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We design and compute first-order implicit-in-time variational schemes with high-order
spatial discretization for initial value gradient flows in generalized optimal transport
metric spaces. We first review some examples of gradient flows in generalized optimal
transport spaces from the Onsager principle. We then use a one-step time relaxation
optimization problem for time-implicit schemes, namely generalized Jordan-Kinderlehrer-
Otto schemes. Their minimizing systems satisfy implicit-in-time schemes for initial value
gradient flows with first-order time accuracy. We adopt the first-order optimization scheme
ALG2 (Augmented Lagrangian method) and high-order finite element methods in spatial
discretization to compute the one-step optimization problem. This allows us to derive
the implicit-in-time update of initial value gradient flows iteratively. We remark that
the iteration in ALG2 has a simple-to-implement point-wise update based on optimal
transport and Onsager’s activation functions. The proposed method is unconditionally
stable for convex cases. Numerical examples are presented to demonstrate the effectiveness
of the methods in two-dimensional PDEs, including Wasserstein gradient flows, Fisher—
Kolmogorov-Petrovskii-Piskunov equation, and two and four species reversible reaction-
diffusion systems.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Dissipative dynamics (gradient flows) are essential models in thermodynamics, chemistry, materials science, biologi-
cal swarming, robotics path panning, and social sciences [19,60]. Nowadays, they also find vast applications in designing
machine learning optimization algorithms and Markov-Chain-Monte-Carlo sampling algorithms [2,15,20,27,28,43,46,70]. In
physics, dissipative dynamics describe that the systems have maximum efficiency, in which dynamics follow from the direc-
tion in which the (negative) entropy/Lyapunov functional dissipates most rapidly. It turns out that the dissipative dynamics
are gradient flows in suitable metric spaces. Fast, efficient, and accurate dissipative dynamics simulations are one of the
central problems in computational fluid dynamics.
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A particular type of gradient flow has been widely studied in optimal transport, where the metric is known as the
Wasserstein-2 metric [3,69]. Typical examples include gradient drift Fokker-Planck equations, porous media equations,
aggregation-diffusion equations, etc. One property of simulating gradient flows is that one can design a proximal method for
computing a variational implicit time algorithm. This algorithm was first proposed by Jordan-Kinderlehrer-Otto (JKO scheme)
to compute Wasserstein gradient flows [33]. Moreover, general gradient flows have been widely studied. They follow the
Onsager principle to design optimal transport-type metric spaces [27,39,55]. Similarly, one can develop variational proximal
methods to compute and simulate gradient flow dynamics.

This paper designs high-order spatial discretization in simulating gradient flow dynamics using variational proximal
schemes in generalized optimal transport metric spaces. We formally illustrate the main computational framework. Consider
a reaction-diffusion type equation:

8 8
dp=V-(Vy (p)Vﬁf(p)) - Vz(p)ﬁs(p), (11)

where p: Q x Ry — R is a scalar density function, 2 c R%, d =1,2,3, is a spatial domain with periodic or Neumann
boundary conditions, V1, V2: Q x Ry — R, are positive mobility functions (Onsager activation functions), and £(p) € R
is a Lyapunov functional (energy). We design a variational implicit time scheme, the linearized JKO scheme [9,42], to update
equation (1.1) as below:

1 [ Im]? Is|?

" =argmin inf
P Vip) " Va(p)

— d & 1.2
P (p.ms) 2At ]X+ (), (1.2a)
Q

where At >0 is a stepsize and the minimization is over all functions p: Q@ — R, m: @ — R¢, and s: @ — R, subject to
the constraint

p—p" ' +V.m=s, onQ. (1.2b)
We use time rescaling of (m,s) in the constraint (1.2b). We then compute variational problem (1.2) iteratively to find the
sequence p", n=1,2,---. This sequence forms an implicit update for gradient flow dynamic (1.1), which is first-order in
time:

pn _ pn—l

n 8 n n 8 n
=V-(Vi(p )V =E(p")) — Va(p) —=E(p") + O(AD).
sp sp
When V1, V, is concave in terms of p, and £ is a convex functional, then the proposed method is unconditionally stable,
meaning that we can take large time steps.
Our framework also works for reversible reaction-diffusion systems with detailed balance [55,30,48]. We illustrate the
main idea for a simple 2-component reversible reaction-diffusion system: Let X;, X, be two species with a single reversible

At

k
reaction X \é Xy, with k_,k; > 0. Let p; and p, be the respective densities of X; and Xy. This leads to the following
k

PDE system [5%,61 I:

o1 — Y1801 = — (kyp1 —k_p2),
02 — V2 Ap2 = (ktp1 —k—p2),
with positive diffusion rates yy, y> > 0. By introducing the following mobility functions,

kip1—k_p2
log(k+ p1) — log(k—p2)

Vii(p) =yio1, Vi2002) =202, Va(o1,02) =

and the energies

&1(p1) = / p1dogkLp1) — Ddx, &E(p2) = / p2(log(k—p2) — 1) dx,
Q Q

the above PDE system can be recast into the following system version of the form (1.1):

§E 8& SE

dp1=V- (V1,1(p1)V8—p1(p1)> — Vy(p1, p2) (5—;@1) - 5—;(,02)) , (13a)
& 8& SE

P2 =V- <V1,2(02)V5—;(,02)> + Va(po1, 02) (5—101(/01) — 5—/02(/02)) , (1.3b)
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which can then be discretized using a similar variational time implicit scheme as (1.2). Here the system is called a strongly
reversible reaction-diffusion system when ky =k_ > 0, is called a reversible reaction-diffusion system with detailed balance when
we allow the two positive reaction rates to be different k; # k_ > 0, and is called an irreversible reaction-diffusion system
when the backward reaction rate is zero k_ = 0; see more detailed in [30,48,55]. Our framework does not directly work
for irreversible reaction-diffusion systems as they do not satisfy an energy dissipation law and can not be formulated back
to the form (1.3). However, we can approximate an irreversible reaction-diffusion system using a reversible one by using a
very small backward reaction rate (see, e.g., [44]) and then solve the reversible system using our formulation.

This paper adopts the augmented Lagrangian (ALG2) optimization method with high-order spatial finite element dis-
cretizations to solve the variational problem (1.2). Using finite element spatial discretization, we also develop a point-wise
update in the optimization step of computing variational problem (1.2). In this sense, we obtain a high-order spatial dis-
cretization scheme in finding the ground state, which is the minimizer of functional £. In this iterative procedure, assuming
that the optimization step finds a global minimizer, the Lyapunov functional £ is guaranteed to decay for any large time
step sizes.

Computational optimal transport and mean field control/games have been widely investigated in [1,4,6,52,58,63,66].
For example, generalized JKO schemes of Wasserstein gradient flows with first-order time accuracy have been studied in
[9,12,26,42,48]. Semi-discretizations of JKO-type schemes have been used in [16]. The Lagrangian type JKO schemes have
been investigated in [13,14,51]. It is also worth mentioning that there are methods for high-order time discretizations of gra-
dient flows [31]. Meanwhile, generalized optimal transport metric spaces have recently been introduced in [11,18,22,54,55].
Study of conservative and dissipative operators in non-equilibrium thermodynamics [56,57,72] is an active research area.
However, there are limited JKO-type computational results for reaction-diffusion systems. We specifically mention the re-
cently introduced variational operator splitting schemes [48-50] for reversible reaction diffusion systems using the energetic
variational framework [29,47]. The studies [48-50] compute implicit schemes for reaction-diffusion equations. They split
Wasserstein-type gradient flows and reaction terms and compute them separately. They first compute the reaction term in
a constructed algebraic equation and then use the implicit scheme to approximate the Wasserstein-type gradient flows. In
our approach, we adopt the generalized Wasserstein-type metric directly, which contains both the Wasserstein metric and
the reaction metric with mobility functions V;{ and V. Using them, we design a scheme to approximate the proximal op-
erator in generalized Wasserstein-type metric space. This forms the generalized JKO scheme. Thus, both algorithms [48-50]
and the proposed method maintain the entropy dissipation properties. The major difference is the implicit time treatment
of reaction terms. We emphasize that the method in this paper leverages the optimization structures in generalized JKO
schemes.

We note that generalized JKO schemes are examples of mean field control (MFC) problems [6,35], which design optimal
control/optimization problems for general initial value evolutionary equations not limited to gradient flows. Computation
and modeling studies of MFCs have been conducted in controlling reaction-diffusion equations [39] and conservation laws
[40,41] with applications in pandemics modeling [37,38]. Compared to the above approaches, we apply high-order spatial
schemes in computing generalized JKO schemes towards initial value gradient flows. We adopt the first-order optimization
method, the augmented Lagrangian method (ALG2), to implement the variational time implicit schemes for two and four
species reversible reaction-diffusion systems.

This paper is organized as follows. We review some concepts of gradient flows, time implicit schemes, and their first-
order optimization methods ALG2 in section 2. Several examples of dynamics, including Wasserstein gradient flows, Fisher-
Kolmogorov-Petrovskii-Piskunov (KPP) equation, and reversible reaction-diffusion systems, are presented in section 3. We
then present a high-order finite element method and derive all implementation details of the optimization algorithm ALG2
in section 4. Numerical examples are presented for two-dimensional Wasserstein gradient flows of linear, interaction, and
potential energies, Fisher-KPP equation, and reversible two and four-species reaction-diffusion systems in section 5.

2. Optimal transport type gradient flows, generalized time implicit schemes, and first-order optimization methods

This section reviews generalized gradient flows and their variational implicit schemes in metric spaces. We also discuss
a one-step time discretization relaxation of variational implicit schemes for generalized gradient flows. Entropy dissipation
properties of variational implicit schemes are introduced. We then present the augmented Lagrangian method (ALG2) as the
optimization solver to compute the variational implicit schemes.

2.1. Optimal transport type gradient flows

In this subsection, we formally review generalized optimal transport gradient flows [14,22,55]. This is known as the
Onsager gradient flow [19]. We next discuss a class of variational schemes to compute implicit-in-time solutions of gradient
flows.



G. Fu, S. Osher and W. Li Journal of Computational Physics 491 (2023) 112375

2.1.1. Gradient flows and entropy dissipations
Consider an initial value equation

1) )
ko, ) =V - (Vi(pkx, ))V_—E(P)(x,0)) — Va(px, ) —=E(P)(x, 1), te€[0,00)
sp 3p (2.1)

p(x,0) = p°(x).

Here x € @ ¢ RY, Q is a spatial domain with periodic boundary condition or Neumann boundary condition (detailed in later
sections), p: € x Ry — R is a scalar non-negative density function satisfying

p(-,t)eM:{p: Q- R: ,o(x,t)zO},

for any time t, £: M — R is an energy functional, V1, V,: R — R are positive mobility functions, % is the first variation
operator in L? space, and p° € M is an initial condition. Equation (2.1) forms a class of equations, including Wasserstein
gradient flows and the Fisher-KPP equation [64,23,34]. Detailed examples of V4, V3, and £ are provided in the next section,
where we also discuss the extension of (2.1) to reaction-diffusion systems.

Equation (2.1) is purely dissipative. Denote p(-,t) as the solution of the PDE (2.1), then the energy functional & is a
Lyapunov functional. In other words, the first-time derivative of the energy functional £ is nonpositive, satisfying

Lot
E(PC, D)

/C p
Q

where we use the fact that V{(p) >0, and V2(p) > 0 in the above inequality.

2.1.2. Metric operators and distances

The dissipation of the energy functional also induces a metric function in space M, which further defines distances
between two densities p°, p! € M. This distance designs an implicit time variational problem for computing the gradient
flow in metric spaces. See details among optimal transport type gradient flows, distances, and mean-field control problems
in [3,39,55].

We directly present generalized optimal transport type distances and the time implicit schemes below for simplicity of
discussion.

Definition. Distance functional. Define a distance functional Disty, v,: M x M — R, as below. Consider the following
optimal control problem:

Disty, v, (0%, p!)?
(2.3a)

P,V1,V2

1
= inf //[||vl<x,r)||2v1(p(x,t>>+|vz(x,t>|2vz(p<x,r))]dxdr,
0 Q

where the infimum is taken among p: Q x [0, 1] —> R4, vy, vy:  x [0,1] > RY, such that p satisfies a reaction-diffusion
type equation with drift vector field vi, drift mobility V1, reaction rate v, reaction mobility V;, connecting initial and
terminal densities p°, pl:

{sz(x, )+ V- (Vi(px, T)vi(x, 7)) = Va(p, T))v2(x,T), T€[0,1], (2.3b)
p(x,0)=px), pkx,1)=p'x). '

Variational problem (2.3) is a generalized Benamou-Brenier formula [5], where they consider V{(p) = p, V2(p) =0.
One common practice is the following change of variable formula, which leads to a linear constraint optimization problem.
Denote a moment vector function m: Q x [0, 1] — R? and a source function s: © x [0, 1] — R, such that

mx, 7) =Vi(px, 1)vix, 1), s, 7)=Va(pX, 1)Vv2(X, 7).
Using variables m, s, variational problem (2.3) satisfies

1

: 0 12 . Imx, DII> | Isx, 7)]?
Distvy.v (07, p1)7:= ol 0/ Q/ [vl(p(x, o Voo, r>>]d"df’
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such that
I p(x, 1) +V -mkx, 1) =5(x,7), pkx 0 =0, px1)=p'E.

2.1.3. Variational time implicit schemes and properties
We next design a variational implicit-in-time scheme to update gradient flow (2.1) iteratively.

Definition. Variational time implicit scheme. Denote At > 0 as a time step size. Consider the scheme below:
p=arg min  —Disty, v, (0" p)* +£(p) (2.4)
peM  2At 1-+2 ’ ’ ’
where Disty, v, (p"1, p)? is the distance functional defined in (2.3) between current density p and previous step density

p"~1. After suitable time rescaling, one can show that the minimization scheme (2.4) requires solving the following optimal
control problem:

At
2 2
inf 1/[ Imex, DI s, o) Jaxdz +£(pa0,
N R 20 J Vilp(x,7))  Va(p(x, 7)) (2.5a)
= e Distv;.v, (071, 0)?
such that
0rp(x, T)+V-mx,7)=5s(x,7), Te€[O0,At], (2.5b)
p(x.0)=p"""(x), Pk AL = par(). (2.5¢)

The next step solution p" is the density minimizer of (2.5):

P"(X) = par(x).
We demonstrate that the variational scheme (2.4) is a first-order accurate implicit in time scheme, i.e.,

pn _ pn—l

n 0 nyy _ n i n
N )%5(,0 ) = Va(p )8p5(P )+ O(AD).

Proof. We write the minimization system of variational problem (2.5). Denote ®(x,7) € R, t € [0, At], as the Lagrange
multiplier. The optimal condition of variational problem (2.5) satisfies the following saddle point problem:

inf  sup L(pat, p,m,s, D), (2.6)
PAL PS¢

where

At
1 m(x, 7)||% s(x, T)[2
£(pm,p,m,s,<b):=§//[” * Ol + IS 7)| )]dxdr+£(,oAt)
0 Q
At

Vilp(x, 7)) Valp(x, 1)
+//d>(x, r)(B,,o(x,t)—l—V-m(x,r)—s(x,'c))dxdr
0 Q
We note that from integration by parts,
At At
//CD(X,‘L')EJI,O(X, T)dxdt = —//3ICI>(X, T)p(x, T)dxdt
0 Q 0 Q

+ / D (x, At) par(x)dx — / @(x,0)p" 1 (x)dx.
Q Q

By computing the saddle point of (2.6), we derive
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2 L=0, ifp>0 Imj> s>, .
) ’ _—V ——V —3 qD:O, f Ov
8p 2V1(p)2 1(0) 2V2(p)2 2(p) T o>
8 m
=0 —V®=0,
Vi(p)
8
8—[':07 = s —
; Va(p)
=0, m=
5D drp+V-m (Ss,
’ Lo, O(x, Ab) + ——E(par) = 0.
80t 3pat

Thus we obtain a minimization system:
depX, T)+ V- (Vi(px, 1))V, 1)) = Va(p(X, 7)) DX, T),
pO.%)=p""(x), DX A= —%5(0)@),
where @ satisfies the Hamilton-Jacobi-type equation when p(x, t) > 0, such that
9 (x, T) + %nvw, DIPVi(p(. ) + DX, )P V3 (k. 7)) = 0.
We approximate the equation of p(x, T) at T = At:
P, AD =p(x.0) = ALV (V1(p(x, THVERX, T)) = Va (o DNOX, T) | le=a + O(AD
=p(x.0) + AtV (Vs (p”(x))V%s(p”xx)) - Vz(P"(X))%S(/O")(X)] +0(ab),
where we denote p"(x) = p(x, At). This finishes the proof. O

In fact, for first-order implicit time accuracy, one can use the one-step approximated minimization scheme. In other
words, we only use a local time approximation of distance functional to compute the implicit time scheme.

Definition. One-step relaxation of variational time implicit scheme. Consider

1 m(x)||% s(%)|?
L [ImIR P 3, e, (27)
pms 28t ] LViGot0) " Vato®)
~ kg Distyy v, (0, p" 1)
where the minimization is over all functions m: € — RY, s: Q - R, and p: © — R, such that
px) — p" (%) 4+ V- m(x) = s(x). (2.7b)

Denote the next step solution p" as the density minimizer of (2.7).
We also demonstrate that the variational scheme (2.7) forms a first-order implicit time scheme for the PDE (2.1).

Proof. The proof is similar to the one in (2.5). Denote ®(x) as the Lagrange multiplier. The optimal condition of the varia-
tional problem (2.7) satisfies the following saddle point problem:

inf sup L(p,m,s, D),
p.M,S ¢

where

Is(x)|?
Va(p(x)

2
L(p,m,s, D) ::1/[ Im@)l + ]dx—i— AtE(P)

2) LVi(p®)
Q

+/<I>(x)(,o(x) — " )+ V -mx) —s(x))dx.

Q
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By computing saddle point of the above system, we derive

8 2 2
—L£=0 Imi= Is| / s
’ —|—=V —V At—E& o =0,
sp [2V1(p)2 1(p)+2V2(,0)2 2(,0)]+ 3p (p) +
8 m
smi=0 —Vd =0,
5 =1 Vi(p)
L=0. s
s Va(p) ’
—L=0, _ ,n—1 . —
5D p—p  +V.-m=s.

One can check that ® = —At%g(p) + o(At). Thus

propt =V (V (p")ViS(p”)) -V (p”)iﬁ(p") + O(Al)
At ! sp 250 '
Here p" = p is the density minimizer. This finishes the proof. O

We remark that solving the variational problem (2.7) is simpler than optimizing (2.5), since (2.7) only involves a local
time distance approximation; see [42,9]. We also present some properties of the implicit variational scheme (2.7). The
algorithm satisfies the entropy dissipation property for any step size At > 0.

Proposition 2.1 (Time implicit scheme entropy dissipation). Denote the solution { o™}, solving the variational implicit scheme (2.7).
For any stepsize At > 0, we have

E(P™) <&,  forneN,.

Proof. Denote the objective functional (2.7a) as

1 [Ilm(X)II2 + |s()[?

d (p,m,s):mﬂ Vi) T Vap(0)

]m+5@y (2.8)

Since (p"~',m=0,s=0) is a feasible point satisfying the constraint (2.7b), and (", m*, s*) is an optimal solution of (2.7),
we have

E(P™) < F(p",m*,s*) < F(p"1,0,00 =E(p" ),

where we use the fact that

1 /[Ilm*(x)ll2 + |s* ()12

fn,*,*zgn —_— dx > E(p").
(p7,m, s7) = £(07) + Vi) Vz(,O”(X))] *z E(07)

2At
Q

We finish the proof. O

We also remark that there are issues of convexity in computing minimizers of the variational problem (2.7). If V; and
V5 are concave w.rt. p, then the minimization problem (2.7) is always convex for any positive step size At. In general,
this fact may be lost for general mobility functions V1 and V;. In computations, we still apply the first-order optimization
algorithm to compute the variational problem (2.7), where we suggest a small stepsize At in the iterative update.

2.2. The abstract ALG2 algorithm

In this subsection, we formulate saddle point problems to calculate the variational time implicit schemes (2.7); see also
[24,5].
We present the general form of the augmented Lagrangian (ALG2) algorithm [24] for the following saddle point system:

infsup F(u) — G(®) — (u,Dd)q, (2.9)
L)

where D(®) is a linear differential operator for ®, and (-, -)q stands for the L2-inner product on the domain . For the
problem (2.7), we choose

u=(p,m,s),
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with

1 fpmiE g [
F(u)_ggf[vl(p) + Vz(p)]dx+At5(,o), G(<b)_9/,0 ®dx,

and
DO =(—9,VP, D).
The algorithm starts with the dual formulation of the saddle-point problem (2.9):
sup qinf F*(u*) + G(®) + (u, Dd —u*)q, (2.10)
u ou*

where F*(u*) = sup, (u, u*)qg — F(u) is the Legendre transform. The saddle point of the above system is equivalent to the
saddle point of the following augmented Lagrangian form:

sup inf* Li(®,u,u*), (211)

u <I>,u

where the augmented Lagrangian
r
L:(®,u,u*):=F"W*) +G(®)+ u,Dd® —u*)g + E(DQ —u*, DO —uM)gq,

in which r is a positive parameter.
The ALG2 solves the optimization problem (2.11) in a splitting fashion. One iteration contains the following three steps.

Algorithm 1 One iteration of ALG2 algorithm for variational implicit scheme (2.11).

o Step A: update ®. Minimize L, (%, u, u*) with respect to the first argument by solving the elliptic problem: Find ®¢ such that it solves

infLy (@, u’~" ut1).
)
e Step B: update u*. Minimize L,(®, u, u*) with respect to the last argument by solving the nonlinear problem: Find u*¢ such that it solves
infL (@, u’~1, u*).
pre
e Step C: update u. This is a simple pointwise update for the Lagrange multiplier u :

u =u (DOt —uh). (212)

We note that the key success of the ALG2 Algorithm 1 is that Step A is a simple linear reaction-diffusion equation
solve, while the nonlinear Step B can be efficiently solved in a point-wise fashion, provided a good spatial discretization
is used for the discretization variables; see Algorithm 2 below. We note that for the system case, further splitting in Step
A/B for each component calculation will be applied to further save the computational cost; see Algorithm 3 below. We
will present details of the implementation in Section 4 where the high-order spatial discretization is introduced. The error
in the Lagrange multipliers in two consecutive iterations u¢ — uf~! can be used to monitor the convergence of the ALG2
algorithm. Typically, a couple of hundred ALG iterations is sufficient for time accuracy. We take 200 ALG iterations in all
our numerical results reported in Section 5. We note that after a spatial finite element discretization (see Section 4 below),
the computational complexity of one ALG iteration is linear with respect to the total number of degrees of freedom. The
proposed algorithm is highly parallelizable, as Step A can be solved using an optimal complexity multigrid solver, and Step
B is a pointwise update that is embarrassingly parallelizable. The parallel implementation of this algorithm is our ongoing
work.

3. Examples: Wasserstein gradient flow, reaction-diffusion equations, and reversible reaction-diffusion systems

This section presents examples of dissipative dynamic systems that fit in the framework of the previous section: Wasser-
stein gradient flows, scalar reaction-diffusion equations, and reversible reaction-diffusion systems.
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3.1. Wasserestein gradient flow

We consider the following L?-Wasserstein gradient flow for a time-dependent probability density p: Q2 x Ry — R, on
a domain Q c RY,

o=V (pvizr(p)) : (3.1)
5p

subject to Neumann boundary conditions. Typically, the energy functional £(p) takes the following form

1
E(p) = / [aUm(p(X)) +pX)V X + E(W * p)(X)p(X)} dx, (3.2)

where o > 0 is the diffusion coefficient, U, (p) is the diffusion term with

plog(p) ifm=1,
oM

m= 1fm>l,

Un(p) = {
pV is the drift term with drift potential V, and %(W * p)p is the aggregation term with the convolution

W % p)(x) :=/W(X—y)p(y)dy,
Q

in which W (-) is the symmetric interaction kernel. Its variational derivative is
$
ﬁgzau;n(p)+v+w*p. (3.3)

The equation (3.1) is mass conserving, positivity preserving, and satisfies the energy dissipation law (2.2) with Vi(p) = p
and V,(p) =0.

This model is a special case of (2.1) with V{(p) = p, V2(p) =0, and energy functional £ in (3.2). The corresponding
one-step variational time implicit scheme (2.7) is
1 [m)|1*

inf — [ ——d 3.4
inf o () x+E(p), (34a)
Q

where the minimization is over all functions m: @ — R, and p: € — R, such that

px) — p" 1 (x)+ V- -m(x)=0. (3.4b)

The next step solution p" is the density minimizer of (2.7), i.e., p"(x) = p(x). Here the first term in (3.4a) is the one-
step relaxation approximation of the classical Wasserstein distance in Benamou-Brenier’s dynamic formulation [5], i.e., the
distance in (2.3) with V1(p) = p and V,(p) = 0. We note that such approximation was originally used in [42,9].

This problem is equivalent to finding the saddle point of (2.9) in which u = (p, m),

2
F(u):/ ”';1))' dx + AtE(p), G(¢)=/p”_l¢dx,
Q Q

and D® = (—d, V), which can be solved using ALG2 Algorithm 1 after a spatial discretization is used; see Section 4.
3.2. Dissipative reaction-diffusion equation

Adding a reaction term of form —Vz(,o)%é' with a non-negative mobility function V;(p) > 0 to the PDE (3.1), we get
the following reaction-diffusion equation:

) §E
okp=V- V— -V — 3.5
£ 0 (P 5,()8) 2(/0)8'0, (3.5)

which is again a special case of (2.1), with V1(p) = p, and a general non-negative function V,(p). Hence, the corresponding
one-step variational time implicit scheme (2.7) is

1 [nm(x)n2 s(x)|?
in — +
p.ms  2At J p(X) Va(p ()

]dx—i— £(p), (3.62)
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where the minimization is over all functions m: € — R9, s: @ > R, and p: € — R, such that

P — p" 71X + V mE) =5(x). (3.6b)
This is the saddle point of (2.9) in which u = (p,m,s),

CfrimiE g [
F(u)_/[ 3 +2V2(p)]dx+ms<p>, G(@)-/p ®dx,
Q Q

and D = (-, VY, P).

We will postpone the introduction of a model with a more general V1(p) # p to Section 3.4.1, where a two-component
reversible reaction-diffusion system with detailed balance is discussed.

Below we list three choices of V;(p) along with their corresponding energies that will be used in our numerical experi-
ments:

(i) V2(p) =cp¥ where c >0 and y € R, with a general £(p) given in (3.2). Here y =1 corresponds to the Wasserstein-
Fisher-Rao metrics used in [17,45], and y =0 is related to unnormalized optimal transport [36]. Both cases lead to a
convex optimization problem (3.6) when the energy is convex; see Remark 4.3 below.

(ii) Va(p)=c % where ¢ > 0 with a general £(p) given in (3.2). This choice also leads to a convex optimization problem
for a convex energy.

(iii) Va(p) = Lb=D) " \yith energy E£(p) := fQ ap(x)(log(p) — 1)dx, where o > 0. This model is the following Fisher-KPP

77 alog(p)’
equation; see [39, Example 7]:
ap
E—V-(avp)zp(l -p). (3.7)

It, however, does not lead to a convex optimization problem.
3.3. Strongly reversible reaction-diffusion systems

Our next model deals with the system of strongly reversible reaction-diffusion equations [55]. We consider M different

chemical species X1, ..., Xy reacting according to R mass-action laws:
p p K p p
a; X1+ oy Xy = B X1+ + By Xm, (3.8)
kP
where p=1,---, R is the number of possible reactions, P = (&}, -, ab), B = (BY,---, B¥) e N} are the vectors of

the stoichiometric coefficients, and kf’r,k’l are the positive forward and backward reaction rates. For simplicity, we restrict
ourselves to the strongly reversible case where kﬂ =kP” =kP > 0 in this subsection. The next subsection will discuss the
more general case of reversible reaction-diffusion systems with the detailed balance that allows ki £kP > 0.

Combining the mass-action laws (3.8) with (independent) isotropic linear diffusion with energy &;(p;) = fQ pi(log(pi) —
1) dx for each density p; of species X;, we get the following reaction-diffusion system:

R
8
0pi — V- <y,-piv %a(m) = =Y K@ = (™ - P, (39)
p=1
p
for 1 <i <M, where p = (p1, -, pm) and the multi-index notation p"‘p = I—[f\il ,0;1" is used. Here the potential %Si(p,-) =

log(p;) is simply the logarithm.
Next, we recast the above system (3.9) back to a system version of the general dissipative form (2.1) using appropriate
mobility functions. We introduce the following function; see [55]:

X—y
log(x)—log(y) forx#y,
Ux, y) = (3.10)
y forx=1y,
and denote the following mobility functions:

Vii(pi) =vipi, Y1<i<M, (3.11a)
Vap) =k e (p*, "), Vi=p=R. (3.1b)

10
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Using these notations, it can be shown that (3.9) is equivalent to

)
opi=V- (Vl,i(,Oi)V%&(PiO

R M
=D Vap(e)ef — B Y @ ﬁ, )— 5,(p1) (312)
j=1

p=1
It is now clear that the above system is purely dissipative as for the scalar case (2.1). That is, the first-time derivative of the
total energy functional is nonpositive and satisfies

dtZ&(m( )= - Z/nv EPD (% DIPV1,i(p) d

i=1¢
2 (3.13)
R M
- [ e -8 )—s,<p]> Va.p(p) dx.
p=1 Q |i=
As in the scalar case in Definition (2.3), we consider an optimal transport type distance:
il s Ispl?
Disty, v, ( 2 — 1nf // S P dxdr :
v P p V] i(oi) I; Vap(P)

dpi+V mi=Y 5 @ —pP)sp VI<i<M, ]
p(.0)=p" p(.1)=p! ’

where m = (my, ---,myy) is the collection of fluxes, and s = (s1, -- -, Sg) is the collection of sources. Using this distance, the

variational time implicit scheme is defined as follows (compare Definition (2.4) for the scalar case).

Definition. Variational time implicit scheme for system (3.12). Denote At > 0 as a time step size. Consider the scheme below:

M
1
= —Dist 0P+ o). 314
p" argp%M SAr ISty v, (07, p) +i=l i(pi) (3.14)

Its one-step relaxation is given as follows, which is the starting point of our spatial discretization to be discussed in the
next section.

Definition. One-step relaxation of variational time implicit schemes for system (3.12). Consider

R M
. Imil® / Ispll?
inf X + dx | + &i(pi), 3.15a
pms  2At Z/ Vlz(Pz ,,Z:Q V2p(p) ; o o

where the minimization is over all functions m: Q@ — [RM, s: @ — [R]X, and p: @ — [R]™, such that

R
pix) = P )+ Vom0 =) (@ - BP)sp(0, V1<i<M. (3.15b)
p=1
The next step solution p" is the density minimizer of (3.15). It is the saddle point of (2.9) in which

u=(o1, -+, pmM, M1, ,Mp,S1, -+ ,SR), D =(P1,---, Ppm),
||2

Im; / lsp 12 u / .
, G(®)= L d;dx,
T 2At Z/ V11(/0: Z Va,p(p) dx ( ;Q fi *

and

DO =(—P1, -, =Py, VP, -+, VD,

M M
D (e = BH®i Y (@f = B
i=1 i=1

11
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3.4. Reversible reaction-diffusion system with detailed balance

Note that the strongly reversible reaction-diffusion system (3.12) uses the same energy &;(p;) = fQ pi(log(p;) — 1) dx for
all species. By simply relaxing this requirement and rescaling the energy as

Ei(p) = / pi(log(kip) — 1) dx, (3.16)
Q

with «; > 0 being a positive constant to be determined by the reaction rates kpi, we will recover reversible reaction-diffusion
systems with detailed balance; see [30,48-50]. For the above choice of energy, there holds

$
—&i(pi) = log(k;p;).
3p i(0i) g(Ki i)
Below we give two specific examples that will be used in the numerical results section.
3.4.1. A two species model
We consider two species X1, X, with a single reversible reaction
k+

X1 +2X; = 3Xa,
k

with k_, k; > 0. Denoting the following coefficients and mobility functions,

K1=ky, Kk2=k_, (3.17a)
Vii(p) =v1(pD)", Vi2(02) =y2p2, (3.17b)
Va1, p2) = LK1 0193, K23, (3.17¢)

with £(-,-) given in (3.10), y1,y2 > 0, m > 1, and using the energy (3.16), the system (3.12) written in component-wise
notation is given as follows:

& 8E &
1=V (v1,1(m)v5—p1<p1>) — Va(p1, p2) (8_,01('01) - 8—;(,02)) : (3.18a)
dpp=V-(V v v 861 862 (3.18b)
ko2 =V | V12(02) %(PZ) + Va(p1, p2) 5(,01) - 5(,02) . .

This is the following two-component reversible reaction-diffusion system studied in [48,49], which has potential applications
in modeling tumor growth (see [53,62]):

41
m
dcp2 — Vap2 = (ks 0103 —k_p3).

dp1 — = ApY = — (kyp1p; —k_p3).

3.4.2. Areversible four-component Gray-Scott model
Our final example is the reversible four-component Gray-Scott model originally proposed in [44] and numerically studied
in [49]. We consider four species X1, X2, X3, X4 with three reversible reactions

13 k2 54
X1+2Xo =3X3, X = X3, X1 = X4.
kL k2 K

The reaction-diffusion system that combines these reactions with linear diffusion (with M =4, R = 3) can be written into
the form (3.12) by the following specific choices of «-values, and mobility functions V1 ; and V3 p:

) kL Kkl k% K (3193)
Ki1=1, K)y=——, K3= ——, K4i=—+, .19a
! T P YT
Vii1(p) =y101, V12002) =202, V1,3(p3) =Vi4(ps) =0, (3.19b)
1 1 kL p1p3 —klp3
Vai(p) =Lkl p* kL pfy= —= , (3.19¢)
210P P e log(x101) — log(k202)

k2 _k2

Vaa(p) = £(K2 p*° 12 pP*) = +02 7 B-ps (3.19d)

" log(k2p2) — log(k3p3)’

12
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k3 p1 — k3 p4
log(k101) — log(kapa)”

For completeness, we write down the PDE system (3.12) with the above choice of parameters using a standard component-
wise notation in the following:

Va3(0) = £k3 0% I3 pP) = (3.19)

o1 =181 — (kip1p3 —kLp3) — (ko1 — k> pa), (3.20a)
dp2=yalpy+ (kL p1p2 — k' p3) — (K2 py — K2 p3), (3.20b)
o3 = (k3 p2 — k2 p3), (3.20¢)
depa = (k5 o1 — k2 pa). (3.20d)

This is the reversible Gray-Scott model proposed in [44] to approximate the following two-component irreversible Gray-Scott
model [32]:

dpr =y18p1 —kip1p3 —k(p1 — 1), (3.21a)

dep2 =yalpa +kL pro3 — 12 pa, (3.21b)
which can form spatially complex patterns [59], and is widely used to study pattern formations. We comment that by
requiring

Klpg ~0, kip4 ~ ki, and KE,O_?, ~0, (3.22)
the reversible Gray-Scott model (3.20) formally converges to the irreversible Gray-Scott model (3.21). We refer interested
readers to [44] for a theoretical study. Formally, the conditions (3.22) can be achieved by taking very small backward

3

reaction rates k!, k2, k3 « 1, and using initial value for p4 such that ps = ';—; > 1. As a side note, we mention that spatially

complex patterns were not observed in the numerical results [49, Example 4.3], which uses a second-order operator splitting
scheme via an energetic variational formulation. We found that the reason for no pattern formation in the test case in [49]
was due to inappropriate choices of a too large backward reaction rate k> and the initial condition. With more careful
choices of diffusion coefficients, reaction rates, and initial conditions, we numerically observe complex pattern formations
in both 1D and 2D reversible Gray-Scott models; see our simulation results in Section 5.7.

4. High-order spatial discretization for generalized time implicit schemes

In this section, we first apply high-order spatial discretization to the time implicit schemes (3.4), (3.6) and their system
version (3.15), and then discuss the practical implementation of each step of the ALG2 Algorithm 1. We restrict ourselves to
the two-dimensional setting with a rectangular domain €2, which is triangulated using a uniform rectangular mesh 7, = {T}.
While our method can work on general unstructured triangular meshes, see [25], the restriction to uniform rectangular
meshes has a huge advantage in computing the convolution term in the energy (3.2), where the Fast Fourier transform can
be applied.

4.1. The finite element spaces and notation

The spatial discretization is adopted from our previous work on high-order schemes for optimal transport and mean field
games [25]. Specifically, the high-order H!-conforming finite element space

VEi={ve H'(Q): vire O4(T) ¥T € Th), (41)
is used to approximate the & variable, and the high-order L%-conforming discontinuous polynomial space,
Wi :={weL*(Q): wir e O (T) ¥T e Ty}, (4.2)

is used to approximate the other variables where derivative information is not needed. Here QX(T) is the space of tensor-
product polynomial spaces of degree no greater than k > 1 in each direction. We equip the space W,’; with a set of nodal

basis {gi}1% C W) that satisfies

@i(Ej) =68ij, Y1<j<Nw, (4.3)

where Ny is the dimension of the space W¥, 8ij is the Kronecker delta function, and {éi}ll.\’:"tf is the collection of Ny Gauss-
Legendre integration points with corresponding weights {w; f\’:"‘{ on the mesh 7. For the current work, only evaluation on
quadrature points for functions in W,’; is needed in the algorithm, not their derivatives. Hence, given a function uy € W,’;

13



G. Fu, S. Osher and W. Li Journal of Computational Physics 491 (2023) 112375

expressed as up = Zf\’:"‘{ u;@;(x), we simply need to store and update its coefficient vector [u;, - - - ,uNW]T, which makes its
practical implementation extremely simple. Moreover, we denote the discrete L(Q)-inner product (-, -), as

Nw
W, v)p =Y uE)vE)o, (44)

i=1

we have (up, vp)p = Z,N:"‘{ uviw;, for any function uy = Zf\]:"‘{ uip;i(x) € W,’f and vy = Zflz‘”{ Vi@ (x) € W}’f.
4.2. High-order FEM for the reaction diffusion equation

Since the variation time implicit scheme for the Wasserstein gradient flow problem (3.4) is a special case of the reaction-
diffusion problem (3.6) with no reaction V,(p) =0, we only present the high-order spatial discretization for (3.6). We first

write the discrete saddle point problem in its augmented Lagrangian form (2.11): given mesh 7, polynomial degree k > 1,

time step size At > 0 and density approximation pf'd at the previous time step, find uy, uj € [Wf]*, and ®j, € V, such

that

inf sup Ly p(®p, up, UZ), (4.5)
uelWiIt @ evk ute(wk

where up = (ph,mg,m}l,sh) is the collection of density pp, (two-dimensional) flux my = (mg,m}l), and source term Sp,
u; = (o, mg’*, m;l’*, sp) is its dual, and the discrete augmented Lagrangian is

Ly p(®p, up, uf) == Fy(up) + Gp(®p) + (U, DOy — )y
r
+ E(Dq)h - u;, Doy — u;)h‘ (4.6)

Here (-, ), is the volume integration rule given in (4.4), the operators

D(Dh = (—(Dh, aX() d)hs 8?(] (DI'M d)h)a (4'7)
Gn(®p) := (PP, Dy, (4.8)
Fi(up):= sup (up,up)p — Fp(uy), (4.9)

u,e[Wk

where (dx,, dx,) =V is the gradient, and Fj, is given as

Impl® + my*sq
Fp(up) := + , 1] + At&Er(on), (4.10)
( 20n 2Valon) ),
in which the discrete total energy
1
En(pn) = @Um(pn) + pnV (X). Dp + o (Wt pn. o)y (411)

for energy of the form (3.2). We note that when the interaction kernel W (x) is smooth, the convolution term W x pp, in the
above expression can be simply evaluated using the same integration rule (4.4). On the other hand, for singular kernels with
W (0) = +o00, we shall use alternative integration rules to avoid the evaluation of W (0) when evaluating this convolution
term.

Note that a similar formulation can be used for the more general case (2.7) for the equation (2.1) where the denominator
in the first term in (4.10) is replaced by a general mobility function V1 (pop).

Remark 4.1 (On polynomial degree for ®; and up). We note that in our previous work [25], the polynomial degree for the
discontinuous functions uy associated with the integration rule space W,’f is taken to be one order lower than that for the
continuous function ®j. Here our numerical experiments suggest that increasing the integration rule space order to be the
same as the continuous space V,’1‘ leads to a more accurate result. Hence we use equal order approximations for all our
numerical results.

We next provide a practical implementation of each step of the ALG2 Algorithm 1 for solving the saddle point problem.

14
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4.2.1. Step A: scalar case
Taking infinium of L., with respect to ®p, we arrive at a constant coefficient reaction-diffusion equation: find @ﬁ € V,’:
such that

_ 1 1
(DD}, DW= (™" — —uy ™ DUy — — (09, W, Yy € V. (412)
r r
Using the definition in (4.7), we write the above equation using physical variables:

-1 -1 old
Ph —Sh TPy

2P, W) + (VO VW = (57— o1 + Wih
—1
_ m
+ - hT,V\ph)h.

This symmetric positive definite linear system can be efficiently solved using, e.g., a multigrid algorithm [8,71].

4.2.2. Step B/C: scalar case
The next step is to take infinium of L; , with respect to u}. Find u;’z € [W,’j]“, such that it solves

. _ r
argmin  Fj(uf) — (uﬁ 1,u,f)h + 7(D¢ﬁ —uj, D@ﬁ —up)p.
* k14 2

ure[W|

Without loss of generality, we abuse the notation and denote D@ﬁ as its interpolation onto the space [W,’;]“. We further
denote

_ 1
u =Dof + —u e (WL (413)
r
Then the above minimization problem is equivalent to
r _ _
argmin  Fj(uf) + = (uj —up, uj, — up)p. (4.14)
upe[Wk4 2

After this minimizer is computed, the last step is to update the Lagrangian multiplier ufl according to (2.12):
- Ny — N
up =u '+ (DO —up) =r@, —upt) e (W (415)

where we used the definition (4.13) in the last step.

Due to the complicated form of the energy (3.2), it might be challenging to compute an explicit expression of the convex
conjugate Fy(uy). Here we present a practical way to solve the minimization problem (4.14) without explicitly computing
this convex conjugate using duality. The main idea is presented in the next result.

Proposition 4.1. Let u;’[ € [Wl’;]4 be the minimizer to the problem (4.14), and let uﬁ be given according to (4.15). Then, uf, is the
minimizer to the following problem

1 _ _
uj, = argmin  Fp(up) + Z(uh — 1y, up — 1), (4.16)

upe[WE4
which we refer to as the dual problem of (4.14). Furthermore, there holds
L=
upt =, —up/r. (4.17)
Proof. The equation (4.17) is a simple rewriting of (4.15). Let us now prove (4.16). By definition (4.9), we have u:’( is part
of the saddle point solution

. r _ _
inf sup (up, up)p — Fp(up) + - (up — uy, uf — up)p. (4.18)
uelWiT uye[wh 1 2

Taking the derivative with respect to u; in the above expression, we get
up =uy —up/r.

Plugging this expression back to (4.18), we easily see that the primal variable uy is the minimizer to the dual problem
(4.16). By (4.15), it is clear that this optimizer is nothing but the solution uﬁ. This completes the proof. O

15
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Proposition 4.1 suggests to first solve for the primal variable uf; using the minimization problem (4.16), then update u;’;’l

using (4.17), which is the approach we adopt in our implementation. It is in general more convenient than the (equivalent)
original ALG2 algorithm that first solve for the dual variable uZ‘e using (4.14) then update uﬁ using (4.15), which requires
the computation of the dual functional (4.9).

Next, using the particular form of Fj in (4.10), we show that the minimization problem (4.16) can be efficiently solved by
first locally expressing flux m,ol, mA and source s, in terms of density p, and then solving a nonlinear optimization problem
for pp, alone. We record this procedure in the following result.

Proposition 4.2. Let uﬁ be the solution to (4.16). Then there holds

rVa(op) o
- 7. °h
r+Va(of)

2 12
"Pp ™Op
mOt_ Pho—o 1o TPy

¢
= m,, m m,, S,= (419)
e

where
— — _0 _‘1 —_
up = (O, My, My, Sh),
and p,f is the minimizer to the following reduced problem:

1 217012+ [l 2
argmin - (1py — 17 2.1) + (M,l
preWk 2r h 2(r+ pn) .

+(r2|§’1|2 1) + AtE(pp) (4.20)
2+ Valon))' )y T M '

Proof. The derivatives of the functional in (4.16) at the saddle point vanish. Taking derivatives with respect to mg, m}1 and
sy, we get the relations (4.19). Plugging these relations back to (4.16) and simplifying, we get the optimization problem
(4.20) for ,o,f. O

Remark 4.2 (On pointwise update for (4.20)). The problem (4.20) can be solved by computing its critical point. Taking the
variation of the function in (4.20) with respect to p,, we have

P(mpl? + m1%  rPViens,
2(r + pn)? 2(r + V2(pn))?

By the choice of the function space (4.2), it is clear that (4.21) is satisfied on all quadrature points &; for 1 <i < Ny . Using
definition of the energy (4.11), we have

L o — 170 A =0 (4.21)
r Lh Ph 5p Pn) =U. .

§&p ,
E(Ph) =aUp(on) + V(X)) + W * pop.

In the absence of interaction kernel where W (x) = 0, the equation (4.21) can be solved in a pointwise fashion per quadrature
point thanks to the particular choice of the nodal basis (4.3) for the space (4.2), using, e.g., Newton’s method.

On the other hand, when aggregation effects are included, the term W * p, prohibits such pointwise update due to the
nonlocal effect of this convolution. In this case, we treat the convolution term W x p, explicitly in (4.21) by evaluating it at
the previous time step, i.e.,

W % pp ~ W s p2ld,

and then solve the modified pointwise local problem (4.21) using the Newton’s method. This is the choice we use in all our
simulation results with aggregation effects. Similar treatment was used in, e.g., [10,7].

Remark 4.3 (On convexity). Let us briefly comment on convexity of the problem (4.20). When aggregation effects are
included, we extrapolate the nonlocal convolution term according to Remark 4.2. The problem (4.20) is a pointwise mini-
mization problem per quadrature point. Taking its second-order variation, we obtain

1 r(mp 4 1my) | ISl (2Va(en)® = 0+ Va(on) V3 (on)
r (r+ pn)? 2(r + Va(pn))?

It is clear that the first, second, and last terms of the above expression are always nonnegative as long as p, > 0. Moreover,
if

+ aAtUY (op). (4.22)

16
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2V (pn)% — (r+ Va(on) V5 (pn) = 0, (4.23)

then the third term is also nonnegative. For such a choice of mobility V;, the minimization problem is convex, and the

uniqueness of the solution is guaranteed unconditionally for any time step size At. In the absence of aggregation effects,

the overall ALG2 algorithm with V; satisfying (4.23) can also be shown to be unconditionally convergent; see, e.g., [21].
We note that the convexity condition (4.23) is ensured if we take V,(p) =cp? for c>0and 0 <y <1, or Va(p) =

m for any p > 0. The latter choice will be used in the system case. On the other hand, the mobility V(o) = ‘L()l,(_p‘;)
for the Fisher-KPP equation (3.7) does not satisfy the convexity condition (4.23). For this case, we may use a small time
step size At to get a stable simulation.

We finally note that small time step size At may also be needed for the general case with an interaction potential W/,

where extrapolation is used to approximate the problem (4.20) as mentioned in Remark 4.2.

For completeness, we collect one iteration of this algorithm as follows.

Algorithm 2 One iteration of ALG2 algorithm for (4.5).

o Step A: update ®f. Find @} € V¥ such that the equation (4.12) holds.

h ,
e Step B/C: update ufl,u;'é. First, find p,f such that it is the minimizer to (4.20). Then update mg’K,m,ll‘{.sﬁ according to (4.19). Finally, update u;‘(

according to (4.17).

We note that the positivity of density approximation p, can be easily enforced in the pointwise optimization problem
(4.20).

4.3. High-order FEM for strongly reversible reaction diffusion systems

We now present the high-order FEM discretization of the variational time implicit scheme (3.15) and discuss its practical
(modified) ALG2 implementation. Given time step size At > 0 and density approximations

Pl = (p9M, - p3d) e (WM

at the previous time step, find uy, u € [WKPPM*R, and @, € [VKIM, such that

inf sup Ly n(®p, up, uy), (4.24)
up e[WEBM+R SyelVEM ufe[WhpMHR T
where
_ 0 1 0 1
Up = (01,hs MY, My oo OM R Mg s Mg gy S1R 5 SRLR)

is the collection of densities p;, fluxes

_ 0 1 0 1
my = (ml,h’ml,h’ BEELLUYN'E mM,h)’

and source terms S, = (S,p, -+ , Sg,h), U}, is its dual, @y = (P p, ..., Py p), and the discrete augmented Lagrangian is

Ly n(®n, tp, up) = Fn* () + Gp(®p) + (p, D@y — up)p

r
+ 5(24’17 —up, DOy — uf)p. (4.25)
Here the operators
Doy = (— D1, Ixg P1hs Oy Pyns o s — D1, Oxg P1hs Oy Prns
M M
>o@! = BDbin Y@~ RB), (4.26)
i=1 i=1
M
Gr(®n) =Y (0P, Pindn, (4.27)
i=1
Fp*(up):= sup  (up, up)p — Fn(up), (4.28)
uhe[wl’;]BMJrR

and Fp is given as
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M R
|m1 h|2 + |m1 h|2

Isp h|2
F(up) = ST WL
Bl = | 2 v o ; 2V2.p(pp)

i=1
+ ALY Ein(pin): (4.29)
i=1
where the mobility functions are given in (3.11) and the discrete energy

Ein(oin) = (Pi.pog(pip) — 1), Dp.

We now discuss a modified implementation of the ALG2 Algorithm 1 for the saddle point system (4.24), where further
componentwise splitting is introduced to drive down the overall computational cost.

4.3.1. Step A: system case
Taking infinium of L, with respect to ®,, we arrive at a coupled system of constant coefficient reaction-diffusion

equations: find <I>ﬁ € [VW such that
_ 1
(D). D¥n =y~~~ D)y — —<p°‘d W), (430)

for all ¥, € [VI’f]M. Using the definition in (4.26), we write the above system back using the physical variables:

R M
(CI)I.KJ17 \pi,h)h —+ (Vcbﬁh, v\pi,h)h + ZZ <(05;J - .B )CI)] h» (alp - ﬂip)\pi’h)h
p=1j=1
-1 old -1
_ Pin — Pin m;
- (_p:}f T4 % Wi + (m h - 'T, VWi pn
R
we—1 1 Py,
+ Z sr,h - _Srh s ((X ﬂi )lIJl,l‘l s
p=1 "

for all 1 <i < M. This coupled linear system might be expensive to solve. Here we propose to solve these M equations in
parallel by treating the coupling term on the left hand side of the above equation explicitly. Specifically, for each 1 <i <M,
we compute ®; , € V,’f such that it solves the following scalar linear reaction-diffusion equation:

R
(O Wi + (VO Vi + Y (@ = D@ (@f = pPwin),
p=1

e—1_ _old -1
1, Pin — Pin m;
= (—;OlffhlZ e ; = Wiy + (m] h —'T,V“I’i,h)h
! 1
+Y (s;"’,f_l - _Srh L@f ﬁip)‘pi,h)
p=1 h
R M
=Y (@ =Bl @ = D) (4.31)
p=1 j=1
J#i

for all ®;p € V,’f. These are M decoupled scalar constant-coefficient linear reaction-diffusion equations, which are easy to
solve.
One may also solve the equation (4.31) sequentially (in a Gauss-Seidel manner), which uses the updated <I>§ p for j<i

. . [
when computing the variable D
4.3.2. Step B/C: system case
Similar to the scalar case in Subsection 4.2.2, we first compute the solutions uﬁ according to the following system version

of (4.16):

: 1 _ _
up= argmin  Fa(up) + 57 (Wth = T, U — T8, (4.32)
uhE[W;f]:”VHR

18



G. Fu, S. Osher and W. Li Journal of Computational Physics 491 (2023) 112375

where
= e, 1
up:=Dd, + —u, ",
- r

k]3M+R
h

with the understanding that 24),‘; is its interpolation onto the space [W , and then update u;’[ according to

whl =y —ulr. (4.33)

Again, we solve the problem (4.32) by first locally expressing all other variables in terms of the densities, and then
solving pointwise optimization problems for these densities on each quadrature point.

Proposition 4.3. Let uﬁ be the solution to (4.32). Then there holds

V(o)
mlt = —— W vk=0,1,and 1 <i < M, (4.34)
" VL)
¢ Vap(ep)

M Sp.h, YI<p<R, (4.35)
R

and the collection of densities pﬁ is the minimizer of the following reduced problem:

Iy M 200 2 | =0 2
. 1 _ re(m; | +m; %)
argmin ZZ(Ipi.h—rPi,th])h"‘Z( 2(r—]+iV i( g ) !

PhelWEIM iy i=1 LRk h

R 2= 2 M
r°1Sp hl
— .1 At Ei.n(Pih)- 4.36
+Z<2(T+V2,p(ph)) )h+ 2_Ein(pin) (436)

p=1 i=1

By the choice of the integration rule space (4.2) and its nodal basis (4.3), it is clear that the minimization problem (4.36)
can be solved in a pointwise fashion per quadrature point. On each quadrature point, it is an M-dimensional minimization
problem, where the coupling is introduced in the reaction term in the second row of (4.36). Again, we propose to solve M
independent single-variable minimization problems in parallel by treating the reaction term semi-implicitly. Specifically, the
solution ,ofh for each 1 <i <M is obtained by solving the following problems in parallel:

2070 2 4 50 2
in = r2 (g |2 47 12)
argm1n—(|piﬁh_rpih|2’1) +< i,h i,h 1
2r ’ h ,

pithW;f z(r + V],i(pi,h))
R 21512
r|Sp.hl
+ —————, 1) + At& p(pin)- (4.37)
I; (2<r+ V2.p(Pn) )h b
Here
~i -1 -1 -1 -1
p;1 = (’Ol,h st P pe Pihy Pipqps s ,OM’h),

i.e., all other densities are evaluated explicitly at level ¢ — 1. By the choice of mobility functions in (3.11), it is easy to show
that the problem (4.37) is convex and hence has a unique global minimizer. We collect this modified ALG2 implementation
in the following algorithm.

Algorithm 3 One iteration of modified ALG2 algorithm for (4.24).
e Step A: update <I>ﬁ. Find CI>f>h € V,’j such that the equation (4.31) holds for each 1 <i <M.
e Step B/C: update uﬁ, u;‘[. First, find pfh such that it is the minimizer to (4.37) for each 1 <i < M. Then update mf_‘,f for k=0,1 according to (4.34)

and update Sﬁ,h for 1 < p <R according to (4.35). Finally, update uZ‘Z according to (4.33).

4.4. High-order FEM for reversible reaction-diffusion systems with detailed balance

For a reversible reaction-diffusion system with detailed balance, the spatial discretization and the corresponding practical
ALG2 implementation are the same as the one in a strongly reversible case, with the only change that the discrete energy
now takes the following form:
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Ein(p) = (p(ogkip) — 1), Dy,

where «; > 0 depends on the reaction rates.

Here a small modification (with a reduced cost) is needed to simulate the reversible Gray-Scott model in Example 3.4.2
since it does not include diffusion for the last two species. Specifically, we do not need flux approximations for the last two
species, and the variables and operators in the fully discrete algorithm (4.24) for the system (3.20) are recorded below for
completeness:

0 1 0 1
up = (01,0, MY s My s P2.hs My s My s P3.h5 P4.hs S1hs S2.h5 S3.1), (4.38a)

@p = (P1,p, Po.hy P31y Pan), (4.38b)

Doy = ( — @1k, Ox P10, Ox; P1,hs — P2 ks Oxg P21, Ox; P2

— D3, =Py p, P1p— Pop, Pop — P3p, P1p— ¢4,h>, (4.38¢)

4
Z(,O,-‘?Ld, Di nn, (4.38d)
i=1

Gp(®p):

2
m 2+ m} |2

Fn(utn):= Z 2V 1,i(0i.h)

i=1

+i Ispal”
2V, (pp)

p=1

4
+ ALY En(pin)s (4.38e)
i=1

where the parameters and mobility functions are given in (3.19). Note that Step A of Algorithm 3 now becomes two scalar

linear reaction-diffusion equation updates for @f.h and ‘Dg,h' and two simple mass matrix updates for <I>§,h and d)fhh.

5. Numerical experiments

In this section, we first present a 3D numerical example for the heat equation to demonstrate the first order accuracy
in time of Algorithm 2. We then conduct comprehensive 2D experiments to show the efficiency and effectiveness of the
proposed numerical algorithms. Throughout, we take the augmented Lagrangian parameter to be r =1, and perform 200
ALG iterations in each time step for all test cases. We use the previous step solution as the initial guess for the ALG2
algorithm. Our numerical simulations are performed using the open-source finite-element software NGSolve [65], https://
ngsolve.org/.

5.1. Temporal convergence rate
We first consider the heat equation in three dimensions

op—Ap=0,

on the domain € = [0, 1]* with homogeneous Neumann boundary conditions. It is a Wasserstein gradient flow of the form
(3.1) with energy £(p) := [, p(log p — 1)dx. We take the initial condition to be

1
po(xo,X1,X2) =1+ 5 cos(7r xg) cos(rT x1) cos(wrx2).
The exact solution is
1 2
Pex (X0, X1, X2, ) =1+ 5 €os(7T xg) cos(rX1) CosS(7T x2) exp(—3m“t).

We perform a temporal mesh convergence study for the scheme (4.5) using Algorithm 2 on a fixed uniform mesh of size
16 x 16 x 16 with polynomial degree k = 3. The final time of simulation is T =0.1. We use uniform temporal meshes of
sizes N =4 x 2¢, where £ =0,1, 2,3 is the temporal mesh level. Here the temporal error dominates the spatial error. The
L%-convergence in the density p at final time T = 0.1 is recorded in Table 1. We clearly observe the first order convergence

in time.
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Table 1

Temporal convergence rate for the
L%-error in density at T = 0.1 of
scheme (4.5) applied to a 3D heat equa-

tion.
mesh level ¢ error rate
0 1.012e-02 -
1 5.090e-03 0.99
2 2.551e-03 1.00
3 1.290e-03 0.98

Table 2
Convergence rates of scheme (4.5) with different polynomial degrees k applied
to a 2D steady Fokker Planck equation.

dim(V§) k=1 k=2 k=4

81 2362e-03 - 2409e-04 - 2.628e-05 -
289 5.923e-04 2.00 3298¢-05 287  1424e-06 421
1089 1482e-04 200 4.232e-06 296 5589-08 4.67
4225 3.705e-05 2.00 5.326e-07 299  1.884e-09  4.89

5.2. Spatial convergence rates

We now consider the nonlinear Fokker-Plank equation

dp—0P>=V-(px),

on the domain 2 =[—1, 1] x [—1, 1] with homogeneous Neumann boundary conditions. It is a Wasserstein gradient flow of
the form (3.1) with energy

1 1
Ep) = / (Ep(xf + 5<x5 +x%)p(x>) dx,
Q

where x = (Xg, x1). This problem reaches a steady state solution:

2C — (3 +xD)+
Psteady (X0, X1) = \/+,
that satisfies either
8 3 4

~p*+ l(xé +x3) =C,

sp 2 2

or p = 0. Here the constant C depends on the total mass of the initial condition, which we set to be C =2 so that the
solution on 2 is positive and smooth.

We perform a mesh convergence study for the scheme (4.5) using Algorithm 2 with polynomial degree k=1,2,4 on a
sequence of uniformly refined meshes. The coarse mesh is of size 8 x 8 for k=1, 4 x4 for k=2, and 2 x 2 for k =4, so that
the total number of degrees of freedom for @ is the same on each mesh level for different polynomial degrees. As accuracy
in time does not play a role here in the steady state solution, we take large time step size with At =1, and perform 10 time
steps of simulation where the numerical solution reaches the steady state. The L%-convergence in the density p is recorded
in Table 2. We clearly observe the k + 1-th order of convergence for each case. In particular, the high-order method leads to
a smaller error when a same number of total degrees of freedom is used.

5.3. Aggregation-drift-diffusion equations

We consider Wasserstein gradient flow (3.1) with five choices of energies (3.2) that include aggregation effects. The
specific form of the energy, along with the domain size L where the computational domain  =[—L, L] x [—L, L], and the
initial conditions are given in Table 3. Here x[—33)x[—3,3] is the characteristic function on [—3, 3] x [—3, 3] for Case 5. All
cases were considered in [12], except Case 4 which adds an additional diffusion to the energy in Case 3.

Note that the interaction kernel W (x) for Cases 2/3/4 is singular at zero. Here we use a higher-order numerical integra-
tion rule, which avoids the evaluation of W (x) at zero to compute the convolution

W p(@), V1=i=<Nw,
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Table 3
Example 5.3. Five choices of energies, domain size, and initial condition.
Case aUn(p) V() W (x) L I.C.
4 2
oo 0 a2 1 Zen-Zpd
2
2 0 0 BE — tog(lx)) 15 Zexp(—Z]x?)
2
3 0 ~Llog(lx) B —log(Ixl) 15 Zexp(— 2P
2
4 0.1p° —flog(x) % —log(x)) 15 Zexp(-F P
5 0.1p3 0 —exp(—|x?)/m 4 0.25)(-3.3x[-3.3]
at the quadrature points {E,-}f’z W . Fast Fourier transform is used to evaluate these convolutions all together.

For all cases, we take the computational mesh to be a 32 x 32 uniform square mesh, and use polynomial degree k =4 in
the scheme (4.5). We take time step size At =0.05 for the first four cases, and At = 0.5 for the last case. The final time of
simulation is T =10 for Case 1, T =3 for Cases 2/3/4, and T =15 for Case 5. Snapshots of the density contours at different
times are shown in Fig. 1. We find the results for Cases 1/2/3 and 5 are qualitatively similar to the results reported in [12].
In particular, Case 1 converges to a steady Dirac ring solution; Case 2 converges to a steady constant solution with a circular
shape; Case 3 converges to a characteristic function for the torus due to the drift effects that pushes away the density from
the origin; and the competition between median range aggregation with short/long range diffusion is observed for Case 5.
Moreover, the diffusion effects of Case 4 comparing with Case 3 are also clearly seen.

5.4. Scalar reaction-diffusion equation

We take the Case 4 energy in Table 3, but consider the reaction-diffusion equation (3.5). Three choices of mobility
coefficient V,(p) are used in this example, namely,

Type 1: V,(p) =0.1,

Type 2: V(p) =0.1p, (5.1)
Type 3: V2(p) =0.1%.

The same discretization setup as in the previous example is used, i.e., using polynomial degree k =4 on a 32 x 32 uniform
mesh with time step size At =0.05, and final time T =3.

Snapshots of the density contours for each case at different times are shown in Fig. 2. It is clear from the color range of
these plots that reaction effects leads to mass loss, with the Type 1 reaction has the most mass loss, followed by Type 3
reaction.

5.5. Fisher-KPP equation

Our next example deals with the Fisher-KPP equation (3.7). Here we slightly modify the PDE (3.7) to allow for anisotropic
diffusion:

0P — MOxgxg 0 — A20x1 0 = P (1 — p).
We use a similar setup as in [68, Section 3.1], where the diffusion parameters are taken to be A; =0.1, 1, =0.01, and u >0
is the reaction coefficient to be specified. Initial condition is a flat top Gaussian:
X0, x0) 1, if X3 +4x3 <0.25
Po(Xo, X1) = .
exp(—10(x3 +4x3 — 0.25)), otherwise

The computational domain is a rectangle Q = [—2, 2] x [—1, 1], which is discretized with a 32 x 16 square mesh. We use
polynomial degree k = 4 for the scheme (4.5), in which the functional Fp in (4.10) is adjusted as follows to allow for
anisotropic diffusion:

Imp|? Imj|? Isn |
2Vio(pn)  2Vii(on)  2Va(on)’

Fp(up) := ( 1) + At Ep(ugp),
h

where V1 0(p) :=2110, V1.1(0) :=A2p, V2(p) := n2L=Y and the energy satisfies

log(p)
En(p) = (p(log(p) — 1), .
We take time step size At =0.1, and the final time is T = 4.
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) Case 1. Lefttorlghttune t =0.5,1.5,3.0,6.0,10

) Case 2. Lefttorlghttlme t=0.2,0.5,1.5,2.0,3.0

I

) Case 3. Left to right time: ¢ =0.2,0.5,1.5,2.0,3.0

) Case 4. Lefttorlghttlme t=20.2,0.5,1.5,2.0,3.0

-

) Case 5. Left to right time: ¢ = 2,4,6,10,15

Fig. 1. Example 5.3. Snapshots of density contours at different times for different test cases. (For interpretation of the colors in the figure(s), the reader is
referred to the web version of this article.)

Snapshots of the density contours for & = 0.1 (weak reaction) 4 = 0.5 (medium reaction), and p = 1.0 (strong reaction)
at different times are shown in Fig. 3. We further plot the evolution of energy &(on) and total mass [, o, dx over time
for the three cases in Fig. 4. It is clear that the energy is monotonically decreasing for all three cases and the total mass is
monotonically increasing, where a faster decay of energy is observed when the reaction coefficient p is larger.

5.6. Two-component reversible reaction-diffusion system with detailed balance

We consider the two-species model discussed in Section 3.4. In particular, we consider the system (3.18) with parameters
ky=1and k_=0.1, y1 =0.2, ¥, =0.1, and V1 1(p) = y10™ and V1 2(p) = y2p with four choices of m € {1, 2, 3, 4}. Here
porous medium type diffusion is used for the first species with density p; and linear diffusion is used for the second species
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043 0.30 0.16 0.12 0.07
LN LN i i i
0.00 0.00 0.00

) Case 4 energy, Type 1 reaction. Left to right time: ¢t = 0.2,0.5,1.5,2.0,3.0

0.25 @24 @zz
i i i
0.00 0.00 0.00

) Case 4 energy, Type 2 reaction. Left to right time: ¢t = 0.2,0.5,1.5,2.0,3.0

021 @: @5
i I i
0.00 0.00 0.00

) Case 4 energy, Type 3 reaction. Left to right time: ¢t = 0.2,0.5,1.5,2.0, 3.0

Fig. 2. Example 5.4. Snapshots of density contours at different times for different reaction mobility functions.

) Reaction coefficient pn = 0.1. Left to right time: ¢t = 1,2, 3,4

0.76 I 0.8

' 0.04

0.75 D7'I
0.00 ' 0.01

) Reaction coefficient p = 0.5. Left to right time: ¢t = 1,2, 3,4

- <

(c) Reaction coefficient p = 1.0. Left to right time: ¢ = 1,2,3,4

Fig. 3. Example 5.4. Snapshots of density contours at different times for different reaction coefficients.

with density ;. A similar model was used in [48,49]. The problems are solved on the domain Q =[—1, 1] x [—1, 1] with
the following initial data

p1(x,0) = ! (l — tanh(10( xo—i—x1 0.2))),

1
p2%,0) =2 (1 + tanh(10(y/x3 + x2 — 0.2)).) .
Final time is taken to be T = 2.
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time time

Fig. 4. Example 5.4. Evolution of total energy (left) and total mass (right) over time.

O
A

(a) V1,1(p) = 1 p. Left to right time: ¢t =0,0.5,1,1.5,2

0.0822

&
0.0662

(d) Vi1(p) = y1p*. Left to right time: t = 0,0.5,1,1.5,2

Fig. 5. Example 5.6. Snapshots of first-component density contours at different times for different V4 1(p).

We use the scheme (4.24) with polynomial degree k =4 on a 16 x 16 mesh with time step size At =0.05. We apply
Algorithm 3 to solve the resulting saddle point problem. Snapshots of the density contours at different times are shown in
Fig. 5 for the first component and in Fig. 6 for the second component. It is clear that increasing the power m leads to a

slower diffusion for the first species.
We further plot the time evolution of the total energy Eital = £1.1(01,0) + E2,0(02,n) and total mass fQ (01,0 + p2.n) dxX

for the four cases in Fig. 7. Moreover, the total mass conservation is kept well within an error of 10~ for all cases.
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(b) Vi1(p) = p®. Left to right time: ¢t = 0,0.5,1,1.5,2

(d) Vi1(p) = p*. Left to right time: ¢t = 0,0.5,1,1.5,2

Fig. 6. Example 5.6. Snapshots of second-component density contours at different times for different V1 1(p).

le-4+4
1.0
-13.1 ==
— m=2 P/
— =5 081 N
-13.2
= — m=4
[}
o 0 0.6
¢ -13.3 g
Q -
K] Zo.a
% -13.4 2
- —_— m=1
s 0.2 — m=2
— m=3
—_—m=4
-13.6 0.0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time time

Fig. 7. Example 5.6. Evolution of total energy (left) and total mass (right) over time with Vy 1(p) = y10™.

5.7. Reversible Gray-Scott model

In our last example, we simulate the 4-component reversible Gray-Scott model (3.20) using the Algorithm 3 for the fully
discrete scheme (4.24) with variables/operators (4.38). The physical parameters are chosen to be the following:

" =1, )/2:0.01,

26



G. Fu, S. Osher and W. Li Journal of Computational Physics 491 (2023) 112375

=200 =400 =800 t=1600

o Sis -0 s o Sis -0 s o Sis -0 s o
tme tme tme tme

(a) 1D results. Left to right time: ¢ = 200, 400, 800, 1600.

(b) 2D results. Left to right time: ¢ = 100, 200, 300, 400, 500

Fig. 8. Example 5.7. Snapshots of second-component density contours at different times for 1D (top) and 2D (bottom) simulations.

1 1 -3
ky =1, kZ=1077,
k% =8.4x107%, kX =84x10"",
k3 =24x107%, k> =24x107,
where the backward reaction rates are taken to be 1000 times smaller than the forward reaction rates. This provides a good
approximation to the irreversible Gray-Scott model (3.21). We consider both 1D and 2D simulations for this problem. The
initial conditions for the second component density p; are taken to be
0.15+ 1x*(x+ 1%  if —1=<x<0,
P2(x,0)= 1015+ 1x*(1—x? if0<x<1,
0.15 elsewhere,

in one dimension, and

0.15+4x*(x+1)?y*(y+1)?2 if —1<x<Oand —1<y<0,
0.15+4x*(x+1)%y*’(1—y)? if —1<x<OandO<y<1,

02(x,0) = 10.154+4x*(1 —x)?y>(y+1)> if0<x<1land —1<y <0,
0.15+4x*(1 —x)2y2(1—y)?> ifo<x<landO<y<1,
0.15 elsewhere,

in two dimensions. The initial conditions for the other densities are taken to be

P1(x,0) =1—2p2(x,0), p3(x,00=1, pa(x,0)=k3 /k> =1000.

For the 1D simulation, we take the computation domain to be 1p =[—16, 16] and set the final time of simulation to be
T =1600. For the 2D simulation, we take a smaller computational domain with Q,p =[-8, 8] x [—8, 8] and set the final
time of simulation to be T = 500.

We apply the scheme (4.24) with k =4 on a uniform mesh with mesh size h =1 (32 elements in 1D, and 16 x 16
elements in 2D) for both problems. Here we gradually increase the time step size from At =0.01 to At =0.1 as initially
taking At =0.1 leads to numerical instability. This may be caused by our splitting version of the ALG2 implementation in
Algorithm 3. A theoretical investigation on the stability of the algorithm with respect to the time step size At is the subject
of our on-going work.

We record the snapshots of the second-component density at various times in Fig. 8. For both cases, we observe pattern
formations and the solution reaches a nontrivial steady state at large time. Finally, we plot the evolution of total energy for
both cases in Fig. 9, where we observe the expected monotone energy decay.

6. Conclusion
This paper applies high-order accurate finite element methods in space to compute first-order accuracy implicit-in-time
gradient flows. Our formulation applies a one-step time discretization of the generalized JKO scheme and then uses the

ALG2 to calculate optimization problems in each generalized JKO time step. The method is unconditionally stable when
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Fig. 9. Example 5.7. Evolution of total energy in 1D (left) and 2D (right).

the optimization problem is convex. Numerical experiments in two-dimensional gradient flow dynamics, such as Wasser-
stein gradient flows, Fisher-KPP dynamics, and reversible reaction-diffusion systems, demonstrate the effectiveness of the
proposed method with high-order spatial accuracy.

We note that for dissipative dynamics, such as strongly reversible reaction-diffusion systems, different entropies £, and
optimal transport-type metrics V1, V3, could produce the same evolutionary equation. In simulations, we suggest select-
ing a suitable class of entropies and metrics to develop simple and efficient optimization procedures. Some limitations
exist for computing implicit-in-time gradient flows in generalized optimal transport metric spaces. The constructed func-
tions V; and V; should be nonnegative for entropy dissipation schemes. Our generalized JKO scheme is unstable for many
reaction-diffusion equations, e.g., the Allen-Cahn-type equations [67]. We also remark that the current computations are
limited to the first-order time accuracy variational-implicit schemes of gradient flows. In future work, we shall design and
compute generalized optimal transport and mean field control problems for implicit-in-time fluid dynamics with general
conservative-dissipative formulations. Typical examples include regularized conservation laws [40,41]. The other important
question is the high-order implicit time variational schemes for initial value PDEs. This requires careful design of optimiza-
tion problems related to energies, metrics, and stepsizes.
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