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Abstract. We prove an improved spectral large sieve inequality for the family of SL3(Z)
Hecke-Maass cusp forms. The method of proof uses duality and its structure reveals unex-
pected connections to Heath-Brown’s large sieve for cubic characters.

1. Introduction

A large sieve inequality for a family of automorphic forms is a flexible and versatile tool
that represents quantitative orthogonality properties of the family. Strong results are known
for GL1 and GL2 (e.g. see [M] and [IK, Chapter 7] for some surveys), but progress has been
more elusive in higher rank. The main focus of this article, the SL3(Z) spectral large sieve,
has seen some recent attention in a series of papers [B, Y, BB]. For some other notable
higher rank examples, see [DK, V, TZ].

We set some notation before continuing the discussion on the large sieve. Let F cusp denote
the family of Hecke-Maass cusp forms on SL3(Z). Similarly, let FEis denote the family of
SL3(Z) Eisenstein series induced by SL2(Z) cusp forms and Eisenstein series (see [G, Section
10.5] for a definition). Let F = F cusp ∪ FEis. For F ∈ F , let µF = µ = (µ1, µ2, µ3) ∈ a

∗
C be

its Langlands parameters, so the Ramanujan conjecture predicts that µ ∈ iR3. Let λF (m,n)
denote the Hecke eigenvalues of F . Let Ω ⊂ a

∗ be compact, Weyl group invariant, and
disjoint from the Weyl chamber walls. Let B = BV be a box of sidelength V/100, with
100 ≤ V ≤ T and BV ⊂ TΩ, and let FV ⊂ F denote the set of Hecke-Maass cusp forms and
Eisenstein series with µF ∈ W (B), where W is the Weyl group. Write

(1.1) F cusp
V = F cusp ∩ FV , and FEis

V = FEis ∩ FV .

For F ∈ F cusp, let ωF = Ress=1L(F ⊗ F , s). The Weyl law proved by Lapid and Müller
[LM] gives that the cardinality of F cusp

V is V 2T 3+o(1); technically, their result holds only for
congruence subgroups of SL3(Z) of sufficiently large level to ensure the non-existence of
elliptic fixed points, which should not be a major obstacle in their method. Work of Blomer
[B, Theorem 1] gives the weighted Weyl law for SL3(Z) that we need here. Any potential
violation to the Ramanujan conjecture must occur near the Weyl chamber walls (e.g. see
[B, p.678]), so automatically any cusp form with µF ∈ TΩ satisfies Ramanujan. For a ∈ `2,
we use the notation |a| = ‖a‖2.

The culmination of [B, Y, BB] is the following.
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Theorem 1.1 ([BB]). We have

(1.2)
∑

∗∈{cusp,Eis}

∑

F∈F∗

T

1

ωF

∣∣∣
∑

N≤n≤2N

anλF (1, n)
∣∣∣
2

� (T 5 + T 2N)1+ε|a|2,

(1.3)
∑

∗∈{cusp,Eis}

∑

F∈F∗

1

1

ωF

∣∣∣
∑

N≤n≤2N

anλF (1, n)
∣∣∣
2

� (T 3 + T 2N)1+ε|a|2.

The formulations of (1.2) and (1.3) are imprecise because we have not fully described the
meaning of

∑
F∈FEis ω

−1
F for F an Eisenstein series; see e.g. [BB, Section 4] for the correct

normalizing factor. The proof of Theorem 1.1 notably relies on the GL3 Kuznetsov formula.
The spectral side of the Kuznetsov formula includes both the cusp forms as well as Eisenstein
series, which explains why Theorem 1.1 covers both types of automorphic forms.

By general principles of bilinear forms (cf. [IK, Chapter 7]), the optimal bound one could
expect on the right hand side of (1.2) would be (T 5 + N)1+ε, while that of (1.3) would be
(T 3 + N)1+ε. However, Blomer and Buttcane showed that the term T 2N in (1.2) cannot
be reduced in size, by constructing a choice of vector a so that the contribution from the
Eisenstein series is at least T 2N |a|2, for N � T 3+δ. An examination of the proof of [BB,
Proposition 1.3] shows their method leads to a lower bound of size TN |a|2 for the left hand
side of (1.3). In Section 8 we sketch an alternative method to produce this lower bound.

A natural question is if the bounds (1.2)-(1.3) can be improved when the family is restricted
to cusp forms. The main result of this article affirms this.

Theorem 1.2. We have

(1.4)
∑

F∈Fcusp
1

1

ωF

∣∣∣
∑

N≤n≤2N

anλF (1, n)
∣∣∣
2

� (T 5 + N + T 2N2/3)1+ε|a|2.

Note that the right hand side of (1.4) is smaller than the right hand side of (1.3) for
N � T 3+ε, and is also just as good as the “N+T 3” theoretically optimal bound for N � T 6.

The starting point of our proof is to use the duality principle and the functional equation
of Rankin-Selberg L-functions on GL3×GL3. This method is most effective when N is large,
since this makes the dual length of summation relatively shorter. The final step in our proof
is an application of the Buttcane-Blomer bound (1.3), which is strongest for relatively small
values of N .

The method of Thorner and Zaman [TZ] leads to the bound

(1.5)
∑

F∈Fcusp
1

1

ωF

∣∣∣
∑

N≤n≤2N

anλF (1, n)
∣∣∣
2

� (N + T 6)1+ε|a|2.

They also use duality and a contour-shifting argument, but apply the convexity bound for
the GL3×GL3 Rankin-Selberg L-functions after shifting near to the 0-line. For comparison,
both (1.4) and (1.5) agree for N � T 6, but (1.4) is superior for N � T 6.

A curious aspect of the proof is that is reveals that certain aspects of the family F are
in analogy with the family of cubic Hecke characters. A large sieve inequality for this latter
family was proved by Heath-Brown [H-B] with an application to the problem of estimating
sums of cubic Gauss sums of prime arguments. See Section 7 below for a more thorough
discussion of Heath-Brown’s work and its connections to our proof of Theorem 1.2. Very
recently, Dunn and Radziwi l l [DR] have shown that Heath-Brown’s result is (surprisingly!)
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optimal, due to the existence of an exceptionally large main term related to Kummer’s bias
in cubic Gauss sums. This main term is comparable to the term (T 3N)2/3 in (1.4).

For simplicity, Theorem 1.2 treats the localized family F1 but in principle one could use
the same method of proof to study FT as well. Typically, small families are more difficult
than large families, so one might expect that a bound on FT would be even easier to prove
than that for F1. However, our proof of Theorem 1.2 using duality requires the conductor of
L(1/2, F ⊗G) for F,G ∈ F which is a bit simpler to express for F,G ∈ F1 than for general
F,G ∈ FT . Generically, for F,G ∈ FT , the conductor of L(1/2, F ⊗G) is of size T 9 but there
are various conductor-dropping ranges to consider. Indeed, for F,G ∈ F1, the conductor of
L(1/2, F ⊗G) is of size T 6. Another issue to mention is that the root number in the wider
family FT is more difficult to handle (one wishes to separate variables) than in F1, since in
this narrow family the root number is practically constant.

This discussion indicates that the approach via duality is beneficial when N � T 3+δ (since
T 3 is the square-root of the conductor in the narrow family F1), consistent with the remark
above that (1.4) is an improvement in this range.

2. Acknowledgements

I thank Valentin Blomer and Jack Buttcane for helpful feedback on this paper.

3. Preliminaries

3.1. Maass forms on SL3(Z).

Lemma 3.1 (Hecke relations). Let F ∈ F . Then

(3.1) λF (m, 1)λF (1, n) =
∑

d|(m,n)

λF

(m
d
,
n

d

)
,

and

(3.2) λF (m,n) =
∑

d|(m,n)

µ(d)λF

(m
d
, 1
)
λF

(
1,

n

d

)
.

Moreover,

(3.3) λF (m,n) = λF (n,m).

The relation (3.1) appears in [G, Theorem 6.4.11], from which (3.2) follows from Möbius
inversion. For (3.3), see [G, Theorem 9.3.11 Addendum].

Lemma 3.2 (Convexity bound). For any F ∈ FT and any X ≥ 1 we have

(3.4)
∑

m2n≤X

|λF (m,n)|2 �ε X(XT )ε.

This follows from work of Xiannan Li [Li].

Lemma 3.3. Let F,G ∈ F cusp. The Rankin-Selberg L-function L(s, F ⊗G) is defined by

(3.5) L(s, F ⊗G) =
∑

d,m,n≥1

λF (m,n)λG(m,n)

(d3m2n)s
.
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It has meromorphic continuation to s ∈ C with a possible pole at s = 1 only, and satisfies

the functional equation

(3.6) γ(s, F ⊗G)L(s, F ⊗G) = γ(1 − s,G⊗ F )L(1 − s,G⊗ F ),

where

(3.7) γ(s, F ⊗G) = γ(s, µF , µG) =
3∏

i,j=1

ΓR(s + µi(F ) + µj(G)).

The pole at s = 1 exists if and only if F = G.

For a reference, see [G, Theorem 7.4.9, Proposition 11.6.17].

3.2. Separation of variables.

Lemma 3.4. Suppose f is Schwartz-class. Then

(3.8) f(x) =

∫ ∞

−∞

f̂(y)e(xy)dy,

where ‖f̂‖1 � ‖f‖1 + ‖f ′′‖1. The implied constant is absolute.

Proof. For any y ∈ R, we have |f̂(y)| ≤ ‖f‖1. Integrating by parts twice, we similarly deduce

|f̂(y)| ≤ (2πy)−2‖f ′′‖1. We use the former bound for |y| ≤ 1, and the latter for |y| > 1. �

To give an idea of how we wish to use Lemma 3.4 to separate variables, consider the
following example.

Example 3.5. Suppose that f is Schwartz-class. Moreover suppose that γm and δn are some

sequences of real numbers and that I is some finite set of integers. Then

(3.9) max
|b|=1

∣∣∣
∑

m,n∈I

bmbnf(γm + δn)
∣∣∣ ≤ ‖f̂‖1 max

|b|=1

∣∣∣
∑

m∈I

bm

∣∣∣
2

.

where |b| = (
∑

n∈I |bn|
2)1/2.

Proof. By Lemma 3.4, we have
∣∣∣
∑

m,n

bmbnf(γm + δn)
∣∣∣ =

∣∣∣
∫ ∞

−∞

f̂(y)
(∑

m

bme(γmy)
)(∑

n

bne(δny)
)
dy

∣∣∣(3.10)

≤ ‖f̂‖1 max
y∈R

∣∣∣
∑

m

bme(γmy)
∣∣∣
∣∣∣
∑

n

bne(δny)
∣∣∣.(3.11)

Taking the maximum over |b| = 1 immediately gives the result. �

4. Definitions of norms and some relations between them

We begin by defining the basic norm that appears (implicitly) in Theorem 1.2:

(4.1) ∆1(FV , N) = max
|a|=1

∑

F∈Fcusp

V

1

ωF

∣∣∣
∑

N≤n≤2N

anλF (1, n)
∣∣∣
2

.

By the duality principle (cf. [IK, p.170]), we have ∆1(FV , N) = ∆(1)(FV , N), where

(4.2) ∆(1)(FV , N) = max
|b|=1

∑

N≤n≤2N

∣∣∣
∑

F∈Fcusp

V

bFω
−1/2
F λF (1, n)

∣∣∣
2

,



AN IMPROVED SPECTRAL LARGE SIEVE INEQUALITY FOR SL3(Z) 5

and where |b|2 =
∑

F |bF |
2. We also define a related norm ∆2(FV , N) = ∆(2)(FV , N) by

(4.3) ∆2(FV , N) = max
|a|=1

∑

F∈Fcusp

V

1

ωF

∣∣∣
∑

N≤m2n≤2N

am,nλF (m,n)
∣∣∣
2

,

and where

(4.4) ∆(2)(FV , N) = max
|b|=1

∑

N≤m2n≤2N

∣∣∣
∑

F∈Fcusp

V

bFω
−1/2
F λF (m,n)

∣∣∣
2

.

Finally we define a third norm ∆3(FV , N) = ∆(3)(FV , N) by

(4.5) ∆3(FV , N) = max
|a|=1

∑

F∈Fcusp

V

1

ωF

∣∣∣
∑

N≤d3m2n≤2N

ad,m,nλF (m,n)
∣∣∣
2

,

and where

(4.6) ∆(3)(FV , N) = max
|b|=1

∑

N≤d3m2n≤2N

∣∣∣
∑

F∈Fcusp

V

bFω
−1/2
F λF (m,n)

∣∣∣
2

.

We obviously have ∆1(FV , N) ≤ ∆2(FV , N) ≤ ∆3(FV , N). We also want relations in the
other direction.

Lemma 4.1. We have

(4.7) ∆3(FV , N) � (logN) max
R�N

(N
R

)1/3

∆2(FV , R).

Proof. We prove this on the dual side, using (4.6) and (4.4). By breaking the sum up so
R ≤ m2n ≤ 2R and summing R over dyadic segments, we obtain

(4.8) ∆(3)(FV , N) � (logN) max
1�R�N

(N
R

)1/3

max
|b|=1

∑

R≤m2n≤2R

∣∣∣
∑

F∈Fcusp

V

bFω
−1/2
F λF (m,n)

∣∣∣
2

.

The result follows immediately. �

Lemma 4.2. We have

(4.9) ∆2(FV , N) � (NT )ε max
Y 2X�N

min
(
Y ∆1(FV , X), X∆1(FV , Y )

)
.

Proof. Again, we prove this on the dual side, using (4.4) and (4.2). By the Hecke relation
(3.2), we deduce

(4.10) ∆(2)(FV , N) = max
|b|=1

∑

N≤m2n≤2N

∣∣∣
∑

d|(m,n)

µ(d)
∑

F∈Fcusp

V

bFω
−1/2
F λF

(m
d
, 1
)
λF

(
1,

n

d

)∣∣∣
2

.

Applying Cauchy’s inequality and a divisor function bound to take the sum over d to the
outside, we deduce

(4.11) ∆(2)(FV , N) � N ε max
|b|=1

∑

N≤m2n≤2N

∑

d|(m,n)

∣∣∣
∑

F∈Fcusp

V

bFω
−1/2
F λF

(m
d
, 1
)
λF

(
1,

n

d

)∣∣∣
2

.

Interchanging the order of summation and changing variables m → dm and n → dn, we
obtain

(4.12) ∆(2)(FV , N) � N ε max
|b|=1

∑

N≤d3m2n≤2N

∣∣∣
∑

F∈Fcusp

V

bFω
−1/2
F λF (m, 1)λF (1, n)

∣∣∣
2

.
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Now we further restrict d, m and n so dm � Y and n � X, and let b′F = bFλF (m, 1). Then

∆(2)(FV , N) � N ε max
XY 2�N

max
|b|=1

∑

N≤d3m2n≤2N
dm�Y
n�X

∣∣∣
∑

F∈Fcusp

V

b′Fω
−1/2
F λF (1, n)

∣∣∣
2

� N ε max
XY 2�N

max
|b|=1

∑

dm�Y

∆(1)(FV , X)
∑

F∈Fcusp

V

|bF |
2|λF (m, 1)|2.

From Lemma 3.2 we deduce
∑

dm�Y |λF (m, 1)|2 � Y (NT )ε, uniformly in F , leading to

∆(2)(FV , N) � (NT )ε max
Y 2X�N

Y ∆(1)(FV , X).

It remains to show that a similar bound holds but with Y ∆(1)(FV , X) replaced by X∆(1)(FV , Y ).
This follows by going through the same proof but reversing the roles of m and n, and using
(3.3) along the way. �

Chaining together Lemmas 4.1 and 4.2, we immediately deduce the following.

Lemma 4.3. We have

(4.13) ∆3(FV , N) � (NT )ε max
Y 2X�N

( N

XY 2

)1/3

min
(
Y ∆1(FV , X), X∆1(FV , Y )

)
.

See Section 7 for a comparison of Lemma 4.3 with [H-B, Lemma 6].
We also observe that the analogs of Lemmas 4.1–4.3 hold equally well for Eisenstein series.

5. Functional equation

In this section we use the functional equation of the Rankin-Selberg L-function to deduce
the following estimate.

Lemma 5.1. We have

(5.1) ∆(3)(F1, N) � N +
N

T 3
(NT )ε max

1≤Z�T6

N
(TN)ε

∆(3)
(
F1, Z

)
.

The proof of Lemma 5.1 crucially uses that the family is restricted to cusp forms. The
reader may examine the proof of Proposition 8.1 below to see how the family of Eisenstein
series exhibits different behavior than the cusp forms.

Proof. Select a smooth nonnegative bump function w with compact support on the positive
reals, satisfying w(x) ≥ 1 for 1 ≤ x ≤ 2. Then

(5.2) ∆(3)(F1, N) ≤ max
|b|=1

∑

d,m,n

w
(d3m2n

N

)∣∣∣
∑

F∈Fcusp
1

bFω
−1/2
F λF (m,n)

∣∣∣
2

.

Next open the square, apply Mellin inversion, and evaluate the resulting Dirichlet series
using (3.5), giving

(5.3) ∆(3)(F1, N) ≤ max
|b|=1

∑

F,G∈Fcusp
1

bF bG

ω
1/2
F ω

1/2
G

1

2πi

∫

(3/2)

N sw̃(s)L(s, F ⊗G)ds.

Next we shift the contour of integration to the line Re(s) = −ε, change variables s → 1− s,
and apply the functional equation (3.6). In this process we cross a potential pole at s = 1
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only, which exists if and only if F = G. Recalling that ωF = Ress=1L(F ⊗ F , s), this pole
contributes the term of size O(N) to the right hand side of (5.1). In all we obtain ∆(3)(F1, N)
is at most O(N) plus

(5.4) max
|b|=1

∣∣∣
∑

F,G∈Fcusp
1

bF bG

ω
1/2
F ω

1/2
G

1

2πi

∫

(3/2)

N1−sw̃(1 − s)
γ(s, µG, µF )

γ(1 − s, µF , µG)
L(s,G⊗ F )ds

∣∣∣.

Now we examine the ratio of gamma factors appearing in (5.4). Six out of the nine gamma
factors in (3.7) have |µi(F ) + µj(G)| large, of size T (the precise size determined up to O(1)
by the location of the box B). The remaining three gamma factors have |µi(F ) + µj(G)| of
size O(1). Moreover, since F and G automatically satisfy Ramanujan by the location of the
box B, then µi(F ) + µj(G) ∈ iR. This means that for Re(s) > 0, we have that the ratio of
gamma factors appearing in (5.4) is analytic, and satisfies the bound

(5.5)
∣∣∣Q 1

2
−sw̃(1 − s)

γ(s, µG, µF )

γ(1 − s, µF , µG)

∣∣∣ �Re(s),A (1 + |s|)−A,

for any A > 0, where Q = T 6. Now in (5.4) we open up the Dirichlet series, obtaining

(5.6) max
|b|=1

∣∣∣
∑

d,m,n

∑

F,G∈Fcusp
1

bF bGN

ω
1/2
F ω

1/2
G

1

2πi

∫

(3/2)

w̃(1 − s)
γ(s, µG, µF )

γ(1 − s, µF , µG)

λG(m,n)λF (m,n)

(d3m2nN)s
ds
∣∣∣.

We may truncate the Dirichlet series at d3m2n � Q
N

(TN)ε with a very small error term
(certainly smaller than the O(N) term already accounted for), by shifting contours far to the
right. Having imposed this truncation, we may then shift the contour to the line Re(s) = ε.
We may also truncate the integral at |Im(s)| � (NT )ε, without producing a new error term.

Then (5.6) is reduced to

(5.7) max
|b|=1

∣∣∣
∑

d3m2n�T6

N
(NT )ε

∑

F,G∈Fcusp
1

bF bGN

ω
1/2
F ω

1/2
G

1

2πi

∫

Re(s)=ε
|Im(s)|�(NT )ε

w̃(1 − s)
γ(s, µG, µF )

γ(1 − s, µF , µG)

λG(m,n)λF (m,n)

(d3m2nN)s
ds
∣∣∣.

At a first pass, the reader is encouraged to “pretend” that γ(s,µG,µF )
γ(1−s,µF ,µG)

equals Qs− 1
2 (which is

a good first-order approximation) and continue with (5.10) to finish the proof. Unfortunately,
a rigorous argument is a bit more technical. The plan is to separate the variables µF and µG

in the ratio of gamma factors. The basic idea is encoded in Example 3.5. To this end, let
µi(B), i = 1, 2, 3 denote a point inside the box B (the choice of point is irrelevant). Then

(5.8)
ΓR(s + µi(F ) + µj(G))

ΓR(1 − s + µi(F ) + µj(G))
=

ΓR(s + µi(B) + µj(B) + i(δi + νj))

ΓR(1 − s + µi(B) + µj(B) + i(δi + νj))
,

where iδi = µi(F ) − µi(B) and iνj = µj(G) − µj(B). Here δi, νj = O(1) and are real. The
goal is to separate δi from νj. Let

(5.9) f(x) =
ΓR(s + µi(B) + µj(B) + ix)

ΓR(s + µi(B) + µj(B))

ΓR(1 − s + µi(B) + µj(B))

ΓR(1 − s + µi(B) + µj(B) + ix)
.
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By Stirling, for x ∈ R and |x| � 1, we have |f(x)|+ |f ′′(x)| � T ε. By Lemma 3.4 and (3.9),
in effect this means we can separate the variables δi, νj at “cost” at most T ε. Applying this
with each of the gamma factors, we obtain that (5.7) is bounded by

(5.10)
N

T 3
(NT )ε max

|b|=1

∑

d3m2n�T6

N
(NT )ε

∣∣∣
∑

F,G∈Fcusp
1

bF bG

ω
1/2
F ω

1/2
G

λG(m,n)λF (m,n)
∣∣∣

�
N

T 3
(NT )ε max

1≤Z�T6

N
(TN)ε

∆(3)
(
F1, Z

)
. �

6. Completion of the proof

Now we prove Theorem 1.2. We chain together the results from Section 4 as well as Lemma
5.1, giving

(6.1) ∆1(F1, N) ≤ ∆(3)(F1, N) � N +
N

T 3
(NT )ε max

1≤Z�T6

N
(TN)ε

∆(3)
(
F1, Z

)

� N +
N

T 3
(NT )ε max

Y 2X�T6

N
(NT )ε

(T 6/N

XY 2

)1/3

min
(
Y ∆1(F1, X), X∆1(F1, Y )

)
.

This sequence of inequalities is reminiscent of (and somewhat inspired by) [H-B, Section
8]. Finally we insert the Blomer-Buttcane bound ∆1(F1,M) � (T 3 + T 2M)(TM)ε from
Theorem 1.1. In all, we obtain

∆1(F1, N) � N +
N

T 3
(NT )ε max

Y 2X≤T6

N

(T 6/N

XY 2

)1/3

min
(
Y (T 3 + T 2X), X(T 3 + T 2Y )

)

� N +
N

T 3
(NT )ε max

Y 2X≤T6

N

(T 6/N

XY 2

)1/3

T 2
(
XY + T min(X, Y )

)

� N +
N

T 3
T 2

(T 6

N
+ T

(T 6

N

)1/3)
(NT )ε � N + (NT )ε((T 3N)2/3 + T 5),

completing the proof of Theorem 1.2.

7. Cubic characters

In this section we briefly recall the large sieve inequality of Heath-Brown for cubic char-
acters [H-B] for the purpose of developing an analogy with the SL3(Z) cusp form family
considered in this paper.

Let θ = exp(2πi/3), and for nonzero m,n ∈ Z[θ] let (m/n)3 denote the cubic residue
symbol. The cubic reciprocity law gives that (m/n)3 = (n/m)3. Let N(·) denote the norm
map of Q[ω]/Q. Let

(7.1) ∆1(M,Q) = max
|a|=1

∑∗

n∈Z[ω]
N(n)≤M

∣∣∣
∑∗

q∈Z[θ]
N(q)≤Q

aq

(n
q

)
3

∣∣∣
2

,

where the symbol
∑∗ means the sums are restricted to (nonzero) square-free integers. Heath-

Brown’s cubic large sieve is the bound

(7.2) ∆1(M,Q) � (M + Q + (MQ)2/3)(MQ)ε.
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To make the notation appear more similar to the SL3(Z) family, define (for m,n, q ∈ Z[θ])

(7.3) λq(m,n) =
(n
q

)
3

(m
q

)
3
.

Note the simple identities which the reader is invited to compare with Lemma 3.1:

λq(m,n) = λq(n,m) = λq(mn2, 1) = λq(1, nm
2) = λq(m, 1)λq(1, n).

Also observe λq(d
3, 1) = 1 for (d, q) = 1.

Heath-Brown’s first step is to drop the condition that n is square-free in (7.2), leading to
the definition

(7.4) ∆3(M,Q) = max
|a|=1

∑

d,m,n∈Z[θ]
N(d3m2n)≤M

|µ(mn)|
∣∣∣
∑∗

q∈Z[θ]
N(q)≤Q

aqλq(m,n)
∣∣∣
2

Obviously ∆1(M,Q) ≤ ∆3(M,Q), which parallels our relation ∆1(FV , N) ≤ ∆3(FV , N).
The same steps used to prove Lemma 4.3 can be applied here to show

(7.5) ∆3(M,Q) � (MQ)ε max
XY 2�M

( M

XY 2

)1/3

min(X∆1(Y,Q), Y ∆1(X,Q)),

which is essentially [H-B, Lemma 6].
Heath-Brown also gives a relationship between ∆3(M,Q) and ∆3(Q

2/M,Q) (see [H-B,
Lemmas 7 and 8] for the precise statement) which arises from the functional equation and
is analogous to Lemma 5.1.

8. Lower bound via duality

Proposition 8.1. There exists a choice of vector a so that

(8.1)
∑

F∈FEis
1

1

ωF

∣∣∣
∑

N≤n≤2N

anλF (1, n)
∣∣∣
2

� (TN)1−ε|a|2,

for N � T 7/3+δ.

Since a lower bound of this type (however, for the wide family FEis
T ) was already proved

in [BB, Proposition 1.3], for brevity we only give a sketch which could be made rigorous
with more work. Blomer and Buttcane [BB, Section 4] showed that the lower bound of size
“T 2N” in (1.2) comes from the Eisenstein series E(z, 1/2 + it, uj) induced from SL2(Z) cusp
forms uj. This Eisenstein series E has Hecke eigenvalues

λE(1, n) = λ(n) =
∑

d1d2=n

λj(d1)d
−it
1 d2it2 ,

and Langlands parameters µ = (2it,−it + itj,−it− itj), where tj is the spectral parameter
of uj. Moreover, ωF = T o(1), so we will drop this aspect in the proof.

Proof. To simplify notation, say that B is the spectral ball of size O(1) centered at i(2T, T,−3T ).
This means t = T + O(1) and tj = T + O(1). The contribution of this family of Eisenstein
series, on the dual side, takes the form (after smoothing)

(8.2) S :=
∑

n

w(n/N)
∣∣∣
∫

t,tj=T+O(1)

βt,tjλ(n)
∣∣∣
2

.
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Expanding the square, we obtain

(8.3) S =

∫

t,t′,tj ,t′j=T+O(1)

ββ′
1

2πi

∫

(1+ε)

N sw̃(s)
∞∑

n=1

λ(n)λ′(n)

ns

︸ ︷︷ ︸
Zuj,u

′

j
,t,t′ (s)

ds.

Note

(8.4) Zuj ,u′

j ,t,t
′(s) =

∑

d1d2=e1e2

λj(d1)d
−it
1 d2it2 λ′

j(e1)e
it′

1 e−2it′

2

(d1d2)s

=
∏

p

(1 + p−s[λj(p)λ′
j(p)p−it+it′ + λj(p)p−it−2it′ + λ′

j(p)p2it+it′ + p2it−2it′ ] + Ouj ,u′

j
(p−2s)).

With some care, including use of the convexity bound for GL2 × GL2 L-functions due to
Iwaniec [I], one may then derive

(8.5) Zuj ,u′

j ,t,t
′(s) = ζ(s−2it+2it′)L(s+it+2it′, uj)L(s−2it−it′, u′

j)L(s+it−it′, uj⊗u′
j)A(s),

where A(s) = Auj ,u′

j ,t,t
′(s) is given by an absolutely convergent Euler product for Re(s) > 1/2,

satisfying |A(σ + iy)| �σ T ε, for σ > 1/2.
Returning to (8.3), we shift contours to the line Re(s) = 1/2 + ε. Note the pole of zeta

at s = 1 + 2it − 2it′ which occurs for all pairs uj, u
′
j. This polar term, say denoted S0,

contributes (roughly)
(8.6)∫

t,t′,tj ,t′j=T+O(1)

ββ′N1+2it−2it′w̃(1+2it−2it′)L(1+3it, uj)L(1−3it′, u′
j)L(1+3it−3it′, uj⊗u′

j).

If we choose βt,tj = L(1 + 3it, uj)
−1 (alternatively, one could take βt,tj = L(1 + 3it, uj)) then

this polar term becomes approximately

(8.7) N
∑

tj ,t′j=T+O(1)

L(1, uj ⊗ u′
j) ≈ NT 2.

With a bit more care, one can derive |S0| � (NT 2)1−ε for this choice of β.
Next we estimate the contribution to S from the new line of integration at Re(s) = 1/2+ε;

call this S ′. Jutila and Motohashi [JM] showed a Weyl bound for the SL2(Z) cusp forms,
namely

(8.8) L(1/2 + it, uj) � (1 + |t| + |tj|)
1/3+ε.

Combining this with the convexity bound for the GL2 × GL2 factor in (8.5) (which has
conductor of size T 2) gives |Z(σ + iy)| � T 7/6+ε. Note that the ζ-factor is evaluated at
σ + iy with |y| � T ε, so it practically gives no contribution here. Hence, for this choice of
β, we have

(8.9) S ′ � N1/2+εT 7/6+ε

∫

t,t′,tj ,t′j=T+O(1)

|ββ′| � N1/2+εT 7/6+εT 2.

Thus

(8.10) |S| � (NT 2)1−ε + O(N1/2+εT 7/6+εT 2).
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Note the polar term dominates the error term provided N � T 7/3+δ. Finally, we observe
that

(8.11)

∫

t,tj=T+O(1)

|βt,tj |
2dt = T 1+o(1),

whence |S| � (NT )1−ε
∫
|β|2 with this choice of β. �

9. Loose ends

We list a few possible directions for future work.

(1) Extend Theorem 1.2 to cover the family FV for more general V , with 1 � V � T .
(2) Extend Theorem 1.1, which gives a bound on the norm ∆1 using the Kuznetsov

formula, to directly give a bound on the norm ∆2 (modified to include the Eisenstein
series as well as the cusp forms). The point would be to bypass the use of Lemma
4.2 in (6.1), though it is unclear if any improvement is possible this way.

(3) Is it possible to use the SL3(Z) Kuznetsov formula to directly bound the cuspidal
part of the spectrum in the large sieve inequality? (By subtracting off the Eisenstein
parts, which one would presumably then control with lower-rank tools such as the
GL2 Kuznetsov formula.) As a point of reference, Luo has succesfully isolated the
cuspidal spectrum in a GL2 large sieve problem [Lu].

(4) Can the term T 2N in (1.3) be reduced to TN , to match the lower bound from
Proposition 8.1? If so, this would immediately improve Theorem 1.2 by replacing the
term T 5 by T 4.

(5) By analogy with [H-B, DR], determine if the term (T 3N)2/3 in (1.4) is not removable.
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