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In this essay, I provide a forward-looking naturalized theory of mental content

designed to accommodate predictive processing approaches to the mind, which are

growing in popularity in philosophy and cognitive science. The view is introduced

by relating it to one of the most popular backward-looking teleosemantic theories
of mental content, Fred Dretske’s informational teleosemantics. It is argued that
such backward-looking views (which locate the grounds of mental content in the
agent’s evolutionary or learning history) face a persistent tension between ascribing
determinate contents and allowing for the possibility of misrepresentation.

A way to address this tension is proposed by grounding content attributions in
the agent’s own ability to detect when it has represented the world incorrectly
through the assessment of prediction errors—which in turn allows the organism

to more successfully represent those contents in the future. This opens up space for

misrepresentation, but that space is constrained by the forward-directed epistemic

capacities that the agent uses to evaluate and shape its own representational
strategies. The payoff of the theory is illustrated by showing how it can be applied
to interpretive disagreements over content ascriptions amongst scientists in

comparative psychology and ethology. This theory thus provides a framework in

which to make content attributions to representations posited by an exciting new
family of predictive approaches to cognition, and in so doing addresses persistent

tensions with the previous generation of naturalized theories of content.

1. Introduction: Naturalizing Mental Content

According to a venerable story, rational agents act on the basis of what they
desire and how they believe they can obtain it, and many of their actions can
be explained by showing how they are appropriate given the contents of these
mental states. A theory of mental content tries to clarify one component of this
nexus by specifying how mental states like beliefs and desires come to be about
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particular aspects of the world. While some theorists ground content in other
intentional entities like consciousness or third-person interpreters, content nat-
uralists attempt to ground it in non-intentional phenomena studied by scientific
disciplines like psychology, neuroscience, or evolutionary biology. The attempt
to naturalize mental content in this way enjoyed an enormous amount of atten-
tion in philosophy of mind from 1980-1995, which I will hereafter refer to as the
“heyday” of naturalism about mental content.

One family of heyday views which has retained significant popularity until
the present time is called “teleosemantics” (Shea 2013). Teleosemantics is a “back-
ward-looking” naturalistic approach that attempts to ground content in causal
or informational relations that held at some point in the agent’s past, during its
evolutionary or learning history. Most versions attempt to identify a process of
selection such as evolution or learning that bestows contents on neural states
based on their ability to signify or indicate aspects of the organism’s environ-
ment that satisfy biological or psychological functions. Opinions today differ
on the degree of success achieved by heyday efforts in teleosemantics (the most
influential views being those of Dretske 1981; 1988; Millikan 1984; 1989; Papin-
eau 1988)." Though some now think heyday efforts presented us with an embar-
rassment of theoretical riches (Neander 2017; Shea 2013; 2018), others hold that
these views failed to achieve the grand ambitions under which they were offered
(Chemero 2011; Hutto & Myin 2012; Mendelovici & Bourget 2014; Ramsey 2007).
My goal here is neither to endorse nor rebut these criticisms, but rather to defend
a newer style of theory which is closely related to teleosemantics, and which
differs from the backward-looking heyday views in ways relevant to the most
influential objections against them.

The most common concern alleges that teleosemantics faces insoluble inde-
terminacy (or “disjunction”) problems, the worry being that there are too many
candidate contents which could be derived from an organism’s history, and
there is no principled way to select amongst them (Fodor 1987; Summerfield &
Manfredi 1998). In the interests of efficiency, it will be useful to focus on one
of the most popular views which is closely related to the novel view presented
here: Dretske’s informational teleosemantics (Dretske 1988). Dretske’s theory
crucially relies on a distinction between triggering causes and structuring causes
in the production of behavior. On this view, reinforcement learning recruits
indicators—neural states which stand in informational relations with environ-
mental properties—to control behaviors on the basis of contingencies between
the activation of those states and desired outcomes in the environment. Dretske

1. On most versions of Millikan’s view, a representation’s contents are derived from the
proper function of the systems that consume the representation. It is an interesting question
whether Millikan’s view could allow consumer systems to bestow forward-looking contents, but
Millikan’s views on this topic are complex and there is not space to explore this possibility here.
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Figure 1. Dretske’s structuring cause solution (Dretske 1988: 88).

uses the recruitment process to fix a representation’s content by supposing that
the recruitment process invests the neural state (the triggering cause) with the
function of representing the state of affairs that its ability to indicate caused it
to be recruited. Since reinforcement learning is a process which is plausibly sen-
sitive to such environmental contingencies, these informational relations pro-
vide “structuring cause” explanations for behaviors which are later triggered
by these neural states. This solution is ingenious; it purported to both determi-
nately fix a representation’s content and render those contents causally relevant
to the explanation of later behaviors, all while drawing only upon the naturalis-
tic resources of information theory and reinforcement conditioning (see Fig. 1).

Unfortunately, this view has difficulty simultaneously assigning determi-
nate contents and allowing for a robust possibility of misrepresentation. The
difficulty can be highlighted by focusing on ambiguity throughout Dretske’s
oeuvre on the crucial notion of indication—specifically, between a strict notion
of indication that would require perfect correlation during recruitment, and a
weaker notion that would allow for something less (Godfrey-Smith 1992). This
ambiguity can be used to develop a dilemma argument against the view. On
the first horn, the strict interpretation of indication allows it to offer a strong
response to the problem of indeterminacy, but only at the cost of being unable to
offer an empirically plausible account of misrepresentation. On the other horn,
the weaker notion of indication grounds a more plausible approach to misrep-
resentation, but only at the cost of being unable to offer a strong solution to the
problem of indeterminacy. Let us consider each horn in turn.

The earlier versions of Dretske’s account of indication required perfect (per-
haps even nomologically necessary) correlation between an indicator (N) and
the state of affairs it indicates (F)—in other words, P(FIN) = 1 (Dretske 1981).
This version of the view can offer a strong response to the charge of indetermi-
nacy: a representation indicates whatever it was perfectly correlated with during
recruitment (for a number of worked examples, see Prinz 2000). This view does
attempt to offer an account of misrepresentation: here, a representation misrep-
resents when it is tokened by something other than its content in an environ-
ment other than the one in which it was recruited (because the representation
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must be taken out of the environment in which F is never activated without N
for such a circumstance to occur).

Unfortunately, this account of misrepresentation rests on two unrealistic
assumptions about the nature of learning. First, the tokening of a representation is
almost never perfectly correlated with its content during learning; agents frequently
make mistakes during training, learning can satisfice with lower degrees of cor-
relation on the basis of cost/benefit analyses, and noisy, dynamic, and deceptive
environments rarely present organisms with perfectly reliable signals for interest-
ing contents in the first place (Godfrey-Smith 1992; Slater 1994). Second, studies of
expertise show us that learning is a lifelong continuous process, with agents able to
continually improve the causal contact between representations and their contents
over the course of decades (Ericsson & Smith 1991; Fodor 1987). Dretske was aware
of the difficulties this earlier version of the view had with a psychologically-plausi-
ble account of misrepresentation (Dretske 1986), and so may be seen to base his later
views on a weaker notion of indication and a more flexible notion of recruitment.

Let us then consider the other horn of the dilemma, explored by Dretske in this
later work, where indication requires something less than perfect correlation (e.g.,
P(FIN)<1). Dretske does not define this weaker notion of indication as clearly as
he did the earlier, stricter notion (Godfrey-Smith 1992), but it is clear that this ver-
sion of the view leans harder on the notion of a representational function to settle
content indeterminacy. The weaker notion of indication offers more flexibility to
accommodate misrepresentation; for example, even during learning, things other
than the state of affairs the indication of which caused recruitment might token
the representation. Unfortunately, the same neural state will typically stand in
weaker, overlapping indication relations to many different environmental prop-
erties simultaneously, and the view can no longer lean on perfect indication to
arbitrate which of these weaker correlations picks out the content that caused it to
be recruited (Fodor 1990; 1994; Summerfield & Manfredi 1998). In particular, we
may worry about choices between ascribing more modest, appearance-like con-
tents and more ambitious contents that seem more closely-related to the benefits
obtained by the organism during recruitment that led to reinforcement (Neander
2006). For example, suppose a representation which controls a bird’s consum-
matory movements simultaneously indicated (to differing degrees) “housefly”,
“fly”, “prey”, and “small, dark, moving speck” during recruitment. Reinforce-
ment learning is sensitive only to the degree of correlation between environmen-
tal stimuli and rewards or punishments, and each of these properties stands in
some degree of contingency with the relevant rewards. Thus, even in what is often
regarded as the most promising heyday effort, the problems of indeterminacy and
misrepresentation are locked in a tension that is difficult to resolve.?

2. Insome ways, failing on indeterminacy is worse than merely offering an implausible account
of misrepresentation, for indeterminacy also undermines any account of misrepresentation. As
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Despite (or perhaps because of) these tensions, teleosemantics is due for
updates since the heyday. Its philosophical motivations remain compelling, and
in the interim much has changed in our broader theorizing about the computa-
tional architecture of the mind, especially regarding the nature of the learning
processes which might shape representations and recruit them to positions of
behavioral control. A new generation of philosophers have begun to challenge
old assumptions, exploring new territory in naturalized psychosemantics gen-
erally and in teleosemantics specifically (Eliasmith 2005; Gladziejewski 2016;
Grush 2004; Morgan 2014; Nanay 2014; Rupert 1999; Ryder 2004; Shea 2007a;
2018; Usher 2001). Particularly relevant to the view to be presented here, sig-
nificant progress has been made regarding predictive approaches to learning
and self-supervised neural-network based approaches to artificial intelligence.
A debate has taken place as to whether these predictive approaches should be
regarded as representational or not; but setting that aside, few philosophers
have attempted to update learning-based teleosemantics to fit with predictive
approaches to the mind (though see Gladziejewski 2016; Williams 2018).

This paper is hardly the first to offer a naturalist theory that emphasizes
the importance of error-correction mechanisms to representational theorizing.
Notable precursors include Bickhard (1993), Ryder (2004), and more recently
Bielecka and Mitkowski, who have argued that the epistemic evaluation per-
formed by error-correction and anticipatory mechanisms grounds a distinctive
causal role for representations to play in cognitive systems (thus emphasizing
responses to objections like Ramsey’s Job Description Challenge and Hutto &
Myin’s Hard Problem of Content—see Mitkowski 2015; Bielecka & Mitkowski
2019). Here, I focus more on the problems of misrepresentation and indetermi-
nacy, arguing that by grounding contents in prediction-error learning—which
involves top-down prediction of expected inputs (primarily derived from per-
ception, but perhaps also by interoception and the result of internally-simulated
inputs as in imagination), comparison of those expectations with actual inputs,
and revision of representational structure in response to prediction failure (to
better represent the world going forward) —a theory can be offered which boasts
distinctive strengths where backward-looking views like Dretske’s have been
thought to run into trouble.

I call the family of theories inspired by this insight “forward-looking”; their
shared core is an emphasis not on informational relations chosen from some
idealized past or counterfactual present, but rather from the likeliest stable
future. Specifically, the forward-looking approach grounds representational
content in the agent’s own ability to detect when it has represented the world

“

Dretske himself notes, “without a determinate [representational] function, one can, as it were,
always exonerate [a representational system] of error, and thus eliminate the occurrence of mis-
representation by changing what it is supposed to be indicating” (Dretske 1988: 69).
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incorrectly—which in turn allows the organism to more successfully track
aspects of that world in the future. Briefly, a representation’s forward-looking
content is thus whatever a predictive learning system reliably tends to put it in
better informational contact with over time in response to prediction error.

I motivate and explain this view in six steps. Section 2 situates the view with
respect to some major distinctions in theories of content that have been drawn
in the literature since the heyday. Section 3 provides an empirically-grounded
inspiration for the view by drawing upon debates over content ascriptions in
cognitive ethology and comparative psychology, focusing especially on learn-
ing processes more flexible and complex than simple instrumental condition-
ing. This is significant, since the view will focus on assigning contents to whole
agents (or at the “personal” level)—as is common practice in comparative psy-
chology and ethology —rather than focusing more on subpersonal systems as
may be more popular in other areas of computational psychology and has been
the focus of other recent updates to teleosemantics (e.g., Neander 2017). Sec-
tion 4 then sketches the forward-looking view as a way to align solutions to
the problems of indeterminacy and misrepresentation by grounding content
ascriptions in the agent’s own capacities to detect when it has misrepresented.
Section 5 illustrates the consequences of the view by showing how it handles
some familiar and novel test cases. Section 6 concludes by explaining the causal
import of forward-looking content to the explanation of behavior, by tying it to
some classic discussions by James and showing how it can provide inspiration
for experimental designs that help arbitrate active disputes about content ascrip-
tions in comparative psychology and ethology.

2. Situating the View in the Literature

I begin to introduce the view and its aspirations by situating it with respect to
four distinctions that have been drawn between different approaches to content
since the heyday. First, there is a distinction between theories vindicating con-
tents ascribed by folk psychology and those vindicating contents ascribed by
empirical psychology. Second, there is a distinction between contents ascribed
to representations at the level of the whole agent and contents ascribed to repre-
sentations at the level of the organism’s cognitive or computational parts. Third,
there is a distinction between views that ascribe ambitious contents that leave
wide room for error, and views which ascribe more modest, appearance-like
contents which are rarely tokened in error. Fourth, a distinction has been drawn
between monolithic theories that argue for a single kind of content and more
multifarious theories of representation that ascribe different tiers of content to
different types of selection or learning. I will say a bit about each distinction
briefly in turn.
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First, heyday views (especially Fodor 1987) often set out to vindicate folk
psychology, and many of the key examples from older debates focused on exam-
ples drawn from folk ascriptions (Rupert 2018). This approach casts the effortin a
more “philosophy of mind” bent, and it diverted much of the heyday discussion
to focus on the nature and plausibility of folk psychology itself (especially prop-
ositional attitude ascriptions), such as whether folk psychology has the status of
a scientific theory and whether it would ultimately be eliminated in the face of
scientific discoveries by neuroscience (Churchland 1981; Ramsey, Stich, & Garon
1990). By contrast, Cummins (1990; Cummins, Putnam, & Block 1996) suggested
that we should more profitably adopt a “philosophy of science” attitude towards
these issues by treating ‘representation’ as a theoretical posit in cognitive science,
and theorizing about the nature of representations and representational content
only on the basis of what is required to explain the success of empirical cogni-
tive science. I will be adopting this latter attitude here; however, I will focus on
the contents ascribed to flexible learning processes in the fields of comparative
psychology and cognitive ethology, where successful empirical work has been
explicitly designed around the scientific redeployment of our folk ascriptive
capacities on non-human animals (Dennett 1983; Ristau 1991; Timberlake 2007).

Second, others have drawn a related distinction between ascribing contents at
the level of whole agents and ascribing contents to an agent’s computational parts
(Rowlands 1997). Rowlands in particular proposes that many of the indetermi-
nacy problems attributed to teleosemantics can be located instead in a mismatch
between proper functions of a cognitive system’s components (such as edge-de-
tecting cells in visual areas V1), and proper functions that are better ascribed to
whole animals (such as locating environmental affordances that promote survival
and reproduction). Here, although I focus on neural states as representational vehi-
cles, the contents ascribed to those vehicles will be attributed at the level of whole
agents. Though predictive learning may also operate independently at the level of
individual subsystems (such as motor representations), I focus here on whole-agent
predictive learning that involves ongoing interaction between central learning pro-
cesses and the outcomes of predictions (which will typically be determined by the
agent’s engaged exploration of its environment, but may also include interoception
or episodes in internal mental life such as reflection, remembrance, and imagina-
tion—Sims 2017). The representational functions assigned to vehicles at this level
invoke the reduction of global, whole-agent prediction-error, which as we will see
implicates the cooperation of a potentially open-ended number of the agent’s other
subsystems and interaction with numerous environmental contingencies.

3. Two other views which ascribe representations to prediction error-correction models are
worth mention here: Rupert’s (2011) claim that forward models of motor movement are represen-
tational, and Shea’s (2012) claim that the representations of reward in predictive reinforcement
learning models are metarepresentational. However, these views both focus on ascribing contents
to subpersonal computational components of the predictive learning system, rather than to the
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Third, when faced with pressures over content indeterminacy, some teleo-
semantic views tend to favor more modest, appearance-like contents, whereas
others reach for more ambitious contents that allow for a greater degree of error
(Neander 2006). A curious thing about representational hypotheses in cognitive
science is that we do not automatically regard a representational ascription as
disconfirmed when it fails to predict behavior. For example, my APPLE concept
may remain aimed at apples even if I occasionally apply it to non-apples, such as
wax fruit or roundish pear.* Compare this to a hypothesis in the physical sciences
like “electrons are negatively-charged”; any case where an electron fails to attract
a positively charged particle in the relevant way would be treated as prima facie
disconfirmation of the theory, rather than as the electron having made a “mis-
take”. Some views react to this curious aspect of representational hypotheses by
ascribing ambitious contents (like apple) that explain successful action but out-
strip the agent’s actual discriminative abilities, while others ascribe instead more
modest, appearance-like contents (such as apple-looking) that are more closely
tethered to what the agent can reliably discriminate. The modest ascriptions look
most empirically promising when we are considering simple components like
edge-detecting cells in early vision or organisms with very inflexible learning
abilities like frogs, but the more ambitious ascriptions seem more appropriate
when we move to more sophisticated organisms that have better ways of detect-
ing and responding to representational error.> I here focus on ascribing more
ambitious contents. However, a challenge (which will be addressed below) is
that the more ambitious contents seem to take us further from the agent’s cur-
rent causal organization, from the discriminations it can reliably make in the
environment it now occupies. In so doing, indeterminacy problems can be ren-
dered more severe.

Fourth, the view can be situated with respect to an increasingly popular multi-
pronged or pluralist attitude toward content, which locates different “tiers” of
content in different representational systems of differing degrees of flexibility
and sophistication. Several recent thinkers have recommended this attitude as a
solution to post-heyday malaise: that is, they hold that there are different kinds
of content that are attributed in different scientific contexts, and there is probably
no need to look for the single criterion that unites them all (Godfrey-Smith 2004;
Shea 2013). Perhaps there is a kind of basic “Tier 1” biological content that arises

whole organism, as the view proposed here does. The present view is thus closer to original hey-
day ambitions.

4. Ifollow conventions in this literature and use smallcaps to denote representational vehicles
(specifically, their types), and italics to denote the properties to which those vehicle types refer.

5. Another take on modest ascriptions here has them being more action-oriented rather than
appearance-like; this approach has been considered especially relevant to predictive processing,
though I do not pursue it here. For a review of such recent views, see Williams (2018).
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from natural selection and supports adaptive but relatively inflexible behavior
as is found in innate-releasing mechanisms studied in ethology (Brigandt 2005);
another deflationary, indicator-style “Tier 2” content arising from the kind of
simple forms of associative learning described by Dretske (1988); and then at
least one more flexible Tier 3 of content that arises from yet more sophisticated
epistemic regulation like prediction-error learning; and perhaps even a later Tier
4 content that comes after the addition of social cognition and language (God-
frey-Smith 1992). The positive view offered in this paper can be understood as
a way to build the base case of Tier 3 representation. Interestingly, this Tier 3
content might be bootstrapped from Tier 1 and 2 contents by comparing the
expectations they generate to incoming sensory information streaming in from
the world, as we will see later on.

3. A Test Case for Tier-3 Contents: Whole-Organism
Attributions in Cognitive Ethology and Comparative
Psychology

To guide the development of the theory, I propose a fresh, philosophy-of-
science-based test case. In some ways, Dretske’s emphasis on the most basic forms
of reinforcement conditioning was odd from the beginning, given that compar-
ative psychologists rarely describe behaviors driven by simple conditioning in
representational terms. Instead, they tend to reserve the representational idiom
for causes of behavior that are more flexible and “insightful” (Buckner 2011). In
fact, research progress in these areas frequently breaks down over interpretive
debates akin to the heyday disjunction challenges, with some research groups
favoring more modest and others favoring more ambitious contents in their
ascriptions. Ideally, a naturalistic theory of content should help scientists resolve
these debates by providing inspirations for new experiments that could confirm
or disconfirm the various ascriptive hypotheses on offer.

A prominent example of such an interpretive dispute concerns the landmark
experiment of Hare, Call, Tomasello, and Agnetta (2000) on Theory of Mind in
chimpanzees, which has by now been locked in interpretive stalemate for two
decades (Heyes 2015; Lurz 2011). In this experiment (Fig. 2), a subordinate and
a dominant chimpanzee sit across a shared enclosure from one another, held in
their respective rooms by guillotine doors which can be raised and lowered by
the experimenters. Food objects can be placed either out in the open (easily vis-
ible to both competitors) or behind an opaque occluder from the perspective of
the dominant. The guillotine doors are then raised (with the subordinate given a
small head start), and experimenters see whether the subordinate reliably takes
food objects behind the opaque occluders (which the dominant cannot see) but
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Figure 2. The design of Hare et al. (2001).

avoids food objects out in the open (which can be seen by the dominant and thus
would become the subject of a dispute if taken, earning the subordinate a beat-
ing). Across an exhaustive set of control conditions, subordinates have shown
themselves more likely to take food objects that dominants cannot see.

These findings have been interpreted differently by different camps. “Pro-
ponents” of animal Theory of Mind argue that they show that the subordinates
possess a basic form of perception-goal psychology, representing what the
dominant chimpanzee does and does not see (Call & Tomasello 2008). An equally
distinguished list of “skeptics”, by contrast, hold that such experiments cannot
even in principle show that animals represent seeing, for the findings can be as
well explained with a more modest representation of the overt behavioral cue,
line-of-gaze—that is, a spatial line beginning at the surface of an animal’s head
or eyes and terminating in an opaque object (Penn & Povinelli 2007). Dozens of
experiments on a half dozen different species—together with numerous subtle
essays on experimental design, parsimony, background evidence, and statisti-
cal methodology (see Lurz 2011 for a review)—all failed to put this controversy
to rest. Moreover, the different camps have not even been able to agree on a
hypothetical experimental design that that could arbitrate between these com-
peting hypotheses—and many experiments proposed by skeptics to overcome
the deadlock have been ruled insufficient by other skeptics before they were ever
even performed. That different camps continue to agree on all the data but dis-
agree on their interpretation suggests that this dispute is not wholly empirical,
but rather reflects a deeper (and mostly implicit) disagreement over psychose-
mantics (Buckner 2014).

Where such interpretive impasse stubbornly resists experimental resolution,
science may benefit from philosophical reflection as to what behavioral or neural
data ought to even count as evidence for one or another content attribution—
and, further, why. This impasse thus offers a new mandate for content natural-
ism, one which would at least rule out forms of evidence that are not assessable
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using controlled and reliable empirical methods. Ideally, the new criterion
should also come with a defense which explains why cognitive science would be
more empirically successful or fruitful if content is reduced in this way, rather
than in others—for scientists tend to be a practical lot, and are unlikely to aban-
don their implicit theories of content on the basis of intuitions or a priori argu-
ment alone. The “forward-looking” theory described here is offered as just such
an ecumenical psychosemantics with a clear pragmatic defense, which will be
provided after the view is introduced in the next section.

4. Forward-Looking Content
4.1. Background: What is the general shape of a forward-looking theory?

The key insight of a forward-looking theory of content is that content attribu-
tions can be grounded not just in the agent’s past or current discriminative abil-
ities, but rather also in the epistemic capacities appropriate to evaluating those
discriminations, and especially in how those evaluations will stabilize over time.
Such views are immensely powerful, for they open up significant space for mis-
representation —they can allow for a wide gap between past or current discrimi-
natory abilities and contents —but they constrain that gap with forward-directed
epistemic abilities that behavioral experiments could confirm actually operate
on the representations in question.® In short, organisms need not be so perfect

6. This essay is not the first to offer a forward-looking theory of content—and the view
offered here is inspired by the germ of a forward-looking view offered by Dretske himself (Dretske
1986) —but the most developed options of which I am aware thus far are non-naturalist. Consider
the core principle of Dickie’s (2015) view:

Principle connecting aboutness and justification (approximate version) S's <a is ®>
beliefs are about an object iff their means of justification converges on the object, so that,
given how the beliefs are justified, the subject will be unlucky if they do not match the
object and not merely lucky if they do.

On the central issues of this essay, Dickie’s view serves as a break from traditional causal or
descriptive theories of content; mental reference on her view is grounded not in any features of a
representation’s causal history or current informational relations, but rather in the means of justi-
fication appropriate to evaluating a belief and what they would tend to non-accidentally confirm
over time.

To provide another example, a different kind of forward-looking theory can be found in the
work of Mendelovici, who grounds content attributions not in notions of “luck” and “justifica-
tion”, but rather in what the owner of that state takes herself to mean through “cashing out” intu-
itions that are accessed only after relevant alternatives are consciously considered:

Taking: Subject S takes immediate content C to mean C+ if S is disposed to have a set of
cashing out thoughts that together specify that C cashes out into C+ (Mendelovici 2018: Ch. 7)
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as to never make mistakes—not even in an idealized learning history —but what
counts as a mistake is determined not by the theorist’s idealizations of the past,
but rather by the agent’s own justificatory or metacognitive abilities. Such views
can moreover be regarded as naturalist if we can locate a general mechanism
that psychology and neuroscience tells us implements the relevant forms of for-
ward-directed epistemic processing.

Let us thus consider the empirical and philosophical work on such epis-
temic mechanisms. The best candidates are those that support various forms of
error-correction learning, which grant agents the kind of cognitive flexibility that
ethologists and comparative psychologists think merit mentalistic description
(Buckner 2015). Organisms that can detect representational failures have access
to a form of evidence that allows them to continually improve the causal con-
tact between a representation and its referent, and empirical evidence of such
“self-monitoring” —from learning curves to looking time data in “dishabituation
paradigms” —can be used by cognitive scientists as operational evidence of a
representation’s content (Allen 1999). Most artificial models of error-correction
learning in cognitive science are “supervised”, where an external signal tells a
model whether it got the right answer. However, we should not rely on super-
vised models here, for they require a programmer or oracle to perform the very
semantic work that needs explaining —that is, how agents themselves could pos-
sess contents that outstrip their present discriminative abilities. Only by uncover-
ing mechanisms that allow organisms to compute their own prediction errors can
we finally locate the causal/explanatory role played by misrepresentation itself.

Such mechanisms can be found in a popular wave of recent work in neuro-
science and psychology, especially in predictive coding models in theoretical
neuroscience and predictive (or “self-supervised”) deep-learning networks in
artificial intelligence. Several influential philosophers of cognitive science have
been impressed by the potential of such models (Clark 2015; Hohwy 2013; Ryder
2004). These views take a variety of specific forms—some are abstractly mathe-
matical (Friston 2010), others more mechanistic and neuroanatomically located
(Gluck & Myers 2001; Ryder 2004); some are hierarchical and involve many lay-
ers of processing (Luc, Neverova, Couprie, Verbeek, & LeCun 2017), whereas
others involve only a single layer of cortical neurons (Favorov & Ryder 2004). In
the interests of space—and since numerous philosophically-informed reviews
from a wide variety of theoretical perspectives are readily available (Clark 2015;
Hohwy 2013; Seth 2014; Williams 2018)—I will not survey the details of these
views here. The important shared core for the forward-looking theory offered

In other words, on Mendelovici’s view whether a representation has one content or another
is determined by which contents its owner is disposed to accept after considering the alternatives
and reflectively stabilizing on a set of self-interpretive judgments.
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here is that the overarching “goal” of such processing is not just to infer the
correct action from “bottom-up” processing on incoming inputs alone (which,
again, will primarily come from the senses but may also be generated by internal
systems such as interoception, memory, or imagination), but rather also to cor-
rectly predict and control those incoming inputs using “top-down” processing
guided by prediction failures.” This kind of learning thus offers a dramatic shift
away from the kinds of basic evolutionary or reinforcement learning mecha-
nisms emphasized by heyday teleosemantic views, and it is only this shared
predictive core that I will draw upon below.?

4.2. The Theory

I now develop and explain the preferred forward-looking theory of content and
representation.? In doing so, it will help to anchor the discussion to a particular

7. A reviewer notes that this distinction may call to mind another drawn between model-free
and model-based approaches to learning and planning in cognitive science and machine learning
(e.g., see Sutton & Barto 2018: Ch. 7 and 14). I shy away from that terminology here, however, as
it is not entirely clear at present whether model-based learning requires some dedicated compo-
nent of the network to explicitly represent a model of the world’s future states (and what, exactly,
“explicit” might mean here), or whether model-based learning could be implemented implicitly
by simpler mechanisms with sufficient depth or scale (e.g., as in some deep reinforcement learning
neural network models that have recently pushed the boundary between model-free and mod-
el-based approaches—Botvinick et al., 2019; Gershman, 2018; Kulkarni, Saeedi, Gautam, & Gersh-
man 2016). This uncertainty may also be present in some of the more ambitious speculations about
the power of simple associative learning mechanisms at scale, e.g., as expressed by Dretske in the
later chapters of Explaining Behavior.

8. An initial complication is that researchers studying predictive learning disagree as to
whether this work supports a representational or anti-representational interpretation. I will not
enter directly into this debate here; for defense of representationalist construals of predictive pro-
cessing, see Clark (2013; 2015), Gladziejewski (2016), Williams (2018), and Ryder (2004).

9. Dan Ryder (2004) stands out as also recognizing the importance of prediction to content
attributions, so I take a moment to explain his “SINBAD” theory and contrast it with the for-
ward-looking theory I will sketch below. To begin, Ryder interprets individual cortical pyra-
midal neurons as mechanisms that can implement a “predictive trick” of discovering mutually
correlated clusters of environmental properties by equilibrating their inputs and outputs. Ryder
interprets such equilibration as the function of these neurons, and like other teleosemanticists
derives the neuron’s content from its function. However, Ryder’s view on the source of these
functions is backward-looking, for he holds that it is determined by the neuron’s causal history.
Metaphysically, the gulf between this view and the forward-looking view offered here is large,
especially regarding the sources of content’s normativity. The forward-looking view holds that it
is the agent’s own forward-directed epistemic capacities that ground a representation’s content,
rather than historical contingencies concerning the environmental sources of past equilibration.
This distance also reflects a disagreement over the explanatory job of representational attributions;
on Ryder’s view, their primary role is to explain prior equilibration, whereas the forward-look-
ing view holds it is to uncover the epistemic organization of the underlying system and corre-
spondingly to also predict and explain future behavior (including revisions). This strategy works
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predictive model; I focus on one of the older and better-understood variants,
a model of hippocampal function in associative learning offered by Gluck and
Myers (hereafter, the “GM” model) —keeping in mind that predictive learning is
likely a governing principle of many other subsystems and that the basic story
can be generalized to other kinds of predictive architectures.

The GM model construes the hippocampal system as a type of multi-layer
neural network architecture called a predictive autoencoder. I focus on this model
for several reasons, all relating to simplicity and clarity of exposition. First, the
network’s organization and behavior is clearer than that of the more abstract,
mathematical alternatives, which lack a firm mechanistic interpretation (e.g.,
Friston 2010). Secondly, what counts as a vehicle is clearer in the GM model; our
discussion can draw on work by Gardenfors (2004) and Shea (2007b) specifying
the individuation conditions for vehicles in such networks (by contrast, what
counts as a vehicle in the more hierarchical or mathematically abstract models
remains an open question). Thirdly, what might count as a content is clearer
in the GM model. Clark, for example, notes that the more Bayesian models
appear to encode not traditional concept extensions like apple but rather prob-
ability density distributions, as well as other features like “uncertainty, noise,
and ambiguity” (2013: 8). Clark acknowledges that such distributions (which
are perhaps most at home in describing basic perceptual contents) may be quite
different from the simpler, sparser, and more univocal set of contents that are
ascribed and experienced at the conceptual level —but it remains unclear how
the latter is to emerge from the former (though see Wiese 2017). With the GM
model, by contrast, we can take advantage of a mature literature—much also
due to Clark (1989) —relating such a network’s activity to the kinds of contents
ascribed in comparative psychology and cognitive ethology. Fourthly, I focus on
a predictive-learning system that operates at roughly the whole-organism level
that takes high-level inputs from all sensory modalities, rather than various spe-
cialized subsystems which might also operate according to predictive principles
(such as motor planning). This is because behavior in comparative psychology
and ethology is usually explained using whole-organism content ascriptions, as
reviewed in the previous section. Finally, the neuroanatomical realizers of the
GM model are well-understood and empirically-supported, the linkage to the
medial temporal lobes being grounded in a great deal of anatomical and cogni-
tive neuroscience, lesion studies, and computational modeling. The hope is that
focusing on this older but simpler model will allow us to clarify the metaphysics

because it highlights the ways that the agent itself treats misrepresentation as significant. The
worry is that unless we incorporate these revisions into the explanatory purview of the theory,
prior equilibration can be explained in terms of past indication relations alone (i.e., a fixed cluster
of causal relays—see also Dretske 1986), raising the issues of indeterminacy or restricting us to
modest, appearance-like contents.

Ergo «vol. 8, no. 37 « 2021



A Forward-Looking Theory of Content + 381

of forward-looking content without losing the thread in speculative and impre-
cise interpretations of the newer models.

A predictive autoencoder is a multi-layer neural network for which input
and output layers are connected to the same stimulus input stream (Fig. 3).
Briefly, the GM model construes the hippocampal region as learning to pre-
dict the future state of late-stage, highly-processed, multi-modal stimulus input
streaming in from the entorhinal cortex, where the evidence on which the pre-
dictions are based is the previous state of that same input stream. Output errors
are calculated by computing the distance between the predicted and actual stim-
ulus input and backpropagated to earlier layers to train the network to mini-
mize the likelihood of making similar errors in the future. (Readers concerned
with generic heyday arguments against attributing representations to or typing
vehicles in such networks are directed to Shea 2007b, which ties together earlier
works on this topic, including P. S. Churchland & Sejnowski 1990; Rupert 2001;
and Tiffany, 1999.) Many more layers can be added to such a network to increase
the degree of compression and hierarchical organization in the network’s repre-
sentations, and indeed the current boom in deep learning was inspired in part by
work on deep autoencoders (Hinton & Salakhutdinov 2006).

Back to entorhinal cortex and CA1 (Outcome Stimuli) |

|
| Us | Ftimulu timulu1rtimu]u timulus| Stimulu
1 2 3 4 5

|Context| Error signal

computed and

backpropagated
through
network

Differentiate
cues that predict
different
outcomes

pyramidal
neurons

Compress cues
that predict

redundantly

s timulu1 Ftimulu i
3 4

1 Channels into entorhinal cortex (Initial Stimuli) |

| Context

Figure 3. Gluck and Myers’s (1993; 2001) cortico-hippocampal model of configural
learning. The US is some unconditioned stimulus (like food), which given its natural
connection to unconditioned responses (such as consummatory movements), provides
the network with initial behavioral potency. The network’s representations can also be
made context-sensitive through the use of contextual input/output nodes, understood as
unitized configurations of stimuli that reliably identify distinct contexts.
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To tie to our earlier discussions, these inputs can be thought of as more basic
structures that already possess simpler Tier 1 or 2 contents; now, it is a configu-
ration of features that a representational vehicle’s inputs jointly indicate (which
I continue to refer to as ‘F’, keeping in mind that ‘F’ can now also refer to a con-
figuration of proximal indicated stimulus features <f1, f2 . .. fn>rather thanjust a
single one). The inputs to the GM system are not coming directly from the world
or the sensory organs, but rather from cortical structures that have already been
shaped by selective forces to process information about environmental stimuli,
whether by evolution, development, or more basic forms of associative learning.
The GM network then assembles these Tier 1—2 indicators into configural clus-
ters that can more flexibly predict the future state of that same stimulus input
stream. The clusters are revised when they fail to predict the future state of the
same indicator-style input stream. Because revision occurs iteratively and dis-
covering the most predictive clusters can take an indefinite amount of time, it
is in part the informational structure of the organism’s environment (and the
organism’s active engagement with it) that determines which stimulus patterns
will be presented to the network often enough to produce systematic revision.
This is why Tier-3 contents cannot be reduced to concatenations of their Tier
1—2 components (i.e., F); the interaction between the current structure of a rep-
resentational cluster and the informational distribution of the environment
determines how and when revision will reliably occur, and which revisions will
remain stable in the face of future exploration and engagement.

Gluck and Myers describe the revision of this network as striking a balance
between two biases, predictive differentiation and redundancy compression.
On the one hand, the drive to correctly predict stimulus patterns at the output
layer creates a pressure to differentiate stimulus patterns which predict dif-
ferent outcomes, by altering link weights to render their hidden layer activa-
tion patterns more distinct.”® On the other hand, there are fewer hidden layer
nodes than input or output nodes, so the system cannot just memorize every
statistical regularity in its environment; it must economize on representational
resources by treating input stimulus patterns which redundantly predict the
same outcomes as being the same, by rendering their hidden-layer activation
patterns more similar. The balance between these two pressures (which will be
elaborated further in the next section) enables a powerful form of all-purpose
inductive learning, which over time will tend to discover an efficient set of stim-
ulus configurations that predict the widest range of stimulus variance in the
organism’s environment."*

10. The GM model uses error backpropagation learning algorithm to accomplish this; for
more discussion of this choice, see Buckner and Garson (2018).

11. Notably, redundancy compression is the drive which helps to prevent overfitting, a
problem facing most machine learning methods. Good generalization performance depends

Ergo «vol. 8, no. 37 « 2021



A Forward-Looking Theory of Content + 383

The learning of such a network can be thought to perform a search for a set of
feature-clusters that correspond to attractor basins in multi-dimensional feature
space. Attractor basins here mark configurations of input stimuli that indicate
clusters of features in the system’s environment that tend to reliably co-occur
with one another, the joint tracking of which minimizes net prediction error;
call the environmental property corresponding to the attractor basin closest to
a cluster’s current location in state space ‘F+'. In most cases relevant to simple
animals, these minima indicate their environments’ natural kinds, because these
will be the stable sources of feature clustering that could be reliably predicted
(Boyd 1991). Once a representation’s activation vector brings it sufficiently close
to one of these attractor basins, it becomes overwhelmingly likely that if that
representation is further revised (in the sense that learning alters the set of prox-
imal features F that token it), it will be revised to better indicate F+, which will in
turn reduce prediction errors and correspondingly future revisions. By contrast,
a revision that took the representation further away from its nearest basin would
tend to increase prediction error, leading to increased revisions and increased
instability.

The upshot is that we cannot rely solely on a configuration’s current or past
informational relations to identify its Tier 3 contents, since these relations will
always be in flux as the contents of the cluster are continuously revised. This
provides an overarching reason why scientists should favor forward-looking
rather than backward-looking attributions for representations which are subject
to revision by prediction-error-reduction mechanisms: to hit a moving target,
we should aim where those relations are headed, rather than where they cur-
rently are or have previously been. Informally, a representation’s forward-look-
ing content (F+) in some environment is thus what it indicates at the limit of its
likeliest revision trajectory, given that environment’s informational structure.™
More precisely:

upon networks seeking out deeper, more inductively-potent regularities, and redundancy com-
pression’s drive to economize on representational resources enforces this drive at the level of the
mechanism.

12. It may help to more precisely define the notion of a revision trajectory. Theories of con-
tent can type representations in at least three different ways—by vehicle, mode of presentation,
and content—and how a revision trajectory is formally defined will vary depending on how these
distinctions are cashed out in a particular model. On the framework suggested here for the GM
network, vehicles are clusters of hidden layer activation patterns (Gardenfors 2004; Shea 2007b),
modes of presentation are the configurations of proximal stimuli those clusters currently indi-
cate (if one bristles at the Fregean baggage of “mode of presentation” here, one could substitute
“intension”, or “stereotype” instead —Putnam 1975), and content (on the here-proffered, Tier 3
forward-looking theory) is the property indicated by the nearest attractor basin that the vehicle is
overwhelming likely to be revised to better indicate, if it is revised at all. A revision, in this sense,
occurs when a change is made to a hidden-layer activation pattern cluster as a result of a detected
prediction error (e.g., by increasing or decreasing the influence of one of its feature components),

Ergo «vol. 8, no. 37 « 2021



384 + Cameron Buckner

Forward-looking content: The (Tier 3) content of a representation N currently
indicating feature configuration F in environment E is whatever property F+
that (properly functioning) error-correction learning makes systematically
likely it will be revised to better indicate in E, if it is revised at all.*3

This forward-looking view jointly satisfies the causal and normative aspects
of content attributions. Notably, the detection of misrepresentation, in the form
of prediction failure, now does something crucial in the cognitive architecture:
it causally shapes how these configurations are revised by the cognitive system
over time. The system actively monitors the predictive success of its represen-
tational scheme and responds by altering that scheme when it fails to correctly
predict important outcomes. Moreover, the trajectory of these revisions is deter-
mined by the way the system treats these configurations as representational pre-
diction tools, because they are revised only when they misrepresent in this way.
This is true because, by hypothesis, if the organism’s representations currently
indicated their (forward-looking) contents, their referents and associated features
would be present in the stimulus input stream, and there would be no predic-
tion error. Moreover, I have not abstracted away unduly from the actual causal
structure of the system in ascribing these more ambitious contents, because the
representational attributions which outstrip the agent’s current discriminative
abilities are grounded in forms of information processing that these creatures
can actually perform. A fully naturalizable, empirically-supported story can be
told about how evidence of misrepresentation is detected through prediction

but the vehicle remains locked into the same revision trajectory (i.e., its likeliest course through
feature space after predictable future revisions terminates in the same attractor basin). Sameness of
vehicle across revision is determined by closest activation vector cluster in feature space between
time ¢ (before revision) and t+1 (after revision); typically each cluster will have only one nearby
counterpart after revision. A revision trajectory for some representation is thus defined as a unified
series of predictable, systematic revisions, across which the mixture of proximal features indicated
by a hidden-layer activation pattern cluster is continually tweaked to better indicate the same dis-
tal property indicated by a stable attractor in feature space.

13. A reviewer worries about the final clause here, specifically that given the “cobbled-to-
gether, kludge-y nature” of cognition, that perhaps nearby backward-looking views that focus
on the best explanation for prior stabilization (such as Ryder 2004 or Shea 2018) may have an
advantage here. I dig in my heels on this point; I do not think it appropriate to ascribe contents
that outstrip even an agent’s future discriminative abilities in cognitive science (thus agreeing with
arguments offered by Neander 2006 to this effect), for this would prevent us from offering the pro-
posed empirical resolution to the ascriptive disagreements in comparative psychology highlighted
in Sections 3 and 5 here. If there are agents that are constitutionally incapable of improving the reli-
ability of their representational strategies even when presented with robust evidence of misrepre-
sentation, then we should not ascribe more ambitious contents than their best-case discriminations
can support. The benefit of digging in one’s heels here is that the value of Tier 3 content ascriptions
can still be justified in terms of benefits offered to the theorist’s ability to predict the behavior of
the representation’s owner; the scope of the prediction targets just needs to be expanded to include
responses to evidence of misrepresentation and future behaviors as well.
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error, and how representations are revised to better indicate their forward-
looking contents as a result.

Two quick and obvious objections are worth confronting at the outset,
because they are based on tempting misunderstandings of these claims: the
charges of circularity and backwards causation. First, readers may worry here
that taking a representation’s forward-looking content to be determined by the
likeliest limit of prediction-error learning, together with the assertion that pre-
diction error is a form of misrepresentation wherein a representation fails to
successfully indicate its forward-looking content, leads to a vicious circularity
or regress. This worry would be sound if the prediction-error signals were cal-
culated individually for each representation, that is, if the system were learn-
ing by supervised methods wherein an external oracle specified for each trial
whether the correct forward-looking contents of any tokened representations
were actually present. Lacking an independent account of how the supervisory
oracle knew the identity of the forward-looking contents for each representation,
I should indeed be stuck in vicious circularity or regress. Secondly and relatedly,
the proposed theory would also seem to require a suspicious form of backwards
causation: contents whose causal relations are only fully realized after revisions
that may occur in the distant future would seem to be involved in computing
error signals in the here-and-now. Either of these objections, should they strike
home, would admittedly be fatal to the proposed view.

But crucially, the objections of the previous paragraph are based on a mis-
understanding of how such systems detect misrepresentation. Prediction errors
are assessed not by comparing present predictions to the final outcome of some
series of actual future revisions in some specific future timeline; rather, misrep-
resentation is assessed at each step using the agent’s current Tier 1—2 perceptual
inputs and current predictions. In other words, after each individual prediction,
error is detected by the system not through clairvoyance, but rather by checking
the presence or absence of the Tier 1—2 contents predictively associated with
that representation by previous learning. For example, it is not as though the
system tokens puck in the presence of a plastic decoy, and an oracle, which has
supernormal access to the future, tells the system, “Sorry, according to my cal-
culations that representation was headed to duck, and there’s no duck here; try
again!” It is rather that the system tokens puck, and as result of prior learning,
predicts that incoming sensory information will also contain (Tier 1-2 features
associated with its mode of presentation or intension) quacking, feathers, floats on
water, and so on, which have already been associated with puck through prior
learning.™ When the system fails to observe some of these expected stimuli, it

14. It may be worth noting that the representations on this view thus may become more like
structural representations than indicator representations over time; though I will not explore this
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will realize that it has gotten something wrong, and must make a revision (per-
haps it increases the weight of more valid features like quacking, relative to the
other features which are present in decoys). Crucially, this error calculation does
not require or provide information about where the representation is headed
in the future, or how exactly it should be revised. The system must discover
the stable solutions itself through trial-and-error, and only revisions that reduce
prediction error will tend to be retained over time. This explains how Tier-3 rep-
resentations are bootstrapped from simpler Tier 1—2 components without circu-
larity or backwards causation.

Upon appreciating that the computation of prediction error is imperfect,
a third worry might arise: that reducing content to prediction-error correction
makes content normatively arbitrary, because any revision that happens to be
made as a result of prediction error becomes ipso facto correct. This worry, how-
ever, is also based on a misunderstanding. Granted, any particular revision, just
like any particular tokening, can of course be mistaken. While the proposed
view does hold that every time there is a prediction failure, the system receives
evidence that it made a representational mistake, it does not hold that any revi-
sion that happens to be made as a result of this error signal ipso facto renders
the representation’s use more correct (see also Wilson 1982). Because incorrect
revisions will generate more prediction errors, a properly-functioning error-cor-
rection system will tend to stabilize on more correct use. It does so again without
any oracular knowledge as to optimally correct use or when it has ultimately
reached it. Correct use is instead determined by the likeliest revision trajectory
achieving a stable reduction of prediction error, and again which solutions are
ultimately stable for some representation is determined by ongoing interaction
with the informational structure of its environment, rather than the moment-by-
moment fluctuations of its learning mechanisms. This is why systems can pos-
sess forward-looking contents before learning completes (and even if learning
never definitively finishes). Learning must instead only progress to the point
where a representational cluster crosses the threshold of influence of a nearby
stable attractor basin, by having enough appropriate Tier 1—2 features associated
with it to “point it in the right direction”.

I have thus dealt with some of the most obvious objections to this kind of for-
ward-looking view, though there remain many details in need of explication. In
particular, I could clarify the sense of “indication” that applies at the end of these
revision trajectories. Fortunately, the forward-looking gambit works almost
however we come down on these issues; I could perhaps set aside Dretske’s
much-criticized requirement of perfect correlation (i.e., P(FIN) = 1—see Slater

point further here since the upshot of recent literature on this topic is that this distinction is one of
degree and not of kind —see Morgan (2014), Nirshberg and Shapiro (2021)

Ergo «vol. 8, no. 37 « 2021



A Forward-Looking Theory of Content 387

1994) and endorse one of the more recent informational criteria of Rupert (1999),
Usher (2001), Eliasmith (2005), or Scarantino (2015), which can ascribe plausible
contents with less stringent measures even at the limit of a revision trajectory.
The differences between these views become less pressing once the range of eli-
gible contents has been winnowed to stable attractors, and learning has honed
informational contact to the limit of its ability.

5. Explanations and Examples

It may help to illustrate the theory’s implications by returning to some of the
themes from Section 2 and 3, and by showing how the view would tackle some
familiar and novel cases. To review, I have now provided a theory of content
for Tier 3 configurations. A sufficiently sophisticated predictive learning system
can bootstrap Tier 3 representational content from Tier 1—2 indicators by flexibly
reconfiguring those representations in response to evidence of prediction error.
Prediction-learning systems continually monitor the fit between their associated
predictions and ongoing observations, and revise these structures where there
is a mismatch. Moreover, on the theory provided here, these Tier 3 representa-
tions have contents that outstrip the sum of their Tier 1—2 components; the con-
tents are forward-looking, because the terminus of a learning trajectory cannot
be reduced to a mere concatenation of its Tier 1—2 components, which will be
undergoing constant revision. Any stability to be found in this learning process
is rather determined in part by the locations of the attractor basins that would
minimize prediction error after likely future revisions.

To illustrate the implications of this view, let us compare two different
types of cognitive systems, starting with the classic “disjunction problem”
example of the frog whose tongue darts out in the presence of flies and bee-
bees. Does the neural structure which controls these tongue-darting move-
ments have the ambitious content fly, a disjunctive content like fly Vv beebees,
or some modest conjunction of proximal stimuli like small, dark, moving speck?
Suppose that the frogs, as Neander (2006) has argued on the basis of neu-
roethological research, respond inflexibly to artificial lures like beebees, and
further that these frogs are not capable of altering their behaviors in response
to repeated evidence that the stimuli to which they respond are not in fact
flies. On the theory supplied here, the frogs simply lack Tier 3 contents; the
neural structure controlling tongue-darting movements is not under the con-
trol of a learning system which continually improves its ability to track flies.
The same, moreover, would apply to magnetosomic bacteria and many other
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counterexamples from the heyday literature.”> If these organisms cannot
revise their indicator states in response to evidence of error, then they do not
count as having Tier 3 contents at all.

Fodor drives this point home in a prescient comment on the difference
between humans and frogs:

The relevant consideration isn’t however, just that frogs sometimes go
for bee-bees; it’s that they are prepared to go on going for bee-bees for-
ever. Sometimes [ swat at mere fly-appearances; but usually I only swat if
there’s a fly. Sometimes Macbeth starts at mere dagger appearances; but
most of the time he startles only if there’s a dagger. What Macbeth and
I have in common—and what distinguishes our case from the frog’s—is
that though he and I both make mistakes, we are both in a position to
recover. By contrast, frogs have no way at all of telling flies from bee-
bees. (Fodor 1990: 240).%°

To repurpose the point, it is a reliable fact about our more sophisticated cognitive
architecture that if our representations are really about fly and not fly v beebees, or
really about dagger and not merely dagger-like-appearances, then were we repeat-
edly exposed to beebees or dagger-imposters and allowed to learn about the
consequences of our mistaken reactions to them, we should have some capac-
ity to revise our representations so as to no longer respond to these misleading
situations. Agents that systematically persist in committing the same kinds of
errors forever should not be counted as possessing the more ambitious contents.
In short, the forward-looking mantra is something like: fool me once, shame on
you; fool me indefinitely, shame on my contents.

To illustrate the significance of this kind of generalization to cognitive sci-
ence, let us now consider a class of more cognitively flexible animals that share
this capacity to revise: the chimpanzees, monkeys, and corvids that were the
subject of interpretive stalemate in the Theory of Mind literature discussed in
Section 3. The problem was that prior experiments were unable to determine
whether animals ambitiously represent seeing (i.e., F+) or more modestly just the
proximal stimuli that indicate seeing, like line-of-gaze (i.e., F). The forward-look-
ing strategy suggests a way to overcome this impasse; animals that really rep-
resent seeing should be able to recruit an open-ended variety of other non-gaze
cues to better indicate it, flexibly generalizing predictions from old to new cues
in a way that cannot be reduced to a fixed set of more proximal features (for a

15. See the discussion in Dretske (1986) for a similar treatment of magnetosomic bacteria.

16. For a similar point, see Bielecka and Mitkowski (2019) —though while they simply require
that the agent be able to detect the error, I additionally require that it be disposed to revise the
representation to make the error less likely in the future.
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summary of the numerous proximal cues <f1,f2 . . . fn>that have been invoked by
skeptics under the heading line-of-gaze, see Fletcher & Carruthers 2012).

6. The Causal Relevance of Forward-Looking Content

To see the distinctive power of forward-looking content in causal explanations
of behavior, it will help to further explore the two forces of representational
revision discussed above: predictive differentiation and redundancy compres-
sion. These forces act on cue configurations rather than the sort of elemental cue-
behavior links characteristic of behaviorism, and they reshape those cue con-
figurations in ways that are determined by their predictive value. It will help to
explore each force in turn, and to illustrate how backward-looking views fail to
deliver the correct content ascriptions in cases where predictive differentiation
or redundancy compression operate.

The more straightforward of the two revision forces is predictive differen-
tiation. William James highlighted the significance of predictive differentiation
in shaping the mind’s representations in a famous passage where he describes
learning to distinguish claret from Burgundy. James reports that although these
two wines initially tasted almost identical to him, with practice he learned to
emphasize the very slight differences amongst their taste profiles, because only
these differences were useful in predicting their correct labels. He writes that the
forces which revised these representations acted upon them as wholes:

The effect of practice in increasing discrimination must then, in part, be
due to the reinforcing effect, upon an original slight difference between
the terms, of additional differences between the diverse associates which
they severally affect. (James 1890: 511)

He noted that the effect of these forces was to pull the two representations fur-
ther apart in perceived similarity, so that “small differences affect us as if they
were large ones” (189o: 515). Causally, we may suppose that these forces were
powered by the reinforcing effect of attempting to predict the correct labels, act-
ing upon cue configurations as wholes. Whenever the wine’s label is predicted
incorrectly, whichever components of the configuration were attended to in the
misclassification (e.g., the acidity of a claret) will tend to have its strength weak-
ened in the next revision of that configuration; and whenever the wine’s label
is predicted correctly, the components that led to the correct classification (e.g.,
the tannic quality in a Burgundy) will tend to see their strength correspondingly
increased relative to the other components in that configuration. The reshaping
leads over time to more reliable classifications; though James might originally
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have been at chance in distinguishing the two French styles of wine, with enough
diligent drinking —in the name of science, of course—he reports eventually suc-
ceeding at the task.

Predictive differentiation is probably the most common form of predic-
tion-error-driven revision, and the easiest place to see the importance of a for-
ward-looking theory of content for a wide range of cases. The forward-looking
view matches our intuitions about a variety of commonplace cases where pre-
dictive differentiation operates, especially concept learning in young children.
When we took my three-year-old daughter to the zoo to see a tiger for the first
time, like many other children her age, she exclaimed “Look at the big kitty!”
We must here say that she lacks a representation of cat entirely (perhaps repre-
senting instead cat Vv tiger v lion v dog on a dark night v . . .), or that she somehow
possesses a representation of that property even when she makes the mistake,
despite never having had a better ability to distinguish cats from tigers earlier
in her life. Since she possessed a great deal of experience with domestic cats,
including features acquired from this experience such as that cats have fur, whis-
kers, a tail, and so on—features that causally explained why she made the mis-
take she did in this case—saying that she lacks a representation of cat entirely
seems inappropriate, and leaves us unable to explain her mistake in the natural
manner, by saying that she thought the tiger looked like a cat. And since we
reliably predict that she will, like most other children, eventually come to distin-
guish cats from tigers upon learning of her mistake —by better attending to and
appropriately weighing differences which initially seemed slight, as James sug-
gested —we should say that her representation means cat even when she makes
her mistake and is still in the process of learning. It is even clearer that this is the
correct answer when we see that the kind of mistake she makes differs only in
degree from those that remain in even adult use (e.g., perhaps upon the first time
we see an ocelot, fossa, or civet)."”

17. A reviewer wonders whether it might be just as likely that the child’s representation gets
revised to better indicate tiger to the exclusion of cat. Depending upon the vehicle’s current indi-
cator properties and the environment in which it would be revised, this is certainly possible; what
matters is which revision is, as a matter of fact in that environment, overwhelmingly more likely
to occur. Other outcomes are also possible; the representation could be poised midway between
attractor basins corresponding to cat and tiger, and the likeliest outcome is that it gets “split” in
two by revision, in a form of representational mitosis (perhaps this is so at age 3, but not by age 5,
for example). It is also possible that a representation could, as a matter of fact, undergo a series of
low-probability revisions that knock it out of the influence of one attractor basin and into another;
this would reflect a change of content at some point in the (highly unlikely) trajectory. Rather than
considering such questions to be problems for my view, they are gleefully endorsed as avenues
for the research program to explore. Indeed, I think if we step away from prior intuitions about
teleosemantics for a moment, these are the right questions to be asking, mirroring those about
semantic change and deference to future use that have long featured prominently in philosophy
of language (see, e.g., Ebbs 2009 for a review and discussion). That such questions arise naturally
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James also noted the significance of the other predictive force shaping our
representational scheme, redundancy compression. Indeed, he also laid it down
as a basic principle of the mind’s organization, claiming that “any total impres-
sion made on the mind must be unanalyzable, whose elements are never expe-
rienced apart” (1890: 502). In other words, we should find it difficult to even
discriminate two different stimuli unless they at some point occur in different
circumstances or predict different outcomes. Redundancy compression is thus
intimately related with predictive differentiation, in that it both serves as the
mind’s default state which predictive differentiation must overcome to make
two cue configurations discernible, and continuously serves as a headwind
against the wanton use of representational resources, pushing representations
back to an original state of indiscernibility if their distinction does not deliver
predictive goods. “If all cold things were wet and all wet things cold,” James
wrote, “if all hard things pricked our skin and no other things did so; is it likely
that we should discriminate between coldness and wetness, and hardness and
pungency respectively?” (189o: 502). James provides several actual examples of
such co-occurring and initially indiscernible phenomena—the contraction of the
diaphragm and the expansion of the lungs, or the convergence of the eyes and
focusing on an object—noting that it is only with the aid of theory that we come
to represent these things distinctly at all, by establishing distinct causes and
effects that allow us to imagine them occurring apart.

Returning to the GM model of hippocampal learning, we can provide a
mechanistic explanation for redundancy compression, as it emerges from the
informational bottleneck in the network’s hidden layer imposes on predictive
differentiation. The key insight is that when there are more configurations
which must be distinguished than there are nodes to represent them one-for-
one in the hidden layer, representations must compete with one another for
common resources. As one representation is revised in response to predictive
differentiation, it will “jostle” the weights of distinct but related cue configu-
rations which share some of their elements. This will in turn cause an increase
in errors involving tasks drawing upon the other representations, which may
suffer from the revisions as innocent bystanders. The only way for a network to
minimize net representational error across its whole suite of representations is
to find opportunities to economize, by compressing distinct configurations that
predict redundant outcomes into the same representation. The fewer distinct
representations the network has to maintain, the more resources are available to
other representations, and consequently the fewer bystanders become casualties
in subsequent predictive differentiation. As the co-predicting representations

within the forward-looking framework proposed is a benefit of the view, though a full exploration
of the different kinds of cases and their appropriate verdicts must be left to future work.
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gradually come to coincide, the creature so revising its representations will also
enjoy the advantages of generalizing the information it has learned about one
representation to the others, as a free by-product of predictive differentiation
being forced to operate under the need for efficiency. Notably, this will tend to
also render representations more inter-subjective, reducing differences derived
from idiosyncrasies in learning histories from agent to agent, so long as they live
in a shared environment.

Many cases involving redundancy compression call for more rapid revisions,
however, suggesting that it may take two different forms: the slow and passive
return to stable indistinguishability just described, and a more active form that
seeks out opportunities for economy and missed generalization, which result in
rapid revisions once discovered. Rapid revisions are more appropriate for many
of the so-called “twin” cases discussed in the heyday literature, wherein one
content is represented by two distinct concepts; to return to another stock hey-
day example (Fodor 1994), Oedipus did not require a long period of gradual pre-
diction failure to realize that Jocasta was actually his mother, instead performing
some quick revisions which resulted in some important new generalizations
with narratively significant consequences. However, adding a degree of surprise
to the model which modulates the learning rate of the network can show how
both more passive and active forms of redundancy compression could be imple-
mented in the same mechanism.

A rich body of empirical research has demonstrated that the mammalian
brain possess such mechanisms to regulate its learning rate to suit circumstance;
research has especially focused on the role of acetylcholine in modulating the
plasticity of the hippocampus and cortex in learning (Hasselmo 2006). Acetyl-
choline is a neurotransmitter which is released by the nucleus basilis into the
hippocampal and cortical tissues in response to surprisal. Among its other func-
tions, it increases the plasticity of these tissues for a short period of time. This
can produce a period of rapid revision that subsides when the source of the
prediction failure is corrected and surprisal diminishes. Indeed, the entire plot
of Sophocles” play revolves around Oedipus confronting a series of improba-
ble and unpredictable calamities: that the man he killed on the road years ago
was the former Theban king Laius, that as a baby he was delivered to Corinth
by a shepherd instead of born to Corinth’s king Polybus, and that his wife had
ordered the shepherd to kill Oedipus as a baby so as to avoid the fulfillment
of a prophecy that the child would murder Laius. Anyone in his position at
that moment would have been so pumped full of acetylcholine that they could
quickly compress their representations for Jocasta and mama (learning the truth
about their tragic marriage would be the complimentary “free” generalization).
Instead of two different forms of redundancy compression, we may thus really
have only a single continuum, which can be modulated by altering the rate at
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which the learning takes place in response to the degree of surprise that the pre-
diction failures generate.

In considering the empirical relevance of forward-looking contents, this
more rapid form of redundancy compression is of particular interest, because it
could enable the leaps of “insight” that animal cognition researchers often seek
to demonstrate in their experimental designs. Different kinds of agents may dif-
fer in their ability to recognize when two perceptually diverse situations A and
B predict some of the same outcomes; particularly intelligent and attentive ani-
mals may excel at this ability, using it to quickly compress two representations
into a single vehicle in the course of one experiment. This will in turn cause an
animal to automatically generalize all other behaviors and predictions previ-
ously associated with A to B and vice versa. As a result, the subject will appear
to demonstrate “insight” in its behaviors; if the animal previously learned that
cue A predicted outcome X, and later learns that A and B both predict some
other shared outcomes Y,, Y, ... Y, it can now “infer” that cue B also predicts X,
despite the fact that B and X never actually co-occurred anywhere in its learning
history.

An experiment by Bugnyar, Reber, and Buckner (2016) purports to provide
just such a demonstration of representational flexibility in ravens (Figure 3), in
a way which engages with the interpretive debate over Theory of Mind which
was reviewed in Section 3. To provide some background, ravens spontaneously
cache food items as part of their normal foraging behavior, and like chimpan-
zees, previous experiments have shown that they behave differently when they
are being watched by a competitor (who might pilfer their caches). Specifically,
they cache more quickly, are less likely to return to previous caches, and have
even been observed to make “false caches” —poking their beaks in the ground
while retaining the food in their throat pouch (Bugnyar 2013). However, in all
prior designs the ravens could see the competitor’s gaze cues at test, and so this
body of research had until recently faced the same interpretive stalemate as the
research on chimpanzees (Heyes 2015).

The recent experiment from Bugnyar’s lab finally overcame this problem by
showing that ravens could recruit a new, non-gaze cue for seeing, and use it to
draw novel inferences (Fig. 4).® Specifically, this experiment provided evidence
that ravens trained to use peepholes to pilfer another’s caches can later infer that
when they cache in the presence of an open peephole —even if they had no prior
experience caching in the presence of peepholes—that unseen competitors might
be able to watch them through the peephole, too. As a result, they later guard
their own caches against observation in the presence of the peephole, even if they

18. This is not to say that all the skeptics have been convinced; see Lurz (2017) and Kuznar,
Pavlic, Glorioso, and Povinelli (2020).
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cannot see any competitors (or their gaze cues) at the time. A plausible explana-
tion of this result is that they are highly attentive to their own pilfering oppor-
tunities, and were (pleasantly) surprised by the discovery that the peephole
afforded them the ability to pilfer the experimenter’s caches. This in turn allowed
them to learn that two perceptually dissimilar situations—<A sees B out in the
open> and <A sees B through a peephole>—predict some of the same significant
outcomes, and so they compressed their representations of these two situations
into an “abstract equivalence class” that economized on their representational
resources (Whiten 1996). As a side effect of this revision, they were able to gener-
alize an independent prediction associated with a food item’s being visible with
the peephole cue. In other words, the compression of the representations of the
two states of affairs would automatically grant them the “insight” that others be
able to pilfer their caches by watching them through the peephole, too.

This kind of revision constitutes a form of representational control that sig-
nificantly outstrips the less-flexible forms of learning explored by other heyday
informational views. The attribution of the content seeing over line-of-gaze cru-
cially allowed the researchers to make this prediction (and to explain the suc-
cessful outcome), because there are no gaze cues actually present in the test
condition of the experiment. This demonstrates that not only was seeing (i.e., the
F+ candidate) the right content to attribute to the ravens all along—even before
the recruitment of the peephole cue, when the ravens’ representations only syn-
chronically indicated line-of-gaze (i.e., F)—but also that only the forward-looking
interpretation of this content attribution could provide the resources to devise
this experiment and explain its results, thereby breaking this longstanding
empirical stalemate.*”

Though I have here focused on the base case of Tier 3 representations—
explaining how they are configured and derived from Tier 1—2 contents—a
similar idea could be extended to more elaborate still “Tier 4” representations,
which might be scaffolded by more metacognitively sophisticated and socially-
regulated forms of representation. For example, Shea, Boldt, Bang, Yeung,
Heyes, and Frith (2014) have recently proposed a two-systems account of
metacognition that provides a distinctive and important role for interpersonal
communication in achieving more social and explicit forms of cognitive con-
trol over representational revisions. Organisms that could explicitly consider
their representational successes and communicate about them with one another
would achieve forms of representational and behavioral flexibility unavailable
by other means. They could accumulate and transmit a shared conceptual and

19. This was only one experiment, but a structurally similar experiment with a similar out-
come has been performed in chimpanzees, with the learned cue being the color of boxes with
unseen objects inside—see Karg, Schmelz, Call, & Tomasello (2016).
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Figure 4. Sketch of the experimental setup of Bugnyar et al. (2016). (a) Observed (Obs)
condition: The cover of the window is open (white bar) and the focal subject (storer,
st) caches food in the visual presence of a conspecific (observer). (b) Non-observed
(Non) condition: The cover of the window is closed (grey bar) and the focal subject
caches food in visual isolation of a conspecific (non-observer). Both observers and non-
observers make sounds in the experimental chamber, which are audible to the storer. (c)
Peephole (Peep) condition: The cover of the window is closed (grey bar) but one of the
two peepholes (small white square) is open; the focal subject caches food in the absence
of any behavioral cues, whereas the presence of conspecifics is simulated via playback
of sounds recorded from non-observed trials (symbolized by loudspeaker). In this
experiment, the storer raven was first trained to use peepholes to pilfer caches it observes
being made by an experimenter. The Obs and Non conditions were used to see how the
raven behaved when it knew it was and was not being observed, respectively. Caching
behavior in the Peep condition—the first time the raven had ever cached in the presence
of the peephole—was then found to match that in the Obs condition and to differ from
that in the Non condition, despite the fact that no gaze cues were present.

Ergo «vol. 8, no. 37 « 2021

395

cultural knowledge to one another over generations, and reflectively evaluate
their epistemic successes or failures together. This could in turn explain how
Tier 3 agents bootstrap a further kind of Tier 4 content from humbler Tier 3
beginnings —which might connect us with more familiar linguistic, theory-me-
diated accounts of reference to natural kinds, such as those of Quine, Putnam,
and Boyd (Boyd 1999; Putnam 1975; Quine 1969; and see also Wilson 1982).
This strategy might not only fill in a missing link between deflationary informa-
tional theories of content and inflationary approaches to distinctively human
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intentionality, but also provide a fully naturalized story about how each stage
bootstraps the next without either over- or under-intellectualizing each Tier of
capacities (Beisecker 1999; Huebner 2011).

7. Conclusion

By updating one of the most popular heyday accounts, the forward-looking
view here offers a theory of content with distinctive strengths. It grounds at least
one kind of forward-looking content (Tier 3) in the limit of revision trajectories
determined not only by a representations” past or current causal relations, but
also in the way suitably flexible learning systems are disposed to revise those
representations in that environment. As a result, it can often assign contents to
whole-agent-level representations which are more ambitious than views which
focus on past or synchronic informational relations alone. Furthermore, the abil-
ity of such systems to so revise is determined by well-understood capacities to
detect evidence of misrepresentation through prediction failure, by bootstrap-
ping upon predictions from simpler (Tier 1—2) contents. And finally, the theory
can harmonize these tensions while providing useful guidance for the design
of cutting-edge behavioral experiments, addressing pressing empirical debates
in psychology and ethology. Specifically, when indeterminacy worries arise for
these ambitious contents, the agent’s own behavior can be used to resolve the
ascriptive disagreements, by presenting the animal with evidence of misrepre-
sentation and seeing whether it revises its representations to better track the
more ambitious contents in response. Thus, contrary to the pessimists, the pros-
pects for content naturalism’s future are good.
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