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Abstract. We present a novel monolithic divergence-conforming HDG scheme for a linear
fluid-structure interaction problem with a thick structure. A pressure-robust optimal energy-norm
estimate is obtained for the semidiscrete scheme. When combined with a Crank—Nicolson time
discretization, our fully discrete scheme is energy stable and produces an exactly divergence-free
fluid velocity approximation. The resulting linear system, which is symmetric and indefinite, is solved
using a preconditioned MinRes method with a robust block algebraic multigrid preconditioner.

Key words. divergence-conforming HDG, FSI, thick structure, block preconditioner
AMS subject classifications. 65N30, 656N12, 76505, 76D07

DOI. 10.1137/20M1385950

1. Introduction. Fluid-structure interaction (FSI) describes a multiphysics phe-
nomenon that involves the highly nonlinear coupling between a deformable or moving
structure and a surrounding or internal fluid. There has been intensive interest in
solving FSI problems due to their wide application in biomedical, engineering, and
architecture fields, such as the simulation of blood-cell interactions, the study of wing
fluttering in aerodynamics, and the design of dams with reservoirs. However, it is
generally difficult to achieve analytical solution to FSI problem with its nonlinear
and multiphysics nature. Instead, there have been extensive studies in its numer-
ical solutions and an increasing demand for more efficient and accurate numerical
schemes [8, 13, 17, 29, 44].

Numerical methodologies for solving FSI problems can be roughly categorized
into partitioned and monolithic schemes. Distinct mechanisms in fluid and structure
domains naturally suggest solvers using partitioned schemes [20, 42]. This numerical
procedure treats each physical phenomenon separately and allows the use of exist-
ing software frameworks that are well established for each subproblem. However,
the design of efficient partitioned schemes that produce stable and accurate results
remains a challenge, especially when the density of fluid is comparable to that of
structure due to numerical instabilities known as the added mass effect [11]. The
design and analysis of partitioned schemes to circumvent such problems has been an
active research area in the past decade [3, 6, 11, 21, 36]. An alternative to a parti-
tioned strategy is the monolithic approach, which solves the fluid flow and structure
dynamics simultaneously using one unified fully coupled formulation [30, 45, 51]. The
boundary conditions on the fluid-structure interface will be automatically satisfied in
the procedure. Monolithic schemes are usually more robust than partitioned schemes
and allow more rigorous analysis of discretization and solution techniques [32, 44].
However, monolithic schemes have been criticized for requiring well-designed precon-
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ditioners [2, 26, 41], more memory, and computation time since the whole system is
solved in one formulation.

The hybrid discontinuous Galerkin (HDG) schemes have been developed and suc-
cessfully applied to various partial differential equations (PDEs) [14, 15, 40] with its
beneficial stability and high-order scalability while decreasing the coupling between
elements and the size of the scheme matrix after static condensation. Recently, there
have been a few works on the application of HDG methodologies to FSI problems.
The first HDG scheme for FSI problems was introduced in [49], where the authors
combined the HDG incompressible flow and nonlinear elasticity solvers [40] with a
monolithic arbitrary Lagrangian—Eulerian (ALE) formulation. The method was fur-
ther improved in [50] with a reduced computational cost. An ALE monolithic scheme
based on an H(div)-conforming HDG fluid solver and a continuous Galerkin (CG)
structure solver was proposed in [39], where the fluid velocity is guaranteed to be di-
vergence free on the moving mesh throughout. Also, an ALE partitioned scheme [33]
based on an HDG formulation for the compressible fluid and a CG formulation for the
structure has been proposed for FSI problems with a weakly compressible fluid. All
the above-cited references on HDG FSI solvers focus on nonlinear FSI models. Due to
the use of different discretization approaches for the fluid and structure subproblem
in these methods, the interface conditions have to be weakly imposed via Nitsche’s
technique or Lagrange multipliers.

In this paper, we focus on a linear FSI model with a thick structure and present
and analyze a monolithic scheme with H (div)-conforming HDG discretization applied
in both fluid and solid domains. Subproblems have been studied in previous works,
including the fluid flow problem by Lehrenfeld [34] and Lehrenfeld and Schéberl [35]
and the linear elasticity problem by Fu et al. [25]. One major novelty of our ap-
proach is that we use a single H(div)-conforming finite element space on the whole
computational domain to approximate the fluid and structure velocities together and
introduce a global (hybrid) unknown that approximates the tangential component of
the velocities on the mesh skeleton. As a consequence, the coupling conditions on
the fluid-structure interface are automatically satisfied by design. An optimal energy-
norm a priori error estimate is obtained for the resulting semidiscrete scheme. We
then use a Crank—Nicolson time discretization to arrive at a fully discrete scheme,
which produces an exactly divergence-free fluid velocity approximation and is proven
to be unconditionally energy stable.

When polynomials of degree & > 1 are used in the scheme, the global linear sys-
tem, which is symmetric and indefinite, consists of degrees of freedom (DOF's) for the
normal component of velocity (of polynomial degree k) on the mesh skeleton (facets),
the tangential hybrid velocity (of polynomial degree k — 1) on the mesh skeleton, and
one pressure DOF per element on the mesh. The linear system problem is then solved
via a preconditioned MinRes method [47] with a block diagonal preconditioner which
is of similar form as the uniform preconditioner studied in Olshanskii, Peters, and
Reusken [43] for a generalized Stokes interface problem. We further use an auxiliary
space preconditioner of Xu [52] with algebraic multigrid (AMG) for the velocity block
and a Hypre AMG preconditioner for the pressure block to arrive at the final block
AMG preconditioner. This preconditioner is numerically verified to be robust with
respect to mesh size, time step size, and material parameters.

The rest of the paper is organized as follows. In section 2, we introduce the spatial
and temporal discretization of the divergence-conforming HDG scheme for a linear FSI
prosblem with a thick structure. We then present the block AMG preconditioner in
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section 3. The a priori error analysis of the semidiscrete scheme is performed in section
4. Numerical results are presented in section 5. We conclude in section 6.

2. The monolithic divergence-conforming HDG scheme for a linear FSI
model.

2.1. The model FSI problem. We consider the interaction between an incom-
pressible, viscous fluid and an elastic structure. We denote by Q7 (t) € R? the domain
occupied by the fluid and Q%(¢) C R?, d = 2, 3, by the solid at the time ¢ € [0, 7). Let
['(t) = Qf N Qs be the part of the boundary where the elastic solid interacts with the
fluid; see Figure 1.

For the purpose of this paper, we assume that the nonlinear convection term in
the fluid is negligible and that the solid is linearly elastic and the deformation small.
Hence, the domain Q//5 does not change over time, and the fluid flow is modeled
using the time-dependent Stokes equations, while the structure is modeled using the
linear elastodynamics equations

fowf — Vol (ul . pf) =
(13) 1% 8tu V.o (uv7l,)uf) : g } in Qf X [OvT}v
(1) p°ou’ — gt'n‘:' —(nuz i (J; } in Q° x [0,T7,

where p/ is the fluid density, w/ is the fluid velocity, p’ is the fluid pressure, ff is
the fluid source term, and o/ is the fluid stress tensor given as follows:

of(u!,p) = —p' I + 21/ D(w/),
where I is the identity tensor, p/ is the fluid viscosity, and D(uf) = 1(Vu/ +
(Vuf)T) is the fluid strain rate tensor, while p* is the structure density, n° is the

structure displacement, u® is the structure velocity, f° is the structure source term,
and o? is the structure Cauchy stress tensor given as follows:

o’(n°) == A°(V-0n°)I +2p°D(n’),

where p® and A\® are the Lamé constants.

Fic. 1. Sketch of a domain for FSI.
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The fluid and structure subproblems are coupled with the following kinematic
and dynamic coupling conditions [44] on the interface I'":

ul = us

(1C) o'fnf+o'sns -0 } OHF X [O,T],

where n/ and n® are the normal directions on the fluid-structure interface T' pointing
from the fluid and structure domains, respectively.

To close the system, we need proper initial and boundary conditions. For sim-
plicity, in our analysis, we consider a homogeneous Dirichlet boundary conditions on
the exterior boundaries:

(1d) w/ =0 onTY:=90/\T, 5= 0 onl*:=0Q°\I.

We mention that other standard boundary conditions on the exterior boundaries can
also be used; see, e.g., the numerical results in section 5. Finally, the initial condition
is given as follows:

(1e)  wf(2,0) =ul(z) onQf, u®(z,0) = uy(x), n°(x,0) = nj(xz) on Q°,

where ug ,ug, and 1§, are the initial fluid velocity, initial structure velocity, and initial
structure displacement, respectively.

2.2. Preliminaries and finite element spaces. We assume the domains Q7
2° as well as the interface I' are polypope. Let €2 be the union of the fluid and structure
domains, ie., Q@ = Qf U Q5. Let T, be an interface-fitted conforming simplicial
triangulation of the domain §2 such that the interface I' is the union of element facets.
For any element K € T}, we denote by hyx its diameter, and we denote by h the
maximum diameter over all mesh elements. Denote by ‘J'£ the set of mesh elements
that belong to Qf and by T} those that belong to 2°. Denote by &}, the set of facets of
Th, by 8£ the set of facets that are interior to Qf, and by &; the set of facets that are
interior to Q5. We also denote by I'y,, Fﬁ, I'; the set of facets that lie on the interface
I', the fluid exterior boundary T'/, and the solid exterior boundary I'*, respectively.
We have I'y, = Eiﬂgi. Given a simplex S C RY,d = 1,2, 3, we denote P™(S), m > 0,
as the space of polynomials of degree at most m. Given a facet F' € £, with normal
direction m, we denote tang(w) := w — (w - n)n as the tangential component of a
vector field w.

The following finite element spaces will be used in our scheme:

(2a) Vi ={ve H(div;Q): v|x € [P(K)?*VK € Ty},

(2Db) ho={veVy: v-nlp=0VF e[ UT}},

(2¢) V, = {Be[L2EW: Blre [P (F)Y v nlp=0VYF €&},
(2d) Vie={8eV, : tang(®)|r =0VF €T} UT}},

(2e) Qh:={qeL*Q): qx € P (K)VK € Ty},

where r > 0 is the polynomial degree. We further use a superscript f/s to indicate
the restriction of these spaces on the fluid/structure domain, that is,

VZ”O = {v|7}fl v eV V};”‘B ={v

‘j’; v e VZ,O}’
=1 f ~ ~ ST ~T,8 - - ~
Vo= {v|€£ v eVl Vi Z:{’U|gi v eV},

W=y s a€ Qi) Q@ ={alsy s g€ Qh)
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2.3. Semidiscrete divergence-conforming HDG scheme. In this subsec-
tion, we present the divergence-conforming HDG spatial discretization [25, 34, 35] of
the linear FSI system (1).

We use the globally divergence-conforming finite element space V7 in (2b) to
approximate the global velocity

3)

w— ul  on QF,
1 u* onQf

and the global tangential facet finite element space ‘7; in (2d) to approximate the
tangential component of the global velocity u on the mesh skeleton.
The weak formulation of the divergence-conforming HDG scheme with polynomial

k-1
degree k > 1 for (1) is given as follows: Find (ws, @n,pl,n5, ;) € Vlfho x Vo X

k—1,f ks o7k 1s
h X V3o X Vo such that

(4a)
(patuhm’uh) + 2/j/fA£((uh7ah)a (vhai)\h)) - (p{w V- vh)f - (v cUp, q}]:)f

205 A5 (05,73, (0n, Bn)) + AV -5, V- on)s = (f,vn),
(4b) (Om}, — un, &)s = 0,
(4c) (05, — tn, Ep)s = 0

for all (vp, Up, q,{, 52732) € V’Z}O X ‘72_01 X Qﬁ_l’f X Vﬁg X ‘7:—0175, where (-, ) denotes
the L?-inner product on the domain €, (-,-); denotes the L?-inner product on the
fluid domain 7, (-,-), denotes the L2-inner product on the structure domain 2*, and
(-,+)s denotes the L?(€$)-inner product on the structure mesh skeleton &;; moreover,

f Of f f
_Jpt om &, . . _J f7 on &V,
p = { 2 on QF is the global density, and f = { Foon 0

source term on §2. Here the operators A{L and A7 are the following symmetric interior
penalty HDG diffusion operators with a projected jumps formulation: For i € {f, s},

(5)
AZ((’U;L"/U\,L)’ (wha'{bh)) = Z /KD(’U}L) : D('wh) dx

KeT}

is the global

- D(vp)n - tang(wy, — wy) ds
oK

- D(wp)n - tang(vy, — vp,) ds
oK

ak? ~ .
+ [ S tang(on — 54)) - L (ang(wy, - @) .
0K

where IT;, denotes the L2(&},)-projection onto the tangential facet finite element space

~ k-1

V,, . Efficient implementation of this local projector II;, was discussed in [35, section
2.2.2]. Here a > 0 is a sufficiently large stabilization parameter that ensures the
following coercivity result:

i ~ . 1 ak? .
(©) (@0 00,50 > 5 5 (IDon) e+ % s can(w — ) Bic )
KeT;,
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where || - ||s indicates the L?-norm on the domain S. A sufficient condition on « that
guarantees the above coercivity result was presented in [1, Lemma 1]. We take a = 8
in our numerical experiments in section 5.

The following two results show consistency and stability of the semidiscrete scheme
(4).

LEMMA 2.1 (consistency for the semidiscrete scheme). Let (u,p/,n®) € H?(Q2) x
HY(QF) x H?(Q®) be the solution to the model problem (1). Then the equations (4)
hold true with (wp, ﬂh,pﬁ, 03, M) replaced by (u,ule,,p’, n°, n°le; ). That is, we
have

(7a)
(PO, vp) + 207 A (w0, @), (v, B1)) = (07, V- vn) g = (V-] )5

+2u° A5 (n°,7°), (v, 0n)) + X (V-0°, V- vp)s = (f,vn),
(7b) (0m® —u,&5)s = 0,
(7c) 07" —6,€,)s = 0

1 (on,0n, gl €8 e VE  x Vi o x QXM x VES « D7 here @ —
for all (vh,h, q5,,€5:€1) € Vo X Vo X Q) XVipoXVyo ,whereu= ule,
and 1)° = n°|e; -

Proof. Equations (7b) and (7c) follow from the second equation in (1b). We are

left to prove (7a). Since tang(u — u) = 0, we have, for any function (v;,v;) €
~ k-1
VI;L,O X Vh,O )

Al ((u, @), (vn, D)) = Z / D(u) : D(vp,)dx — D(u)n - tang(vy, — Uy) ds
KeT] K oK
= —(V:-D(u),vn)s + Z i D(u)n - ((vy - n)n + tang(vy)) ds
KeT] K
= —(V-D(u),vn)s + D(u)n’ - (v - n)n + tang(v,)) ds.
Ch

N ~ k-1
Similarly, we have, for any function (vj,v;) € V]}fb,o XV5oos

A((n°,7%), (vn,0n)) = — (V- D(0),vn)s + [ D(n")n’ - ((vn - n)n + tang(vn)) ds,

Ty

@,V -vn)s = —<fo,vh)f+/ P (o, - nf) ds,

Ty

(V0" V- on)s = ,(V(V,nsm)ﬁ/ (V- 7")(wn - n) ds.

Ty

Combining these equations, we get

(PO, vp) + 20 A ((w, @), (v, 5n)) — (p/, V- vi) g — (V- u,q])s
+2u° AL ((0°,0°), (vr, 08)) + A(V-1°, V- wp)s — (f,vn)
= (pfatuf -V.-of - ff,vh)f + (p°Ou® — V-0® — f°,vp)s

+ / (0/n! + o™ n*)((vs - n) - n + tang(B1))) ds
I'n

:0’
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where we used the PDE (1a), (1b), and the dynamic interface condition in (1c). This
completes the proof of (7a). d

LEMMA 2.2 (stability for the semidiscrete scheme).  Let (uh,ﬁh,pi,n‘;,ﬁi) €

~ k-1
VZ,O XVyo X fol’f VZ o X Vh o be the numerical solution to the semidiscrete
scheme (4). Then the veloczty approxzmation on the fluid domain is exactly divergence
free,

1,s

(8) V-uh\T£ =0,

and the following energy identity holds:

1d N ~
9) i@E = —2ud Af (wn, @n), (wn, @n)) + (£, un),
where By, := (pun,up) + N (V -03,V - n7)s + 207 A5 (04, M), (M, M) is the total
energy.

Proof. Let us first prove the divergence-free property (8). By the choice of the

klf

velocity finite element space Vh and ﬂuld pressure finite element space @}, we

have V - 'U/h|g~}fz € Qh L7 Now, taking qh =V. uh\ﬁ in (4a), we get
(V-uh,V-uh)f =0.

Hence, the divergence-free property (8) holds true.
Next, let us prove the energy identity (9). Taking test function (vp,vp) =
(up,ur) in (4a) and using the divergence-free property (8), we get

(pOrun, wn) + 2pF AL ((wn, @n), (wn, 6n))
+ 20" AR (M M), (un, Gn)) + A (Vo Vooug)s = (o).

. k,s ~ k=1, .
Since up|y; € V" and uple; € V), (4b)—(4c) imply that
upl|y: = Oy, and Uples = 97,
Hence,
2;usAlsz((7ﬁw ﬁ;)7 (uhﬂ ah)) = 2IU'SAS ((nfw ﬁ;)7 (8”72’ (9{?[;))

1 d S AS s =S s =S
2dt(2u A5 (M), (MhsM1))),s

and
1d

AV -m;, V-up)s = > A(V-m3,V-n3)s) -

Combining the above equations, we arrive at the energy identity (9). This completes
the proof. ]

2.4. Monolithic fully discrete divergence-conforming HDG scheme. In
this subsection, we consider the temporal discretization of the semidiscrete scheme

(4). We propose to use the second-order Crank—Nicolson scheme. For any positive

e i ~k—1,s .
integer j € Zy, let (w] "n? " @57 € Vi x Vi's x Vo be the numerical

solution at time t;_;. Given the time step size dt;—1 > 0, we proceed to find the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/01/23 to 129.74.45.253 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

638 GUOSHENG FU AND WENZHENG KUANG

solution (u),m37, 757) € Vi X Vh 0 X V,L0 * at time ¢; = t;_1 + 6t;_1 along with
the solution (ﬁf 1/2,p,fj 1/2) € Vh o X Qk L7 at time ti—1/2 =tj—1+ 30t;_1 such

that the equations

(10a) <pw >+2quf (( J—1/2 - 1/2),(1);“%))
7

) (o)

ot A (( S92 g 1/2> oD h))

) = (f77V2, o),

+A° (V n, $I712 gy,
778 n =l 1/2
10b Sh_Th oyl =0
( ) ( 5tj—1 >£h> )

~5,7 ~s5,7—1 ) s
(10c) LI )
5tj_1

~ ~ ~k—1 _ _
hold for all (v, Bn, qf,&5,€,) € Vg x Vi x QF 1 x Vg x Vo, where

121 1 sg=1/2 . _ Lo g1y asg-1/2 1 g A1
“?1 / _2(uh+“h ), th / 2(77hj+77hj ), 7 /2. 2( ]+ J= ).
We have the following result on the energy stability of the fully discrete scheme
(10).
5,0 ~5,0

LEMMA 2.3 (stability for the fully discrete scheme). Let (u9,n;",7;") € VZ’O X
k-1, L C .
Vk’g xVio * be a proper projection of the initial data in (1e) such that V-uy| s = 0.
h

. k1
For any positive mtegerj €Zy, let (uh,uh 1/2,p£J 1/2,1721,772’]) € Vﬁ,o x V5o X

QZ Lf Vﬁ ‘o X ‘711 0 be be the numerical solution to the fully discrete scheme (10).
Then the velocu‘y appromimation on the fluid domain is exactly divergence free,

(11) Vu{l\g}{ =0,
and the following energy identity holds true:

j j—1
1E] - E}

1 — o P AL (Y Y2 (i V2 g1/ i-1/2
5 ALl ), ) (),

(12) h h y YR
where By, := (puj,, u)) + X (V137 V -my 7)o 4+ 27 A5 (3, 037, (3 703,7) s the
total energy at time t;.

Proof. The proof follows the same line as those for the semidiscrete case in Lemma
2.2, which we omit for simplicity. ]

2.4.1. Efficient implementation of the fully discrete scheme (10). We
now present an efficient implementation of the scheme (10), whose globally coupled
linear system consists of DOFs for the normal component of the velocity approxi-
mation, the tangential component of the hybrid velocity approximation on the mesh
skeleton, and one pressure DOF per element on the mesh.

We need the following result on the characterization of the fully discrete solution.
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LEMMA 2.4 (characterization of the fully discrete solution) For any positive

integer j € Ty, let (ul, @l /2 pl 712 i 730y e Vi x Vho x Qy M % Vﬁ’g X

~k—1,s
Vo  be the numerical solution to the fully discrete scheme (10). Then (ufI 172

s . ~ k-1 1. , .
uj 1/2,p£’J 1/2) € Vﬁ,o X V5o X QZ LF s the unique solution to the equations
(13a)
w12
(25— wn) + 207 A7 (72,8 71%), (01, %0)

(Stj_1
J—1/2 j—1/2
- p“ PNV on)y —(Voul, % gl

0t (20 AR (a2 82, (o, B0) + XV AV o)) = FO V3 (o, B)

for all (vh,vh,qh) € Vh 0 X Vh o X Qk L f, where the right-hand side

(13b)

, . u
FImV2 (), 0p)) = (205; ;
i

— (2w A T (o) + AT T ). ).

Jj—1

vp) + (F72 vp)

where fj_l/2 is the source term evaluated at time t;_y /2. Moreover, the velocity and
displacement approximations at time t; satisfy the following relations:

(13c¢) ufl = QU;;I/Q - ui_l,
(13d) my? = oty
(13¢) Ayl =y ot g

Proof. The relations (13c) are direct consequences of the definition of uj 12
Then (13d) and (13e) follow from (10b)—(10c) and the same choice of the finite element
spaces for velocity and displacement. Plugging these relations back into (10a) and
reordering the terms, we recover (13a). This completes the proof. 0

Remark 2.1 (connection with the coupled momentum method). The idea of us-
ing the same finite element space for displacement and velocity approximations to
eliminate the displacement unknowns in the global linear system was originated in
the coupled momentum method of Figueroa et al. [22], where they considered an FSI
problem with thin structure. See also related work in [42].

With the help of Lemma 2.4, we proceed to implement the fully discrete scheme
—1s ..
(10) as follows: Let (umnflofi‘;o) evy h.o X V’C ho X Vh o be a proper projection of
the initial data in (le). For j = 1,2, -+, we proceed in the following three steps to
advance solution from time level t;_; to time level t; =t;_1 4 6t;_1: _
(1) Determine the time step size dt;_1, and compute the right-hand side F7~1/2
n (13b).
(2) Solve for (ufl 1/2,62 1/2,phJ 1/2) cVv§ ho X VhO X Qh ! using (13a).
(3) Recover velocity and displacement appr0x1mat10ns at time t; using the rela-
tions (13¢)—(13e).
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The major computational cost of the above implementation lies in the global
linear system solver in step (2). To make the linear system problem easier to solve,
we introduce an equivalent characterization of the solution to (13a) in Lemma 2.5
below. In the actual implementation, we solve the equivalent linear system problem
(14) in step (2) instead of (13a). In the next section, we will design an efficient block
AMG preconditioner for this system.

LEMMA 2.5 (a modified implementation of the scheme (13a)). For any positive

~ j— k=1 _ .
integer j € Zy, let (uy, i-1/2 “;1 1/2 N 1/2) € V;io X Vo X QF! be the unique

solution to the equatzons

(14)
ul ~1/2
(52 ) e (5. )
ti—1
+ 5t] 14 Ah (( 1/2317’2 1/2) 7(vh76h))

(=12 o B i-1/2 _ 2 i—1/2 _ pi—1/2 ~
(7 o) = (T ) = (Gt ) = P (@)

~ k-1 ,
for all (vp,vpn,qn) € VZO X Vo X Qk_l, where the right- hand side FI—1/2 g
defined in (13b). Then (u, i-1/2 ﬁil L2 = 1/2|g—f) € VhO X VhO X If;l’f is the
unique solution to (13a).

k—1,s .
1

Proof. Taking test function ¢, € @), n (14), we get

j—1/2 L j—1/2 _ k—1,s
(V uj +5tj,1)\sph ,Qh>s—0 Van € Q.

Since V - uj 1/2\72 € Qﬁ_l’s, the above equation implies that

Otj_1\° i—1/2
2 2 A uiL

ph\fr; = -

T
Hence,
i— i— ot
~0 AV o) = =V o)+ SNV Y )

Plugging this expression back into (14), we recover the equations in (13a) for all
~ k=1 - .
(Vn, Oh,qn) € VfL’O X Vo X QZ’ Y/ This completes the proof. O

Remark 2.2 (other high-order implicit time stepping strategies). We concentrated
on the discretization and implementation of the Crank—Nicolson time stepping (10)
in this subsection. Alternatively, one can use any other high-order implicit time
stepping strategies, like the backward different formula (BDF) or the diagonally
implicit Runge-Kutta methods [27]. The third-order BDF3 scheme reads as fol-
1ows (assuming uniform time step size dt > 0) For j > 3, given approximations
(W, "y AT € Vg X VZO X VhO " at time t;_,, = (j — m)dt for

s ~ k-1

m =1,2,3, we proceed to find the solution (uh,uh,qh ) mn) € Vh 0 X Vo X

Sk—1,s . .
Q£ X V’Z’g X Vio * at time t; = j 6t such that the equations
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(15a) (pDeas) o) + 207 A7 (i, @), (v, 90)) = (71, V - vn)
—(V-ul,ql)p + 20t AL (T ), (on, B0) AV 0T Vo), = (F7, o),

(15b) O —ul 265, = 0,

(15¢) O €. = 0

hold for all (vs, ¥, qf, &, &x) € Vo X Vh0 < Qp M x Vs x Vh0 , where

D = (o 30+ St - )

is the third-order BDF discretization of the time derivative d;¢. We can proceed along
the same lines as in subsection 2.4.1 to implement the scheme (15) such that we only
need to solve a global linear system of the form (14) in each time step.

3. Preconditioning.

3.1. Preliminaries. In this section, we concentrate on the efficient solver for the
linear system problem (14). The same technique can be used to solve the related linear
system for the scheme based on BDF3 time stepping (15). To simplify notation, we
remove all temporal indices in this section. Hence, the linear system problem we are

~ k-1 _
interested in has the following specific form: Find (wp,, un,pr) € VZ,O XViyo X Qﬁ !
such that

(16) (2,0%7 vp) + 20 Al (un, @), (V3. B1)) + 6tu® A (wn, @), (v, D))

2 —~
— (pn, V-vp) — (V- up,qn) — (WthQh)s = F((vn,v4))

_ k-1 _ .
for all (vp,On,qn) € VZ,O XV X QZ !, Note that all the finite element spaces are
defined on the whole domain 2. To further simplify notation, we denote

L ut on QF, nd v = 0 on Qf,
FZ0 05stps onQs T 2/6t/A° on Q.

We also denote
Al (wn, @), (v, Bn)) = 207 Af ((wn, @), (0n, ) + Stp® A7 (wn, @), (vn, Bn)),
which is an HDG discretization of the variable coefficient diffusion operator —V -

(uD(u)) on the whole domain 2. Hence, the formulation (16) simplifies to

2 ~ ~
57 (Punon) + Al ((un, @), (Vh, 1)) — (Prs V- vR) — (V- un, qn) — (YPh, qn)

= F((vn,vn)).

(17)

The problem (17) can be rewritten in a matrix-vector formulation: Find [uy;pp] €
RN« +tNo guch that

A“ + 5 Mp Bn up, F
pn | L O [’

18
" o -,
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Ny

where u; € R™ is the coeflicient vector for the compound velocity approximation

~ Shk=10 . . . .
wy, = (up, up) € VZ,O X Vo » with N, being the dimension of the compound finite

Np

~ k-1
element space VZ’O X V5o, and p, € RV is the coefficient vector for the pressure

approximation p; € Qf;l, with IV, being the dimension of the finite element space
Z_l. Moreover, the matrix A} € RN«xNu g associated with the bilinear form
Al (uy,,vy,), the matrix My € RV«*Nu i5 associated with the bilinear form (pup,vy),
the matrix B, € RV»*Nu is associated with the bilinear form —(pp,, V-vy,), the matrix
M) e RNeXNp s associated with the bilinear form (ypp, qr), and the vector F € RV«
is associated with the linear form F(v;,). The big matrix in the linear system (18)
has a block structure and is symmetric and indefinite, with the 1-1 block A} + %MZ
being symmetric positive definite (SPD) and the 2-2 block —M] being symmetric and
negative semidefinite.
A popular method to solve the symmetric saddle point problem (18), which we
adopt in this work, is to use a preconditioned MinRes solver [47] with the following
block diagonal preconditioner [31, 38]:

iA 0

where iA is an appropriate preconditioner of the SPD matrix A := A} + %Mz and

iS is an appropriate preconditioner of the (dense) Schur complement SPD matrix
S = BT (Al + 2M7)"'B;, + M]. The detailed construction of the preconditioner
for the Schur complement (pressure) matrix S is discussed in subsection 3.2, where
we borrow ideas in the literature on preconditioning the closely related, generalized
Stokes problem [10, 18, 43]. The detailed construction of the preconditioner for the
SPD velocity matrix A is discussed in subsection 3.3, where we use an auxiliary space
preconditioner [52] along with algebraic multigrid. We mention that for polynomial
degree k > 2, the preconditioned MinRes solver is applied to the static condensed
subsystem of (18); see the discussion in Remark 3.2.

Remark 3.1 (connection with a generalized Stokes interface problem). The dis-
cretization (17), or the form (18), is closely related to a divergence-conforming HDG
discretization of a generalized Stokes interface problem (with a fixed interface) with
variable density p and variable viscosity p; cf. [24]. The major difference between the
divergence-conforming HDG linear system for the generalized Stokes interface prob-
lem and the current FSI problem is that the pressure block is zero for the former,
while it is =M for the latter, which is a symmetric negative semidefinite matrix and
represents the compressibility of the structure. A nonzero pressure block also appears
in the finite element discretization of the Stokes problem using pressure-stabilized
methods or the linear elasticity problem with a displacement-pressure formulation.

Remark 3.2 (static condensation for k > 2). When polynomial degree k > 2, we
shall solve the linear system problem (18) using static condensation to locally elimi-
nate interior velocity DOF's and high-order pressure DOFs [35]. The resulting global
linear system after static condensation consists of DOFs for the normal component
of velocity approximation (of degree k) in Vlii,o and the tangential (hybrid) velocity

~ k-1
approximation (of degree k—1) in V', 5 on the mesh skeleton (facets) and cell-average
of pressure approximations (of degree 0) on the mesh. We denote the compound ve-

locity space corresponding to the DOFs on the mesh skeleton by Kfl"gl, which is a
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subset of the compound space Kﬁ,o. The global pressure space is simply the space of
piecewise constants Q9. The linear system after condensation has a similar structure
as that in (18) with a reduced size. We shall apply the preconditioned MinRes solver
for the condensed system in this case. For this case, the matrices A and S shall be
understood to be defined on the reduced spaces K’;’f}' and Q%, respectively.

3.2. Preconditioning the Schur complement pressure matrix S. The pre-
conditioner iS acts on the piecewise constant global pressure space QY and is given as
follows:

(20) iS = (M)~ 4 (NP) 1,

where M{""? is the weighted mass matrix associated with the bilinear form ((p=! +
~¥)Ph,qr) on the piecewise constant global pressure space Q?L and N?7 is the matrix
associated with the bilinear form

-1
(21) (YPh, qn) + % Z / %ﬂph]][[%ﬂ ds  Vpn,aqn € QY.
Fee\o’F

where {p}|F := p;fpp, — is the geometric average of p and [¢] = ¢+ — ¢~ is the jump
of ¢ on an interior facet F'. Note that the mass matrix M#7 is diagonal and that its
inversion is trivial. Also, note that the bilinear form (21) corresponds to the interior
penalty discretization of the operator yp— %V~ (p~'Vp) with a homogeneous Neumann
boundary condition using the piecewise constant space Q%. The jump term in (21)
was shown in [46] to be spectrally equivalent to the operator 2BY (M7)~'B), when
the density p is uniformly bounded from above and below. Hence, (N7"7)~! serves as
a robust preconditioner for the (dense) Schur complement matrix %Bz(MZ)‘lBh +
M7. In the actual numerical realization of (N{”7)~!, we use the Hypre BoomerAMG
preconditioner [19, 28] for the matrix Nj7.

We note that the pressure Schur complement preconditioner (20) was initially
introduced for the generalized Stokes problem (constant density, constant viscosity,
and v = 0) by Cahouet and Chabard [10]. Robustness of this Cahouet—Chabard
preconditioner for the generalized Stokes problem with respect to variations in the
mesh size h and time step size 6t was proven in [5, 37, 43]. It was then generalized
by Olshanskii, Peters, and Reusken [43] to the generalized Stokes interface problem
(variable density, variable viscosity, and v = 0). While a theoretical proof of the
robustness of the preconditioner in [43] for the variable density and viscosity case
was lacking due to the lack of regularity results for the stationary Stokes interface
problem, numerical results performed in [43] seem to indicate that the preconditioner
is robust also with respect to the jumps in viscosity and density in large parameter
ranges. Hence, our preconditioner (20) can be considered as a generalization of the
one in [43] to take into account the structure compressibility (v > 0 on ) in the
pressure block.

3.3. Preconditioning the velocity stiffness matrix A. The matrix A cor-
responds to the divergence-conforming HDG discretization of the elliptic operator
2 pu — 2V - (uD(u)). Here we propose to use the auxiliary space preconditioner [52]
developed in [23]. The auxiliary space is the continuous linear Lagrange finite ele-
ments:

Vs ={v e Hy(Q): vk € [P'(K)"VK € Tp,}.
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The auxiliary space preconditioner for A is of the following form:
(22) iA=R+PA'PT,

where R € RVE*NY is the (point) Gauss—Seidel smoother for the matrix A, with Ng
being the dimension of the reduced compound space V’;’%I, the matrix A € RNexNe
is the matrix associated with the bilinear form on the auxiliary space foo,

2 c
<5tuh,vh> +2(uD(up), D(vp)) Yup,vy € th,lov

where N, is the dimension of V}%; and the matrix P € RNEXNe is associated with the
projector I : V79, — Vf’%', which is defined as follows: For any function uj, € V7,

find u;, = (Huh7 Huh) IS Zh’%l such that

(23a) Z / (ITuy, - n)(vy, - n)ds = Z / uy, - n)(vy, - n)ds,

Feey, Feey,
(23b) Z / tang( Huh - tang(vy,)ds = Z / tang(up) - tang(vp)ds
Feé&y Feé&y

for all (vp,vp) € V, ’g' . Note that the projector is locally facet-by-facet defined and
that the transformatlon matrix P is sparse. For the numerical realization A~!, we
again use the Hypre BoomerAMG.

Remark 3.3. We remark that the block diagonal preconditioner (19) does not pre-
serve the divergence-free property of the fluid velocity approximation for the scheme
(17). Here the divergence of the computed fluid velocity approximation is solely con-
trolled by the stopping tolerance of the preconditioned MinRes solver. It would be
interesting to construct an optimal preconditioner that preserves the fluid velocity
divergence-free property in each iteration, which is left as our future research.

4. Semidiscrete a priori error analysis. In this section, we present an a
priori error analysis for the semidiscrete scheme (4). To simplify notation, we write

A<B

to indicate that there exists a constant C, independent of mesh size h, material
parameters pf/s, uf/s, A%, and the numerical solution, such that A < CB.
We denote the (semi)norms

2
(24a) I B)lin = > (ID(vh)I% + 2 (tang o —%h»n%K),
KeT

1/2

@) @D iwn = (1@ D)2+ Y IDOIG |
KeT}
~ ~ 1/2

(240) v, €€ = (lloM20l12 + 20°l1(€", €12, + NIV - €°12)
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. s D3 k ~k—1 ks ~k—1,s

fori e {f,s} and (v,0,£°,£%) € Vi, ¢ x V), o x V7o x V), o, where we denote || - ||
as the L?-norm on Q and | - ||; as the L?-norm on Q°. The inequality (6) implies the
coercivity of the bilinear form A} with respect to the norm || - ||;,. We also have the
boundedness of the operator A%,

(25) A4 (0,9), (wn, @n)) < (0, 9)l]i,,n]l (wn, @n)llin

~ 1 i ~k—1,i - . ~k—1,i
for all (v,v) e V"' + (V;% xVio ) and (wp, wy) € V;% X V3o , where

V= {(v,vlg;): v|x € H(K) VK € T}}.

We use the classical Brezzi-Douglas—Marini (BDM) interpolator Iz pas [4, Propo-
sition 2.3.2] to project u and n® onto the finite element spaces Vﬁ}o and V’;g We

denote Il as the L?-projection onto the finite element space Q’f;l. Note that due to
the commuting projection property, we have

(26a) (V- Hppam®,4i)s = (V- 1%, 0)s Vai € Q"
(26b) V~HBDM’u,f|Qf :HQ(V'uf)|Qf =0.

The following standard approximation property of the BDM projector Il zpjs and

~ k-1
the L?-projector II;, onto V5o is wellknown; see [34, Proposition 2.3.8].

LEMMA 4.1. Let w € [HY(Q)]? N [H*T1(T3,)]4. Then the estimates

(27) l(w =Ty, ule: — w7, S D wlfm g
KeTj,
hold for i € {f,s}.
To further simplify notation, we denote

éiu = (6u,6ﬁ) = (u—HBDMu,u|gh —Hhu),
Ons = (6n-,05¢) = (0" —Illppun®,n’|e; —1Inn®),
Ops = pf — Hpr,
Eu = (Eu,Eﬁ) = (uh — HBDMUJ/E}L — Hhu),

ens = (ens,eq¢) = () — Uppmn®, M), — 1),

Epf = p£ — gy,

where (up, pg, n;) € Vﬁ,o X QZ’_OI’f X Vﬁg is the solution to the semidiscrete scheme

(4), with the compound spaces denoted as

~k—1 ~k—1,s
k. k k,s . k,s ’
Vio=VioxVio, Vh,o = Vh,O X V5o

LEMMA 4.2 (error equations of the semidiscrete scheme (4)). We have the error
equations for the semidiscrete scheme (4),
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(28a)
(pdrew,vn) + 2’ Al (ew,vn) — (6,0, V - vn)y + 20° A, (Eﬁ,vih) + ANV -ens, V- vn)s

(00w, 1) + 21 AL (8w, 0n) +20° A (8me,wn)
(28h) (Orems, &1)s = (eus, &})s,
(28¢) <8t€ffvgz>s = (%%giﬁs

for all (v, q,{,@) € V’,;O X Qf;ol’f X VZS

Proof. By subtracting the semidiscrete scheme (7a) from the consistency result
(4a), then adding and subtracting the above projectors, we can get the error equation
(28a), where the commutative property of BDM interpolation (26) is used. Then (28b)
and (28c) can be easily derived since we have 0/ Ilgpyu® = OIlgpyun®, Ol u® =
atHh’I]s. 0

Note that due to the same finite elements space of velocity and displacement
approximation in %, the error equations (28b) and (28¢) actually imply that eq: =
e, € = 8,55,;75. Now we are ready to present the main result in this section.

THEOREM 4.1. Let (up, pi,ng) be the solution to semidiscrete scheme (4) with
initial data such that (@(0),5pf (0),ens (O)) =(0,0,0). Assume the solution (u,n®)
to the model problem (1) is smooth. Then the following estimation holds for all T > 0:

T
@) Hew®en YR+ [ lleulfudt S 1 (S1+Ea+ ).

where
—_ T
Evi= [ (1000l + 10 fves )
0

T
Zaim i [ ulpnsanydt
D3 o= p8(|0°] oo (a1 (02))-

Proof. Here we use the standard energy argument. Taking (v, q}: ) = (Eu,epr)
in error equation (28a) and plugging into eqs = e, € = 3755175» we get

1 a S S S
5, (107 eull® + 20 45 (enr e ) + XV - o
=H(t)

= (p016u,eu) + 24 AL (Su,eu) + 20745 (9np, Drem- ),

2) +207 4] (cus cu)

where we used the exactly divergence-free property of w/ and IIgpyuf. By plugging
the right-hand side the chain rule for the time derivative into

1 o) - 4 (30 e) 1 o 0
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and then applying the Cauchy-Schwarz inequality and boundedness of A% (25), we
get

19
~ = H(t) + 2 A (ew, en)
)

SN0 20 8ull |10 el + 207 || 30l . €2 7,1

d
+24°(|0¢ 6 s,ht QMS%AZ (ﬂ, %)

shllen:|

< 02| {ew.en: Hin + 207 8w

s 0 4
foonllewllf,n + 20 a—tAh (%,si) ,

where O := (Hp1/28t5u||2 +24°| 0y 0y
t =0 tot="1T, combined with (m(O),épf (0),en- (0)) =(0,0,0), gives

i*h) Integrating both sides over time from

T T T
1)+ [ Al ewen)de S [ 0 ewen-Hade+ i’ [ [ulsnlleulsadt
0 0 - 0
+1° A, (8 (T), ene (1))
Applying the coercivity and boundedness of A! and Young’s inequality, we get
2 T 2 T 1/2
I{ew(T), ens (T)}lx +uf/ ||ﬂ||f,hdt5/ 0" | {eu, en: }ndt
0 0
r 2 2
[ 18ull et el O (1)
0
f T s
[ eulfadt+ o len (D
n Jo 72—

for all 1,72 > 0. The last two terms are absorbed by the left-hand side when ~; and
~o are big enough. Then we have

T T
HeuT).en- (M} 07 [ leulfudeS [ 0211 ewen:lndt
T
! [ 1wl pt 3 (DI,

By applying the Gronwall-type inequality [12, Proposition 3.1] and the Cauchy—
Schwarz inequality, we get

T
IH{eu(T),ens(T)}IHi+uf/0 leas |7 pelt

1 /T t 1/2\ 2
< = 1/2 f 2 S . 2
B <2 A © de+ (OISntaSXT (ﬂ A ||57u||f,*,hdt + 1% H(Sn ”s,*,h)) >

T T
<7 f 2 s s
ST [0y [ sl 6.

2
s,*k,h*

Finally, the estimate (29) is obtained by the above inequality and the approximation
properties of the projectors in Lemma 4.1. 0
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Remark 4.1 (robust velocity/displacement estimates). It is clear that the velocity
and displacement error estimate (29) is independent of the pressure approximation
p{L and the lame parameter A\*. Moreover, the error estimate (29) is optimal in the
energy norm || - ||, which contains a discrete H'-norm on Q°. On the other hand,
we can only obtain a suboptimal convergence of order O(h*) for the L2-norm of the
velocity approximation from (29). However, our numerical results in the next section
indicate that the velocity L?-norm seems to be optimal. The proof of the optimality
of the velocity L?-norm is our future work.

5. Numerical results. In this section, we present three numerical examples
for the model problem (1) in two and three dimensions. The first example uses a
manufactured solution to verify the accuracy of the proposed monolithic divergence-
conforming HDG schemes (10) and (15) and the robustness of the preconditioner
(19) with respect to mesh size, time step size, and material parameters. The second
example is a classical benchmark problem typically used to validate FSI solvers [7, 9,
41]. The third example is a three-dimensional test case simulating the propagation
of pressure pulse through a straight cylinder pipe. The NGSolve software [48] is used
for the simulations.

5.1. Example 1: The method of manufactured solutions. We consider
a rectangular fluid domain, Qf = (0,1) x (—1,0), and a rectangular solid domain,
Q° = (0,1) x (0,0.5), connected by an interface, I' = {(z,y) : = € (0,1),y = 0}. We
choose the volume and interface source terms such that the exact solutions are given
as follows:

R (sin(27rw)2 sin (%w(y + 1)) sin(2(), — 1.5 sin(47z) sin (%w(y + 1))2 sin(2t)> ,

p’ = sin(27x) sin(27y) sin(¢),

3
Il

s (sin(27r:c)2 sin (%ﬂ(y + 1)) sin(t)®, —1.5sin(47x) sin (%W(y + 1))2 sin(t)2> .

We use homogeneous Dirichlet boundary conditions (1d) on the exterior boundaries.
For the material parameters, we take the fluid density and viscosity to be one (p/ =
p! = 1) and vary the structure density and Lamé parameters in large parameter
ranges:

p° e {107%,1,10%}, u° = 6, p°, with &, € {0.1,1,10}, and \° = & p°, with d> € {1,10*}.

Here §, = 1 corresponds to a compressible structure, while §; = 10* corresponds to
a nearly incompressible structure.

We run simulations on a sequence of uniform unstructured triangular meshes with
mesh size h = ﬁ for j = 0,1,2,3. We take the polynomial degree to be either k = 1
or k = 2. We use the (second-order) Crank—Nicolson temporal discretization (10) for
k =1 and the (third-order) BDF3 temporal discretization (15) and take a uniform
time step size 6t = h. To start the BDF3 scheme, we compute (u)’,n;"™, 7,"™) by
interpolating the exact solution at time ¢, = mdt, m = 0,1,2. The preconditioned
MinRes solver with the preconditioner (19) with AMG blocks (20) and (22) is used
to solve the linear system in each time step, for which we start with zero initial guess
and stop when the residual norm is decreased by a factor of 1078,

The L2-errors in the velocity approximation ||u — up||q at the final time 7' = 0.3
are documented in Tables 1 and 2 for various parameter choices. It is clear to observe
that our fully discrete scheme provides an optimal velocity approximation of order 2
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TABLE 1
Example 1: History of convergence of the L?-velocity errors. Compressible structure (62 = 1).

ps =103 pf=1 P =103
51 =01 S=1 51 =10 | & =0.1 S=1 51 =10 | & =0.1 S=1 5 =10

k  1/h ‘ error error error ‘ error error error ‘ error error error
10 | 3.492e-02  3.420e-02  5.624e-02 | 3.489e-02  3.408e-02  5.350e-02 | 3.460e-02  3.496e-02  4.566e-02
20 | 8.409e-03  8.362e-03  1.145e-02 | 8.400e-03  8.345¢-03  1.085e-02 | 8.312e¢-03  8.531e-03  1.454e-02
40 | 2.052e-03  2.074e-03  3.021e-03 | 2.051e-03  2.068e-03  2.777e-03 | 2.033e-03  2.102e-03  3.247e-03
80 | 5.063e-04 5.125e-04  9.015e-04 | 5.059e-04 5.113e-04  8.126e-04 | 4.974e-04  5.260e-04  9.448e-04

rate 2.04 2.02 1.98 2.04 2.02 2.01 2.04 2.02 1.89

10 4.124e-03  4.273e-03  4.331e-03 | 4.120e-03  4.260e-03  4.288e-03 | 4.116e-03  4.279e-03  4.339e-03
20 5.151e-04  5.298e-04  5.262e-04 | 5.148e-04  5.283e-04  5.239e-04 | 5.136e-04  5.442e-04  5.259e-04

240 | 626705 6549005 6.476e-05 | 6.265¢-05 6.548¢-05  6.364c-05 | 6.269¢-05 7.180c-05 6.3900-05
80 | 7.733e-06 8.028¢-06  7.712e-06 | 7.732e-06  8.039e-06  7.819e-06 | 7.738e-06  9.032e-06  8.915e-06
rate 3.02 3.02 3.04 | 3.02 3.02 3.03 | 302 2.96 2.98

TABLE 2

Example 1: History of convergence of the L2-velocity errors. Nearly incompressible structure
(62 = 10%).

p* =103 pf=1 p* =10°
61 =0.1 51 =1 S51=10 | 6, =01 61 =1 §51=10 | 6 =01 S =1 51 =10

k 1/h ‘ error error error ‘ error error error ‘ error error error

10 3.388e-02  3.304e-02  5.068e-02 | 3.388e-02  3.351e-02  4.935e-02 | 3.382e-02 3.478e-02  4.694e-02
20 8.211e-03  8.094e-03  1.006e-02 | 8.201e-03  8.227e-03  9.373e-03 | 8.088e-03  8.400e-03  1.248e-02
40 2.004e-03  1.998e-03  2.136e-03 | 2.002e-03  2.022e-03  2.053e-03 | 1.980e-03  2.072e-03  3.486e-03
80 4.949e-04  4.942e-04  8.038e-04 | 4.943e-04 4.999e-04  7.259e-04 | 4.861le-04 5.180e-04  9.316e-04

rate 2.03 2.02 2.02 2.03 2.02 2.05 2.04 2.02 1.88

10 4.195e-03  4.354e-03  4.406e-03 | 4.164e-03  4.298e-03  4.307e-03 | 4.133e-03  4.311e-03  4.374e-03
20 5.200e-04  5.296e-04  5.221e-04 | 5.181e-04  5.237e-04  5.272e-04 | 5.155e-04  5.457e-04  5.253e-04

2 40 6.258e-05  6.421e-05  6.430e-05 | 6.245e-05  6.419e-05  6.548e-05 | 6.267e-05  7.149e-05  6.446e-05
80 7.697e-06  7.845e-06  7.708e-06 | 7.691e-06  7.886e-06  7.860e-06 | 7.727e-06 8.962e-06  8.890e-06
rate 3.03 3.04 3.05 3.03 3.03 3.03 3.02 2.97 2.99

for polynomial degree kK = 1 with Crank—Nicolson time stepping and of order 3 for
k = 2 with BDF3 time stepping. Moreover, we observe that our fully discrete scheme
is robust with respect to large density variations and large Lamé parameter variations
since the errors for different parameters in each row of Tables 1 and 2 are similar.

The average numbers of iterations needed for the convergence of the precondi-
tioned MinRes solver are recorded in Tables 3 and 4. We observe for polynomial
degree k = 1 that we roughly need about 150 iterations to converge for the compress-
ible structure case in Table 3 and about 116 iterations for the nearly incompressible
structure case in Table 4. Also, the preconditioner is fairly robust with respect to the
mesh size (and time step size) and parameter variations in p® and p°. Similar results
are observed for the k = 2 case, which needs roughly 285 iterations to converge for the
compressible case in Table 3 and about 210 iterations for the nearly incompressible
case. However, it is also clear that the preconditioner is not robust with respect to
polynomial degree k. We finally point out that the k-dependency on the iteration
counts is due to the auxiliary space velocity preconditioner (22) since if we replace iA
by the exact inverse A~!, the iteration counts are then observed to be quite insensitive
to the polynomial degree: About 3040 iterations are needed in the compressible cases
and about 20-30 iterations in the nearly incompressible cases for polynomial degree
k=1,2,3,4. This is expected, as the polynomial degree in the pressure block is kept
to be 0 regardless of the velocity polynomial degree k in the global linear system due
to static condensation; see Remark 3.2.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/01/23 to 129.74.45.253 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

650 GUOSHENG FU AND WENZHENG KUANG

TABLE 3
Example 1: Awverage iteration counts for the preconditioned MinRes solver. Compressible
structure (62 = 1).

p® =103 pf =1 0 = 108

41 =0.1 =1 601 =10 | 61 =0.1 =1 601 =10 | 61 =0.1 =1 61 =10
k  1/h ‘ iter iter iter ‘ iter iter iter ‘ iter iter iter
10 136 142 122 137 141 122 154 151 128
1 20 135 146 131 136 148 132 150 157 140
40 148 158 152 145 160 153 149 155 154
80 161 174 177 159 180 181 158 169 175
10 281 290 250 283 291 243 289 288 238
9 20 283 302 269 284 302 263 285 288 255
40 294 313 297 293 313 291 281 287 274
80 291 310 307 288 307 303 272 279 264

TABLE 4

Example 1: Average iteration counts for the preconditioned MinRes solver. Nearly incompress-
ible structure (§3 = 10%).

p° =10"3 PP =1 p° =103
41 =0.1 =1 61 =10 | 61 =0.1 =1 61 =10 | 61 =0.1 =1 61 =10
k  1/h ‘ iter iter iter ‘ iter iter iter ‘ iter iter iter
10 115 103 108 115 105 111 134 106 109
1 20 115 101 106 116 103 108 130 108 112
40 125 108 114 124 110 111 130 105 107
80 138 117 123 138 123 127 134 113 121
10 231 200 199 231 199 188 239 195 210
9 20 228 198 200 228 199 188 239 186 205
40 232 206 213 232 205 202 237 171 200
80 229 208 216 226 206 208 231 176 186

5.2. Example 2: A linear two-dimensional test case. We consider a sim-
plified linear version of the numerical experiment reported in [7, 9, 41]. We use the
similar setup as in [7] by considering a linear model as in [9]. We consider a fluid do-
main, Qf = (0,6) x (0,0.5)[cm]?, and a structure domain, Q* = (0,6) x (0.5,0.6)[cm]?,
connected by an interface, I' = {(z,y) : « € (0,6),y = 0.5}. We consider the FSI
problem (1a)—(1c¢) with 7 = f% =0, where we add a linear spring term, 3°n*, to the
first equation in (1b):

pSatuS+/BSnSiv‘o,S(nS) :0.

The material parameters are given as follows: p* = 1.1[g/cm?], u® = 0.575 x 10°
[dye/cm?], 8% = 4 x 105[dye/cm?], A\* = 1.7 x 10%[dye/cm?], p/ = 1[g/cm?], and
p! = 0.035]g/(cm - 8)], which are within physiologically realistic values of blood flow
in compliant arteries. The flow is initially at rest, and we take the following boundary
conditions which model a pressure driven flow:

(6'n)-n= —pin(t), tang(u’)=0 onT! :={(z,y):z=0,y<c(0,0.5)},
(6'n) - n=0, tang(u’) = 0 onT/, :={(z,y): 2 =6,y € (0,0.5)},
tang(o’n) =0, uw' m=0 on Tf , == {(x,y) : = € (0,6),y = 0},
n®-n=0, tang(n®) = 0 on T3, 0 = {(z,y) : v € {0,6},y € (0.5,0.6)},
(o°n) -n =0, tang(n®) = 0 on I}, :={(z,y) : z € (0,6),y = 0.6}.

Here the time-dependent pressure boundary source term at the inlet T/ is given as
follows:
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Pmax (] _ gog(-2xt ) if t < tmax,
pzn(t) e 2 ( (tmax) . - a
0 if t > tmax,

where tyac = 0.03[s] and pmax = 1.333 x 10*[dyne/cm?]. The final time of the
simulation is 7' = 1.2 x 10~2[s].

In this example, we use the divergence-conforming HDG scheme with Crank—
Nicolson time stepping (10). The additional spring term £°n® in the structure equa-
tion does not alter the form of the resulting global linear system. Hence, we still apply
the preconditioned MinRes solver using the preconditioner (19) with AMG blocks (22)
and (20). Due to different boundary conditions, we shall add the boundary contribu-

tion
1
—Prgn ds
> |

Fer] urf,,ury,

to the bilinear form (21) associated with the matrix N7 in the pressure block (20) and
take the continuous linear velocity auxiliary finite element space with the modified
boundary conditions,

Vil ={ve H(Q): v|g € [PHK)]* VK € Ty, v
=0},

r :07

s
in/out

veonly, =0 tng(©)ly o,
in the velocity block (22).
For the discretization parameters, we consider polynomial degree k € {1,2,4},
a uniform unstructured triangular mesh with mesh size h € {0.1,0.05,0.025}, and a
uniform time step size 6t € {107%,0.25 x 10~*}. For all the numerical simulations,
we stop the MinRes iteration when the residual norm is decreased by a factor of
tol = 107%. The average number of MinRes iterations for different discretization
parameters are documented in Table 5. From Table 5, we observe that

(a) for the same polynomial degree k and mesh size h, a smaller time step size
ot leads to a smaller number of MinRes iterations;

(b) for the same mesh size h and time step size dt, a larger polynomial degree k
leads to a larger number of MinRes iterations, with the number of iterations
roughly doubled from k£ =1 to k = 4;

(c) for the same time step size 0t and polynomial degree k, the number of MinRes
iterations roughly stays in the same level as mesh size h decreases.

We also mention that the MinRes iterations in Table 5 are smaller than those in
Tables 3 and 4 in Example 1, which is partially due to the fact that we used a larger
stopping tolerance tol = 1076 here.

TABLE 5
Ezxzample 2: Average iteration counts for the preconditioned MinRes solver.

ot =104 5t =0.25 x 104
k=1 k=2 k=4|k=1 k=2 k=4
1/h | iter iter iter | iter iter iter
10 76 133 213 59 79 143
20 89 106 158 60 83 134
40 89 115 167 72 98 150
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Pressure Flow Rate

Vertical Displacement

eters at final time t = 1.2 x1072[s]. Top: Flow rate %Uh[O} along bottom line T'Y

GUOSHENG FU AND WENZHENG KUANG

Finally, we plot in Figure 2 the flow rate, which is calculated as two-thirds of
the horizontal velocity, and pressure at the bottom boundary F{:Ot and the vertical
displacement on the interface I' at final time t = 1.2 x 1072 for k = 1 with mesh size
h € {0.05,0.025} and time step size t = 10~ for k = 2 with mesh size h € {0.1,0.05}

5,000

2,500

— k=1,h=0.05
——k=1,h=0.025
N [P k=2,h=0.1

k=2,h=0.05
reference data

! !
0 2 4 6
z-coordinates of the bottom line beot
T
— k=1,h=0.05
——k=1,h=0.025
| [ k=2h=0.1 |
k=2h=0.05
reference data

! ! I
2 4 6
xz-coordinates of the bottom line F{Ot
1072
I
—— k=1,h=0.05
——k=1,h=0.025
[ k=2h=0.1 B
k=2,h=0.05
reference data

z-coordinates of the interface I’

Fi1c. 2. Example 2: Numerical solutions of the scheme (10) with different discretization param-

bors Middle: Pressure
ot’

along bottom line Ffot; Bottom: Vertical displacement 3 [1] along the interface T'. Reference data
are obtained with the HDG scheme (10) using polynomial degree k = 4, mesh size h = 0.025, and
time step size 6t = 0.25 x 10~4. All the other methods use the time step size ot = 10—4.
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and time step size dt = 10~* along with reference data for ¥ = 4 with mesh size
h = 0.025 and time step size §t = 0.25 x 10~*. We observe that both the results for
k=1 and k = 2 agree well with the reference data. We also observe that the result
for kK = 2 on the coarse mesh with mesh size h = 0.1 is more accurate then that for
k = 1 on the medium mesh with mesh size h = 0.05, which indicates the benefits of
using a scheme with a higher-order spatial discretization.

5.3. Example 3: A linear three-dimensional test case on a straight
cylindrical pipe. Now we consider a three-dimensional linear model that simulates
the propagation of the pressure pulse on a straight cylinder (see, e.g., [16]). The fluid
domain is a straight cylinder of radius 0.5[cm] and length 5[cm], Qf = {(z,y,2) :
x € (0,5), y* + 22 < (0.5)?}, the structure domain has a thickness of 0.1[cm], Q° =
{(z,y,2) : 2 € (0,5), (0.5)2 < y?> + 22 < (0.6)?}, and the interface I' = {(z,y,2) : z €
(0,5), y? + 2% = (0.5)%}. We use the same material parameters as in Example 2. The
flow is initially at rest, and we take the same boundary conditions as in Example 2
with the exception that a pure Neumann boundary condition o®n = 0 is applied on
the exterior structure boundary T, := {(x,y,2) : x € (0,5),y* + 2% = 0.62}.

We apply the scheme (10) with time step size 6t = 10~%. For the spatial dis-
cretization parameters, we consider two cases: k = 1 on a fine mesh with mesh size
h = 0.05 (264,288 tetrahedra) and k = 2 on a coarse mesh with mesh size h = 0.1
(33,036 tetrahedra). The fine mesh is illustrated in Figure 3.

For the preconditioned MinRes linear system solver, we replace the point Gauss—
Seidel smoother R in the velocity preconditioner (22) by a block Gauss—Seidel smoother
R®¢ based on edge blocks to further improve its efficiency. We stop the MinRes iter-
ation when the residual norm is decreased by a factor of 1076, The average number
of iterations for convergence for k = 1 with h = 0.05 is 60, and that for k = 2 with
h = 0.1 is 52 when the edge-block Gauss—Seidel smoother R€ is used in the velocity
preconditioner (22). If we instead use the point Gauss—Seidel smoother, the numbers
would be 360 for £k =1 and 246 for k = 2.

Similar to Example 2, we plot in Figure 4 the flow rate, which is calculated as two-
thirds of the horizontal velocity, and pressure at the center line {(x,0,0) : =z € (0,5)}

VanraAvLavAYA YAV ATAT AL ]
ad AT AT A A
X SRR RO
% Ve AV AT AV VAN Yt ar L
Vi araratran il R0 s
RO P
GO
SRR
Fav ¥ar i vav, dVay,
SRR
\7 'A.“ AV, x5
\?

o\

Favy

\7
5
3

SATTAT
O

Fic. 3. Ezample 3: The fine mesh with mesh size h = 0.05. The red region ts the fluid domain,
and the gray region is the structure domain.
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12
——k=1,h=0.05
.......... k=2h=0.1
8 |
g
=
o~
z 4
2
o
0
-4 ! ! \ ! B
0 1 2 3 4 5
z-coordinates of the bottom line Fl{ot
T T T
3,000 |
’ ——k=1,h=0.05
.......... k=2h=0.1
g
=
7 0 |
&
2}
—3,000 \ ! ! \. ! ]
0 1 2 3 4 5
z-coordinates of the bottom line beot
1073
87
- — k=1h=005
=
> N -
g
3
)
2,
8] 0
A
=
=
5
=
_gl | |
0 2 4

z-coordinates of the interface T’

FiG. 4. Ezample 3: Numerical solutions of the scheme (10) with different discretization pa-
rameters along cut lines at final time t = 1.2 x 1072[s]. Top: Flow rate %vh[O] along center
line {(z,0,0) : = € (0,5)}; Middle: Pressure along center line {(z,0,0) : = € (0,5)}; Bottom:
y-component of displacement m3 [1] along the interface line {(x,0.5,0) : = € (0,5)}.

and the y-component of the displacement on the interface line {(x,0.5,0) : = € (0,5)}
at final time ¢ = 1.2 x 1072, We find that the results for £ = 1 and k = 2 agree well
with each other.

Finally, we plot the structure deformation along with the fluid pressure for k = 2
with A = 0.1 in Figure 5 for ¢ € {4,8,12} x 1073. We clearly observe the propagation
of a pressure pulse as time evolves.
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Fi1c. 5. Ezample 3: The structure deformation and pressure approxzimation at different time.
The structure deformation is enlarged by a factor of 8 and is only shown on half of the structure
domain with y < 0. The pressure approximation is only shown on half of the fluid domain with
z < 0. From top to bottom, t = 0.004,0.008,0.012 (k =2, h=0.1).

6. Conclusion. We have presented a novel monolithic divergence-conforming
HDG scheme for a linear FSI problem with a thick structure. The fully discrete
scheme produces an exactly divergence-free fluid velocity approximation and is energy
stable. Furthermore, we designed an efficient block AMG preconditioner and used it
with a preconditioned MinRes solver for the resulting symmetric and indefinite global
linear system. This preconditioner is numerically observed to be robust with respect
to the mesh size, time step size, and material parameters in large parameter ranges.
A theoretical analysis of this preconditioner is our future work.
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The extension of our scheme to other FSI models, including thin structure and/or

moving interfaces, makes up our ongoing work.
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