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We design and compute first-order implicit-in-time variational schemes with high-order 
spatial discretization for initial value gradient flows in generalized optimal transport 
metric spaces. We first review some examples of gradient flows in generalized optimal 
transport spaces from the Onsager principle. We then use a one-step time relaxation 
optimization problem for time-implicit schemes, namely generalized Jordan-Kinderlehrer-
Otto schemes. Their minimizing systems satisfy implicit-in-time schemes for initial value 
gradient flows with first-order time accuracy. We adopt the first-order optimization scheme 
ALG2 (Augmented Lagrangian method) and high-order finite element methods in spatial 
discretization to compute the one-step optimization problem. This allows us to derive 
the implicit-in-time update of initial value gradient flows iteratively. We remark that 
the iteration in ALG2 has a simple-to-implement point-wise update based on optimal 
transport and Onsager’s activation functions. The proposed method is unconditionally 
stable for convex cases. Numerical examples are presented to demonstrate the effectiveness 
of the methods in two-dimensional PDEs, including Wasserstein gradient flows, Fisher–
Kolmogorov-Petrovskii-Piskunov equation, and two and four species reversible reaction-
diffusion systems.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Dissipative dynamics (gradient flows) are essential models in thermodynamics, chemistry, materials science, biologi-
cal swarming, robotics path panning, and social sciences [19,60]. Nowadays, they also find vast applications in designing 
machine learning optimization algorithms and Markov-Chain-Monte-Carlo sampling algorithms [2,15,20,27,28,43,46,70]. In 
physics, dissipative dynamics describe that the systems have maximum efficiency, in which dynamics follow from the direc-
tion in which the (negative) entropy/Lyapunov functional dissipates most rapidly. It turns out that the dissipative dynamics 
are gradient flows in suitable metric spaces. Fast, efficient, and accurate dissipative dynamics simulations are one of the 
central problems in computational fluid dynamics.
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A particular type of gradient flow has been widely studied in optimal transport, where the metric is known as the 
Wasserstein-2 metric [3,69]. Typical examples include gradient drift Fokker-Planck equations, porous media equations, 
aggregation-diffusion equations, etc. One property of simulating gradient flows is that one can design a proximal method for 
computing a variational implicit time algorithm. This algorithm was first proposed by Jordan-Kinderlehrer-Otto (JKO scheme) 
to compute Wasserstein gradient flows [33]. Moreover, general gradient flows have been widely studied. They follow the 
Onsager principle to design optimal transport-type metric spaces [27,39,55]. Similarly, one can develop variational proximal 
methods to compute and simulate gradient flow dynamics.

This paper designs high-order spatial discretization in simulating gradient flow dynamics using variational proximal 
schemes in generalized optimal transport metric spaces. We formally illustrate the main computational framework. Consider 
a reaction-diffusion type equation:

∂tρ = ∇ · (V1(ρ)∇ δ

δρ
E(ρ)) − V2(ρ)

δ

δρ
E(ρ), (1.1)

where ρ : � × R+ → R+ is a scalar density function, � ⊂ Rd , d = 1, 2, 3, is a spatial domain with periodic or Neumann 
boundary conditions, V1, V2 : � × R+ → R+ are positive mobility functions (Onsager activation functions), and E(ρ) ∈ R
is a Lyapunov functional (energy). We design a variational implicit time scheme, the linearized JKO scheme [9,42], to update 
equation (1.1) as below:

ρn = argmin
ρ

inf
(ρ,m,s)

1

2�t

∫
�

[ ‖m‖2
V1(ρ)

+ |s|2
V2(ρ)

]
dx+ E(ρ), (1.2a)

where �t ≥ 0 is a stepsize and the minimization is over all functions ρ : � → R+ , m : � → Rd , and s : � → R, subject to 
the constraint

ρ − ρn−1 + ∇ ·m = s, on �. (1.2b)

We use time rescaling of (m, s) in the constraint (1.2b). We then compute variational problem (1.2) iteratively to find the 
sequence ρn , n = 1, 2, · · · . This sequence forms an implicit update for gradient flow dynamic (1.1), which is first-order in 
time:

ρn − ρn−1

�t
= ∇ · (V1(ρ

n)∇ δ

δρ
E(ρn)) − V2(ρ

n)
δ

δρ
E(ρn) +O(�t).

When V1, V2 is concave in terms of ρ , and E is a convex functional, then the proposed method is unconditionally stable, 
meaning that we can take large time steps.

Our framework also works for reversible reaction-diffusion systems with detailed balance [55,30,48]. We illustrate the 
main idea for a simple 2-component reversible reaction-diffusion system: Let X1, X2 be two species with a single reversible 

reaction X1
k+−⇀↽−
k−

X2, with k−, k+ > 0. Let ρ1 and ρ2 be the respective densities of X1 and X2. This leads to the following 

PDE system [55,61]:

∂tρ1 − γ1�ρ1 = − (k+ρ1 − k−ρ2),

∂tρ2 − γ2�ρ2 = (k+ρ1 − k−ρ2),

with positive diffusion rates γ1, γ2 > 0. By introducing the following mobility functions,

V1,1(ρ1) = γ1ρ1, V1,2(ρ2) = γ2ρ2, V2(ρ1,ρ2) = k+ρ1 − k−ρ2

log(k+ρ1) − log(k−ρ2)

and the energies

E1(ρ1) =
∫
�

ρ1(log(k+ρ1) − 1)dx, E2(ρ2) =
∫
�

ρ2(log(k−ρ2) − 1)dx,

the above PDE system can be recast into the following system version of the form (1.1):

∂tρ1 = ∇ ·
(
V1,1(ρ1)∇ δE1

δρ
(ρ1)

)
− V2(ρ1,ρ2)

(
δE1
δρ

(ρ1) − δE2
δρ

(ρ2)

)
, (1.3a)

∂tρ2 = ∇ ·
(
V1,2(ρ2)∇ δE2

δρ
(ρ2)

)
+ V2(ρ1,ρ2)

(
δE1
δρ

(ρ1) − δE2
δρ

(ρ2)

)
, (1.3b)
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which can then be discretized using a similar variational time implicit scheme as (1.2). Here the system is called a strongly 
reversible reaction-diffusion system when k+ = k− > 0, is called a reversible reaction-diffusion system with detailed balance when 
we allow the two positive reaction rates to be different k+ 	= k− > 0, and is called an irreversible reaction-diffusion system
when the backward reaction rate is zero k− = 0; see more detailed in [30,48,55]. Our framework does not directly work 
for irreversible reaction-diffusion systems as they do not satisfy an energy dissipation law and can not be formulated back 
to the form (1.3). However, we can approximate an irreversible reaction-diffusion system using a reversible one by using a 
very small backward reaction rate (see, e.g., [44]) and then solve the reversible system using our formulation.

This paper adopts the augmented Lagrangian (ALG2) optimization method with high-order spatial finite element dis-
cretizations to solve the variational problem (1.2). Using finite element spatial discretization, we also develop a point-wise 
update in the optimization step of computing variational problem (1.2). In this sense, we obtain a high-order spatial dis-
cretization scheme in finding the ground state, which is the minimizer of functional E . In this iterative procedure, assuming 
that the optimization step finds a global minimizer, the Lyapunov functional E is guaranteed to decay for any large time 
step sizes.

Computational optimal transport and mean field control/games have been widely investigated in [1,4,6,52,58,63,66]. 
For example, generalized JKO schemes of Wasserstein gradient flows with first-order time accuracy have been studied in 
[9,12,26,42,48]. Semi-discretizations of JKO-type schemes have been used in [16]. The Lagrangian type JKO schemes have 
been investigated in [13,14,51]. It is also worth mentioning that there are methods for high-order time discretizations of gra-
dient flows [31]. Meanwhile, generalized optimal transport metric spaces have recently been introduced in [11,18,22,54,55]. 
Study of conservative and dissipative operators in non-equilibrium thermodynamics [56,57,72] is an active research area. 
However, there are limited JKO-type computational results for reaction-diffusion systems. We specifically mention the re-
cently introduced variational operator splitting schemes [48–50] for reversible reaction diffusion systems using the energetic 
variational framework [29,47]. The studies [48–50] compute implicit schemes for reaction-diffusion equations. They split 
Wasserstein-type gradient flows and reaction terms and compute them separately. They first compute the reaction term in 
a constructed algebraic equation and then use the implicit scheme to approximate the Wasserstein-type gradient flows. In 
our approach, we adopt the generalized Wasserstein-type metric directly, which contains both the Wasserstein metric and 
the reaction metric with mobility functions V1 and V2. Using them, we design a scheme to approximate the proximal op-
erator in generalized Wasserstein-type metric space. This forms the generalized JKO scheme. Thus, both algorithms [48–50]
and the proposed method maintain the entropy dissipation properties. The major difference is the implicit time treatment 
of reaction terms. We emphasize that the method in this paper leverages the optimization structures in generalized JKO 
schemes.

We note that generalized JKO schemes are examples of mean field control (MFC) problems [6,35], which design optimal 
control/optimization problems for general initial value evolutionary equations not limited to gradient flows. Computation 
and modeling studies of MFCs have been conducted in controlling reaction-diffusion equations [39] and conservation laws 
[40,41] with applications in pandemics modeling [37,38]. Compared to the above approaches, we apply high-order spatial 
schemes in computing generalized JKO schemes towards initial value gradient flows. We adopt the first-order optimization 
method, the augmented Lagrangian method (ALG2), to implement the variational time implicit schemes for two and four 
species reversible reaction-diffusion systems.

This paper is organized as follows. We review some concepts of gradient flows, time implicit schemes, and their first-
order optimization methods ALG2 in section 2. Several examples of dynamics, including Wasserstein gradient flows, Fisher–
Kolmogorov-Petrovskii-Piskunov (KPP) equation, and reversible reaction-diffusion systems, are presented in section 3. We 
then present a high-order finite element method and derive all implementation details of the optimization algorithm ALG2 
in section 4. Numerical examples are presented for two-dimensional Wasserstein gradient flows of linear, interaction, and 
potential energies, Fisher-KPP equation, and reversible two and four-species reaction-diffusion systems in section 5.

2. Optimal transport type gradient flows, generalized time implicit schemes, and first-order optimization methods

This section reviews generalized gradient flows and their variational implicit schemes in metric spaces. We also discuss 
a one-step time discretization relaxation of variational implicit schemes for generalized gradient flows. Entropy dissipation 
properties of variational implicit schemes are introduced. We then present the augmented Lagrangian method (ALG2) as the 
optimization solver to compute the variational implicit schemes.

2.1. Optimal transport type gradient flows

In this subsection, we formally review generalized optimal transport gradient flows [14,22,55]. This is known as the 
Onsager gradient flow [19]. We next discuss a class of variational schemes to compute implicit-in-time solutions of gradient 
flows.
3
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2.1.1. Gradient flows and entropy dissipations
Consider an initial value equation

∂tρ(x, t) = ∇ · (V1(ρ(x, t))∇ δ

δρ
E(ρ)(x, t)) − V2(ρ(x, t))

δ

δρ
E(ρ)(x, t), t ∈ [0,∞)

ρ(x,0) = ρ0(x).

(2.1)

Here x ∈ � ⊂ Rd , � is a spatial domain with periodic boundary condition or Neumann boundary condition (detailed in later 
sections), ρ : � ×R+ → R is a scalar non-negative density function satisfying

ρ(·, t) ∈ M =
{
ρ : � →R : ρ(x, t) ≥ 0

}
,

for any time t , E : M →R is an energy functional, V1, V2 : R →R+ are positive mobility functions, δ
δρ is the first variation 

operator in L2 space, and ρ0 ∈ M is an initial condition. Equation (2.1) forms a class of equations, including Wasserstein 
gradient flows and the Fisher–KPP equation [64,23,34]. Detailed examples of V1, V2, and E are provided in the next section, 
where we also discuss the extension of (2.1) to reaction-diffusion systems.

Equation (2.1) is purely dissipative. Denote ρ(·, t) as the solution of the PDE (2.1), then the energy functional E is a 
Lyapunov functional. In other words, the first-time derivative of the energy functional E is nonpositive, satisfying

d

dt
E(ρ(·, t))

= −
∫
�

[
‖∇ δ

δρ
E(ρ)(x, t)‖2V1(ρ(x, t)) + | δ

δρ
E(ρ)(x, t)|2V2(ρ(x, t))

]
dx ≤ 0,

(2.2)

where we use the fact that V1(ρ) ≥ 0, and V2(ρ) ≥ 0 in the above inequality.

2.1.2. Metric operators and distances
The dissipation of the energy functional also induces a metric function in space M, which further defines distances 

between two densities ρ0, ρ1 ∈ M. This distance designs an implicit time variational problem for computing the gradient 
flow in metric spaces. See details among optimal transport type gradient flows, distances, and mean-field control problems 
in [3,39,55].

We directly present generalized optimal transport type distances and the time implicit schemes below for simplicity of 
discussion.

Definition. Distance functional. Define a distance functional DistV1,V2 : M × M → R+ as below. Consider the following 
optimal control problem:

DistV1,V2(ρ
0,ρ1)2

:= inf
ρ,v1,v2

1∫
0

∫
�

[
‖v1(x, τ )‖2V1(ρ(x, τ )) + |v2(x, τ )|2V2(ρ(x, τ ))

]
dxdτ ,

(2.3a)

where the infimum is taken among ρ : � × [0, 1] → R+ , v1, v2 : � × [0, 1] → Rd , such that ρ satisfies a reaction-diffusion 
type equation with drift vector field v1, drift mobility V1, reaction rate v2, reaction mobility V2, connecting initial and 
terminal densities ρ0, ρ1:{

∂τ ρ(x, τ ) + ∇ · (V1(ρ(x, τ ))v1(x, τ )) = V2(ρ(x, τ ))v2(x, τ ), τ ∈ [0,1],
ρ(x,0) = ρ0(x), ρ(x,1) = ρ1(x).

(2.3b)

Variational problem (2.3) is a generalized Benamou-Brenier formula [5], where they consider V1(ρ) = ρ , V2(ρ) = 0. 
One common practice is the following change of variable formula, which leads to a linear constraint optimization problem. 
Denote a moment vector function m : � × [0, 1] →Rd and a source function s : � × [0, 1] →R, such that

m(x, τ ) = V1(ρ(x, τ ))v1(x, τ ), s(x, τ ) = V2(ρ(x, τ ))v2(x, τ ).

Using variables m, s, variational problem (2.3) satisfies

DistV1,V2(ρ
0,ρ1)2 := inf

ρ,m,s

1∫ ∫ [ ‖m(x, τ )‖2
V1(ρ(x, τ ))

+ |s(x, τ )|2
V2(ρ(x, τ ))

]
dxdτ ,
0 �

4
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such that

∂τ ρ(x, τ ) + ∇ ·m(x, τ ) = s(x, τ ), ρ(x,0) = ρ0(x), ρ(x,1) = ρ1(x).

2.1.3. Variational time implicit schemes and properties
We next design a variational implicit-in-time scheme to update gradient flow (2.1) iteratively.

Definition. Variational time implicit scheme. Denote �t > 0 as a time step size. Consider the scheme below:

ρn =arg min
ρ∈M

1

2�t
DistV1,V2(ρ

n−1,ρ)2 + E(ρ), (2.4)

where DistV1,V2(ρ
n−1, ρ)2 is the distance functional defined in (2.3) between current density ρ and previous step density 

ρn−1. After suitable time rescaling, one can show that the minimization scheme (2.4) requires solving the following optimal 
control problem:

inf
ρ�t ,ρ,m,s

1

2

�t∫
0

[∫
�

‖m(x, τ )‖2
V1(ρ(x, τ ))

+ |s(x, τ )|2
V2(ρ(x, τ ))

]
dxdτ

︸ ︷︷ ︸
= 1

2�t DistV1,V2 (ρn−1,ρ)2

+E(ρ�t),
(2.5a)

such that

∂τ ρ(x, τ ) + ∇ ·m(x, τ ) = s(x, τ ), τ ∈ [0,�t], (2.5b)

ρ(x,0) = ρn−1(x), ρ(x,�t) = ρ�t(x). (2.5c)

The next step solution ρn is the density minimizer of (2.5):

ρn(x) = ρ�t(x).

We demonstrate that the variational scheme (2.4) is a first-order accurate implicit in time scheme, i.e.,

ρn − ρn−1

�t
= ∇ · (V1(ρ

n)
δ

δρ
E(ρn)) − V2(ρ

n)
δ

δρ
E(ρn) +O(�t).

Proof. We write the minimization system of variational problem (2.5). Denote �(x, τ ) ∈ R, τ ∈ [0, �t], as the Lagrange 
multiplier. The optimal condition of variational problem (2.5) satisfies the following saddle point problem:

inf
ρ�t ,ρ,m,s

sup
�

L(ρ�t,ρ,m, s,�), (2.6)

where

L(ρ�t ,ρ,m, s,�) :=1

2

�t∫
0

∫
�

[ ‖m(x, τ )‖2
V1(ρ(x, τ ))

+ |s(x, τ )|2
V2(ρ(x, τ ))

]
dxdτ + E(ρ�t)

+
�t∫
0

∫
�

�(x, τ )
(
∂τ ρ(x, τ ) + ∇ ·m(x, τ ) − s(x, τ )

)
dxdτ

We note that from integration by parts,

�t∫
0

∫
�

�(x, τ )∂τ ρ(x, τ )dxdτ = −
�t∫
0

∫
�

∂τ�(x, τ )ρ(x, τ )dxdτ

+
∫
�

�(x,�t)ρ�t(x)dx−
∫
�

�(x,0)ρn−1(x)dx.

By computing the saddle point of (2.6), we derive
5
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ

δρ
L = 0, if ρ > 0,

δ

δm
L = 0,

δ

δs
L = 0,

δ

δ�
L = 0,

δ

δρ�t
L = 0,

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ‖m‖2
2V1(ρ)2

V ′
1(ρ) − |s|2

2V2(ρ)2
V ′
2(ρ) − ∂τ� = 0, if ρ > 0,

m

V1(ρ)
− ∇� = 0,

s

V2(ρ)
− � = 0,

∂τ ρ + ∇ ·m = s,

�(x,�t) + δ

δρ�t
E(ρ�t) = 0.

Thus we obtain a minimization system:⎧⎨
⎩

∂τ ρ(x, τ ) + ∇ · (V1(ρ(x, τ ))∇�(x, τ )) = V2(ρ(x, τ ))�(x, τ ),

ρ(0, x) = ρn−1(x), �(x,�t) = − δ

δρ
E(ρ)(x),

where � satisfies the Hamilton-Jacobi-type equation when ρ(x, τ ) > 0, such that

∂τ �(x, τ ) + 1

2
‖∇�(x, τ )‖2V ′

1(ρ(x, τ )) + |�(x, τ )|2V ′
2(ρ(x, τ )) = 0.

We approximate the equation of ρ(x, τ ) at τ = �t:

ρ(x,�t) =ρ(x,0) − �t
[
∇ · (V1(ρ(x, τ ))∇�(x, τ )) − V2(ρ(x, τ ))�(x, τ )

]
|τ=�t +O(�t)

=ρ(x,0) + �t
[
∇ · (V1(ρ

n(x))∇ δ

δρ
E(ρn)(x)) − V2(ρ

n(x))
δ

δρ
E(ρn)(x)

]
+O(�t),

where we denote ρn(x) = ρ(x, �t). This finishes the proof. �
In fact, for first-order implicit time accuracy, one can use the one-step approximated minimization scheme. In other 

words, we only use a local time approximation of distance functional to compute the implicit time scheme.

Definition. One-step relaxation of variational time implicit scheme. Consider

inf
ρ,m,s

1

2�t

∫
�

[ ‖m(x)‖2
V1(ρ(x))

+ |s(x)|2
V2(ρ(x))

]
dx

︸ ︷︷ ︸
≈ 1

2�t DistV1,V2 (ρ,ρn−1)2

+E(ρ), (2.7a)

where the minimization is over all functions m : � →Rd , s : � → R, and ρ : � →R+ , such that

ρ(x) − ρn−1(x) + ∇ ·m(x) = s(x). (2.7b)

Denote the next step solution ρn as the density minimizer of (2.7).

We also demonstrate that the variational scheme (2.7) forms a first-order implicit time scheme for the PDE (2.1).

Proof. The proof is similar to the one in (2.5). Denote �(x) as the Lagrange multiplier. The optimal condition of the varia-
tional problem (2.7) satisfies the following saddle point problem:

inf
ρ,m,s

sup
�

L(ρ,m, s,�),

where

L(ρ,m, s,�) :=1

2

∫
�

[ ‖m(x)‖2
V1(ρ(x))

+ |s(x)|2
V2(ρ(x))

]
dx+ �tE(ρ)

+
∫

�(x)
(
ρ(x) − ρn−1(x) + ∇ ·m(x) − s(x)

)
dx.
�

6
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By computing saddle point of the above system, we derive⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ

δρ
L = 0,

δ

δm
L = 0,

δ

δs
L = 0,

δ

δ�
L = 0,

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
[ ‖m‖2
2V1(ρ)2

V ′
1(ρ) + |s|2

2V2(ρ)2
V ′
2(ρ)

]
+ �t

δ

δρ
E(ρ) + � = 0,

m

V1(ρ)
− ∇� = 0,

s

V2(ρ)
− � = 0,

ρ − ρn−1 + ∇ ·m = s.

One can check that � = −�t δ
δρ E(ρ) + o(�t). Thus

ρn − ρn−1

�t
= ∇ · (V1(ρ

n)∇ δ

δρ
E(ρn)) − V2(ρ

n)
δ

δρ
E(ρn) +O(�t).

Here ρn = ρ is the density minimizer. This finishes the proof. �
We remark that solving the variational problem (2.7) is simpler than optimizing (2.5), since (2.7) only involves a local 

time distance approximation; see [42,9]. We also present some properties of the implicit variational scheme (2.7). The 
algorithm satisfies the entropy dissipation property for any step size �t ≥ 0.

Proposition 2.1 (Time implicit scheme entropy dissipation). Denote the solution {ρn}n∈N solving the variational implicit scheme (2.7). 
For any stepsize �t ≥ 0, we have

E(ρn) ≤ E(ρn−1), for n ∈N+.

Proof. Denote the objective functional (2.7a) as

F(ρ,m, s) = 1

2�t

∫
�

[ ‖m(x)‖2
V1(ρ(x))

+ |s(x)|2
V2(ρ(x))

]
dx+ E(ρ). (2.8)

Since (ρn−1, m = 0, s = 0) is a feasible point satisfying the constraint (2.7b), and (ρn, m∗, s∗) is an optimal solution of (2.7), 
we have

E(ρn) ≤ F(ρn,m∗, s∗) ≤ F(ρn−1,0,0) = E(ρn−1),

where we use the fact that

F(ρn,m∗, s∗) = E(ρn) + 1

2�t

∫
�

[ ‖m∗(x)‖2
V1(ρn(x))

+ |s∗(x)|2
V2(ρn(x))

]
dx ≥ E(ρn).

We finish the proof. �
We also remark that there are issues of convexity in computing minimizers of the variational problem (2.7). If V1 and 

V2 are concave w.r.t. ρ , then the minimization problem (2.7) is always convex for any positive step size �t . In general, 
this fact may be lost for general mobility functions V1 and V2. In computations, we still apply the first-order optimization 
algorithm to compute the variational problem (2.7), where we suggest a small stepsize �t in the iterative update.

2.2. The abstract ALG2 algorithm

In this subsection, we formulate saddle point problems to calculate the variational time implicit schemes (2.7); see also 
[24,5].

We present the general form of the augmented Lagrangian (ALG2) algorithm [24] for the following saddle point system:

inf
u

sup
�

F (u) − G(�) − (u,D�)�, (2.9)

where D(�) is a linear differential operator for �, and (·, ·)� stands for the L2-inner product on the domain �. For the 
problem (2.7), we choose

u = (ρ,m, s),
7
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with

F (u) = 1

2

∫
�

[ ‖m‖2
V1(ρ)

+ |s|2
V2(ρ)

]
dx+ �tE(ρ), G(�) =

∫
�

ρn−1�dx,

and

D� = (−�,∇�,�).

The algorithm starts with the dual formulation of the saddle-point problem (2.9):

sup
u

inf
�,u∗ F ∗(u∗) + G(�) + (u,D� − u∗)�, (2.10)

where F ∗(u∗) = supu(u, u∗)� − F (u) is the Legendre transform. The saddle point of the above system is equivalent to the 
saddle point of the following augmented Lagrangian form:

sup
u

inf
�,u∗ Lr(�,u,u∗), (2.11)

where the augmented Lagrangian

Lr(�,u,u∗) := F ∗(u∗) + G(�) + (u,D� − u∗)� + r

2
(D� − u∗,D� − u∗)�,

in which r is a positive parameter.
The ALG2 solves the optimization problem (2.11) in a splitting fashion. One iteration contains the following three steps.

Algorithm 1 One iteration of ALG2 algorithm for variational implicit scheme (2.11).
• Step A: update �. Minimize Lr(�, u, u∗) with respect to the first argument by solving the elliptic problem: Find �� such that it solves

inf
�

Lr(�,u�−1,u∗,�−1).

• Step B: update u∗ . Minimize Lr(�, u, u∗) with respect to the last argument by solving the nonlinear problem: Find u∗,� such that it solves

inf
u∗ Lr(�

�,u�−1,u∗).

• Step C: update u. This is a simple pointwise update for the Lagrange multiplier u :

u� = u�−1 + r(D�� − u∗,�). (2.12)

We note that the key success of the ALG2 Algorithm 1 is that Step A is a simple linear reaction-diffusion equation 
solve, while the nonlinear Step B can be efficiently solved in a point-wise fashion, provided a good spatial discretization 
is used for the discretization variables; see Algorithm 2 below. We note that for the system case, further splitting in Step 
A/B for each component calculation will be applied to further save the computational cost; see Algorithm 3 below. We 
will present details of the implementation in Section 4 where the high-order spatial discretization is introduced. The error 
in the Lagrange multipliers in two consecutive iterations u� − u�−1 can be used to monitor the convergence of the ALG2 
algorithm. Typically, a couple of hundred ALG iterations is sufficient for time accuracy. We take 200 ALG iterations in all 
our numerical results reported in Section 5. We note that after a spatial finite element discretization (see Section 4 below), 
the computational complexity of one ALG iteration is linear with respect to the total number of degrees of freedom. The 
proposed algorithm is highly parallelizable, as Step A can be solved using an optimal complexity multigrid solver, and Step 
B is a pointwise update that is embarrassingly parallelizable. The parallel implementation of this algorithm is our ongoing 
work.

3. Examples: Wasserstein gradient flow, reaction-diffusion equations, and reversible reaction-diffusion systems

This section presents examples of dissipative dynamic systems that fit in the framework of the previous section: Wasser-
stein gradient flows, scalar reaction-diffusion equations, and reversible reaction-diffusion systems.
8
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3.1. Wasserestein gradient flow

We consider the following L2-Wasserstein gradient flow for a time-dependent probability density ρ : � ×R+ → R+ on 
a domain � ⊂ Rd ,

∂tρ = ∇ ·
(
ρ∇ δ

δρ
E(ρ)

)
, (3.1)

subject to Neumann boundary conditions. Typically, the energy functional E(ρ) takes the following form

E(ρ) :=
∫
�

[
αUm(ρ(x)) + ρ(x)V (x) + 1

2
(W ∗ ρ)(x)ρ(x)

]
dx, (3.2)

where α ≥ 0 is the diffusion coefficient, Um(ρ) is the diffusion term with

Um(ρ) =
{
ρ log(ρ) ifm = 1,
ρm

m−1 ifm > 1,

ρV is the drift term with drift potential V , and 12 (W ∗ ρ)ρ is the aggregation term with the convolution

(W ∗ ρ)(x) :=
∫
�

W (x− y)ρ(y)dy,

in which W (·) is the symmetric interaction kernel. Its variational derivative is

δ

δρ
E = αU ′

m(ρ) + V + W ∗ ρ. (3.3)

The equation (3.1) is mass conserving, positivity preserving, and satisfies the energy dissipation law (2.2) with V1(ρ) = ρ
and V2(ρ) = 0.

This model is a special case of (2.1) with V1(ρ) = ρ , V2(ρ) = 0, and energy functional E in (3.2). The corresponding 
one-step variational time implicit scheme (2.7) is

inf
ρ,m

1

2�t

∫
�

‖m(x)‖2
ρ(x)

dx+ E(ρ), (3.4a)

where the minimization is over all functions m : � →Rd , and ρ : � →R+ , such that

ρ(x) − ρn−1(x) + ∇ ·m(x) = 0. (3.4b)

The next step solution ρn is the density minimizer of (2.7), i.e., ρn(x) = ρ(x). Here the first term in (3.4a) is the one-
step relaxation approximation of the classical Wasserstein distance in Benamou-Brenier’s dynamic formulation [5], i.e., the 
distance in (2.3) with V1(ρ) = ρ and V2(ρ) = 0. We note that such approximation was originally used in [42,9].

This problem is equivalent to finding the saddle point of (2.9) in which u = (ρ, m),

F (u) =
∫
�

‖m‖2
2ρ

dx+ �tE(ρ), G(�) =
∫
�

ρn−1�dx,

and D� = (−�, ∇�), which can be solved using ALG2 Algorithm 1 after a spatial discretization is used; see Section 4.

3.2. Dissipative reaction-diffusion equation

Adding a reaction term of form −V2(ρ) δ
δρ E with a non-negative mobility function V2(ρ) ≥ 0 to the PDE (3.1), we get 

the following reaction-diffusion equation:

∂tρ = ∇ ·
(
ρ∇ δ

δρ
E
)

− V2(ρ)
δE
δρ

, (3.5)

which is again a special case of (2.1), with V1(ρ) = ρ , and a general non-negative function V2(ρ). Hence, the corresponding 
one-step variational time implicit scheme (2.7) is

inf
ρ,m,s

1

2�t

∫ [‖m(x)‖2
ρ(x)

+ |s(x)|2
V2(ρ(x))

]
dx+ E(ρ), (3.6a)
�

9
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where the minimization is over all functions m : � →Rd , s : � → R, and ρ : � →R+ , such that

ρ(x) − ρn−1(x) + ∇ ·m(x) = s(x). (3.6b)

This is the saddle point of (2.9) in which u = (ρ, m, s),

F (u) =
∫
�

[‖m‖2
2ρ

+ |s|2
2V2(ρ)

]
dx+ �tE(ρ), G(�) =

∫
�

ρn−1�dx,

and D� = (−�, ∇�, �).
We will postpone the introduction of a model with a more general V1(ρ) 	= ρ to Section 3.4.1, where a two-component 

reversible reaction-diffusion system with detailed balance is discussed.
Below we list three choices of V2(ρ) along with their corresponding energies that will be used in our numerical experi-

ments:

(i) V2(ρ) = cργ where c ≥ 0 and γ ∈ R, with a general E(ρ) given in (3.2). Here γ = 1 corresponds to the Wasserstein-
Fisher-Rao metrics used in [17,45], and γ = 0 is related to unnormalized optimal transport [36]. Both cases lead to a 
convex optimization problem (3.6) when the energy is convex; see Remark 4.3 below.

(ii) V2(ρ) = c ρ−1
log(ρ)

where c ≥ 0 with a general E(ρ) given in (3.2). This choice also leads to a convex optimization problem 
for a convex energy.

(iii) V2(ρ) = ρ(ρ−1)
α log(ρ)

, with energy E(ρ) := ∫
�

αρ(x)(log(ρ) − 1)dx, where α > 0. This model is the following Fisher–KPP 
equation; see [39, Example 7]:

∂ρ

∂t
− ∇ · (α∇ρ) = ρ(1 − ρ). (3.7)

It, however, does not lead to a convex optimization problem.

3.3. Strongly reversible reaction-diffusion systems

Our next model deals with the system of strongly reversible reaction-diffusion equations [55]. We consider M different 
chemical species X1, . . . , XM reacting according to R mass-action laws:

α
p
1 X1 + · · · + α

p
M XM

kp+−⇀↽−
kp−

β
p
1 X1 + · · · + β

p
M XM , (3.8)

where p = 1, · · · , R is the number of possible reactions, αp = (α
p
1 , · · · , αp

M), β p = (β
p
1 , · · · , β p

M) ∈ NM
0 are the vectors of 

the stoichiometric coefficients, and kp+, kp− are the positive forward and backward reaction rates. For simplicity, we restrict 
ourselves to the strongly reversible case where kp+ = kp− = kp > 0 in this subsection. The next subsection will discuss the 
more general case of reversible reaction-diffusion systems with the detailed balance that allows kp+ 	= kp− > 0.

Combining the mass-action laws (3.8) with (independent) isotropic linear diffusion with energy Ei(ρi) =
∫
�

ρi(log(ρi) −
1) dx for each density ρi of species Xi , we get the following reaction-diffusion system:

∂tρi − ∇ ·
(
γiρi∇ δ

δρ
Ei(ρi)

)
= −

R∑
p=1

kp(αp
i − β

p
i )(ραp − ρβ p

), (3.9)

for 1 ≤ i ≤ M , where ρ = (ρ1, · · · , ρM) and the multi-index notation ραp :=∏M
i=1 ρ

α
p
i

i is used. Here the potential δ
δρ Ei(ρi) =

log(ρi) is simply the logarithm.
Next, we recast the above system (3.9) back to a system version of the general dissipative form (2.1) using appropriate 

mobility functions. We introduce the following function; see [55]:

�(x, y) =
⎧⎨
⎩

x−y
log(x)−log(y) for x 	= y,

y for x = y,
(3.10)

and denote the following mobility functions:

V1,i(ρi) = γiρi, ∀1 ≤ i ≤ M, (3.11a)

V2,p(ρ) = kp �
(
ραp

,ρβ p
)

, ∀1 ≤ p ≤ R. (3.11b)
10
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Using these notations, it can be shown that (3.9) is equivalent to

∂tρi = ∇ ·
(
V1,i(ρi)∇ δ

δρ
Ei(ρi)

)

−
R∑

p=1

V2,p(ρ)(α
p
i − β

p
i )

M∑
j=1

(α
p
j − β

p
j )

δ

δρ
E j(ρ j). (3.12)

It is now clear that the above system is purely dissipative as for the scalar case (2.1). That is, the first-time derivative of the 
total energy functional is nonpositive and satisfies

d

dt

M∑
i=1

Ei(ρi(·, t)) = −
M∑
i=1

∫
�

‖∇ δ

δρ
Ei(ρi)(x, t)‖2V1,i(ρi)dx

−
R∑

p=1

∫
�

∣∣∣∣∣∣
M∑
j=1

(α
p
j − β

p
j )

δ

δρ
E j(ρ j)

∣∣∣∣∣∣
2

V2,p(ρ)dx.

(3.13)

As in the scalar case in Definition (2.3), we consider an optimal transport type distance:

DistV1,V2(ρ
0,ρ1)2 = inf

ρ,m,s

{ 1∫
0

∫
�

⎛
⎝ M∑

i=1

|mi |2
V1,i(ρi)

+
R∑

p=1

|sp|2
V2,p(ρ)

⎞
⎠dxdτ :

∂τ ρi + ∇ ·mi =∑R
p=1(α

p
i − β

p
i )sp,∀1 ≤ i ≤ M ,

ρ(·,0) = ρ0, ρ(·,1) = ρ1.

}
,

where m = (m1, · · · , mM) is the collection of fluxes, and s = (s1, · · · , sR) is the collection of sources. Using this distance, the 
variational time implicit scheme is defined as follows (compare Definition (2.4) for the scalar case).

Definition. Variational time implicit scheme for system (3.12). Denote �t > 0 as a time step size. Consider the scheme below:

ρn =arg min
ρ∈[M]M

1

2�t
DistV1,V2(ρ

n−1,ρ)2 +
M∑
i=1

Ei(ρi). (3.14)

Its one-step relaxation is given as follows, which is the starting point of our spatial discretization to be discussed in the 
next section.

Definition. One-step relaxation of variational time implicit schemes for system (3.12). Consider

inf
ρ,m,s

1

2�t

⎛
⎝ M∑

i=1

∫
�

‖mi‖2
V1,i(ρi)

dx+
R∑

p=1

∫
�

‖sp‖2
V2,p(ρ)

dx

⎞
⎠+

M∑
i=1

Ei(ρi), (3.15a)

where the minimization is over all functions m : � → [Rd]M , s : � → [R]R , and ρ : � → [R+]M , such that

ρi(x) − ρn−1
i (x) + ∇ ·mi(x) =

R∑
p=1

(α
p
i − β

p
i )sp(x), ∀1 ≤ i ≤ M. (3.15b)

The next step solution ρn is the density minimizer of (3.15). It is the saddle point of (2.9) in which

u = (ρ1, · · · ,ρM ,m1, · · · ,mM , s1, · · · , sR),� = (�1, · · · ,�M),

F (u) = 1

2�t

⎛
⎝ M∑

i=1

∫
�

‖mi‖2
V1,i(ρi)

dx+
R∑

p=1

∫
�

‖sp‖2
V2,p(ρ)

dx

⎞
⎠ , G(�) =

M∑
i=1

∫
�

ρn−1
i �i dx,

and

D� = (−�1, · · · ,−�M ,∇�1, · · · ,∇�M ,

M∑
(α1

i − β1
i )�i, · · · ,

M∑
(αR

i − βR
i )�i).
i=1 i=1

11
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3.4. Reversible reaction-diffusion system with detailed balance

Note that the strongly reversible reaction-diffusion system (3.12) uses the same energy Ei(ρi) =
∫
�

ρi(log(ρi) − 1) dx for 
all species. By simply relaxing this requirement and rescaling the energy as

Ei(ρi) =
∫
�

ρi(log(κiρi) − 1)dx, (3.16)

with κi > 0 being a positive constant to be determined by the reaction rates kp± , we will recover reversible reaction-diffusion 
systems with detailed balance; see [30,48–50]. For the above choice of energy, there holds

δ

δρ
Ei(ρi) = log(κiρi).

Below we give two specific examples that will be used in the numerical results section.

3.4.1. A two species model
We consider two species X1, X2 with a single reversible reaction

X1 + 2X2
k+−⇀↽−
k−

3X2,

with k−, k+ > 0. Denoting the following coefficients and mobility functions,

κ1 = k+, κ2 = k−, (3.17a)

V1,1(ρ1) = γ1(ρ1)
m, V1,2(ρ2) = γ2ρ2, (3.17b)

V2(ρ1,ρ2) = �(κ1ρ1ρ
2
2 , κ2ρ

3
2 ), (3.17c)

with �(·, ·) given in (3.10), γ1, γ2 > 0, m ≥ 1, and using the energy (3.16), the system (3.12) written in component-wise 
notation is given as follows:

∂tρ1 = ∇ ·
(
V1,1(ρ1)∇ δE1

δρ
(ρ1)

)
− V2(ρ1,ρ2)

(
δE1
δρ

(ρ1) − δE2
δρ

(ρ2)

)
, (3.18a)

∂tρ2 = ∇ ·
(
V1,2(ρ2)∇ δE2

δρ
(ρ2)

)
+ V2(ρ1,ρ2)

(
δE1
δρ

(ρ1) − δE2
δρ

(ρ2)

)
. (3.18b)

This is the following two-component reversible reaction-diffusion system studied in [48,49], which has potential applications 
in modeling tumor growth (see [53,62]):

∂tρ1 − γ1

m
�ρm

1 = − (k+ρ1ρ
2
2 − k−ρ3

2 ),

∂tρ2 − γ2�ρ2 = (k+ρ1ρ
2
2 − k−ρ3

2 ).

3.4.2. A reversible four-component Gray-Scott model
Our final example is the reversible four-component Gray-Scott model originally proposed in [44] and numerically studied 

in [49]. We consider four species X1, X2, X3, X4 with three reversible reactions

X1 + 2X2

k1+−⇀↽−
k1−

3X2, X2

k2+−⇀↽−
k2−

X3, X1

k3+−⇀↽−
k3−

X4.

The reaction-diffusion system that combines these reactions with linear diffusion (with M = 4, R = 3) can be written into 
the form (3.12) by the following specific choices of κ-values, and mobility functions V1,i and V2,p :

κ1 = 1, κ2 = k1−
k1+

, κ3 = k1−
k1+

k2−
k2+

, κ4 = k3−
k3+

, (3.19a)

V1,1(ρ1) = γ1ρ1, V1,2(ρ2) = γ2ρ2, V1,3(ρ3) = V1,4(ρ4) = 0, (3.19b)

V2,1(ρ) = �(k1+ρα1
,k1−ρβ1

) = k1+ρ1ρ
2
2 − k1−ρ3

2

log(κ1ρ1) − log(κ2ρ2)
, (3.19c)

V2,2(ρ) = �(k2+ρα2
,k2−ρβ2

) = k2+ρ2 − k2−ρ3
, (3.19d)
log(κ2ρ2) − log(κ3ρ3)

12
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V2,3(ρ) = �(k2+ρα3
,k3−ρβ3

) = k3+ρ1 − k3−ρ4

log(κ1ρ1) − log(κ4ρ4)
. (3.19e)

For completeness, we write down the PDE system (3.12) with the above choice of parameters using a standard component-
wise notation in the following:

∂tρ1 = γ1�ρ1 − (k1+ρ1ρ
2
2 − k1−ρ3

2 ) − (k3+ρ1 − k3−ρ4), (3.20a)

∂tρ2 = γ2�ρ2 + (k1+ρ1ρ
2
2 − k1−ρ3

2 ) − (k2+ρ2 − k2−ρ3), (3.20b)

∂tρ3 = (k2+ρ2 − k2−ρ3), (3.20c)

∂tρ4 = (k3+ρ1 − k3−ρ4). (3.20d)

This is the reversible Gray-Scott model proposed in [44] to approximate the following two-component irreversible Gray-Scott 
model [32]:

∂tρ1 = γ1�ρ1 − k1+ρ1ρ
2
2 − k3+(ρ1 − 1), (3.21a)

∂tρ2 = γ2�ρ2 + k1+ρ1ρ
2
2 − k2+ρ2, (3.21b)

which can form spatially complex patterns [59], and is widely used to study pattern formations. We comment that by 
requiring

κ1−ρ3
2 ≈ 0, k3−ρ4 ≈ k3+, and κ2−ρ3 ≈ 0, (3.22)

the reversible Gray-Scott model (3.20) formally converges to the irreversible Gray-Scott model (3.21). We refer interested 
readers to [44] for a theoretical study. Formally, the conditions (3.22) can be achieved by taking very small backward 
reaction rates κ1−, κ2−, κ3− � 1, and using initial value for ρ4 such that ρ4 = κ3+

κ3−
� 1. As a side note, we mention that spatially 

complex patterns were not observed in the numerical results [49, Example 4.3], which uses a second-order operator splitting 
scheme via an energetic variational formulation. We found that the reason for no pattern formation in the test case in [49]
was due to inappropriate choices of a too large backward reaction rate k3− and the initial condition. With more careful 
choices of diffusion coefficients, reaction rates, and initial conditions, we numerically observe complex pattern formations 
in both 1D and 2D reversible Gray-Scott models; see our simulation results in Section 5.7.

4. High-order spatial discretization for generalized time implicit schemes

In this section, we first apply high-order spatial discretization to the time implicit schemes (3.4), (3.6) and their system 
version (3.15), and then discuss the practical implementation of each step of the ALG2 Algorithm 1. We restrict ourselves to 
the two-dimensional setting with a rectangular domain �, which is triangulated using a uniform rectangular mesh Th = {T }. 
While our method can work on general unstructured triangular meshes, see [25], the restriction to uniform rectangular 
meshes has a huge advantage in computing the convolution term in the energy (3.2), where the Fast Fourier transform can 
be applied.

4.1. The finite element spaces and notation

The spatial discretization is adopted from our previous work on high-order schemes for optimal transport and mean field 
games [25]. Specifically, the high-order H1-conforming finite element space

V k
h := {v ∈ H1(�) : v|T ∈ Qk(T ) ∀T ∈ Th}, (4.1)

is used to approximate the � variable, and the high-order L2-conforming discontinuous polynomial space,

Wk
h := {w ∈ L2(�) : w|T ∈ Qk(T ) ∀T ∈ Th}, (4.2)

is used to approximate the other variables where derivative information is not needed. Here Qk(T ) is the space of tensor-
product polynomial spaces of degree no greater than k ≥ 1 in each direction. We equip the space Wk

h with a set of nodal 
basis {ϕi}NW

i=1 ⊂ Wk
h that satisfies

ϕi(ξ j) = δi j, ∀1 ≤ j ≤ NW , (4.3)

where NW is the dimension of the space Wk
h , δi j is the Kronecker delta function, and {ξi}NW

i=i is the collection of NW Gauss-

Legendre integration points with corresponding weights {ωi}NW
i=1 on the mesh Th . For the current work, only evaluation on 

quadrature points for functions in Wk is needed in the algorithm, not their derivatives. Hence, given a function uh ∈ Wk

h h

13
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expressed as uh =∑NW
i=1 uiϕi(x), we simply need to store and update its coefficient vector [ui, · · · , uNW ]T , which makes its 

practical implementation extremely simple. Moreover, we denote the discrete L2(�)-inner product (·, ·)h as

(u, v)h :=
NW∑
i=1

u(ξi)v(ξi)ωi, (4.4)

we have (uh, vh)h =∑NW
i=1 uiviωi , for any function uh =∑NW

i=1 uiϕi(x) ∈ Wk
h and vh =∑NW

i=1 viϕi(x) ∈ Wk
h .

4.2. High-order FEM for the reaction diffusion equation

Since the variation time implicit scheme for the Wasserstein gradient flow problem (3.4) is a special case of the reaction-
diffusion problem (3.6) with no reaction V2(ρ) = 0, we only present the high-order spatial discretization for (3.6). We first 
write the discrete saddle point problem in its augmented Lagrangian form (2.11): given mesh Th , polynomial degree k ≥ 1, 
time step size �t > 0 and density approximation ρold

h at the previous time step, find uh, u∗
h ∈ [Wk

h]4, and �h ∈ V k
h , such 

that

inf
u∈[Wk

h ]4
sup

�h∈V k
h ,u∗

h∈[Wk
h ]4

Lr,h(�h,uh,u
∗
h), (4.5)

where uh = (ρh, m0
h, m

1
h, sh) is the collection of density ρh , (two-dimensional) flux mh = (m0

h, m
1
h), and source term sh , 

u∗
h = (ρ∗

h , m0,∗
h , m1,∗

h , s∗h) is its dual, and the discrete augmented Lagrangian is

Lr,h(�h,uh,u
∗
h) := F ∗

h (u∗
h) + Gh(�h) + (uh,D�h − u∗

h)h

+ r

2
(D�h − u∗

h,D�h − u∗
h)h. (4.6)

Here (·, ·)h is the volume integration rule given in (4.4), the operators

D�h := (−�h, ∂x0�h, ∂x1�h,�h), (4.7)

Gh(�h) := (ρold
h ,�h)h, (4.8)

F ∗
h (u∗

h) := sup
uh∈[Wk

h ]4
(u∗

h,uh)h − Fh(uh), (4.9)

where (∂x0 , ∂x1 ) = ∇ is the gradient, and Fh is given as

Fh(uh) :=
(

|m0
h|2 + |m1

h|2
2ρh

+ s2h
2V2(ρh)

,1

)
h

+ �t Eh(ρh), (4.10)

in which the discrete total energy

Eh(ρh) := (αUm(ρh) + ρhV (x),1)h + 1

2
(W ∗ ρh,ρh)h (4.11)

for energy of the form (3.2). We note that when the interaction kernel W (x) is smooth, the convolution term W ∗ρh in the 
above expression can be simply evaluated using the same integration rule (4.4). On the other hand, for singular kernels with 
W (0) = ±∞, we shall use alternative integration rules to avoid the evaluation of W (0) when evaluating this convolution 
term.

Note that a similar formulation can be used for the more general case (2.7) for the equation (2.1) where the denominator 
in the first term in (4.10) is replaced by a general mobility function V1(ρh).

Remark 4.1 (On polynomial degree for �h and uh). We note that in our previous work [25], the polynomial degree for the 
discontinuous functions uh associated with the integration rule space Wk

h is taken to be one order lower than that for the
continuous function �h . Here our numerical experiments suggest that increasing the integration rule space order to be the 
same as the continuous space V k

h leads to a more accurate result. Hence we use equal order approximations for all our 
numerical results.

We next provide a practical implementation of each step of the ALG2 Algorithm 1 for solving the saddle point problem.
14
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4.2.1. Step A: scalar case
Taking infinium of Lr,h with respect to �h , we arrive at a constant coefficient reaction-diffusion equation: find ��

h ∈ V k
h

such that

(D��
h,D�h)h = (u∗,�−1

h − 1

r
u�−1
h ,D�h)h − 1

r
(ρold

h ,�h)h, ∀�h ∈ V k
h . (4.12)

Using the definition in (4.7), we write the above equation using physical variables:

2(��
h,�h)h + (∇��

h,∇�h)h = (s∗,�−1
h − ρ∗,�−1

h + ρ�−1
h − s�−1

h − ρold
h

r
,�h)h

+ (m∗,�−1
h − m�−1

h

r
,∇�h)h.

This symmetric positive definite linear system can be efficiently solved using, e.g., a multigrid algorithm [8,71].

4.2.2. Step B/C: scalar case
The next step is to take infinium of Lr,h with respect to u∗

h . Find u∗,�
h ∈ [Wk

h]4, such that it solves

argmin
u∗
h∈[Wk

h ]4
F ∗
h (u∗

h) − (u�−1
h ,u∗

h)h + r

2
(D��

h − u∗
h,D��

h − u∗
h)h.

Without loss of generality, we abuse the notation and denote D��
h as its interpolation onto the space [Wk

h ]4. We further 
denote

uh := D��
h + 1

r
u�−1
h ∈ [Wk

h]4. (4.13)

Then the above minimization problem is equivalent to

argmin
u∗
h∈[Wk

h ]4
F ∗
h (u∗

h) + r

2
(u∗

h − uh,u
∗
h − uh)h. (4.14)

After this minimizer is computed, the last step is to update the Lagrangian multiplier u�
h according to (2.12):

u�
h = u�−1

h + r(D��
h − u∗,�

h ) = r(uh − u∗,�
h ) ∈ [Wk

h]4, (4.15)

where we used the definition (4.13) in the last step.
Due to the complicated form of the energy (3.2), it might be challenging to compute an explicit expression of the convex 

conjugate F ∗
h (u∗

h). Here we present a practical way to solve the minimization problem (4.14) without explicitly computing 
this convex conjugate using duality. The main idea is presented in the next result.

Proposition 4.1. Let u∗,�
h ∈ [Wk

h]4 be the minimizer to the problem (4.14), and let u�
h be given according to (4.15). Then, u�

h is the 
minimizer to the following problem

u�
h = argmin

uh∈[Wk
h ]4

Fh(uh) + 1

2r
(uh − ruh,uh − ruh)h, (4.16)

which we refer to as the dual problem of (4.14). Furthermore, there holds

u∗,�
h = uh − u�

h/r. (4.17)

Proof. The equation (4.17) is a simple rewriting of (4.15). Let us now prove (4.16). By definition (4.9), we have u∗,�
h is part 

of the saddle point solution

inf
u∗
h∈[Wk

h ]4
sup

uh∈[Wk
h ]4

(uh,u
∗
h)h − Fh(uh) + r

2
(u∗

h − uh,u
∗
h − uh)h. (4.18)

Taking the derivative with respect to u∗
h in the above expression, we get

u∗
h = uh − uh/r.

Plugging this expression back to (4.18), we easily see that the primal variable uh is the minimizer to the dual problem 
(4.16). By (4.15), it is clear that this optimizer is nothing but the solution u� . This completes the proof. �
h

15
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Proposition 4.1 suggests to first solve for the primal variable u�
h using the minimization problem (4.16), then update u∗,�

h
using (4.17), which is the approach we adopt in our implementation. It is in general more convenient than the (equivalent) 
original ALG2 algorithm that first solve for the dual variable u∗,�

h using (4.14) then update u�
h using (4.15), which requires 

the computation of the dual functional (4.9).
Next, using the particular form of Fh in (4.10), we show that the minimization problem (4.16) can be efficiently solved by 

first locally expressing flux m0
h, m

1
h and source sh in terms of density ρh and then solving a nonlinear optimization problem 

for ρh alone. We record this procedure in the following result.

Proposition 4.2. Let u�
h be the solution to (4.16). Then there holds

m0,�
h = rρ�

h

r + ρ�
h

m0
h, m1,�

h = rρ�
h

r + ρ�
h

m1
h, s�h = rV2(ρ

�
h)

r + V2(ρ
�
h)

sh, (4.19)

where

uh = (ρh,m
0
h,m

1
h, sh),

and ρ�
h is the minimizer to the following reduced problem:

argmin
ρh∈Wk

h

1

2r

(
|ρh − rρh|2,1

)
h
+
(
r2(|m0

h|2 + |m1
h|2)

2(r + ρh)
,1

)
h

+
(

r2 |sh|2
2(r + V2(ρh))

,1

)
h
+ �t Eh(ρh). (4.20)

Proof. The derivatives of the functional in (4.16) at the saddle point vanish. Taking derivatives with respect to m0
h, m

1
h and 

sh , we get the relations (4.19). Plugging these relations back to (4.16) and simplifying, we get the optimization problem 
(4.20) for ρ�

h . �
Remark 4.2 (On pointwise update for (4.20)). The problem (4.20) can be solved by computing its critical point. Taking the 
variation of the function in (4.20) with respect to ρh , we have

1

r
(ρh − rρh) − r2(|m0

h|2 + |m1
h|2)

2(r + ρh)
2

− r2V ′
2(ρh)s

2
h

2(r + V2(ρh))
2

+ �t
δEh
δρ

(ρh) = 0. (4.21)

By the choice of the function space (4.2), it is clear that (4.21) is satisfied on all quadrature points ξi for 1 ≤ i ≤ NW . Using 
definition of the energy (4.11), we have

δEh
δρ

(ρh) = αU ′
m(ρh) + V (x) + W ∗ ρh.

In the absence of interaction kernel where W (x) = 0, the equation (4.21) can be solved in a pointwise fashion per quadrature 
point thanks to the particular choice of the nodal basis (4.3) for the space (4.2), using, e.g., Newton’s method.

On the other hand, when aggregation effects are included, the term W ∗ ρh prohibits such pointwise update due to the 
nonlocal effect of this convolution. In this case, we treat the convolution term W ∗ ρh explicitly in (4.21) by evaluating it at 
the previous time step, i.e.,

W ∗ ρh ≈ W ∗ ρold
h ,

and then solve the modified pointwise local problem (4.21) using the Newton’s method. This is the choice we use in all our 
simulation results with aggregation effects. Similar treatment was used in, e.g., [10,7].

Remark 4.3 (On convexity). Let us briefly comment on convexity of the problem (4.20). When aggregation effects are 
included, we extrapolate the nonlocal convolution term according to Remark 4.2. The problem (4.20) is a pointwise mini-
mization problem per quadrature point. Taking its second-order variation, we obtain

1

r
+ r2(|m0

h|2 + |m1
h|2)

(r + ρh)
3

+ r2|sh|2
(
2V ′

2(ρh)
2 − (r + V2(ρh))V ′′

2 (ρh)
)

2(r + V2(ρh))
3

+ α�tU ′′
m(ρh). (4.22)

It is clear that the first, second, and last terms of the above expression are always nonnegative as long as ρh ≥ 0. Moreover, 
if
16
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2V ′
2(ρh)

2 − (r + V2(ρh))V
′′
2 (ρh) ≥ 0, (4.23)

then the third term is also nonnegative. For such a choice of mobility V2, the minimization problem is convex, and the 
uniqueness of the solution is guaranteed unconditionally for any time step size �t . In the absence of aggregation effects, 
the overall ALG2 algorithm with V2 satisfying (4.23) can also be shown to be unconditionally convergent; see, e.g., [21].

We note that the convexity condition (4.23) is ensured if we take V2(ρ) = cργ for c > 0 and 0 ≤ γ ≤ 1, or V2(ρ) =
ρ−ρ̄

log(ρ)−log(ρ̄)
for any ρ̄ > 0. The latter choice will be used in the system case. On the other hand, the mobility V2(ρ) = ρ(1−ρ)

log(ρ)

for the Fisher-KPP equation (3.7) does not satisfy the convexity condition (4.23). For this case, we may use a small time 
step size �t to get a stable simulation.

We finally note that small time step size �t may also be needed for the general case with an interaction potential W , 
where extrapolation is used to approximate the problem (4.20) as mentioned in Remark 4.2.

For completeness, we collect one iteration of this algorithm as follows.

Algorithm 2 One iteration of ALG2 algorithm for (4.5).
• Step A: update ��

h . Find ��
h ∈ V k

h such that the equation (4.12) holds.
• Step B/C: update u�

h, u
∗,�
h . First, find ρ�

h such that it is the minimizer to (4.20). Then update m0,�
h , m1,�

h , s�h according to (4.19). Finally, update u∗,�
h

according to (4.17).

We note that the positivity of density approximation ρh can be easily enforced in the pointwise optimization problem 
(4.20).

4.3. High-order FEM for strongly reversible reaction diffusion systems

We now present the high-order FEM discretization of the variational time implicit scheme (3.15) and discuss its practical 
(modified) ALG2 implementation. Given time step size �t > 0 and density approximations

ρold
h = (ρold

1,h, · · · ,ρold
M,h) ∈ [Wk

h]M

at the previous time step, find uh, u∗
h ∈ [Wk

h]3M+R , and �h ∈ [V k
h ]M , such that

inf
uh∈[Wk

h ]3M+R
sup

�h∈[V k
h ]M ,u∗

h∈[Wk
h ]3M+R

Lr,h(�h,uh,u
∗
h), (4.24)

where

uh = (ρ1,h,m
0
1,h,m

1
1,h, · · · ,ρM,h,m

0
M,h,m

1
M,h, s1,h, · · · , sR,h)

is the collection of densities ρh , fluxes

mh = (m0
1,h,m

1
1,h, · · · ,m0

M,h,m
1
M,h),

and source terms sh = (s1,h, · · · , sR,h), u∗
h is its dual, �h = (�1,h, . . . , �M,h), and the discrete augmented Lagrangian is

Lr,h(�h,uh,u
∗
h) := Fh

∗(u∗
h) + Gh(�h) + (uh,D�h − u∗

h)h

+ r

2
(D�h − u∗

h,D�h − u∗
h)h. (4.25)

Here the operators

D�h :=
(

− �1,h, ∂x0�1,h, ∂x1�1,h, · · · ,−�1,h, ∂x0�1,h, ∂x1�1,h,

M∑
i=1

(α1
i − β1

i )�i,h, · · · ,

M∑
i=1

(αR
i − βR

i )�i,h

)
, (4.26)

Gh(�h) :=
M∑
i=1

(ρold
i,h ,�i,h)h, (4.27)

Fh
∗(u∗

h) := sup
uh∈[Wk

h ]3M+R

(u∗
h,uh)h − Fh(uh), (4.28)

and Fh is given as
17
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Fh(uh) :=
⎛
⎝ M∑

i=1

|m0
i,h|2 + |m1

i,h|2
2V1,i(ρi,h)

+
R∑

p=1

|sp,h|2
2V2,p(ρh)

,1

⎞
⎠

h

+ �t
M∑
i=1

Ei,h(ρi,h), (4.29)

where the mobility functions are given in (3.11) and the discrete energy

Ei,h(ρi,h) = (ρi,h(log(ρi,h) − 1),1)h.

We now discuss a modified implementation of the ALG2 Algorithm 1 for the saddle point system (4.24), where further 
componentwise splitting is introduced to drive down the overall computational cost.

4.3.1. Step A: system case
Taking infinium of Lr,h with respect to �h , we arrive at a coupled system of constant coefficient reaction-diffusion 

equations: find ��
h ∈ [V k

h ]M such that

(D��
h,D�h)h = (u∗,�−1

h − 1

r
u�−1
h ,D�h)h − 1

r
(ρold

h ,�h)h, (4.30)

for all �h ∈ [V k
h ]M . Using the definition in (4.26), we write the above system back using the physical variables:

(��
i,h,�i,h)h + (∇��

i,h,∇�i,h)h +
R∑

p=1

M∑
j=1

(
(α

p
j − β

p
j )�

�
j,h, (α

p
i − β

p
i )�i,h

)
h

= (−ρ∗,�−1
i,h + ρ�−1

i,h − ρold
i,h

r
,�i,h)h + (m∗,�−1

i,h − m�−1
i,h

r
,∇�i,h)h

+
R∑

p=1

(
s∗,�−1
r,h − 1

r
s�−1
r,h , (α

p
i − β

p
i )�i,h

)
h
,

for all 1 ≤ i ≤ M . This coupled linear system might be expensive to solve. Here we propose to solve these M equations in 
parallel by treating the coupling term on the left hand side of the above equation explicitly. Specifically, for each 1 ≤ i ≤ M , 
we compute �i,h ∈ V k

h such that it solves the following scalar linear reaction-diffusion equation:

(��
i,h,�i,h)h + (∇��

i,h,∇�i,h)h +
R∑

p=1

(
(α

p
i − β

p
i )��

i,h, (α
p
i − β

p
i )�i,h

)
h

= (−ρ∗,�−1
i,h + ρ�−1

i,h − ρold
i,h

r
,�i,h)h + (m∗,�−1

i,h − m�−1
i,h

r
,∇�i,h)h

+
R∑

p=1

(
s∗,�−1
r,h − 1

r
s�−1
r,h , (α

p
i − β

p
i )�i,h

)
h

−
R∑

p=1

M∑
j=1
j 	=i

(
(α

p
j − β

p
j )�

�−1
j,h , (α

p
i − β

p
i )�i,h

)
h
, (4.31)

for all �i,h ∈ V k
h . These are M decoupled scalar constant-coefficient linear reaction-diffusion equations, which are easy to 

solve.
One may also solve the equation (4.31) sequentially (in a Gauss-Seidel manner), which uses the updated ��

j,h for j < i

when computing the variable ��
i,h .

4.3.2. Step B/C: system case
Similar to the scalar case in Subsection 4.2.2, we first compute the solutions u�

h according to the following system version 
of (4.16):

u�
h = argmin

uh∈[Wk
h ]3M+R

Fh(uh) + 1

2r
(uh − ruh,uh − ruh)h, (4.32)
18
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where

uh := D��
h + 1

r
u�−1
h ,

with the understanding that D��
h is its interpolation onto the space [Wk

h ]3M+R , and then update u∗,�
h according to

u∗,�
h = uh − u�

h/r. (4.33)

Again, we solve the problem (4.32) by first locally expressing all other variables in terms of the densities, and then 
solving pointwise optimization problems for these densities on each quadrature point.

Proposition 4.3. Let u�
h be the solution to (4.32). Then there holds

mk,�
i,h = rV1,i(ρ

�
i,h)

r + V1,i(ρ
�
i,h)

mi,h,∀k = 0,1,and 1 ≤ i ≤ M, (4.34)

s�p,h = rV2,p(ρ
�
h)

r + V2,p(ρ
�
h)

sp,h, ∀1 ≤ p ≤ R, (4.35)

and the collection of densities ρ�
h is the minimizer of the following reduced problem:

argmin
ρh∈[Wk

h ]M

M∑
i=1

1

2r

(
|ρi,h − rρ i,h|2,1

)
h
+

M∑
i=1

(
r2(|m0

i,h|2 +m0
i,h|2)

2(r + V1,i(ρi,h))
,1

)
h

+
R∑

p=1

(
r2|sp,h|2

2(r + V2,p(ρh))
,1

)
h

+ �t
M∑
i=1

Ei,h(ρi,h). (4.36)

By the choice of the integration rule space (4.2) and its nodal basis (4.3), it is clear that the minimization problem (4.36)
can be solved in a pointwise fashion per quadrature point. On each quadrature point, it is an M-dimensional minimization 
problem, where the coupling is introduced in the reaction term in the second row of (4.36). Again, we propose to solve M
independent single-variable minimization problems in parallel by treating the reaction term semi-implicitly. Specifically, the 
solution ρ�

i,h for each 1 ≤ i ≤ M is obtained by solving the following problems in parallel:

argmin
ρi,h∈Wk

h

1

2r

(
|ρi,h − rρ i,h|2,1

)
h
+
(
r2(|m0

i,h|2 +m0
i,h|2)

2(r + V1,i(ρi,h))
,1

)
h

+
R∑

p=1

(
r2|sp,h|2

2(r + V2,p(ρ̃h))
,1

)
h

+ �tEi,h(ρi,h). (4.37)

Here

ρ̃ i
h = (ρ�−1

1,h , · · · ,ρ�−1
i−1,h,ρi,h,ρ

�−1
i+1,h, · · · ,ρ�−1

M,h ),

i.e., all other densities are evaluated explicitly at level � − 1. By the choice of mobility functions in (3.11), it is easy to show 
that the problem (4.37) is convex and hence has a unique global minimizer. We collect this modified ALG2 implementation 
in the following algorithm.

Algorithm 3 One iteration of modified ALG2 algorithm for (4.24).
• Step A: update ��

h . Find ��
i,h ∈ V k

h such that the equation (4.31) holds for each 1 ≤ i ≤ M .

• Step B/C: update u�
h, u

∗,�
h . First, find ρ�

i,h such that it is the minimizer to (4.37) for each 1 ≤ i ≤ M . Then update mk,�
i,h for k = 0, 1 according to (4.34)

and update s�p,h for 1 ≤ p ≤ R according to (4.35). Finally, update u∗,�
h according to (4.33).

4.4. High-order FEM for reversible reaction-diffusion systems with detailed balance

For a reversible reaction-diffusion system with detailed balance, the spatial discretization and the corresponding practical 
ALG2 implementation are the same as the one in a strongly reversible case, with the only change that the discrete energy 
now takes the following form:
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Ei,h(ρ) = (ρ(log(κiρ) − 1),1)h,

where κi > 0 depends on the reaction rates.
Here a small modification (with a reduced cost) is needed to simulate the reversible Gray-Scott model in Example 3.4.2

since it does not include diffusion for the last two species. Specifically, we do not need flux approximations for the last two 
species, and the variables and operators in the fully discrete algorithm (4.24) for the system (3.20) are recorded below for 
completeness:

uh = (ρ1,h,m
0
1,h,m

1
1,h,ρ2,h,m

0
2,h,m

1
2,h,ρ3,h,ρ4,h, s1,h, s2,h, s3,h), (4.38a)

�h = (�1,h,�2,h,�3,h,�4,h), (4.38b)

D�h :=
(

− �1,h, ∂x0�1,h, ∂x1�1,h,−�2,h, ∂x0�2,h, ∂x1�2,h,

− �3,h,−�4,h,�1,h − �2,h,�2,h − �3,h,�1,h − �4,h

)
, (4.38c)

Gh(�h) :=
4∑

i=1

(ρold
i,h ,�i,h)h, (4.38d)

Fh(uh) :=
⎛
⎝ 2∑

i=1

|m0
i,h|2 + |m1

i,h|2
2V1,i(ρi,h)

+
3∑

p=1

|sp,h|2
2V2,p(ρh)

,1

⎞
⎠

h

+ �t
4∑

i=1

Ei,h(ρi,h), (4.38e)

where the parameters and mobility functions are given in (3.19). Note that Step A of Algorithm 3 now becomes two scalar 
linear reaction-diffusion equation updates for ��

1,h and ��
2,h , and two simple mass matrix updates for ��

3,h and ��
4,h .

5. Numerical experiments

In this section, we first present a 3D numerical example for the heat equation to demonstrate the first order accuracy 
in time of Algorithm 2. We then conduct comprehensive 2D experiments to show the efficiency and effectiveness of the 
proposed numerical algorithms. Throughout, we take the augmented Lagrangian parameter to be r = 1, and perform 200 
ALG iterations in each time step for all test cases. We use the previous step solution as the initial guess for the ALG2 
algorithm. Our numerical simulations are performed using the open-source finite-element software NGSolve [65], https://
ngsolve .org/.

5.1. Temporal convergence rate

We first consider the heat equation in three dimensions

∂tρ − �ρ = 0,

on the domain � = [0, 1]3 with homogeneous Neumann boundary conditions. It is a Wasserstein gradient flow of the form 
(3.1) with energy E(ρ) := ∫

�
ρ(logρ − 1)dx. We take the initial condition to be

ρ0(x0, x1, x2) = 1+ 1

2
cos(πx0) cos(πx1) cos(πx2).

The exact solution is

ρex(x0, x1, x2, t) = 1+ 1

2
cos(πx0) cos(πx1) cos(πx2)exp(−3π2t).

We perform a temporal mesh convergence study for the scheme (4.5) using Algorithm 2 on a fixed uniform mesh of size 
16 × 16 × 16 with polynomial degree k = 3. The final time of simulation is T = 0.1. We use uniform temporal meshes of 
sizes N = 4 × 2� , where � = 0, 1, 2, 3 is the temporal mesh level. Here the temporal error dominates the spatial error. The 
L2-convergence in the density ρ at final time T = 0.1 is recorded in Table 1. We clearly observe the first order convergence 
in time.
20
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Table 1
Temporal convergence rate for the 
L2-error in density at T = 0.1 of 
scheme (4.5) applied to a 3D heat equa-
tion.

mesh level � error rate

0 1.012e-02 –
1 5.090e-03 0.99
2 2.551e-03 1.00
3 1.290e-03 0.98

Table 2
Convergence rates of scheme (4.5) with different polynomial degrees k applied 
to a 2D steady Fokker Planck equation.
dim(V k

h ) k = 1 k = 2 k = 4

81 2.362e-03 – 2.409e-04 – 2.628e-05 –
289 5.923e-04 2.00 3.298e-05 2.87 1.424e-06 4.21
1089 1.482e-04 2.00 4.232e-06 2.96 5.589e-08 4.67
4225 3.705e-05 2.00 5.326e-07 2.99 1.884e-09 4.89

5.2. Spatial convergence rates

We now consider the nonlinear Fokker-Plank equation

∂tρ − �ρ3 = ∇ · (ρ x),

on the domain � = [−1, 1] ×[−1, 1] with homogeneous Neumann boundary conditions. It is a Wasserstein gradient flow of 
the form (3.1) with energy

E(ρ) :=
∫
�

(
1

2
ρ(x)3 + 1

2
(x20 + x21)ρ(x)

)
dx,

where x = (x0, x1). This problem reaches a steady state solution:

ρsteady(x0, x1) =
√

(2C − (x20 + x21))+
3

,

that satisfies either
δE
δρ

= 3

2
ρ2 + 1

2
(x20 + x21) = C,

or ρ = 0. Here the constant C depends on the total mass of the initial condition, which we set to be C = 2 so that the 
solution on � is positive and smooth.

We perform a mesh convergence study for the scheme (4.5) using Algorithm 2 with polynomial degree k = 1, 2, 4 on a 
sequence of uniformly refined meshes. The coarse mesh is of size 8 ×8 for k = 1, 4 ×4 for k = 2, and 2 ×2 for k = 4, so that 
the total number of degrees of freedom for � is the same on each mesh level for different polynomial degrees. As accuracy 
in time does not play a role here in the steady state solution, we take large time step size with �t = 1, and perform 10 time 
steps of simulation where the numerical solution reaches the steady state. The L2-convergence in the density ρ is recorded 
in Table 2. We clearly observe the k + 1-th order of convergence for each case. In particular, the high-order method leads to 
a smaller error when a same number of total degrees of freedom is used.

5.3. Aggregation-drift-diffusion equations

We consider Wasserstein gradient flow (3.1) with five choices of energies (3.2) that include aggregation effects. The 
specific form of the energy, along with the domain size L where the computational domain � = [−L, L] × [−L, L], and the 
initial conditions are given in Table 3. Here χ[−3,3]×[−3,3] is the characteristic function on [−3, 3] × [−3, 3] for Case 5. All 
cases were considered in [12], except Case 4 which adds an additional diffusion to the energy in Case 3.

Note that the interaction kernel W (x) for Cases 2/3/4 is singular at zero. Here we use a higher-order numerical integra-
tion rule, which avoids the evaluation of W (x) at zero to compute the convolution

W ∗ ρ(ξi), ∀1 ≤ i ≤ NW ,
21
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Table 3
Example 5.3. Five choices of energies, domain size, and initial condition.
Case αUm(ρ) V (x) W (x) L I.C.

1 0 0 |x|4
4 − |x|2

2 1 25
2π exp(− 25

2 |x|2)
2 0 0 |x|2

2 − log(|x|) 1.5 25
8π exp(− 25

8 |x|2)
3 0 − 1

4 log(|x|) |x|2
2 − log(|x|) 1.5 25

8π exp(− 25
8 |x|2)

4 0.1ρ2 − 1
4 log(|x|) |x|2

2 − log(|x|) 1.5 25
8π exp(− 25

8 |x|2)
5 0.1ρ3 0 −exp(−|x|2)/π 4 0.25χ[−3,3]×[−3,3]

at the quadrature points {ξi}NW
i=1 . Fast Fourier transform is used to evaluate these convolutions all together.

For all cases, we take the computational mesh to be a 32 ×32 uniform square mesh, and use polynomial degree k = 4 in 
the scheme (4.5). We take time step size �t = 0.05 for the first four cases, and �t = 0.5 for the last case. The final time of 
simulation is T = 10 for Case 1, T = 3 for Cases 2/3/4, and T = 15 for Case 5. Snapshots of the density contours at different 
times are shown in Fig. 1. We find the results for Cases 1/2/3 and 5 are qualitatively similar to the results reported in [12]. 
In particular, Case 1 converges to a steady Dirac ring solution; Case 2 converges to a steady constant solution with a circular 
shape; Case 3 converges to a characteristic function for the torus due to the drift effects that pushes away the density from 
the origin; and the competition between median range aggregation with short/long range diffusion is observed for Case 5. 
Moreover, the diffusion effects of Case 4 comparing with Case 3 are also clearly seen.

5.4. Scalar reaction-diffusion equation

We take the Case 4 energy in Table 3, but consider the reaction-diffusion equation (3.5). Three choices of mobility 
coefficient V2(ρ) are used in this example, namely,⎧⎪⎪⎨

⎪⎪⎩
Type 1: V2(ρ) = 0.1,

Type 2: V2(ρ) = 0.1ρ,

Type 3: V2(ρ) = 0.1 ρ−1
log(ρ)

.

(5.1)

The same discretization setup as in the previous example is used, i.e., using polynomial degree k = 4 on a 32 × 32 uniform 
mesh with time step size �t = 0.05, and final time T = 3.

Snapshots of the density contours for each case at different times are shown in Fig. 2. It is clear from the color range of 
these plots that reaction effects leads to mass loss, with the Type 1 reaction has the most mass loss, followed by Type 3 
reaction.

5.5. Fisher-KPP equation

Our next example deals with the Fisher-KPP equation (3.7). Here we slightly modify the PDE (3.7) to allow for anisotropic 
diffusion:

∂tρ − λ1∂x0x0ρ − λ2∂x1x1ρ = μρ(1− ρ).

We use a similar setup as in [68, Section 3.1], where the diffusion parameters are taken to be λ1 = 0.1, λ2 = 0.01, and μ > 0
is the reaction coefficient to be specified. Initial condition is a flat top Gaussian:

ρ0(x0, x1) =
{
1, if x20 + 4x21 ≤ 0.25

exp(−10(x20 + 4x21 − 0.25)), otherwise

The computational domain is a rectangle � = [−2, 2] × [−1, 1], which is discretized with a 32 × 16 square mesh. We use 
polynomial degree k = 4 for the scheme (4.5), in which the functional Fh in (4.10) is adjusted as follows to allow for 
anisotropic diffusion:

Fh(uh) :=
(

|m0
h|2

2V1,0(ρh)
+ |m1

h|2
2V1,1(ρh)

+ |sh|2
2V2(ρh)

,1

)
h

+ �t Eh(u0,h),

where V1,0(ρ) := λ1ρ , V1,1(ρ) := λ2ρ , V2(ρ) := μρ(ρ−1)
log(ρ)

, and the energy satisfies

Eh(ρ) = (ρ(log(ρ) − 1),1)h .

We take time step size �t = 0.1, and the final time is T = 4.
22
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Fig. 1. Example 5.3. Snapshots of density contours at different times for different test cases. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

Snapshots of the density contours for μ = 0.1 (weak reaction) μ = 0.5 (medium reaction), and μ = 1.0 (strong reaction) 
at different times are shown in Fig. 3. We further plot the evolution of energy Eh(ρh) and total mass 

∫
�

ρh dx over time 
for the three cases in Fig. 4. It is clear that the energy is monotonically decreasing for all three cases and the total mass is 
monotonically increasing, where a faster decay of energy is observed when the reaction coefficient μ is larger.

5.6. Two-component reversible reaction-diffusion system with detailed balance

We consider the two-species model discussed in Section 3.4. In particular, we consider the system (3.18) with parameters 
k+ = 1 and k− = 0.1, γ1 = 0.2, γ2 = 0.1, and V1,1(ρ) = γ1ρ

m and V1,2(ρ) = γ2ρ with four choices of m ∈ {1, 2, 3, 4}. Here 
porous medium type diffusion is used for the first species with density ρ1 and linear diffusion is used for the second species 
23
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Fig. 2. Example 5.4. Snapshots of density contours at different times for different reaction mobility functions.

Fig. 3. Example 5.4. Snapshots of density contours at different times for different reaction coefficients.

with density ρ2. A similar model was used in [48,49]. The problems are solved on the domain � = [−1, 1] × [−1, 1] with 
the following initial data

ρ1(x,0) = 1

2

(
1− tanh(10(

√
x20 + x21 − 0.2))

)
,

ρ2(x,0) = 1

2

(
1+ tanh(10(

√
x20 + x21 − 0.2)).

)
.

Final time is taken to be T = 2.
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Fig. 4. Example 5.4. Evolution of total energy (left) and total mass (right) over time.

Fig. 5. Example 5.6. Snapshots of first-component density contours at different times for different V1,1(ρ).

We use the scheme (4.24) with polynomial degree k = 4 on a 16 × 16 mesh with time step size �t = 0.05. We apply 
Algorithm 3 to solve the resulting saddle point problem. Snapshots of the density contours at different times are shown in 
Fig. 5 for the first component and in Fig. 6 for the second component. It is clear that increasing the power m leads to a 
slower diffusion for the first species.

We further plot the time evolution of the total energy Etotal = E1,h(ρ1,h) + E2,h(ρ2,h) and total mass 
∫
�
(ρ1,h + ρ2,h) dx

for the four cases in Fig. 7. Moreover, the total mass conservation is kept well within an error of 10−4 for all cases.
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Fig. 6. Example 5.6. Snapshots of second-component density contours at different times for different V1,1(ρ).

Fig. 7. Example 5.6. Evolution of total energy (left) and total mass (right) over time with V1,1(ρ) = γ1ρ
m .

5.7. Reversible Gray-Scott model

In our last example, we simulate the 4-component reversible Gray-Scott model (3.20) using the Algorithm 3 for the fully 
discrete scheme (4.24) with variables/operators (4.38). The physical parameters are chosen to be the following:

γ1 = 1, γ2 = 0.01,
26
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Fig. 8. Example 5.7. Snapshots of second-component density contours at different times for 1D (top) and 2D (bottom) simulations.

k1+ = 1, k1− = 10−3,

k2+ = 8.4× 10−2, k2− = 8.4× 10−5,

k3+ = 2.4× 10−2, k3− = 2.4× 10−5,

where the backward reaction rates are taken to be 1000 times smaller than the forward reaction rates. This provides a good 
approximation to the irreversible Gray-Scott model (3.21). We consider both 1D and 2D simulations for this problem. The 
initial conditions for the second component density ρ2 are taken to be

ρ2(x,0) =

⎧⎪⎨
⎪⎩
0.15+ 1

4 x
2(x+ 1)2 if − 1 ≤ x ≤ 0,

0.15+ 1
4 x

2(1− x)2 if 0 ≤ x ≤ 1,

0.15 elsewhere,

in one dimension, and

ρ2(x,0) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.15+ 4x2(x+ 1)2 y2(y + 1)2 if − 1 ≤ x ≤ 0 and − 1 ≤ y ≤ 0,

0.15+ 4x2(x+ 1)2 y2(1 − y)2 if − 1 ≤ x ≤ 0 and 0 ≤ y ≤ 1,

0.15+ 4x2(1− x)2 y2(y + 1)2 if 0 ≤ x ≤ 1 and − 1 ≤ y ≤ 0,

0.15+ 4x2(1− x)2 y2(1 − y)2 if 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1,

0.15 elsewhere,

in two dimensions. The initial conditions for the other densities are taken to be

ρ1(x,0) = 1− 2ρ2(x,0), ρ3(x,0) = 1, ρ4(x,0) = k3+/k3− = 1000.

For the 1D simulation, we take the computation domain to be �1D = [−16, 16] and set the final time of simulation to be 
T = 1600. For the 2D simulation, we take a smaller computational domain with �2D = [−8, 8] × [−8, 8] and set the final 
time of simulation to be T = 500.

We apply the scheme (4.24) with k = 4 on a uniform mesh with mesh size h = 1 (32 elements in 1D, and 16 × 16
elements in 2D) for both problems. Here we gradually increase the time step size from �t = 0.01 to �t = 0.1 as initially 
taking �t = 0.1 leads to numerical instability. This may be caused by our splitting version of the ALG2 implementation in 
Algorithm 3. A theoretical investigation on the stability of the algorithm with respect to the time step size �t is the subject 
of our on-going work.

We record the snapshots of the second-component density at various times in Fig. 8. For both cases, we observe pattern 
formations and the solution reaches a nontrivial steady state at large time. Finally, we plot the evolution of total energy for 
both cases in Fig. 9, where we observe the expected monotone energy decay.

6. Conclusion

This paper applies high-order accurate finite element methods in space to compute first-order accuracy implicit-in-time 
gradient flows. Our formulation applies a one-step time discretization of the generalized JKO scheme and then uses the 
ALG2 to calculate optimization problems in each generalized JKO time step. The method is unconditionally stable when 
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Fig. 9. Example 5.7. Evolution of total energy in 1D (left) and 2D (right).

the optimization problem is convex. Numerical experiments in two-dimensional gradient flow dynamics, such as Wasser-
stein gradient flows, Fisher–KPP dynamics, and reversible reaction-diffusion systems, demonstrate the effectiveness of the 
proposed method with high-order spatial accuracy.

We note that for dissipative dynamics, such as strongly reversible reaction-diffusion systems, different entropies E , and 
optimal transport-type metrics V1, V2, could produce the same evolutionary equation. In simulations, we suggest select-
ing a suitable class of entropies and metrics to develop simple and efficient optimization procedures. Some limitations 
exist for computing implicit-in-time gradient flows in generalized optimal transport metric spaces. The constructed func-
tions V1 and V2 should be nonnegative for entropy dissipation schemes. Our generalized JKO scheme is unstable for many 
reaction-diffusion equations, e.g., the Allen-Cahn-type equations [67]. We also remark that the current computations are 
limited to the first–order time accuracy variational-implicit schemes of gradient flows. In future work, we shall design and 
compute generalized optimal transport and mean field control problems for implicit-in-time fluid dynamics with general 
conservative-dissipative formulations. Typical examples include regularized conservation laws [40,41]. The other important 
question is the high-order implicit time variational schemes for initial value PDEs. This requires careful design of optimiza-
tion problems related to energies, metrics, and stepsizes.
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