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OPTIMAL GEOMETRIC MULTIGRID PRECONDITIONERS FOR HDG-P0

SCHEMES FOR THE REACTION-DIFFUSION EQUATION AND THE
GENERALIZED STOKES EQUATIONS

Guosheng Fu and Wenzheng Kuang*

Abstract. We present the lowest-order hybridizable discontinuous Galerkin schemes with numerical
integration (quadrature), denoted as HDG-P0, for the reaction-diffusion equation and the generalized
Stokes equations on conforming simplicial meshes in two- and three-dimensions. Here by lowest order,
we mean that the (hybrid) finite element space for the global HDG facet degrees of freedom (DOFs) is
the space of piecewise constants on the mesh skeleton. A discontinuous piecewise linear space is used
for the approximation of the local primal unknowns. We give the optimal a priori error analysis of the
proposed HDG-P0 schemes, which hasn’t appeared in the literature yet for HDG discretizations as far as
numerical integration is concerned. Moreover, we propose optimal geometric multigrid preconditioners
for the statically condensed HDG-P0 linear systems on conforming simplicial meshes. In both cases,
we first establish the equivalence of the statically condensed HDG system with a (slightly modified)
nonconforming Crouzeix–Raviart (CR) discretization, where the global (piecewise-constant) HDG finite
element space on the mesh skeleton has a natural one-to-one correspondence to the nonconforming CR
(piecewise-linear) finite element space that live on the whole mesh. This equivalence then allows us to
use the well-established nonconforming geometry multigrid theory to precondition the condensed HDG
system. Numerical results in two- and three-dimensions are presented to verify our theoretical findings.
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1. Introduction

Since their first unified introduction for the second order elliptic equation [26], hybridizable discontinuous
Galerkin (HDG) methods have been gaining popularity for numerically solving partial differential equations
(PDEs), and have been successfully applied in computational fluid dynamics [25, 58], wave propagation [28,
35] and continuum mechanics [37, 52]. Besides succeeding attractive features from the discontinuous Galerkin
(DG) schemes including local conservation, allowing unstructured meshes with hanging nodes, and ease of ℎ𝑝-
adaptivity, linear systems of HDG schemes can be statically condensed such that only global DOFs on the
mesh skeleton remain, resulting in increased sparsity, decreased matrix size, and computational cost [24]. One
HDG technique, known as projected jumps ([46], Rem. 1.2.4), further reduces the size of the condensed HDG
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scheme by making the polynomial spaces of the facet unknowns one order lower than those of the primal
variables without loss of accuracy. Thus superconvergence is obtained for the primal variables from the point
of view of the globally coupled DOFs. The superconvergence result was rigorously proved for the primal HDG
schemes with projected jumps for diffusion and Stokes problems in [55,56], and also for the mixed HDG schemes
with projected jumps for linear elasticity [59], convection-diffusion [57], and incompressible Navier–Stokes [58].
However, no numerical integration effects were considered in these works.

Large-scale simulations based on HDG schemes still face the challenge of constructing scalable and efficient
solvers for the condensed linear systems, for which geometric multigrid techniques have been previously explored
as either linear system solvers or preconditioners for iterative methods [27,49]. The main difficulty in designing
geometric multigrid algorithms for HDG is the construction of intergrid transfer operators between the coarse
and fine meshes, since the spaces of global unknowns on hierarchical meshes live (only) on mesh skeletons and
are non-nested.

In the literature, two techniques have been used to overcome this difficulty. The first approach, which is in
the spirit of auxiliary space preconditioning [68], uses the conforming piecewise linear finite element method
on the same mesh as the coarse grid solver and applies the standard geometric multigrid for conforming finite
elements from then on. Hence, the difficulty of constructing integergrid transfer operators between global HDG
facet spaces on fine and coarse grids was completely bypassed as the coarse grid HDG space was never used in
the multigrid algorithm. This technique was first introduced for HDG schemes in [27] for the diffusion problem,
and similarly used in [3, 21,22,32] for diffusion and other equations.

The second approach still keeps the HDG facet spaces on coarser meshes to construct the multigrid algorithms,
which is referred to as homogeneous multigrid in [49] since it uses the same HDG discretization scheme on all
mesh levels. Here the issue of stable intergrid transfer operators between coarse and fine grid HDG facet spaces
has to be addressed. Several “obvious” HDG prolongation operators were numerically tested in Tan’s 2009
PhD thesis [64], which, however, failed to be optimal. The work [67] proposed an intergrid transfer operator
based on Dirichlet-to-Neumann maps where operators on coarser levels were recursively changed for energy
preservation. Numerical results in [67] supported the robustness of their multigrid algorithm, but no theoretical
analysis was presented. More recently, a three-step procedure was used in [49] to construct a robust prolongation
operator: first, define a continuous extension operator from coarse grid HDG facet space to an 𝐻1-conforming
finite element space of the same degree on the same mesh by averaging; next, use the natural injection from
the coarse grid conforming finite element space to the fine grid conforming finite element space; lastly, restrict
the fine grid conforming finite elements data to the fine grid mesh skeleton to recover the fine grid HDG facet
data (see more details in [49]). The optimal convergence result of the standard 𝑉 -cycle algorithm was proven
in [49] for an HDG scheme with stabilization parameter 𝜏 = 𝑂(1/ℎ) for polynomial degree 𝑘 ≥ 1 for the
diffusion problem, where ℎ is the mesh size. Therein, taking stabilization parameter 𝜏 = 𝑂(1/ℎ) is crucial in
the optimal multigrid analysis in [49], which however is not usually preferred in practice as the resulting scheme
loses the important property of superconvergence due to too strong stabilization. Nevertheless, the numerical
results presented in [49] suggested the multigrid algorithm was still optimal when the stabilization parameter
𝜏 = 𝑂(1), which has the superconvergence property. We note that in these cited works, the finite element
spaces in the HDG schemes use the same polynomial degree for all the variables. Intergrid operators based on
(superconvergent) post-processing and smoothing was also presented in [29,30] for the hybrid high-order (HHO)
methods. We finally note that the above cited works in the second approach only focus on the pure diffusion
problem.

In this study, we work on HDG discretizations for the reaction-diffusion equation and the generalized Stokes
equations on conforming simplicial meshes. Specifically, we construct lowest-order HDG schemes with projected
jumps and numerical integration, denoted as HDG-P0, for these two sets of equations and present their optimal
(superconvergent) a priori error analysis. We use the space of piecewise constants for the approximation of the
(global) hybrid facet unknowns, and piecewise linears for the (local) primal unknowns, and take stabilization
parameter 𝜏 = 𝑂(1/ℎ). Due to the use of piecewise linears for the element-wise primal unknowns and the
projected jumps in the stabilization, the proposed schemes still enjoy the superconvergence property. We further
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provide optimal multigrid preconditioners for the global HDG linear systems with easy-to-implement intergrid
transfer operators. The key of our optimal multigrid preconditioner is the establishment of the equivalence of the
condensed HDG-P0 schemes with the (slightly modified) nonconforming CR discretizations. Such equivalence
enables us to build HDG multigrid preconditioners easily following the rich literature on nonconforming multigrid
theory for the reaction-diffusion equation [4, 6, 8, 14, 16, 20, 31] and the generalized Stokes equations [10, 12, 60,
61,63,65]. We specifically note that equivalence of the lowest order Raviart–Thomas mixed method with certain
nonconforming methods was well-known in the literature [1, 50], and multigrid algorithms for hybrid-mixed
methods have been designed based on this fact [11, 19]. Moreover, an equivalence between the lowest-order
primal HDG schemes with projected jumps and the nonconforming CR schemes for pure diffusion and Stokes
problems have already been established by Oikawa in [55, 56]. Here we use the mixed HDG formulation with
projected jumps and establish the stronger equivalence of the two methods for reaction-diffusion and generalized
Stokes equations, which has application in time-dependent diffusion and time-dependent incompressible flow
problems. As far as the low-order terms are concerned, we find the mixed HDG formulation more robust to
formulate and easier to analyze compared with their primal HDG counterparts. In particular, our final algorithm
does not involve any (sufficiently large) tunable stabilization parameters. We note that our HDG-P0 multigrid
methods rely on conforming and shape-regular simplicial meshes, which can not handle hanging nodes. Besides,
the approach of building multigrid methods based on the equivalence to the CR discretizations is specific to
HDG-P0, which can not be directly applied to higher order HDG schemes. However, it can be used as a building
block when constructing robust ℎ𝑝-multigrid methods for higher order HDG schemes, which is our ongoing
research.

The rest of the paper is organized as follows. Basic notations and the finite element spaces to be applied in
HDG-P0 are introduced in Section 2. In Section 3, we propose the HDG-P0 scheme for the mixed formulation
of the reaction-diffusion equation, give the optimal a priori error analysis, and present the optimal multigrid
preconditioner for the static condensed linear system. We then focus on the HDG-P0 scheme for the generalized
Stokes equations in Section 4 and present the optimal a priori error estimates and multigrid preconditioner.
Numerical results in two- and three-dimensions are presented in Section 5 to verify the theoretical findings in
Sections 3, 4, and we conclude in Section 6.

2. Notations and preliminaries

Let Ω ⊂ R𝑑, 𝑑 ∈ {2, 3}, be a bounded polygonal/polyhedral domain with boundary 𝜕Ω. We denote Tℎ as
a conforming, shape-regular, and quasi-uniform simplicial triangulation of Ω. Let Eℎ be the collection of the
facets (edges in 2D, faces in 3D) of the triangulation Tℎ, which is also referred to as the mesh skeleton. We split
the mesh skeleton Eℎ into the boundary contribution E𝜕

ℎ := {𝐹 ∈ Eℎ : 𝐹 ⊂ 𝜕Ω}, and the interior contribution
E𝑜

ℎ := Eℎ∖E𝜕
ℎ. For any simplex 𝐾 ∈ Tℎ with boundary 𝜕𝐾, we denote the measure of 𝐾 by |𝐾|, the 𝐿2-inner

product on 𝐾 by (·, ·)𝐾 , and the 𝐿2-inner product on 𝜕𝐾 by ⟨·, ·⟩𝜕𝐾 . We denote 𝑛𝐾 as the unit normal vector
on the element boundaries 𝜕𝐾 pointing outwards. Furthermore, we denote ℎ𝐾 as the mesh size of 𝐾 defined
only on the facets 𝜕𝐾, whose restriction on a facet 𝐹 ⊂ 𝜕𝐾 is given as ℎ𝐾 |𝐹 := |𝐾|/|𝐹 |, where |𝐹 | is the
measure of 𝐹 , and set

ℎ := max
𝐾∈Tℎ

max
𝐹⊂𝜕𝐾

ℎ𝐾 |𝐹

as the maximum mesh size of the triangulation Tℎ. To further simplify the notation, we define the discrete
𝐿2-inner product on the whole mesh as (·, ·)Tℎ

:=
∑︀

𝐾∈Tℎ
(·, ·)𝐾 and the 𝐿2-inner product on all element

boundaries as ⟨·, ·⟩𝜕Tℎ
:=

∑︀
𝐾∈Tℎ

⟨·, ·⟩𝜕𝐾 .
As usual, we denote ‖ · ‖𝑚,𝑝,𝑆 and | · |𝑚,𝑝,𝑆 as the norm and semi-norm of the Sobolev spaces 𝑊𝑚,𝑝(𝑆) for

the domain 𝑆 ⊂ R𝑑, with 𝑝 omitted when 𝑝 = 2, and 𝑆 omitted when 𝑆 = Ω is the whole domain. To this end,
we define some numerical integration rules that will be used in this work. Given a simplex 𝐾 ⊂ R𝑑, we define
the following two integration rules for the volume integral

∫︀
𝐾
𝑔 d𝑥:

𝑄0
𝐾(𝑔) := |𝐾| 𝑔(𝑚𝐾),
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𝑄1
𝐾(𝑔) :=

|𝐾|
𝑑+ 1

𝑑+1∑︁
𝑖=1

𝑔
(︀
𝑚𝑖

𝐾

)︀
,

where 𝑚𝐾 is the barycenter of the element 𝐾, and 𝑚𝑖
𝐾 is the barycenter of the 𝑖-th facet of 𝐾 for 𝑖 ∈ [1, 𝑑+ 1].

The one-point integration rule 𝑄0
𝐾 is exact for linear functions, while the (𝑑 + 1)-point integration rule 𝑄1

𝐾 is
exact for linear functions when 𝑑 = 3 and exact for quadratic functions when 𝑑 = 2. We also define a one-point
quadrature rule for the facet integral

∫︀
𝐹
𝑔 d𝑠 over a facet 𝐹 ⊂ R𝑑−1:

𝑄0
𝐹 (𝑔) := |𝐹 | 𝑔(𝑚𝐹 ),

where 𝑚𝐹 is the barycenter of the facet 𝐹 , which is exact for linear functions. Then we denote the numerical
integration on the element boundary 𝜕𝐾 as

𝑄0
𝜕𝐾(𝑔) :=

𝑑+1∑︁
𝑖=1

𝑄𝐹 𝑖(𝑔) =
𝑑+1∑︁
𝑖=1

|𝐹 𝑖| 𝑔(𝑚𝐹 𝑖),

where {𝐹 𝑖}𝑑+1
𝑖=1 is the collection of facets of 𝐾 with 𝐹 𝑖 ⊂ 𝜕𝐾.

Moreover, we will use the following finite element spaces:

𝑊ℎ :=
{︀
𝑞ℎ ∈ 𝐿2(Ω) : 𝑞ℎ|𝐾 ∈ P0(𝐾), ∀𝐾 ∈ Tℎ

}︀
, (1a)

𝑊 0
ℎ :=

{︂
𝑞ℎ ∈𝑊ℎ :

∫︁
Ω

𝑞ℎd𝑥 = 0
}︂
, (1b)

𝑉ℎ :=
{︀
𝑣ℎ ∈ 𝐿2(Ω) : 𝑣ℎ|𝐾 ∈ P1(𝐾), ∀𝐾 ∈ Tℎ

}︀
, (1c)

𝑉 CR
ℎ := {𝑣ℎ ∈ 𝑉ℎ : 𝑣ℎ is continuous at the barycenter 𝑚𝐹 of 𝐹 , ∀𝐹 ∈ E𝑜

ℎ}, (1d)

𝑉 CR,0
ℎ :=

{︀
𝑣ℎ ∈ 𝑉 CR

ℎ : 𝑣ℎ(𝑚𝐹 ) = 0, ∀𝐹 ∈ E𝜕
ℎ

}︀
, (1e)

𝑀ℎ :=
{︀̂︀𝑣ℎ ∈ 𝐿2(Eℎ) : ̂︀𝑣ℎ|𝐹 ∈ P0(𝐹 ), ∀𝐹 ∈ Eℎ

}︀
, (1f)

𝑀0
ℎ := {̂︀𝑣ℎ ∈𝑀ℎ : ̂︀𝑣ℎ|𝐹 = 0, ∀𝐹 ⊂ 𝜕Ω}. (1g)

We use underline to denote the vector version of the spaces · := [ · ]𝑑, and double-underline to denote the
matrix version · := [ · ]𝑑×𝑑; e.g., 𝑊

ℎ
:= [𝑊ℎ]𝑑×𝑑 is the 𝑑× 𝑑 tensor space of piecewise constant functions.

For two positive constants 𝑎 and 𝑏, we denote 𝑎 . 𝑏 if there exists a positive constant 𝐶 independent of mesh
size and model parameters such that 𝑎 ≤ 𝐶𝑏. We denote 𝑎 ≃ 𝑏 when 𝑎 . 𝑏 and 𝑏 . 𝑎.

3. HDG-P0 for the reaction-diffusion equation

3.1. The model problem

Let 𝑓 ∈ 𝐿2(Ω), 𝛼 ∈ 𝐶1(Ω̄) and 𝛽 ∈ 𝐶0(Ω̄). We assume there exist positive constants 𝛼0, 𝛼1 and 𝛽1 with
𝛼1 . 𝛼0 such that 𝛼1 ≥ 𝛼 ≥ 𝛼0 > 0 and 𝛽1 ≥ 𝛽 ≥ 0. We consider the following model problem with a
homogeneous Dirichlet boundary condition:

−∇ · (𝛼∇𝑢) + 𝛽𝑢 = 𝑓 in Ω, (2)
𝑢 = 0 on 𝜕Ω.

To define the HDG-P0 scheme, we shall reformulate equation (2) as the following first-order system by introducing
the flux 𝜎 := −𝛼∇𝑢 as a new variable:

𝛼−1𝜎 + ∇𝑢 = 0 in Ω, (3a)
∇ · 𝜎 + 𝛽𝑢 = 𝑓 in Ω, (3b)

𝑢 = 0 on 𝜕Ω. (3c)
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3.2. The HDG-P0 scheme

With the mesh and finite element spaces given in Section 2, we are ready to present the HDG-P0 scheme for the
system (3). A defining feature of hybrid finite element schemes is the use of finite element spaces to approximate
the primal variable 𝑢 both in the mesh Tℎ and on the mesh skeleton Eℎ. We use the (discontinuous) piecewise
linear finite element space 𝑉ℎ to approximate 𝑢 in the mesh Tℎ, and the (discontinuous) piecewise constant
space 𝑀0

ℎ to approximate 𝑢 on the mesh skeleton Eℎ, where the homogeneous Dirichlet boundary condition has
been built-in to the space 𝑀0

ℎ . For the flux variable 𝜎, we approximate it using the vectorial piecewise constant
function space 𝑊ℎ. Using these finite element spaces and the numerical integration rules introduced in Section 2,
the weak formulation of the HDG-P0 scheme is now given as follows: find (𝜎ℎ, 𝑢ℎ, ̂︀𝑢ℎ) ∈ 𝑊ℎ × 𝑉ℎ ×𝑀0

ℎ such
that: ∑︁

𝐾∈Tℎ

(︀
𝑄0

𝐾(𝛼−1
ℎ 𝜎ℎ · 𝑟ℎ) +𝑄0

𝜕𝐾(̂︀𝑢ℎ 𝑟ℎ · 𝑛𝐾)
)︀

= 0, (4a)

∑︁
𝐾∈Tℎ

(︀
𝑄0

𝜕𝐾(𝜏𝐾(𝑢ℎ − ̂︀𝑢ℎ)𝑣ℎ) +𝑄1
𝐾(𝛽𝑢ℎ𝑣ℎ)

)︀
=

∑︁
𝐾∈Tℎ

𝑄1
𝐾(𝑓𝑣ℎ), (4b)

∑︁
𝐾∈Tℎ

(︀
𝑄0

𝜕𝐾(𝜎ℎ · 𝑛𝐾̂︀𝑣ℎ) +𝑄0
𝜕𝐾(𝜏𝐾(𝑢ℎ − ̂︀𝑢ℎ)̂︀𝑣ℎ)

)︀
= 0, (4c)

for all (𝑟ℎ, 𝑣ℎ, ̂︀𝑣ℎ) ∈𝑊ℎ × 𝑉ℎ ×𝑀0
ℎ , where 𝛼−1

ℎ ∈𝑊ℎ is the 𝐿2-projection of 𝛼−1 onto the piecewise constant
space 𝑊ℎ, and 𝜏𝐾 := 𝛼ℎ

ℎ𝐾
is the stabilization parameter, with 𝛼ℎ := (𝛼−1

ℎ )−1. Taking test functions 𝑟ℎ = 𝜎ℎ,
𝑣ℎ = 𝑢ℎ, and ̂︀𝑣ℎ = −̂︀𝑢ℎ in (4), and adding, we have the following energy identity:∑︁

𝐾∈Tℎ

(︀
𝑄0

𝐾

(︀
𝛼−1

ℎ |𝜎ℎ|2
)︀

+𝑄0
𝜕𝐾

(︀
𝜏𝐾(𝑢ℎ − ̂︀𝑢ℎ)2

)︀
+𝑄1

𝐾

(︀
𝛽𝑢2

ℎ

)︀)︀
=

∑︁
𝐾∈Tℎ

𝑄1
𝐾(𝑓𝑢ℎ).

We note that the quadratures used in (4) guarantees the scheme is locally mass-conservative with the numerical
flux defined as ̂︀𝜎ℎ · 𝑛𝐾 := 𝜎ℎ · 𝑛𝐾 + 𝜏𝐾Π0(𝑢ℎ − ̂︀𝑢ℎ),

where Π0 is the 𝐿2-projection onto the skeleton space 𝑀ℎ, since the equation (4c) is equivalent to

⟨̂︀𝜎ℎ · 𝑛𝐾 , ̂︀𝑣ℎ⟩𝜕Tℎ
= 0, ∀̂︀𝑣ℎ ∈𝑀0

ℎ .

See more discussion in Lemma 3.2 below.

3.3. An a priori error analysis for HDG-P0

To simplify the a priori error analysis in this subsection, we assume the exact solution (𝜎, 𝑢) ∈ 𝐻1(Ω) ×
(𝐻2(Ω) ∩𝐻1

0 (Ω)) for the model problem (3), together with the following full elliptic regularity result:

𝛼
−1/2
0 ‖𝜎‖1 +

(︁
𝛼

1/2
1 + 𝛽

1/2
1

)︁
‖𝑢‖2 . 𝑐reg‖𝑓‖0, (5)

which holds when the domain Ω is convex.
To perform an a priori error analysis of the scheme (4) with numerical integration, we follow the standard

convention [23] by assuming the following stronger regularity for 𝛽 and 𝑓 :

𝛽 ∈𝑊 1,∞(Ω̄), 𝑓 ∈𝑊 1,∞(Ω̄).

We use the following approximation results of the quadrature rule 𝑄1
𝐾 , which is adapted from Ciarlet ([23],

Thms. 4.1.4 and 4.1.5).
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Lemma 3.1. For any 𝐾 ∈ Tℎ, 𝑓, 𝑢 ∈𝑊 1,∞(𝐾̄), and 𝑣 ∈ P1(𝐾), we have:⃒⃒
(𝑓, 𝑣)𝐾 −𝑄1

𝐾(𝑓𝑣)
⃒⃒
. ℎ1+𝑑/2‖𝑓‖1,∞,𝐾‖𝑣‖1,𝐾 , (6a)⃒⃒

(𝑓𝑢, 𝑣)𝐾 −𝑄1
𝐾(𝑓𝑢𝑣)

⃒⃒
. ℎ‖𝑓‖1,∞,𝐾‖𝑢‖1,𝐾‖𝑣‖0,𝐾 . (6b)

We will compare the solution to (4) with the solution to a similar scheme with exact integration. To this end,
let (𝜎1

ℎ, 𝑢
1
ℎ, ̂︀𝑢1

ℎ) ∈𝑊ℎ × 𝑉ℎ ×𝑀0
ℎ be the solution to the following system:∑︁

𝐾∈Tℎ

(︀
𝑄0

𝐾

(︀
𝛼−1

ℎ 𝜎1
ℎ · 𝑟ℎ

)︀
+𝑄0

𝜕𝐾

(︀̂︀𝑢1
ℎ 𝑟ℎ · 𝑛𝐾

)︀)︀
= 0, (7a)

∑︁
𝐾∈Tℎ

(︀
𝑄0

𝜕𝐾

(︀
𝜏𝐾

(︀
𝑢1

ℎ − ̂︀𝑢1
ℎ

)︀
𝑣ℎ

)︀
+

(︀
𝛽𝑢1

ℎ, 𝑣ℎ

)︀
𝐾

)︀
=

∑︁
𝐾∈Tℎ

(𝑓, 𝑣ℎ)𝐾 , (7b)

∑︁
𝐾∈Tℎ

(︀
𝑄0

𝜕𝐾

(︀
𝜎1

ℎ · 𝑛𝐾̂︀𝑣ℎ

)︀
+𝑄0

𝜕𝐾

(︀
𝜏𝐾

(︀
𝑢1

ℎ − ̂︀𝑢1
ℎ

)︀̂︀𝑣ℎ

)︀)︀
= 0, (7c)

for all (𝑟ℎ, 𝑣ℎ, ̂︀𝑣ℎ) ∈𝑊ℎ × 𝑉ℎ ×𝑀0
ℎ . Note that the only difference between HDG-P0 (4) and the above system

(7) is in equations (4b) and (7b), where the former uses 𝑄1
𝐾 as the volumetric numerical integration rule and

the latter uses exact volumetric integration. The following result shows that the scheme (7) is precisely the
lowest-order (mixed) HDG scheme with projected jumps (and exact integration) analyzed in [57, 59] for linear
elasticity and convection-diffusion problems, hence its a priori error estimates can be readily adapted from
[57,59].

Lemma 3.2. Let (𝜎1
ℎ, 𝑢

1
ℎ, ̂︀𝑢1

ℎ) ∈𝑊ℎ × 𝑉ℎ ×𝑀0
ℎ be the solution to (7), then (𝜎1

ℎ, 𝑢
1
ℎ, ̂︀𝑢1

ℎ) satisfies(︀
𝛼−1𝜎1

ℎ, 𝑟ℎ

)︀
Tℎ

−
(︀
𝑢1

ℎ, ∇ · 𝑟ℎ

)︀
Tℎ

+
⟨︀̂︀𝑢1

ℎ, 𝑟ℎ · 𝑛𝐾

⟩︀
𝜕Tℎ

= 0, (8a)(︀
∇ · 𝜎1

ℎ, 𝑣ℎ

)︀
Tℎ

+
⟨︀
𝜏𝐾Π0

(︀
𝑢1

ℎ − ̂︀𝑢1
ℎ

)︀
, 𝑣ℎ

⟩︀
𝜕Tℎ

+
(︀
𝛽𝑢1

ℎ, 𝑣ℎ

)︀
Tℎ

= (𝑓, 𝑣ℎ)Tℎ
, (8b)⟨︀

𝜎1
ℎ · 𝑛𝐾 + 𝜏𝐾Π0

(︀
𝑢1

ℎ − ̂︀𝑢1
ℎ

)︀
, ̂︀𝑣ℎ

⟩︀
𝜕Tℎ

= 0, (8c)

for all (𝑟ℎ, 𝑣ℎ, ̂︀𝑣ℎ) ∈ 𝑊ℎ × 𝑉ℎ ×𝑀0
ℎ, where Π0 is the 𝐿2-projection onto piecewise constants on the mesh

skeleton.

Proof. Using the fact that 𝜎1
ℎ, 𝑟ℎ ∈𝑊ℎ are constant functions on each element 𝐾, we have

(︀
𝛼−1𝜎1

ℎ, 𝑟ℎ

)︀
𝐾

= 𝜎1
ℎ

(︀
𝑚0

𝐾

)︀
· 𝑟ℎ

(︀
𝑚0

𝐾

)︀ ∫︁
𝐾

𝛼−1 d𝑥 = 𝜎1
ℎ

(︀
𝑚0

𝐾

)︀
· 𝑟ℎ

(︀
𝑚0

𝐾

)︀
𝛼−1

ℎ |𝐾| = 𝑄0
𝐾

(︀
𝛼−1

ℎ 𝜎1
ℎ · 𝑟ℎ

)︀
.

Similarly, there holds ⟨︀̂︀𝑢1
ℎ, 𝑟ℎ · 𝑛𝐾

⟩︀
𝜕𝐾

= 𝑄0
𝜕𝐾

(︀̂︀𝑢1
ℎ 𝑟ℎ · 𝑛𝐾

)︀
.

Using the definition of the projection Π0 and the fact that the restriction of 𝜏𝐾 on each facet 𝐹 𝑖 ⊂ 𝜕𝐾 is a
constant (denoted as 𝜏 𝑖

𝐾), we have

⟨︀
𝜏𝐾Π0

(︀
𝑢1

ℎ − ̂︀𝑢1
ℎ

)︀
, 𝑣ℎ

⟩︀
𝜕𝐾

=
𝑑+1∑︁
𝑖=1

𝜏 𝑖
𝐾

⃒⃒
𝐹 𝑖

⃒⃒(︀
𝑢1

ℎ(𝑚𝐹 𝑖) − ̂︀𝑢1
ℎ(𝑚𝐹 𝑖)

)︀
𝑣ℎ(𝑚𝐹 𝑖) = 𝑄0

𝜕𝐾

(︀
𝜏𝐾

(︀
𝑢1

ℎ − ̂︀𝑢1
ℎ

)︀
𝑣ℎ

)︀
.

Combining these identities with the fact that ∇ · 𝑟ℎ = ∇ · 𝜎1
ℎ ≡ 0, we conclude that the systems (7) and (8) are

exactly the same. �

We have the following results on the a priori error estimates of the scheme (7), whose proof is omitted for
simplicity. We refer to the works [57,59] for a similar analysis.
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Corollary 3.1. Let (𝜎, 𝑢) be the exact solution to the model problem (3). Let (𝜎1
ℎ, 𝑢

1
ℎ, ̂︀𝑢1

ℎ) ∈𝑊ℎ × 𝑉ℎ ×𝑀0
ℎ be

the solution to (7). Then there holds⃦⃦⃦
𝛼−1/2

(︀
𝜎 − 𝜎1

ℎ

)︀⃦⃦⃦
0

+
⃦⃦⃦
𝛽1/2

(︀
𝑢− 𝑢1

ℎ

)︀⃦⃦⃦
0

+
⃦⃦⃦
𝜏

1/2
𝐾 Π0

(︀
𝑢1

ℎ − ̂︀𝑢1
ℎ

)︀⃦⃦⃦
0,𝜕Tℎ

. ℎΘ, (9a)⃦⃦
𝑢− 𝑢1

ℎ

⃦⃦
0
.

⃦⃦
∇
(︀
𝑢− 𝑢1

ℎ

)︀⃦⃦
0

+
⃦⃦⃦
ℎ
−1/2
𝐾

(︀
𝑢1

ℎ − ̂︀𝑢1
ℎ

)︀⃦⃦⃦
0,𝜕Tℎ

. 𝛼−1/2
0 ℎΘ, (9b)

where

Θ := 𝛼
−1/2
0 |𝜎|1 +

(︁
𝛼

1/2
1 + 𝛽

1/2
1 ℎ

)︁
|𝑢|2, (9c)

and ‖𝜑‖0,𝜕Tℎ
:=

√︁
⟨𝜑, 𝜑⟩𝜕Tℎ

. Moreover, with the full elliptic regularity assumed in (5), we have the following

optimal 𝐿2-convergence for 𝑢1
ℎ: ⃦⃦

𝑢− 𝑢1
ℎ

⃦⃦
0
. 𝑐regℎ

2Θ. (9d)

Combining the results in this subsection, we are now ready to give the error estimates for the solution to the
HDG-P0 scheme (4).

Theorem 3.1. Let (𝜎, 𝑢) be the exact solution to the model problem (3). Let (𝜎ℎ, 𝑢ℎ, ̂︀𝑢ℎ) ∈ 𝑊ℎ × 𝑉ℎ ×𝑀0
ℎ be

the solution to (4). Then there holds⃦⃦⃦
𝛼−1/2(𝜎 − 𝜎ℎ)

⃦⃦⃦
0

+
⃦⃦⃦
𝜏

1/2
𝐾 Π0(𝑢ℎ − ̂︀𝑢ℎ)

⃦⃦⃦
0,𝜕Tℎ

≤ ℎ(Θ + Ξ), (10a)

‖𝑢− 𝑢ℎ‖0 . ‖∇(𝑢− 𝑢ℎ)‖0 +
⃦⃦⃦
ℎ
−1/2
𝐾 (𝑢ℎ − ̂︀𝑢ℎ)

⃦⃦⃦
0,𝜕Tℎ

. 𝛼−1/2
0 ℎ(Θ + Ξ), (10b)

where Θ is given in (9c) and

Ξ := 𝛼
−1/2
0 ‖𝛽‖1,∞

(︁
‖𝑢‖0 + 𝛼

−1/2
0 ℎΘ

)︁
+ 𝛼

−1/2
0 ℎ𝑑/2‖𝑓‖1,∞.

Moreover, assuming full elliptic regularity (5), we have the following optimal 𝐿2-convergence for 𝑢ℎ:

‖𝑢− 𝑢ℎ‖0 . ℎ
2Ψ, (10c)

where

Ψ := 𝑐reg(Θ + Ξ) +
𝑐reg𝛼

−1/2
0 𝛽1

𝛼
1/2
1 + 𝛽

1/2
1 ℎ

Ξ + ‖𝛽‖1,∞𝛼
−3/2
0 (Θ + Ξ) + ℎ𝑑/2−1𝛼−1

0 ‖𝑓 − 𝛽𝑢‖1,∞.

Proof. The proof of (10a) and (10b) follows from a standard energy argument, while that of (10c) follows from
a duality argument. Here we prove the energy estimates (10a), (10b), and postpone the (slightly more technical)
proof of (10c) to the Appendix below.

We denote the difference of the solution (𝜎ℎ, 𝑢ℎ, ̂︀𝑢ℎ) to the system (4) and the solution (𝜎1
ℎ, 𝑢

1
ℎ, ̂︀𝑢1

ℎ) to the
system (7) as

𝑒𝜎 := 𝜎ℎ − 𝜎1
ℎ, 𝑒𝑢 := 𝑢ℎ − 𝑢1

ℎ, 𝑒̂︀𝑢 := ̂︀𝑢ℎ − ̂︀𝑢1
ℎ.

Subtracting equations (4) from (7) and using Lemma 3.2, we get the following error equation:

(𝛼−1𝑒𝜎, 𝑟ℎ)Tℎ
− (𝑒𝑢, ∇ · 𝑟ℎ)Tℎ

+ ⟨𝑒̂︀𝑢, 𝑟ℎ · 𝑛𝐾⟩𝜕Tℎ
= 0, (11a)

(∇ · 𝑒𝜎, 𝑣ℎ)Tℎ
+ ⟨𝜏𝐾Π0(𝑒𝑢 − 𝑒̂︀𝑢), 𝑣ℎ⟩𝜕Tℎ

+
∑︁

𝐾∈Tℎ

𝑄1
𝐾(𝛽𝑒𝑢𝑣ℎ) = 𝑇1(𝑣ℎ) − 𝑇2(𝑣ℎ), (11b)
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⟨𝑒𝜎 · 𝑛𝐾 + 𝜏𝐾Π0(𝑒𝑢 − 𝑒̂︀𝑢), ̂︀𝑣ℎ⟩𝜕Tℎ
= 0, (11c)

for all (𝑟ℎ, 𝑣ℎ, ̂︀𝑣ℎ) ∈𝑊ℎ × 𝑉ℎ ×𝑀0
ℎ where

𝑇1(𝑣ℎ) : = (𝛽𝑢1
ℎ, 𝑣ℎ)Tℎ

−
∑︁

𝐾∈Tℎ

𝑄1
𝐾(𝛽𝑢1

ℎ𝑣ℎ),

𝑇2(𝑣ℎ) : = (𝑓, 𝑣ℎ)Tℎ
−

∑︁
𝐾∈Tℎ

𝑄1
𝐾(𝑓𝑣ℎ).

Using Lemma 3.1, we have

𝑇1(𝑣ℎ) − 𝑇2(𝑣ℎ) .
∑︁

𝐾∈Tℎ

(︁
ℎ‖𝛽‖1,∞,𝐾‖𝑢1

ℎ‖0,𝐾 + ℎ1+𝑑/2‖𝑓‖1,∞,𝐾

)︁
‖𝑣ℎ‖1,𝐾 . (12)

Taking test function 𝑟ℎ := ∇𝑒𝑢 in equation (11), by integration by parts, reordering terms, and applying the
Cauchy–Schwarz inequality and inverse inequality, we get

(∇𝑒𝑢,∇𝑒𝑢)Tℎ
= −

(︀
𝛼−1𝑒𝜎,∇𝑒𝑢

)︀
+ ⟨Π0(𝑒𝑢 − 𝑒̂︀𝑢), ∇𝑒𝑢 · 𝑛𝐾⟩𝜕Tℎ

≤ 𝛼
−1/2
0

(︂⃦⃦⃦
𝛼−1/2𝑒𝜎

⃦⃦⃦
0
‖∇𝑒𝑢‖0 + ℎ

1/2
𝐾

⃦⃦⃦
𝜏

1/2
𝐾 Π0(𝑒𝑢 − 𝑒̂︀𝑢)

⃦⃦⃦
0,𝜕Tℎ

‖∇𝑒𝑢‖0,𝜕Tℎ

)︂
. 𝛼−1/2

0

(︂⃦⃦⃦
𝛼−1/2𝑒𝜎

⃦⃦⃦
0

+
⃦⃦⃦
𝜏

1/2
𝐾 Π0(𝑒𝑢 − 𝑒̂︀𝑢)

⃦⃦⃦
0,𝜕Tℎ

)︂
‖∇𝑒𝑢‖0.

Hence,

‖∇𝑒𝑢‖0 . 𝛼
−1/2
0

(︂⃦⃦⃦
𝛼−1/2𝑒𝜎

⃦⃦⃦
0

+
⃦⃦⃦
𝜏

1/2
𝐾 Π0(𝑒𝑢 − 𝑒̂︀𝑢)

⃦⃦⃦
0,𝜕Tℎ

)︂
.

Moreover, by the definition of Π0, the trace-inverse inequality and Poincaré inequality, we have⃦⃦⃦
ℎ
−1/2
𝐾 (𝑒𝑢 − 𝑒̂︀𝑢)

⃦⃦⃦
0,𝜕Tℎ

≤
⃦⃦⃦
ℎ
−1/2
𝐾 (𝑒𝑢 − Π0𝑒𝑢)

⃦⃦⃦
0,𝜕Tℎ

+
⃦⃦⃦
ℎ
−1/2
𝐾 Π0(𝑒𝑢 − 𝑒̂︀𝑢)

⃦⃦⃦
0,𝜕Tℎ

≤
⃦⃦⃦
ℎ
−1/2
𝐾 (𝑒𝑢 − 𝑃0𝑒𝑢)

⃦⃦⃦
0,𝜕Tℎ

+
⃦⃦⃦
ℎ
−1/2
𝐾 Π0(𝑒𝑢 − 𝑒̂︀𝑢)

⃦⃦⃦
0,𝜕Tℎ

. ‖∇𝑒𝑢‖0 +
⃦⃦⃦
ℎ
−1/2
𝐾 Π0(𝑒𝑢 − 𝑒̂︀𝑢)

⃦⃦⃦
0,𝜕Tℎ

. 𝛼−1/2
0

(︂⃦⃦⃦
𝛼−1/2𝑒𝜎

⃦⃦⃦
0

+
⃦⃦⃦
𝜏

1/2
𝐾 Π0(𝑒𝑢 − 𝑒̂︀𝑢)

⃦⃦⃦
0,𝜕Tℎ

)︂
,

where 𝑃0(𝑒𝑢) is the 𝐿2-projection of 𝑒𝑢 onto the piecewise constant space 𝑊ℎ. Combining the above two
inequalities with the discrete Poincaré inequality for piecewise 𝐻1 functions ([15], Rem. 1.1), we get

‖𝑒𝑢‖0 . ‖∇𝑒𝑢‖0 +
⃦⃦⃦
ℎ
−1/2
𝐾 (𝑒𝑢 − 𝑒̂︀𝑢)

⃦⃦⃦
0,𝜕Tℎ

. 𝛼
−1/2
0

(︂⃦⃦⃦
𝛼−1/2𝑒𝜎

⃦⃦⃦
0

+
⃦⃦⃦
𝜏

1/2
𝐾 Π0(𝑒𝑢 − 𝑒̂︀𝑢)

⃦⃦⃦
0,𝜕Tℎ

)︂
. (13)

Now taking test functions 𝑟ℎ = 𝑒𝜎, 𝑣ℎ = 𝑒𝑢, ̂︀𝑣ℎ = −𝑒̂︀𝑢 in (11) and adding, we get⃦⃦⃦
𝛼−1/2𝑒𝜎

⃦⃦⃦2

0
+

⃦⃦⃦
𝜏

1/2
𝐾 Π0(𝑒𝑢 − 𝑒̂︀𝑢)

⃦⃦⃦2

0,𝜕Tℎ

+
⃦⃦⃦
𝛽1/2𝑒𝑢

⃦⃦⃦
0,ℎ

= 𝑇1(𝑒𝑢) − 𝑇2(𝑒𝑢)

. ℎ
(︁
𝛼
−1/2
0 ‖𝛽‖1,∞

⃦⃦
𝑢1

ℎ

⃦⃦
0

+ 𝛼
−1/2
0 ℎ𝑑/2‖𝑓‖1,∞

)︁(︂⃦⃦⃦
𝛼−1/2𝑒𝜎

⃦⃦⃦
0

+
⃦⃦⃦
𝜏

1/2
𝐾 Π0(𝑒𝑢 − 𝑒̂︀𝑢)

⃦⃦⃦
0,𝜕Tℎ

)︂
.

where ‖𝜑‖0,ℎ :=
√︁∑︀

𝐾∈Tℎ
𝑄1

𝐾(𝜑2). Combining the above inequality with the triangle inequality

‖𝑢1
ℎ‖0 ≤ ‖𝑢− 𝑢1

ℎ‖0 + ‖𝑢‖0,

and the estimates (9a) and (9b) we get the energy estimate (10a). The estimate (10b) is a direct consequence
of (13), (9b), and (10a). �
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3.4. Equivalence to a nonconforming discretization

We define an interpolation operator ΠCR
ℎ : 𝑀ℎ → 𝑉 CR

ℎ from the piecewise constant facet space 𝑀ℎ to the
nonconforming (piecewise linear) CR space 𝑉 CR

ℎ :

ΠCR
ℎ ̂︀𝑣ℎ(𝑚𝐹 ) = ̂︀𝑣ℎ(𝑚𝐹 ), ∀̂︀𝑣ℎ ∈𝑀ℎ, 𝐹 ∈ Eℎ. (14)

It is clear that ΠCR
ℎ is an isomorphic map between these two spaces, which share the same set of DOFs (one

DOF per facet). The following result builds a link between the HDG-P0 scheme (4) and a (slightly modified)
nonconforming CR discretization.

Theorem 3.2. Let 𝑢CR
ℎ ∈ 𝑉 CR,0

ℎ be the solution to the following nonconforming scheme∑︁
𝐾∈Tℎ

(︀
𝑄0

𝐾

(︀
𝛼ℎ∇𝑢CR

ℎ · ∇𝑣CR
ℎ

)︀
+𝑄1

𝐾

(︀
𝛾ℎ𝛽𝑢

CR
ℎ 𝑣CR

ℎ

)︀)︀
=

∑︁
𝐾∈Tℎ

𝑄1
𝐾

(︀
𝛾ℎ𝑓𝑣

CR
ℎ

)︀
, ∀𝑣CR

ℎ ∈ 𝑉 CR,0
ℎ , (15)

where 𝛾ℎ := 𝛼ℎ

𝛼ℎ+
ℎ2

𝐾
𝑑+1 𝛽

. Then the solution (𝜎ℎ, 𝑢ℎ, ̂︀𝑢ℎ) to the HDG-P0 scheme (4) satisfies

𝜎ℎ = −𝛼ℎ∇ΠCR
ℎ ̂︀𝑢ℎ, (16a)

𝑢ℎ

(︀
𝑚𝑖

𝐾

)︀
= 𝛾ℎ

(︀
𝑚𝑖

𝐾

)︀(︃̂︀𝑢ℎ

(︀
𝑚𝑖

𝐾

)︀
+

(︀
ℎ𝑖

𝐾

)︀2

(𝑑+ 1)𝛼ℎ
𝑓
(︀
𝑚𝑖

𝐾

)︀)︃
, ∀𝑖 ∈ {1, . . . , 𝑑+ 1}, ∀𝐾 ∈ Tℎ, (16b)

ΠCR
ℎ ̂︀𝑢ℎ = 𝑢CR

ℎ , (16c)

where recall that 𝑚𝑖
𝐾 is the barycenter of the 𝑖-th facet 𝐹 𝑖 of the element 𝐾, and ℎ𝑖

𝐾 = |𝐾|
|𝐹 𝑖| .

Proof. By (4a) and the definition of ΠCR
ℎ in (14), we have, for any 𝑟ℎ ∈ P0(𝐾),

𝑄0
𝐾

(︀
𝛼−1

ℎ 𝜎ℎ · 𝑟ℎ

)︀
= −𝑄0

𝜕𝐾

(︀
ΠCR

ℎ ̂︀𝑢ℎ 𝑟ℎ · 𝑛𝐾

)︀
= −

⟨︀
ΠCR

ℎ ̂︀𝑢ℎ, 𝑟ℎ · 𝑛𝐾

⟩︀
𝜕𝐾

= −
(︀
∇ΠCR

ℎ ̂︀𝑢ℎ, 𝑟ℎ

)︀
𝐾
−

(︀
ΠCR

ℎ ̂︀𝑢ℎ,∇ · 𝑟ℎ

)︀
𝐾⏟  ⏞  

≡0

.

Hence, (︀
𝛼−1

ℎ 𝜎ℎ + ∇ΠCR
ℎ ̂︀𝑢ℎ, 𝑟ℎ

)︀
Tℎ

= 0,

which implies the identity (16a) thanks to the fact that 𝛼ℎ|𝐾 ∈ P0(𝐾) and 𝜎ℎ,∇ΠCR
ℎ ̂︀𝑢ℎ ∈ [P0(𝐾)]𝑑.

Next, for 𝑖 ∈ {1, . . . , 𝑑 + 1}, taking test function 𝑣ℎ in (4b) to be supported only on an element 𝐾, whose
values is 1 on 𝑚𝑖

𝐾 and zero on 𝑚𝑗
𝐾 for 𝑗 ̸= 𝑖, we get

𝜏 𝑖
𝐾

(︀
𝑢ℎ

(︀
𝑚𝑖

𝐾

)︀
− ̂︀𝑢ℎ

(︀
𝑚𝑖

𝐾

)︀)︀⃒⃒
𝐹 𝑖

⃒⃒
+

|𝐾|
𝑑+ 1

𝛽
(︀
𝑚𝑖

𝐾

)︀
𝑢ℎ

(︀
𝑚𝑖

𝐾

)︀
=

|𝐾|
𝑑+ 1

𝑓
(︀
𝑚𝑖

𝐾

)︀
.

Solving for the value 𝑢ℎ

(︀
𝑚𝑖

𝐾

)︀
and using the definition of 𝜏𝐾 and ℎ𝐾 , i.e., 𝜏 𝑖

𝐾 = 𝛼ℎ

ℎ𝐾
and ℎ𝑖

𝐾 = |𝐾|
|𝐹 𝑖| , we

immediately get the equality (16b).
Finally, let us prove the identity (16c). By the definition of ΠCR

ℎ and (16a), (16b), we have

𝑄0
𝜕𝐾(𝜎ℎ · 𝑛𝐾̂︀𝑣ℎ) =

⟨︀
𝜎ℎ · 𝑛𝐾 ,Π

CR
ℎ ̂︀𝑣ℎ

⟩︀
𝜕𝐾

=
(︀
𝜎ℎ,∇ΠCR

ℎ ̂︀𝑣ℎ

)︀
𝐾

= −𝑄0
𝐾

(︀
𝛼ℎ∇ΠCR

ℎ ̂︀𝑢ℎ∇ΠCR
ℎ ̂︀𝑣ℎ

)︀
𝐾
,

and

𝑄0
𝜕𝐾(𝜏𝐾(𝑢ℎ − ̂︀𝑢ℎ)̂︀𝑣ℎ) =

𝑑+1∑︁
𝑖=1

|𝐹 𝑖|𝜏 𝑖
𝐾

(︀
𝑢ℎ

(︀
𝑚𝑖

𝐾

)︀
− ̂︀𝑢ℎ

(︀
𝑚𝑖

𝐾

)︀)︀̂︀𝑣ℎ

(︀
𝑚𝑖

𝐾

)︀
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=
𝑑+1∑︁
𝑖=1

|𝐾|
𝑑+ 1

𝛾ℎ

(︀
𝑚𝑖

𝐾

)︀(︀
−𝛽

(︀
𝑚𝑖

𝐾

)︀̂︀𝑢ℎ

(︀
𝑚𝑖

𝐾

)︀
+ 𝑓

(︀
𝑚𝑖

𝐾

)︀)︀̂︀𝑣ℎ

(︀
𝑚𝑖

𝐾

)︀
= −𝑄1

𝐾

(︀
𝛾ℎ𝛽ΠCR

ℎ ̂︀𝑢ℎΠCR
ℎ ̂︀𝑣ℎ

)︀
+𝑄1

𝐾

(︀
𝛾ℎ𝑓ΠCR

ℎ ̂︀𝑣ℎ

)︀
,

where we skipped the algebraic manipulation in the above second equality. Combining the above two identities
with (4c), we get∑︁

𝐾∈Tℎ

(︀
𝑄0

𝐾

(︀
𝛼ℎ∇ΠCR

ℎ ̂︀𝑢ℎ · ∇ΠCR
ℎ ̂︀𝑣ℎ

)︀
+𝑄1

𝐾

(︀
𝛾ℎ𝛽ΠCR

ℎ ̂︀𝑢ℎΠCR
ℎ ̂︀𝑣ℎ

)︀)︀
=

∑︁
𝐾∈Tℎ

𝑄1
𝐾

(︀
𝛾ℎ𝑓ΠCR

ℎ ̂︀𝑣ℎ

)︀
, (17)

for all ̂︀𝑣ℎ ∈𝑀0
ℎ , which implies the equivalence (16c). �

Remark 3.1 (Equivalence between HDG-P0 and CR discretizations). Theorem 3.2 implies the equivalence
between the HDG-P0 scheme (4) and the slightly modified CR discretization (15) with numerical integration,
where the modification is the introduction of the scaling parameter 𝛾ℎ. This result is motivated by the equivalence
of the lowest order Raviart–Thomas mixed method and the nonconforming CR method [1,50]. Note that, when
𝛽 ̸= 0, the HDG-P0 scheme (4) converges to the original CR discretization (with 𝛾ℎ set to 1 in (15)) in the
asymptotic limit as the mesh size ℎ approaches zero. Moreover, for the pure diffusion case with 𝛽 = 0, the scheme
(4) is always equivalent to the original CR discretization for any choice of non-zero stabilization parameter 𝜏 in
the sense that the equality (16c) always holds.

Remark 3.2 (On HDG-P0 solution procedure). In the practical implementation of the HDG-P0 scheme, we
first locally eliminate 𝜎ℎ and 𝑢ℎ from (4) to arrive at the global (condensed) linear system (17) for ̂︀𝑢ℎ. After
solving for ̂︀𝑢ℎ in the system (17), we then recover 𝜎ℎ and 𝑢ℎ. The next subsection focuses on the efficient linear
system solver for (17) via geometric multigrid. Due to the algebraic equivalence between the condensed HDG
system (17) and the (modified) nonconforming system (15), we can simply use the rich multigrid theory for
nonconforming methods [4, 6, 8, 14,16,20,31] to precondition the condensed HDG system (17).

3.5. Multigrid algorithm

In this subsection, we present the detailed multigrid algorithm for the condensed system (17), using the
nonconforming multigrid theory of Brenner [16].

We consider a set of hierarchical meshes for the multigrid algorithm. Let T1 be a conforming simplicial
triangulation of Ω and let T𝑙 be obtained by successive mesh refinements for 𝑙 = 2, . . . , 𝐽 , with the final mesh
T𝐽 = Tℎ. We denote ℎ𝑙 as the maximum mesh size of the triangulation T𝑙. We assume the triangulation T𝑙 is
conforming, shape-regular, and quasi-uniform on each level, and the difference of the mesh size between two
adjacent mesh levels is bounded, i.e., ℎ𝑙 . ℎ𝑙+1. Let E𝑙 be the mesh skeleton of T𝑙. Denote 𝑊𝑙, 𝑉𝑙, 𝑉 CR

𝑙 as the
corresponding finite element spaces on the 𝑙-th level mesh T𝑙, and 𝑀𝑙 as the corresponding piecewise constant
finite element space on the 𝑙-th level mesh skeleton E𝑙. We define the following 𝐿2-like inner product on the
space 𝑀𝑙:

(̂︀𝑢𝑙, ̂︀𝑣𝑙)0,𝑙 :=
∑︁

𝐾∈T𝑙

𝑄1
𝐾

(︀
ΠCR

𝑙 ̂︀𝑢𝑙 ΠCR
𝑙 ̂︀𝑣𝑙

)︀
=

∑︁
𝐾∈T𝑙

𝑑+1∑︁
𝑖=1

|𝐾|
𝑑+ 1

̂︀𝑢𝑙

(︀
𝑚𝑖

𝐾

)︀̂︀𝑣𝑙

(︀
𝑚𝑖

𝐾

)︀
,

with its induced norm as ‖ · ‖0,𝑙, where ΠCR
𝑙 is the interpolation operator (14) from 𝑀𝑙 to 𝑉 CR

𝑙 . We define
𝐴𝑙 : 𝑀0

𝑙 →𝑀0
𝑙 as the linear operator satisfying

(𝐴𝑙̂︀𝑢𝑙, ̂︀𝑣𝑙)0,𝑙 := 𝑎𝑙(̂︀𝑢𝑙, ̂︀𝑣𝑙), ∀̂︀𝑢𝑙, ̂︀𝑣𝑙 ∈𝑀0
𝑙 , (18)

where 𝑎𝑙 is the following bilinear form on the 𝑙-th level mesh:

𝑎𝑙(̂︀𝑢𝑙, ̂︀𝑣𝑙) :=
∑︁

𝐾∈T𝑙

(︀
𝑄0

𝐾

(︀
𝛼𝑙∇ΠCR

𝑙 ̂︀𝑢𝑙 · ∇ΠCR
𝑙 ̂︀𝑣𝑙

)︀
+𝑄1

𝐾

(︀
𝛽𝑙ΠCR

𝑙 ̂︀𝑢𝑙 ΠCR
𝑙 ̂︀𝑣𝑙

)︀)︀
, ∀̂︀𝑢𝑙, ̂︀𝑣𝑙 ∈𝑀0

𝑙 , (19)
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where 𝛼𝑙 = (𝛼−1
𝑙 )−1 with 𝛼−1

𝑙 ∈ 𝑊𝑙 being the 𝐿2-projection of 𝛼−1 onto the piecewise constant space 𝑊𝑙, and
𝛽𝑙 ∈ 𝑉ℎ satisfies

𝛽𝑙

(︀
𝑚𝑖

𝐾

)︀
= 𝛾𝑙

(︀
𝑚𝑖

𝐾

)︀
𝛽
(︀
𝑚𝑖

𝐾

)︀
, ∀𝑖 ∈ {1, . . . , 𝑑+ 1}, ∀𝐾 ∈ 𝑇 𝑙,

with 𝛾𝑙 := 𝛼𝑙

𝛼𝑙+
ℎ2

𝐾𝑙
𝑑+1 𝛽

and ℎ𝐾𝑙
being the mesh size of elements in T𝑙. Further denoting 𝑓𝑙 ∈𝑀0

𝑙 such that

(𝑓𝑙, ̂︀𝑣𝑙)0,𝑙 =
∑︁

𝐾∈T𝑙

𝑄1
𝐾

(︀
𝛾𝑙𝑓ΠCR

𝑙 ̂︀𝑣𝑙

)︀
, ∀̂︀𝑣𝑙 ∈𝑀0

𝑙 ,

the operator form of the linear system (17) is simply to find ̂︀𝑢ℎ ∈𝑀0
𝐽 such that

𝐴𝐽̂︀𝑢ℎ = 𝑓𝐽 . (20)

A multigrid algorithm for the above system (20) needs two ingredients: an intergrid transfer 𝐼 𝑙
𝑙−1 : 𝑀0

𝑙−1 →𝑀0
𝑙

operator that connects the spaces 𝑀0
𝑙−1 and 𝑀0

𝑙 on two consecutive mesh levels, and a smoothing operator
𝑅𝑙 : 𝑀0

𝑙 → 𝑀0
𝑙 that takes care of high-frequency errors. For the intergrid transfer operator, we use the

following well-known nonconforming averaging operator [4, 8]:

(︀
𝐼 𝑙
𝑙−1̂︀𝑣𝑙−1

)︀
(𝑚𝐹 ) :=

⎧⎨⎩
(︀
ΠCR

𝑙−1̂︀𝑣𝑙−1

)︀
(𝑚𝐹 ), if 𝐹 ∈ E0

𝑙 lies inside T𝑙−1,

1
2

(︁(︀
ΠCR

𝑙−1̂︀𝑣𝑙−1

)︀+
(𝑚𝐹 ) +

(︀
ΠCR

𝑙−1̂︀𝑣𝑙−1

)︀−
(𝑚𝐹 )

)︁
, if 𝐹 ∈ E0

𝑙 lies on E𝑜
𝑙−1,

(21)

where (ΠCR
𝑙−1̂︀𝑣𝑙−1)+ and (ΠCR

𝑙−1̂︀𝑣𝑙−1)− are the values of ΠCR
𝑙−1̂︀𝑣𝑙−1 on two adjacent elements 𝐾+, 𝐾− ∈ T𝑙−1 that

share the facet 𝐹 . We further denote the restriction operator 𝐼 𝑙−1
𝑙 : 𝑀0

𝑙 →𝑀0
𝑙−1 as the transpose of 𝐼 𝑙

𝑙−1 with
respect to the inner product (·, ·)0,𝑙:

(︀
𝐼 𝑙−1
𝑙 ̂︀𝑣, ̂︀𝑤)︀

0,𝑙−1
=

(︀̂︀𝑣, 𝐼 𝑙
𝑙−1 ̂︀𝑤)︀

0,𝑙
, ∀̂︀𝑣 ∈𝑀0

𝑙 , ̂︀𝑤 ∈𝑀0
𝑙−1.

For the smoothing operator 𝑅𝑙, we simply take it to be the classical Jacobi or Gauss–Seidel smoother for the
operator 𝐴𝑙. The proof of multigrid convergence requires another operator 𝑃 𝑙−1

𝑙 : 𝑀0
𝑙 → 𝑀0

𝑙−1, which is the
transpose of 𝐼 𝑙

𝑙−1 with respect to the bilinear form 𝑎𝑙, i.e.,

𝑎𝑙−1

(︀
𝑃 𝑙−1

𝑙 ̂︀𝑢𝑙, ̂︀𝑣𝑙−1

)︀
= 𝑎𝑙

(︀̂︀𝑢𝑙, 𝐼
𝑙
𝑙−1̂︀𝑣𝑙−1

)︀
, ∀̂︀𝑢𝑙 ∈𝑀0

𝑙 , ̂︀𝑣𝑙−1 ∈𝑀0
𝑙−1.

The operator 𝑃 𝑙−1
𝑙 is for multigrid analysis only, and never enters the actual multigrid algorithm.

We now follow ([16], Algorithm 2.1) to present the classical symmetric 𝑉 -cycle algorithm for the system
𝐴𝑙̂︀𝑢𝑙 = 𝑓𝑙 ∈𝑀0

𝑙 .
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Algorithm 1. The 𝑉 -cycle algorithm for 𝐴𝑙̂︀𝑢𝑙 = 𝑓𝑙.
The 𝑙-th level symmetric 𝑉 -cycle algorithm produces MG𝐴𝑙(𝑙, 𝑓𝑙, ̂︀𝑢0

𝑙 , 𝑚) as an approximation solution for 𝐴𝑙̂︀𝑢𝑙 = 𝑓𝑙

with initial guess ̂︀𝑢0
𝑙 , where 𝑚 denotes the number of pre-smoothing and post-smoothing steps.

if 𝑙 = 1 then

MG𝐴𝑙(𝑙, ̂︀𝑢𝑙, 𝑓𝑙) = (𝐴𝑙)
−1𝑓𝑙.

else

Perform the following three steps:

(1) pre-smoothing. For 𝑗 = 1, . . . , 𝑚, compute ̂︀𝑢𝑗
𝑙 by

̂︀𝑢𝑗
𝑙 = ̂︀𝑢𝑗−1

𝑙 + 𝑅𝑙

(︁
𝑓𝑙 − 𝐴𝑙̂︀𝑢𝑗−1

𝑙

)︁
.

(2) Coarse grid correction. Let ̂︀𝑟𝑙−1 = 𝐼𝑙−1
𝑙 (𝑓𝑙 − 𝐴𝑙̂︀𝑢𝑚

𝑙 ) and compute ̂︀𝑢𝑚+1
𝑙 by

̂︀𝑢𝑚+1
𝑙 = ̂︀𝑢𝑚

𝑙 + 𝐼𝑙
𝑙−1MG𝐴𝑙−1(𝑙 − 1, ̂︀𝑟𝑙−1, 0, 𝑚).

(3) Post-smoothing. For 𝑗 = 𝑚 + 2, . . . , 2𝑚 + 1, compute ̂︀𝑢𝑗
𝑙 by

̂︀𝑢𝑗
𝑙 = ̂︀𝑢𝑗−1

𝑙 + 𝑅𝑇
𝑙

(︁
𝑓𝑙 − 𝐴𝑙̂︀𝑢𝑗−1

𝑙

)︁
,

where 𝑅𝑇
𝑙 is the transpose of 𝑅𝑙 with respect to the inner product (·, ·)0,𝑙.

We then define MG𝐴𝑙(𝑙, 𝑓𝑙, ̂︀𝑢0
𝑙 , 𝑚) = ̂︀𝑢2𝑚+1

𝑙 .

By the algebraic equivalence of the nonconforming system (15) and the condensed HDG system (17), we
immediately have the following optimality result of the above multigrid algorithm from [16]. We note that both
the equivalence result in Theorem 3.2 and the optimal multigrid theory in [16] do not require the full elliptic
regularity assumption (5). Thus our proposed multigrid algorithm for the HDG-P0 scheme is optimal in the
low-regularity case, where 𝑢 ∈ 𝐻1+𝑠(Ω)∩𝐻1

0 (Ω) and 𝑠 ∈ ( 1
2 , 1] is the regularity constant for the model problem

(3).

Theorem 3.3 ([16], Thm. 5.2). There exist positive mesh-independent constants 𝐶 and 𝑚* such that

|||E𝑙,𝑚̂︀𝑣|||1,𝑙 ≤
𝐶

𝑚𝑠
|||̂︀𝑣|||1,𝑙, ∀̂︀𝑣 ∈𝑀0

𝑙 , 𝑙 ≥ 1,𝑚 ≥ 𝑚*,

where 𝑠 ∈ ( 1
2 , 1] is the regularity constant such that the solution 𝑢 to (2) satisfies

‖𝑢‖1+𝑠 . ‖𝑓‖−1+𝑠,

||| · |||1,𝑙 is the mesh-dependent norm induced by the linear operator 𝐴𝑙 (18), i.e., |||̂︀𝑣|||1,𝑙 :=
√︀

(𝐴𝑙̂︀𝑣, ̂︀𝑣)0,𝑙, and
E𝑙,𝑚 : 𝑀0

𝑙 →𝑀0
𝑙 is the operator relating the initial error and the final error of the multigrid 𝑉 -cycle algorithm,

i.e.,

E𝑙,𝑚

(︀̂︀𝑢𝑙 − ̂︀𝑢0
𝑙

)︀
:= ̂︀𝑢𝑙 − MG𝐴𝑙

(︀
𝑙, 𝑓𝑙, ̂︀𝑢0

𝑙 ,𝑚
)︀
.

Proof. This multigrid algorithm is algebraically equivalent to the 𝑉 -cycle multigrid algorithm for the noncon-
forming CR scheme (15) with diffusion coefficient 𝛼𝑙 ∈ 𝑊𝑙 and reaction coefficient 𝛽𝑙 ∈ 𝑉𝑙 in each level. It
is easy to verify that the assumptions (3.6)–(3.12) of [16] are satisfied for the space 𝑀0

𝑙 and operators 𝐼 𝑙
𝑙−1

and 𝑃 𝑙−1
𝑙 ; see, e.g., Section 6 of [16] and [14]. Hence Theorem 3.3 is simply a restatement of Theorem 5.2

of [16]. �
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4. HDG-P0 for the generalized Stokes equations

We follow the same procedures as in the previous section to present the HDG-P0 scheme for the generalized
Stokes equations together with its optimal a priori error analysis, and the corresponding multigrid algorithms
for the condensed linear system.

4.1. The model problem

We consider the following model problem with a homogeneous Dirichlet boundary condition:

𝛽𝑢−∇ · (𝜇∇𝑢) + ∇𝑝 = 𝑓, in Ω, (22a)
∇ · 𝑢 = 0, in Ω, (22b)

𝑢 = 0, on 𝜕Ω, (22c)

where 𝑢 is the velocity, 𝑝 is the pressure, 𝑓 ∈ 𝐿2(Ω) is the source term, 𝜇 > 0 is the viscosity constant, and
𝛽 ≥ 0 is the low-order term constant, which typically represents the inverse of time step size in a implicit-in-time
discretization of the unsteady Stokes flow.

To present the HDG-P0 scheme, we introduce the tensor 𝐿 := −𝜇∇𝑢 as a new variable and rewrite the
equations (22) into a first-order system:

𝜇−1𝐿+ ∇𝑢 = 0, in Ω, (23a)
∇ · 𝐿+ 𝛽𝑢+ ∇𝑝 = 𝑓, in Ω, (23b)

∇ · 𝑢 = 0, in Ω, (23c)
𝑢 = 𝑢𝑛𝑑𝑒𝑟𝑙𝑖𝑛𝑒0, on 𝜕Ω. (23d)

4.2. The HDG-P0 scheme

The HDG-P0 discretization for the system (23) reads as follows: find (𝐿
ℎ
, 𝑢ℎ, ̂︀𝑢ℎ, 𝑝ℎ) ∈𝑊

ℎ
× 𝑉 ℎ ×𝑀0

ℎ ×𝑊 0
ℎ

such that ∑︁
𝐾∈Tℎ

(︁
𝑄0

𝐾

(︁
𝜇−1𝐿

ℎ
·𝐺

ℎ

)︁
+𝑄0

𝜕𝐾

(︁
𝐺

ℎ
𝑛 · ̂︀𝑢ℎ

)︁)︁
= 0, (24a)

∑︁
𝐾∈Tℎ

(︀
𝑄0

𝜕𝐾(𝜏𝐾(𝑢ℎ − ̂︀𝑢ℎ) · 𝑣ℎ) +𝑄1
𝐾(𝛽𝑢ℎ · 𝑣ℎ)

)︀
=

∑︁
𝐾∈Tℎ

𝑄1
𝐾

(︀
𝑓 · 𝑣ℎ

)︀
, (24b)

∑︁
𝐾∈Tℎ

𝑄0
𝜕𝐾(̂︀𝑢ℎ · 𝑛𝐾𝑞ℎ) = 0, (24c)

∑︁
𝐾∈Tℎ

(︁
𝑄0

𝜕𝐾

(︁(︁
𝐿

ℎ
+ 𝑝ℎ𝐼

)︁
𝑛𝐾 · ̂︀𝑣ℎ

)︁
+𝑄0

𝜕𝐾(𝜏𝐾(𝑢ℎ − ̂︀𝑢ℎ) · ̂︀𝑣ℎ)
)︁

= 0, (24d)

for all (𝐺
ℎ
, 𝑣ℎ,̂︀𝑣ℎ, 𝑞ℎ) ∈ 𝑊

ℎ
× 𝑉 ℎ × 𝑀0

ℎ × 𝑊 0
ℎ , where 𝐼 is the unit diagonal matrix, and 𝜏𝐾 = 𝜇

ℎ𝐾
is the

stabilization parameter. Taking test functions (𝐺
ℎ
, 𝑣ℎ,̂︀𝑣ℎ, 𝑞ℎ) = (𝐿

ℎ
, 𝑢ℎ,−̂︀𝑢ℎ, 𝑝ℎ) in (24) and adding, we have

the following energy identity:∑︁
𝐾∈Tℎ

(︁
𝑄0

𝐾

(︁
𝜇−1|𝐿

ℎ
|2
)︁

+𝑄0
𝜕𝐾

(︁
𝜏𝐾(𝑢ℎ − ̂︀𝑢ℎ)2

)︁
+𝑄1

𝐾

(︀
𝛽𝑢2

ℎ

)︀)︁
=

∑︁
𝐾∈Tℎ

𝑄1
𝐾

(︀
𝑓 · 𝑢ℎ

)︀
.

4.3. An a priori error analysis for HDG-P0

Similar to the reaction-diffusion case, to simplify the a priori error analysis in this subsection, we assume
(𝐿, 𝑢, 𝑝) ∈ 𝐻1(Ω) × (𝐻2(Ω) ∩𝐻1

0(Ω)) × (𝐻1(Ω)∖R), together with the following elliptic regularity result:

𝜇−1/2‖𝐿‖1 + 𝜇−1/2‖𝑝‖1 +
(︁
𝜇1/2 + 𝛽1/2

)︁
‖𝑢‖2 . 𝑐reg‖𝑓‖0, (25)
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which holds when the domain Ω is convex. Furthermore, we assume the following stronger regularity of the
source term 𝑓 to perform the a priori error analysis:

𝑓 ∈𝑊 1,∞(︀
Ω̄
)︀
,

and compare the solution to the HDG-P0 scheme (24) with the solution to a similar HDG scheme with exact
integration. Let (𝐿1

ℎ
, 𝑢1

ℎ, ̂︀𝑢1
ℎ, 𝑝

1
ℎ) ∈𝑊

ℎ
× 𝑉 ℎ ×𝑀0

ℎ ×𝑊 0
ℎ be the solution to the following scheme:∑︁

𝐾∈Tℎ

(︁
𝑄0

𝐾

(︁
𝜇−1𝐿1

ℎ
·𝐺

ℎ

)︁
+𝑄0

𝜕𝐾

(︁
𝐺

ℎ
𝑛 · ̂︀𝑢1

ℎ

)︁)︁
= 0, (26a)

∑︁
𝐾∈Tℎ

(︁
𝑄0

𝜕𝐾

(︁
𝜏𝐾

(︁
𝑢1

ℎ − ̂︀𝑢1
ℎ

)︁
· 𝑣ℎ

)︁
+

(︀
𝛽𝑢1

ℎ, 𝑣ℎ

)︀
𝐾

)︁
=

∑︁
𝐾∈Tℎ

(︀
𝑓, 𝑣ℎ

)︀
𝐾
, (26b)

∑︁
𝐾∈Tℎ

𝑄0
𝜕𝐾

(︁̂︀𝑢1
ℎ · 𝑛𝐾𝑞ℎ

)︁
= 0, (26c)

∑︁
𝐾∈Tℎ

(︁
𝑄0

𝜕𝐾

(︁(︁
𝐿1

ℎ
+ 𝑝1

ℎ𝐼
)︁
𝑛𝐾 · ̂︀𝑣ℎ

)︁
+𝑄0

𝜕𝐾

(︁
𝜏𝐾

(︁
𝑢1

ℎ − ̂︀𝑢1
ℎ

)︁
· ̂︀𝑣ℎ

)︁)︁
= 0, (26d)

for all (𝐺
ℎ
, 𝑣ℎ,̂︀𝑣ℎ, 𝑞ℎ) ∈𝑊

ℎ
×𝑉 ℎ ×𝑀

0
ℎ ×𝑊 0

ℎ . Note that in two dimension (𝑑 = 2), the above two schemes only
differ by the right hand side term as 𝑄1

𝐾 is exact for quadratic polynomial integration, while in three dimensions
(𝑑 = 3) the quadrature scheme (24) further introduce numerical integration errors in the left hand side volume
term in (24b). We use the following lemma to link the above system (26) with the lowest order (mixed) HDG
scheme with projected jumps (and exact integration) that has been analyzed in [58] for the incompressible
Navier–Stokes equations. The proof procedure is similar to Lemma 3.2 and is omitted here for simplicity.

Lemma 4.1. Let (𝐿1

ℎ
, 𝑢1

ℎ, ̂︀𝑢1
ℎ, 𝑝

1
ℎ) ∈𝑊

ℎ
×𝑉 ℎ ×𝑀

0
ℎ ×𝑊 0

ℎ be the solution to (26), then (𝐿1

ℎ
, 𝑢1

ℎ, ̂︀𝑢1
ℎ, 𝑝

1
ℎ) satisfies

𝜇−1
(︁
𝐿1

ℎ
, 𝐺

ℎ

)︁
Tℎ

−
(︁
𝑢1

ℎ, ∇ ·𝐺
ℎ

)︁
Tℎ

+
⟨̂︀𝑢1

ℎ, 𝐺ℎ
𝑛
⟩

𝜕Tℎ

= 0, (27a)(︁
∇ ·

(︁
𝐿1

ℎ
+ 𝑝1

ℎ𝐼
)︁
, 𝑣ℎ

)︁
Tℎ

+
⟨
𝜏𝐾Π0

(︁
𝑢1

ℎ − ̂︀𝑢1
ℎ

)︁
, 𝑣ℎ

⟩
𝜕Tℎ

+ 𝛽
(︀
𝑢1

ℎ, 𝑣ℎ

)︀
Tℎ

=
(︀
𝑓, 𝑣𝑙

)︀
Tℎ

(27b)

−
(︀
𝑢1

ℎ, ∇𝑞ℎ
)︀
Tℎ

+
⟨̂︀𝑢1

ℎ · 𝑛𝐾 , 𝑞ℎ

⟩
𝜕Tℎ

= 0, (27c)⟨(︁
𝐿1

ℎ
+ 𝑝1

ℎ𝐼
)︁
𝑛𝐾 + 𝜏𝐾Π0

(︁
𝑢1

ℎ − ̂︀𝑢1
ℎ

)︁
, ̂︀𝑣ℎ

⟩
𝜕Tℎ

= 0, (27d)

for all (𝐺
ℎ
, 𝑣ℎ,̂︀𝑣ℎ, 𝑞ℎ) ∈𝑊

ℎ
×𝑉 ℎ×𝑀

0
ℎ×𝑊 0

ℎ , where Π0 is the 𝐿2-projection on to the piecewise constant vector
on the mesh skeletons.

With Lemma 4.1, we adapt from [58] and get the following a priori error estimates for the HDG scheme (26)
with exact integration; see [58] for more details.

Corollary 4.1. Let (𝐿, 𝑢, 𝑝) be the exact solution to the model problem (23). Let (𝐿1

ℎ
, 𝑢1

ℎ, ̂︀𝑢1
ℎ, 𝑝

1
ℎ) ∈𝑊

ℎ
× 𝑉 ℎ ×

𝑀0
ℎ ×𝑊 0

ℎ be the solution to (26). Then there holds⃦⃦⃦
𝜇−1/2

(︁
𝐿− 𝐿1

ℎ

)︁⃦⃦⃦
0

+
⃦⃦⃦
𝛽1/2

(︀
𝑢− 𝑢1

ℎ

)︀⃦⃦⃦
0

+
⃦⃦⃦
𝜏

1/2
𝐾 Π0

(︁
𝑢1

ℎ − ̂︀𝑢1
ℎ

)︁⃦⃦⃦
0,𝜕Tℎ

. ℎΘ1, (28a)⃦⃦
𝑢− 𝑢1

ℎ

⃦⃦
0
.

⃦⃦
∇
(︀
𝑢− 𝑢1

ℎ

)︀⃦⃦
0

+
⃦⃦⃦
ℎ
−1/2
𝐾

(︁
𝑢1

ℎ − ̂︀𝑢1
ℎ

)︁⃦⃦⃦
0,𝜕Tℎ

. 𝜇−1/2ℎΘ1, (28b)

where

Θ1 := 𝜇−1/2|𝐿|1 + 𝜇−1/2|𝑝|1 +
(︁
𝜇1/2 + 𝛽1/2ℎ

)︁
|𝑢|2. (29)
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Moreover, with the full elliptic regularity assumed in (25), we have the optimal 𝐿2-convergence for 𝑢1
ℎ:⃦⃦

𝑢− 𝑢1
ℎ

⃦⃦
0
. ℎ2(𝑐regΘ2 + |𝑢|2), (30)

where

Θ2 := 𝜇−1/2|𝐿|1 + 𝜇−1/2|𝑝|1 + 𝜇1/2|𝑢|2. (31)

Now we are ready to present the optimal convergence results of the HDG-P0 scheme (24). We note the proof
procedures are essentially the same as in Theorem 3.1 and the detailed proof is omitted here for simplicity.

Theorem 4.1. Let (𝐿, 𝑢, 𝑝) be the exact solution to the model problem (23). Let (𝐿
ℎ
, 𝑢ℎ, ̂︀𝑢ℎ) ∈ 𝑊

ℎ
× 𝑉 ℎ ×

𝑀0
ℎ ×𝑊 0

ℎ be the solution to (24). Then there holds⃦⃦⃦
𝜇−1/2

(︁
𝐿− 𝐿

ℎ

)︁⃦⃦⃦
0

+
⃦⃦⃦
𝜏

1/2
𝐾 Π0(𝑢ℎ − ̂︀𝑢ℎ)

⃦⃦⃦
0,𝜕Tℎ

≤ ℎ(Θ1 + Ξ) (32a)

‖𝑢− 𝑢ℎ‖0 . ‖∇(𝑢− 𝑢ℎ)‖0 +
⃦⃦⃦
ℎ
−1/2
𝐾 (𝑢ℎ − ̂︀𝑢ℎ)

⃦⃦⃦
0,𝜕Tℎ

. 𝜇−1/2ℎ(Θ1 + Ξ), (32b)

where Θ1 is defined in (29) and

Ξ := 𝜇−1/2𝛽
(︁
‖𝑢‖0 + 𝜇−1/2ℎΘ1

)︁
+ 𝜇−1/2ℎ𝑑/2‖𝑓‖1,∞.

Moreover, assuming the full elliptic regularity in (25), we have the following optimal 𝐿2-convergence of 𝑢ℎ:

‖𝑢− 𝑢ℎ‖0 . ℎ
2Ψ, (32c)

where

Ψ := 𝑐reg(Θ2 + Ξ) + |𝑢|2 +
𝑐reg𝜇

−1/2𝛽

𝜇1/2 + 𝛽1/2ℎ
Ξ + ‖𝛽‖1,∞𝜇

−3/2(Θ1 + Ξ) + ℎ𝑑/2−1𝜇−1
⃦⃦
𝑓 − 𝛽𝑢

⃦⃦
1,∞,

and Θ2 is defined in (31).

Remark 4.1 (On pressure robustness). Corollary 4.1 and Theorem 4.1 implies the HDG velocity approximation
errors depend on the regularity of the pressure, which is not pressure-robust in the sense of [41]. A source
modification technique based on discrete Helmholtz decomposition was used in [7, 47] for the nonconforming
CR discretization of the Stokes problem (𝛽 = 0) to recover pressure-robust velocity approximations. When
𝛽 > 0, a further modification of the mass term using a BDM interpolation [48] was needed to recover pressure-
robustness. Due to the equivalence of the proposed HDG-P0 scheme (24) and a nonconforming CR discretization
(see Thm. 4.2 below), similar modification can be used for the HDG-P0 scheme to render it pressure-robust by
changing the two volume integration terms in (24b) with the following:

𝑄1
𝐾

(︀
𝑓 · 𝑣ℎ

)︀
−→ 𝑄1

𝐾

(︀
𝑓 · ΠBDM

ℎ 𝑣ℎ

)︀
,

𝑄1
𝐾(𝛽𝑢ℎ · 𝑣ℎ) −→ 𝑄1

𝐾

(︀
𝛽ΠBDM

ℎ

(︀
ΠCR

ℎ ̂︀𝑢ℎ

)︀
· ΠBDM

ℎ 𝑣ℎ

)︀
,

where ΠBDM
ℎ is the classical BDM interpolation into the space 𝑉ℎ ∩ 𝐻(div; Ω), and ΠCR

ℎ is the interpolation
from 𝑀ℎ to 𝑉 CR

ℎ given in (33) below. Optimal pressure-robust velocity error estimates can be obtained for this
modified HDG scheme following the work [7].
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4.4. Equivalence to CR discretization

Similar to the reaction-diffusion case, a bijective interpolation operator ΠCR
ℎ : 𝑀ℎ → 𝑉 CR

ℎ from the facet
space 𝑀ℎ to the CR space 𝑉 CR

ℎ is defined such that:

ΠCR
ℎ ̂︀𝑣ℎ(𝑚𝐹 ) = ̂︀𝑣ℎ(𝑚𝐹 ), ∀̂︀𝑣ℎ ∈𝑀ℎ, 𝐹 ∈ Eℎ. (33)

Then we have the following equivalence result between the HDG-P0 scheme (24) and a (slightly modified) CR
discretization for the generalized Stokes problem:

Theorem 4.2. Let (𝑢CR
ℎ , 𝑝CR

ℎ ) ∈ 𝑉 CR,0
ℎ ×𝑊 0

ℎ be the solution to the following nonconforming scheme:∑︁
𝐾∈Tℎ

(︀
𝑄0

𝐾

(︀
𝜇∇𝑢CR

ℎ · ∇𝑣CR
ℎ

)︀
+𝑄1

𝐾

(︀
𝛾ℎ𝛽𝑢

CR
ℎ · 𝑣CR

ℎ

)︀
−𝑄0

𝐾

(︀
𝑝CR

ℎ ∇ · 𝑣CR
ℎ

)︀)︀
=

∑︁
𝐾∈Tℎ

𝑄1
𝐾

(︀
𝛾ℎ𝑓 · 𝑣CR

ℎ

)︀
, (34a)

∑︁
𝐾∈Tℎ

(︀
𝑄0

𝐾

(︀
𝑞ℎ∇ · 𝑢CR

ℎ

)︀)︀
= 0, (34b)

for all (𝑣CR
ℎ , 𝑞ℎ) ∈ 𝑉 CR,0

ℎ ×𝑊 0
ℎ , where 𝛾ℎ := 𝜇

𝜇+
ℎ2

𝐾
𝑑+1 𝛽

. Then the solution (𝐿
ℎ
, 𝑢ℎ, ̂︀𝑢ℎ, 𝑝ℎ) to the HDG-P0 scheme

(24) satisfies

𝐿
ℎ

= −𝜇∇ΠCR
ℎ ̂︀𝑢ℎ, (35a)

𝑢ℎ

(︀
𝑚𝑖

𝐾

)︀
= 𝛾ℎ

(︀
𝑚𝑖

𝐾

)︀(︃̂︀𝑢ℎ

(︀
𝑚𝑖

𝐾

)︀
+

(︀
ℎ𝑖

𝐾

)︀2

(𝑑+ 1)𝜇
𝑓
(︀
𝑚𝑖

𝐾

)︀)︃
, ∀𝑖 ∈ {1, . . . , 𝑑+ 1}, ∀𝐾 ∈ Tℎ, (35b)

ΠCR
ℎ ̂︀𝑢ℎ = 𝑢CR

ℎ , (35c)

𝑝ℎ = 𝑝CR
ℎ , (35d)

where 𝑚𝑖
𝐾 is the barycenter of the 𝑖-th facet 𝐹 𝑖 of the element 𝐾, and ℎ𝑖

𝐾 = |𝐾|
|𝐹 𝑖| .

Proof. The proof procedure is the same as in Theorem 3.2 and we only sketch the main steps here. By the
definition of ΠCR

ℎ and integration by parts, we get from (24a), for all 𝐺
ℎ
∈𝑊

ℎ
,∑︁

𝐾∈Tℎ

(︁
𝑄0

𝐾

(︁
𝜇−1𝐿

ℎ
·𝐺

ℎ

)︁
+𝑄0

𝜕𝐾

(︁
𝐺

ℎ
𝑛 · ̂︀𝑢ℎ

)︁)︁
=

∑︁
𝐾∈Tℎ

𝑄0
𝐾

(︁(︁
𝜇−1𝐿

ℎ
+ ∇ΠCR

ℎ ̂︀𝑢ℎ

)︁
·𝐺

ℎ

)︁
=

(︁
𝜇−1𝐿

ℎ
+ ∇ΠCR

ℎ ̂︀𝑢ℎ, 𝐺ℎ

)︁
Tℎ

= 0,

where we used the fact that 𝑄0
𝐾 is exact for P1(𝐾) and 𝑄0

𝐹 is exact for P1(𝐹 ) for all 𝐹 ∈ 𝜕𝐾. The identity
(35a) follows thanks to (𝜇−1𝐿

ℎ
+ ∇ΠCR

ℎ ̂︀𝑢ℎ) ∈𝑊
ℎ
.

Next, for 𝑖 ∈ {1, . . . , 𝑑 + 1}, taking test function 𝑣
ℎ

in (24b) to be supported only on an element 𝐾, whose
values are 1 on 𝑚𝑖

𝐾 and zero on 𝑚𝑗
𝐾 for 𝑗 ̸= 𝑖. By the definition of 𝑄0

𝜕𝐾 and 𝑄1
𝐾 , we get

𝜏 𝑖
𝐾

(︀
𝑢ℎ

(︀
𝑚𝑖

𝐾

)︀
− ̂︀𝑢ℎ

(︀
𝑚𝑖

𝐾

)︀)︀
|𝐹 𝑖| +

|𝐾|
𝑑+ 1

𝛽
(︀
𝑚𝑖

𝐾

)︀
𝑢ℎ

(︀
𝑚𝑖

𝐾

)︀
=

|𝐾|
𝑑+ 1

𝑓
(︀
𝑚𝑖

𝐾

)︀
.

We immediately get the equality (35b) by solving for the value 𝑢ℎ

(︀
𝑚𝑖

𝐾

)︀
and using the definition of 𝜏𝐾 and ℎ𝐾 .

Finally, by the definition of ΠCR
ℎ , 𝑄0

𝜕𝐾 and 𝑄1
𝐾 , the identities (35a) and (35b), and integration by parts, we

have:

𝑄0
𝜕𝐾

(︁(︁
𝐿

ℎ
+ 𝑝ℎ𝐼

)︁
𝑛𝐾 · ̂︀𝑣ℎ

)︁
=

(︁(︁
𝐿

ℎ
+ 𝑝ℎ𝐼

)︁
,∇ΠCR

ℎ ̂︀𝑣ℎ

)︁
𝐾
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= −𝑄0
𝐾

(︀
𝜇∇ΠCR

ℎ ̂︀𝑢ℎ · ∇ΠCR
ℎ ̂︀𝑣ℎ

)︀
+𝑄0

𝐾

(︀
𝑝ℎ∇ΠCR

ℎ ̂︀𝑣ℎ

)︀
,

𝑄0
𝜕𝐾(𝜏𝐾(𝑢ℎ − ̂︀𝑢ℎ) · ̂︀𝑣ℎ) = −𝑄1

𝐾

(︀
𝛾ℎ𝛽ΠCR

ℎ ̂︀𝑢ℎ · ΠCR
ℎ ̂︀𝑣ℎ

)︀
+𝑄1

𝐾

(︀
𝛾ℎ𝑓 · ΠCR

ℎ ̂︀𝑣ℎ

)︀
,

𝑄0
𝜕𝐾(̂︀𝑢ℎ · 𝑛𝐾𝑞ℎ) =

⟨︀
ΠCR

ℎ ̂︀𝑢ℎ · 𝑛𝐾 , 𝑞ℎ
⟩︀

𝜕𝐾

= 𝑄0
𝐾

(︀
𝑞ℎ∇ · ΠCR

ℎ ̂︀𝑢ℎ

)︀
,

where we used the fact that 𝑄0
𝐾 is exact for P0(𝐾) and 𝑄0

𝐹 is exact for P1(𝐹 ) for all 𝐹 ∈ 𝜕𝐾. By plugging the
above identities into (24c) and (24d), we get the condensed HDG-P0 scheme:∑︁

𝐾∈Tℎ

(︀
𝑄0

𝐾

(︀
𝜇∇ΠCR

ℎ ̂︀𝑢ℎ · ∇ΠCR
ℎ ̂︀𝑣ℎ

)︀
+𝑄1

𝐾

(︀
𝛾ℎ𝛽ΠCR

ℎ ̂︀𝑢ℎ · ΠCR
ℎ ̂︀𝑣ℎ

)︀
−𝑄0

𝐾

(︀
𝑝ℎ∇ · ΠCR

ℎ ̂︀𝑣ℎ

)︀)︀
=

∑︁
𝐾∈Tℎ

𝑄1
𝐾

(︀
𝛾ℎ𝑓 · ΠCR

ℎ ̂︀𝑣ℎ

)︀
, (36a)

∑︁
𝐾∈Tℎ

(︀
𝑄0

𝐾

(︀
𝑞ℎ∇ · ΠCR

ℎ ̂︀𝑢ℎ

)︀)︀
= 0, (36b)

for all (̂︀𝑣ℎ, 𝑞ℎ) ∈𝑀0
ℎ ×𝑊 0

ℎ , which implies the result (35c) and (35d). �

Same as in Section 3.4 for the reaction-diffusion equation, the above result demonstrates the equivalence
between the condensed linear system of HDG-P0 for the generalized Stokes equations (36) and a slightly modified
CR discretization (34) with numerical integration, where the modification is introduced by the scaling parameter
𝛾ℎ. In practice we first locally eliminate 𝐿

ℎ
and 𝑢ℎ from the linear system of HDG-P0 (24) to arrive at the

condensed system (36), and then recover these local variables after solving for ̂︀𝑢ℎ and 𝑝ℎ from (36).

Remark 4.2 (On multigrid algorithm for (36)). The saddle-point structure (36) creates extra difficulty in
design robust multigrid solvers for the system. In the literature, there are three approaches to construct a
robust geometric multigrid algorithm for the nonconforming scheme (34), which is equivalent to the condensed
system (36). The first approach [10, 63, 65] explores the fact that the CR discretization produces a cell-wise
divergence free velocity approximation

𝑢CR
ℎ ∈ 𝑍CR,0

ℎ :=
{︁
𝑣ℎ ∈ 𝑉 CR,0

ℎ : ∇ · 𝑣ℎ|𝐾 = 0, ∀𝐾 ∈ Tℎ

}︁
,

and applies multigrid algorithms for the positive definite system on the divergence-free kernel space 𝑍CR,0
ℎ . This

approach is restricted to two dimensions only, which is closely related to multigrid for the nonconforming Morley
scheme for the Biharmonic equation [9]. Its extension to three dimensions is highly nontrivial due to the need of
constructing (highly complex) intergrid transfer operators between these divergence-free subspaces. The second
approach proposed by Brenner [12,13] directly works with the saddle point system (with a penalty term), which,
however, cannot be applied to the positive definite Schur complement subsystem. The third approach proposed
by Schöberl [60,61] also works with a penalty formulation of the saddle point system, where a multigrid theory
was applied to the positive definite subsystem for the velocity approximation. The key ingredients in [60,61] are
(i) a robust intergrid transfer operator that transfers coarse-grid divergence-free functions to fine-grid (nearly)
divergence-free functions, and (ii) a robust block-smoother capturing the divergence free basis functions. This
approach is attractive in three dimensions as the intergrid transfer operator does not need to directly work with
the divergence-free kernel space, and is much easier to realize in practice than the first approach. Schöberl’s
approach was originally introduced for the 𝑃 2/𝑃 0 discretization on triangles, it has been applied to other finite
element schemes in two- and three-dimensions by other researchers; see, e.g., [33, 34, 39, 42, 45]. In addition
to the aforementioned geometric multigrid methods, Notay [53, 54] applied algebraic multigrid methods to
an algebraically transformed saddle-point structure where the diagonal blocks dominate. Sharp and robust
eigenvalue bounds for the two-grid cases were obtained requiring only mild assumptions.
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In the next subsection, we follow the Schöberl’s geometric multigrid theory to provide a robust geometric
multigrid algorithm for the system (36) in combination with an augmented Lagrangian Uzawa iteration method
[36,66].

4.5. Multigrid-based augmented Lagrangian Uzawa iteration

We use the same notations for the hierarchical meshes and finite element spaces as in Section 3.5. With slight
abuse of notations, we define the following 𝐿2-like inner product on the vector facet space 𝑀 𝑙:

(̂︀𝑢𝑙, ̂︀𝑣𝑙)0,𝑙 :=
∑︁

𝐾∈T𝑙

𝑄1
𝐾

(︀
ΠCR

𝑙 ̂︀𝑢𝑙, ΠCR
𝑙 ̂︀𝑣𝑙

)︀
=

∑︁
𝐾∈T𝑙

𝑑+1∑︁
𝑖=1

|𝐾|
𝑑+ 1

̂︀𝑢𝑙

(︀
𝑚𝑖

𝐾

)︀ ̂︀𝑣𝑙

(︀
𝑚𝑖

𝐾

)︀
,

with the induced norm ‖ · ‖0,𝑙, where ΠCR
𝑙 : 𝑀 𝑙 → 𝑉 CR

𝑙 is the interpolation operator (33) on 𝑙-th mesh level.
The pressure space 𝑊𝑙 is equipped with the standard 𝐿2-norm, which we denote as

[𝑝𝑙, 𝑞𝑙]0,𝑙 :=
∑︁

𝐾∈T𝑙

𝑄0
𝐾(𝑝𝑙𝑞𝑙) ∀𝑝𝑙, 𝑞𝑙 ∈𝑊𝑙.

We define the following linear operators 𝐴𝑙 : 𝑀0
𝑙 →𝑀0

𝑙 , and 𝐵𝑙 : 𝑀0
𝑙 →𝑊ℎ

(𝐴𝑙̂︀𝑢𝑙,̂︀𝑣𝑙)0,𝑙 : = 𝑎𝑙(̂︀𝑢𝑙,̂︀𝑣𝑙), ∀̂︀𝑢𝑙,̂︀𝑣𝑙 ∈𝑀0
𝑙 ,

[𝐵𝑙̂︀𝑢𝑙, 𝑞𝑙]0,𝑙 : = 𝑏𝑙(̂︀𝑢𝑙, 𝑞𝑙), ∀̂︀𝑢𝑙 ∈𝑀0
𝑙 , 𝑞𝑙 ∈𝑊 0

𝑙 ,

where 𝑎𝑙, 𝑏𝑙 are the following bilinear forms on the 𝑙-th mesh level:

𝑎𝑙(̂︀𝑢𝑙,̂︀𝑣𝑙) : =
∑︁

𝐾∈T𝑙

(︀
𝑄0

𝐾

(︀
𝜇∇ΠCR

𝑙 ̂︀𝑢𝑙 · ∇ΠCR
𝑙 ̂︀𝑣𝑙

)︀
+𝑄1

𝐾

(︀
𝛽𝑙ΠCR

𝑙 ̂︀𝑢𝑙 · ΠCR
𝑙 ̂︀𝑣𝑙

)︀)︀
, ∀̂︀𝑢𝑙,̂︀𝑣𝑙 ∈𝑀0

𝑙 ,

𝑏𝑙(̂︀𝑢𝑙, 𝑞𝑙) : =
∑︁

𝐾∈T𝑙

𝑄0
𝐾

(︀
𝑞𝑙∇ · ΠCR

𝑙 ̂︀𝑢𝑙

)︀
, ∀̂︀𝑢𝑙 ∈𝑀0

𝑙 , 𝑞𝑙 ∈𝑊𝑙,

with 𝛽𝑙

(︀
𝑚𝑖

𝐾

)︀
:= 𝛾𝑙

(︀
𝑚𝑖

𝐾

)︀
𝛽
(︀
𝑚𝑖

𝐾

)︀
for all 𝐾 ∈ T𝑙. Further denoting 𝐵*

𝑙 : 𝑊𝑙 → 𝑀0
𝑙 as the transpose of 𝐵𝑙 with

respect to the 𝐿2-inner products:

(𝐵*
𝑙 𝑝𝑙,̂︀𝑣𝑙)0,𝑙 := [𝑝𝑙, 𝐵𝑙̂︀𝑣𝑙]0,𝑙, ∀𝑝𝑙 ∈𝑊𝑙, ̂︀𝑢𝑙 ∈𝑀0

𝑙 ,

and 𝑓
𝑙
∈𝑀0

𝑙 such that (︁
𝑓

𝑙
, ̂︀𝑣𝑙

)︁
0,𝑙

:=
∑︁

𝐾∈T𝑙

𝑄1
𝐾

(︀
𝛾𝑙𝑓 · ΠCR

𝑙 ̂︀𝑣𝑙

)︀
, ∀̂︀𝑣𝑙 ∈𝑀0

𝑙 .

Then the operator form of the system (36) is to find (̂︀𝑢𝐽 , 𝑝𝐽) ∈𝑀0
𝐽 ×𝑊 0

𝐽 satisfying:

𝐴𝐽̂︀𝑢𝐽 +𝐵*
𝐽𝑝𝐽 = 𝑓

𝐽
, (37a)

𝐵𝐽̂︀𝑢𝐽 = 0. (37b)

Similar to [39,44], we apply the augmented Lagrangian Uzawa iteration method [36,66] to the above saddle-
point system (37), which solves the following (equivalent) augmented Lagrangian formulation of (37) iteratively
using the Uzawa method (︀

𝐴𝐽 + 𝜖−1𝐵*
𝐽𝐵𝐽

)︀⏟  ⏞  
𝐴𝜖

𝐽

̂︀𝑢𝐽 +𝐵*
𝐽𝑝𝐽 = 𝑓

𝐽
, (38a)
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𝐵𝐽̂︀𝑢𝐽 = 0. (38b)

The Uzawa method for (38) with damping parameter 𝜖−1 ≫ 1 reads as follows: Start with 𝑝0
𝐽 = 0, for 𝑘 =

1, 2, · · · , find (̂︀𝑢𝑘
𝐽 , 𝑝

𝑘
𝐽) ∈𝑀0

𝐽 ×𝑊 0
𝐽 such that

𝐴𝜖
𝐽 ̂︀𝑢𝑘

𝐽 = 𝑓
𝐽
−𝐵*

𝐽𝑝
𝑘−1
𝐽 , (39a)

𝑝𝑘
𝐽 = 𝑝𝑘−1

𝐽 − 𝜖−1𝐵𝐽̂︀𝑢𝑘
𝐽 . (39b)

Here the singularly perturbed operator 𝐴𝜖
𝐽 is associated with the bilinear form

𝑎𝜖
𝑙 (̂︀𝑢𝑙, ̂︀𝑣𝑙) := 𝑎𝑙(̂︀𝑢𝑙, ̂︀𝑣𝑙) +

∑︁
𝐾∈T𝑙

𝑄0
𝐾

(︀
𝜖−1∇ · ΠCR

𝑙 ̂︀𝑢𝑙 ∇ · ΠCR
𝑙 ̂︀𝑣𝑙

)︀
.

We quote a convergence result from Lemma 2.1 of [44] for the above Uzawa method (39).

Lemma 4.2 ([44], Lem. 2.1). Let (̂︀𝑢𝐽 , 𝑝𝐽) ∈ 𝑀0
𝐽 ×𝑊 0

𝐽 be the solution of (37), and let (̂︀𝑢𝑘
𝐽 , 𝑝

𝑘
𝐽) be the 𝑘-th

Uzawa iteration solution to (39). Then the following estimate holds:

⃦⃦⃦̂︀𝑢𝑘
𝐽 − ̂︀𝑢𝐽

⃦⃦⃦
𝐴𝐽

.
√
𝜖
⃦⃦
𝑝𝑘

𝐽 − 𝑝𝐽

⃦⃦
0
.

√
𝜖

(︂
𝜖

𝜖+ 𝜇0

)︂𝑘

‖𝑝𝐽‖0,

where 𝜇0 is the minimal eigenvalue of the Schur complement 𝑆𝐽 = 𝐵𝐽𝐴
−1
𝐽 𝐵*

𝐽 , which is independent of the mesh
size.

Remark 4.3 (On practical choice of 𝜖). The first step Uzawa iteration solution (̂︀𝑢1
𝐽 , 𝑝

1
𝐽) is simply the penalty

method applied to (37) where a small mass term [𝜖𝑝𝑙, 𝑞𝑙]0,𝑙 is subtracted from the continuity equation (37b).
The above convergence result indicates to take 0 < 𝜖 ≪ 1 for faster convergence in terms of Uzawa iteration
counts. However, taking 𝜖 extremely small will leads to round-off issues as the non-zero matrix entries in 𝐴𝐽 is
of O(1) while that of 𝜖−1𝐵*

𝐽𝐵𝐽 is of O(𝜖−1). In our numerical experiments, the machine precision is 10−16, and
we use 𝜖 = 10−8 and perform one Uzawa iteration.

Since the pressure space 𝑊𝐽 is a discontinuous piecewise constant space, there is no equation solve needed
for (39b). Hence the major computational cost of a Uzawa iteration is in solving velocity from (39a), for which
we use a multigrid following [60, 61]. As mentioned in Remark 4.2, two key ingredients of a robust multigrid
algorithm for the system (39a) are a robust intergrid transfer operator and a robust block smoother.

It turns out that a vectorial version of the averaging intergrid transfer operator, denoted as 𝐼 𝑙
𝑙−1, used in (21)

is not robust for 𝜖≪ 1. Here we stabilize this averaging operator with a local correction using discrete harmonic
extensions [60], which takes care of the coarse-grid divergence. Denoting 𝑀0

𝑙,𝑇 as the local subspace of 𝑀0
𝑙 whose

DOFs vanishes on the (𝑙− 1)-th level mesh skeleton E𝑙−1, the integer grid transfer operator I𝑙
𝑙−1 : 𝑀0

𝑙−1 →𝑀0
𝑙

is defined as follows:

I𝑙
𝑙−1 :=

(︁
𝑖𝑑− 𝑃𝑇

A𝜖
𝑙

)︁
𝐼 𝑙

𝑙−1, (40)

where 𝑖𝑑 is the identity operator and the local projection 𝑃𝑇
𝐴𝜖

𝑙
: 𝑀0

𝑙 →𝑀0
𝑙,𝑇 satisfies

𝑎𝜖
𝑙

(︁
𝑃𝑇

A𝜖
𝑙
̂︀𝑢𝑙, ̂︀𝑣𝑇

𝑙

)︁
= 𝑎𝜖

𝑙

(︁̂︀𝑢𝑙, ̂︀𝑣𝑇
𝑙

)︁
, ∀̂︀𝑢𝑙 ∈𝑀0

𝑙 , ̂︀𝑣𝑇
𝑙 ∈𝑀0

𝑙,𝑇 , (41)

which can be solved element-by-element on the coarse mesh T𝑙−1.
A robust smoother for (39a) needs to take care of the discretely divergence-free kernel space. Here the classical

block smoothers for 𝐻(div)-elliptic problems from Arnold, Falk and Winther are used [2]. In particular, we use
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vertex-patch based damped block Jacobi or block Gauss–Seidel smoother1. For completeness, we formulate the
vertex-patch damped block Jacobi smoother below. Denoting V𝑙 as the set of vertices of the triangulation T𝑙.
We define the subset of facets E𝑙,𝑣 meeting at the vertex 𝑣 ∈ V𝑙 as

E𝑙,𝑣 :=
⋃︁

𝐹∈E𝑙, 𝑣∈𝐹

𝐹,

and decompose the finite element space 𝑀0
𝑙 into overlapping subspaces with support on E𝑙,𝑣:

𝑀0
𝑙 =

∑︁
𝑣∈V𝑙

𝑀0
𝑙,𝑣 :=

∑︁
𝑣∈V𝑙

{︀̂︀𝑣𝑙 ∈𝑀0
𝑙 : supp ̂︀𝑣𝑙 ⊂ E𝑙,𝑣

}︀
.

Further defining 𝑃 𝑣
𝐴𝜖

𝑙
: 𝑀0

𝑙 →𝑀0
𝑙,𝑣 as the local projection onto the subspace 𝑀0,𝑣

𝑙 with respect to the bilinear
form 𝑎𝜖

𝑙 such that:

𝑎𝜖
𝑙

(︁
𝑃 𝑣

𝐴𝜖
𝑙
̂︀𝑢𝑙, ̂︀𝑣𝑙,𝑖

)︁
= 𝑎𝜖

𝑙

(︀̂︀𝑢𝑙, ̂︀𝑣𝑙,𝑣

)︀
, ∀̂︀𝑢𝑙 ∈𝑀0

𝑙 , ̂︀𝑣𝑙,𝑣 ∈𝑀0
𝑙,𝑣, 𝑣 ∈ V𝑙,

the damped block Jacobi smoother is then given as:

𝑅𝑙 := 𝜍
∑︁
𝑣∈V𝑙

𝑃 𝑣
𝐴𝜖

𝑙
(𝐴𝜖

𝑙 )
−1
, (42)

where 𝜍 is the damping parameter that is small enough (independent of 𝜖) to ensure the operator (𝑖𝑑 − 𝑅𝑙𝐴
𝜖
𝑙 )

is a positive definite contraction.

With these two ingredients ready, we are ready to present the 𝑊 -cycle and variable 𝑉 -cycle multigrid algo-
rithms for the linear system 𝐴𝜖

𝑙𝑢𝑙 = 𝑔
𝑙
∈𝑀0

𝑙 as below:

The analysis of the above multigrid algorithm follows directly from Schöberl’s work [60, 61], which is based
on classical multigrid theories [5, 6, 38], and boils down to the verification of three properties of the underlying
operators. To perform the analysis, we denote the following parameter-dependent 𝐿2-like norm ‖ · ‖𝜖,𝑙 on 𝑀0

𝑙 :

‖̂︀𝑢𝑙‖
2
𝜖,𝑙 := ‖̂︀𝑢𝑙‖

2
0,𝑙 + 𝜖−1ℎ2

𝑙

⃦⃦
∇ · ΠCR

𝑙 ̂︀𝑢𝑙

⃦⃦2

0
+ 𝜖−2ℎ2

𝑙

⃦⃦
Π𝑊

𝑙−1

(︀
∇ · ΠCR

𝑙 ̂︀𝑢𝑙

)︀⃦⃦2

0
,

where Π𝑊
𝑙−1 is the 𝐿2-projection onto the piecewise constant space 𝑊𝑙−1 on the (𝑙− 1)-th level mesh. We define

‖ · ‖𝐴𝜖
𝑙

as the norm induced by the SPD operator 𝐴𝜖
𝑙 , i.e., ‖ · ‖𝐴𝜖

𝑙
:=

√︀
(𝐴𝜖

𝑙 ·, ·), and denote 𝑃 𝑙−1
A𝜖

𝑙
: 𝑀0

𝑙 →𝑀0
𝑙−1

as the transpose of I𝑙
𝑙−1 with respect to the bilinear form 𝑎𝜖

𝑙 such that:

𝑎𝜖
𝑙−1

(︁
𝑃 𝑙−1

A𝜖
𝑙
̂︀𝑣𝑙, ̂︀𝑣𝑙−1

)︁
= 𝑎𝜖

𝑙

(︁̂︀𝑣𝑙, I𝑙
𝑙−1̂︀𝑣𝑙−1

)︁
, ∀̂︀𝑢𝑙 ∈𝑀0

𝑙 , ̂︀𝑣𝑙−1 ∈𝑀0
𝑙−1.

We quote the abstract multigrid convergence result from Theorem 3.7 of [61].

1Edge-patch based block smoother can also be used in three dimensions [2] to reduce memory consumption.
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Algorithm 2. The multigrid algorithm for 𝐴𝜖
𝑙̂︀𝑢𝑙 = 𝑔

𝑙
.

The 𝑙-th level multigrid algorithm produces MG𝐴𝜖
𝑙
(𝑙, 𝑔

𝑙
, ̂︀𝑢0

𝑙 , 𝑚(𝑙), 𝑞) as an approximation solution for 𝐴𝜖
𝑙̂︀𝑢𝑙 = 𝑔

𝑙
with

initial guess ̂︀𝑢0
𝑙 , where 𝑚(𝑙) denotes the number of pre-smoothing and post-smoothing steps on the 𝑙-th mesh level,

and 𝑞 ∈ {1, 2}. Here 𝑞 = 1 corresponding to the 𝑉 -cycle algorithm, and 𝑞 = 2 corresponding to the 𝑊 -cycle algorithm
in which constant smoothing steps 𝑚(1) = · · · = 𝑚(𝑙) = 𝑚 is used.

if 𝑙 = 1 then

MG𝐴𝜖
𝑙
(𝑙, 𝑔

𝑙
, ̂︀𝑢𝑙, 𝑚(𝑙), 𝑞) = (𝐴𝜖

𝑙 )
−1𝑔

𝑙
.

else

Perform the following three steps:

(1) Pre-smoothing. For 𝑗 = 1, . . . , 𝑚(𝑙), compute ̂︀𝑢𝑗
𝑙 by

̂︀𝑢𝑗
𝑙 = ̂︀𝑢𝑗−1

𝑙 + 𝑅𝑙

(︁
𝑔

𝑙
− 𝐴𝜖

𝑙̂︀𝑢
𝑗−1
𝑙

)︁
.

(2) Coarse grid correction. Let 𝛿𝑢0
𝑙−1 = 0 and ̂︀𝑟𝑙−1 = I𝑙−1

𝑙 (𝑔
𝑙
− 𝐴𝜖

𝑙̂︀𝑢
𝑚(𝑙)
𝑙 ). For 𝑘 = 1, . . . , 𝑞,

compute 𝛿𝑢𝑘
𝑙−1 by

𝛿𝑢𝑘
𝑙−1 = MG𝐴𝜖

𝑙−1

(︁
𝑙 − 1,̂︀𝑟𝑙−1, 𝛿𝑢

𝑘−1
𝑙−1 , 𝑚(𝑙 − 1)

)︁
.

Then we get ̂︀𝑢𝑚(𝑙)+1
𝑙 = ̂︀𝑢𝑚(𝑙)

𝑙 + I𝑙
𝑙−1𝛿𝑢

𝑞
𝑙−1, where I𝑙−1

𝑙 : 𝑀0
𝑙 → 𝑀0

𝑙−1 is the restriction operator
satisfying (︁

I
𝑙−1
𝑙 ̂︀𝑢𝑙, ̂︀𝑣𝑙−1

)︁

0,𝑙−1
=
(︁
̂︀𝑢𝑙, I

𝑙
𝑙−1̂︀𝑣

𝑇
𝑙

)︁

0,𝑙
, ∀̂︀𝑢𝑙 ∈ 𝑀0

𝑙 , ̂︀𝑣𝑙−1 ∈ 𝑀0
𝑙−1.

(3) Post-smoothing. For 𝑗 = 𝑚(𝑙) + 2, . . . , 2𝑚(𝑙) + 1, compute ̂︀𝑢𝑗
𝑙 by

̂︀𝑢𝑗
𝑙 = ̂︀𝑢𝑗−1

𝑙 + 𝑅𝑇
𝑙

(︁
𝑔

𝑙
− 𝐴𝜖

𝑙̂︀𝑢
𝑗−1
𝑙

)︁
,

where 𝑅𝑇
𝑙 is the transpose of 𝑅𝑙 with respect to the inner product (·, ·)0,𝑙.

We then define MG𝐴𝑙
(𝑙, 𝑔

𝑙
, ̂︀𝑢0

𝑙 , 𝑚(𝑙), 𝑞) = ̂︀𝑢2𝑚(𝑙)+1
𝑙 .

Theorem 4.3 ([61], Thm. 3.7). Let the multigrid procedure be as defined in Algorithm 2. Assume there hold
the following properties:
– (A0) Scaling property. The spectrum of 𝑖𝑑−𝑅𝑙𝐴

𝜖
𝑙 is in the interval (0, 1).

– (A1) Approximation property. There exists a positive constant 𝐶 independent of mesh size and the parameter
𝜖 such that: ⃦⃦⃦(︁

𝑖𝑑− I𝑙
𝑙−1𝑃

𝑙−1
A𝜖

𝑙

)︁̂︀𝑢𝑙

⃦⃦⃦
𝜖,𝑙

≤ 𝐶ℎ𝑙‖̂︀𝑢𝑙‖𝐴𝜖
𝑙
, ∀̂︀𝑢𝑙 ∈𝑀0

𝑙 .

– (A2) Smoothing property. There exists a positive constant 𝐶 independent of mesh size ℎ𝑙 and the parameter
𝜖 such that: ⃦⃦⃦

(𝑖𝑑−𝑅𝑙𝐴
𝜖
𝑙 )

𝑚(𝑙)̂︀𝑢𝑙

⃦⃦⃦
𝐴𝜖

𝑙

≤ 𝐶𝑚(𝑙)−1/4ℎ−1
𝑙 ‖̂︀𝑢𝑙‖𝜖,𝑙, ∀̂︀𝑢𝑙 ∈𝑀0

𝑙 .

Then the following multigrid methods lead to optimal solvers:
– The 𝑊 -cycle multigrid algorithm with sufficiently many smoothing steps leads to a convergent method. That

is, there exists positive constants 𝑚* and 𝐶 independent of mesh size ℎ𝑙 and parameter 𝜖, such that with
𝑞 = 2 and 𝑚(1) = · · · = 𝑚(𝑙) = 𝑚 in Algorithm 2 we have:

‖E𝑙,𝑚̂︀𝑣𝑙‖𝐴𝜖
𝑙
≤ 𝐶𝑚−1/4‖𝑣𝑙‖𝐴𝜖

𝑙
, ∀̂︀𝑣𝑙 ∈𝑀0

𝑙 , 𝑙 ≥ 1, 𝑚 ≥ 𝑚*,

where E𝑙,𝑚 : 𝑀0
𝑙 →𝑀0

𝑙 is the operator relating the initial error and the final error of the multigrid 𝑊 -cycle
algorithm, i.e.,

E𝑙,𝑚

(︁̂︀𝑢𝑙 − ̂︀𝑢0
𝑙

)︁
:= ̂︀𝑢𝑙 − MG𝐴𝜖

𝑙

(︁
𝑙, 𝑔

𝑙
, ̂︀𝑢0

𝑙 ,𝑚, 2
)︁
.
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– The variable 𝑉 -cycle algorithm leads to a robust preconditioner. That is, with 𝑞 = 1 and 𝛽0𝑚(𝑙) ≤ 𝑚(𝑙−1) ≤
𝛽1𝑚(𝑙) in Algorithm 2 (1 < 𝛽0 < 𝛽1), there exists positive constant 𝐶 independent of mesh size ℎ𝑙 and
parameter 𝜖 such that

𝜅
(︁
B𝑙,𝑚(𝑙)𝐴

𝜖
𝑙

)︁
≤ 1 + 𝐶𝑚(𝑙)−1/4,

where 𝜅 is the condition number, and B𝑙,𝑚(𝑙) : 𝑀0
𝑙 →𝑀0

𝑙 is the preconditioning operator relating the residual
to the correction of the variable 𝑉 -cycle algorithm with a zero initial guess, i.e.,

B𝑙,𝑚(𝑙)̂︀𝑣𝑙 := MG𝐴𝜖
𝑙
(𝑙,̂︀𝑣𝑙, 0,𝑚(𝑙), 1), ∀̂︀𝑣𝑙 ∈𝑀0

𝑙 .

Remark 4.4 (Verifications of the assumptions in Theorem 4.3). Assumption (A0) is satisfied by taking the
damping parameter 𝜍 sufficiently small, which only depends on the (bounded) number of overlapping blocks [2].
Note that if a block Gauss–Seidel smoother is used, there is no need to add damping.

We note that the approximation property (A1), the smoothing property (A2), and thus our proposed multigrid
method for the HDG-P0 scheme for the generalized Stokes equations require full elliptic regularity assumed in
(25). The verification of the approximation property (A1) essentially follows from Section 4.4 of [61] (see also
[60], Sect. 5), which establishes a stable decomposition result for the coarse grid operator 𝑖𝑑− I𝑙

𝑙−1𝑃
𝑙−1
A𝜖

𝑙
, where

the analysis was performed on an equivalent mixed formulation. Here a key step in the proof is to show the
averaging operator 𝐼 𝑙

𝑙−1 preserves the divergence on the coarse-grid:∫︁
𝐾

∇ · ΠCR
𝑙−1̂︀𝑣𝑙−1d𝑥 =

∫︁
𝜕𝐾

̂︀𝑣𝑙−1 · 𝑛𝐾d𝑠 =
∫︁

𝜕𝐾

𝐼 𝑙
𝑙−1̂︀𝑣𝑙−1 · 𝑛𝐾d𝑠

=
𝑠∑︁

𝑗=1

∫︁
𝜕𝐾𝑗

𝐼 𝑙
𝑙−1̂︀𝑣𝑙−1 · 𝑛𝐾𝑗 d𝑠 =

𝑠∑︁
𝑗=1

∫︁
𝐾𝑗

∇ · ΠCR
𝑙 𝐼 𝑙

𝑙−1̂︀𝑣𝑙−1d𝑥,

for all 𝐾 ∈ T𝑙−1, where the elements 𝐾𝑗 are children of 𝐾 such that 𝐾̄ = ∪𝑠
𝑗=1𝐾̄

𝑗 . Hence, the coarse-grid
divergence correction only need to be locally performed on the bubble spaces 𝑀0

𝑙,𝑇 in (41).
The verification of the smoothing property (A2) follows from Section 6 of [60], where a key step is to establish

the following bound of the interpolation norm ([60], Lem. 7)

‖̂︀𝑢𝑙,1‖[𝐷𝜖
𝑙 ,𝐴𝜖

𝑙 ]
. ‖̂︀𝑢𝑙,1‖𝜖,𝑙, (43)

where ̂︀𝑢𝑙,1 ∈ 𝑍0
𝑙 := {̂︀𝑣𝑙 ∈ 𝑀0

𝑙 : ∇ · ΠCR
𝑙 ̂︀𝑣𝑙|𝐾 = 0, ∀𝐾 ∈ T𝑙} is a discretely divergence-free function, ‖ · ‖𝐷𝜖

𝑙
is

the additive Schwarz norm expressed by

‖̂︀𝑢𝑙‖2
𝐷𝜖

𝑙
:= inf𝑢=

∑︀
𝑣 𝑢𝑙,𝑣,𝑢𝑙,𝑣∈𝑀 𝑙,𝑣

∑︁
𝑣∈V𝑙

‖𝑢𝑙,𝑣‖2
𝐴𝜖

𝑙
,

and ‖ · ‖[𝐷𝜖
𝑙 ,𝐴𝜖

𝑙 ]
is the interpolation norm between ‖ · ‖𝐷𝜖

𝑙
and ‖ · ‖𝐴𝜖

𝑙
. The proof of (43) relies on the explicit

characterization of discretely divergence-free functions in 𝑍0
𝑙 using the nonconforming Stokes complex [17, 40],

which can be expressed as the discrete curl of the Morley finite element [51] when 𝑑 = 2, and the discrete curl
of the 𝐻(grad curl)-nonconforming finite element [40,69] when 𝑑 = 3. Using such explicit characterization, one
can prove

‖̂︀𝑢𝑙,1‖[𝐷𝜖
𝑙 ,𝐴𝜖

𝑙 ]
. ‖̂︀𝑢𝑙,1‖𝐷𝜖

𝑙
. ‖̂︀𝑢𝑙,1‖𝜖,𝑙,

see similar derivation in Lemma 9 of [39].

5. Numerical experiments

In this section, we present numerical experiments to verify the optimal convergence rates of the HDG-P0
schemes and the optimality of the multigrid algorithms. We tested the proposed multigrid algorithms both as
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Table 1. Estimated convergence rates of the HDG-P0 scheme in Example 5.1.1.

Level
𝑑 = 2 𝑑 = 3

‖𝑢ℎ − 𝑢‖0 EOC ‖𝜎ℎ − 𝜎‖0 EOC ‖𝑢ℎ − 𝑢‖0 EOC ‖𝜎ℎ − 𝜎‖0 EOC

1 1.17e−1 ∖ 8.29e−1 ∖ 1.67e−2 ∖ 1.72e−1 ∖
2 2.96e−2 1.98 4.22e−1 0.97 4.25e−3 1.97 9.22e−2 0.90
3 7.44e−3 1.99 2.12e−1 0.99 1.07e−3 1.99 4.68e−2 0.98
4 1.86e−3 2.00 1.06e−1 1.00 2.66e−4 2.00 2.35e−2 1.00
5 4.66e−4 2.00 5.31e−2 1.00 6.64e−5 2.00 1.17e−2 1.00

the iteration solvers and as the preconditioners for the preconditioned conjugate gradient (PCG) method to
solve the condensed systems (20) and (39a), with a relative tolerance of 10−8 used as the stopping criterion.
The bisection algorithm is used for (local) mesh refinements. All results are obtained by using the NGSolve
software [62]. Source code is available at https://github.com/WZKuang/MG4HDG-P0.git.

5.1. Reaction-diffusion equation

5.1.1. Manufactured solution

We first verify the optimal convergence rates of the HDG-P0 scheme (4) for the reaction-diffusion equation with
known solution. We set the domain as a unit square/cube Ω = [0, 1]𝑑 with homogeneous Dirichlet boundary
conditions on all sides. We let the coefficients 𝛼 = 𝛽 = 1 + 1

2 sin(𝑥) sin(𝑦) when 𝑑 = 2, and 𝛼 = 𝛽 = 1 +
1
2 sin(𝑥) sin(𝑦) sin(𝑧) when 𝑑 = 3. The exact solution is set as:

𝑢 =
{︂ (︀

𝑥− 𝑥2
)︀(︀
𝑦 − 𝑦2

)︀
, when 𝑑 = 2,(︀

𝑥− 𝑥2
)︀(︀
𝑦 − 𝑦2

)︀(︀
𝑧 − 𝑧2

)︀
, when 𝑑 = 3.

Table 1 reports the estimated order of convergence (EOC) of the 𝐿2 norms ‖𝑢ℎ − 𝑢‖0 and ‖𝜎ℎ − 𝜎‖0 of the
HDG-P0 scheme (4), and optimal convergence rates are obtained as expected.

Standard 𝑉 -cycle multigrid in Algorithm 1 is tested both as the iteration solver and as the preconditioner for
the PCG algorithm for the the condensed HDG-P0 scheme (17). The coarsest mesh is a triangulation of Ω with
the maximum element diameter less than 1/4 in both two-dimensional and three-dimensional cases, followed
by uniform refinements. The iteration counts of the multigrid iteration and the PCG method are reported
respectively in Tables 2 and 3 with different smoothers and smoothing steps in the multigrid algorithms, where
we denote P-JAC as the damped point Jacobi smoother with damping parameter set as 0.5, and P-GS as the
point Gauss–Seidel smoother. For the multigrid iteration solver, we find that the standard 𝑉 -cycle fails when
the smoothing steps are not large enough. The needed smoothing steps to make the multigrid iteration converge
in three-dimensional cases are larger than those in two-dimensional cases. For the PCG method, the iteration
counts and condition numbers are bounded independent of the mesh size in two dimensions for all cases. There
is a very mild iteration count growth in three dimensions when we only performing one or two smoothing steps,
where the situation is further improved when we take 4 smoothing steps.

5.1.2. Non-convex domain and jump diffusion coefficients on the coarsest mesh

In this example, we consider the reaction-diffusion equation with jump diffusion coefficients on the coarsest
mesh in a non-convex domain. When 𝑑 = 2, we denote Ω2𝐷

1 as the domain formed by connecting points
(0.5, 0.15), (0.65, 0.3), (0.5, 0.45), and (0.35, 0.3) in order. We then define Ω2𝐷

2 := ([0, 1] × [0, 0.6])∖Ω2𝐷
1 , and

Ω2𝐷
3 := [0.2, 0.8] × [0.6, 0.8]. The domain Ω consists of these three subdomains, i.e., Ω = Ω2𝐷

1 ∪ Ω2𝐷
2 ∪ Ω2𝐷

3

as illustrated in the left panel of Figure 1. When 𝑑 = 3, Ω3𝐷
1 := Ω2𝐷

1 × [0.225, 0.375], Ω3𝐷
2 := Ω2𝐷

2 × [0, 0.6],
Ω3𝐷

3 := Ω2𝐷
3 × [0.2, 0.4], and Ω = Ω3𝐷

1 ∪ Ω3𝐷
2 ∪ Ω3𝐷

3 . The diffusion coefficient 𝛼 differs in different subdomains,
which is set as 10 in Ω2𝐷

1 /Ω3𝐷
1 , 1 in Ω2𝐷

2 /Ω3𝐷
2 , and 1000 in Ω2𝐷

3 /Ω3𝐷
3 . The source term 𝑓 = 1 in the center

https://github.com/WZKuang/MG4HDG-P0.git
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Table 2. Iteration counts of 𝑉 -cycle multigrid iteration solver with different smoothers and
smoothing steps in Example 5.1.1.

𝑑 = 2

Parameters
P-JAC P-GS

𝑚 = 1 𝑚 = 2 𝑚 = 4 𝑚 = 1 𝑚 = 2 𝑚 = 4
𝐽 Facet DOFs Iteration count

2 2.20e2 43 23 13 20 10 7
3 8.48e2 97 25 14 22 12 8
4 3.33e3 N/A 29 16 25 15 9
5 1.32e4 N/A 33 17 29 17 10
6 5.25e4 N/A 37 18 34 19 11
7 2.09e5 N/A 42 18 43 21 11
8 8.37e5 N/A 50 19 56 23 12

𝑑 = 3
𝑚 = 1 𝑚 = 4 𝑚 = 8 𝑚 = 1 𝑚 = 4 𝑚 = 8

2 3.45e3 160 21 13 39 9 6
3 1.05e4 N/A 30 17 63 11 7
4 3.02e4 N/A 62 21 N/A 13 8
5 8.42e4 N/A 80 23 N/A 15 9
6 2.26e5 N/A N/A 36 N/A 22 10
7 6.01e5 N/A N/A 48 N/A 30 11
8 1.54e6 N/A N/A 62 N/A 33 11

Table 3. PCG iteration counts for 𝑉 -cycle multigrid preconditioner with different smoothers
and smoothing steps in Example 5.1.1.

𝑑 = 2

Parameters
P-JAC P-GS

𝑚 = 1 𝑚 = 2 𝑚 = 4 𝑚 = 1 𝑚 = 2 𝑚 = 4
𝐽 Facet DOFs # It 𝜅 # It 𝜅 # It 𝜅 # It 𝜅 # It 𝜅 # It 𝜅
2 2.20e2 19 4.9 13 2.6 9 1.5 12 2.2 8 1.3 6 1.1
3 8.48e2 22 7.1 14 3.4 10 1.8 13 2.8 9 1.5 6 1.1
4 3.33e3 23 8.0 15 3.8 11 2.1 14 3.2 9 1.7 7 1.2
5 1.32e4 25 11 16 4.7 11 2.3 14 3.5 10 1.8 7 1.2
6 5.25e4 26 12 16 4.9 11 2.3 15 3.7 10 1.9 7 1.3
7 2.09e5 26 12 16 5.1 11 2.4 15 4.0 10 2.0 7 1.3
8 8.37e5 26 12 16 5.1 11 2.5 15 4.1 10 2.0 7 1.3

𝑑 = 3
2 3.45e3 26 9.7 18 4.6 13 2.4 18 4.7 11 1.8 7 1.2
3 1.05e4 37 19 25 8.2 17 4.2 23 7.3 14 2.8 9 1.6
4 3.02e4 38 22 26 10 18 4.8 25 10 15 3.4 10 1.7
5 8.42e4 44 25 29 12 20 5.5 29 14 16 4.0 10 1.9
6 2.26e5 46 29 30 13 21 6.3 31 16 18 4.7 11 2.1
7 6.01e5 49 35 32 18 22 8.6 35 22 19 6.2 12 2.7
8 1.54e6 50 35 32 17 22 8.1 36 23 19 7.0 12 2.8
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Figure 1. The domain of reaction-diffusion equation with jump diffusion coefficients on the
coarsest mesh in Example 5.1.2 (left), and the top-level adaptively refined mesh in two dimen-
sions with 𝛽 = 0 (right).

subdomain Ω2𝐷
1 /Ω3𝐷

1 , and 𝑓 = 0 elsewhere. We assume a homogeneous Dirichlet boundary condition on the
bottom and homogeneous Neumann boundary conditions on all other boundaries. We use the standard 𝑉 -cycle
multigrid algorithms with point Gauss–Seidel as smoother to precondition the conjugate gradient solver. The
coarsest mesh is a triangulation of Ω respecting the subdomain boundaries, with the maximum element diameter
not exceeding 1/4 in both two-dimensional and three-dimensional cases.

We first test the algorithms under uniform mesh refinements, and Table 4 reports the PCG iteration counts
with different mesh levels 𝐽 , reaction coefficient 𝛽, and smoothing steps 𝑚 in both two-dimensional and three-
dimensional cases. As observed from the results when 𝑑 = 3, one-step and two-step Gauss–Seidel smoother are
not enough to let Theorem 3.3 hold, and the iteration counts grow with increasing facet DOFs. Other results
verify the robustness of our preconditioner with respect to mesh size and mesh levels when the smoothing step 𝑚
is large enough in the low-regularity cases. The iteration counts remain almost unchanged as 𝛽 varies. We note
that when smoothing steps are the same, the iteration counts here with jump coefficients in the reaction-diffusion
equation are obviously larger than in the previous case with mildly changing coefficients.

We next test with 𝛽 = 0 on adaptively refined mesh using a recovery-based error estimator [18]. All other
settings are the same. The right panel of Figure 1 demonstrates the finest two-dimensional mesh. Figure 2 reports
the obtained PCG iteration counts, and similar results as those on uniformly-refined meshes are observed.

5.1.3. Jump diffusion coefficient on the finest mesh

We consider a reaction-diffusion equation with jump diffusion coefficient on the finest mesh level. For sim-
plicity, we limit ourselves to the two-dimensional case and set the domain as a unit square Ω = [0, 1]2 with
homogeneous Dirichlet boundary conditions on all sides. The source term is set as 𝑓 = 1. The coarsest mesh is
a structured triangulation of the domain Ω with ℎ = 1/4 and the hierarchical meshes are obtained by successive
uniform refinement. We let the reaction coefficient 𝛽 = 1, and the diffusion coefficient 𝛼 changes alternatively on
the finest mesh level T𝐽 between the minimum value 𝛼0 (𝛼0 = 1) and the maximum value 𝛼1, as demonstrated
in the left panel of Figure 3. We define the ratio 𝜌 := 𝛼1/𝛼0. We note that the 𝛼−1

𝑙 in the HDG-P0 scheme (4)
requires the projection of 𝛼−1 onto piecewise constant space 𝑊𝑙 on each mesh level, therefore in this numerical
experiment 𝛼−1

𝑙 becomes global constant on coarser mesh levels for 𝑙 = 1, . . . , 𝐽 − 1 and equals 2/(𝜌+ 1).
We use the standard 𝑉 -cycle multigrid algorithms with two-step point Gauss–Seidel as smoother to precondi-

tion the conjugate gradient solver, and Table 5 reports the PCG iteration counts and the condition number with
different ratio 𝜌 and different mesh levels 𝐽 . The robustness of our proposed multigrid method with respect to
mesh size and mesh levels is observed. However, as the ratio 𝜌 increases, the iteration counts and the conditioner
numbers grow and are not bounded. We refer to [43, 70] for further studies on multigrid for CR discretization
with jump coefficients, where conforming piecewise linear finite element was used as the auxiliary space to
construct multigrid methods.
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Table 4. PCG iteration counts for 𝑉 -cycle multigrid preconditioner with Gauss–Seidel
smoother and uniform mesh refinement for the reaction-diffusion equation with jump coeffi-
cients in Example 5.1.2.

𝑑 = 2

Parameters
𝛽 = 1000 𝛽 = 1 𝛽 = 0

𝑚 = 1 𝑚 = 2 𝑚 = 4 𝑚 = 1 𝑚 = 2 𝑚 = 4 𝑚 = 1 𝑚 = 2 𝑚 = 4
𝐽 Facet DOFs Iteration count

2 2.03e2 19 11 8 21 13 10 21 14 10
3 7.78e2 28 17 10 34 19 11 34 19 11
4 3.04e3 42 24 11 44 27 13 44 27 13
5 1.20e4 59 28 12 61 31 14 61 31 14
6 4.79e4 67 28 12 72 31 14 72 31 14
7 1.91e5 69 28 12 73 31 14 73 31 14
8 7.63e5 69 28 11 72 31 14 73 31 14

𝑑 = 3
2 1.20e3 16 10 7 24 14 10 24 14 10
3 3.73e3 22 12 8 29 16 11 29 16 11
4 1.10e4 30 16 10 38 21 13 38 21 13
5 3.04e4 45 24 14 55 29 16 54 28 16
6 8.10e4 66 30 14 73 34 17 73 34 17
7 2.14e5 89 39 18 98 44 20 98 44 20
8 5.43e5 107 42 16 117 47 19 119 46 19

Table 5. PCG iteration counts and condition numbers for 𝑉 -cycle multigrid preconditioner
with Gauss–Seidel smoother for the reaction-diffusion equation with jump coefficients on the
finest mesh level in Example 5.1.3.

Parameters
𝜌

2 1e1 1e2 1e4 1e6
𝐽 # It 𝜅 # It 𝜅 # It 𝜅 # It 𝜅 # It 𝜅

2 9 1.6 16 3.8 22 3.1e1 32 2.6e3 37 2.4e5
3 10 1.7 17 4.1 28 3.3e1 39 2.8e3 49 2.4e5
4 10 1.8 17 4.3 31 3.5e1 47 3.1e3 58 2.4e5
5 11 1.8 17 4.3 31 3.5e1 54 3.2e3 69 2.5e5
6 11 1.8 17 4.3 31 3.5e1 56 3.2e3 71 2.5e5
7 11 1.8 17 4.3 31 3.5e1 56 3.4e3 72 2.5e5
8 11 1.8 17 4.3 31 3.5e1 56 3.4e3 73 2.5e5

5.2. Generalized Stokes equations

5.2.1. Manufactured solution

We first verify the optimal convergence rates of the HDG-P0 scheme (24) for the generalized Stokes equations
with known solutions. We set the coefficients 𝜇 = 1, 𝛽 = 10 and the exact solution

𝑢𝑥 = 𝑥2(𝑥− 1)22𝑦(1 − 𝑦)(2𝑦 − 1)
𝑢𝑦 = 𝑦2(𝑦 − 1)22𝑥(𝑥− 1)(2𝑥− 1)
𝑝 = 𝑥(1 − 𝑥)(1 − 𝑦) − 1/12

⎫⎬⎭ when 𝑑 = 2,
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Figure 2. PCG iteration counts for 𝑉 -cycle multigrid preconditioner with Gauss–Seidel
smoother and adaptive mesh refinement for the reaction-diffusion equation with jump coef-
ficients in Example 5.1.2.

Figure 3. The diffusion coefficient on the finest mesh level in Example 5.1.3 (left), and the
numerical solution with 𝐽 = 3 and 𝜌 = 1e4 (right).

and

𝑢𝑥 = 𝑥2(𝑥− 1)2
(︀
2𝑦 − 6𝑦2 + 4𝑦3

)︀(︀
2𝑧 − 6𝑧2 + 4𝑧3

)︀
𝑢𝑦 = 𝑦2(𝑦 − 1)2

(︀
2𝑥− 6𝑥2 + 4𝑥3

)︀(︀
2𝑧 − 6𝑧2 + 4𝑧3

)︀
𝑢𝑧 = −2𝑧2(𝑧 − 1)2

(︀
2𝑥− 6𝑥2 + 4𝑥3

)︀(︀
2𝑦 − 6𝑦2 + 4𝑦3

)︀
𝑝 = 𝑥(1 − 𝑥)(1 − 𝑦)(1 − 𝑧) − 1/24

⎫⎪⎪⎪⎬⎪⎪⎪⎭ when 𝑑 = 3,
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Table 6. Estimated convergence rates of the HDG-P0 scheme solved by one-step augmented
Lagrangian Uzawa iteration in Example 5.2.1.

Level
𝑑 = 2

‖𝑢ℎ − 𝑢‖0 EOC ‖∇ · 𝑢ℎ‖0 EOC ‖𝐿
ℎ
− 𝐿‖0 EOC

1 5.87e−3 ∖ 1.76e−2 ∖ 3.37e−2 ∖
2 1.67e−3 1.81 9.56e−3 0.88 1.94e−2 0.79
3 4.42e−4 1.92 4.94e−3 0.95 1.02e−2 0.93
4 1.13e−4 1.97 2.49e−3 0.99 5.19e−3 0.98
5 2.83e−5 1.99 1.25e−3 1.00 2.61e−3 0.99

𝑑 = 3
1 1.74e−3 ∖ 6.53e−3 ∖ 1.34e−2 ∖
2 5.03e−4 1.79 3.20e−3 1.03 8.05e−3 0.74
3 1.35e−4 1.90 1.59e−3 1.01 4.29e−3 0.91
4 3.45e−5 1.96 7.94e−4 1.00 2.19e−3 0.97
5 8.69e−6 1.99 3.97e−4 1.00 1.10e−3 0.99

with all other settings the same as in Example 5.1.1. Table 6 reports the values and the corresponding EOC
of the discrete 𝐿2 norms ‖𝑢ℎ − 𝑢‖0, ‖∇ · 𝑢ℎ‖0, and ‖𝐿ℎ − 𝐿‖0. Optimal convergence rates of 𝑢ℎ and 𝐿

ℎ
are

observed. Since the divergence-free constraint on velocity is imposed weakly in the HDG-P0 scheme, and the
normal components of 𝑢ℎ are not necessarily continuous across mesh facets, the obtained 𝑢ℎ is not exactly
divergence-free and the divergence error has first order convergence rate.

We have also tested the 𝑊 -cycle multigrid method in Algorithm 2 as the iteration solver for the problem.
The coarsest mesh is a triangulation of Ω with the maximum element diameter less than 1/4 when 𝑑 = 2 and
less than 1/2 when 𝑑 = 3, followed by uniform refinement. Table 7 reports the obtained iteration counts with
different smothers and smoothing steps in the multigrid algorithm, where we denote B-JAC as the damped
vertex-block Jacobi smoother with the damping parameter set as 0.4, and B-GS as the vertex-block Gauss–
Seidel smoother. As observed from the results, when the smoothing steps are not large enough, the operator
E𝑙,𝑚 in Theorem 4.3 is no longer a reducer, and the needed smoothing steps in three dimensions for the 𝑊 -cycle
iteration to converge are larger than those in two dimensions. Other results verify the robustness of the 𝑊 -cycle
iteration solver with respect to the mesh size and mesh level.

5.2.2. Lid-driven cavity

In this example, we test the robustness of the proposed multigrid preconditioners for the the lid-driven cavity
problem, where the computational domain is a unit square/cube Ω = [0, 1]𝑑. We assume an inhomogeneous
Dirichlet boundary condition 𝑢 = [4𝑥(1 − 𝑥), 0]T when 𝑑 = 2, or 𝑢 = [16𝑥(1 − 𝑥)𝑦(1 − 𝑦), 0, 0]T when
𝑑 = 3 on the top side, and no-slip boundary conditions on the remaining domain boundaries. The source term
𝑓 = 0. We use the PCG method preconditioned by 𝑊 -cycle and variable 𝑉 -cycle multigrid (with smoothing
steps 𝑚(𝑙) = 2𝐽−𝑙𝑚(𝐽)) in Algorithm 2 to solve the augmented Lagrangian Uzawa iteration for the condensed
HDG-P0 scheme (39a). We use vertex-patched block Gauss–Seidel as smoothers in multigrid algorithms to avoid
damping parameters. The coarsest mesh is a triangulation of Ω with the maximum element diameter less than
1/4 when 𝑑 = 2, or less than 1/2 when 𝑑 = 3.

Table 8 reports the PCG iteration counts on uniformly refined meshes with different domain dimensions 𝑑,
mesh levels 𝐽 , the low order term coefficient 𝛽, and the smoothing step on the finest mesh 𝑚(𝐽). As observed
from the results, when 𝑑 = 2 and 𝛽 = 1000, the solver preconditioned by the 𝑊 -cycle algorithm with 𝑚(𝐽) = 2
fails. This is due to the fact that the linear operator of the 𝑊 -cycle multigrid with only two smoothing steps on
each level becomes indefinite and cannot be used as a preconditioner, see Section 4 of [6]. On the other hand,
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Table 7. Iteration counts of 𝑊 -cycle multigrid iteration solver with different smoothers and
smoothing steps in Example 5.2.1.

𝑑 = 2

Parameters
B-JAC B-GS

𝑚 = 1 𝑚 = 2 𝑚 = 4 𝑚 = 1 𝑚 = 2 𝑚 = 4
𝐽 Facet DOFs Iteration count

2 3.76e2 53 29 20 27 17 12
3 1.57e3 22 20 17 17 13 11
4 6.40e3 46 36 25 30 16 11
5 2.59e4 N/A 62 31 26 14 11
6 1.04e5 N/A 78 36 33 15 10
7 4.17e5 N/A 72 31 30 11 8
8 1.67e6 N/A 86 24 21 11 7

𝑑 = 3
𝑚 = 1 𝑚 = 4 𝑚 = 8 𝑚 = 1 𝑚 = 4 𝑚 = 8

2 1.41e3 N/A 23 9 10 5 4
3 4.61e3 N/A 8 6 64 5 4
4 1.44e4 N/A 18 9 N/A 7 6
5 3.89e4 N/A 8 6 N/A 6 6
6 1.06e5 N/A 13 7 N/A 7 6
7 2.74e5 N/A 9 6 N/A 6 5
8 7.00e5 N/A 14 6 N/A 6 5

variable 𝑉 -cycle multigrid is more robust and works with 𝑚(𝐽) = 1. Other results verify the robustness of our
multigrid preconditioner with respect to mesh size and mesh levels.

5.2.3. Backward-facing step flow

Finally we test the robustness of the proposed multigrid preconditioners for the backward-facing step flow
problem, with the non-convex L-shaped domain Ω = ([0.5, 5] × [0, 0.5]) ∪ ([0, 5] × [0.5, 1]) when 𝑑 = 2, or
Ω = (([0.5, 5] × [0, 0.5]) ∪ ([0, 5] × [0.5, 1]))×[0, 1] when 𝑑 = 3. We assume an inhomogeneous Dirichlet boundary
condition 𝑢 = [16(1− 𝑦)(𝑦− 0.5), 0]T when 𝑑 = 2, or 𝑢 = [64(1− 𝑦)(𝑦− 0.5)𝑧(1− 𝑧), 0, 0]T when 𝑑 = 3 for the
inlet flow on {𝑥 = 0}, with do-nothing boundary condition on {𝑥 = 5} and no-slip boundary conditions on the
remaining sides. The maximum element diameter is less than 1/2 in both two-dimensional and three-dimensional
cases. Other settings are the same as in Example 5.2.2.

Table 9 reports the PCG iteration counts under uniform mesh refinements. Similar results are observed as in
the previous example. In particular, variable 𝑉 -cycle algorithm with 𝑚(𝐽) = 1 leads to a robust preconditioner.
Next we test with 𝛽 = 0 on adaptively refined meshes using a recovery-based error estimator as in Example 5.1.2.
Figure 4 reports the obtained PCG iteration counts, and similar results as those on the uniformly-refined meshes
are observed. We note that although the multigrid analysis in Theorem 4.3 requires full elliptic regularity, our
proposed multigrid method works well in this low-regularity case.

6. Conclusion

In this study, we present the lowest order HDG schemes with projected jumps and numerical integration
(HDG-P0) for the reaction-diffusion equation and the generalized Stokes equations, prove their optimal a priori
error analysis, and construct optimal multigrid algorithms for the condensed HDG-P0 schemes for the two sets of
equations on conforming simplicial meshes. The key idea of constructing the optimal multigrid is the equivalence
between the condensed HDG-P0 scheme and the (slightly modified) CR discretization, which enables us to follow
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Table 8. Iteration counts of the preconditioned conjugate gradient solver for the generalized
Stokes equations in lid-driven cavity problems in Example 5.2.2.

𝑑 = 2

Multigrid Variable 𝑉 cycle 𝑊 cycle
𝛽 1000 1 0 1000 1 0

𝑚(𝐽) 1 2 1 2 1 2 2 4 2 4 2 4
𝐽 Facet DOFs Iteration counts
2 3.76e2 13 10 12 10 12 10 N/A 8 10 8 10 8
3 1.57e3 18 14 15 12 15 12 N/A 12 10 9 10 9
4 6.40e3 20 16 17 13 17 13 N/A 11 11 9 11 9
5 2.59e4 20 15 18 14 18 14 N/A 9 11 10 11 10
6 1.04e5 20 15 19 15 19 15 N/A 9 11 9 11 9
7 4.17e5 20 15 20 15 20 15 N/A 9 11 9 11 9
8 1.67e6 21 15 21 15 21 15 N/A 9 11 9 11 9

𝑑 = 3
2 1.41e3 10 7 11 8 11 8 7 5 8 6 8 6
3 4.61e3 11 9 11 9 11 9 8 7 8 7 8 7
4 1.44e4 12 10 12 9 12 9 9 8 9 8 9 8
5 3.89e4 13 11 12 10 12 10 8 8 8 7 8 7
6 1.06e5 14 12 12 10 13 10 8 8 8 7 8 7
7 2.74e5 14 12 12 10 12 10 8 7 8 7 8 7
8 7.00e5 14 12 13 10 13 10 8 8 9 7 9 7

Table 9. Iteration counts of the preconditioned conjugate gradient solver for the general-
ized Stokes equations in backward-facing step flow problems with uniformly refined mesh in
Example 5.2.3.

𝑑 = 2
Multigrid Variable 𝑉 cycle 𝑊 cycle

𝛽 1000 1 0 1000 1 0
𝑚(𝐽) 1 2 1 2 1 2 4 6 4 6 4 6

𝐽 Facet DOFs Iteration counts

2 3.92e2 9 7 9 7 9 7 N/A 4 6 5 6 6
3 1.65e3 13 10 10 8 10 8 N/A 7 6 6 6 6
4 6.75e3 16 13 11 8 11 8 N/A 10 6 6 6 6
5 2.73e4 18 14 11 9 11 9 N/A 7 6 6 6 6
6 1.10e5 17 12 12 9 12 9 N/A 6 6 6 6 6
7 4.41e5 15 11 12 9 12 9 N/A 6 6 6 6 6
8 1.77e6 13 10 12 9 12 9 N/A 6 6 6 6 6

𝑑 = 3
2 3.02e3 7 5 6 5 6 5 4 3 4 4 4 4
3 8.55e3 7 6 6 5 6 5 5 4 5 4 5 4
4 2.47e4 8 7 8 6 8 6 6 5 5 5 5 5
5 6.88e4 9 7 7 6 7 6 6 5 5 5 5 5
6 1.82e5 10 8 8 7 8 7 6 6 5 5 5 5
7 4.78e5 10 8 8 7 8 7 6 6 5 5 5 5
8 1.22e6 10 9 8 7 8 7 5 5 5 5 5 5
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Figure 4. Iteration counts of the preconditioned conjugate gradient solver for the general-
ized Stokes equations in backward-facing step flow problems with adaptively refined mesh in
Example 5.2.3.

the rich literature on multigrid algorithms for CR discretizations to design robust multigrid schemes for HDG-
P0. Numerical experiments are presented with the proposed multigrid algorithms as both iterative solvers and
preconditioners to solve the condensed HDG-P0 schemes, where optimal 𝐿2 norm convergence rates are obtained,
and the condition number of the preconditioned operators are bounded independent of mesh level and mesh
size. We further note that the proposed ℎ-multigrid algorithms for the condensed HDG-P0 schemes in this study
can be used as a building block to construct robust preconditioners for higher-order HDG schemes using the
auxiliary space preconditioning technique [68], which will be our forthcoming research.

Appendix A. Proof of (10c)

Let (𝜓, 𝜑) ∈ 𝐻1(Ω) × (𝐻2(Ω) ∩ 𝐻1
0 (Ω)) be the solution to the following dual problem together with the

regularity assumption as in (5):

𝛼−1𝜓 + ∇𝜑 = 0, ∇ · 𝜓 + 𝛽𝜑 = 𝑒𝑢, in Ω. (A.1)

We define Π𝑉 and Π𝑊 as 𝐿2-projection onto the finite element space 𝑉 0
ℎ and 𝑊ℎ. To further simplify notation,

we denote
𝜑ℎ := Π𝑉 𝜑, 𝜓ℎ := Π𝑊𝜓.

Moreover, by continuity of the 𝐿2-projection and the continuous dependency result on 𝜑, there holds:

‖𝜑ℎ‖1,ℎ . ‖𝜑‖1 . 𝛼
−1
0 ‖𝑒𝑢‖0, (A.2)
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where the norm ‖𝜑ℎ‖1,ℎ :=
√︁∑︀

𝐾∈Tℎ
‖𝜑ℎ‖2

0,𝐾 + ‖∇𝜑ℎ‖2
0,𝐾 .

Using the definition of the dual problem (A.1), we have, for any 𝜓
ℎ
∈𝑊ℎ and 𝜑ℎ ∈ 𝑉ℎ,

‖𝑒𝑢‖2
0 =

(︀
𝑒𝑢,∇ · 𝜓 + 𝛽𝜑

)︀
Tℎ

=
(︁
𝑒𝑢,∇ ·

(︁
𝜓 − 𝜓

ℎ

)︁)︁
Tℎ

+ (𝑒𝑢, 𝛽(𝜑− 𝜑ℎ))Tℎ
+

(︁
𝑒𝑢,∇ · 𝜓

ℎ

)︁
Tℎ

+ (𝛽𝑒𝑢, 𝜑ℎ)Tℎ
.

Taking 𝑟ℎ = 𝜓
ℎ

in (11a), we get(︁
𝑒𝑢,∇ · 𝜓

ℎ

)︁
Tℎ

=
(︁
𝛼−1𝑒𝜎, 𝜓ℎ

)︁
Tℎ

+
⟨
𝑒̂︀𝑢, 𝜓ℎ

· 𝑛𝐾

⟩
𝜕Tℎ

=
(︁
𝛼−1𝑒𝜎, 𝜓ℎ

− 𝜓
)︁

Tℎ

− (𝑒𝜎, ∇𝜑)Tℎ
+

⟨
𝑒̂︀𝑢,

(︁
𝜓

ℎ
− 𝜓

)︁
· 𝑛𝐾

⟩
𝜕Tℎ

,

where we used the first equation in (A.1), single-valuedness of 𝑒̂︀𝑢 on the interior mesh skeleton E𝑜
ℎ and 𝑒̂︀𝑢|𝜕Ω = 0

in the second step. Taking 𝑣ℎ = 𝜑ℎ in (11b), we have

(𝛽𝑒𝑢, 𝜑ℎ)Tℎ
= (𝛽𝑒𝑢, 𝜑ℎ)Tℎ

−
∑︁

𝐾∈Tℎ

𝑄1
𝐾(𝛽𝑒𝑢𝜑ℎ)⏟  ⏞  

:=𝑇3(𝜑ℎ)

+ (𝑒𝜎,∇𝜑ℎ)Tℎ
− ⟨𝑒𝜎 · 𝑛𝐾 + 𝜏𝐾Π0(𝑒𝑢 − 𝑒̂︀𝑢), 𝜑ℎ⟩𝜕Tℎ

+ 𝑇1(𝜑ℎ) − 𝑇2(𝜑ℎ)
= (𝑒𝜎,∇𝜑ℎ)Tℎ

− ⟨𝑒𝜎 · 𝑛𝐾 + 𝜏𝐾Π0(𝑒𝑢 − 𝑒̂︀𝑢), 𝜑ℎ − 𝜑⟩𝜕Tℎ
+ 𝑇1(𝜑ℎ) − 𝑇2(𝜑ℎ) + 𝑇3(𝜑ℎ),

where in the second step we used the single-valuedness of 𝑒𝜎 ·𝑛𝐾 + 𝜏𝐾Π0(𝑒𝑢 − 𝑒̂︀𝑢) on the interior mesh skeleton
E𝑜

ℎ and 𝜑|𝜕Ω = 0. Combing the above three equalities and simplifying, we get

‖𝑒𝑢‖2
0 = −(𝛼−1𝑒𝜎 + ∇𝑒𝑢, 𝜓 − 𝜓

ℎ
)Tℎ⏟  ⏞  

:=𝐼1

+
⟨
𝑒𝑢 − ̂︀𝑒𝑢, (𝜓 − 𝜓

ℎ
) · 𝑛𝐾

⟩
𝜕Tℎ⏟  ⏞  

:=𝐼2

+ (𝛽𝑒𝑢 + ∇ · 𝑒𝜎, 𝜑− 𝜑ℎ)Tℎ⏟  ⏞  
:=𝐼3

+ ⟨𝜏𝐾Π0(𝑒𝑢 − ̂︀𝑒𝑢), (𝜑− 𝜑ℎ)⟩𝜕Tℎ⏟  ⏞  
:=𝐼4

+𝑇1(𝜑ℎ) − 𝑇2(𝜑ℎ) + 𝑇3(𝜑ℎ).

Using approximation properties of the 𝐿2-projections and (A.2), we can bound each of the above right hand
side terms by the following:

𝐼1 ≤
(︁
‖∇𝑒𝑢‖0 + 𝛼

−1/2
0

⃦⃦⃦
𝛼−1/2𝑒𝜎

⃦⃦⃦
0

)︁⃦⃦⃦
𝜓 − 𝜓

ℎ

⃦⃦⃦
0
. 𝛼−1/2

0 ℎ2Ξ‖𝜓‖1,

𝐼2 .
⃦⃦⃦
ℎ
−1/2
𝐾 (𝑒𝑢 − ̂︀𝑒𝑢)

⃦⃦⃦
0,𝜕Tℎ

⃦⃦⃦
ℎ

1/2
𝐾

(︁
𝜓 − 𝜓

ℎ

)︁⃦⃦⃦
0,𝜕Tℎ

. 𝛼−1/2
0 ℎ2Ξ‖𝜓‖1,

𝐼3 . (𝛽1‖𝑒𝑢‖0 + ‖∇ · 𝑒𝜎‖0)‖𝜑− 𝜑ℎ‖0 .
(︁
𝛽1‖𝑒𝑢‖0 + 𝛼

1/2
1 Ξ

)︁
ℎ2‖𝜑‖2,

𝐼4 .
⃦⃦⃦
𝜏

1/2
𝐾 Π0(𝑒𝑢 − ̂︀𝑒𝑢)

⃦⃦⃦
0,𝜕Tℎ

⃦⃦⃦
𝜏

1/2
𝐾 (𝜑− 𝜑ℎ)

⃦⃦⃦
0,𝜕Tℎ

. 𝛼1/2
1 Ξℎ2‖𝜑‖2,

𝑇3(𝜑ℎ) . ℎ‖𝛽‖1,∞‖𝑒𝑢‖1,ℎ‖𝜑ℎ‖0 . ‖𝛽‖1,∞𝛼
−3/2
0 ℎ2Ξ‖𝑒𝑢‖0,

𝑇1(𝜑ℎ) − 𝑇2(𝜑ℎ) . ℎ‖𝛽‖1,∞
⃦⃦
𝑢− 𝑢1

ℎ

⃦⃦
1,ℎ

‖𝜑ℎ‖0 + ℎ1+𝑑/2‖𝑓 − 𝛽𝑢‖1,∞‖𝜑ℎ‖1

.
(︁
‖𝛽‖1,∞𝛼

−3/2
0 ℎ2Θ + ℎ1+𝑑/2𝛼−1

0 ‖𝑓 − 𝛽𝑢‖1,∞

)︁
‖𝑒𝑢‖0.

Combining these inequalities with the regularity assumption (5), we finally get

‖𝑒𝑢‖2
0 . ℎ

2Ξ
(︁
𝛼
−1/2
0 ‖𝜓‖1 + 𝛼

1/2
1 ‖𝜑‖2

)︁
+

(︁
𝛽1‖𝜑‖2 + ‖𝛽‖1,∞𝛼

−3/2
0 (Θ + Ξ) + ℎ𝑑/2−1𝛼−1

0 ‖𝑓 − 𝛽𝑢‖1,∞

)︁
ℎ2‖𝑒𝑢‖0
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.

(︃
𝑐regΞ +

𝑐reg𝛼
−1/2
0 𝛽1

𝛼
1/2
1 + 𝛽

1/2
1 ℎ

Ξ + ‖𝛽‖1,∞𝛼
−3/2
0 (Θ + Ξ) + ℎ𝑑/2−1𝛼−1

0 ‖𝑓 − 𝛽𝑢‖1,∞

)︃
ℎ2‖𝑒𝑢‖0.

The estimate (10c) now following from the above inequality and (9d) by the triangle inequality. This completes
the proof of (10c). ⊓⊔
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[30] D.A. Di Pietro, F. Hülsemann, P. Matalon, P. Mycek, U. Rüde and D. Ruiz, Towards robust, fast solutions of elliptic equations
on complex domains through hybrid high-order discretizations and non-nested multigrid methods. Int. J. Numer. Methods
Eng. 122 (2021) 6576–6595.

[31] H.-Y. Duan, S.-Q. Gao, R.C.E. Tan and S. Zhang, A generalized BPX multigrid framework covering nonnested V-cycle methods.
Math. Comput. 76 (2007) 137–152.

[32] M.S. Fabien, M.G. Knepley, R.T. Mills and B.M. Rivière, Manycore parallel computing for a hybridizable discontinuous
Galerkin nested multigrid method. SIAM J. Sci. Comput. 41 (2019) C73–C96.

[33] P.E. Farrell, L. Mitchell and F. Wechsung, An augmented Lagrangian preconditioner for the 3D stationary incompressible
Navier–Stokes equations at high Reynolds number. SIAM J. Sci. Comput. 41 (2019) A3073–A3096.

[34] P.E. Farrell, L. Mitchell, L.R. Scott and F. Wechsung, Robust multigrid methods for nearly incompressible elasticity using
macro elements. IMA J. Numer. Anal. 42 (2022) 3306–3329.

[35] P. Fernandez, A. Christophe, S. Terrana, N.C. Nguyen and J. Peraire, Hybridized discontinuous Galerkin methods for wave
propagation. J. Sci. Comput. 77 (2018) 1566–1604.

[36] M. Fortin and R. Glowinski, Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary Value
Problems, translated from the French by B. Hunt and D. C. Spicer. Vol. 15 of Studies in Mathematics and its Applications.
North-Holland Publishing Co., Amsterdam (1983).

[37] G. Fu, C. Lehrenfeld, A. Linke and T. Streckenbach, Locking-free and gradient-robust 𝐻(div)-conforming HDG methods for
linear elasticity. J. Sci. Comput. 86 (2021) 30.

[38] W. Hackbusch, Multigrid Methods and Applications. Vol. 4 of Springer Series in Computational Mathematics. Springer-Verlag,
Berlin (1985).

[39] Q. Hong, J. Kraus, J. Xu and L. Zikatanov, A robust multigrid method for discontinuous Galerkin discretizations of Stokes
and linear elasticity equations. Numer. Math. 132 (2016) 23–49.

[40] X. Huang, Nonconforming finite element stokes complexes in three dimensions. Sci. China Math. (2023). DOI:
10.1007/s11425-021-2026-7.

[41] V. John, A. Linke, C. Merdon, M. Neilan and L.G. Rebholz, On the divergence constraint in mixed finite element methods for
incompressible flows. SIAM Rev. 59 (2017) 492–544.

[42] G. Kanschat and Y. Mao, Multigrid methods for 𝐻div-conforming discontinuous Galerkin methods for the Stokes equations.
J. Numer. Math. 23 (2015) 51–66.

[43] T.V. Kolev, J. Xu and Y. Zhu, Multilevel preconditioners for reaction-diffusion problems with discontinuous coefficients.
J. Sci. Comput. 67 (2016) 324–350.

[44] Y.-J. Lee, J. Wu, J. Xu and L. Zikatanov, Robust subspace correction methods for nearly singular systems. Math. Models
Methods Appl. Sci. 17 (2007) 1937–1963.

[45] Y.-J. Lee, J. Wu and J. Chen, Robust multigrid method for the planar linear elasticity problems. Numer. Math. 113 (2009)
473–496.

[46] C. Lehrenfeld, Hybrid Discontinuous Galerkin methods for solving incompressible flow problems. Ph.D. thesis, RWTH Aachen
University (2010).

[47] A. Linke, On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime.
Comput. Methods Appl. Mech. Eng. 268 (2014) 782–800.

[48] A. Linke and C. Merdon, Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the
incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 311 (2016) 304–326.

[49] P. Lu, A. Rupp and G. Kanschat, Homogeneous multigrid for HDG. IMA J. Numer. Anal. 42 (2021) 3135–3153.

[50] L.D. Marini, An inexpensive method for the evaluation of the solution of the lowest order Raviart–Thomas mixed method.
SIAM J. Numer. Anal. 22 (1985) 493–496.

[51] L.S.D. Morley, The triangular equilibrium element in the solution of plate bending problems. Aeronaut. Q. 19 (1968) 149–169.

[52] N.C. Nguyen and J. Peraire, Hybridizable discontinuous Galerkin methods for partial differential equations in continuum
mechanics. J. Comput. Phys. 231 (2012) 5955–5988.

[53] Y. Notay, A new algebraic multigrid approach for Stokes problems. Numer. Math. 132 (2016) 51–84.

[54] Y. Notay, Algebraic multigrid for Stokes equations. SIAM J. Sci. Comput. 39 (2017) S88–S111.

[55] I. Oikawa, A hybridized discontinuous Galerkin method with reduced stabilization. J. Sci. Comput. 65 (2015) 327–340.

[56] I. Oikawa, Analysis of a reduced-order HDG method for the Stokes equations. J. Sci. Comput. 67 (2016) 475–492.

[57] W. Qiu and K. Shi, An HDG method for convection diffusion equation. J. Sci. Comput. 66 (2016) 346–357.

[58] W. Qiu and K. Shi, A superconvergent HDG method for the incompressible Navier–Stokes equations on general polyhedral
meshes. IMA J. Numer. Anal. 36 (2016) 1943–1967.

https://doi.org/10.1007/s11425-021-2026-7


MG FOR HDG-P0 1587

[59] W. Qiu, J. Shen and K. Shi, An HDG method for linear elasticity with strong symmetric stresses. Math. Comput. 87 (2018)
69–93.
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