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Abstract

The nonlinear shallow water equations (SWEs) are widely used to model the unsteady water
flows in rivers and coastal areas. In this work, we present a novel class of locally conserva-
tive, entropy stable and well-balanced discontinuous Galerkin (DG) methods for the nonlinear
shallow water equation with a non-flat bottom topography. The major novelty of our work
is the use of velocity field as an independent solution unknown in the DG scheme, which is
closely related to the entropy variable approach to entropy stable schemes for system of con-
servation laws proposed by Tadmor (in: Tezduyar, Hughes T (eds) Proceedings of the winter
annual meeting of the American Society of Mechanical Engineering 1986) back in 1986,
where recall that velocity is part of the entropy variable for the shallow water equations. Due
to the use of velocity as an independent solution unknown, no specific numerical quadrature
rules are needed to achieve entropy stability of our scheme on general unstructured meshes
in two dimensions. The proposed DG semi-discretization is then carefully combined with the
classical explicit strong stability preserving Runge—Kutta (SSP-RK) time integrators (Got-
tlieb et al. in SIAM Rev. 43, 89—-112, 2001) to yield a locally conservative, well-balanced,
and positivity preserving fully discrete scheme. Here the positivity preservation property
is enforced with the help of a simple scaling limiter. In the fully discrete scheme, we re-
introduce discharge as an auxiliary unknown variable. In doing so, standard slope limiting
procedures can be applied on the conservative variables (water height and discharge) without
violating the local conservation property. Here we apply a characteristic-wise TVB limiter
(Cockburn and Shu in J Comput Phys 141:199-224, 1998) on the conservative variables
using the Fu-Shu troubled cell indicator (Fu and Shu in J Comput Phys 347:305-327, 2017)
in each inner stage of the Runge—Kutta time stepping to suppress numerical oscillations. This
fully discrete can be readily applied to various SWEs simulations without dry areas where
the water height is close to zero. The case with dry areas need further special attention, where
the velocity approximation can be unphysically large near cells with a small water height,
which may eventually crashes the simulation if no special treatment is used near these cells.

B Guosheng Fu
gfu@nd.edu

Department of Applied and Computational Mathematics and Statistics, University of Notre Dame,
Notre Dame, USA

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-022-01902-y&domain=pdf
http://orcid.org/0000-0002-4578-924X

86 Page2of33 Journal of Scientific Computing (2022) 92:86

Here we propose a simple wetting/drying treatment for the velocity update without violating
the local conservation property to enhance the robustness of the overall scheme. One- and
two-dimensional numerical experiments are presented to demonstrate the performance of the
proposed methods.

Keywords Discontinuous Galerkin methods - Shallow water equations - Entropy stable -
Entropy variable - Well-balanced property - Positivity-preserving limiter

Mathematics Subject Classification 65N30 - 65N12 - 76S05 - 76D07

1 Introduction

The system of nonlinear shallow water equations (SWEs) is a mathematical model for the
fluid movement in various shallow water environments, where the horizontal scales of motion
are much greater than the vertical scale. The SWEs have been widely used to model flow
in the river, near-shore ocean, and Earth’s atmosphere, etc. In two dimensions, the inviscid
SWEs take the following form:

hy +V - (hu) =0, (1a)
(hy + V- © w) + 38V () = — ghV, (1b)

where £ is the water height, u = (u, v) is the velocity field, b(x, y) represents the bottom
topography and g is the gravitational constant.

Below we review the four important properties that the SWEs satisfy, namely the entropy
condition, the lake-at-rest well-balanced property, the positivity of the water height %, and
the conservation property. The system (1) is a system of balance laws,

Ui+ F(U)x +GWU)y = —s(x,y,U), @)

where U = [h, hu, hv]” is the vector of unknowns, F = [hu, hu* + %ghz, huv]” and
G = [hv, huv, hv?+ %ghz]T are flux vectors, and s = [0, ghb,, ghby]T is the source vector.
It is well-known that solutions of the balance law (2) can develop shock discontinuities in a
finite time, independent of whether the initial data is smooth or not. Hence, the solution of
(1) are considered in the weak sense [17], which are in general not unique.

(i) The entropy condition. To address the issue of non-uniqueness for weak solutions, an
additional admissibility criterion based on the so-called entropy condition is imposed. For
the SWEs, the total energy

1 1
EWU) = Eh(u2 + ) + Eth + ghb
serves as an entropy function, which contains the kinetic energy %h(u2 + v?) and the gravi-

tational potential energy %gh2 + ghb. If the bottom topography b and the solution of (1) is
smooth, a straightforward calculation [21] reveals that

EWU), + (%(mﬁ + huv?) + ghu(h + b)) + <%(hu2v + hv) + ghv(h + b)) =0,
X y
3)
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which is obtained by taking the inner product of the SWEs (1) with the entropy variables
Lo, 2 T
V.= 8UE:[g(h+b)—§(u +v9), u, v] “4)

and applying the chain rule. Since entropy should be dissipated across shock discontinu-
ities, the entropy conservation equation (3) needs to be replaced by the following entropy
dissipation postulate

1 1
EWU), + <5(hu3 + huv®) + ghu(h + b)) + <E(hu2v + hv?) + ghv(h + b)) <0,
X

y
Q)]

(ii) Steady states and well-balanced property. Another important issue which arises in
SWEs (1) is the simulation of their steady states, which are solutions that are independent of
the time variables. The most import example of a steady state solution to (1) is the so-called
lake at rest, given by

u=v=0, h+b=Const. (6)

Many interesting applications, such as waves on a lake or tsunami waves in deep ocean,
involve computing perturbations of the lake at rest. A numerical scheme which preserves a
discrete version of the steady state (6) is termed well-balanced with respect to the steady
state.

(iii) Positivity of the water height. The water height & in the SWEs needs to remain
positive (non-negative) for the system (1) to remain well-posed. If the water height becomes
negative, the system (1) will be non-hyperbolic and non-physical, and the problem will be
ill-posed.

(iv) The conservation property. For constant topography b = Const, the balance law
(2) reduces to a hyperbolic system of conservation laws

U + F(U)x + G(U)y =0.

Integrating the above equation over any control volume D C R? and applying the Gauss law,
there holds the following conservation property:

if de:—/ [FU), GO -nds,
dt Jp aD

where n is the outward unit normal direction on the boundary 9 D.

The main focus of this work is to construct high-order numerical schemes for the SWEs (1)
on unstructured meshes that respect the above mentioned four properties. All these properties
are important in practice:

e The Lax-Wendroff theorem [29] ensures that if a conservative scheme produces a discrete
solution Uy (x, t) that uniformly converges to U(x, 1), then U(x, 1) is a weak solution to
the continuous equation. Non-conservative schemes may converge to wrong solutions.

e Many shallow water applications involve rapidly moving interfaces between wet and
dry areas, where no water is present. If no special attention is paid to maintain the
positivity (non-negativity) of the water height, standard numerical methods may produce
unacceptable negative water height near the dry/wet front, which crashes the numerical
simulation.

e Well-balanced schemes are essential for computing perturbations of steady states.
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e Entropy stability (5) provides additional stabilization mechanism to the scheme which
further enhance its robustness.

Various numerical schemes satisfying (part of) these properties for hyperbolic conservation
laws or balance laws have been proposed in the literature. We refer to the review articles [48,
50] for a survey of numerical schemes for the SWEs, in particular high-order well-balanced
and positivity-preserving schemes; to the review articles [53, 54] for a survey of maximum-
principle-satisfying and positivity-preserving high-order schemes for conservation laws; and
to the review article [40] for entropy stable schemes. In particular, the discontinuos Galerkin
(DG) method [13] is one of the most popular high-order methods for SWEs and related
models; see, e.g., [5, 7, 8, 18, 25, 35, 42, 49].

Of particular relevance to the current work is the class of entropy stable schemes for
the SWEs, which respect the entropy dissipation postulate (5). First-order entropy stable
finite volume (FV) schemes for the SWEs were proposed in [20, 21, 41] where the key
concepts of entropy variable, entropy conservative/stable numerical fluxes were discussed.
Similar entropy conservative/stable numerical fluxes were adopted in the high-order nodal
DG literature, which, in combination with discrete derivative operators using Gauss-Lobatto
quadrature points that satisfy the summation-by-parts (SBP) property, yield entropy conser-
vative/stable DG discretizations [24, 45, 46]. High-order entropy stable DG schemes were
more recently extended to modal formulations [44, 47], following the work of Chan [10]. All
these works are also well-balanced and conservative. These entropy stable spatial discretiza-
tions were then combined with explicit strong stability preserving Runge-Kutta (SSP-RK)
time integrators [26] to yield fully discrete conservative and well-balanced schemes. We note
that, in all these works, the entropy stability was proven in the semi-discrete level where only
spatial discretization was involved, which does not hold theoretically for the fully explicit
discretizations. We further note that the schemes [44, 46] can preserve the positivity of the
water height with the aid of a positivity preserving scaling limiter [54]. Moreover, most of the
above cited works use structured/rectangular meshes, with the exceptions of [46] which uses
unstructured quadrilateral meshes and [44] which works on unstructured triangular meshes.

In this work, we construct high-order locally conservative, positivity preserving, well-
balanced, and entropy stable DG schemes for the SWEs on general triangular meshes. Our
approach is very different from the above cited entropy stable DG schemes which relies
on the SBP property of the underling difference operators. In our semi-discrete scheme,
instead of directly approximating the conservative variables, we use the water height and
velocity as the solution unknowns. As a result, entropy stability is achieved naturally within
the weak formulation without the need to convert to the strong form or work with difference
operators/matrices. Our approach is more closely related to the entropy variable approach
to entropy stable schemes proposed by Tadmor [38] back in 1986, as the velocity is part of
the entropy variable (4). For the purpose of efficient explicit time integration, we still keep
the water height as the solution unknown. As a result, we need to use the skew-symmetric
formulation of the momentum equation [24] to guarantee entropy stability of the semi-
discrete scheme. Similar to the works [44, 47], our proposed scheme achieves entropy stability
regardless of the choice of underlying numerical integration rules, although the proofs are
very different. Actually, all integrals in our scheme involve polynomials only, which can be
easily computed exactly if one wishes.

The proposed DG semi-discretization is then carefully combined with a classical SSP-RK
time integrator [26], in combination with a positivity-preserving scaling limiter to ensure
positivity of the water height. Here special attention is paid to the Runge-Kutta inner stage
reconstructions to maintain local conservation of the fully discrete scheme. To do so, we re-
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introduce the discharge (momentum) as an auxiliary solution unknown and reconstruct inner
stage values based on the the conservative variables, i.e., water height and discharge. We prove
that this water height-velocity-discharge three-field formulation is mathematically equivalent
to the water height-velocity two-field formulation in the semi-discrete level. The advantage
of this three-field formulation over the two-field formulation is that standard slope limiting
procedures can now be applied on the conservative variables (water height and discharge) to
suppress numerical oscillations near discontinuities without violating the local conservation
property. Here we apply the characteristic-wise TVB limiter [15] with the Fu-Shu troubled
cell indicator [22] using the total height as the indicating function.

The last ingredient of our fully discrete scheme is a proper wetting/drying treatment for
problems with (moving) dry areas. The above mentioned positivity preserving limiter and
TVB limiter do not directly work on the velocity approximation. As a result, the scheme may
produce arbitrarily large velocity approximations near dry cells where the water height is very
small. Without any special treatment near these regions, the large velocity near dry areas will
dictate the time step size, and may even crash the code due to too large velocity values.
We didn’t find existing wetting/drying treatments in the literature that work for our scheme.
Hence we introduce a new wetting/drying treatment that at least works for our numerical
examples; see details in Remark 3.5 below.

The rest of the paper is organized as follows. In Sect. 2, we introduce the reformation
of SWEs (1), and used it to design a conservative, well-balanced and entropy stable DG
spatial discretization. In Sect. 3, we present the explicit temporal discretization, and then
prove the posivitity preservation property. The implementation of a characteristic-wise TVD
slope limiter with an efficient troubled cell indicator is then discussed. We further remark
on the proper wetting/drying treatment in the velocity calculation. Numerical results in one-
and two-dimensions are then reported in Sect. 4. We draw concluding remarks in Sect. 5.

2 Reformulation of SWEs and the DG Semi-Discretization

In this section, we first reformulate the SWEs (1) into an equivalent skew-symmetric form,
c.f. [24], and then introduce the associated conservative, entropy stable and well-balanced
DG semi-discretization. Although using the same skew-symmetric form, we emphasis that
our entropy stable DG discretization is completely different from the work [24], where we
use velocity as independent solution unknowns.

2.1 The Skew-Symmetric form of the SWEs

Multiplying the mass conservation equation (1a) by %u, and subtract it from the momentum
balance equation (1b), we get the following equivalent form of the SWEs:

hy +V - (hu) =0, (7a)

1 1
(hu); +V - (hu @ u) + ghV(h + b) — ih,u — EV - (hu)u = 0. (7b)

Here (7b) is referred to as the skew-symmetric form of the momentum balance equation (1b),
c.f. [24]. Multiplying (7a) with g(h + b) and (7b) with u and adding, we immediate get the
entropy conservation equality (3). This suggests to use finite elements to directly approximate
the quantities g(k + b) and u in order to design a Galerkin method that respect the entropy
conservation property (3), which is the approach we take in this article. In practice, we use a
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discontinuous finite element space to directly approximate the water height i (x, t) and use
the same finite element space to approximate the bottom topography b(x), so that g(h + b)
can be taken as a test function in the Galerkin formulation.

2.2 The Conservative, Entropy-Stable, and Well-Balanced DG Spatial Discretization

Without loss of generality, we formulate the DG spatial discretization for the SWEs (7) on a
periodic domain  C R?. Other standard boundary conditions will be used in the numerical
experiments. Here we formulate the scheme on a general unstructured triangular mesh, while
noting that the proposed method also works on structured/unstructured quadrilateral meshes.

To this end, let 2, := {K} be a conforming triangular discretization of the domain .
Denote 0€2;, := {0 K} as the collection of element boundaries with n  the associated outward
unit normal direction. Let &, := {F} be the collection of edges of the triangulation €2;,. For
any polynomial degree k > 0, let

VEi={vel?’(Q): vk € Pu(K), YK €}, ®)

where Py (K) is the space of polynomials of degree at most k on the element K . Furthermore,
let V’,‘l be the vectorial version of the space V,{‘. Givenanedge F = KT NK~ € &, whichis
shared by two elements K and K ~, we denote n as the unit normal direction on F pointing
towards K ~, and denote [¢])|r := ¢T — ¢~ and {@}|F := %(¢+ + ¢ ™) as the standard jump
and average on F for any function ¢ € Vf, where ¢F 1= ¢| g=.

The proposed DG spatial discretization of (7) on the periodic domain €2 reads as follows:
find (hp, up) € VF x V5 such that

My, (Chp)es en) + Ap((hy, up), ep) =0, (9a)
My, ((hpup)i, vp) + Bp((hy, up), vy) + Cp((hy, up), vy)
1 1
— M, <(hh)h Sun - Uh) — Ay ((hh, up), Suh ‘vh> =0, (9b)

for all (es, vy) € V,{‘ x VK where b, € Vf is a proper approximation of the bottom
topography, and the associated operators are given below:

Miu((hp)i en) =) /K (hn)ren dx, (%)

Key,
An((hp.up),en) =Y (—f hhuh-whdx+f I - nicen ds>,
KeQy, K 0K
=- Y / hyup - Vepdx + /m-nﬂehﬂds, (9d)
Ke, 'K ree, ' F
My (G vn) == / (), - vy dx, %)
KeQy K
Bu(n, wn), op) i=— Y / hi(up ® up) - Vo dx+ ) / (hpupup)n - [vp] ds,
Keq, 'K Feg, ' F
h h

9f)
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C((hp. up). vp) ==Y /thhv(hh+bh)-vhdx— > /Fg[[hh + bu]{hnvn} - ndx,

KeQy, Fe&p

%2

where the numerical fluxes }Eu\h -n and (hﬁth\uh)n in the operators (9d) and (9f) are defined
as follows:

—_— l

hpup -n :={hpup}-n+ 7% [hn + bx], (%h)

— 1 .
(hpupup)n ={hpuy} - n{u,} + Eah[[(hh + bp)uy], (91)

with estimated maximum speed
— + + — - :
aplp = max{ ghy, +luy -nl|,\/gh, +lu, n|} )

We will show below that these local Lax-Friedrichs type numerical fluxes are entropy-stable.
We note that the above operators are very natural DG scretizations of the corresponding PDE
operators in (7), in particular,

e The operators My, in (9c) and M}, in (9e) are the weak forms associated with the time
derivative term h;, in (7a), and (hjup), in (7b), respectively;

e The operator Aj, in (9d) is the DG discretization of the convection term V - (hu) in (7a),
with the numerical flux (9h), and The operator By, in (9f) is the DG discretization of the
convection term V - (hu ® u) in (7b), with the numerical flux (9i). Here the particular
choice of the numerical fluxes (9h) and (9i) is crucial for the entropy stability of the
semi-discrete scheme (9). Similar numerical fluxes have been used in the literature, c.f.
[21, 24];

e The operators My, and Ay, in (9b) are the operators associated with the skew-symmetric
terms %h,u and %V - (hu)u in (7b), respectively;

e The operator Cp, in (9g) is a DG discretization of the gravitational term ghV(h + b) in
(7b) using a central numerical flux. To see this, we note that the DG discretization with
central numerical flux for this operator reads as follows:

-y /Kg(hh + b))V - (o) dx + ) /Fg{hh + by} [hnvs] - mdx,

KeQy FGE},

which is equivalent to Cj, by integration by parts. We mention that the two gravitational
terms in momentum balance (1b) are combined into a single non-conservative product,
which is another key to the entropy stability and well-balanced property of our scheme.
We note that such non-conservative product has been explored in the literature, e.g., [33],
to design well-balanced DG schemes.

We conclude this section with the main properties of our proposed DG discretization (9),
namely, local conservation, entropy stability and the well-balanced property.

Theorem 2.1 The semi-discrete scheme (9) is

e locally conservative in the sense of the following equalities:
d

S —/ hnuy - ng ds, (10a)
dt Jk aK

d — 1
— / hpupdx = — / hpupuy + *gh;h; ng ds
dt K 9K 2
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1
—/ ghynV(by) dx—i—/ —ghp[bynk ds (10b)
K 9K 2
e entropy stable in the sense of the following equality:
d 1
T En=— > /F S (80n +bal® + (h + bu}[un] - [wa]) ds <0, (100)

FEE;,
where the discrete entropy (total energy) is
1 1
Ej = Z / (zhplup* + = gh? + ghyby)dx,
Ke, 'K 2 2

e well-balanced in the sense that it preserve the lake-at-rest steady state: if the initial
condition satisfies

u,(0) =0,and hy,(0) + b, = C, (10d)
where the constant C > max by, then the solution to the semi-discrete scheme (9) satisfies

up(t) =0,and hy(t) + by, =C. (10e)

Proof Taking test function e¢j, := 1 on element K and zero elsewhere in (9a), we get mass
conservation in (10a). Denote u;, and vy, as the two components of the velocity approximation
uy,. Taking test function e, := %uh on element K and zero elsewhere in (9a), and v;, := (1, 0)
on element K and zero elsewhere in (9b) and adding, we get the following:

d —
— hpuy, dX:—/ (hpupup)ny ds—/ ghpoy(hy + bp) dx
dr Jg 9K K

1
+/ —ghp[[(hp + bp)]ny ds,
9K 2

where n, is the first component of the normal direction ng. Combining the above identity
with the fact that

1
/ ghpdy (hy) dx — / —ghin,ds =0,
K 0K 2
we get the first component of the momentum balance identity (10b). We can apply the same
argument to obtain the second component of the momentum balance identity (10b).
Taking test function e, = g(hj + bp) in (9a) and v, = uy, in (9b) and adding, we get

1
My (Chp)e, g(hn + bp)) + Mp((hpup):, up) — iMh((hh)t» up - up)

1
= —B((hy, up), up) + Ay ((hh, up), i -uh)

:=11

—Ci (s wn), wn) = An(Cha wn), g + b))

=1

Simplifying the above equality, we yield the entropy dissipation equality (10c). More specif-
ically, it is easy to show that the left hand side of the above equality is the entropy dissipation
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rate % E}, and the first term in the above right hand side
1
h== 3 [ sonthn+ bl ol és ()
F2
FGS;,
and the second term
1
L=-Y%" / —apglhn + bp]*ds,
F2
Feg&y

Below we only give detailed proof of the identity for /1. We have

I

1
— Bp((hp, up), up) + Ay ((hh, up), Sun uh)

1
Z / (hh(uh Qup) : Vuy — Ehhuh - V(up 'uh)> dx
K

KGQ;,
=0
_— — 1
- Z / ((hhuhuh)n - [un] — hnuy -n[[iuh . uh]]> ds.
FGS;, F

Now by the definition of the numerical fluxes in (9h)—(91) and the simple fact that [ab] =
{a}[b] + [a]{b}, we have

(hpupup)n - [up] — hpup '"ﬂiuh cup] = Eah{hh + b} ug] - [un],

which proves the identity for /7 in (11).

Finally, under the assumption (10d), it is trivial to show that the spatial operators
Ap, B, Cp, in (9) all stay zero. Hence, (hp); = 0 from equation (9a), and (hpup), =
%(hh) iy, = 0 from (9b). This implies the well-balanced property (10e). ]

Remark 2.1 (Comparison with other entropy stable DG schemes) Our first order scheme
with polynomial degree k = O is closely related to the first order finite volume entropy
stable schemes [20, 21], as both approaches use the concept of entropy conservative/stable
fluxes, cf. (9h)—(91). The work [20, 21] promote to use a Roe-type dissipation operator in
the numerical flux, while our numerical dissipation is of the more dissipative Lax-Friedrichs
type.

For our high-order DG scheme with k > 1, we were not able to find similar work in the
literature. There are two main approaches to construct high-order entropy stable schemes for
nonlinear conservation laws, both stem from Tadmor’s pioneer work on entropy variables
and entropy conservative/stable fluxes [38, 39]. The first approach directly discretizes the
conservation equations using the entropy variables [38], see also [27]. The major drawback
of this approach is that explicit time stepping is usually not applicable to these schemes
due to the highly nonlinear mapping between the entropy variables and the conservative
variables. Hence they are generally more expensive than other explicit schemes. The second
approach is based on the (quadrature-based) SBP operator concept, and has undergone a
major development in the past few years, see, e.g., the entropy stable DG schemes [24, 44—
47] for SWEs. These quadrature-based approaches may lead to accuracy loss, and they may
be more cumbersome to implement on unstructured triangular meshes than classical DG
schemes; see the more discussion in the recent review work [12].

Our scheme (9) combines both advantages of the above mentioned approaches:
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e the proof of entropy stability can be performed directly on the variational formation (9)
without converting to any matrix-vector form. This is made possible due to the use of
velocity approximation and the skew-symmetrization of the momentum balance equation.
In particular, we have the entropy stability result (10c) for the DG scheme (9) with
any choice of numerical quadrature rule. This is possible because the proof of (10c)
does not rely on integration by parts as the operators have already been properly skew-
symmetrized. Hence, the quadrature rule can be chosen only for accuracy considerations.
In our numerical experiments, we simply use Gauss quadrature rules that are exact for
integrating polynomials of degree 2k.

e the semi-discrete scheme (9) can be discretized in time using classical explicit time
stepping schemes. This is possible because we discretize the water height A, as the
solution unknown.

Remark 2.2 (Comment on the well-balanced property) The well-balanced property (10e) of
the proposed scheme preserves a steady constant surface elevation level C that is above the
maximal bottom topography, i.e. C > max bj,. The more challenging case with C < max by,
is not considered in this work and will be investigated in the near future. We note that when
C < max by, the ”lake-at-rest” solution became

u=v=0,h+b=max{C, b},

where the domain contains dry regions with zero water height. The above steady state solution
is particularly difficult to preserve in the case when the mesh is not aligned with the wet/dry
interface, which typically requires special numerical flux treatments; see [3, Section 4].
However, the approach proposed in [3, Section 4] is not directly applicable to our scheme on
unstructured triangular meshes as the technique relies on a strong nodal DG formulation on
quadrilateral meshes.

3 Fully Discrete Scheme: Local Conservation, Well-Balanced Property,
Positivity Preservation, and Slope Limiting

In this section, we discrete the semi-discrete scheme (9) in time using explicit SSP-RK time
integrators. Special attention is paid to maintain the local conservation, well-balanceness,
and positivity preservation properties. We also discuss the use of a characteristic-wise TVB
slope limiter [15] in combination with the recent troubled-cell indicator proposed in [22] to
improve its efficiency. The slope limiter, which suppress numerical oscillations near shock
discontinuities, is a crucial component for the accuracy and robustness of the overall scheme
for polynomial degree k > 1, c.f. [16]. Moreover, we propose a simple wetting/drying
treatment for the velocity calculation near dry cells where water height is small.

3.1 AThree-Field Reformulation of the Semi-Discrete Scheme (9)

Here we introduce a three-field reformation of the semi-discrete DG scheme (9) by using
the discharge m := hu as an additional independent unknown, which is then discretized in
time using the explicit SSP-RK method. The three-field DG scheme reads as follows: find
(hy, up, my) € V,f X V’;L X V’,‘L such that
My ((hn)e, en) + Ap((hp, un), en) = 0, (12a)
My, ((mp)e, vi) + Bu((hip, up), o) + Co((hi, wp), vp)
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1 1
- My ((hh)z, Fun vh) — Ay ((hh, up), i vh) = 0, (12b)
My, (hpup — my, wy) = 0, (12¢)

for all (e, vy, wy) € V,f‘ X V’,‘l X V’,j. We have the following equivalence of the two formu-
lations (9) and (12).

Theorem 3.1 Let (hy, up, my) be the solution to the three-field DG formulation (12). Then
(hp, up) is the solution to the two-field DG formulation (9).

Proof Let (hy,, uj, my) be the solution to the scheme (12). Equation (12¢) simply implies that
my, is the L2-projection of /,u;, onto the DG space V];r Since this projection commutes with
the time derivative term, we have My, ((my);, vy,) = My ((hpuy);, vy), for all v, € V’;.
Combining this equality with (12b), we have that (hj, u;) satisfies equation (9b). Since
(hn, up) also satisfies equation (12a), which is identical to (9a), we conclude that (hj,, uy) is
the solution to the system (9). ]

The advantage of this reformulation will be clear next when we discuss SSP-RK time
discretizations and slope limiting.

3.2 High Order SSP-RK Discretization and Inner Stage Reconstruction

The semi-discrete scheme (12) is not a standard ODE system U; 4+ F(U) = 0, with U being
the solution vector and F(U) the spatial operator, as the time derivative terms in (12b) involve
the nonlinear product hjup, and (12c) is an algebraic equation. As a result, special care is
need in design locally conservative high-order time discretizations. Here we apply the third
order SSP-RK3 scheme to (12) which preserves the local conservation property. It is built on
top of a plain forward Euler discretization in Algorithm 1, a velocity update in Algorithm 2,
and a convex combination step in Algorithm 3. The full plain SSP-RK3 algorithm without
slope limiting is given in Algorithm 4. Here the weights w; and wy in Step 4/7 of Algorithm
4 are the RK3 weights from Shu and Osher [37, eqn (2.18)].

Algorithm 1 Plain Forward Euler + DG

Input: hzld € V,f, uzld, mzld € V];l, and time step size Ar > 0.

Output: h;l’e"} € V/f, and mze”’ € V’fl.
1: Compute /" by the following equation:

My (1€ ep) = My (h§' e) — AtAR (W', uf!?), e), Vep € VE,

2: Compute mj " by the following equation:

My me  vp) = M (m§?, vy) — AtBy (W91, uf'), vy) — AtCh (R u§l ), vy)

1 1
+ M (h;f‘” — gl yold. vh> + 5 A1) ((hg’d, ugldy yold. vh), Vo, € VE,
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Algorithm 2 Velocity update

Input: 1), € V;l‘,mh € V’;l.
Output: uj € V’;L.
1: Compute uj, by the following equation:

My (hpup, wy) = My (mp, wy), Ywp € V’fl-

Algorithm 3 Convex combination

Input: Data nk, h% € V]f, m}ll, m% € V/;l. Positive weights wy, wy with w; +wp = 1.
Output: hy, € V¥, andmy, € V.
1: Compute &y, and mj, using convex combination:

hy, <~ wlh;ll +w2h%, my <« wlm;ll +w2m%.

Algorithm 4 Plain SSP-RK3 + DG

Input: hZ IS V,i‘, uz, mZ IS Vﬁ at time level "', and time step size At > 0.
Output: hZ‘H € V}If, and uZ'H , mZ+1 € V];l at next time level 71 := ¢ + Az,

1: Apply Algorithm 1 with inputs A}, u},, m}, and At. Denote the outputs as h;ll), mill).

2: Apply Algorithm 2 with inputs h(l) ;ll) Denote the velocity output as ull
3: Apply Algorithm 1 with inputs h( ) (]) , ,(1]) and At. Denote outputs as h1(12*) , m;lz*) .
4: Apply Algorithm 3 with inputs A”, h(Q*) mj, m,( *) and weights w; = 0.75, wp = 0.25. Denote outputs
as h® m®
h *"h
5: Apply Algorithm 2 with inputs h(z) ( ) Denote the velocity output as u( )
6: Apply Algorithm 1 with inputs h( ) (2), 2 and At. Denote outputs as h;l *), m;?*).
7: Apply Algorithm 3 with inputs hz, h(3*) mh, mgf*) and weights w1 = 1/3, wp = 2/3. Denote outputs
as hn-H n+1
h mp

8: Apply Algorithm 2 with inputs hZH, "+1 Denote the velocity output as uhle

Remark 3.1 (Local conservation and well-balanced property) Similar to the proof of local
conservation in Theorem 2.1, the forward Euler algorithm Algorithm 1 is also locally conser-
vative. Meanwhile, the local conservation property is not polluted by the convex combination
step in Algorithm 3 due to the use of conservative variables in convex combination. If the
velocity uj;, were to be used in the convex combination step, local conservation for the dis-
charge would be lost. This is the major reason that the discharge m, is re-introduced as an
independent unknown in the DG formulation. Hence the overall algorithm Algorithm 4 is
locally conservative. Moreover, it is easy to see that Algorithm 4 preserve the steady state
solution (6), hence it is also well-balanced.

Remark 3.2 (Computational cost and positivity of water height) The computational cost of
Algorithm 1 involves the evaluation of the right hand side operators, and solving the associated
linear system for the mass matrix for V,f in Step 1, and for Vﬁ in Step 2. The mass matrices
can be made diagonal if orthogonal L2-basis is used in the computation. The computational
cost of Algorithm 2 involves the linear system solve of a water height-weighted mass matrix,
which is block diagonal and can be computed very efficiently. The Algorithm 3 is simply
a vector update. Hence, the computational cost in Algorithm 4 is of linear complexity with
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respect to the total number of elements, which is similar to, but slightly more expensive than
(due to the velocity computation in Algorithm 2), the cost of a classical DG scheme with
SSP-RK3 time stepping.

Note that in Algorithm 2, we need to invert the water height-weighted mass matrix to
compute the velocity approximation uy,. This weighted mass matrix may fail to be invertible
if the water height approximation 4, become negative in parts of the domain. In practice,
requiring positivity of water height on the volume integration points used to compute these
mass matrices suffice to ensure its invertibility, which, however, is not guaranteed in the plain
Algorithm 4. In the next subsection, we apply the positivity-preserving limiting approach used
in [51] to guarantee such positivity requirement.

3.3 Hydrostatic Reconstruction and Posivitivity-Preserving Limiter

The key idea of the posivity-preserving limiter in [51] is to ensure the cell average of water
height is positive after one step of forward Euler time stepping under a usual CFL condition.
Given solution A}, uj at time ¢, and time step size At, the water height hZH at next time
level for the forward Euler Algorithm 1 reads as follows:

My (R en) = My (R, en) — AtAR (), ul), en), Vey € V.

Taking test function e, = 1 on a single element K € €2;,, we get the evolution equation for
the water height cell average:

- - At
+1 _
R = R —

2Lt ongds (13)
Bk Jog 00

where ﬁ’l‘( stands for the cell average of hj on the triangle K at time level ", and |K| is
the area of the element K. Due to the fact that the numerical flux (9h) contains the jump
of bottom topography by, which can arbitrarily large, we can not prove positivity of fz’}j]
in the above equation (13) under the condition of positivity of 4% and a reasonable time
step size restriction. To fix this, we slightly modify the numerical fluxes using the idea
of hydrostatic reconstruction [2, 51]. In particular, introducing the following hydrostatic
reconstructed version of the water height:

hy = max {0, A + min{0, [b]}} (14a)
hy™ == max {0, h~ — max{0, [ba]}} . (14b)

we replace h,jf in the flux terms in the scheme (9) by h;*i, and replace the associated jump
term [hy + by by [h}] = hZ’+ — hy’". For example, the flux (9h) is now replaced by the
following one:

— 1
hiup -n = {hju,}-n+ Ea;’f[[hﬁ]], (15)
with

o) |F 1= max l,/gh2’+ + |u;,r -n|, th’_ + lu;, -n|} . (16)

It is clear that if &y, satisfies hj, + by, = Const with hy, > 0, then
Ryt = "+ min{0, [by]}.
By = h™ — max{0, [ba]),
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and [h}] = [hn + by], which implies that the modified fluxes will not pollute the well-
balanced property of the original fluxes.

With this modification, the forward Euler discretization lead to the following cell average
evolution for water height:

- - At —
e Xl o hy"uy - ng ds
n At *Nn_n 1 *,n *,n
:hK—m {h, ”h}'"K"‘EO‘h [, "1k ) ds, 17)
K

where [hp] g = is the jump, with hilm(K) and h;xr(K) being the approxi-

mations obtained from the interior and the exterior of K. Note that by definition, on any edge
F = KT N K~ shared by two elements, there holds

[hn] = hnlk+ — hnlx- = [Prl g+ = —[hn] k-

The cell average evolution equation (13) now has a similar form as [51, Equation 3.1]. Hence,
we can follow the same analysis in [51, Section 3] to ensure positivity of the water height cell
average at next time level. The following result is Theorem 3.2 in [51]. The proof is almost
identical, hence we omit it for simplicity.

int(K) ext(K)
hh - hh

Theorem 3.2 (Theorem 3.2 in [S1]) For the scheme (17) to be positivity preserving, i.e.,
h',’;H > 0, a sufficient condition is that hx (x) > 0, Vx € Sk for all K, under the CFL
condition

. At 2
aaKm|3K|§§w1. (18)

Here h (x) denotes the polynomial for water height at time level n, Sk is a set of (symmetric)
quadrature points on K that includes k + 1 Gauss quadrature points on each boundary edge,
Ay, = MaxXpcyk of|F is the maximum estimated speed on 3K, |dK| is the perimeter
k+3
2

of element K, and W) is the quadrature weight of the [*3=1-point Gauss-Lobatto rule on

[—1/2, 1/2] for the first quadrature point.

Attime level n, given the water height DG polynomial /1 x (x) with its cell average l_z’}( >0,
we use the simple scaling limiter [51, Section 3.4] to ensure the above sufficient condition
hg(x) > 0forall x € Sk, i.e., replacing h g (x) by a linear scaling around the cell average:

Rk (x) = Ok (hg (x) — I) + I, (19)
where Ok € [0, 1] is determined by
fln
Ok :=féisl}<9’“ 9x=min{1,m}. (20)

A slightly more efficient and less restrictive scaling parameter 6x can be obtained using
a reduced set of quadrature points, see [51, Section 3.4] for more details. In practice, the
positivity preserving limiter (19) is applied in each inner stage of the RKDG algorithm 4.
We notice that the well-balanced property is also not affected by this positivity preserving
limiter.

Remark 3.3 (On hydrostatic reconstruction and bottom topography approximation) The proof
of Theorem 3.2 requires the use of hydrostatic reconstruction (14), which is needed due to
the lack of control of the bottom topography jump [b,] across edges. When the polynomial
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degree k > 1 in the DG scheme (9), one can approximate the bottom topography using
a continuous approximation b, € V]f N H'(Q), which implies [by] = 0. In this case,
under the positivity assumption of Theorem 3.2, we have hZ’i = h,f, hence equivalence
of the original scheme (13) and the reconstructed version (17). For this reason, we prefer
to use a continuous bottom topography approximation for k > 1, where the hydrostatic
reconstruction (14) is not necessary anymore. In the future, we plan to investigate more
modern hydrostatic reconstruction techniques that are more robust/accurate for abruptly

changing bottom topographies such as the ones proposed in [9, 11].

3.4 The Troubled-Cell Indicator and Slope Limiter

Another important ingredient of the DG methods is the slope limiter procedure which is
needed to suppress spurious oscillations near solution discontinuities. We follow the standard
slope limiting procedure in RKDG methods [16, 32]:

(1) First we identify the froubled cells, namely, those cells which might need the limiting
procedure.

(2) Second we replace the solution polynomials in those troubled cells by reconstructed
polynomials with limited slopes that maintain the original cell averages (conservation).

We use the Fu-Shu troubled-cell indicator proposed in [22] to identify the troubled cells,
with a scaling modification to improve its performance and computational efficiency. Given
a discontinuous function p € V,f, the troubled-cell indicator [22] is given as follows:

ZTew(K) |13T - ﬁK|

Pmax — Pmin

Ix(p) = 2y

where  (K) is the union of cells that share a common edge with K, including K itself, and
ﬁr is the cell average of the polynomial p|7 extended to the target cell K, and pmax and pmin
are the global maximal and minimal cell average on the domain. Relying on the assumption
[15, 16] that spurious oscillations are present in the solution pj, only if they are present in
its linear part p}l, which is its L2-projection into the space of piecewise linear functions Vhl,
we use use the linear Lz-projection of the total height hj, + b, as the indicating function
in (21), which simplifies the implementation of the extended cell average i, for high-order
case where the polynomial degree k > 1. The cell K is marked as a troubled cell if

Ix (h} +b}) > tol, (22)

where tol is a user defined parameter. Note that this indicator is of 0(112() in smooth regions,
where 7k is the mesh size, and of O(1) near discontinuities, hence is expected to be effec-
tive to detect troubled cells near discontinuities with a proper choice of tol. Our numerical
experiments suggest that the indicator is not too sensitive to the tolerance ro/. The indicator
with tol € (0.01, 0.1) performs similarly for most of the examples, where tol = 0.01 leads
to a slightly larger number of detected troubled cells than tol = 0.1 as expected. In our
implementation, we take tol = 0.02 for all the reported results.

Remark 3.4 (On scaling of the indicator (21)) The original indicator proposed in [22] use
the local maximal cell average maxreq(k){pr} as the scaling denominator. This scaling
has the drawback of not able to detect any troubled cells for small perturbation tests where
the total height is a very small perturbation of a constant state. In particular, the original
indicator with a local maximum scaling will produce a completely different result when the
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indicating function is perturbed by a global constant p(x) < p(x)+ Const. The new global
difference scaling denominator pmax — Pmin NOW produce the same indicating value when
the indicating function is perturbed by a global constant. It performs quite well for all the
numerical examples reported here. We further mention that this global scaling is suggested
to us by Prof. Chi-Wang Shu from Brown University in a private communication.

After the troubled cells have been detected, we apply the characteristic-wise TVB limiter
[15, 16] on the conservative variables (hj, + by, mj,) with TVB parameter M = 0. To save
space, we leave out the derivation of this limiter and refer to [15, 16] for details. We mention
that while this TVB limiter is compatible with the well-balanced property of the DG scheme
as hj, + by, is used in the limiting process. In practice, we first apply this TVB limiter then
apply the positivity preserving limiter (19) for each inner Runge-Kutta stage values.

3.5 Velocity Computation and Dry Cell Treatment

We note that while Theorem 3.2 and the limiter (19) ensures non-negativity of the water
height cell average fz’l‘(ﬂ , and water height on the quadrature points Sk at the next time level,
this in general is not enough for the invertibility of the water height-weighted mass matrix,
which is needed to compute the velocity approximation. The invertibility of this weighted
mass matrix is not a big issue as one can compute the scaling factor in (20) such that it ensures
positivity of water height on all volume integration points in each cell.

A more serious issue is the velocity computation on dry cells with nearly zero water height,
this weighted mass matrix is nonsingular but now close to zero, and the computed velocity
approximation may be unphysically large and not reliable anymore. Without a special velocity
treatment on dry cells, the scheme (with TVB and posivity preserving limiters) may still fail
to solve challenging problems with moving interface with wet and dry areas. There are
various wetting/drying treatment available in the literature [6, 28]. However, our preliminary
numerical experiments suggest that the most common approaches may not work well for our
velocity based DG scheme. For example, the simple trick of setting zero velocity when the
water height £, is less than a given threshold, e.g. 107, which worked in [52], or using a
regularized water height

" 1 1 )
h* = 5h + 3 max{h, (tol)"/h},

with tol a given small tolerance, to compute the weighted mass matrix in Algorithm 2 as
suggested in [28] were not enough for our scheme with polynomial degree k = 2 to solve a
dam break problem on a dry bed.

After some initial testing, we came up with a relative simple velocity limiting approach
that works for the numerical results reported in this manuscript. We apply the following two
steps after an inner stage water height 4, and discharge mj, has been computed by Algorithm
1:

(1) Given a threshold percentage 0 < €; < 1, we first mark cells with cell average
hg <eg X h?nax as dry cells, where hglax is the maximum water height at initial time. Then,
we remove the high order information on these dry cells by reverting to piecewise constant

approximation of water height and discharge:
hg < hg, mg < mg, forall K € Qp suchthathy < eg X homax, (23)
where h g and mg are the polynomial data in cell K, and hx and mik are the cell averages.

Note that this approach does not affect the local conservation property, but may lead to
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accuracy loss. However, since there are only a small amount of water in dry cells, such loss
of accuracy may not be too significant if €, is taken small enough. We note that similar
treatment was used in [6].

(2) The above approach may not be enough to control the velocity magnitude for high order
schemes when ¢, is taken to be too small. We further propose a velocity limiter to smooth out
extreme velocity values. Given a user tunable value Vyax, which is an estimation of maximal
allowed velocity approximation, we do the following two steps for each component of the
velocity approximation:

(i) Identify the collection of troubled velocity cells, denoted as w(uyp), for the velocity
component u;, as the cells where the maximum of the absolute velocity is larger than
Vmax. For polynomial degree k = 2 on triangles, the maximal value in the triangle is
estimated as the maximal value on three vertices and three mid points of each edge:

w(up) :={K € Q2p:  max [up(x)| > Vinax, } (24)
xev(K)

where v(K) is the collection of three vertices and three edge midpoints of cell K.

(i) On each of these troubled cells, we remove the velocity data, and replace it by the average
of cell averages of its immediate neighboring cells which are not marked as troubled cells.
We repeat this procedure until all troubled cells have an updated (constant) velocity value:

While w (1) is not empty, do the following:
ug < average of {ur}for7T € w(K)and T ¢ w(up).

remove cell K from w (1) if its value has been updated. (25)

We note that the above velocity limiting procedure does not affect the local conservation
property as the water height and discharge cell averages were never changed. The above two
approaches introduce two tunable parameters, namely €4 in (23), and Viyax in (24). They
will be chosen accordingly for specific wetting/drying examples. For example, we can take
€7 = 5 x 1073, and take Vi, based on the maximum velocity magnitude for the lowest
order scheme with k = 0 for problems with moving wet/dry interfaces. With the above
wetting/drying treatment, we are able to run simulation for the circular dam break problem
with a dry bed, and the dam bream problem with three mounds on unstructured triangular
grids. We mention that the above treatments are far away from perfect, as they need parameter
tuning, and may lead to accuracy loss near dry cells. They only serves as initial approaches
for a successful simulation of SWEs with moving wet/dry interfaces. We are planning to
further investigate more robust and accurate wetting and drying treatments for our velocity
based DG scheme in the near future.

For completeness, we list the final form of the fully discrete scheme below. This method
is locally conservative, well-balanced, and positivity preserving provided the time step size
At satisfy the CFL condition (18). In practice, we take the time step size to be

_ . max
At = cfl Ignglélh{rk/a,( ), (26)

where cf1 is the CFL number which depends on the polynomial degree k, tx is the mesh
size, and g™ is the estimated maximum speed on the cell K. If we detect a water height
cell average h1x < € = 107'2 in the inner stages in Step 1/2/4 of Algorithm 5, which means
the time step size does not satisfy the condition (18), we simply decrease Az by a half and

redo the whole computation.
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Algorithm 5 Posivity-preserving SSP-RK3 + DG + TVB limiter + wetting/drying treatment

Input: A" n € Vh cu't o m e Vk at time level 7”7, and time step size Az > 0. tol > 0 for TVB limiter indicator
(21), €4 > 0 for dry cell 1nd1cat0r (23), and Vipax > O for troubled velocity cell indicator (24),

Output: h"+1 € Vh ,and u""’l,mZ"'1 € Vﬁ at next time level "1 := ¢ + Ar.

1: Apply Algorlthm 1 with inputs h;’l, uz, mZ and At. (If bottom topography b, is discontinuous, apply the
hydrostatic reconstruction (14) in flux evaluations.) Denote the outputs as h;; ), m,(ql) .

2: Apply the dry cell limiter (23) for h(l) andm, (. ; Apply the characteristic-wise TVB limiter for the variables
(h;ll) + by, my, )) using indicator (21) with indicating function h( ) + by,; Apply the positivity preserving
limiter for hzl).

3: Apply Algorithm 2 with inputs h(l), m(l) Denote the velocity output as u;l ) Then apply the velocity
limiter in (25).

4: Apply Algorithm 1 with inputs h( ) and At. (If bottom topography by, is discontinuous, apply

(2%)
P

(l) m®D
mp

the hydrostatic reconstruction (14) in ﬂux evaluations.) Denote outputs as hf*), m

5: Apply Algorithm 3 with inputs A7}, h(2*) mj, m;lz*) and weights w; = 0.75, wy = 0.25. Denote outputs

as h;lz), m;lz).
6: Apply the dry cell limiter (23) for ) 2 and m( ), ; Apply the characteristic-wise TVB limiter for the variables
(h;lz) +bp,my )) using indicator (21) with indicating function h; ) + bp,; Apply the positivity preserving

limiter for h;lz).

@

h;lz) , 2 Denote the velocity output as u, ) Then apply the velocity

7: Apply Algorithm 2 with inputs
limiter in (25).

8: Apply Algorithm 1 with inputs h}z) 2 @

u;”,m;~ and At. (If bottom topography b, is discontinuous, apply

the hydrostatic reconstruction (14) in flux evaluations.) Denote outputs as hf*), m;?*).

i h(’%*) (3%)

9: Apply Algorithm 3 with inputs A7 h my and weights w) = 1/3, wy = 2/3. Denote outputs

n+1 n+1
ashy™ " m; "
10: Apply the dry cell limiter (23) for 11"+l and m"+l Apply the characteristic-wise TVB limiter for the

variables (hZ'H +by, m”+] ) using indicator (21) with indicating function h"'H +by,; Apply the positivity

. P n+1
preserving limiter for 7, ™. 1
n+

h h

11: Apply Algorithm 2 with inputs , mZJrl . Denote the velocity output as uZ+l . Then apply the velocity

limiter in (25).

4 Numerical Results

In this section we present numerical results of our velocity based DG scheme Algorithm (5).
We report results using the third order DG method with k = 2. The CFL number is taken to
be cfl = 0.1 for 1D examples, and cfI = 0.05 for 2D examples. The gravitation constant
g is fixed as 9.812 except the test in Example 4.6, where it is taken to be g = 10. We take
the tolerance rol = 0.02 in the Fu-Shu indicator (21) for all examples. Moreover, unless
explicitly mentioned, we turn off the dry cell limiter (23) and the velocity limiter (24)—(25),
which are only needed when the problem has a moving dry/wet interface.

Remark 4.1 (Implementation details and boundary conditions) The implementation is based
on the python interface of the NGSolve software [34], https://ngsolve.org/. Source code for all
the examples can be found in the git repository, https://github.com/gridfunction/SWE. Here
we briefly comment on the implementation details of the third order DG scheme with k = 2
on a 2D triangular mesh. The Dubiner orthogonal bases [19] are used as the basis functions
for the DG polynomial space th of degree k = 2. A continuous interpolation in the space
th N H'(Q) is used for the bottom topography by, so that hydrostatic reconstruction (14) is
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not needed in the algorithm. We follow the suggestion in [14, Theorem 2.10] to use a 6-points
Gauss-type quadrature rules of order 2k = 4 for the numerical integration on triangles, and
a 3-point Gauss-Legendre quadrature rule of order 2k + 1 = 5 for the numerical integration
on edges, which achieves formally k + 1 = 3rd order of accuracy. We specifically note that
while these quadrature rules do not exactly integrate most of the terms in the DG scheme
(9), the entropy stability result (10c) is not affected by the introduced numerical integration
errors as the proof of Theorem 2.1 does not rely on exact integration.

Furthermore, numerical examples below require the implementation of wall/symmetry
boundary conditions and outflow boundary conditions. We use the ghost cell technique [31]
for numerical flux evaluations on edges that lie on the domain boundary, see also [1]. Specif-
ically, let F' be a boundary edge that belongs to cell K with polynomial data hx and ug,
we provide ghost cell data i and ug exterior to F to evaluate the average and jump terms
in (O9h)—(91), e.g., {hpup}lr = %(hKuK + hgug). When F lies on a wall or symmetry

(wall) (wall) ,
G : G :

boundary segment, we set & = hg, and u = ug — 2(ug - n)n, which implies

that

hpuy -np =0, (hﬁh\uh)" =oaghg(ug -n), where ag = /ghg + |ug - n|.

When F is an outflow edge, we simply use extrapolation: h(Gm”) = hg, and ugm) :

which implies that

= ug,

Fnun -n = hgug -n, (upu)n = hgug g -n).

It is easy to show that the wall boundary condition is entropy stable. However, entropy
stability of the simple outflow boundary requires ux - n > 0 (no back-propagation on
outflow boundaries), which in general can not be verified a priori. Since this simple outflow
boundary condition does not cause any numerical issues in our examples below, we didn’t
further investigate alternative outflow boundary treatments. We refer to [1] for more stable
inflow/outflow boundary treatments based on characteristic decomposition.

Example 4.1: Accuracy Test in 1D

We start with an accuracy test to demonstrate the high order accuracy of our schemes for
a smooth solution of the SWEs. Following the setup in [44], we take the following bottom
topography and initial conditions:

b(x) = sin®(wx), h(x,0) = 5+ hy(x,0) = sin(cos(27x)).

The computation domain is a periodic unit interval [0, 1], and final time is # = 0.1 where
the solution is still smooth. We apply the plain Algorithm 4 without limiter, and compute the
L2-errors of water height /1, velocity uy,, and discharge my, on a sequence of uniform meshes
with N = 50 x 2 cells for / = 0, 1, 2, 3, 4. We take the solution on N = 25 x 2% = 1600
cells as the reference solution when computing these L2-errors. The results are recorded in
Table 1. We clearly observe the expected third order convergence, and the error magnitude are
comparable to the results reported in [44] for another third order entropy stable DG scheme.

Example 4.2: The Well-Balanced Test in 1D

In this example, we test the well-balanced property of our proposed methods to ensure that
the still-water steady state is exactly preserved. We consider two different choices of the
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Table 1 L2 errors and convergence rate at time ¢ = 0.1 for Example 4.1

N L%-errin hp, rate L2%-errin up rate L%-errin mp, rate
50 2.997e—04 - 3.583e—04 - 2.577e—03 -

100 2.730e—05 3.46 3.273e—05 3.45 2.352e—04 3.45
200 2.949¢—06 321 3.538e—06 321 2.542e—05 321
400 3.600e—07 3.03 4.323e—07 3.03 3.103e—06 3.03
800 4.408e—08 3.03 5.296e—08 3.03 3.798e—07 3.03

Table2 L2 errors at time ¢ = 0.5 for Example 4.2

N smooth bot. disc. bot.

L2-errin hyp, L%-errin up L%-errin mp, L%-errin hp, L2-errin up L%-errin my,

100 9.819¢—14 7.380e—14 5.025e—13 7.700e—14 7.627e—14 5.024e—13
200 1.747e—13 8.344e—14 6.331e—13 1.805e—13 1.042e—13 8.494e—13
400 3.740e—13 1.328e—13 1.029e—12 2.787e—13 2.153e—13 1.355e—12

bottom topography as used in [44]: a smooth bottom with
b(x) = Sexp (—0.4(x — 5)?),

and a discontinuous bottom with
b(x) = {4, if4 <x <8,

0, otherwise.

The computational domain is [0, 10] with wall boundary conditions. The initial condition is
taken as the stationary state

h+b=10,u =0.

We solve the problem until time t = 0.5 on three meshes with 100, 2000, and 400 uniform
cells, and record the L2-errors in Table 2. We observe all errors are at the level of round-off
errors, which verifies the well-balanced property.

Example 4.3: A Small Perturbation Test in 1D

We test the following quasi-stationary test case proposed by LeVeque [30], which is a small
perturbation of the steady state solution. The computational domain is [0, 2], and the bottom
topography b(x) is given by

i(cos(lOn(x —15)+1),ifl4<x <1.6,
0, otherwise.

b(x) = {

The initial conditions are

1—b(x)+e ifl.1<x<12,

1 —b(x), otherwise. o oux,0)=0,

h(x,0) = {

where € is a given constant representing the size of the perturbation. Following [30], we
consider a case with a big pulse (¢ = 0.2) and case with a small pulse (¢ = 0.001). The
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Fig. 1 Example 4.3 with with a big pulse ¢ = 0.2 at time ¢ = 0.2. Left: the water surface 7 + b; right: the
discharge m. Blue squares indicate cells where TVB limiter are used at the final time
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Fig. 2 Example 4.3 with with a small pulse ¢ = 0.001 at time r = 0.2. Left: the water surface 4 + b; right:
the discharge m. Blue squares indicate cells where TVB limiter are used at the final time

final time of simulation is t = 0.2. We compare our scheme on a uniform coarse mesh with
N =200 cells and a uniform fine mesh with N = 2000 cells. The results at final time for the
total water surface i + b and discharge m = hu for the big pulse case are shown in Fig. 1,
and those for the small pulse case are shown in Fig. 2. In these figures, blue squares indicate
the troubled cells identified by our indicator (21). We observe good agreement of the results
on coarse and fine meshes without spurious numerical oscillations, which also agrees well
with results in the literature. Moreover, we observe that the indicator (21) with rol = 0.02
only activates cells close to the moving shocks for both case, with slightly more cells being
identified as troubled cells for the small perturbation test.

Example 4.4: A Dam Breaking Problem over a Bump in 1D

We consider a one-dimensional dam breaking problem over a rectangular bump. It involves
a rapidly varying flow over a discontinuous bottom topography. Following [44], we take the
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Fig.3 Example 4.4 attime t = 60. Left: the water surface & + b; right: the discharge m. Blue squares indicate
cells where TVB limiter are used at the final time

computational domain as [0, 1500], and use the following discontinuous bottom topography:

bx) {8, if [x — 750] < 1800/8,

0, otherwise.

We use outflow boundary conditions, and record the results at time + = 60 in Fig. 3, again
using a uniform coarse mesh with N = 200 cells, and a uniform fine mesh with N = 2000
cells. We observe good agreement of the results on two meshes, which also agrees well with
results reported in the literature. We note that the discharge has a small kink near x = 937.5,
where the discontinuous of bottom topography happens. Also, the indicator is successful in
identifying solution discontinuities.

Example 4.5: Entropy Glitch Test in 1D

We consider the Riemann problem with a flat bottom considered in [46]. The computational
domain is [—1, 1], the bottom topography 5(x) = 0, and initial condition is

1, ifx <O,

0.1, otherwise. u(x,0) =0.

hx,0) = {

The gravitational constant is taken to be g = 10, and final time of simulation is r = 0.2.

It was shown in [46, Fig. 8] that standard DG method with a local Lax-Friedrichs numerical
flux develops an unphysical discontinuity, called an “entropy glitch”, at x = 0, while the
entropy stable DG method is able to capture the solution well on the coarse mesh. The results
in a uniform mesh with 200 cells are shown in Fig. 4.

Example 4.6: A Dam Break Problem with a Dry Bed in 1D

We consider a Riemann Problem with a constant bottom used in [52]. Here a dried river bed
is used to examine the performance of our scheme in case of moving wet/dry interface. The
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Fig.4 Example4.5 attime r = 0.2. Left: the water surface & + b; right: the discharge m. Blue squares indicate
cells where TVB limiter are used at the final time

computation domain is taken to be [—300, 300], and initial condition is

10, ifx <0,

10712, otherwise. u(x, 0) =0.

h(x,0) = {
We use a tiny positive value 107!2 to indicate the dry bed to avoid division by zero in the
velocity computation. This is a very challenging problem as our default algorithm without
dry cell limiter or velocity limiter fails after a couple of time steps due to an excessive large
velocity approximation. Here we activate the dry cell limiter (23) with €; = 5 x 1073, and
do not apply the velocity limiter. We obtain the dry cell threshold constant €, = 5 x 1073
by test-and-trial, where the solution quality was observed to be quite sensitive to this value.
Taking €4 too large, say 0.05, leads to loss of accuracy as piecewise constant approximations
are used in dry cells. On the other hand, taking €, too small, say 5 x 1074, leads to instability
caused by large velocity approximations, where additional velocity limiter would be needed
for a stable simulation. In our experience, taking e; = 5 x 1073 is a good comprise between
stability and accuracy without using the velocity limiter.
The exact solution to the above Riemann problem (with dry bed 4 = 0 for x > 0) was
given in [43, Section 6.3.1], which we cite below:

[AL, 0] ifx/t < —ar,
(e, 0, ute, 0] = 3 [ Q4520 Ha + /0| if —ar < /1 < 2ar,
[0, 0] if 2a; < x/t,

where h; = 10 and a; = /hp g is the left state celerity. The jump in velocity at the dry-
wet interface x /¢ = 2a; makes the accurate numerical computation of this interface very
challenging. In Fig. 5 we present the results of our algorithm at times 7 = 4, T = 8, and
T = 12 on a uniform mesh with N = 200 cells, along with the exact solution. We observe
that the numerical results are in general in good agreements with the exact solution, but the
location of the moving wet/dry interface was not accurately captured. Similar results were
also observed for the DG scheme in [52, Example 6.3]. In Fig. 6 we plot the zoomed-in
version of the solution near the wet/dry front at these times for our DG scheme on uniform
meshes with N = 200 and N = 800 cells. It is clear that increasing mesh resolution improves
the accuracy near the interface.
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Fig. 5 Example 4.6 at times 7 = 4, T = 8, and T = 12. Left: the water surface /; right: the discharge m.
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Fig. 6 Example 4.6 at times 7' = 4, T' = 8, and 7" = 12. Zoomed-in of the wet/dry front. Left: the water

surface h; right: the discharge m

Finally, we show in Fig. 7 the time evolution of the interface 4 = 0.05and h = 5 x 107>
for the scheme with N = 200 and N = 800, along with the exact interface. The general
trend of a right-going moving interface is observed, and the results for N = 800 is quite
good, especially in approximating the interface 7 = 5 x 107>, We finally note that (i) the
interface h = 0.05 split the computational domain into a wet region on the left where high-
order DG approximations are used and a dry region on the right where piecewise constant
approximations are used, (ii) and the interface & = 5 x 10~ can be viewed as the numerical

approximation of the actual wet/dry interface.
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Fig.7 Example 4.6. Time evolution of the interface 7 = 0.05 and h = 5 x 1072

Example 4.7: Accuracy Tests in 2D

Now we turn to the performance of our scheme on 2D triangular meshes. We consider the
following three test cases to demonstrate the high order spatial/temporal accuracy of the
proposed schemes.

Example 4.7(a): Smooth Solution Evolution

This is a 2D version of the 1D accuracy test considered in Example 4.1 The domain is a
periodic unit square [0, 1] x [0, 1]. The bottom topography and the initial conditions are
given as follows:

b(x,y) = sin(2mrx) 4 sin(2wy),
h(x,y,0)= 10+ Sn(@mx) cos(2my),
hu(x, y,0) = sin(cos(27wx)) sin(2ry),
hv(x,y,0) = cos(2mx) cos(sin(2 y)).

We take the final time ¢+ = 0.05 where the solution is still smooth. We apply the plain
Algorithm 4 without limiter and compute the L?-errors of water height &y, velocity uy,, and
discharge my on a sequence of uniform structured triangular meshes with N x N x 2 cells
where N = 25 x 2! cells for/ = 0, 1, 2, 3. The time step size is taken to be Ar = 0.005/N,
which is within the CFL limit. We take the numerical solution (with polynomial degree
k = 2) on a fine mesh with 400 x 400 x 2 cells as the reference solution to compute the
errors. The results are recorded in Table 3. We observe the expected third order convergence
for the water height, and nearly third order convergence for the velocity and discharge.
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Table 3 L2 errors and convergence rate at time ¢ = 0.05 for Example 4.7(a). Polynomial degree k = 2

N L%-errin hp, rate L2%-errin up rate L%-errin mp, rate
25 1.420e—03 - 1.670e—03 - 1.379e—02 -

50 1.567e—04 3.18 2.083e—04 3.00 1.683e—03 3.03
100 1.917e—05 3.03 2.820e—05 2.89 2.371e—04 2.83
200 2.363e—06 3.02 3.880e—06 2.86 3.403e—05 2.80

Table4 L2 errors and convergence rate at time ¢ = 0.004 for Example 4.7(b). Polynomial degree k = 2

N L2-errinh h rate L2-errinu h rate L%-errinm h rate
25 1.543e—04 - 1.387e—04 - 1.423e—03 -

50 1.840e—05 3.07 1.681e—05 3.05 1.703e—04 3.06
100 2.257e—06 3.03 2.057e—06 3.03 2.071e—05 3.04
200 2.805e—07 3.01 2.564e—07 3.00 2.582e—06 3.00

Table5 L2 errors and convergence rate at time ¢ = 0.004 for Example 4.7(b). Polynomial degree k = 3

N L2-errinh h rate L2-errinu h rate L%-errinm h rate
25 3.704e—06 - 6.752e—06 - 6.587e—05 -

50 1.343e—07 4.79 4.155e—07 4.02 4.065e—06 4.02
100 5.853e—09 4.52 2.518e—08 4.04 2.495e—07 4.03
200 2.958e—10 431 1.546e—09 4.03 1.537e—08 4.02

Example 4.7(b): Method of Manufactured Solutions

We use the same setup as in Example 4.7(a), except that additional source terms are added
to the SWEs so that the exact solution is give as follows:

h(x,y, 1) = 10 + "™ cos(27y) cos(2n1),
hu(x,y,t) = sin(cos(2mx)) sin(2w y) cos(2rt),
hv(x,y,t) = cos(2mwx) cos(sin(2wy)) cos(2mt).

Here we take the final time to be r = 0.004 so that temporal error is negligible compared to
spatial error. We record results in Table 4 for polynomial degree k = 2, and in Table 5 for
k = 3, from which we clearly observed optimal (k + 1)-th order of convergence.

Example 4.7(c): Stationary Vortex
Here we numerically verify the high-order spatial accuracy for a stationary vortex problem.

Following [4, Section 3.5], we consider a steady radial symmetric water height and a rotating
incompressible velocity field:

h(x,y,t) =h(r), ulx,y,t)=—f(@F)y, vix,y,t)= f(@r)x, wherer = ,/x2 +y2.
27
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Table6 L2 errors and convergence rate at time ¢ = 0.1 for Example 4.7(c)

k N L2-errinh h rate L%errinu h rate L2-errinm h rate
25 4.582¢—01 - 7.858e—01 - 1.271e+00 -

0 50 2.428e—01 0.92 4.115e—01 0.93 6.647e—01 0.93
100 1.245e—01 0.96 2.101e—01 0.97 3.411e—01 0.96
200 6.300e—02 0.98 1.061e—01 0.99 1.728e—01 0.98
25 1.023e—01 - 1.520e—01 - 2.716e—01 -

1 50 3.214e—02 1.67 4.509e—02 1.75 8.786e—02 1.63
100 8.364e—03 1.94 1.192e—02 1.92 2.261e—02 1.96
200 2.087e—03 2.00 2.979¢—03 2.00 5.647e—03 2.00
25 2.078e—02 - 2.763e—02 - 5.572e—02 -

2 50 3.079¢—03 2.75 4.493e—03 2.62 8.014e—03 2.80
100 4.164e—04 2.89 7.105e—04 2.66 1.163e—03 2.78
200 5.890e—05 2.82 1.045e—04 2.71 1.654e—04 2.81
25 2.561e—03 - 3.168e—03 - 5.631e—03 -

3 50 1.393e—04 4.20 2.425e—04 3.71 3.969e—04 3.83
100 8.888e—06 3.97 1.675e—05 3.86 2.503e—05 3.99
200 5.615e—07 3.98 1.065e—06 3.98 1.562e—06 4.00
25 5.147e—04 - 5.191e—04 - 2.112e—03 -

4 50 1.736e—05 4.89 2.101e—05 4.63 6.606e—05 5.00
100 5.633e—07 4.95 8.014e—07 4.71 2.207e—06 4.90
200 1.798e—08 4.97 2.858e—08 4.81 7.235e—08 4.93

We take a flat bottom b(x, y) = 0, with gravitational constant g = 1. Elementary calculation
shows that the steady solution (27) solves the SWEs (1) only if
2
r)°r
W)= forr .
8

In this case, the gravitational term g VA in the momentum equation is in perfect balance with
the inertial term u - Vu. Following [4], we take

f(r) =exp(—=0.5(P> — 1)), and h(r) =2 — iexp(—(rZ - 1)),

in the numerical simulation. The computational domain is taken to be a large periodic square
Q = [-10, 10] x [—10, 10] so that boundary effects are negligible. We check the spatial
accuracy of our scheme with polynomial degree from k = 0 to k = 4 on a sequence of uniform
structured triangular meshes with N x N x 2 cells where N = 25 x 2l forl =0,1,2,3. The
time step size is taken to be At = 0.5/N for k < 3 and Ar = 0.25/N for k = 4. We take
final time to be t = 0.1, and record convergence results in Table 6, from which we observe
(k + 1)-th order of convergence for most of the cases.

Example 4.8: A Small Perturbation Test in 2D

We test the following 2D quasi-stationary test case proposed by LeVeque [30], which is a
small perturbation of the steady state solution. The computation domain is [0, 2] x [0, 1].
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Fig. 8 Example 4.8. Contour plot for 2 + b — 1. 30 uniform contour lines from 2 +b — 1 = —0.008 to
h + b —1=0.008. From left to right, top to bottom: t = 0.12, 0.24, 0.36, 0.48, 0.6

The bottom topography consists of an elliptical shaped hump
b(x, y) = 0.8exp(—=5(x — 0.9)> — 50(x — 0.5)%),
and the initial conditions are

1 —b(x,y) +0.01, if 0.05 < x <0.15,

hx, .00 = [ 1—b(x,y), otherwise. » by, 0) =, y,0) =0.

Outflow boundary conditions are imposed on the left and right boundary while wall bound-
ary condition (symmetry) are imposed on the top and bottom boundaries. Due to symmetry,
we perform the calculation on half of the domain 2 = [0, 2] x [0, 0.5] with symmetry
boundary condition on the top boundary y = 0.5. We consider our scheme on an unstruc-
tured triangular mesh with mesh size tx = 0.01. The water surface contour at times
t = 0.12,0.24, 0.36, 0.48, 0.60 are recorded in Fig. 8. Our scheme produce non oscilla-
tory solutions and the results agrees well with those in the literature.

@ Springer



Journal of Scientific Computing (2022) 92:86 Page290f33 86

Fig.9 Example 4.9. Contour and surface plots of water height for the circular dam-break problem at # = 0.69.
Left: wet bed. 11 uniform contour lines from 2 to 9.4; Right dry bed. 12 uniform contour lines from 0.01 to
8.9

Example 4.9: Circular Dam Break Test in 2D

We consider the circular dam break problem used in [36, Sect. 3.2.1]. The space domain is a
50 x 50 square with a cylindrical dam with radius » = 11 and centred in the square. The initial
water height is 10 inside the dam, and is either 1 outside the dam (a wet bed), or 1012 outside
the dam (a dry bed). The final time of the simulation is t = 0.69. The bottom topography is
set to be zero. Here the dry bed case need special care, where we applied the dry cell limiter
(23) with €4 = 5 x 1073, and activated the velocity limiter (24)—(25) with Vipax = 15. These
treatment were not used for the wet bed case. Due to symmetry of the problem, we perform
the computation only on a quarter of the domain with symmetric boundary conditions. We
take an unstructured triangular mesh with mesh size 7x = 0.5. The results of two cases are
presented in Fig. 9. We note that taking €; = 5 x 1072 for the dry bed case in the right of Fig.
9 is via test and trial. In particular, visible numerical oscillations near the wet/dry interface
are observed (not reported here) if we reduce €4 to 1073 in the simulation.

Example 4.10: Dam Break on a Closed Channel in 2D

We consider the problem [23, Sect. 8.9] which model dam break on a closed channel.
The domain represents a channel of 75 length and 30 width with three mounds will wall
boundary conditions. The shape of the mounds is defined by the function b(x,y) =
max (0, my, mo, m3), where

my=1-— 0.1\/(x —30)2 + (y — 22.5),

my =1-— 0.1\/(x —30)2 + (y — 7.5,

m3 =2.8— 0.28\/(x —47.5)2 4+ (y — 15)2.
The initial conditions are

1.875, ifx < 16

h(x,y,0) = { 10712, otherwise.

ux,y,0)=v(x,y,0)=0
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Fig. 10 Example 4.10. Contour and surface plots of water surface for the dam-break problem on a closed
channel. 20 uniform contour lines from 0 to 1.2. Left to right, top to bottom: t = 5, 10, 15, 20, 25, 30, 35, 40

—wa®

Due to the moving wet/dry interface, we activate the dry cell limiter with ¢, = 1073,
and the velocity limiter (24)—(25) with Vipax = 9. Due to symmetry, we only perform the
calculation on half of the domain [0, 75] x [0, 15], and apply symmetry boundary conditions
on all the boundaries. Contour plots of the water surface for the simulation results on an
unstructured triangular mesh with mesh size tx = 0.5 are shown in Fig. 10 for various times.
We observe complex flow structures for this problem, and our scheme produces satisfactory
results compared with those from [23, Fig. 15]. We note that, unlike the previous example,
here further reducing €; from 1073 to 107° does not significantly alter the quality of the
numerical solution.

5 Conclusion

We proposed a novel velocity-based DG scheme for the SWEs. Our semidiscrete DG scheme
is locally conservative, entropy stable, and well-balanced. We then apply the SSP-RK3
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time stepping for the time discretzation, and obtained an explicit locally conservative, well-
balanced, and positivity-preserving fully discrete scheme in Algorithm 5, where the treatment
of strong shocks via a characteristic-wise TVB limiter and proper wetting/drying treatment
near dry cells was also discussed. Both one- and two-dimensional numerical results are
provided to demonstrate the performance of the proposed DG method. Our entropy stable
scheme is particularly simple and competitive compared with existing entropy stable DG
schemes for SWEs in the literature.

The velocity-based DG scheme can be used to construct robust entropy/energy stable DG
schemes for other compressible flow problems, which will be carried out in our future studies.
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