. Throughout this section, we restrict the discussion to D =2 spatial dimensions.

Since space/time derivative information is needed for ¢, we approximate it using (high-order) H'-conforming finite
elements. On the other hand, since no derivative information appears for &, a*, (and p1 and p] for MFG), it is natural to
approximate these variables only on the (high-order) integration points.

3.1. The finite element spaces and notation

Let Zp = {Ij}?’:1 be a triangulation of the time domain [0, 1] with Ij =[x;_1,xj], and 0 =X <X; <--- <xy = 1. Let
Th = {Tg}é‘/’:1 be a conforming triangulation of the spatial domjin 2, where we assume the element T, := ®r, (/f) is obtained
from a polynomial mapping ®r, from the reference element T, which, is a unit triangle or unit square. We obtain the space-
time mesh for Q7 :=[0, 1] x © using tensor product of the spatial and temporal meshes:

Ih®@Th:={j®T,:Vje{l,--- ,N}, and £ e (1, --- , M}}.

We denote P¥(I) as the polynomial space of degree no greater than k on the interval I, and PX(T) as the polynomial
space of degree no greater than k if T is a unit triangle, or the tensor-product polynomial space of degree no greater than
k in each direction if T is a unit square for k > 1. The mapped polynomial space on a spatial physical element T € 7, is
denoted as

PKTY = (Vo (D7) " : VU e PKT))).

We denote {Ei}gvz"] as a set of quadriture points with positive weights {®; ,N:"] that is accurate for polynomials of degree
up to 2k + 1 on the reference element T, i.e.,

Ni
[ Fdx=>Y"aif &), YfeP* (@) (31)
7 i=1

Note that when T is a reference square, we simply use the Gauss-Legendre quadrature rule with Ni = (k 4+ 1)2, which is
optimal. On the other hand, when T is a reference triangle, the optimal choice of quadrature rule is more complicated;
see, e.g., [55,53] and references cited therein. For example, the number Nj for 0 <k < 6 of the symmetric quadrature

5
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Table 1
Number of quadrature points Ny for the quadrature rule on a triangle that is accurate
up to degree 2k +1 for 0 <k <6.
k=0 k=1 k=2 k=3 k=4 k=5 k=6
Ni on Triangle 1 6 7 15 19 28 37

rules on a triangle provided in [55] are glven m Table 1. The mtegratlon points and weights on a physical element T, are
simply obtained via mapping: {EZ =g, (§ ) - 1, and {w; :=|grad,®r, (E )|w, N . Moreover, we denote {’71 }fﬂl as the set
of (k+ 1) Gauss-Legendre quadrature points on the mterval I; with correspondmg weights {¢; }k'H To simplify the notation,
we denote the set of physical integration points and weights

Bhi={&: 1<i<N, 1<L<M), (3:2a)
QA ={wf: 1<i<N,1<t<M), (3.2b)
HE={n): 1<i<k+1,1<j<N}, (3:20)
Z8={¢/: 1<i<k+1,1<j<N}). (3.2d)

Moreover, we denote (-, -), as the discrete inner-product on the mesh 7 using the quadrature points E uh and weights Qk

M Ng

(@ Bn=Y_ Y alEHBE)w],

(=1 i=1
and (-, ), as the discrete inner-product on the space-time mesh Z; ® 7, using the quadrature points :ﬁ, H’}j and weights
Qk Zk.
h* “h-

M N N k+1

(. Boni=_ 3 Y > aml.g)pml . EHwl gl

(=1is=1 j=1i=1

We are now ready to present our finite element spaces:

Vi i={ve H'(Qn): Vipxr, € PXU) @ P(To) V), b, (33)
WE = {w e L*(Qr): wiixr, € PX1j) @ WH(Ty) ¥j. 0}, (34)
Mp:={nel?(Q): plr, e WTy) Ve, (35)

where V;f is an H!-conforming space on the space-time mesh 7, ® 7, W h is an L2-conforming space on the space-time
mesh 7, ® Ty, and M’ﬁ is an L2-conforming space on the spacial mesh 7, in which the local space

WH(T) := PX(T¢) @ SWi(To),

is associated with the integration rule in (3.1) such that dim W¥(T;) = Ny, and the nodal conditions

(pf(gﬁ) =38jj, Y1<j<Ng, (3.6)
in which §;; is the Kronecker delta function determines a unique solution gz) € WK(T,). This implies that {o; }N" is a set of
nodal bases for the space WK(Ty), i.e.,

WH(Ty) = span; i, {¢f}. (3.7)

When T is mapped from a reference square, we have Nj = (k + 1)2, hence WK(T) is simply the (mapped) tensor product
polynomial space Pk(T,). Moreover, we emphasize that the explicit expression of the basis function ¢f does not matter in
our construction, as only their nodal degrees of freedom (DOFs) on the quadrature nodes will enter into the numerical inte-
gration. Furthermore, let {1; (t)}’<+1 be the set of basis functions for P (I j) corresponding to the Gauss-Legendre quadrature
nodes {; }:‘:11 ie., 1//,-1 e Pk(I1)) satisfies

vl =681 Yi<l<k+1.

With this notation by hand, we have

1<ir<k+1,1<is<Ng, } (3.8)

W’,f:span{lpi][(t)goi(x): 1=j<N1<t<M



G. Fu, S. Liu, S. Osher et al. Journal of Computational Physics 491 (2023) 112346

and
Mﬁ:span{(pfs(x): 1<is <N, 1 5@51\/1} (3.9)

We approximate the dual variable ¢ using the H!-conforming finite element space V,’:“, each components of & and a*
using the integration rule space W¥, and the variables p; and pi (for MFG) using the integration rule space M’,j.

3.2. High-order FEM for MFP and MFG

The discrete scheme for MFP (2.10) reads as follows: given a space-time mesh Z, ® 7, and a polynomial degree k > 0,
find ap, o € [WFP?, and ¢y € V,’:Jrl such that

Sup k 11nf Lr,h(‘f’hv(xh,“;;), (310)
anelWkp éneVy ™ e elwip?

where the discrete augmented Lagrangian is

Ly := Fp (o) + Gp(en) + (@h, Vexdn — otp)p

5 (Veadh, Veadn) = r(Veadn, @i+ 2 (@5 L, (311)

in which
Fpr(aty) = (A% (g, + %kx;ﬁhﬂ), 1), (3.12)
G (@) == — (#rn(1,%), p1(X)n + (¢ (0, X), Po (X)) (313)

Note that all terms in the discrete augmented Lagrangian (3.11) are integrated using numerical integration (-, -), or (-, -)p,
except the space-time Laplacian term in the second row of (3.11), which is integrated using exact integration (-, -) to avoid
a singular matrix for the Laplacian.

Similarly, the discrete scheme for MFG (2.15) reads as follows: given a space-time mesh Z, ® 7, and a polynomial degree
k>0, find oty et € WK, p1n. o}, € ME, and ¢y, € V,’f“ such that

LMFG

sup inf i (@ns @h, P10 @G 07 ), (3.14)

o e[WfP, o1 heM) eVt e el WP, P} heEM}
where the discrete augmented Lagrangian is

LY =Fp(ep) + Ry (0 ) + (0o, dr (0, )
+ {etn, Vexp —opdn — (p1.n, dn(1, ) + pT p)n

+ %(Vt,mh, Veadn) — 11 (Veadn, €5)n + %<a¢:, o«
2 @n(1 9,901 ) + 2@ (1), P+ 2 (P P (315)
in which
Ry (o7 ) i= (T*(pT )5 D (3.16)

3.3. The ALG2 algorithm

The discrete saddle-point problems (3.10) and (3.14) can be solved efficiently using the ALG2 algorithm [22], where
minimization of ¢, ey, and pf | are decoupled. For simplicity, we only illustrate the main steps for the discrete MFG
problem (3.14); see also [9,11]. One iteration of ALG2 contains the following three steps.

Step A: update ¢p,
Minimize Lﬁ/’hFG with respect to the first component by solving the elliptic problem: Find ¢m+] € Vk+1 such that it is the
solution to

MFG
¢££+1L @n, o, o1 0™, o1
h

This is simply a linear, constant-coefficient, space-time diffusion problem: Find ¢’“+1 V,’;*] such that

7
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r{Vexdp ™ Vexym) + 2@t (1,9, v (1, ) (317)
= (rio;"™ — o, Ve x¥n)h — (szi’;ln — P11 Y (1, Dn — (o, Yn(0, N,
for all yy € Vi,

Step B: update oty and pf ,

Minimize LMF¢ with respect to the last two components by solving the nonlinear problem: Find oc;‘l""+l e [WfP? and

P! e MF such that they are the solutions to

: MFG , ,m+1 m ,.m k%
. k”}lf* ,(Lr,h (P " s 0y 07 s O 7 1)
ape[Wh] ,p]’hth

Using the basis functions in (3.8) and (3.9), we write

M N N k+1 M Ng
j t 4
=) D DY @i i Vi O9L®, pra= DY il @),
e=1i5=1 j=11i=1 £=1i5=1
M Ny N k+1 M Ng
x % J 13 x P
=D > D 8 i a9 @, piy= DD il @,
t=1is=1j=1i;=1 0=1i5=1

with yig,jio @i i Teis and i

By the choice of the numerical integration and the nodal bases for W,’f and M’g, we observe that this optimization

problem is decoupled for each DOF of a:’mﬂ and pj ,, hence can be efficiently solved pointwisely: for each ¢, is, j, i, find

*,m+1

a; € RR3 such that it solves

1 1
inf  A*@: + =|ai]?) + —|a*|?
w1+ e

— @] o A Vedpt (] 80)) - a, (3.18)

and find rZEH € R such that it solves
: ok 2062 m m+1 Lyy ., p*
r*lerﬁkf‘*'r () + 2 [r"] (rl,is raéy (LE,’S)) r. (3.19)

Note that in the optimization problem (3.18), we evaluate the space-time gradient thxzpfr:”l on the quadrature points

(n,{, Efs), similarly in (3.19), we evaluate the function ¢,T+1 on the quadrature points (1, ‘;‘fs). Both optimization problems

can be efficiently solved in parallel using the Newton’s method.

Step C: update oy, and p1 p,
This is a simple pointwise update for the DOFs of the Lagrange multipliers e, and pq p:

m+1  _ .m m+1,J gb s,m+1

Qi jie = Veis,jip T Vexy 00 8i0) — @555 (3.20)
m+1 m+1 12 *,m+1
Mo = o, — 2@y (LED) +r ). (3.21)

We use the £-errors in the Lagrange multipliers

a . m+1 _ om

€1m '_e,rirsl,aj).(it g i jie — Vs jicl (3.22)

err::n = I‘lzaX |r£mzl — rznis |, (323)

)ls ’ ’

to monitor the convergence of the ALG2 algorithm.
It is not immediate clear whether the above ALG2 iteration preserves the positivity of density in the discrete level. Our
next result shows that density on all quadrature points are guaranteed to be non-negative.

Proposition 3.1. Let a™ ! . and r‘;lt] be the solution to the ALG2 algorithm at Step C in (3.20) and (3.21). Then the first component

€,is, J,it
m+1

of @+l . which is density evaluated at the quadrature point (nijt, §f3), is non-negative. Also, r; i

i, i’
quadrature point (1, Efs), is non-negative.

, the terminal density on the
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Proof. We just prove the first result via a duality argument since the second result follows from the same procedure. Let

a; lm’]ql be the solution to the optimization problem (3.18), and let a™F'. . be defined in (3.20). We claim that a?l“] i, 1s

Cis, j,i
the optimizer to the following primal problem: ‘

inf _ L(ao.a1) + A(ao) + —|a a?ltl] e (3.24)
a=(ap,ar)eR
where a?;“l =V X¢m+1 ()71r § )+ a“ i By the choice of the dynamic cost L in (2.4), it is clear that the optimizer

satisfies the non-negativity condltlon ao >0, where equality holds only if a4 is also zero.
Let us now prove the claim. Using the definition of the bar-value and (3.20), we have

m+1 ~m+1 *,m+1
@iy i = 1@ i — Qi i) (3.25)
*,m+1

Using the duality result (2.8), the solution a,;; i to the minimization problem is part of the saddle point solution of

~m+1 |2’ (326)

inf sup a* a—L(ao,a1)—A(ao)+—|a =@y i

a*eR3 43

Taking the infinium with respect to a* first, we get

a+r@ —a;Tti) =0, (3.27)
which implies
_ qm+1 a
a =aj; - —.

m

Plugging this expression back to the (3.26) and simplifying, we find that a is the minimizer to the primal problem (3.24).
Comparing (3.25) with (3.27) where a* = az :njl , it is now clear that the minimizer to (3.24) is nothing but the solution

a?l“]l This completes the proof. O

Remark 3.2. We specifically note that the use of the integration rule space W,’f and numerical integration is crucial for
the efficient implementation of Step B in the ALG2 algorithm, which leads to a pointwise update per integration point. If
this space and numerical integration were not chosen carefully, additional unnecessary degrees of freedom coupling maybe
introduced, which slows down the overall algorithm.

4. Numerical experiments

In this section, we conduct comprehensive experiments to show the efficiency and effectiveness of the proposed numer-
ical algorithms. We restrict ourself to structured (hyper-)rectangular meshes. The case with unstructured meshes will be
considered elsewhere. We first numerical verify the convergence of rate of the algorithm related to the mesh size and poly-
nomial degree. Throughout, we take the augmented Lagrangian parameters to be r =ry =r; = 1. Our numerical simulations
are performed using the open-source finite-element software NGSolve [52], https://ngsolve.org/.

4.1. Convergence rates

We first consider OT problems with known exact solutions. Specifically, we take the domain 2 =R¢ withd=1ord =2,
cost A(p) =0 in (2.3) with initial and terminal densities:

po(X) = exp(—50[x — x0|?),  p1(x) = exp(—50/x — x1]%),

where Xy = 0.25, %1 = 0.75 when spatial dimension d =1, and xy = (0.25, 0.25), ¥ = (0.75, 0.75) when spatial dimension
d = 2. The exact solution is simply a traveling wave solution:

Pex(t, X) = exp(—50|x — (1 + 20)x0|?),
Meyx.i(t,X) =0.5exp(—50|x — (1 + 2t)x0|2), V1 <i<d,

where mey = (Mex 1, + - - ., Mex ). We truncate the domain 2 to be a unit box [0, 119, and replace the homogeneous boundary
condition (2.7d) with a boundary source term

m-n=mey-n, onf0,1]xJQ.

With this modification, the G-term in (2.6a) contains an additional boundary source term:

9
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(a) k=0: 4x4 grid ) k=1: 2x2 grid (c) k=3: 1x1 grid

Fig. 1. Coarse mesh DOFs. Circles: DOFs for V,’f*'; Squares: DOFs for W,’f. The coarse mesh is 4 x 4 for k=0, 2 x 2 for k=1, and 1 x 1 for k=3.

Table 2
Convergence rates of scheme (3.10) applied to 1D OT problem.

k  mesh | [*-errinp order | [*-errinm  order | W2 error  order
0 42 2.068E-01 1.097E-01 2.834E-03

0 82 1.159E-01 0.84 5.985E-02 0.87 5.472E-04 2.37
0 162 6.007E-02 0.95 2.970E-02 1.01 5.788E-05 3.24
0 322 3.002E-02 1.00 1.497E-02 0.99 4.196E-06 3.79
1 22 1.868E-01 1.110E-01 1.127E-02

1 42 7.496E-02 132 3.863E-02 1.52 4.625E-04 4.61
1 82 2.169E-02 1.78 1.077E-02 1.84 9.523E-06 5.60
1 162 5.683E-03 193 2.844E-03 1.92 1.611E-07 5.89
3 12 2.148E-01 1.301E-01 3.337E-02

3 22 6.602E-02 1.70 3.548E-02 1.87 5.390E-04 5.95
3 42 7.234E-03 3.19 3.595E-03 3.30 5.044E-07 10.1
3 82 5.079E-04 3.83 2.542E-04 3.82 4.521E-09 6.80

Table 3

Convergence rates of scheme (3.10) applied to 2D OT problem.

k  mesh | [*-errinp order | [*-errinm  order | W2 error  order
0o 4 1172E-01 8.385E-02 1.602E-03

0 83 6.832E-02 0.78 4.879E-02 0.78 1.646E-04 3.28
0 163 3.559E-02 0.94 2.505E-02 0.96 2.693E-05 2.61
0 323 1.787E-02 0.99 1.262E-02 0.99 2.391E-06 3.49
1 23 1.113E-01 8.196E-02 7.008E-03

1 43 4.540E-02 1.29 3.260E-02 133 3.882E-05 7.50
1 82 1.326E-02 178 9.354E-03 1.80 3.563E-06 3.45
1 162 3.474E-03 193 2.457E-03 193 3.854E-08 6.53
3 12 1.432E-01 1.109E-01 2.278E-02

3 22 3.873E-02 1.89 2.804E-02 1.98 2.795E-04 6.35
3 42 4.353E-03 3.15 3.072E-03 3.19 2.004e-07 104
3 82 3.068E-04 3.83 2.170E-04 3.82 3.977E-09 5.65

G(¢) —f —¢(1,%)01(X) + ¢ (0, X) 0o (X) dX+//¢(t X)Mey - ndsdt.
0 92

We apply the scheme (3.10) with polynomial degree k =0,1,3 on a sequence of uniform hypercubic meshes with
2512 /(k + 1) cells in each direction for s =0, 1,2, 3. The total number of DOFs on the s-level meshes is the same for each
polynomial degree, which is 26*2@+D for Wk, and (26+2 + 1)4+1 for V}EH- So their computational costs are similar. We
apply the ALG2 algorithm to (3.10) with a stopping tolerance errj, < 1010 where erry, is given in (3.22). We take the
parameter r = 1. The DOFs on the coarsest meshes for d =1 are shown in Fig. 1.

We record the L2(S27)-convergence rates of p, and my, along with the convergence rate of the distance

2
w3 = //ﬂdxdt

in Table 2 for d =1, and Table 3 for d = 2. We find that the convergence behavior for d =1 and d = 2 are similar, in
particular, (nearly) optimal L%-convergence rates of k + 1 are observed on the finest mesh for each case, and the average

10
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Test 1 Test 2
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Fig. 2. Example 4.2. Evolution of the £ .-error erry, against number of ALG2 iterations for polynomial degree k =3 on a 32 x 32 mesh.

Table 4
Example 4.2. Estimated space-time L2 errors for different polynomial degrees
and mesh resolutions. Here Npor is the total number of density DOFs.

k mesh Npor Case 1 Case 2 Case 3
Test1 | O 256 x256 65536 | 2.53E-03  2.29E-03  2.16E-03
1 32x32 4096 1.09E-03 7.74E-04  6.98E-04
3 8x8 1024 4.68E-04  4.96E-04  4.45E-04
Test2 | 0O 256 x256 65536 | 1.28E-02 1.10E-02 1.07E-02
1 32x32 4096 148E-02  3.82E-03  8.57E-03
3 16x16 4096 1.26E-02 1.07E-03 7.03E-03

convergence rates for the distance W% are between 2k + 2 and 2k + 4. Moreover, the advantage of higher order scheme is
clearly observed on the fine meshes where the k = 3 case on the 89! mesh produces L2-errors that are 50 times smaller,
and sz error that is three orders of magnitude smaller than the k = 0 case on the 32¢*! mesh, although the same number
of DOFs are used.

4.2. Comparison of high-order and low-order schemes

The previous example demonstrated the advantage of high order methods over low order methods in terms of accuracy
when the same number of DOFs are used for pure OT problems. In this example, we show that high order methods can
achieve a similar accuracy compared with low order methods with a much less computational cost.

We consider one-dimensional MFP problems (2.3) with domain € = [0, 1]. We use three interaction costs, namely, Case
1: A(p) =0, Case 2: A(p) =0.01plog(p), and Case 3: A(p) =0.01p%. Two sets of initial/terminal densities are considered:

Test1: po(x) =1+ 0.5sin(2wx), p1(x) =1 — 0.5sin(27x);
Test 2 : po(x) = max{m sin(2mx), 0}, p1(x) = max{— sin(2wx), 0}.

Note that the initial and terminal densities for Test 1 are everywhere positive and away from zero, but those for Test 2
are compactly supported with support [0, 0.5] for the initial density and [0.5, 1] for the terminal density. Since no analytic
solutions are available for these problems, we compute the reference solution using the scheme (3.10) with polynomial
degree k =3 on a 32 x 32 rectangular mesh for the space-time domain Q7 = [0, 1]>. We use a total of 2000 ALG2 it-
erations. The evolution of the error errf, in (3.22) against the number of iterations are recorded in Fig. 2. It is observed
that the additional interaction cost A(p) leads to faster convergence for ALG2 iterations, especially for Test 1 with positive
initial/terminal densities.

We now use these obtained reference solutions to compute the space-time L2-errors in density approximation for the
schemes (3.10) with polynomial degrees k =0, k=1, and k = 3 using different mesh resolutions. The mesh resolution for
the two tests is as follows. For Test 1, the mesh resolution is 256 x 256 for polynomial degree k =0, 32 x 32 for polynomial
degree k =1, and 8 x 8 for polynomial degree k = 3. For Test 2, the mesh resolution is 256 x 256 for polynomial degree
k=0, 32 x 32 for polynomial degree k =1, and 16 x 16 for polynomial degree k = 3. The errors are recorded in Table 4.
From this table, we observe that the errors for the high-order scheme with k =3 are always the smallest compared with
those for k =0 and k = 1, even using a much coarser mesh. In particular, for Test 1, the errors with k = 3 using 1024 density
DOFs are around 5E-04, which are about 5 times smaller than those with k = 0 using 65536 density DOFs; and the errors
for Test 2 with k =3 using 4096 density DOFs are similar to the low order method with k =0 using 65536 density DOFs.

11
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Fig. 3. Example 4.2. Evolution of the ¢ -error err§, against the number of ALG2 iterations for different polynomial degrees and mesh resolutions.

(c) Case 3

Fig. 4. Example 4.2. Space-time density contours and absolute errors for Test 1. From left to right: reference solution, error for k =0, error for k =1, and
error for k=3.

To generate these error tables, we apply 500 ALG2 iterations for all simulations. The convergence curves are shown
in Fig. 3. Interestingly, the ALG2 iteration convergence is not sensitive to the mesh resolution nor the polynomial degree.
Finally, we plot the error contour along with the reference solutions in Figs. 4-5. In particular, Table 4 and Fig. 5 show that
high-order methods still have advantages over low-order methods even when the solution is not smooth and have moving
boundaries.

4.3. MFP with obstacles

We consider a similar MFP problem used in [15], in which the spatial domain is a square excluding some obstacles that
mass can not cross:

12
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Fig. 5. Example 4.2. Space-time density contours and absolute errors for Test 2. From left to right: reference solution, error for k =0, error for k =1, and
error for k=3.

Q=[-1,11\{Q UQ UQ3U Q)

where the obstacles 21 =[—0.2,0.2] x [-1.0,—0.7], Q3 =[-0.2,0.2] x [-0.5, —0.1], 23 =[—0.2,0.2] x [0.1,0.5], Q4 =
[—0.2,0.2] x [0.7,1.0]. We take initial and terminal densities as two Gaussians

1 1 ) 1 1 5
X) = —— exp(—=—|x — x0[°), X) = —— exp(—=—|x — x1|°),
o) = s exp(— 5l %), pr®) = s exp(—z 5 lx—xP)

where the standard deviation o = 0.1, and x9 = (—0.65, 0), 1 = (0.65, 0). We take the following 5 choices of interaction
cost functions in the MFP problem (2.3), whose convex conjugate are also recorded for completeness:

if if o
Case1: Ay =10 TPZ0 aeon={0 HP=0
400 else 400 ifp*>0
2 if if p*

Case2: A(p) = 0 1p20’ A*(p*) = 0 2 %p 50,

400 else (P*)°/(@4c) ifp*>0

Case3:A(p) =cplog(p), A*(p*)=cexp(p*/c—1),
c/p ifp>0 —2./—cp* ifp*<0

Case4: A = , A¥(p*) = ) ,
®) 400 else " ~+o00 if p*>0
0 ifo<p< 0 if p* <0
Case 5: A(p) = o o=t
+o00 else Pmaxp™  ifp*>0
where we take the scaling constant ¢ = 0.1 in Cases 2-4, and maximum density pmax = % in Case 5.

We apply the scheme (3.10) with polynomial degree k = 3 on a structured hexahedral mesh obtained from tensor product
of a uniform spatial rectangular mesh with mesh size Ax =0.1 and uniform temporal mesh with At =0.1. The spatial mesh
for Q is shown in Fig. 6. We apply 2000 ALG2 iterations and record the evolution of the £ -error erry, from (3.22) in Fig. 7.
As typical of the ALG2 algorithm, we observe a sharp decrease of the errors in the first few iterations followed by a much
slower/flatter convergence for all five cases. It is also interesting to find the error curve is very oscillatory for Case 2, while
those for Cases 1/3/4 are monotonically decreasing. Moreover, we observe the errors for Cases 2/3 after 2000 iterations

13
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Fig. 6. A uniform rectangular mesh with At =0.1 for the spatial domain Q.

0 250 500 750 1000 1250 1500 1750 2000
Iteration

Fig. 7. Example 4.3. Evolution of the £-error err? against number of ALG2 iterations.

are about two orders of magnitude smaller than those for Cases 1/4/5. This indicates the interaction cost A(p) plays an
important role in the convergence of the ALG2 algorithm.

Snapshots of the density contour at different times are shown in Fig. 8. The effects of different interaction cost functions
on the density profile are clearly observed. It is observed from Fig. 8 that the initial (¢t = 0) and terminal (t = 1) density
approximations are numerically consistent with the Gaussian initial/terminal data for all cases. However, the initial density
approximation for Case 3 leads to some visible errors near the right half of the Gaussian bump. We note that the density
approximations are defined on the space-time quadrature space W, hence polynomial interpolation is used to plot these
snapshots. The MFP problem conserves the mass fQ p(t, x)dx = fQ po(x)dx for all time 0 <t < 1. But the proposed algorithm
(3.10) does not preserve mass conservation. We plot the evolution of the total mass error | fQT Py, %) — po(x)dxdt| for
iterations 0 <m < 2000 in Fig. 9. It is observed that the total mass error at the final iteration is reasonable, which is about
4 x 1077 for Case 2, followed by 2 x 10~ for Cases 1 and 5, then 2 x 10~% for Case 3, and 0.01 for Case 4. It is not
immediately clear why Case 3 leads to such a large mass conservation error.

4.4. MFG with obstacles

We consider a similar setting as in Example 4.3, where we consider a MFG problem with terminal cost

Ip—pr)? ifp=0,
400 otherwise,

I'(p):= {
where the target density

1 1
o7 exp(—— |x — (0.65,0.3)|%) + exp(— — |x — (0.65, —0.3)|%)
2 202

T 2mo2 o2

with o =0.1. We allow pr and pg to have different total masses here.
We apply the scheme (3.14) with polynomial degree k =3 on the same mesh as in Example 4.3, and terminate the ALG2
algorithm when the ¢ -error errf, is less than 0.01 (relative error is about 10=3). The number of iterations needed for
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) Case 4

) Case 5

Fig. 8. Example 4.3. Snapshots of p at t =0.0,0.3,0.5,0.7, 1.0 (left to right).

Table 5
Example 4.4. Number of ALG2 iterations for each case.

Case 1 Case 2 Case 3 Case 4 Case 5
iterations 3510 82 476 503 798

convergence for the 5 cases is recorded in Table 5, where we find Case 2 has the smallest number of iterations. Furthermore,
we plot the convergence curve in Fig. 10 for 2000 ALG2 iterations, which has a similar pattern as Fig. 7 for Example 4.3

above.
Snapshots of the density contour at different times are shown in Fig. 11. The results are similar to those in Example 4.3,

where different interaction cost function leads to different density evolution.
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Fig. 9. Example 4.3. Evolution of the total mass error | er p,’l” (t, x) — po(x)dxdt| against number of ALG2 iterations.
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Fig. 10. Example 4.4. Evolution of the £ -error errj, against number of ALG2 iterations.

4.5. MFP between mascot images

Our last example concerns with OT and MFP (2.3) between images. The initial or terminal densities are normalized
images of athletics mascots from University of Notre Dame (Leprechaun), UCLA (Bruins), and University of South Carolina
(Gamecocks); see Fig. 13. The spatial domain is a unit square Q = [0, 1] x [0, 1], and the initial/terminal densities are
normalized to have unit mass.

We apply the scheme (3.10) with polynomial degree k =3 on a structured hexahedral mesh of size 64 x 64 x 16, where
the time step size is At =1/16. Three sets of initial/terminal density pairs are considered: (i) ND — UCLA where initial
density is the ND image and terminal density is the UCLA image, (ii) UCLA— USC where initial density is the UCLA image
and terminal density is the USC image, and (iii) USC — ND where initial density is the USC image and terminal density
is the ND image. For each pair of data, we consider three choices of interaction cost, namely, Case 1: A(p) =0 (OT), Case
2: A(p) =0.01plog(p), and Case 3: A(p) =0.01/p. The ALG2 algorithm is terminated when errJ is less than 0.001. The
number of iterations needed for convergence is recorded in Table 6, and the evolution of err§, against number of iterations
are shown in Fig. 12. We observe the algorithm converges much faster for Cases 2/3 than Case 1 due to additional interaction
cost A(p).

Snapshots of the density contour at different times are shown in Fig. 14 for (i) ND — UCLA, in Fig. 15 for (ii) UCLA —
USC, and in Fig. 16 for (iii) USC— ND. We observe in these figures that Case 1 (OT) produces the most sharp results for the
density evolution and that both interaction costs in Case 2/3 have a strong smoothing effect which blurs the density profile,
where Case 3 with A(p) =0.01/p also leads to an everywhere positive density.
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(e) Case 5

Fig. 11. Example 4.4. Snapshots of p at t =0.1,0.3,0.5,0.7,0.9 (left to right).

Table 6
Example 4.5. Number of ALG2 iterations for each case.
Case 1 Case 2 Case 3
ND—UCLA 2440 471 892
UCLA—USC 1511 211 244
USC—ND 3577 496 907

5. Conclusion

This paper applies high-order accurate finite element methods to compute optimal transport (OT) and mean field games
(MFG). To our best knowledge, it is the first time to apply high order numerical methods in OT and MFGs. Despite that
achieving convergence for high-order finite element methods is still an open problem, we verify the accuracy of algorithms
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Fig. 12. Example 4.5. Evolution of the ¢ -error erry, against number of ALG2 iterations.

(a) ND (Leprechaun) (b) UCLA (Bruins) (c) USC (Gamecocks)

Fig. 13. Example 4.5. Initial/final densities.

(b) Case 2: A(p) =0.01plog(p). ND — UCLA

I I
i,

(c) Case 3: A(p) =0.01/p. ND — UCLA

Fig. 14. Example 4.5. Initial density: ND. Terminal density: UCLA. Snapshots of p at t = 0.1,0.3,0.5,0.7,0.9 (left to right).
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(c) Case 3: A(p) =0.01/p. UCLA — USC

Fig. 15. Example 4.5. Initial density: UCLA. Terminal density: USC. Snapshots of p at t = 0.1,0.3,0.5,0.7,0.9 (left to right).

(c) Case 3: A(p) =0.01/p. USC — ND

Fig. 16. Example 4.5. Initial density: USC. Terminal density: ND. Snapshots of p at t = 0.1,0.3,0.5,0.7,0.9 (left to right).
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through numerical examples. In future works, we shall investigate the numerical property of high-order accuracy FEM
methods in OT and MFG-related dynamics. We expect they might have potential applications in computational physics,
social science, biology modeling, pandemics control, and computer vision. We also expect to apply high order FEM methods
in generalized mean field control formalisms to compute time implicit schemes for fluid dynamics [42,44,43,47].
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