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Abstract

We present a novel class of high-order space–time finite element schemes for the Poisson–Nernst–Planck (PNP) equations.
e prove that our schemes are mass conservative, positivity preserving, and unconditionally energy stable for any order of

pproximation. To the best of our knowledge, this is the first class of (arbitrarily) high-order accurate schemes for the PNP
quations that simultaneously achieve all these three properties.

This is accomplished via (1) using finite elements to directly approximate the so-called entropy variable ui := U ′(ci ) =

log(ci ) instead of the density variable ci , where U (ci ) = (log(ci ) − 1)ci is the corresponding entropy, and (2) using a
discontinuous Galerkin (DG) discretization in time. The entropy variable formulation, which was originally developed by
Metti et al. (2016) under the name of a log-density formulation, guarantees both positivity of densities ci = exp(ui ) > 0 and
a continuous-in-time energy stability result. The DG in time discretization further ensures an unconditional energy stability in
the fully discrete level for any approximation order, where the lowest order case is exactly the backward Euler discretization
and in this case we recover the method of Metti et al. (2016).
© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

The Poisson–Nernst–Planck (PNP) equations describe the diffusion of charged particles under the effect of an
lectric field that is itself affected by these particles. This system of equations has been widely used in the modelling
f semiconductors [1] and ion channels in biology [2].

Various numerical methods with different properties have been developed for the PNP equations [3–8]. We
articularly cite the very recent schemes [9–14] that were provably positivity preserving for the particle densities and
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unconditionally energy dissipative for the free energy, among which the schemes in [9–13] are first-order accurate
in time, while the scheme in [14] is high-order accurate in time but the associated energy dissipation law is only
valid for a modified energy due to the use of the recent scalar auxiliary variable (SAV) technique [15]. To the
best of our knowledge, no provable positivity preserving and unconditionally energy dissipative scheme for the
original energy that is at least second-order accurate in time exists so far. We fill this gap by presenting a class of
arbitrarily high-order accurate space–time finite element (STFEM) schemes satisfying these properties. The major
novelty of our approach is the seamless combination of a finite element spatial discretization using the entropy
variables and a novel discontinuous Galerkin (DG) temporal discretization for the resulting differential–algebraic
(DAE) system. Our spatial discretization is the finite element scheme proposed by Metti et al. [9] that is based on
a log-density formulation, which is similar in spirit to the entropy-stable schemes based on the so-called entropy
variables for hyperbolic conservation laws and compressible flow in the CFD literatures [16–19]. The use of finite
elements to approximate the entropy variable ui = log(ci ) instead of the density variable ci mainly serves two
purposes: (1) density ci := exp(ui ) is guaranteed to be positive, and (2) semi-discrete energy-stability is achieved
using classical energy variational arguments. Due to the highly nonlinear nature of the resulting DAE system, it
is difficult to design a proper time stepping strategy that yields a high-order fully-discrete energy stable scheme.
As a matter of fact, only the first-order backward Euler scheme was shown to be energy stable [9]. In particular,
fully-discrete energy stability cannot be proven for the standard high-order finite-difference based time stepping
strategies like the second-order Crank–Nicolson method, the high-order BDF methods, or the diagonally implicit
Runge–Kutta methods. The key contribution of this work is the use of a variational finite-element based high-order
time stepping strategy for this DAE system, which guarantees unconditional energy stability. To achieve this, we
use an upwinding DG time integrator for the density equations combined with a novel Gauss–Radau projection
based DG integrator for the (algebraic) electrostatic potential equation. Thanks to the unconditional energy stability
result, we can adaptively select the time step size mainly by accuracy conditions. Hence we also discuss adaptive
time stepping using the classical proportional integral (PI) step size controller [20].

Since the PNP equations can be viewed as a Wasserstein gradient flow [21], we expect our STFEM scheme with
entropy variables can be applied to construct high-order positivity preserving and unconditionally energy stable
schemes for other Wasserstein gradient flow problems, like the Fokker–Planck equation and the porous medium
equation.

The rest of the paper is organized as follows. In Section 2, we first introduce the PNP equations then present the
spatial/temporal finite element discretizations and prove that they are mass conservative, positivity preserving, and
unconditionally energy dissipative. We further discuss about the nonlinear system solver via the Newton’s method
and adaptive time step size control. Numerical results are presented in Section 3. We conclude in Section 4.

. The PNP equations and the space–time finite element schemes

.1. PNP equations

We consider the PNP equations with N species of charged particles [22] on a bounded domain Ω ⊂ Rd ,
= 1, 2, 3, with boundary ∂Ω :

∂ci

∂t
=∇ · (Di ci∇µi ) , i = 1, 2, . . . , N , (1a)

−∇ · (ϵ∇φ) =ρ0 +

N∑
i=1

zi eci , (1b)

where ci is the density of the i th charged particle species, Di is the diffusion constant,

µi := log(ci ) +
zi e

kB T
φ

is the chemical potential of the i th species, zi is the valence, e is the unit charge, kB is the Boltzmann constant, T
is the absolute temperature, ϵ is the electric permittivity, φ is the electrostatic potential, ρ0 is the permanent (fixed)
charge density of the system, and N is the number of charged particle species.

The PNP system (1a)–(1b) is closed with the following set of initial and boundary conditions:

c (0, x) =c0(x), in Ω (1c)
i i
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ci
∂µi

∂n
=
∂φ

∂n
=0, on ∂Ω . (1d)

ere for simplicity, we use the homogeneous Neumann boundary condition for the charged particle densities. Other
oundary conditions will be used in our numerical experiments. Note that the electrostatic potential φ is determined
p to a constant due to the pure Neumann boundary condition. Following the classical convention, we select a unique
by requiring∫

Ω

φ dx = 0.

The PNP system (1) satisfies the following three important properties:

(i) Mass conservation:∫
Ω

ci (t, x)dx =

∫
Ω

c0
i (x)dx. (2a)

(ii) Positivity preservation:

If c0
i (x) > 0, then ci (t, x) > 0 for any t > 0. (2b)

(iii) Energy dissipation:

d
dt

E = −

N∑
i=1

∫
Ω

Di ci |∇µi |
2dx, (2c)

where E({ci }, φ) :=
∫
Ω

(∑N
i=1(ci (log(ci ) − 1)) + 1

2
ϵ

kB T |∇φ|
2
)

dx is the total free energy.

Remark 2.1. The above energy dissipation (2c) is obtained by a standard energy variational argument, where, in
particular, one multiplies Eq. (1a) with the test function µi = log(ci )+

zi e
kB T φ and integrates over the domain Ω . An

immediate consequence is that such energy dissipation would fail to hold in a standard finite element discretization
where one only approximates the fields ci and φ using finite elements.

One approach to recover energy stability is to use a log-density formulation [9], where one directly discretizes
the entropy variables

ui = U ′(ci ) = log(ci ), (3)

instead of the densities ci , where U (ci ) := ci (log(ci ) − 1) is the entropy of the i th species. In this formulation, the
species densities ci (ui ) := exp(ui ) are derived variables which are guaranteed to stay positive ci = exp(ui ) > 0 for
any time t > 0. We point out that such entropy-variable based schemes are similar in spirit to the entropy stable
schemes using entropy variables for hyperbolic conservation laws and compressible flow [16–19].

To this end, we work with the following reformulated PNP equations (1a)–(1b):

∂ exp(ui )
∂t

=∇ ·

(
Di exp(ui )

(
∇ui +

zi e
kB T

∇φ

))
, (4a)

−∇ · (ϵ∇φ) =ρ0 +

N∑
i=1

zi e exp(ui ). (4b)

.2. Spatial discretization

Let Th := {K } be a conforming simplicial triangulation of the domain Ω . We shall use the following conforming
nite element space

V k
h := {v ∈ H 1(Ω ) : v|K ∈ Pk(K ), ∀K ∈ Th}, (5)

here P (K ) is the space of polynomials of degree at most k ≥ 1 on K .
k

3
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The spatial discretization of our finite element scheme for Eqs. (4) with initial and boundary conditions (1c)–(1d)
eads as follows: Find uh,1, . . . , uh,N ∈ Vh and φh ∈ Vh with

∫
Ω φh dx = 0 such that, for t > 0,∫

Ω

∂ exp(uh,i )
∂t

vi dx +

∫
Ω

Di exp(uh,i )
(
∇uh,i +

zi e
kB T

∇φh

)
· ∇vi dx =0, ∀vi ∈ Vh, (6a)∫

Ω

ϵ∇φh · ∇ψ dx −

∫
Ω

(
ρ0 +

N∑
i=1

zi e exp(uh,i )

)
ψ dx =0, ∀ψ ∈ Vh, (6b)

ith initial conditions

uh,i (0, x) = log(c0
i (x)), i = 1, 2, . . . , N .

The following results show that the semi-discrete scheme (6) satisfies the three properties (2).

Theorem 2.1. Assume c0
i > 0 for all i . Then the three properties (2) are satisfied for the solution to the

semi-discrete scheme (6), where the densities ci in (2) are given explicitly as ci = exp(uh,i ).

Proof. Taking vi = 1 in (6a), we get mass conservation property (2a). Positivity property (2b) following directly
by the definition of ci = exp(uh,i ) > 0.

Let us prove the energy dissipation property (2c). Denoting µh,i := uh,i +
zi e

kB T φh ∈ Vh , taking test function
i = µh,i in (6a) and adding, we get

N∑
i=1

∫
Ω

∂ exp(uh,i )
∂t

µh,i dx +

N∑
i=1

∫
Ω

Di exp(ui )|∇µh,i |
2 dx = 0.

A simple calculation yields that∫
Ω

∂ exp(uh,i )
∂t

uh,i dx =
d
dt

∫
Ω

exp(uh,i )(uh,i − 1)  
:=U (uh,i )

dx.

Hence,
N∑

i=1

d
dt

∫
Ω

U (uh,i ) dx +

∫
Ω

N∑
i=1

zi e
kB T

∂ exp(uh,i )
∂t

φh dx +

N∑
i=1

∫
Ω

Di exp(ui )|∇µh,i |
2 dx = 0. (7)

Taking ψ =
∂φ

∂t /(kB T ) in Eq. (6b) and subtract the resulting expression from (7), we get

d
dt

Eh +

N∑
i=1

∫
Ω

Di exp(ui )|∇µh,i |
2 dx = 0,

where the discrete free energy

Eh :=

∫
Ω

(
N∑

i=1

U (uh,i ) +
N∑

i=1

zi e
kB T

exp(uh,i )φh −
ϵ

2kB T
|∇φh |

2
+

ρ0

kB T
φh

)
dx.

Taking ψ = φh/(kB T ) in (6b), we get∫
Ω

N∑
i=1

zi e
kB T

exp(uh,i )φhdx =

∫
Ω

(
ϵ

kB T
|∇φh |

2
−

ρ0

kB T
φh

)
dx.

Combining the above two expressions, we get

Eh =

∫
Ω

(
N∑

i=1

U (uh,i ) +
ϵ

2kB T
|∇φh |

2

)
dx.

This completes the proof of (2c). □
4
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2.3. Temporal discretization

In this subsection, we discretize the differential–algebraic system (6) using a discontinuous Galerkin (DG) time
integrator of degree m ≥ 0. The major advantage of using the DG integrator is that we can prove an unconditional
energy stability result for the fully discrete scheme for any polynomial degree m ≥ 0 in time. To the best of our
knowledge, this is the first class of arbitrarily high-order accurate numerical schemes for the PNP equations that
are provably positive and unconditionally energy stable.

At the nth time level tn , we denote the time step size as ∆tn and the update time interval as I n
= [tn, tn+1). We

denote the space–time finite element space on the space–time slab Ω × I n as follows:

Vk,m,n
h := {v ∈ H 1(Ω × I n) : v|K×I n ∈ Pk(K ) ⊗ Pm(I n), ∀K ∈ Th}, (8)

he fully discrete scheme then reads as follows: for any n = 1, 2, . . ., find un
h,i ∈ Vk,m,n

h and φn
h ∈ Vk,m,n

h with∫
Ω φ

n,−
h dx = 0 such that∫

I n

∫
Ω

∂ exp(un
h,i )

∂t
vi dxdt +

∫
Ω

(
exp(un,+

h,i ) − exp(un−1,−
h,i )

)
v

n,+
i dx

+

∫
I n

∫
Ω

Di exp(un
h,i )

(
∇un

h,i +
zi e

kB T
∇φn

h

)
· ∇vi dxdt = 0, ∀vi ∈ Vk,m,n

h , (9a)∫
I n

∫
Ω

ϵ∇φn
h · ∇ψ dxdt −

∫
I n

∫
Ω

(
ρ0 +

N∑
i=1

zi e exp(un
h,i )

)
ψ dxdt = 0, ∀ψ ∈ Vk,m−1,n

h , (9b)

∫
Ω

ϵ∇φ
n,−
h · ∇ψn,− dx −

∫
Ω

(
ρ0 +

N∑
i=1

zi e exp(un,−
h,i )

)
ψn,− dx = 0, ∀ψ ∈ V k

h , (9c)

where we denote ξ n,−
:= limt↗tn+1 ξ n(t, x) and ξ n,+

:= limt↘tn ξ n(t, x).

Remark 2.2. We note that the classical upwinding DG time integrator is used in (9a), and a non-standard Gauss–
Radau type projection is used in (9b)–(9c) for the temporal discretization of the Poisson equation. Recall that the
Gauss–Radau projection of order m with right endpoint for a function f on the interval I n is given as follows: find
fh ∈ Pm(I n) such that∫

I n
fhφh dt =

∫
I n

f φh dt, ∀φh ∈ Pm−1(I n),

fh(tn+1) = f (tn+1).

This Gauss–Radau type projection is necessary for us to prove the unconditional energy stability of the scheme (9)
in Theorem 2.2. In particular, for the energy stability proof, we need to take test function φ = ∂tφ

n
h/(kB T ) ∈ Vk,m−1,n

h
in (9b) and ψ = φ

n,−
h /(kB T ) ∈ V k

h in (9c). We further note that when m = 0, the temporal discretization is simply
he following backward Euler method considered in [9]: find un

h,i ∈ V k
h and φn

h ∈ V k
h with

∫
Ω φ

n
h dx = 0 such that∫

Ω

(
exp(un

h,i ) − exp(un−1
h,i )

)
vi dx +∆tn

∫
Ω

Di exp(un
h,i )

(
∇un

h,i +
zi e

kB T
∇φn

h

)
· ∇vi dx = 0,∫

Ω

ϵ∇φn
h · ∇ψ dx −

∫
Ω

(
ρ0 +

N∑
i=1

zi e exp(un
h,i )

)
ψ dx = 0,

for all vi ∈ V k
h and ψ ∈ V k

h , where we identified the space–time space Vk,0,n
h with the spatial space V k

h , and used

the fact that
∂ exp(un

h,i )
∂t = 0 and un,+

h,i = un,−
h,i = un

h,i for un
h,i ∈ Vk,0,n

h , and the integrand in the last term of (9a) is
independent of time.

The following results show that the fully-discrete scheme (9) satisfies a discrete version of three properties (2).

Theorem 2.2. Assume c0
i > 0 for all i . For any solution to the scheme (9), the following three properties holds∫

exp(un,−
h,i ) dx =

∫
exp(un−1,−

h,i ) dx, (10a)

Ω Ω

5
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cn
h,i := exp(un

h,i ) >0, (10b)

En
h − En−1

h =− Dissn
h − N n

h,1 − N n
h,2 (10c)

where the discrete energy is given by

En
h :=

∫
Ω

(
N∑

i=1

U (un,−
h,i ) +

ϵ

2kB T
|∇φ

n,−
h |

2

)
dx, (10d)

the (non-negative) physical dissipation term

Dissn
h :=

∫
I n

∫
Ω

N∑
i=1

Di cn
h,i |∇µ

n
h,i |

2 dxdt,

and the (non-negative) numerical dissipation terms N n
h,1 and N n

h,2 for the temporal discretization are given as follows

N n
1,h :=

∫
Ω

N∑
i=1

1
2

exp(ξ n
h,i )(u

n−1,−
h,i − un,+

h,i )2 dx,

N n
2,h :=

∫
Ω

ϵ

2kB T
|∇(φn,+

h − φ
n−1,−
h )|

2
dx,

here ξ n
h,i is a function between un,+

h,i and un−1,−
h,i for each i .

roof. Again, we only need to prove the energy stability result (10c) as the other two properties are trivially
atisfied.

We follow the same proof as the semi-discrete case in Theorem 2.1. Denoting cn
h,i := exp(un

h,i ), µ
n
h,i :=

un
h,i +

zi e
kB T φ

n
h ∈ Vk,m,n

h , and taking test function vi = µn
h,i in (9a), we get∫

I n

∫
Ω

∂cn
h,i

∂t
µn

h,i dxdt +
∫
Ω

(
cn,+

h,i − cn−1,−
h,i

)
µ

n,+
h,i dx +

∫
I n

∫
Ω

Di cn
h,i |∇µ

n
h,i |

2 dxdt = 0. (11a)

simple calculation yields that∫
I n

∫
Ω

∂cn
h,i

∂t
uh,i dxdt =

∫
I n

d
dt

∫
Ω

U (uh,i ) dxdt =
∫
Ω

U (un,−
h,i ) dx −

∫
Ω

U (un,+
h,i ) dx,

here U (η) := exp(η)(η − 1). By Taylor expansion we have

(exp(a) − exp(b))a = U (a) − U (b) +
1
2

exp(ξ )(a − b)2

or some ξ between a and b. Hence,∫
Ω

(
cn,+

h,i − cn−1,−
h,i

)
un,+

h,i dx =

∫
Ω

(
U (un,+

h,i ) − U (un−1,−
h,i ) +

1
2

exp(ξ n
h,i )(u

n−1,−
h,i − un,+

h,i )2
)

dx

for some ξ n
h,i between un−1,−

h,i and un,+
h,i . Combining the above two equalities and summing the terms (11a) over all

the indices i , we get
N∑

i=1

(∫
Ω

U (un,−
h,i ) dx −

∫
Ω

U (un−1,−
h,i ) dx

)
+ N n

1,h + Ic,φ +

∫
I n

∫
Ω

N∑
i=1

Di cn
h,i |∇µ

n
h,i |

2 dxdt  
=Dissn

h

= 0, (11b)

where N n
1,h is the following numerical dissipation term from upwinding

N n
1,h :=

∫
Ω

N∑
i=1

1
2

exp(ξ n
h,i )(u

n−1,−
h,i − un,+

h,i )2 dx ≥ 0,

nd the term Ic,φ is given as follows:

Ic,φ :=

∫ ∫
∂Sn

h φn
h dxdt +

∫ (
Sn,+

h − Sn−1,−
h

)
φ

n,+
h,i dx,
I n Ω ∂t Ω

6
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t
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t
(∫
t

with Sn
h :=

∑N
i=1

zi e
kB T cn

h,i +
ρ0

kB T being the source term in (9b), where we used the fact that ρ0, zi , kB, T are
independent of time. Next, taking ψ = ∂tφ

n
h/(kB T ) ∈ Vk,m−1,n

h in Eq. (9b) and combining with the above term, we
get

Ic,φ =−

∫
I n

∫
Ω

∂

∂t
(
ϵ

2kB T
|∇φn

h |
2) dxdt +

∫
I n

∫
Ω

∂

∂t
(Sn

hφ
n
h ) dxdt +

∫
Ω

(
Sn,+

h − Sn−1,−
h

)
φ

n,+
h,i dx,

=

∫
Ω

(
−

ϵ

2kB T
|∇φ

n,−
h |

2
+

ϵ

2kB T
|∇φ

n,+
h |

2
+ Sn,−

h φ
n,−
h − Sn−1,−

h φ
n,+
h

)
dx,

=

∫
Ω

(
Sn,−

h φ
n,−
h −

ϵ

2kB T
|∇φ

n,−
h |

2
+

ϵ

2kB T
|∇(φn,+

h − φn−1,−)|
2
−

ϵ

2kB T
|∇φ

n−1,−
h |

2
)

dx

+

∫
Ω

(
ϵ

2kB T
∇φ

n−1,−
h − (Sn−1,−

h )φn,+
h

)
dx  

=0 by (9c).

,

=

∫
Ω

(
ϵ

2kB T
|∇φ

n,−
h |

2
+

ϵ

2kB T
|∇(φn,+

h − φn−1,−)|
2
−

ϵ

2kB T
|∇φ

n−1,−
h |

2
)

dx,

where the last step is again due to (9c) by taking the test function ψ = φ
n,−
h /(kB T ). Combining the above expression

with the equality (11b), we finally get

En
h + N n

1,h + N n
2,h + Dissn

h = En−1
h ,

where we used the definition of the energy En
h and the numerical dissipation term N n

2,h from Theorem 2.2. This
completes the proof. □

Remark 2.3. Our proposed scheme (9) can be also applied to the variable coefficient case to achieve all the three
properties in Theorem 2.2. For example, by multiplying all the spatial integrals in 2.2 with a coefficient A(x) > 0,
we immediately get a positive and unconditionally energy stable scheme for the following PNP system with a
variable (possibly discontinuous) A(x):

A
∂ci

∂t
=∇ · (ADi ci∇µi ) , i = 1, 2, . . . , N , (12a)

−∇ · (Aϵ∇φ) =A(ρ0 +

N∑
i=1

zi eci ). (12b)

In this case, all the integrals in (10) shall be weighted by the cross-section A(x).

emark 2.4. While we only proved the energy stability result (10c) for the PNP model with homogeneous
eumann boundary conditions (1d), similar results hold when we replace the Neumann boundary condition for the

lectrostatic potential φ by a Dirichlet or Robin-type boundary condition with minor modifications. For example, if
he following homogeneous Robin-type boundary condition for the electrostatic potential is to be used with α > 0:

ϵ
∂φ

∂n
+ αφ = 0, on ∂Ω , (13)

we do not need the compatibility condition
∫
Ω φ dx = 0 anymore as φ is uniquely determined, instead, we

eed to add a boundary mass term
∫
∂Ω αφhψ ds to Eq. (6b) in the semi-discrete scheme (6), and add the term∫

I n

∫
∂Ω αφ

n
hψ dsdt to Eq. (9b) and

∫
∂Ω αφ

n,−
h ψn,− ds to (9c) in the fully discrete scheme (9) to reflect the Robin-

ype boundary condition (13). In this case, the energy stability result (10c) would still hold with an additional
non-negative) boundary term

∫
∂Ω

α
2kB T (φn,−

h )2 ds in the discrete energy (10d), and an additional boundary term

∂Ω
α

2kB T (φn,+
h − φ

n−1,−
h )2 ds in the numerical dissipation term N n

2,h , essentially following the same arguments in

he proof of Theorem 2.2.

7
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2.4. Nonlinear system solver and adaptive time stepping

We use Newton’s method to solve the fully discrete nonlinear system (9). A sparse direct solver is used for the
linear algebraic systems in each Newton’s iteration. The Newton’s iteration is stopped when the relative error of
the energy (10d) is reduced by a factor of 10−8.

One main advantage of unconditionally energy stable schemes with arbitrary order is that they can be easily
implemented with an adaptive time stepping strategy so that the time step is dictated only by accuracy rather than
by stability as with conditionally stable schemes. Here we use the classical PI step size control algorithm [20]:
given a previous time step size ∆tn−1, the next time step size ∆tn is proposed as

∆ttemp =

(
tol
en

)K I
(

en−1

en

)K P

∆tn−1, ∆tn
= min{∆ttemp, θmax∆tn−1,∆tmax}, (14)

here tol is a prescribed error tolerance, ∆tmax is a user defined maximum allowed time step size, and

en
:=

⏐⏐⏐⏐⏐ En
h − En,lo

h

En
h

⏐⏐⏐⏐⏐ (15)

s the error estimator based on the relative error in energy between the scheme (9) (with temporal order m ≥ 1)
nd a companion (temporal) low-order scheme (with m = 0) with the same spatial discretization, and we use the
ollowing parameters suggested in [20]:

K P = 0.13, K I = 1/15, θmax = 2, ρ = 1.2.

e reject the proposed ∆tn in (14) if either the Newton iteration did not converge or the target tolerance is violated
en > ρ tol). In this case, we halve the time step size by setting ∆tn

:= 0.5∆tn−1 and redo the computation.

emark 2.5. We note that while the convergence of the above Newton’s method for the nonlinear system (9) is
ot theoretically guaranteed, this adaptive time stepping strategy works quite well in practice; see Figs. 5 and 9 for
he Newton iteration counts. Specifically in these figures, we observe that the average number of iteration counts is
bout 3–4, and there are only a few locations (around time t = 240) where the iteration counts are greater than 4.

Assuming sufficiently close initial guess to the true solution and/or sufficiently small time step size, the Newton’s
ethod is expected to converge. But quantifying the convergence property of the Newton’s algorithm is a highly

ontrivial task, which we do not investigate in this work. In this direction, we mention the work [23] which
nvestigated a Newton solver of the backward Euler scheme [9]. In particular, in [23, Theorem 3.2], the authors
roved the well-posedness of a linearized PNP system when the domain is convex and the mesh is sufficiently
efined. However the convergence of the Newton’s algorithm was not theoretically proven therein.

. Numerics

In this section, we present several numerical examples to validate our theoretical results in the previous section.
ur numerical simulations are performed using the open-source finite-element software NGSolve [24], https://n
solve.org/. In particular, NGSolve’s add-on library ngxfem, https://github.com/ngsxfem/ngsxfem, is used in the
mplementation of the space–time finite element scheme (9). In all the examples, we choose the initial guess for
he Newton’s algorithm to be the solution at previous time level.

xample 1

(Accuracy test) We first use a manufactured solution example to test the accuracy of the scheme (9). We consider
he PNP equations (1) with N = 2, z1 = 1, z2 = −1, e = kB = T = D1 = D2 = ϵ = 1. The computational domain
s a unit square, and we take source terms such that the smooth exact solution is

c1(t, x, y) =1 + 0.5 sin(t) sin(πx) sin(πy),

c2(t, x, y) =1 − 0.5 sin(t) sin(πx) sin(πy), (16)
φ(t, x, y) = sin(t) sin(πx) sin(πy).
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Table 1
Example 1. L2-errors at time t = 1 for the methods (9) with k = m on a sequence of uniformly refined meshes. Time step
size ∆t = 2h.

k = m 1/h L2-err in u1
h Rate L2-err in u2

h Rate L2-err in φ2
h Rate

1

8 5.228e−03 – 1.362e−02 – 2.140e−02 –
16 1.473e−03 1.828 3.821e−03 1.834 5.461e−03 1.970
32 3.923e−04 1.908 1.000e−03 1.934 1.374e−03 1.991
64 1.016e−04 1.950 2.552e−04 1.970 3.442e−04 1.997

2

8 1.218e−04 – 2.615e−04 – 1.999e−04 –
16 1.407e−05 3.113 1.928e−05 3.762 1.762e−05 3.504
32 1.702e−06 3.048 1.782e−06 3.435 1.869e−06 3.237
64 2.106e−07 3.014 1.992e−07 3.162 2.215e−07 3.077

3

8 9.026e−06 – 1.980e−05 – 1.809e−05 –
16 4.813e−07 4.229 1.115e−06 4.151 1.083e−06 4.062
32 2.768e−08 4.120 6.665e−08 4.064 6.651e−08 4.025
64 1.675e−09 4.047 3.990e−09 4.062 4.122e−09 4.012

We use homogeneous Dirichlet boundary conditions on u1, u2 and φ.
We apply the space–time finite element scheme (9) with k = m = 1, k = m = 2, and k = m = 3 on a sequence

f uniformly refined triangular meshes. We take uniform time step size ∆t = 2h, where h is the mesh size. The
ewton’s method converges within 3–4 iterations for all the cases. The L2-errors at time t = 1 are recorded in
able 1. Clearly, we observe the expected (k + 1)-th order of convergence for all the variables for the scheme (9)
sing polynomials of degree k = m.

xample 2

(One-dimensional problem with discontinuous coefficients) Here we solve a two-component (N = 2) one-
imensional system (12) with variable discontinuous coefficients. The domain is Ω = [−28, 25], and we use the
omogeneous Dirichlet boundary conditions

φ(x) = u1(x) = u2(x) = 0 ∀x ∈ ∂Ω

nd initial condition

u1(0, x) = u2(0, x) = 0.

e use the following set of parameters:

kB =T = e = 1, z1 = 1, z2 = −1, D1 = 1, D2 = 1.0383,

A = πr2, with r (x) =

⎧⎪⎪⎨⎪⎪⎩
−0.5x − 7 if − 28 < x < −18,
2 if − 18 < x < −5,
0.5 if − 5 < x < 10,
0.9x − 8.5 if 10 < x < 25,

ϵ(x) =
{

4.7448 if − 5 < x < −10,
189.79 elsewhere,

ρ0(x) =
{

−300 if x ∈ (−2,−1) ∩ (0, 1) ∪ (2, 3) ∪ (4, 5) ∪ (6, 7),
0 elsewhere.

e apply the second-order scheme (9) with polynomial degree k = m = 1, and take the initial time stepsize as
t1

= 10−4. The adaptive time stepping algorithm (14) is used where the companion low order scheme takes
= 1 and m = 0 on the same mesh. For the two user defined parameters in (14), we take tol = 10−3, and

tmax =

{
2 if t < 250,

The simulation is terminated when relative error in the energy in two consecutive
200 if t > 250.
9



G. Fu and Z. Xu Computer Methods in Applied Mechanics and Engineering 395 (2022) 115031

p
a

Fig. 1. Example 2. Electrostatic potential φ at different times obtained with the scheme (9) with k = m = 1 on a uniform mesh with mesh
size h = 1/128.

Table 2
Example 2. Initial and final energy, and total number of time steps to reach the steady state for the
scheme (9) with k = m = 1 and adaptive time stepping (14) on different meshes.

Mesh size h 1/16 1/32 1/64 1/128

Initial energy 387788.75 387798.52 387800.97 387801.58
Final energy −3023.3435 −3022.3990 −3022.1619 −3022.1025
Total time steps 206 208 210 210

time steps is less than 10−13,⏐⏐⏐⏐⏐ En
h − En−1

h

En
h

⏐⏐⏐⏐⏐ < 10−13,

which indicates a steady state is reached. We find the steady state is reached around time t = 1400.
This problem is very challenging to solve as c2 = exp(u2) stays near zero for x ∈ (−5, 10) for an extended

eriod of time. Typical solutions at different times are shown in Figs. 1–3, which is obtained by the scheme (9) on
very fine uniform mesh with mesh size h = 1/128. It is clear from Fig. 3 that c2 = exp(u2) stays positive and

below exp(−50) ≈ 2× 10−22 for x ∈ (−5, 10) and t ∈ (20, 240), which can be as small as exp(−150) ≈ 7× 10−66

at around time t = 100. A non positivity preserving scheme may easily lead to a negative density c2, hence an
early termination of the code using such scheme due to the need to evaluate log(c2).

The initial and final energy, along with the total number of time steps to reach the steady state is recorded in
Table 2 for four consecutively refined (uniform) meshes. We clearly observe a convergence in the energies as the
mesh is refined. Moreover, the total number of time steps to reach the steady state is similar on all four meshes.

We plot in Fig. 4 the energy evolution over time on the four meshes, along with the evolution of the dissipation
rates

−
En

h − En−1
h , and Dissn

/∆tn,

∆tn h

10
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w

w

Fig. 2. Example 2. Logarithmic density u1 = log(c1) at different times obtained with the scheme (9) with k = m = 1 on a uniform mesh
ith mesh size h = 1/128.

Fig. 3. Example 2. Logarithmic density u2 = log(c2) at different times obtained with the scheme (9) with k = m = 1 on a uniform mesh
ith mesh size h = 1/128.
11
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Fig. 4. Example 2. The evolution of energy and dissipation rates over time on the four meshes.

Fig. 5. Example 2. The evolution of time step size ∆tn , error estimator en , and Newton iteration number over time on the four meshes.

The results in Fig. 4 numerically confirmed the energy stability result in Theorem 2.2. Moreover, the energy and
dissipation rate evolution are very similar on the four meshes, and we also observe that the computed dissipation
rate (En−1

h − En
h )/∆tn is very close to and slightly larger than the physical dissipation rate Dissn

h/∆tn , which is
again consistent with the equality (10c) in Theorem 2.2.

Finally we plot in Fig. 5 the evolution of the time step size, the error estimator en
=

⏐⏐⏐(En
h − En,lo

h )/En
h

⏐⏐⏐, and the
number of Newton iterations. Again, the results on the four meshes are very similar to each other, and the average
number of Newton iterations is about 3−4. In particular, we observe that the time step size gradually increases from
∆t = 10−4 to ∆t = ∆tmax = 2 till time t = 14, then it stays at ∆tmax = 2 for a period of time till around t = 235,
where a few drops in time step size occur from t = 235 to t = 243 due to a relative large error en . Afterwards, ∆t
gradually increases to ∆tmax = 200. The advantage of adaptive time stepping is also clearly illustrated in Fig. 5 as
a scheme with a uniform time step size ∆t = ∆t1

= 10−4 would need about 1.4 × 107 time steps to converge to
steady state, while our adaptive time stepping scheme only needs about 200 time steps as shown in Table 2.

Example 3

(Two-dimensional problem with discontinuous coefficients) Here we solve a problem similar to Example 2 on
a two-dimensional geometry. The computational domain is shown in Fig. 6. We solve the variable-coefficient PNP
equations (12) on the domain Ω using the same set of parameters as in Example 2, with the only exception
that the cross-section term is taken to be A(x) = πr (x) to take into account the 2D geometry. Homogeneous
Dirichlet boundary conditions are imposed on the left and right boundaries segments O A and P F , and homogeneous

Neumann boundary conditions are imposed on the rest of the domain boundary.

12
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h
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s
i

Fig. 6. Example 3. Computational domain Ω (polygon). Coordinates for the vertices: A : (−28, 7), B : (−18, 2), C : (−5, 2), D : (−5, 0.5),
E : (10, 0.5), F : (25, 14), O : (−28, 0), P : (25, 0).

Fig. 7. Example 3. Logarithmic density u2 = log(c2) along cut line y = 0 at different times obtained with the scheme (9) with k = m = 1
on a uniform unstructured mesh with mesh size h = 1/32 (4.43 × 105 triangular elements).

The same second-order scheme (9) with polynomial degree k = m = 1 and adaptive time stepping (14) is used
ere on three uniform unstructured meshes. The coarse mesh with mesh size h = 1/16 has 1.10 × 105 elements

which leads to a total of 3.37 × 105 degrees of freedom (DOFs). The medium mesh with mesh size h = 1/32
has 4.43 × 105 elements which leads to a total of 1.34 × 106 DOFs. The fine mesh with mesh size h = 1/64 has
1.77 × 106 elements which leads to a total of 5.34 × 106 DOFs. We use this example to show the performance of
our method in a challenging two-dimensional problem with variable coefficient and complex geometry.

The computational results are very similar to the 1D case in Example 2. Hence, we only present in Fig. 7 the
evolution of u2 = log(c2) at different times along the centre cut line y = 0. In particular, we still observe that
c2 = exp(u2) stays near zero for x ∈ (−5, 10) for an extended period of time.

We present in Table 3 the initial and final energy and the total number of time steps to reach the steady state, in
ig. 8 the energy evolution and the evolution of the dissipation rates, and in Fig. 9 the evolution of the time step
ize, the error estimator and the number of Newton iterations. Again, all the results are very similar to the 1D case
n Example 2.
13
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Table 3
Example 3. Initial and final energy, and total number of time steps to reach the
steady state for the scheme (9) with k = m = 1 and adaptive time stepping (14) on
different meshes.

Mesh size h 1/16 1/32 1/64

Initial energy 402624.10 395346.31 391737.06
Final energy −2918.1776 −2969.7288 −2995.4971
Total time steps 216 213 212

Fig. 8. Example 3. The evolution of energy and dissipation rates over time on the four meshes.

Fig. 9. Example 3. The evolution of time step size ∆tn , error estimator en , and Newton iteration number over time on the four meshes.

4. Conclusion

We presented a novel class of high-order accurate, positivity preserving, and unconditionally energy stable space–
time finite element schemes for the PNP equations based on discretizing the entropy variables associated to the
densities. To the best of our knowledge, this is the first class of arbitrarily high-order accurate schemes for PNP
equations that is both positivity preserving and unconditionally energy stable.

Our ongoing work consists of extending the STFEM framework to design positivity preserving and uncondition-
ally energy stable schemes for other Wasserstein gradient flow problems, and their coupling with incompressible
flows like electrokinetic problems. We are also planning to investigate on alternative finite element discretizations,
efficient linear system solvers, and more computationally efficient temporal discretizations for the PNP equations
in the future.
14
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