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A B S T R A C T

We present a novel hybridizable discontinuous Galerkin (HDG) method on unfitted meshes for single-phase
Darcy flow in a fractured porous medium. In particular we apply the HDG methodology to the recently
introduced reinterpreted discrete fracture model (RDFM) that use Dirac-𝛿 functions to model both conductive
and blocking fractures. Due to the use of Dirac-𝛿 function approach for the fractures, our numerical scheme
naturally allows for unfitted meshes with respect to the fractures, which is the major novelty of the proposed
scheme. Moreover, the scheme is locally mass conservative. In particular, our scheme has a simple form, which
is a novel modification of an existing regular Darcy flow HDG solver by adding the following two components:
(i) locate the co-dimension one fractures in the background mesh and add the appropriate surface integrals
associated with these fractures into the stiffness matrix, (ii) adjust the penalty parameters on cells cut through
conductive and blocking fractures (fractured cells).

Despite the simplicity of the proposed scheme, it performs quite well for various benchmark test cases
in both two and three dimensions. To the best of our knowledge, this is the first time that an unfitted finite
element scheme been applied to complex fractured porous media flow problems in 3D with both blocking and
conductive fractures without any restrictions on the meshes.
1. Introduction

Many applications in contaminant transportation, petroleum en-
gineering and radioactive waste deposit can be modeled by single-
and multi-phase flows in porous media. A typical porous medium
may contain conductive fractures with tiny thickness but high per-
meability. Some fractures may be filled with minerals and debris,
forming blocking fractures with low permeability. Mathematical mod-
eling and numerical simulation for flows in fractured porous media are
challenging due to the high heterogeneity of the porous medium.

Several effective mathematical models have been developed in
the literature for simulating flows in porous media with conduc-
tive fractures, such as the dual porosity model (Barenblatt et al.,
1960; Warren and Root, 1963; Geiger et al., 2013), single porosity
model (Ghorayeb and Firoozabadi, 2000), traditional discrete fracture
model (DFM) (Noorishad and Mehran, 1982; Baca et al., 1984; Kim and
Deo, 1999, 2000; Karimi-Fard and Firoozabadi, 2001; Geiger-Boschung
et al., 2009; Zhang et al., 2013), embedded DFM (EDFM) (Li and
Lee, 2008; Moinfar, 2013; Yan et al., 2016; Tene et al., 2017; Jiang
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and Younis, 2017; HosseiniMehr et al., 2018; Xu et al., 2019), the
interface models (Alboin et al., 1999, 2000; Hansbo and Hansbo, 2002;
Odsæter et al., 2019) and extended finite element DFM (XDFM) based
on the interface models (Fumagalli and Scotti, 2014; Huang et al.,
2011; Schwenck, 2015; Salimzadeh and Khalili, 2015; Flemisch et al.,
2016), finite element method based on Lagrange multipliers (Köppel
et al., 2019a,b; Schädle et al., 2019), etc. Among the above men-
tioned works, the interface model (Martin et al., 2005; Angot et al.,
2009; Boon et al., 2018; Kadeethum et al., 2020), the projection-
based EDFM (pEDFM) (Tene et al., 2017; Jiang and Younis, 2017), and
XDFM (Flemisch et al., 2016) can also be used for problems containing
blocking fractures. The interface model is to explicitly represent the
fracture as the interface of the porous media, and the governing
equations in the porous media and fractures can be constructed. In the
interface model, the matrix and fractures are considered as two differ-
ent systems and the mass transfer between them is given by the jump of
the velocity. Therefore, the interface model requires a conforming mesh
(fitted mesh), i.e. the fracture is located at the cell skeletons. Though
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hanging nodes are allowed, numerical methods based on fitted meshes
may suffer from low quality meshes. To fix this gap, XDFM (Fumagalli
and Scotti, 2014; Huang et al., 2011; Schwenck, 2015; Salimzadeh
and Khalili, 2015; Flemisch et al., 2016) was introduced. However,
such treatment may significantly complicate the implementation in a
general geometric setting, which is not of practical use, especially for
problems with high geometrical complexity (Flemisch et al., 2018).
Another possibility to extend the interface model to unfitted mesh
is to use the CutFEM (Burman et al., 2019). However, this method
may not work for media with complicated fractures, as the fractures
have to separate the domain into completely disjoint subdomains. The
pEDFM (Tene et al., 2017; Jiang and Younis, 2017) is another way
to simulate flow in porous media with blocking fractures. The basic
idea is to reduce the effective flow area between the blocking fracture
and the adjacent matrix cells based on the property of the blocking
fracture. However, most of previous work in this direction are based
on structured box grids, and the extension to general simplicial meshes
seems to be complicated; see a recent interesting work on pEDFM using
hexahedral corner-point grid (CPG) geometries (HosseiniMehr et al.,
2022).

In Xu and Yang (2020), one of the authors introduced the reinter-
preted discrete fracture model (RDFM) for single-phase flow in porous
media with conductive fractures. Different from the interface model
and pEDFM, the RDFM couples the fracture and matrix in one system
and use one equation to model the flows in both matrix and fractures.
The basic idea is to use Dirac-𝛿 functions to represent the lower dimen-
sional fractures in the system containing higher dimensional matrix.
The effect of the Dirac-𝛿 functions is to increase the permeability at the
ocation of the conductive fractures. Later, the RDFM was successfully
pplied to simulate contaminant transportation in Feng et al. (2021).
s an extension, the RDFM was further developed to simulate flows
n porous media with both conductive and blocking fractures in Xu
t al. (2023). Similar to the RDFM for conductive fractures (Xu and
ang, 2020), the blocking fractures were also described as Dirac-𝛿
unctions, and they are used to increase the flow resistance. The RDFM
ncorporates information of the fractures into the equation, hence it
orks for arbitrary meshes without any restrictions. In Xu et al. (2023),
he local discontinuous Galerkin (LDG) methods were applied to RDFM.
n extremely large penalty of order O(ℎ−3) was added to the pressure
n cell interfaces without blocking fractures, while a moderate large
enalty of order O(ℎ−2) was applied to the normal direction of the
elocity on cell interfaces with blocking fractures. The penalty is used
o intimate the continuity requirement of the target variables. Unfortu-
ately, this LDG method leads to a fully coupled saddle-point linear
ystem for the velocity and pressure, hence its practical application
n three dimensions is limited. Moreover, the lowest order scheme
herein uses (discontinuous) piecewise linear functions as the piecewise
onstant version did not lead to a convergent algorithm. Furthermore,
he effect of the penalty and well-posedness of the method was not
lear. Besides the above work, the RDFM for blocking fractures was also
ombined with the interface model for conductive fractures in Fu and
ang (2022) where a fitted mesh for conductive fractures was required.
In this paper, we apply the hybridizable discontinuous Galerkin

HDG) methods for RDFM-based single-phase flows in porous media.
imilar to the idea given in Xu et al. (2023), the proposed method (1)
roduces locally conservative velocity approximations; (2) works for
roblems containing both conductive and blocking fractures; (3) can
e applied to arbitrary meshes without any restrictions. In additional
o the above, there are several advantages of the proposed method that
ere not enjoyed by the one given in Xu et al. (2023). First of all, the
DG method can be efficiently solved via static condensation, which
eads to a symmetric positive definite (SPD) linear system for the pres-
ure degrees of freedom (DOFs) on the mesh skeletons only. Hence they
an be implemented very efficiently comparing with the LDG scheme
Xu et al., 2023). As a result, three-dimensional simulations for complex
2

racture networks are now possible. Secondly, the penalty parameters
n the HDG scheme are only adjusted on cells containing fractures,
ith extra (pressure) stabilization on conductive fractures and reduced
pressure) stabilization on blocking fractures. With a judicious choice of
he penalty parameters, the lowest order HDG scheme with piecewise
onstant approximations can now yield satisfactory numerical results.
inally, the well-posedness of the proposed method can be guaranteed
heoretically, which was completely missing for the method given in
u et al. (2023). As an application, it is straightforward to couple
he proposed flow equation with the transport equations and construct
ocally conservative numerical methods for the transport equations.
owever, that is not the main target of this paper, so we will discuss the
pplications in the future. The combination of these properties for the
DG scheme on unfitted meshes makes it highly competitive comparing
ith existing works for fractured porous media that can simultaneously
andle blocking and conductive fractures both in terms of algorithmic
omplexity and numerical accuracy.
The rest of the paper is organized as follows. In Section 2, we

present the RDFM and the HDG methods to be used. Numerical results
for various benchmark test cases are presented in Section 3. Some
concluding remarks will be given in Section 4.

2. The HDG scheme

In this section, we first introduce the RDFM (1) for fractured porous
edia flow. Then we convert it into an equivalent three-field for-
ulation (2) that will be used for the HDG discretization. Next, we
resent details of the unfitted mesh HDG scheme (5) and establish its
well-posedness. Moreover, we also comment on the (unfitted) mesh
requirements, the choice of HDG stabilization parameters, its relation
with regular porous media flow HDG solver, the extension to use
alternative finite element spaces, efficient implementation via static
condensation, and local mesh refinements near fractures. The perfor-
mance of the scheme (5) will be validated via ample numerical studies
n Section 3.

.1. The model

We consider the following RDFM proposed in Xu et al. (2023):
(

𝑰 +𝑲𝑚

𝑀
∑

𝑖=1

𝜖𝑖
𝑘𝑖
𝛿𝛤𝑖𝒏𝑖𝒏

𝑇
𝑖

)

𝒖 = −

(

𝑲𝑚 +
𝑀+𝑁
∑

𝑖=𝑀+1
𝜖𝑖𝑘𝑖𝛿𝛤𝑖 (𝑰 − 𝒏𝑖𝒏𝑇𝑖 )

)

∇𝑝,

(1a)

∇ ⋅ 𝒖 = 𝑓, (1b)

on a 𝑑-dimensional domain 𝛺 with 𝑑 = 2, 3. Here 𝒖 is the total
Darcy velocity, 𝑝 the pressure, 𝑲𝑚 is the matrix permeability, 𝑰 is
he identity tensor, 𝑓 is the source term, and 𝛤𝑖 is the location of
he 𝑖th (𝑑 − 1)-dimensional fracture with thickness 𝜖𝑖, permeability 𝑘𝑖
nd normal direction 𝒏𝑖 for 1 ≤ 𝑖 ≤ 𝑀 + 𝑁 , where we assume the
irst 𝑀 fractures are blocking fractures while the last 𝑁 fractures are
onductive fractures, i.e., 𝑘𝑖 ≪ 𝑲𝑚 for 𝑖 ≤𝑀 and 𝑘𝑖 ≫ 𝑲𝑚 for 𝑖 ≥𝑀+1.
oreover, 𝛿𝛤𝑖 is the Dirac-𝛿 function such that 𝛿𝛤𝑖 (𝒙) = ∞ if 𝒙 ∈ 𝛤𝑖,
𝛤𝑖 (𝒙) = 0 if 𝒙 ∉ 𝛤𝑖 and ∫𝛺 𝛿𝛤𝑖dx = 1. For simplicity, we assume
he model (1) is equipped with the homogeneous Dirichlet boundary
condition 𝑝 = 0 on 𝜕𝛺. Other boundary conditions will be used in the
numerical experiments.

Remark 2.1 (On RDFM). In (1), we apply Dirac-𝛿 functions to bridge
the difference of the dimensions between the matrix and fractures. The
first 𝑀 Dirac-𝛿 functions are used to increase the flow resistance and
are for blocking fractures. Due to the small thickness of the blocking
fractures, their effect in the tangential direction is negligible. Therefore,
we only include the permeability tensor associated with the normal
direction in the model. Similarly, the last 𝑁 Dirac-𝛿 functions are
used to increase the permeability and are for conductive fractures.
Moreover the effect of the conductive fractures in the normal direction
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is negligible, and we only include the permeability tensor associated
with the tangential direction in the model. We refer to Xu and Yang
(2020) and Xu et al. (2023) for more discussion on the RDFM.

The Dirac-𝛿 function approach in the above model avoids a direct
modeling of the fractures using lower dimensional Darcy flows as
typical in the interface models (Martin et al., 2005; Angot et al.,
2009; Boon et al., 2018; Kadeethum et al., 2020). Hence, unfitted
esh discretizations can be naturally applied. In the original work (Xu
t al., 2023), an LDG scheme on unfitted meshes was devised for (1)
n two dimensions with satisfactory numerical results. However, well-
osedness of the LDG scheme was not established as no energy identity
xists, and its computational cost is relatively large comparing with
xisting works on (partially) fitted meshes.
Here we will devise a well-posed HDG scheme on unfitted meshes

or the above model (1), which is not only computationally cheaper
han the LDG scheme (Xu et al., 2023) but also more accurate and has
n energy identity. To this end, we introduce the Darcy velocity in the
atrix 𝒖̃ ∶= −𝑲𝑚∇𝑝 as a new unknown and rewrite the model (1) into
he following three-field formulation:
(

𝑲−1
𝑚 +

𝑀
∑

𝑖=1

𝜖𝑖
𝑘𝑖
𝛿𝛤𝑖𝒏𝑖𝒏

𝑇
𝑖

)

𝒖 =

(

𝑰 +
𝑀+𝑁
∑

𝑖=𝑀+1
𝑲−1
𝑚 𝜖𝑖𝑘𝑖𝛿𝛤𝑖 (𝑰 − 𝒏𝑖𝒏𝑇𝑖 )

)

𝑲−1
𝑚 𝒖̃,

(2a)

𝑲−1
𝑚 𝒖̃ + ∇𝑝 = 0, (2b)

∇ ⋅ 𝒖 = 𝑓, (2c)

ote that we multiplied Eq. (1a) with 𝑲−1
𝑚 on the left to obtain Eq. (2a).

e emphasize that here 𝒖 is the total Darcy velocity that contains
nformation about the fractures, whilst 𝒖̃ is the Darcy velocity on the
atrix without fracture contributions.

.2. The HDG scheme

Let Tℎ ∶= {𝐾} be a triangulation of the domain 𝛺 that is unfitted
o the location of the fractures. Let Eℎ be the collections of (𝑑 − 1)-
imensional facets (edges for 𝑑 = 2, faces for 𝑑 = 3) of Tℎ. We use level
et functions to represent the fractures 𝛤𝑖. In particular,

• if 𝛤𝑖 is a closed curve/surface without boundaries, it is simply
approximated by the zero level set of a continuous piecewise
linear function 𝜙𝑖 ∈ 𝑊 1

ℎ ∩𝐻1(𝛺) on the mesh Tℎ:

𝛤𝑖,ℎ ∶= {𝑥 ∈ 𝛺 ∶ 𝜙𝑖(𝑥) = 0}.

• if 𝛤𝑖 is a curve/surface with (𝑑 − 2)-dimensional boundary 𝜕𝛤𝑖, it
is approximated by a main level set function 𝜙𝑖 ∈ 𝑊 1

ℎ ∩ 𝐻1(𝛺)
for the (extended) surface 𝛤𝑖 and additional level set functions
𝜓 𝑗𝑖 ∈ 𝑊 1

ℎ ∩ 𝐻1(𝛺) for 𝑗 = 1,… , 𝐿 to take care of the boundary
𝜕𝛤𝑖:

𝛤𝑖,ℎ ∶= {𝑥 ∈ 𝛺 ∶ 𝜙𝑖(𝑥) = 0} ∩𝐿𝑗=1 {𝑥 ∈ 𝛺 ∶ 𝜓 𝑗𝑖 (𝑥) < 0}.

In practice, usually two level set functions are sufficient to pro-
vide a good approximation of 𝛤𝑖, i.e.,

𝛤𝑖,ℎ ∶= {𝑥 ∈ 𝛺 ∶ 𝜙𝑖(𝑥) = 0} ∩ {𝑥 ∈ 𝛺 ∶ 𝜓1
𝑖 (𝑥) < 0}.

ence the discrete fractures 𝛤𝑖,ℎ on each element 𝐾 ∈ Tℎ is always a
ine segment in 2D or a polygon in 3D due to the use of piecewise linear
unctions as level sets. With 𝛤𝑖,ℎ ready, we split the cells in Tℎ into three
on-overlapping groups

ℎ ∶= T𝑟ℎ ∪ T𝑏ℎ ∪ T𝑐ℎ, (3)

here T𝑟ℎ contains regular cells without fractures, T𝑏ℎ contains cells
ith blocking fractures, and T𝑐ℎ contains cells with conductive fractures
efined as follows:
𝑏
ℎ ∶= {𝐾 ∈ Tℎ ∶ ∃𝑖 ∈ [1,𝑀] such that 𝐾 ∩ 𝛤𝑖,ℎ ≠ ∅},
𝑐
ℎ ∶= {𝐾 ∈ Tℎ∖T𝑏ℎ ∶ ∃𝑖 ∈ [𝑀 + 1,𝑀 +𝑁] such that 𝐾 ∩ 𝛤𝑖,ℎ ≠ ∅},
𝑟 𝑏 𝑐
3

ℎ ∶= Tℎ∖{Tℎ ∪ Tℎ}. i
emark 2.2 (On Cell Splitting). Here we require the splitting of the
omputational cells in (3) to be non-overlapping. This means that a
locking fractured cell in T𝑏ℎ cannot include conductive fractures, nor
conductive fractured cell in T𝑐ℎ can include blocking fractures. Such
equirement is necessary for the well-posedness of the HDG scheme (5)
efined below; see Theorem 2.1. Note that when both blocking and con-
uctive fractures appear in a cell, we need to either ignore the blocking
ractures or the conductive fractures in that cell. The latter is used in
ur numerical implementation. However, if the cell is dominated by
he conductive fractures, we shall instead ignore the blocking fractures
herein. Furthermore, our preliminary numerical results for Example 2
elow (not reported here) suggest that it is not beneficial to include
oth conductive and blocking fractures on such cells in the formulation
5), which would produce large pressure oscillations near these cells. A
ore detailed study on the treatment of such mixed cells will be carried
ut in our future work.

Note that we allow fractures to be intersecting with each other in
n arbitrary fashion within a single cell as long as a discrete char-
cterization of the fracture 𝛤𝑖,ℎ using (multi-)level set functions is
ossible.
Given a polynomial degree 𝑘 ≥ 0, we consider the following finite

lement spaces:

𝑽 𝑘
ℎ ∶= {𝒗 ∈ [𝐿2(Tℎ)]𝑑 ∶ 𝒗|𝐾 ∈ [𝑃𝑘(𝐾)]𝑑 , ∀𝐾 ∈ Tℎ}, (4a)
𝑘
ℎ ∶= {𝑤 ∈ 𝐿2(Tℎ) ∶ 𝑤|𝐾 ∈ 𝑃𝑘(𝐾), ∀𝐾 ∈ Tℎ}, (4b)

𝑀𝑘
ℎ ∶= {𝜇 ∈ 𝐿2(Eℎ) ∶ 𝜇|𝐹 ∈ 𝑃𝑘(𝐹 ), ∀𝐹 ∈ Eℎ, 𝜇|𝐹 = 0 on 𝜕𝛺}, (4c)

here 𝑃𝑘(𝑆) is the polynomial space of degree at most 𝑘 on 𝑆. We
urther denote the following inner products to simplify notation:

𝜙, 𝜓)Tℎ ∶=
∑

𝐾∈Tℎ
∫𝐾

𝜙𝜓 dx, ⟨𝜙, 𝜓⟩𝜕Tℎ ∶=
∑

𝐾∈Tℎ
∫𝜕𝐾

𝜙𝜓 ds.

The HDG scheme for (2) is now given as follows: Find (𝒖ℎ, 𝒖̃ℎ, 𝑝ℎ, 𝑝ℎ)
∈ 𝑽 𝑘

ℎ × 𝑽 𝑘
ℎ ×𝑊

𝑘
ℎ ×𝑀𝑘

ℎ such that

(𝑲−1
𝑚 𝒖ℎ, 𝒗̃ℎ)Tℎ +𝛷𝑏(𝒖ℎ, 𝒗̃ℎ) = (𝑲−1

𝑚 𝒖̃ℎ, 𝒗̃ℎ)Tℎ +𝛷𝑐 (𝒖̃ℎ, 𝒗̃ℎ), (5a)

(𝑲−1
𝑚 𝒖̃ℎ, 𝒗ℎ)Tℎ − (𝑝ℎ,∇ ⋅ 𝒗ℎ)Tℎ + ⟨𝑝ℎ, 𝒗ℎ ⋅ 𝒏⟩𝜕Tℎ = 0, (5b)

− (𝒖ℎ,∇𝑞ℎ)Tℎ + ⟨𝒖̂ℎ ⋅ 𝒏, 𝑞ℎ⟩𝜕Tℎ = (𝑓, 𝑞ℎ)Tℎ , (5c)

⟨𝒖̂ℎ ⋅ 𝒏, 𝑞ℎ⟩𝜕Tℎ = 0, (5d)

for all (𝒗ℎ, 𝒗̃ℎ, 𝑞ℎ, 𝑞ℎ) ∈ 𝑽 𝑘
ℎ × 𝑽 𝑘

ℎ ×𝑊
𝑘
ℎ ×𝑀𝑘

ℎ , where 𝛷𝑏/𝛷𝑐 contains the
ollowing blocking/conductive fracture surface integrals (taking into
ccount the property of the Dirac-𝛿 functions):

𝑏(𝒖, 𝒗) ∶=
∑

𝐾∈T𝑏ℎ

𝑀
∑

𝑖=1
∫𝐾∩𝛤𝑖,ℎ

𝜖𝑖
𝑘𝑖
(𝒖 ⋅ 𝒏𝑖)(𝒗 ⋅ 𝒏𝑖) ds, (5e)

𝛷𝑐 (𝒖, 𝒗) ∶=
∑

𝐾∈T𝑐ℎ

𝑀+𝑁
∑

𝑖=𝑀+1
∫𝐾∩𝛤𝑖,ℎ

𝜖𝑖𝑘𝑖(𝑲−1
𝑚 𝒖)𝑡,𝑖 ⋅ (𝑲−1

𝑚 𝒗)𝑡,𝑖 ds, (5f)

here (𝒘)𝑡,𝑖 ∶= 𝒘 − (𝒘 ⋅ 𝒏𝑖)𝒏𝑖 denotes the tangential component of a
ector 𝒘 on 𝛤𝑖,ℎ, and the numerical flux 𝒖̂ℎ ⋅𝒏 takes the following form:

ℎ ⋅ 𝒏 ∶= 𝒖ℎ ⋅ 𝒏 + 𝛼ℎ(𝑝ℎ − 𝑝ℎ), (5g)

ith 𝛼ℎ > 0 being the stabilization function defined element-wise as
ollows:

ℎ|𝐾 =

⎧

⎪

⎨

⎪

⎩

𝑲𝑚 if 𝐾 ∈ T𝑟ℎ,

𝐶𝑏(ℎ𝐾∕𝐿)𝑠𝑏𝑲𝑚 if 𝐾 ∈ T𝑟ℎ,

𝐶𝑐 (ℎ𝐾∕𝐿)−𝑠𝑐𝑲𝑚 if 𝐾 ∈ T𝑐ℎ,

(5h)

here ℎ𝐾 is the local mesh size, 𝐿 is the characteristic length of the
omain 𝛺, and 𝐶𝑏, 𝐶𝑐 > 0 and 𝑠𝑏, 𝑠𝑐 > 0 are penalty parameters to
e tuned. We note that proper tuning of these penalty parameters is

mportant for the accuracy of the scheme (5); see Remark 2.4 below.
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Remark 2.3 (Connection with LDG-H for Regular Porous Media Flow).
n the absence of fractures (𝛷𝑏 = 𝛷𝑐 = 0), we have 𝒖̃ℎ = 𝒖ℎ for
he scheme (5). Hence, the scheme (5) reduces to the so-called LDG-H
cheme introduced in Cockburn et al. (2009) and analyzed in Cockburn
t al. (2010). In particular, the LDG-H scheme produces an optimal 𝐿2-
onvergence rate of order ℎ𝑘+1 for the velocity approximation, and a
uperconvergent 𝐿2-convergence rate of order ℎ𝑘+2 (under the usual
ull 𝐻2-elliptic regularity assumption) for a special projection error
f the pressure, from which a superconvergent postprocessed pressure
pproximation 𝑝∗ℎ ∈ 𝑊 𝑘+1

ℎ can be constructed that satisfies

∇𝑝∗ℎ,∇𝑞ℎ)𝐾 = − (𝑲−1
𝑚 𝒖̃ℎ,∇𝑞ℎ), ∀𝑞ℎ ∈ 𝑊 𝑘+1

ℎ , ∀𝐾 ∈ Tℎ, (6a)

(𝑝∗ℎ, 1)𝐾 = (𝑝ℎ, 1), ∀𝐾 ∈ Tℎ. (6b)

Scheme (5) is a novel modification of the classical LDG-H scheme
y adding the fracture surface integrals 𝛷𝑏 and 𝛷𝑐 and adjusting the
tabilization parameter 𝛼ℎ on conductive and blocking fractured cell.
ence, minimal amount of work is needed to convert a regular porous
edia flow HDG solver to a fractured porous media flow solver on
nfitted meshes. This has to be contrasted with other fractured porous
edia flow models that model lower dimensional fractured flows where
ignificant code re-design is needed (and are mostly restricted to ge-
metrically fitted meshes); see, e.g. Alboin et al. (1999), Boon et al.
(2018) and Fu and Yang (2022). In our numerical implementation
reported in Section 3, we use the open-source finite-element software
NGSolve (Schöberl, 2014) where the fracture surface integrals are real-
ized using integration over domains defined by (multi-)level sets from
the ngsxfem add-on (Lehrenfeld et al., 2021). Despite the simplicity
of the scheme (5), its performance for various 2D and 3D benchmark
examples reveal that it is also quite accurate.

We have the following well-posedness of the HDG scheme (5).

Theorem 2.1 (Well-posedness). The solution to the HDG scheme (5) exists
and is unique.

Proof. Taking test functions (𝒗ℎ, 𝑞ℎ, 𝑞ℎ) ∶= (𝒖ℎ, 𝑝ℎ, 𝑝ℎ) in (5b)–(5d) and
adding, we obtain the following identity:

(𝑲−1
𝑚 𝒖̃ℎ, 𝒖ℎ)Tℎ + ⟨𝛼ℎ(𝑝ℎ − 𝑝ℎ), (𝑝ℎ − 𝑝ℎ)⟩𝜕Tℎ = (𝑓, 𝒖ℎ)Tℎ . (7)

Taking 𝒗̃ℎ to be supported on a cell 𝐾 ∈ Tℎ and using the definition of
𝛷𝑏 and 𝛷𝑐 , we get

(𝑲−1
𝑚 𝒖ℎ, 𝒗̃ℎ)𝐾 = (𝑲−1

𝑚 𝒖̃ℎ, 𝒗̃ℎ)𝐾 , ∀𝐾 ∈ T𝑟ℎ,

(𝑲−1
𝑚 𝒖ℎ, 𝒗̃ℎ)𝐾 +𝛷𝑏,𝐾 (𝒖ℎ, 𝒗̃ℎ) = (𝑲−1

𝑚 𝒖̃ℎ, 𝒗̃ℎ)𝐾 , ∀𝐾 ∈ T𝑏ℎ,

(𝑲−1
𝑚 𝒖ℎ, 𝒗̃ℎ)𝐾 = (𝑲−1

𝑚 𝒖̃ℎ, 𝒗̃ℎ)𝐾 +𝛷𝑐,𝐾 (𝒖̃ℎ, 𝒗̃ℎ), ∀𝐾 ∈ T𝑐ℎ,

where 𝛷𝑏,𝐾 and 𝛷𝑐,𝐾 are restrictions of 𝛷𝑏 and 𝛷𝑐 on the respective
cell 𝐾. Taking 𝒗̃ℎ = 𝒖ℎ on 𝐾 ∈ T𝑟ℎ ∪ T𝑏ℎ, and taking 𝒗̃ℎ = 𝒖̃ℎ on 𝐾 ∈ T𝑐ℎ,
we get

(𝑲−1
𝑚 𝒖ℎ, 𝒖̃ℎ)𝐾 =

⎧

⎪

⎨

⎪

⎩

(𝑲−1
𝑚 𝒖ℎ, 𝒖ℎ)𝐾 if 𝐾 ∈ T𝑟ℎ,

(𝑲−1
𝑚 𝒖ℎ, 𝒖ℎ)𝐾 +𝛷𝑏,𝐾 (𝒖ℎ, 𝒖ℎ) if 𝐾 ∈ T𝑏ℎ,

(𝑲−1
𝑚 𝒖̃ℎ, 𝒖̃ℎ)𝐾 +𝛷𝑐,𝐾 (𝒖̃ℎ, 𝒖̃ℎ) if 𝐾 ∈ T𝑐ℎ.

Combining the above equalities with identity (7) yields

𝐸(𝒖ℎ, 𝒖̃ℎ) + ⟨𝛼ℎ(𝑝ℎ − 𝑝ℎ), (𝑝ℎ − 𝑝ℎ)⟩𝜕Tℎ = (𝑓, 𝒖ℎ)Tℎ ,

where

𝐸(𝒖ℎ, 𝒖̃ℎ) ∶= (𝑲−1
𝑚 𝒖ℎ, 𝒖ℎ)T𝑟ℎ∪T𝑏ℎ

+ (𝑲−1
𝑚 𝒖̃ℎ, 𝒖̃ℎ)T𝑐ℎ +𝛷𝑏(𝒖ℎ, 𝒖ℎ) +𝛷𝑐 (𝒖̃ℎ, 𝒖̃ℎ)

is non-negative.
Now let us establish uniqueness of the solution using the above

energy identity. Taking 𝑓 = 0, we have

̃

4

𝐸(𝒖ℎ, 𝒖ℎ) = 0, and ⟨𝛼ℎ(𝑝ℎ − 𝑝ℎ), (𝑝ℎ − 𝑝ℎ)⟩𝜕Tℎ = 0,
which implies that 𝑝ℎ = 𝑝ℎ on 𝜕Tℎ, 𝒖ℎ = 0 on T𝑟ℎ ∪ T𝑏ℎ, and 𝒖̃ℎ = 0 on
T𝑐ℎ. Eq. (5a) then implies that 𝒖̃ℎ = 𝒖ℎ = 0 on all cells. And Eq. (5b),
together with 𝑝ℎ = 𝑝ℎ, implies that ∇𝑝ℎ = 0. Hence 𝑝ℎ is a global
constant. Using the homogeneous Dirichlet boundary condition on 𝑝ℎ,
we conclude that 𝑝ℎ = 0 and 𝑝ℎ = 0. Hence we proved the uniqueness.
Existence of the solution is a direct consequence of uniqueness as the
system (5) is a square linear system. □

Remark 2.4 (On the Stabilization Function). In practice (see Section 3
below), we found taking 𝑠𝑐 ≥ 3 in (5h) leads to a convergent scheme
for polynomial degree 𝑘 ≥ 1, while taking 𝑠𝑐 < 3 may produce
large consistency errors on conductive fractures. This indicates the
stabilization needs to be very large on conductive fractures. The reason
for such large choice of stabilization is to implicitly enforce the pressure
continuity across the boundary of conductive fractured cells as the
physical model has such continuity while the surface integral 𝛷𝑐 on
conductive fractures itself does not enforce such pressure continuity.
Equally well, the choice of smaller stabilization (with 𝑠𝑏 > 0) in (5h)
on blocking fractured cells has the effect of enforcing the velocity
normal continuity across the boundary of blocking fractured cells to be
consistent with the physical model. Here we found that when 𝜖𝑖∕𝑘𝑖 ≈
𝑲−1
𝑚 for blocking fractures, we can simply use the same stabilization

on blocking cells as those on the regular cells, i.e., with 𝐶𝑏 = 1 and
𝑠𝑏 = 0; see Examples 1 and 2 in Section 3. On the other hand, when
𝜖𝑖∕𝑘𝑖 ≫ 𝑲−1

𝑚 , we need to reduce the blocking cell stabilization to
enforce the normal velocity continuity, where taking 𝐶𝑏 = 1 and 𝑠𝑏 = 2
usually gives a good result; see Examples 3 and 6 in Section 3.

Here we provide another heuristic argument to justify the large
stabilization on conductive fractures. We assume permeability 𝑲𝑚 is a
constant on each cell 𝐾 in the following discussion. Taking 𝛼ℎ|𝐾 → ∞
on conductive fractures, we have 𝑝ℎ ≈ 𝑝ℎ on 𝜕𝐾 for all 𝐾 ∈ T𝑐ℎ under
the reasonable assumption that the numerical flux 𝒖̂ℎ ⋅𝒏 stays bounded.
Then Eq. (5b) implies that 𝒖̃ℎ ≈ −𝑲𝑚∇𝒑ℎ. Taking 𝒗̃ℎ ∶= 𝑲𝑚∇𝒒ℎ on T𝑐ℎ
in (5a) with 𝑞ℎ ∈ 𝑊ℎ that is continuous across interior facets of T𝑐ℎ, we
have

−(𝒖ℎ,∇𝑞ℎ)T𝑐ℎ = −(𝒖̃ℎ,∇𝑞ℎ)T𝑐ℎ −𝛷𝑐 (𝒖̃ℎ,𝑲𝑚∇𝑞ℎ)

≈ (𝑲𝑚∇𝑝ℎ,∇𝑞ℎ)T𝑐ℎ +𝛷𝑐 (𝑲𝑚∇𝑝ℎ,𝑲𝑚∇𝑞ℎ),

Combine the above relation with (5c) and using the fact that 𝑞ℎ is
continuous across interior facets of T𝑐ℎ, we get

(𝑲𝑚∇𝑝ℎ,∇𝑞ℎ)T𝑐ℎ +𝛷𝑐 (𝑲𝑚∇𝑝ℎ,𝑲𝑚∇𝑞ℎ) ≈ (𝑓, 𝑞ℎ)T𝑐ℎ − ⟨𝒖̂ℎ ⋅ 𝒏, 𝑞ℎ⟩𝛤 𝑐ℎ ,

where 𝛤 𝑐ℎ is the exterior boundary of T
𝑐
ℎ. The above relation show that

𝑝ℎ will be a good approximation to the 𝐻1-conforming finite element
discretization of the RDFM model on conductive fractures (Fu and
Yang, 2022), which was known to provide a consist approximation
with respect to the conductive fractures as long as 𝑊ℎ contains at least
piecewise linear functions.

The lowest-order case with 𝑘 = 0 requires further attention. It is
more subtle to find a good set of penalty parameters on conductive
fractured cells for 𝑘 = 0. If it is taking to be too large, the strong
penalty will effectively makes pressure along fractures to be a global
constant, leading to large consistency errors. On the other hand, if
the stabilization is taking to be too small, the effects of conductive
fractures will not be seen by the scheme. Our numerical experiments
below suggests that taking 𝑠 = 2 for 𝑘 = 0 may lead to reasonable
approximations.

We will investigate more on the effects of the stabilization function
on the HDG scheme in our future work.

Remark 2.5 (Hybrid-mixed Methods). We can increase the velocity
space 𝑽 𝑘

ℎ to be a discontinuous Raviart–Thomas space of degree 𝑘:
𝑅𝑇 ,𝑘 2 𝑑 𝑑 ̃
𝑽 ℎ ∶= {𝒗 ∈ [𝐿 (Tℎ)] ∶ 𝒗|𝐾 ∈ [𝑃𝑘(𝐾)] ⊕ 𝒙𝑃𝑘(𝐾), ∀𝐾 ∈ Tℎ},
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Fig. 1. Example 1. Left: Domain and boundary conditions. Middle: reference solution for conductive fractures (1a). Right: reference solution for blocking fractures (1b). Color
range: (0, 1). Thirty uniform contour lines from 0 to 1.
Fig. 2. Example 1. Left: a coarse mesh with size ℎ = 0.1. Right: a locally refined mesh with ℎ ≈ 0.1∕8 near the fractures.
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where 𝑃𝑘(𝐾) is the space of homogeneous polynomials of degree 𝑘.
Then the velocity-pressure pair 𝑽 𝑅𝑇 ,𝑘

ℎ and 𝑊 𝑘
ℎ satisfy the inf-sup condi-

tion, and we can set the stabilization 𝛼ℎ on T𝑟ℎ∪T
𝑏
ℎ to be zero when using

𝑽 𝑅𝑇 ,𝑘
ℎ , 𝑊 𝑘

ℎ , and 𝑀
𝑘
ℎ in the scheme (5) (while still keep the large sta-

bilization on conductive fractures). The resulting scheme is the hybrid-
mixed method, whose computational cost is similar to the HDG scheme
(5). We note that the lowest-order hybrid-mixed method for porous
edia containing pure blocking fractures was already introduced in our
arlier work (Fu and Yang, 2022).

emark 2.6 (Variable Polynomial Degree on Different Cells). The large
tabilization on conductive fractures may lead to less accurate velocity
pproximations therein since 𝒖ℎ ≈ −𝑲−1

𝑚 ∇𝑝ℎ. An interesting variant of
he scheme is to use one degree higher on conductive fractured cells
𝑐
ℎ than those on regular and blocking fractured cells, that is, replacing
he spaces 𝑽 𝑘

ℎ,𝑊
𝑘
ℎ and 𝑀𝑘

ℎ in (5) by the following reduced version:

𝑽 𝑘−1,𝑘
ℎ ∶= [𝑊 𝑘−1,𝑘

ℎ ]𝑑 , (8a)
𝑘−1,𝑘
ℎ ∶= {𝑤 ∈ 𝑊 𝑘

ℎ ∶ 𝑤|𝐾 ∈ 𝑃𝑘−1(𝐾), ∀𝐾 ∈ T𝑟ℎ ∪ T𝑏ℎ}, (8b)

𝑀𝑘−1,𝑘
ℎ ∶= {𝜇 ∈𝑀𝑘

ℎ ∶ 𝜇|𝐹 ∈ 𝑃𝑘−1(𝐹 ), ∀𝐹 ∈ Eℎ with 𝐹 ∩ 𝜕T𝑐ℎ = ∅}.

(8c)

his reduced version is less accurate than the original version but is
5

heaper to solve as it has less DOFs.
In this work, we present numerical results only for the original
DG scheme (5) with polynomial degree 𝑘 = 0, 1, 2. We will explore
he performance of the above mentioned hybrid-mixed method and
ariable-degree variants in our future work.

emark 2.7 (Static Condensation and Efficient Implementation). Just
ike the LDG-H scheme for regular porous media flow, we can solve
ystem (5) efficiently using static condensation where one first locally
liminates the cell-wise DOFs to express the unknowns 𝒖̃ℎ, 𝒖ℎ, 𝑝ℎ as
local) functions of the global unknown 𝑝ℎ and source term 𝑓 using
5a)–(5c), and then solve the global transmission problem (5d) for 𝑝ℎ,
hich is a sparse and symmetric positive definite linear system whose
fficient solution procedure can be designed following similar work for
egular porous media flows; see, e.g., Cockburn et al. (2014), Fu (2021).

emark 2.8 (Local Mesh Refinement Near Fractures). Since the com-
utational mesh Tℎ is assumed to be completely independent of the
ractures, the approximation quality of the scheme (5) on an initial
coarse mesh that does not know the fracture locations may be poor.
Here we propose to use local mesh refinement that only refine cells
intersected by the fractures. In particular, given an initial mesh Tℎ ∶=
T𝑟ℎ∪T

𝑏
ℎ∪T

𝑐
ℎ, we only mark cells in T𝑏ℎ and T𝑐ℎ for refinement using the bi-

section algorithm. Multiple refinements can be performed sequentially
as needed. This refinement procedure puts more cells around fractures
and leads to significantly more efficient algorithms comparing with a

naïve uniform refinement procedure.
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Fig. 3. Example 1(a): conductive fractures. Pressure along cut line 𝑥 = 0.5 for the scheme (5) with different stabilization parameter with 𝑠𝑐 = 𝑠 = 1, 2, 3 in (5h).
. Numerical examples

In this section, we present detailed numerical results in two and
hree dimensions for the proposed HDG scheme (5). When evalu-
ting pressure distribution along line segments, we always evaluate
he postprocessed pressure approximation (6). Our numerical simu-
lations are performed using the open-source finite-element software
NGSolve (Schöberl, 2014), https://ngsolve.org/. In particular, the
(multi-)level set representation of the fractures and their associated
surface integrations are realized using the ngsxfem add-on (Lehrenfeld
et al., 2021). Sample code can be found in the git repository https://
github.com/gridfunction/fracturedPorousMedia. Specifically, two
6

jupyter notebook files, complex2D-HDG.ipynb (for Example 2) and
single3Dhex-HDG.ipynb (for Example 4), are included in this git
repository, which can be executed using the provided binder therein
without local installation.

Example 1 (Cross-shaped Fractures in 2D). In this example, we test
the performance of the scheme (5) for a fractured media with simple
cross-shaped fractures. Similar test was used in Tene et al. (2017). The
computational domain is a unit square 𝛺 = [0, 1] × [0, 1]. Two fractures
with thickness 𝜖 = 10−3 and length 0.5 are located in the region given
below and cross each other at the center (0.5, 0.5):

𝛤1 = {(𝑥, 0.5) ∶ 0.25 ≤ 𝑥 ≤ 0.75}, 𝛤2 = {(0.5, 𝑦) ∶ 0.25 ≤ 𝑦 ≤ 0.75}.

The matrix permeability is 𝑲𝑚 = 1 and the fracture permeability is
3 −3
either (a) 𝑘1 = 𝑘2 = 10 for the conductive case or (b) 𝑘1 = 𝑘2 = 10

https://ngsolve.org/
https://github.com/gridfunction/fracturedPorousMedia
https://github.com/gridfunction/fracturedPorousMedia
https://github.com/gridfunction/fracturedPorousMedia
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Fig. 4. Example 1(a): conductive fractures. Pressure contour for 𝑘 = 0, 𝑠 = 2 (left), 𝑘 = 1, 𝑠 = 3 (middle), and 𝑘 = 2, 𝑠 = 3 (right).

Fig. 5. Example 1(b): Pressure along cut line 𝑥 = 0.5 for the scheme (5) for the blocking fracture case.

Fig. 6. Example 1(b): Pressure contour for 𝑘 = 0 (left), 𝑘 = 1 (middle), and 𝑘 = 2 (right).

Fig. 7. Benchmark 3: computational domain and boundary conditions.
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Fig. 8. Example 2. Left: a coarse mesh with size ℎ = 0.1. Right: a locally refined mesh with ℎ ≈ 0.1∕8 near the fractures.
Fig. 9. Example 2. Pressure along line segment (0, 0.5) − −(1, 0.9) for the scheme (5) on two meshes. Top row: case (a); Bottom row: case (b).
s
s
a

or the blocking case. Source term is 𝑓 = 0, and the problem is closed
ith no flow boundary condition on the top and bottom boundaries
nd Dirichlet boundary condition 𝑝 = 1 on the left boundary and
= 0 on the right boundary. See Fig. 1 for an illustration of the
8

f

etup and the reference solutions for the two cases. Here the reference
olutions are obtained using a continuous 𝑄1 finite element scheme on
uniform 2000 × 2000 rectangular mesh where the fracture has been
ully resolved.
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Fig. 10. Example 2. Pressure contour for 𝑘 = 0 (left), 𝑘 = 1 (middle), and 𝑘 = 2 (right). Color range: (0,1). Thirty uniform contour lines from 0 to 1.
Fig. 11. Example 3: Computational domain and boundary conditions.

We consider two meshes, see Fig. 2: a coarse unfitted triangular
esh with mesh size ℎ = 0.1 and a refined unfitted mesh that performs
steps of local mesh refinements near the fractured cells using the
rocedure detailed in Remark 2.8. The coarse mesh has 230 cells, while
he fine mesh has 1328 cells.
We first study the role of the stabilization function 𝛼ℎ, in particular,

he effect of 𝑠𝑐 therein, near conductive fractures on the scheme (5).
e take polynomial degree 𝑘 = 0, 1, 2, and vary the scaling power
𝑐 ∈ {1, 2, 3} of 𝛼ℎ in (5h) with 𝐶𝑐 = 1. The pressure approximations
along the line 𝑥 = 0.5 are shown in Fig. 3. From these figures, we
observe that

• When polynomial degree 𝑘 = 0, a convergent result, comparing
with the reference solution, is obtained with 𝑠 = 2. For 𝑠 =
1 (smaller stabilization) the scheme does not converge as the
fracture is not captured. For 𝑠 = 3 (larger stabilization) the
9

scheme does not convergence either as it leads to a constant
approximation along the fractures, which is consistent with the
discussion in Remark 2.4 as too large stabilization effectively
makes the pressure within conductive fractures to be a global
constant for 𝑘 = 0.

• When polynomial degree 𝑘 = 1 or 𝑘 = 2, a convergent result is
obtained with 𝑠 = 3. The results for 𝑠 = 1 and 𝑠 = 2 leads to
locking phenomena as the effects of the fracture is not captured
correctly. We note that further increasing 𝑠 from 3 essentially
leads to similar results as those with 𝑠 = 3 for this example.

Contour plots of the pressure on the fine mesh for 𝑘 = 0 with 𝑠𝑐 = 2
and for 𝑘 = 1, 2 with 𝑠𝑐 = 3 are shown in Fig. 4. We observe these
results are qualitatively similar to the reference solution in the middle
of Fig. 2.

We next study the performance of our scheme for the blocking
fracture case. For this case, we find that taking the penalty parameter
on blocking fractured cells to be the same as regular cells (i.e., 𝐶𝑏 = 1
and 𝑠𝑏 = 0) already lead to a convergent scheme, so we only report
results for this choice of parameters. The pressure approximations along
the line 𝑥 = 0.5 for 𝑘 = 0, 1, 2 on the coarse and fine meshes are shown in
Fig. 5. Convergence to the reference solution is observed for all cases as
mesh refines. Here we can also observe some overshoot and undershoot
(around 𝑥 = 0.5), which is mainly due to the unfitted meshes used
in the numerical simulations and the reference solution has a jump
discontinuity in pressure around 𝑥 = 0.5. Contour plots of the pressure
on the fine mesh are shown in Fig. 6. We again observe these results
are qualitatively similar to the reference solution on the right of Fig. 2.

Example 2 (Complex Fracture Network in 2D). This test case considers
a small but complex fracture network that includes eight conductive
fractures and two blocking fractures. The domain and boundary con-
ditions are shown in Fig. 7 (red represents conductive fractures, blue
represents blocking fractures). All fractures are represented by line
segments, and the exact coordinates for the fracture positions can be
found in Flemisch et al. (2018, Appendix C). The fracture thickness is
𝜖 = 10−4 for all fractures, and permeability is 𝑘 = 104 for all fractures
𝑖
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Fig. 12. Example 3. Left: unfitted mesh with 154,174 cells. Right: location of blocking (in red) and conductive (in blue) fractured cells for case (c).
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xcept for fractures 4 and 5 which are blocking fractures with 𝑘𝑖 = 10−4.
We consider two subcases (a) and (b) with a pressure gradient which
is predominantly vertical and horizontal respectively. As discussed in
Remark 2.2, we do not include the conductive fracture segment in a
computational cell that contains both conductive and blocking fracture
segments into in the HDG formulation (5).

We consider two meshes, see Fig. 8: a coarse triangular mesh with
esh size ℎ = 0.1 and a refined mesh that performs 3 steps of local
esh refinements near the fractures using the procedure detailed in
emark 2.8. The coarse mesh has 230 cells, while the fine mesh has
380 cells.
We take polynomial degree 𝑘 = 0, 1, 2. As suggested from the

revious example, we take penalty parameters 𝐶𝑏 = 𝐶𝑐 = 1 and 𝑠𝑏 = 0,
nd use 𝑠𝑐 = 2 if 𝑘 = 0 and 𝑠𝑐 = 3 if 𝑘 = 1, 2. The quantity of
nterest is the pressure approximation along the line segment (0, 0.5) −
(1, 0.9) for both cases, which are recorded in Fig. 9. We observe a

good convergence towards the reference solution as mesh refines for
all cases. Contour plots of the pressure on the fine mesh are shown in
Fig. 10, which are consist with the results in the literature (Flemisch
et al., 2018).

Example 3 (A Realistic Case in 2D). We consider a real set of fractures
from an interpreted outcrop in the Sotra island, near Bergen in Norway.
The setup is adapted from Flemisch et al. (2018, Benchmark 4). The
omain along with boundary conditions is given in Fig. 11. The size
f the domain is 700 m × 600 m with uniform scalar permeability
𝑚 = 10−14 m2. The set of fractures is composed of 63 line segments
ith thickness 𝜖 = 10−2 m2. The exact coordinates for the fracture
ositions are provided in the git repository https://git.iws.uni-stuttgart.
e/benchmarks/fracture-flow. Three subcases will be considered: (a)
ll conductive fractures with permeability 𝑘𝑐 = 10−8 m2, (b) all blocking
ractures with permeability 𝑘𝑏 = 10−20 m2, and (c) 9 blocking fractures
ith 𝑘𝑏 = 10−20 m2 and 54 conductive fractures with 𝑘𝑐 = 10−8 m2.
ocation of the blocking/conductive fractures for case (c) are marked
n red/blue in the right panel of Fig. 12. We note that while case (a)
as been extensively studied, see e.g. Flemisch et al. (2018). The other
wo cases are new.
Here we run simulation on a non-dimensional setting to avoid

xtreme values where the domain is scaled back to be 𝛺 = (0, 1) ×
0, 6∕7), matrix permeability K𝑚 = 1, and inflow pressure boundary
ondition 𝑝𝐷 = 1 on the left boundary. We consider our scheme
5) with polynomial degree 𝑘 = 0, 1, 2 on an unfitted mesh obtained
rom a uniform triangular mesh with ℎ = 0.01 by performing two
teps of local mesh refinements around the fractured cells; see left of
10
Table 1
Example 3. Choice of the penalty parameters for different polynomial degree 𝑘.
𝑘 𝐶𝑏 𝑠𝑏 𝐶𝑐 𝑠𝑐
0 1 2 6 2
1 1 2 0.08 3
2 1 2 0.16 3

Fig. 12. The mesh has about 154𝑘 total triangular cells, and about 27.5𝑘
fractured cells, which further split to 5.5𝑘 blocking fractured cells and
22𝑘 conductive fractured cells for case (c). The penalty parameters in
(5h) are given in Table 1. Here due to stronger conductive/blocking
effects (with permeability differs by six orders of magnitude), we need
to choose the penalty parameters 𝑠𝑏 and 𝐶𝑐 differently than the previous
two examples. In particular, we note that the 𝐶𝑐 values are tuned to
make the case (a) results matching with existing work. Moreover, the
stabilization on blocking fractured cells are reduced by taking 𝑠𝑏 = 2, as
aking larger stabilization with 𝑠𝑏 = 0 leads to pressure leakage across
locking fractured cells.

The pressure approximations along the two lines 𝑦 = 5∕7 and
𝑥 = 625∕700 are recorded in Fig. 13, where reference data from the
Mortar-DFM scheme on a fitted mesh with about 10𝑘 cells reported
in Flemisch et al. (2018) for case (a) is also presented. We observe a
ood agreement with the reference data for case (a) for our schemes.
oreover, we observe very close results for 𝑘 = 1 and 𝑘 = 2 for case
b) and case (c), where the results for 𝑘 = 0 is slightly off due to
oarse mesh resolution and low-order approximations. Further refining
he mesh for 𝑘 = 0 leads to results closer to the 𝑘 = 1, 2 cases in Fig. 13.
Contour plots of the pressure are shown in Fig. 14, where the case

a) results are again consist with those in the literature (Flemisch et al.,
018). We also clearly observe the blocking effects (with discontinuous
ressures) of the fractures for case (b), and the combined conduc-
ive/blocking effects of the fractures for case (c). This example confirms
he ability of the proposed HDG scheme (5) in simulating realistic
complex fracture networks on unfitted meshes with both conductive
and blocking fractures.

Example 4 (Single Fracture in 3D). This is the first 3D benchmark case
proposed in Berre et al. (2021). The matrix domain 𝛺 = (0, 100) ×
(0, 100) × (0, 100) which is crossed by a conductive planar fracture 𝛤1
connected by the points (0, 0, 80), (100, 0, 20), (100, 100, 20), (0, 100, 80)
with a thickness of 𝜖 = 10−2. The matrix permeability is heterogeneous
and is taken to be 𝑲 = 10−6 when 𝑧 ≥ 10 and 𝑲 = 10−5 when 𝑧 < 10.
𝑚 𝑚

https://git.iws.uni-stuttgart.de/benchmarks/fracture-flow
https://git.iws.uni-stuttgart.de/benchmarks/fracture-flow
https://git.iws.uni-stuttgart.de/benchmarks/fracture-flow
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Fig. 13. Example 3. Pressure along line 𝑦 = 5∕7 (left column) and along line 𝑥 = 625∕700 (right column). Here reference data for case (a) is the result for the Mortar-DFM scheme
in Flemisch et al. (2018).
The fracture conductivity is 𝑘𝑐 = 0.1 so that 𝜖𝑘𝑐 = 10−3. We apply the
Dirichlet boundary conditions on the two boundaries

𝛤𝑖𝑛 ∶= {0} × (0, 100) × (90, 100), 𝛤𝑜𝑢𝑡 ∶= (0, 100) × {0} × (0, 10),

where 𝑝 = 4 on 𝛤𝑖𝑛 and 𝑝 = 1 on 𝛤𝑜𝑢𝑡. No flow boundary conditions is
used on the rest of the domain boundary.

In this example, we apply the HDG scheme (5) with degree 𝑘 = 0, 1, 2
on two uniform hexahedral meshes with mesh size ℎ = 10 (1000 cubic
cells) and ℎ = 5 (8000 cubic cells) where we take 𝑠𝑐 = 2 and 𝐶𝑐 = 1 for
𝑘 = 0, and 𝑠𝑐 = 3 and 𝐶𝑐 = 1 for 𝑘 = 1, 2 in the stabilization parameters.
Here the characteristic length in (5h) is 𝐿 = 100. We plot in Fig. 15
11
pressure along the diagonal line (0, 0, 0) − (100, 100, 100) together with
reference data provided in Berre et al. (2021) which is obtained from
the USTUTT-MPFA method therein on a mesh with approximately 1
million matrix elements. Good agreement with reference solution is
observed for 𝑘 = 1 and 𝑘 = 2. The results for 𝑘 = 0 is slightly off,
but it improves as mesh refines.

Example 5 (Network with Small Features in 3D). This is the third bench-
mark case proposed in Berre et al. (2021), in which small geometric
features exist. The domain is the box 𝛺 = (0, 1) × (0, 2.25) × (0, 1),
containing 8 planer conductive fractures; see Fig. 16. Homogeneous
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Fig. 14. Example 3. Pressure contours for 𝑘 = 0 (left), 𝑘 = 1 (middle), and 𝑘 = 2 (right). Top row: case (a). Middle row: case (b). Bottom row: case (c). Color range: (0,1). Thirty
uniform contour lines from 0.01 to 0.99.
Fig. 15. Example 4. Pressure along line (0, 0, 0) −−(100, 100, 100). Here reference data is the result from the USTUTT-MPFA scheme in Berre et al. (2021) on a mesh with roughly
1 million matrix elements.
Dirichlet boundary condition is imposed on the outlet boundary

𝜕𝛺𝑜𝑢𝑡 ∶= {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 1, 𝑦 = 2.25, 𝑧 < 1∕3 or 𝑧 > 2∕3},

inflow boundary condition 𝒖 ⋅ 𝒏 = −1 is imposed on the inlet boundary

𝜕𝛺 ∶= {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 1, 𝑦 = 0, 1∕3 < 𝑧 < 2∕3},
12

𝑖𝑛
and no-flow boundary condition is imposed on the remaining bound-
aries. The permeability in the matrix is K𝑚 = 1, and that in the fracture
is 𝑘𝑐 = 104. Fracture thickness is 𝜖 = 0.01. The locations of these 8
fractures can be found in the git repository https://git.iws.uni-stuttgart.
de/benchmarks/fracture-flow-3d where a sample gmsh geometric file
was also provided. This problem is very challenging due to the small

https://git.iws.uni-stuttgart.de/benchmarks/fracture-flow-3d
https://git.iws.uni-stuttgart.de/benchmarks/fracture-flow-3d
https://git.iws.uni-stuttgart.de/benchmarks/fracture-flow-3d
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Fig. 16. Example 5: Conceptual model and geometrical description of the domain.
Fig. 17. Example 5. Pressure contour on the plane 𝑧 = 0.7 for 𝑘 = 0 (top), 𝑘 = 1 (middle), and 𝑘 = 2 (bottom). Left: fitted mesh (1̃48k cells). Right: unfitted mesh (1̃32k cells).
intersections among the fractures exist. The reported works in Berre
et al. (2021) showed large discrepancies among the 16 participating
methods.

Here we run simulations for the scheme (5) with 𝑘 = 0, 1, 2 on two
meshes: a fitted mesh with about 148k tetrahedral cells obtained from
the above mentioned gmsh file with maximal mesh size ℎ ≈ 0.074
and minimal mesh size ℎ ≈ 0.01, and an unfitted mesh with about
132k tetrahedral cells obtained from local mesh refinements of a coarse
uniform mesh near the fractures with maximal mesh size ℎ ≈ 0.26 and
minimal mesh size ℎ ≈ 0.026. The penalty parameters for polynomial
degree 𝑘 = 0, 1, 2 on these two meshes are shown in Table 2, where
the characteristic length 𝐿 = 2.25. We first show the pressure contours
along the plane 𝑧 = 0.7 which intersects with 6 fractures in Fig. 17,
from which we observe large variations among the results on the two
13

meshes, especially for 𝑦 ≥ 1 where the fractures near the outlet starts
to interact with the flow. This observation is in line with the findings
in Berre et al. (2021) where significant difference among participating
methods were reported for the pressure distribution along the center
line (0.5, 1.1, 0) − (0.5, 1.1, 1.0), suggesting that the small features of the
fracture network geometry may be not adequately resolved on these
meshes. We also plot the pressure distribution along this center line in
Fig. 18, where the shaded region depicts the area between the 10th
and the 90th percentile of the published results in Berre et al. (2021)
on similar meshes about 150𝑘 cells. It is observed from this figure
that our results on both meshes are within the range of the published
results in Berre et al. (2021), and that the results on the fitted mesh
may be more accurate as it is closer to the reference solution from
USTUTT-MPFA on a mesh with roughly 1 million cells.
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Fig. 18. Example 5. Pressure along line (0.5, 1.1, 0)−−(0.5, 1.1, 1.0). Here reference data is the result from the USTUTT-MPFA scheme in Berre et al. (2021) on a mesh with roughly
million matrix elements. The shaded region depicts the area between the 10th and the 90th percentile of the published results in Berre et al. (2021) on similar meshes with
bout 150𝑘 cells.
Fig. 19. Example 6. Conceptual model and geometrical description of the domain.
Table 2
Example 5. Choice of the penalty parameters for different polynomial degree and
meshes.
𝑘 Fitted mesh Unfitted mesh

𝐶𝑐 𝑠𝑐 𝐶𝑐 𝑠𝑐
0 5 2 2.5 2
1 0.7 3 0.7 3
2 3.5 3 0.7 3

Example 6 (Field Case in 3D). In our final numerical example, we
consider a similar setting as the last benchmark case proposed in Berre
t al. (2021). The geometry is based on a postprocessed outcrop from
he island of Algerøyna, outside Bergen, Norway, which contains 52
racture. The simulation domain is the box 𝛺 = (−500, 350)×(100, 1500)×
−100, 500). The fracture geometry is depicted in Fig. 19. Homogeneous
irichlet boundary condition is imposed on the outlet boundary

𝛺𝑜𝑢𝑡 ∶= {−500} × (100, 400) × (−100, 100)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝜕𝛺𝑜𝑢𝑡,0

∪ {350} × (100, 400) × (−100, 100)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝜕𝛺𝑜𝑢𝑡,1

niform unit inflow 𝒖 ⋅ 𝒏 = 1 is imposed on the inlet boundary

𝛺𝑖𝑛 ∶= {−500} × (1200, 1500) × (300, 500)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝜕𝛺𝑖𝑛,0

∪ (−500,−200) × {1500} × (300, 500)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝜕𝛺𝑖𝑛,1

.

Matrix permeability is K𝑚 = 1, and fracture thickness is 𝜖 =
−2
14

10 . Similar to Example 3 in 2D, we consider three subcases: (a)
all conductive fractures with permeability 𝑘𝑐 = 104, (b) all blocking
fractures with permeability 𝑘𝑏 = 10−4 m2, and (c) 2 blocking fractures
with 𝑘𝑏 = 10−4 and 50 conductive fractures with 𝑘𝑐 = 104. Location of
the blocking/conductive fractures for case (c) are marked in red/blue
in the right panel of Fig. 20.

We perform the method (5) on two unfitted meshes; see Fig. 20 for
the fine mesh. The coarse mesh contains 27𝑘 tetrahedral cells which is
obtained by performing two steps of local mesh refinement around the
fractured cells of a uniform background mesh with ℎ ≈ 200. And the
fine mesh contains 210𝑘 cells with 57.6𝑘 fractured cells which spits
to 47.8 conductive fractured cells and 9.8𝑘 blocking fractured cells for
case (c), which is a further uniform refinement of that coarse mesh. As
in the previous examples, we take polynomial degree 𝑘 = 0, 1, 2. For
the penalty parameters, we take 𝐶𝑏 = 1, 𝑠𝑏 = 2, 𝐶𝑐 = 1 and the scaling
power 𝑠𝑐 = 3 for 𝑘 = 1 and 𝑘 = 2, and 𝑠𝑐 = 1 for 𝑘 = 0. Moreover,
for the case 𝑘 = 0 the default choice of stabilization (5h) is too strong
which leads to almost constant (zero) pressure approximations for case
(a). Here we further reduce the stabilization for 𝑘 = 0 by a factor of
𝐿 = 1400.

The pressure along the two diagonal lines (−500, 100,−100)–(350,
1500, 500) and (350, 100,−100)–(−500, 1500, 500) are shown in Figs. 21–
23 for all three cases, where for case (a) the shaded region depicts
the area between the 10th and the 90th percentile of the published
results in Berre et al. (2021) on fitted meshes with about 260𝑘 cells. It is
observed that all methods produce qualitatively similar results for each
case, even on the coarse mesh. And our results for case (a) is consistent
with the published results in Berre et al. (2021).

We now plot the pressure profile on the fine mesh for 𝑘 = 2 for the
three cases in Fig. 24. These contour plots are similar to the 2D results
where the effects of conductive and blocking fractures are completely
different as expected.

Let us finally briefly comment on the computational cost on the fine

mesh where the major bottleneck is the global linear system solve. Here
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Fig. 20. Example 6. Blocking (red) and conductive (blue) fractured cells on the fine mesh with 216816 cells for case (c). Here the mesh is translated in the 𝑧-direction for 𝑧 < 100
and 𝑧 > 400 for better data visualization.

Fig. 21. Example 6: Case (a). Pressure along line (−500, 100,−100)–(350, 1500, 500) (top) and line (350, 100,−100)–(−500, 1500, 500) (bottom). The shaded region depicts the area
between the 10th and the 90th percentile of the published results in Berre et al. (2021) on fitted meshes with about 260𝑘 cells.
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Fig. 22. Example 6: Case (b). Pressure along line (−500, 100,−100)–(350, 1500, 500) (top) and line (350, 100,−100)–(−500, 1500, 500) (bottom).
Fig. 23. Example 6: Case (c). Pressure along line (−500, 100,−100)–(350, 1500, 500) (top) and line (350, 100,−100)–(−500, 1500, 500) (bottom).
we use NGSolve’s built-in parallel sparse Cholesky factorization to solve
this global SPD linear system on a 64-core server with two AMD EPYC
7532 processors which has 256 G memory. For 𝑘 = 0, there are 439𝑘
global DOFs, and the linear system solver takes 30 G memory and 4 s
wall clock time; for 𝑘 = 1, there are 1.32 million global DOFs, and the
linear system solver takes 50 G memory and 48 s wall clock time; for
𝑘 = 2, there are 2.64 million global DOFs, and the linear system solver
takes 100 G memory and 285 s wall clock time. More efficient solver
16
like multigrid may significantly reduce the memory consumption and
overall solver time. We will investigate this issue in our future work.

4. Conclusion

We presented a novel HDG scheme on unfitted meshes for fractured
porous media flow with both blocking and conductive fractures based

on the RDFM using Dirac-𝛿 functions approach to handle the fractures.
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Fig. 24. Example 6. Pressure contour for 𝑘 = 2 on the fine mesh. Left: case (a). Middle: case (b). Right: case (c).
Well-posedness of the method is established. Our scheme has a simple
form, which can simultaneously handle blocking and conductive frac-
tures using unfitted meshes. In fact, we simply modify a regular porous
media flow HDG solver by including two surface integrals related
to the blocking and conductive fractures which are represented as
(multi-)level set functions, and properly adjust the penalty parameters
in the numerical flux on those fractured cells. No lower dimensional
fracture modeling is needed in our approach. Besides the ease of using
unfitted meshes in our scheme, we also maintain local conservation as
typical of DG methodologies. Moreover, the resulting linear system can
be solved efficiently via static condensation, which leads to a global
coupled SPD linear system, and higher order pressure postprocessing is
also available. The proposed HDG scheme is extensively tested against
various benchmark examples in two- and three-dimensions. Satisfactory
results are observed even when both blocking and conductive fractures
co-exist in the computational domain.

Our future work includes the detailed study of the stabilization func-
tion on the performance of the scheme, and their variable-order and
hybrid-mixed variants. We will also investigate robust preconditioning
techniques for the global SPD linear system, and extend our solver to
multiphase fractured porous media flows.
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