AN IMPROVED SPECTRAL LARGE SIEVE INEQUALITY FOR SL3(Z)
MATTHEW P. YOUNG

ABSTRACT. We prove an improved spectral large sieve inequality for the family of SLs3(Z)
Hecke-Maass cusp forms. The method of proof uses duality and its structure reveals unex-
pected connections to Heath-Brown’s large sieve for cubic characters.

1. INTRODUCTION

A large sieve inequality for a family of automorphic forms is a flexible and versatile tool
that represents quantitative orthogonality properties of the family. Strong results are known
for GLy; and GLs (e.g. see [M] and [IK, Chapter 7] for some surveys), but progress has been
more elusive in higher rank. The main focus of this article, the SL3(Z) spectral large sieve,
has seen some recent attention in a series of papers [B, Y, BB|. For some other notable
higher rank examples, see [DK, V, TZ].

We set some notation before continuing the discussion on the large sieve. Let F°"P denote
the family of Hecke-Maass cusp forms on SL3(Z). Similarly, let F¥* denote the family of
S L3(Z) Eisenstein series induced by S Ly (Z) cusp forms and Eisenstein series (see [G, Section
10.5] for a definition). Let F = FP U F¥. For F € F, let up = p = (u1, pio, 13) € ag be
its Langlands parameters, so the Ramanujan conjecture predicts that p € iR3. Let Ap(m,n)
denote the Hecke eigenvalues of F. Let 2 C a* be compact, Weyl group invariant, and
disjoint from the Weyl chamber walls. Let B = By be a box of sidelength V/100, with
100 <V < T and By C T2, and let Fy, C F denote the set of Hecke-Maass cusp forms and
Eisenstein series with up € W(B), where W is the Weyl group. Write

(1.1) FPP=F"NFy, and FS=F"NFy.

For F € F°P let wp = Res,_1L(F ® F,s). The Weyl law proved by Lapid and Miiller
[LM] gives that the cardinality of F{*F is V2T3+°(); technically, their result holds only for
congruence subgroups of SL3(Z) of sufficiently large level to ensure the non-existence of
elliptic fixed points, which should not be a major obstacle in their method. Work of Blomer
[B, Theorem 1] gives the weighted Weyl law for SL3(Z) that we need here. Any potential
violation to the Ramanujan conjecture must occur near the Weyl chamber walls (e.g. see
[B, p.678]), so automatically any cusp form with up € T satisfies Ramanujan. For a € 2,
we use the notation |a|] = ||a]|s.
The culmination of [B, Y, BB] is the following.
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Theorem 1.1 ([BB]). We have
1 2
(1.2) Z Z E‘ Z an)\p(l,n)’ < (T° +T*N)**¢|al?,

xc{cusp,Bis} FEF} N<n<2N

(1.3) Z Z i‘ Z an)\F(Ln)’Q < (T? 4+ T%N)'*<|a.

xc{cusp,Eis} FEF] N<n<2N

The formulations of (1.2) and (1.3) are imprecise because we have not fully described the
meaning of ) o e wy' for F' an Eisenstein series; see e.g. [BB, Section 4] for the correct
normalizing factor. The proof of Theorem 1.1 notably relies on the GG L3 Kuznetsov formula.
The spectral side of the Kuznetsov formula includes both the cusp forms as well as Fisenstein
series, which explains why Theorem 1.1 covers both types of automorphic forms.

By general principles of bilinear forms (cf. [IK, Chapter 7]), the optimal bound one could
expect on the right hand side of (1.2) would be (7% + N)'™_ while that of (1.3) would be
(T3 + N)'*2. However, Blomer and Buttcane showed that the term 72N in (1.2) cannot
be reduced in size, by constructing a choice of vector a so that the contribution from the
Eisenstein series is at least T?Nlal|?, for N > T3%%. An examination of the proof of [BB,
Proposition 1.3] shows their method leads to a lower bound of size TN |a|? for the left hand
side of (1.3). In Section 8 we sketch an alternative method to produce this lower bound.

A natural question is if the bounds (1.2)-(1.3) can be improved when the family is restricted
to cusp forms. The main result of this article affirms this.

Theorem 1.2. We have

1 2
(1.4) > o D> andp(Ln)| < (T°+ N+ T°N*?%)<a)?,

FeFos N<n<2N

Note that the right hand side of (1.4) is smaller than the right hand side of (1.3) for
N > T3 and is also just as good as the “N +T3” theoretically optimal bound for N > T°.

The starting point of our proof is to use the duality principle and the functional equation
of Rankin-Selberg L-functions on GL3 x G L3. This method is most effective when N is large,
since this makes the dual length of summation relatively shorter. The final step in our proof
is an application of the Buttcane-Blomer bound (1.3), which is strongest for relatively small
values of N.

The method of Thorner and Zaman [TZ] leads to the bound

1 2

1. . 6\1+¢e 2'

(15) > | Y ann)] <« V419
rerer T N<n<an

They also use duality and a contour-shifting argument, but apply the convexity bound for
the GL3 x G L3 Rankin-Selberg L-functions after shifting near to the 0-line. For comparison,
both (1.4) and (1.5) agree for N > T but (1.4) is superior for N < T°.

A curious aspect of the proof is that is reveals that certain aspects of the family F are
in analogy with the family of cubic Hecke characters. A large sieve inequality for this latter
family was proved by Heath-Brown [H-B] with an application to the problem of estimating
sums of cubic Gauss sums of prime arguments. See Section 7 below for a more thorough
discussion of Heath-Brown’s work and its connections to our proof of Theorem 1.2. Very
recently, Dunn and Radziwilt [DR] have shown that Heath-Brown’s result is (surprisingly!)
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optimal, due to the existence of an exceptionally large main term related to Kummer’s bias
in cubic Gauss sums. This main term is comparable to the term (T3N)%? in (1.4).

For simplicity, Theorem 1.2 treats the localized family F; but in principle one could use
the same method of proof to study Fr as well. Typically, small families are more difficult
than large families, so one might expect that a bound on F7 would be even easier to prove
than that for F;. However, our proof of Theorem 1.2 using duality requires the conductor of
L(1/2,F ® G) for F,G € F which is a bit simpler to express for F,G € F; than for general
F,G € Fr. Generically, for F,G € Fr, the conductor of L(1/2, F®G) is of size T? but there
are various conductor-dropping ranges to consider. Indeed, for F,G € F;i, the conductor of
L(1/2, F ® G) is of size TS. Another issue to mention is that the root number in the wider
family Fr is more difficult to handle (one wishes to separate variables) than in i, since in
this narrow family the root number is practically constant.

This discussion indicates that the approach via duality is beneficial when N > T3 (since
T3 is the square-root of the conductor in the narrow family F;), consistent with the remark
above that (1.4) is an improvement in this range.
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3. PRELIMINARIES
3.1. Maass forms on SL3(Z).

Lemma 3.1 (Hecke relations). Let F' € F. Then

(3.1) Ae(m, DA (L) = 30 (5.5,

d|(m,n)
and
m n
(3.2) Ar(m,n) = d|(z | u(d)/\p<g, 1>/\F (1, 3).
Moreover,
(3.3) Ap(m,n) = Ap(n,m).

The relation (3.1) appears in |G, Theorem 6.4.11], from which (3.2) follows from M&bius
inversion. For (3.3), see [G, Theorem 9.3.11 Addendum].

Lemma 3.2 (Convexity bound). For any F € Fr and any X > 1 we have
(3.4) > r(mon)? <. X(XT).

m2n<X
This follows from work of Xiannan Li [Li].
Lemma 3.3. Let F,G € F°“P. The Rankin-Selberg L-function L(s, F ® G) is defined by

Ap(m,n)Ag(m,n)
(d3m?2n)s

(3.5) Ls, FG) = >

dmmn>1
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It has meromorphic continuation to s € C with a possible pole at s = 1 only, and satisfies
the functional equation

(3.6) (s, FRG)L(s, F®G)=v(1-35G® F)L(1-5G®F),
where
(3.7) (s, F @ G) =~(s, ur, ) H Lr(s + wi(F) + 15(G)).

i,j=1
The pole at s =1 exists if and only if F = G.

For a reference, see [G, Theorem 7.4.9, Proposition 11.6.17].
3.2. Separation of variables.

Lemma 3.4. Suppose f is Schwartz-class. Then
(38) fa) = [ Fwpetaiy

where || flly < If|ls + | f”|l. The implied constant is absolute.

Proof. For any y € R, we have \]?(y)| < || f]l1- Integrating by parts twice, we similarly deduce
|f(y)] < 2my) 2|l f”|l1. We use the former bound for |y| < 1, and the latter for |y| > 1. O

To give an idea of how we wish to use Lemma 3.4 to separate variables, consider the
following example.

Example 3.5. Suppose that f is Schwartz-class. Moreover suppose that ~y,, and 6, are some
sequences of real numbers and that I is some finite set of integers. Then

(3.9) max Z bnbnf (Ym + 0n) Z bmr.
, mel

[b|=1
m,nel

F
< [l max

where [b] = (¥,c; [bal?)V2.
Proof. By Lemma 3.4, we have

(3.10) ‘Zb b f (Y + 61 mee me)<Zbe nY) )dy‘
(3.11) < ||l max ] > bue(my)|| 2 bue6uy)|
Taking the maximum over |b| = 1 immediately gives the result. O

4. DEFINITIONS OF NORMS AND SOME RELATIONS BETWEEN THEM

We begin by defining the basic norm that appears (implicitly) in Theorem 1.2:

2
(4.1) Ay (Fy, N) = max —‘ anAp(1 n)‘ .
laj=1 FeFo» N<n<2N
By the duality principle (cf. [IK, p.170]), we have A;(Fy, N) = AW (Fy, N), where
2
42 AW | SR
(4.2) (FrN)=max 30 | 3 bpwp “Ar(Ln)]

N<n<2N  peFosP
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and where |b|? = Y. |br|?. We also define a related norm Ay(Fy, N) = A@(Fy, N) by

1 2
(4.3) Ag(Fy, N) = max —’ Z A Ar(m,n)|
lal=1 Wr 7
Fe]-"c/“Sp N<m?2n<2N
and where
2
(44) ARFLN) =g S0 | 3 e nmen)

N<m2n<2N  FeF;*P

Finally we define a third norm Az(Fy, N) = A®(Fy, N) by

1 2
(45) A(FeN)=max 30 |3 aguahe(mn)|
A= FeFose FY N<d3m2n<aN
and where
2
(4.6) AVFL N =g S|S0 beAnm |

N<d3m2n<2N FeF"*P

We obviously have Ay (Fy, N) < Ay(Fy, N) < As(Fy, N). We also want relations in the
other direction.

Lemma 4.1. We have
A 1 NN
(4.7) s(Fr, N) < (log N) max <E> o(Fv, R).

Proof. We prove this on the dual side, using (4.6) and (4.4). By breaking the sum up so
R < m?n < 2R and summing R over dyadic segments, we obtain

Ny 1/3 2

(3) iV ~1/2 ’

(4.8) AY(Fy,N) < (logN)  ax <R> |r{)1|fi}1< Z ’ Z brwy ' “Ap(m,n)
R<m?2n<2R FE]-"C/HSp
The result follows immediately. O
Lemma 4.2. We have
(4.9) Ao(Fy, N) < (NT)° max min (YA (Fv, X), XA (Fy, Y)).
Y2ZX<N

Proof. Again, we prove this on the dual side, using (4.4) and (4.2). By the Hecke relation
(3.2), we deduce

(2) _ _1/2 E 2
@10) ARGy N) =max ) > ) 32 b (G e (1)
N<m2n<2N d|(m,n) Fe ].‘C‘“p

Applying Cauchy’s inequality and a divisor function bound to take the sum over d to the
outside, we deduce

411)  AD(F,, N) < N° ‘ e Am (2 1) e (1,2 ‘2.
( ) (Fv,N) < T{’la}qu;QNd;n Fefz;usp FWr <d ) F< d>

Interchanging the order of summation and changing variables m — dm and n — dn, we
obtain

(4.12) AP(Fy,N) < Nomax Y ‘ S brwp A Ar(m, DAp(1,n)

N<d3m?n<2N FeF*P

2
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Now we further restrict d, m and n so dm <Y and n < X, and let V. = bpAp(m,1). Then

2
A®(F, N) < N* ‘ Wown 2 Ap(1
(Fr,N) < N* max max Y Vewp PAe(1n)
N<d*m?n<2N FeF P

< N° max max »  AD(F, X) > |bp[)Ap(m, 1),

XY2<N |b|=1
<N |b| ey FeFo

From Lemma 3.2 we deduce >, . |Ap(m,1)]* < Y(NT)¢, uniformly in F, leading to
AP(Fy,N) < (NT)® max YAW(F, X).
Y2X<N
It remains to show that a similar bound holds but with Y AM (F,, X) replaced by XAW(FyY).

This follows by going through the same proof but reversing the roles of m and n, and using
(3.3) along the way:. O

Chaining together Lemmas 4.1 and 4.2, we immediately deduce the following.
Lemma 4.3. We have

. N \/3
(413)  Ay(Fv, N) < (NT) masx ( XY2> min (mlufv, X), XA (Fr, Y)).

See Section 7 for a comparison of Lemma 4.3 with [H-B, Lemma 6].
We also observe that the analogs of Lemmas 4.1-4.3 hold equally well for Eisenstein series.

5. FUNCTIONAL EQUATION

In this section we use the functional equation of the Rankin-Selberg L-function to deduce
the following estimate.

Lemma 5.1. We have
N
(5.1) AB(F,N) € N+ 7g(NT  max  A®(F, 7).

1% 1<Z< L2 (TN)e
The proof of Lemma 5.1 crucially uses that the family is restricted to cusp forms. The
reader may examine the proof of Proposition 8.1 below to see how the family of Eisenstein
series exhibits different behavior than the cusp forms.

Proof. Select a smooth nonnegative bump function w with compact support on the positive
reals, satisfying w(z) > 1 for 1 < 2 < 2. Then

2

3) d*>m®n
(5.2) AY(F, N) < max < )‘ Z bpwy' )\F (m,n)
Ib|=1
d,m,n FEfcuSp
Next open the square, apply Mellin inversion, and evaluate the resulting Dirichlet series

using (3.5), giving

bpbe 1 . —
(5.3) A®(F,N) < max > B /3 2 N*@(s)L(s, F @ G)ds
FGeFose Wr (3/2)

Next we shift the contour of integration to the line Re(s) = —¢, change variables s — 1 — s,
and apply the functional equation (3.6). In this process we cross a potential pole at s = 1
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only, which exists if and only if ' = G. Recalling that wp = Res,_ L(F ® F, s), this pole
contributes the term of size O(NV) to the right hand side of (5.1). In all we obtain A®)(F;, N)
is at most O(N) plus

G4 max| X %21 NI=5G(1 — ) Z(S’ Mo E) 5o 6 Fds|.
bl=1 FGero Wi Wg T J(3/2) V(1 = s, pir, pic)

Now we examine the ratio of gamma factors appearing in (5.4). Six out of the nine gamma
factors in (3.7) have |u;(F) + 1;(G)| large, of size T' (the precise size determined up to O(1)
by the location of the box B). The remaining three gamma factors have |p;(F) + 1i;(G)| of
size O(1). Moreover, since F' and G automatically satisfy Ramanujan by the location of the
box B, then yu;(F) + 1;(G) € iR. This means that for Re(s) > 0, we have that the ratio of
gamma factors appearing in (5.4) is analytic, and satisfies the bound

b5 v(s, pa, pr) A
5.5 ‘ Sw(l —s ‘ LRe(s),a (1 +]s
(5.5) Q: )vCl—sxuaua Re(s),A (1 +[s])

for any A > 0, where Q = T°. Now in (5.4) we open up the Dirichlet series, obtaining

brbgN 1 —1 o e pe) Aa(mn)Ap(m,n)
Z Z /(3/2)w(1 )7( !

1/2 1/2 21 1— S, 1F, /“LG) (d3m2nN)S

max
[b[=1

d,m,n FGGJ-'C“Sp

We may truncate the Dirichlet series at d*m’n < ¢(TN)® with a very small error term

(certainly smaller than the O(N) term already accounted for), by shifting contours far to the

right. Having imposed this truncation, we may then shift the contour to the line Re(s) = €.

We may also truncate the integral at |Im(s)| < (NT)¢, without producing a new error term.
Then (5.6) is reduced to

brbag N
) Y. man
Bmine S (NT): FGEF™ Wr Wa

1

— o(1 —

omi | Re=e O79)
Im(s)|<(NT)¢

5.7
(5:7)  max

7(37 MG):U“F) AG(”%”)E(m) n)
Y1 = s, pur, pa)  (dBPmPnN)

ds

At a first pass, the reader is encouraged to “pretend” that % equals Q"2 (which is

a good first-order approximation) and continue with (5.10) to finish the proof. Unfortunately,
a rigorous argument is a bit more technical. The plan is to separate the variables ur and ug
in the ratio of gamma factors. The basic idea is encoded in Example 3.5. To this end, let
wi(B), i =1,2,3 denote a point inside the box B (the choice of point is irrelevant). Then

Das + m(F) + 15(G) _ Tals +u(B) + 5 (B) + (0, + 1))
Tall— s+ m(F) + 15(G)  Ta(l— s+ u(B) + 5 (B) + i3, + 1,))
where i0; = p;(F) — pi(B) and iv; = p;(G) — pj(B). Here 6;,v; = O(1) and are real. The
goal is to separate d; from v;. Let
Pa(s + pu(B) + G(B) +i2)  Ta(l— s+ u(B) + 5(B))

Ta(s + u(B) + 5(B)) Ta(l— 5+ m(B) + 5(B) + ia)

(5.8)

(5.9) fx) =
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By Stirling, for z € R and |z| < 1, we have |f(z)|+ |f"(x)] < T¢. By Lemma 3.4 and (3.9),
in effect this means we can separate the variables d;, v; at “cost” at most T°. Applying this
with each of the gamma factors, we obtain that (5.7) is bounded by

N . brbc —
(610) FHOTFmax 3| X —SEAelm ) Xe(m.n)]

d3m2n<<TW6(NT)5 F,GeF{"P Wp Wg

N
< —(NT)*  max A®) (.7:1,Z>. O
T 1<2< L2 (TN)e

6. COMPLETION OF THE PROOF
Now we prove Theorem 1.2. We chain together the results from Section 4 as well as Lemma

5.1, giving

N
(6.1) Ay(Fi,N) < AO(F,N) < N+ (NT)®  max N$@L@
T 1<2< T8 (TN)e

N
< N+ (NT)®  max
T V2xX< L2 (NT):

(TG/N

e >1/3 min (YAl(fl,X),XAl(fhy))

This sequence of inequalities is reminiscent of (and somewhat inspired by) [H-B, Section
8]. Finally we insert the Blomer-Buttcane bound A;(F;, M) < (T + T?*M)(TM)® from
Theorem 1.1. In all, we obtain

T¢/N
XY?

N TS /N
N+ —(NT (
SN vixets \XY?

7; T(T_6)1/3>(NT)5<<N+(NT)5<<T3N)2/3+T5)’

N
completing the proof of Theorem 1.2.

1/3
&Gh)<N+EWﬂ mm( ) mqwﬁ+ﬁmxwﬁfww

T3 T6
yex<Z8

1/3
) T%XY+7mmm&Y»

N 2
< N+ 7%

7. CUBIC CHARACTERS

In this section we briefly recall the large sieve inequality of Heath-Brown for cubic char-
acters [H-B] for the purpose of developing an analogy with the SL3(Z) cusp form family
considered in this paper.

Let 6 = exp(2mi/3), and for nonzero m,n € Z[f] let (m/n)s denote the cubic residue
symbol. The cubic reciprocity law gives that (m/n)s = (n/m)s. Let N(-) denote the norm

map of Q[w]/Q. Let

(7.1) A(M gl\&}lc Z ‘Z aq< )

neZlw] q€Z[0)
N(n)<M N(q)<Q

)

where the symbol >~ means the sums are restricted to (nonzero) square-free integers. Heath-
Brown’s cubic large sieve is the bound

(7.2) A(M, Q) < (M +Q+ (MQ)**)(MQ).
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To make the notation appear more similar to the SL3(Z) family, define (for m,n, q € Z[6])

n\ [/m
7.3 A(m, n) = (-) (-) .
(73) (= (2) (%),
Note the simple identities which the reader is invited to compare with Lemma 3.1:

A(m,n) = N (n,m) = A\, (mn? 1) = A\,(1,nm?) = A\, (m, 1)\, (1, n).

Also observe A\ (d?,1) = 1 for (d,q) = 1.
Heath-Brown'’s first step is to drop the condition that n is square-free in (7.2), leading to

the definition
2

(7.4) A(MQ) =max 3T [ulmn)l| Yo7 ady(m.n)
" dm,nezlf) AL
N(d3m?n)<M N(@)<Q

Obviously Ay(M,Q) < Az(M,Q), which parallels our relation Ay(Fy,N) < Az(Fy,N).
The same steps used to prove Lemma 4.3 can be applied here to show
( M

Xvien \XY?
which is essentially [H-B, Lemma 6].

Heath-Brown also gives a relationship between As(M, Q) and A3(Q*/M,Q) (see [H-B,
Lemmas 7 and 8] for the precise statement) which arises from the functional equation and
is analogous to Lemma 5.1.

(75)  A(M,Q) < (MQY )" min(XA(Y,Q). YA (X.Q))

8. LOWER BOUND VIA DUALITY

Proposition 8.1. There exists a choice of vector a so that

(8_1) Z —’ Z anAF(l,n) 2 > (TN)lfslaP,

Fe]:E” N<n<2N
for N > T7/3+9,

Since a lower bound of this type (however, for the wide family F¥) was already proved
in [BB, Proposition 1.3], for brevity we only give a sketch which could be made rigorous
with more work. Blomer and Buttcane [BB, Section 4] showed that the lower bound of size
“T?N” in (1.2) comes from the Eisenstein series F(z,1/2+it, u;) induced from SLs(Z) cusp
forms u;. This Eisenstein series £/ has Hecke eigenvalues

Ap(Ln) =An) = > XN(di)d"d3",
didso=n
and Langlands parameters p = (2it, —it + it;, —it — it;), where t; is the spectral parameter

of u;. Moreover, wp = T°M) | so we will drop this aspect in the proof.

Proof. To simplify notation, say that B is the spectral ball of size O(1) centered at i(27, T, —3T).
This means ¢t =T+ O(1) and t; = T'+ O(1). The contribution of this family of Eisenstein
series, on the dual side, takes the form (after smoothing)

(8.2) S = Z n/N‘ ﬁt,tjA(n)

t,t;=T+O(1

2
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Expanding the square, we obtain

1 o= AN
(8.3) S :/ BB — Nsw(s)ZMds.
tH t,t,=T+0(1) 2mi (14¢) 1 ns
Zuj,ug.,t,t’ (S)
Note

s (dl)dfztd%Zt)\,( )ezlt e;Zzt’
(84) Zyyw par(s) = ’ S
o d1d;162 <d1d2)

H(l +p [/\ ( ))\/( ) —it+it + )\j(p)p—it—%t’ + )\;(p)p%t-kit’ +p2it—2it’] + OUj,ug. (p—QS))‘

p
With some care, including use of the convexity bound for GLy x G Ly L-functions due to
Iwaniec [I], one may then derive

(8.5) Zujut a0 () = C(s—2it+23t") L(s+it+2it’, u;) L(s—2it—it', uj) L(s+it—it’, u;@u}) A(s),

where A(s) = Ay 1.0 (5) is given by an absolutely convergent Euler product for Re(s) > 1/2,
satisfying |A(o +iy)| <, T¢, for o > 1/2.

Returning to (8.3), we shift contours to the line Re(s) = 1/2 + . Note the pole of zeta
at s = 1 + 2it — 2it’ which occurs for all pairs uj,u;. This polar term, say denoted Sy,
contributes (roughly)

(8.6)

BB NG (1426t — 2t ) L(14-3dt, u;) L(1—3it’, ;) L(1+3it — 3it’, u;@u)).
tt t;,t;=T+O0(1)

If we choose f;, = L(1+3it,u;)~" (alternatively, one could take 3;,, = L(1 + 3it,u;)) then
this polar term becomes approximately

(8.7) N Y Ly ®u)~NT”
t,t;=T+O0(1)
With a bit more care, one can derive |Sy| > (NT?)!~¢ for this choice of 3.

Next we estimate the contribution to S from the new line of integration at Re(s) = 1/2+¢;
call this &’. Jutila and Motohashi [JM] showed a Weyl bound for the SLy(Z) cusp forms,
namely
(8.8) L(1/2 +it,u;) < (1 + [t] + [t;])/3*.

Combining this with the convexity bound for the GLy x GLs factor in (8.5) (which has
conductor of size T?) gives |Z(c + iy)| < T7/%*¢. Note that the (-factor is evaluated at
o + iy with |y| < T¢, so it practically gives no contribution here. Hence, for this choice of
[, we have

(89) S/<<N1/2+ET7/6+5/ |56/| <<N1/2+5T7/6+6T2.
£t/ 5,8, =T+O(1)
Thus

(8.10) S| > (NT?)'=¢ 4 O(NV2erT/6ter?),



AN IMPROVED SPECTRAL LARGE SIEVE INEQUALITY FOR SLs(Z) 11

Note the polar term dominates the error term provided N >> T7/3+9_ Finally, we observe
that

(s.11) [ Pa =T,
t,tj=T+O(1)
whence |S| > (NT)'¢ [|3|* with this choice of 3. O

9. LOOSE ENDS

We list a few possible directions for future work.

(1) Extend Theorem 1.2 to cover the family Fy for more general V, with 1 < V < T.

(2) Extend Theorem 1.1, which gives a bound on the norm A; using the Kuznetsov
formula, to directly give a bound on the norm A, (modified to include the Eisenstein
series as well as the cusp forms). The point would be to bypass the use of Lemma
4.2 in (6.1), though it is unclear if any improvement is possible this way.

(3) Is it possible to use the SL3(Z) Kuznetsov formula to directly bound the cuspidal
part of the spectrum in the large sieve inequality? (By subtracting off the Eisenstein
parts, which one would presumably then control with lower-rank tools such as the
G Ly Kuznetsov formula.) As a point of reference, Luo has succesfully isolated the
cuspidal spectrum in a G'Ly large sieve problem [Lu].

(4) Can the term T?N in (1.3) be reduced to TN, to match the lower bound from
Proposition 8.17 If so, this would immediately improve Theorem 1.2 by replacing the
term T° by T4

(5) By analogy with [H-B, DR], determine if the term (7°N)?/3 in (1.4) is not removable.
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