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We propose a uniform block-diagonal preconditioner for condensed H(div)-conforming hybridizable dis-
continuous Galerkin schemes for parameter-dependent saddle point problems, including the generalized
Stokes equations and the linear elasticity equations. An optimal preconditioner is obtained for the stiffness
matrix on the global velocity/displacement space via the auxiliary space preconditioning technique (Xu
(1994) The Auxiliary Space Method and Optimal Multigrid Preconditioning Techniques for Unstructured
Grids, vol. 56. International GAMM-Workshop on Multi-level Methods (Meisdorf), pp. 215-235). A
spectrally equivalent approximation to the Schur complement on the element-wise constant pressure space
is also constructed, and an explicit computable exact inverse is obtained via the Woodbury matrix identity.
Finally, the numerical results verify the robustness of our proposed preconditioner with respect to model
parameters and mesh size.

Keywords: divergence-conforming HDG; lock-diagonal preconditioner; saddle point problem; linear
elasticity; generalized Stokes.

1. Introduction

Since their first introduction for second-order elliptic problems about a decade ago (Cockburn et al.,
2009), hybridizable discontinuous Galerkin (HDG) schemes have been developed and successfully
applied to various partial differential equations in computational fluid dynamics (Qiu & Shi, 2016;
Cockburn, 2018), wave propagation (Cockburn et al., 2016) and continuum mechanics (Nguyen &
Peraire, 2012; Fu et al., 2021). One key advantage of HDG schemes over discontinuous Galerkin (DG)
schemes is that they can be statically condensed into a reduced linear system with increased sparsity,
resulting in a significant decrease in the matrix size and computing cost (Nguyen et al., 2009; Cockburn,
2016).

However, the challenge of constructing optimal and robust solvers and preconditioners for con-
densed HDG schemes has not been fully addressed, and techniques such as multigrid and domain
decomposition methods have been mainly explored. Cockburn et al. introduced a V-cycle geometric
multigrid method for HDG schemes for the elliptic equations (Cockburn ef al., 2014), where a
continuous element-wise linear function space is used at the second level, and then a standard
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conforming multigrid method starts from there. A similar idea was employed for the Helmholtz
equations (Chen er al., 2014) and the shallow water equations (Betteridge er al., 2021), and extended
to an hp-multigrid in parallel manner in Fabien ef al. (2019). We note that Lu et al. recently reported a
homogeneous multigrid for HDG schemes for the elliptic equations where HDG discretization is used
in each level (Lu et al., 2020). Standard p-version domain decomposition methods were first analyzed
by Schoberl and Lehrenfeld for statically condensed systems of high order HDG schemes for the elliptic
equations, where each element is treated as a sub-domain (Schoberl & Lehrenfeld, 2013). Schwarz type
methods and balancing domain decomposition with constraints algorithms for HDG schemes have been
further investigated for the elliptic equations (Gander & Hajian, 2015, 2018), the incompressible Stokes
equations (Barrenechea et al., 2019; Tu et al., 2020), the Maxwell equations (Li et al., 2014; He et al.,
2016) and the hyperbolic equations (Muralikrishnan et al., 2017, 2018).

In this paper, we focus on a uniform preconditioner for the divergence-conforming HDG schemes
for the parameter-dependent saddle point problems that arise when dealing with the mixed finite element
formulation of the generalized Stokes equations, the linear elasticity equations and the Brinkman
equations. H(div)-conforming HDG discretizations for these equations have been developed in previous
works (Lehrenfeld & Schoberl, 2016; Fu et al., 2019, 2021) for the pressure-robust and mass-conserving
properties, but without efficient solvers. A wealth of literature is devoted to solving saddle point
problems, and we refer to Benzi er al. (2005) for a comprehensive review of methods, including block-
diagonal preconditioners, domain decomposition methods, multilevel methods and so on. We note that
recently block-factorization preconditioners were also proposed for a different HDG scheme for the
incompressible Stokes equations (Rhebergen & Wells, 2018, 2021). However, robust preconditioners for
the H(div)-conforming HDG schemes for the generalized parameter-dependent saddle point problems
have not been addressed in the literature yet.

Block-diagonal preconditioners have been well established for the stabilized Stokes equations, the
linear elasticity equations (Wathen & Silvester, 1993; Silvester & Wathen, 1994) and the generalized
Stokes equations (Bramble & Pasciak, 1997; Peters et al., 2005). For the generalized Stokes equations,
the Schur complement preconditioner that is robust with respect to mesh size and time step was first
proposed in Cahouet & Chabard (1988), then theoretically proved in the finite element setting in
Bramble & Pasciak (1997) and in continuous setting in Kobelkov & Olshanskii (2000). We also refer to
the surveys in Mardal & Winther (2011); Pestana & Wathen (2015) for the generalized framework and
analysis of block-diagonal preconditioners for the saddle point problems. Here, we present a uniform
block-diagonal preconditioner for the condensed H(div)-conforming HDG schemes for the parameter-
dependent saddle point problems, including the generalized Stokes equation and the linear elasticity.
The key idea is to find robust approximations for the matrix inverses of the symmetric positive definite
(SPD) stiffness matrix on the global velocity/displacement space, and the (negative) Schur complement
on the element-wise constant pressure space in the statically condensed system. For the stiffness matrix
on the global velocity/displacement space, we continue the work in our previous study on the reaction—
diffusion equations (Fu, 2021), and construct an optimal auxiliary space preconditioner (ASP) based
on the theory proposed by Xu in Xu (1994). For the Schur complement on the element-wise constant
pressure space, we mainly borrow ideas from Mardal & Winther (2004); Olshanskii et al. (2006). We
define a parameter-dependent norm on the element-wise constant pressure space, then we prove the
spectral equivalence between the newly defined norm and the one induced by the (negative) Schur
complement, which is robust with respect to model parameters and mesh size. It needs to be pointed out
that elliptic regularity is assumed for the domain here. Next, through variational analysis, we construct
an explicit matrix formulation corresponding to the definition of the newly defined norm, and naturally
conclude that its inverse is robust Schur complement preconditioner. The efficient computation of this
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1720 G. FU AND W. KUANG

Schur complement preconditioner is realized via the Woodbury matrix identity (Higham, 2002). The
numerical experiments verify the robustness of the preconditioner.

The rest of the paper is organized as follows. In Section 2, we introduce the H(div)-conforming
HDG scheme for the generalized parameter-dependent saddle point problems and express the static
condensation process in matrix formulation. In Section 3, block-diagonal preconditioners that are robust
with respect to model parameters and mesh size are constructed for the statically condensed system.
Numerical examples based on the generalized Stokes equations and the linear elasticity equations are
then presented in Section 4 to verify the robustness of our proposed preconditioner, and we conclude in
Section 5.

2. H(div)-conforming HDG for the model problem
2.1 Notations and finite element spaces

We assume the domain 2 € R?, with d = 2,3, to be convex polygonal/polyhedral. Let T, be a shape-
regular, quasi-uniform, conforming simplicial triangulation of the domain §2. For each element K € 7,
we denote by /i its diameter, and by 4 the maximum diameter on the mesh 7,. We denote &, as the
set of facets of the mesh 7, which we also refer to as the mesh skeletons. We split £, into boundary
facets &) 1= {F € £, : F C 982}, and interior facets £ := £,\&’. Given any facet F € &, with normal
direction n, we denote tang(w) := w — (w - n)n as the tangential component and [[w] as the jump on
two adjacent element of a vector field w. Given a simplex S C RY, with d = 1,2,3, we denote P™ S,
m > 0, as the space of polynomials of degree at most m on . For any function in L(S), we denote (-, -) s
as the L? inner product if S € 7, or (-,-)5if S € &,, we denote | - || as the corresponding L? norm on
the simplex S. For any functions in Lz(.Q) we denote (,-)7. = X g7 ()i as the discrete L? inner

product on the whole domain £2 and || - ||, = (-, )T2 as the corresponding norm. For any functions in
L*(E,), we denote (- = D reg, () p as the discrete L? inner product on the mesh skeletons &, and

| - ”5h = (, -)gh as the correspondlng norm. For A, B € R, we write A < B to indicate there exists a
positive constant C such that A < CB, with C only dependent on shape regularity of the mesh 7, and the
polynomial degree of the finite element spaces. Furthermore, we denote A >~ Bwhen A < Band B < A.

The following finite element spaces are used to construct the divergence-conforming HDG scheme
for the model problem:

Vi = {veHWvi2): vig e PRI, VK e T,

V]f,,o = {veV';l: v-n|p =0, VFGS,‘?},

V¢ o Ve L2E)P: Ve [PUF)P @x x [PUF)P, YFe&,, ifk=0andd =3,
h = Ve [Lz(gh)]d : V|F e [’Pk(F)]d, V- n|F =0, VF e gh’ else,

ok = {q e IX(2): qlg € PX(K), VK € Th},

Q];I’O = [qe Qh qu—()]
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where k is the polynomial degree, and d the dimension of the domain £2. Next, we perform a hierarchical
basis splitting for the Brezzi—-Douglas—Marini finite element space V];l as was done in Lehrenfeld (2010,
Section 2.2.4) to facilitate our analysis of static condensation of the H(div)-conforming HDG scheme:

Ve = vl g Ve
k,d j
Vi,' = P spani¢p} & €P spanigp),
Fe&, Fe&,
i=1,..., ng
. ‘ ‘
Vil:= @ spanigile O spanfygl,
KeTy KeTy,
i=l,.. ,n];(l i=1,.. ,n];{z

where Vﬁ’a and Vﬁ’” are global and local subspaces of V];,? ¢>g is the basis of the lowest order Raviart—
Thomas (RTO0) space on the facet F; ¢§,, i=1,..., n];- is the higher order basis of the divergence free
facet bubbles with normal component only supported on the facet F; qb}'(, i=1,.. nK , is the h1gher
order basis of the divergence-free bubbles on the element K with zero normal component on &, ; and wK,
i=1,...n K , is the higher order basis on the element K with zero normal component on &£, and nonzero

dlvergence. The integers n’fp, nlf(l , n];<2 are denoted as the number of basis functions of each corresponding

group per facet/element. We also split Qh into element-wise constant space and its complement:
— .
O = 0,90,
@h = Qg’
0= facdh: @ Dy=0vKeT].
Through the above space splitting, we have:

V.V =7, (1a)

V-V =t (1b)
which we refer to Lehrenfeld (2010, Section 2.2.4) for details.

2.2 Model problem and the HDG scheme

We consider the following saddle point problem: Find u and p such that

V. (—2uD()) + tu+ Vp =

f| .
V'u—l—%p:O]an’u"m_O’ 2)

where D(u) := %(Vu + Vu’) is the symmetric gradient, i, A > 0, T > 0 are constant model parameters
and f is the source term. We note that this model covers the linear elasticity problem where t > 0 is
the inverse of time step size, i, A > 0 are Lamé parameters, with u representing the displacement and p
the pressure. It also covers the generalized Stokes problem where A = 400, > 0 is the viscosity and
T > 0 is the inverse of time step size, where u represents the fluid velocity and p the pressure.
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1722 G. FU AND W. KUANG

To simplify our analysis, we focus on this constant-coefficient problem with homogeneous
Dirichlet boundary conditions, while other standard boundary conditions are covered in our numerical
experiments in Section 4.

The equation (2) is discretized using the symmetric interior penalty divergence-conforming HDG
(SIP-divHDG) method with projected jumps (Lehrenfeld, 2010, Remark 1.2.4). To further simplify

. . .. Sk—1 .
our notation, we define a compound finite element space Xﬁo = V’ZO X Vo and its elements
V), := (v}, V},). Then, the weak formulation of the divergence-conforming HDG scheme with polynomial
degree k > 1 is given as below: find (u,,p;) € X];, 0 X Q]ZBI such that

a. ;) + by v,) = (£.v)

T AV (v, )GVk X k_l, 3)
b(uh,qh) + C(ph,qh) = 0, Yhdp X0 Qh,O

where the bilinear forms are defined as:

a(uy,, v,) == Z (W, V) + 2/’«((1)(“;,) :D(v))x — (D(u)n, tang(v, —v,))yk
KeTy,

~ K2 ~ ~
— (D(vy)n, tang(u;, —u,)) 55 + <aTPk_1(tang(uh —uy,)), Pp_(tang(v, — Vh))> ),
oK

b)) == D (P V- w)g

KeTy,

1
@pqp) =~ > O ank

KeTy,

S k-1 . e
where P,_, denotes the L?-projection onto Vi » @ > 0is the stabilization parameter to ensure the
following coercivity result:

1 _
a(w,,w) 2 D tluyllk + 2 (uD(uh)u%< + - lltang(w, — uh>||§,<) ,
KeT,

forallu, € Xi,o- We refer to Ainsworth & Fu (2018) for a detailed discussion of the lower bound of «.
By using the Cauchy—Schwarz inequality and the inverse inequality, it is also easy to verify that on the
finite element space X’h‘!o,

1 .
a,u) $ D tlw,llx + 20 (||D<uh>||%< + lItang(w, — uh>||§,<) :
KeTy

We refer to Fu er al. (2021) for more details of the coercivity and boundedness results. Therefore,
a(uy, u,,) defines a norm on the finite element space X’,‘LO:

a(w,. ) > [l |13 . @)
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2 . 2 2 2 . 2 1 e~ 2
where [lw, [l , := Tllw,ll7 + 2ullwyll7 , and flw,lly, == > D@yl + zlltang(u, — W) [[5,-
KeT,

2.3 Matrix formulation and static condensation

We apply matrix representation of the H(div)-conforming HDG scheme in (3) to demonstrate the static
condensation process. We denote the coefficient vectors of uh,ﬁh, Dy, in their basis functions by U, ﬁ P,
the coefficient vector of u;, by U := [U, 6]T, the vector of the linear form (f, Vh)Th by F, the Euclidean
inner product in R” by (-, -),. Then, we define the matrix A, B and C corresponding to the bilinear forms

in (3) by
(AU, V), = a(u;,v,), Y u,v, € Ve,
(BP,V), :=b(p,,v,), Vp, € Q’ZI)I’Vh € Vo

(CP.Q); = c(p-qp). Y Ppay € Q-

Then, we have the matrix formulation of the HDG scheme (3):

o ¢l le)=1o] ®

By the definition of the corresponding bilinear forms, matrix A is SPD, and C is symmetric negative
semidefinite. When the polynomial degree k > 2, we solve the linear system (5) by applying element-

wise static condensation, eliminating the local interior degrees of freedom (DOFs) in V];l’g and higher
order pressure DOFs in Ql,‘lz)]’o, as was done in Lehrenfeld & Schoberl (2016). Then, the global

. . . . . . k-1
unknowns in the linear system after static condensation are the DOFs associated with Vﬁ’g, Vo and

Oy

To illustrate the static condensation process, we denote the coefficient vectors of (uz,uﬁ,ﬁh,l_}h,
Shk—1 — — . . . . -~ = .
VZARS V];l’g X VZ’?) X Vio X Qpo X Q’;l 01’0 in their basis functions as U?, U?, U, P, P°. We obtain the
following orthogonality relationships through the choice of the finite element spaces, see (1):

— — — A k,
b(ph’uZ) = _(ph’v : uz)ﬁ = 0’ Vph € Qh?uz € Vhoa

b(pu)) = =PV - u) s =0, Vpf e 051 ul e VIO,
_ 1 _ k—lo - _—=
(i @) = = Ph a7, =0, VPl €0 “,q, € Oy

With the above facts and by rearranging the order of unknowns in (5), we get:

Aoy Apy Apz 0 Buapo ue F

Auau" Auau8 Auaﬁ Buafz 0 U’ Fua

Ao Amea A, O 0 ’_(} =1 0 |, (6)
0 Buaﬁ 0 Cﬁ[—, 0 P 0

B’ 0 0 0 C,, P’ 0

u’p® PP

€20z Jaquisjdas |0 Uo Josn swe( 840N JO AlsieAlun Aq £666099/81 2 L/S/Sy/a1onle/eulewl/woo dnooiwapese//:sdiy wol) papeojumoq



1724 G. FU AND W. KUANG

where the subscripts of the matrices represent the subspaces of test and trial functions of the
corresponding bilinear forms, the subscripts of F represent the subspaces of test functions of the linear
form. With the following result, we first condense out the local pressure DOFs.

LEMMA 2.1 Assume U?, P are the solution to the system (6), we have:
(Bopo P V) = (D,0,0U%. V%), Vv € V2,

where (D,0,,U%, V%), = A(V -uf, V - V) 7.,V u), v§ € V};°.

Proof. Since we have V - Vﬁ’o = Q’Z_l’o in (1), from the second equation in (6) we get <B},an” +
CopoP?, Q% = (=V - uj — %pz,qZ)Th =0, VY g, € Q) and we have pj = —AV - uj. Then the result
follows. H

By Lemma 2.1, we eliminate P’ from (6) and get:

o e Jle]=1o] "

where
, Au"u” + Du"u" Auoua Au"ﬁ , 0 ,
A = Aoy App Apnl|, B = Buaﬁ , C = Cﬁf"
A A-5 A

Uu° Uu o

The stiffness matrix A’ is still SPD. The corresponding operator formulation of (7) is to find (w,,,p,,)
such that

AV - uz, \ VZ)'];L + G(Eh,zh) + b(ﬁh’vh) =

(£.vi) - } 3 . =
g 5. .G sV (Y eV, X . 8
b(wy,,q,) + c(@;.q;) = 0 (V@) € Vo X Qpo- (8

Similarly, by condensing out U’ from (7) and denoting the block-diagonal matrix E := A ;0 + D 0,0,
we get the final condensed linear system to solve:

o o) [®]=[5]

where

A — Auaua_Auau”E_lAu”ua Auaﬁ_Auau”E_lAu”ﬁ B :
£ | Anp — AL ETIA A — AL E7IA - |7 T8

ud uu uoud uu

s =17 1 1 T
U=’ 7] . F — Ay B F, AL ETF,]

Since basis functions of Vz’” are locally supported, the matrix E is block-diagonal, and the inverse can
be obtained element-wise.

g = [Fuza ud

€20z Jaquisjdas |0 Uo Josn swe( 840N JO AlsieAlun Aq £666099/81 2 L/S/Sy/a1onle/eulewl/woo dnooiwapese//:sdiy wol) papeojumoq



UNIFORM BLOCK-DIAGONAL PRECONDITIONERS FOR DIVERGENCE-CONFORMING HDG METHODS 1725

3. Block-diagonal preconditioners for the condensed system

In this section, we construct robust and optimal preconditioners for the condensed H(div)-conforming
HDG scheme in (9). From Benzi & Wathen (2008); Pestana & Wathen (2015) an ideal block-diagonal
preconditioner for the saddle point system (9) is

~1
Se

where Sg is the following (negative) Schur complement

_ Ty -1
Sg = —Cg + BgAg Bg.

Obviously, it is not practical to compute the dense matrix Sg directly. In practice, we seek computable
approximations to the two matrix inverses A;l and ngl. For the stiffness matrix A,, we use an ASP
with continuous element-wise linear function space as the auxiliary space. For the Schur complement
S,, we get the explicit expression of a spectrally equivalent matrix S, inspired by Mardal & Winther
(2004); Olshanskii et al. (2006).

3.1 Preconditioner for the stiffness matrix Ag

We extend from the work in our previous study Fu (2021) on the ASP for the divergence-conforming
HDG scheme for the reaction-diffusion equations and apply it to the stiffness matrix A, here. Since the
analysis procedure is almost the same as Fu (2021, Section 3.3), we quote from it and sketch our main
steps here.

(i) We start from (8) to get the operator formulation of Ag. We define the following mapping
k,d k-1 ko. - o~ k9 Skhk—1 -~ ko - .
L) :_Vh,o X V,}’O' — Vh,((;- given (ul,u,) € Vo X Vio » L£owd,u,) € Vh,?) is the unique
solution that satisfies

MV Lol ).V v) o+ a (2] 8,).00.04.0))
h
= —a (). 8. 04.0). (10)
for all vj € V% Then, we express A, in the final condensed HDG scheme as
(AU, V) = (V- L), 8). V- £507.9)

+a (] + £ 8,). 8, V) + L5065, 9).5)

9 o ~ o~ okl . . _— .
f(')r. all u),v) € V],‘l:g, u,, v, € V. Mat.rlx A, is SPD by the definition of the corresponding
bilinear form, and we denote the norm defined by it as

I, IR, =AU, Uy),.
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1726 G. FU AND W. KUANG
Taking vj = EZ(ug,ﬁh) and applying the Cauchy—Schwarz inequality in (10), we have:
M (V- Lo ). V- L5 8y)  +a (LR 8,00, (L], 6,).0))
h
= a ()8, @.8)).
Hence, by the triangle inequality, we get:
el IR, =4 (V- L7008,V - L) 8)) -+ a (2], 8,).0), (£70). §,).0))
h
EIES GRS
+a ((uh, uy), (uy, uh))
< a ()8, @}.8))
S [CIAI Y
(ii) Next, we define an L2-like inner product on the compound space V];;:g X ?2},‘ :

(<u,z,ah>, (v?,ﬁ,,))()h = Qu+th?) (ui,vi),ﬁ +2uh{tang(@,), tang(vy)),, -

and denote its corresponding norm as ||(u2,ﬁh)||(2) p = ((uz,ﬁh), (ug,ﬁh))o ,- Then, we have the
following result:

Pa, = h2,
where p A, = ,o(Ag) denotes the spectral radius of Ag.

(iii) Denote the diagonal matrix D, with the same diagonal components of A,,. For the linear operator

. k0 Sk—1 k,d Sk—1 . . .| .
Jg Vil X Vig = Vo x Vy o corresponding to the Jacobi smoother R, = D, ", we have:

Y IO 9~ o =1 ~ 2
(URARUAS) MY (TR AI

(iv) We define a continuous element-wise linear finite element space:
Vho = {vg € [H' ()19 : vyl € P1(K),VK € T, volp = 0,VF € &},

and use it as the auxiliary space. The matrix A, and bilinear operator a, on V}} o corresponding to
A, is defined as

(AoUo, V0>2 = ao(uO, V()) = /;2 (2,uV(u0) . V(Vo) + Tug - Vo) dx.
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UNIFORM BLOCK-DIAGONAL PRECONDITIONERS FOR DIVERGENCE-CONFORMING HDG METHODS 1727

A, is SPD by the definition of the corresponding bilinear form, and we define the induced norm
on V}]z,o by || - ”12&0 = ay(-,). Ag can be easily preconditioned by an algebraic or geometric
multigrid procedure.

. = k-1
(v) We define the operator IT,, = (ITj, IT;) : V;  — Vﬁ’,g x Vo by
‘ .
(Mu, -n,v) ‘Mg, = (uy-m, v ‘Mg, v e Vi o0

(tang(ﬁhuo),tang(?h))gh = (tang(up),tang(v,))g,, VYV, € V%l.

k-1 . ' .
The operator P, : V’;g X Vyo — V1, is defined on mesh vertices by

P, 0,)(x) 0, ifx, € 382,

u,,u,)(X,) = - a .

(U, Up) (X, % > kek, (W) + Lo W) [g(x,), ifx, ¢ 082,

where x,, is a vertex of 7, K, is the set of elements of 7, that share the vertex x,, and #K, is the
cardinality of it. We note that the operator P, is only used for analysis and does not appear in the
computing process. Then, we have the following boundedness properties:

1Ll 5, < gl g (11a)
[LACATAI IS [CTATAT N (11b)

Ty 0 =~ —1/2 0 -~
) By — I,P (0 Bl S oy, 0] By, (11¢)

Finally, we denote « as the condition number and obtain the optimality of our ASP in the following
theorem by invoking (Xu, 1994, Theorem 2.1) combined with the above results.

THEOREM 3.1 (ASP for the stiffness matrix). Let
~_1 T
Ag = Rg +1,B,11, (12)

be the ASP for the operator Ag in the final condensed HDG scheme (9) with « (ByA;) = 1, then we
have K(K;Ag) ~ 1.

REMARK 3.1 We note that there exist two differences between the ASP applied here and the one
in our previous work (Fu, 2021). First, there is an extra term A(V - uZ,V . VZ)Th in the bilinear
operator corresponding to A, in this study, which makes the norm || - || A, Stronger, but still bounded

by || (u}l,ﬁh)lll*’h as mentioned in step (i). Due to the auxiliary space V,%,O C Vﬁg, this term does not
appear in the bilinear operator q(-,-). Secondly, symmetric gradient is used in the bilinear operator
a(-,-) instead of gradient. The discrete Korn’s inequality holds as in Brenner (2004) and we have the
norm equivalence 3 g7 ID(w,) %+ ltang(u, —u,) 154 = > ge7 V(W) 1%+ Itang(w, —,) 13-
Therefore, this difference does not affect the results of our analysis as well.
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1728 G. FU AND W. KUANG

3.2 Preconditioner for the Schur complement S o

Since we use the concept of sum and intersection of Hilbert spaces in this subsection, we briefly
introduce the definition and basic properties here, see Olshanskii et al. (2006, Section 2.2) and Bergh &
Lofstrom (1976, Chapter 2). Assume X and Y are compatible Hilbert spaces both continuously contained
in some larger Hilbert space, then their intersection X NY and their sum X 4 Y are both complete Hilbert
spaces with corresponding norms:

Izlxny = llzIF + 1213, YzeXNY, (13)
lzl%sy = inf(lxI% + IyI3), YVz=x+y,xeX,ye¥. (14)

If X, and Y, as normed vector spaces, we denote X as the dual space of X;, £(X|,Y;) as the space of
bounded linear mapping from X; to Y;. Then, we have the following properties, the proof of which we
refer to Bergh & Lofstrom (1976, Chapter 2).

LEmMMA 3.1 Assume X;,X, and Y;,Y, are pairs of compatible normed vector spaces. If the linear
mapping T € L(X;,Y;) N L(X,,Y,), then we have:

1T, 407,41, < UTNZ Sy, + 1T %o p,) 2 (15)

If both X and Y are Hilbert spaces, given any g € (X + Y)’, we have:

||g||(x+y)/ = ||g||x/+y/- (16)

The Schur complement of the final condensed system (9) appears to be too complicated to be
analyzed. However, in the static condensation process, the Schur complement stays the same before
and after U° is condensed out, which significantly simplifies our analysis. A similar idea was used in
Rhebergen & Wells (2018) for a different HDG scheme for the Stokes problem. We first quote a lemma
about block matrix inverse, the proof of which we refer to Johnson & Horn (1985, Chapter 0.7.3):

LEMMA 3.2 Assume a block matrix R in the form of
A B
®=cp)
and the submatrices A and D are both invertible, then the inverse of R is expressed as

R — (A—BD'C)! —A"'B(D-CA'B)"!
“|-d-cA'B)"ICA! (D—CA™'B)"! '
Then, we prove the following result:
LEMMA 3.3 The Schur complement of the HDG scheme with only P’ condensed out in (7) is the same

as that of the final condensed system (9).

Proof. Since the stiffness matrix A" is SPD, it is straightforward to verify that the matrix remains SPD
after U’ is condensed out. By Lemma 3.2, the (negative) Schur complement on the space Q,, of the HDG
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scheme in (7) is expressed as

-1
Auuuo +Du0ua Auuué) Auu’li 0

S = —Cﬁﬁ + [0 B;faﬁ 0] A A Apn Buaﬁ
Aqyo Aqp A
-1
Ay A A sol e
— _ T udu T udu 1
- Cg * Bg ([ Auua Aﬁﬁ] |:A’12u” :| E [Au0u3 Au”ﬁ]) Bg
_ T
= —C + BgAng,
where E = A 0,0 +D0,0. O

From now on, we directly work with the (negative) Schur complement S’ of the HDG scheme in (7),
which is the same as S, from Lemma 3.3. Inspired by the ideas in Mardal & Winther (2004); Olshanskii
et al. (2006), we need to define a parameter-dependent norm on the finite element space @h to obtain
the upper and lower spectral bound of S’ independent of model parameters and mesh size. We start from
the norm defined by the SPD (negative) Schur complement S’

LemMA 3.4 Forall p, € Q,, we have:

—_ 1 @p V- VT
(SP.P), ~ —||p, I3 + sup : :
AT vt TV 2l I, + AV Vi3,

Proof. Since A’ in (7) is SPD, A’~1/2 is also SPD. Denote 7 as the number of DOFs of Vﬁ o- Combined
with the definition of matrix representations of bilinear forms and the norm defined by a(-, -) in (4), we
have:

(SP,P), = (—C' + BTA"'B"P,P),
1 — _
= IP4lI7; + (A"BP, AT 2BP),

L3+ sup AT BP V3
=—lp SUp ————————
PR A

1 (BP,A™”'2V)]
= —pyl% + sup ——c—2

AT T YR (VL V),
(B'P,W)3
(A/W w),

LI + Fir ¥ )7,
~ —|pn sup .
AT vt TV + 2l + AV Vi3,

= _”ph”T + Sup
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1730 G. FU AND W. KUANG

Next, we introduce a parameter-dependent norm on the element-wise constant space @h:

_ 2 —_ 2 . —_ 2 _ 2
D =—|p + inf —|Ip + — . 17
Pl A" h”;" Ph=Pn1tPn2 (2# ” h’ln;" ‘l:h”[[ph’z]]”g") a7

Before proceeding to the parameter-independent stability and boundedness of S” with respect to |p,,|,.
we need to prove two inf-sup conditions.

Lemma 3.5 For all p;, € 0, we have:

sup Py, V- V’l)%ﬁ ol
vevt 20l + A1V il 20

1Pall7; -

Proof. The proof procedure is similar to Lehrenfeld (2010, Proposition 2.3.5). For any p;, € @h, assume
¢ € H?(£2) satisfies the Neumann problem —A¢ = p, with % = 0 on 952. We take w* € [H!(£2)]¢
such that w* = V¢ and we get |W*||;1 < l|@ll2 S [P,z from the elliptic regularity due to the convex
domain £2. Then from Lehrenfeld (2010, Lemma 2.3.1) there exists w,, € V’,‘l,0 satisfying (g, V-W;,) 1, =
(qy, V- W) forall g, € Q];l_l and [lwll; , S ||w*||f11. Since k > 1 in the H(div)-conforming HDG
scheme and VZ = 0 in the lowest order case, we have:

@ V- VDT, - @ VDT,

su 2 oz = SUP 2
vVl 2'umzhml,h +AIV - Vh”'ﬁ, Vi€V, 2M|||Xh|||1,h

= 2
- (Phs V. Wh)ﬁ

20w,
= 2

_ Pw Vw7,
20w 17,

— 14

12417,

™ 2Py
.

= anhu%.

LEmMA 3.6 For all p), € Q,,, we have:

= 2

(ph’v'vh)’];l > 1 _ 2

P —— 2 N_||[[Ph]]||gh~
wevt,  Tlvillg, th

Proof. For any p;, € Q),, we construct w, € RTO C V¥ such that w, - n| = [[p,]l| for all F € &
By norm equivalence and standard scaling arguments, we have ”Wh”gfh >~ hilw,, - n||é . Since normal
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components of functions in V’,‘l o are continuous across element facets, by integrating by parts, we have:

= 2 = 2
@,V - Vh)77' (AR n)gh
up T — = Ssu —
wevk, Tl wevk, TVl
(7,1, Wy, - m)
o MPnll W 2 &
Tlwyl3
= T4
17,11,
T
Tllw, 13-
= 14
1Bl
- 2
thiw, -nllg,

1 — 2
= —Ip,I,

O

We are now ready to present the equivalence between the newly defined norm and the one induced
by S’ with the above properties.

THEOREM 3.2 (Equivalent Schur complement norm).
(S/I_),I_))z = |l_7h|ia Vb € @h-

Proof.
(a) To prove (S'P, 5)2 P |ﬁh|ﬁ, we denote two normed vector spaces:

k 2 2 2
X, = Xh,(y ”Vh”Xl 2M|||Xh|||1,h + AV - VZ||7;I, Vv, € X,

X, =Vio IVilI%, = vyl ¥, € X,.
and the mapping T € £(Q),, X}) N £(Q},,X}) such that

(TPp Vi) = BV - Vy), YDy € OV, € Vﬁ,o-

With the norm defined by " in Lemma 3.4, the inf-sup conditions in Lemma 3.5 and Lemma 3.6,
the definition of sum and intersection Hilbert spaces in (13) and (14), linear mapping properties
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1732 G. FU AND W. KUANG

in Lemma 3.1, we have the following result:

(ph»v Vh)'T
sup
v,evk, vyl + 20llvy i, + AV - vil3

— — 1
(SP.P), ~ 7,17 +

||Ph||7;, + 179yl (x, nxyy

= ||ph||77, + 1 h”X’ +X}
=12
Z |ph|*'

(b) To prove (SP,P), < |p,|2, we assume an arbitrary splitting p), = Pna + Ppo- By using the
norm defined by S’ in Lemma 3.4, integration by parts, Cauchy—Schwarz inequality, and inverse
inequality, we have:

= = @y V- Vh)%-
(SP,P), ~ ||ph|| + sup .
T wpevty TVl + 209,017, + A1V - VI,

_ . X
<L ®n1>V Vi) + B V-V
S X”ph”Th + sup . 2
XhEXI;,o T”Vh”ﬁ + 2'u’|”2h"|1,h
_ . i
= 1Pl + sup BV - V)2 + ([Pl v,
- h
" wevt,  TIVAliZ + 20w,
< - ||p I+ suwp (o 19,1135 + 25 102 10E, ) ullY - vy I, + 21, )15)
~ h
" e, vyl + 2ulv, I3,

IA

1
— 2 — 2 — 2
X”ph”ﬁ + ﬂ”l’h,l 7, + r_h”IIph’z]]”‘Sh'

Since the splitting of p,, is arbitrary, we always have (S'P, ?)2 < |17h|i, vp, € @h and this
completes the proof. ]

Next, we present the matrix representation of the newly defined norm |p, |, following the similar
analysis procedure as in Olshanskii ef al. (2006, Theorem 2.5). It naturally follows from Theorem 3.2
that this matrix representation is spectrally equivalent to the Schur complement S’ and its inverse is a
robust Schur complement preconditioner with respect to model parameters and mesh size. We define
matrix M, N by

- — - — 1
(MP’ Q>2 = (ﬁhs C_Ih)'ﬁls (NP’ Q>2 = E<[[l_7h]]’ [[Z]h]ngh,

for all p,, g, € O, and we have the following result:
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THEOREM 3.3 (Preconditioner for Schur complement). Define the SPD matrix operator S on @h by
S = %M + M(TM + 2uN)~'N. We have:

|1_7h|i = (S/I_’h,l_’h)z, V1—7h € @h?
and

k@S 'Sy ~ 1.

Proof. In the definition of the norm |p,,|, (17), by variational analysis the infimum is achieved when

1

1 _
— g — [Py — Pl [G g, =0, VG, € Oy
(zuph,l qh)Th+ _L,h<[]:ph,l pull. g, g, qn € Oy

By reformulating it into the matrix formulation, we get:

) - 1. — = —
<—MP1 + -N®P, - P),Q> =0,
2[.L T 2
— T -1 _
P, = (—M+N) NP.
2u
Therefore, combined with the fact that (ﬁﬁh’l,ﬁh’ | D7+ #([[ﬁh,l —Pull. Py —Pl)g, =0, |ﬁh|i
can be explicitly expressed as

—n L. | Lo o0
IPnls = X”Ph”ﬁ + ﬂ”PhJ”Th + E”[[ph —Prallg,
1 _ 1 _ _
= X(ph’ph)ﬁ, + ﬂ(ﬂhvph,l)ﬁ,

1 —— 1 T -1
— —(MP,P — (M(—M+N) NP,P
A( >2+2H< (211« + ) >

2
where
~ 1 1 -1
S=-M+-—M(-M+N) N
A 21 2

1
= XM +M((M + 2uN)"'N.

~—1
Then k(S 'S’) =~ 1 directly follows Theorem 3.2. O
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1734 G. FU AND W. KUANG

~—1
Finally, we present an explicit and computable expression for S’ , which has a remarkably simple

~—1
structure. At first glance, it seems quite difficult to exactly compute S’ ~ due to its complicated form
when the parameters %  and T are not zero. This issue was partially addressed in our previous work
(Fu & Kuang, 2022) using an approximation to matrix inversion, where

§,71 N 2UA
~ 2u 4+ A

oY (§M+N)_l. (18)

We note that a similar form to (18) can also be found in a recent paper (Olshanskii & Zhiliakov, 2022)
to precondition the Schur complement of a penalized surface incompressible fluid problem. Note that

(18) is an exact inverse of S’ only if either of L ¢ or u is zero, but not exact for the general case where

%, 7 and u are all not zero. Here, we obtain a simple expression of the exact inverse of S', which has

a similar form as (18), by exploring the structure of the matrix using the Woodbury matrix identity
(Higham, 2002).

THEOREM 3.4 (Exact inverse of S~’).

gl 2 Nty V(T M+ N o (19)
= — T .
2u+ A 21+ A 2u+ A

Proof. By algebraic manipulation, we have:

1
S = XM +M@EM+2uN)"I'N

1 1 TM+2uN - ™™
= -M+M (M + 2uN)
A 21
2+ A
AN . MM+ 2uN) " M.
2UA 21

We quote Woodbury matrix identity (Higham, 2002) to get the inverses of sum matrices, which states:
-1
A+UCY)' =A" - AU (CT 4 VATIU) VA

and the result follows by plugging into the above equation A = ZZ’LM—";)‘M, U= -M,C =

(tM +2uN)"and V = M. O

4. Numerical results

In this section, we present two-dimensional and three-dimensional numerical experiments to verify
. " T Bt |

the robustness of the proposed block-diagonal preconditioner dlag[Ag , S’ ']. Here the ASP pre-

conditioner K;] is given in (12) with R, being the vertex-patch based block symmetric Gauss—Seidel
smoother, and B, the approximate inverse of A, using hypre’s BoomerAMG (Henson & Yang, 2002),
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TABLE 1 Generalized Stokes in lid-driven cavity model. Iteration counts for the preconditioned
MINRES solver

2D, u =1 3D, u=1
k i =0 =1 T =107 i =0 =1 T =107
8 57 60 54 4 71 71 61
5 16 58 60 56 8 76 78 72
32 57 61 57 12 79 81 74
64 58 61 58 16 77 81 76
8 60 63 57 4 74 77 67
3 16 61 66 60 8 77 83 75
32 61 64 61 12 77 83 77
64 61 64 61 16 77 81 78
8 64 66 59 4 80 83 71
4 16 65 67 62 8 82 86 78
32 63 67 63 12 80 88 82
64 62 67 64 16 80 88 82

and the Schur complement preconditioner S’_1 is given in (19), where the matrix inverses are again
replaced by hypre’s BoomerAMG approximations. The first and second examples are based on the
generalized Stokes equations, and the third and fourth examples are based on the steady and unsteady
linear elasticity equations. All results are obtained by using the NGSolve software (Schoberl, 2014). All
codes are available at https://github.com/WZKuang/pc-hdg-saddle.

The MINRES solver with relative tolerance of 1078 is used to solve the condensed H(div)-
conforming HDG scheme (9), starting with a random vector to ensure that the initial error is not smooth.

4.1 The generalized Stokes equations

The generalized Stokes problem fits into the general setting (2) with A = +o00 and it is easily verified

that S’_1 = 2uM~! + N1, We choose the model problems of the lid-driven cavity and the backward-
facing step flow as in Farrell et al. (2019).

For the lid-driven cavity, we take the domain to be unit square/cube 2, = [0, 114, where d is
the space dimension. An inhomogeneous Dirichlet boundary condition u = [4x(1 — x),0]" in 2D or
u = [16x(1 —x)y(1 —),0,0] in 3D is set on the top side, with no-slip boundary condition for all other
sides. For the backward-facing step flow, we choose the domain £2,, = ([0.5,4] x [0, 0.5]) U ([0, 4] x
[0.5,1]) in 2D or £2, = (([0.5,4] x [0,0.5]) U ([0,4] x [0.5,1])) x [0, 1] in 3D. An inhomogeneous
boundary condition u = [16(1 — y)(y — 0.5),0]T in 2D or u = [64(1 — o —0.5)z(1 — 2),0, 01T in
3D is set for the inlet velocity on {x = 0}, with do-nothing boundary condition on {x = 4} and no-slip
boundary condition on the remaining sides.

In both model problems, the domains are divided into uniform simplicial meshes with mesh
size hg,,,, followed by three-level refinement. A, is chosen to be 8 in two-dimensional numerical
experiments and 4 in three-dimensional cases due to the limit of computation capability. The source
function f is set to be 0. The value of w is fixed to be 1 and t is chosen from {0,1,100}. The change
of iteration counts with the increase of polynomial degrees is also examined, with k € {2,3,4}. The
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TABLE 2 Generalized Stokes in backward-facing step flow model. Iteration counts for the pre-
conditioned MINRES solver

2D, u =1 3D, u=1
k 1 1=0 =1 T = 10? 1 1=0 =1 T = 10?
8 87 80 59 4 135 117 81
) 16 94 84 60 8 159 145 109
32 96 87 63 12 164 145 110
64 97 87 63 16 158 139 108
8 92 83 59 4 153 131 90
3 16 98 91 64 8 172 153 112
32 98 90 66 12 181 157 116
64 96 88 66 16 168 151 108
8 94 86 62 4 161 141 94
4 16 101 92 64 8 186 164 115
32 100 92 67 12 193 166 119
64 100 91 68 16 185 153 114

iteration counts of lid-driven cavity model are recorded in Table 1, and iteration counts of backward-
facing step flow model are in Table 2.

As observed from Table 1, the iteration counts of both two-dimensional and three-dimensional lid-
driven cavity model problems are independent of mesh size / for a fixed polynomial order k and reaction
parameter t. The iteration counts are also robust with respect to the value of t, decreasing as t increases
from 0 to 100, which is expected considering the velocity block becomes more similar to a mass matrix
as T increases.

Moreover, we find the iteration count only increases very mildly as the polynomial degree increases
from k = 2 to k = 4. It also needs to be noted that the iteration counts in three-dimensional cases
are higher when compared to the two-dimensional counterparts. The results from Table 2 are similar
to those from Table 1, where it needs to be noted that the iteration counts in the backward-facing step
flow problem are higher than those in the lid-driven cavity problem when other parameters are the same.
Therefore, the iteration counts of our preconditioner are dependent on the shape of the domain, or more
specifically aspect ratio of the domain.

4.2 The steady and unsteady linear elasticity

For the steady and unsteady linear elasticity equations, we use the same domain and boundary conditions
of the lid-driven cavity model problem in the generalized Stokes equations. The source term f is again
set to be 0.

The steady linear elasticity equations fit into (2) with = 0, and the corresponding Schur
~ 1
complement preconditioner is S’ = %M‘l. The value of % is chosen from {10_4, 1071, 1}, and

all other settings are the same as the numerical experiments of the generalized Stokes equations. The
iteration counts are recorded in Table 3.

For the unsteady linear elasticity equations, we take © = 1 and vary the value of 7 from
{10, 102, 103, 10*} and 1 from {107, 107!, 1, 10}. The iteration counts for k = 2 with different
mesh sizes are recorded in Table 4, while those for k = 3 are recorded in Table 5.
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TABLE 3 Steady linear elasticity in unit square/cube. Iteration counts for the preconditioned MINRES

solver
2D, u =1 3D, u=1
1 1 —4 1 —1 1 1 1 —4 1 —1 1
8 89 57 38 4 111 62 36
2 16 90 57 38 8 80 66 38
32 61 59 38 12 81 67 38
64 61 59 37 16 81 68 38
8 96 61 39 4 119 65 37
3 16 73 62 39 8 83 68 39
32 66 61 39 12 84 68 39
64 66 61 39 16 82 68 39
8 91 65 44 4 125 70 39
4 16 71 66 44 8 88 72 42
32 68 66 42 12 88 72 41
64 67 66 42 16 88 72 41

TABLE 4 Unsteady linear elasticity in unit square/cube. Iteration counts for the preconditioned

MINRES solver. Polynomial degree k = 2

2D, u =1
1/h =32 1/h = 64 1/h =128
. 1/x 1/x 1/
0% 107! 1 10 1070* 107! 1 10 107% 107! 1 10
10 60 53 36 29 60 53 36 27 60 53 36 27
10? 59 52 38 28 59 53 36 27 60 53 36 27
103 57 51 35 27 58 54 37 27 60 54 37 27
10* 50 42 30 23 56 48 34 26 59 51 36 27
3D, u=1
1/h=38 1/h=12 1/h=16
T 1/ 1/ 1/
1074 107! 1 10 107¢ 107! 1 10 107¢ 1071 1 10
10 76 59 37 28 79 60 38 28 80 60 38 28
102 72 56 34 25 76 60 37 26 77 60 38 26
103 60 47 28 21 66 51 31 22 71 53 33 23
10* 49 29 18 14 52 36 2 16 56 40 24 17

Results from Tables 3-5 verify the robustness of our the block-diagonal preconditioner with respect
to mesh size and model parameters, with the nearly incompressible cases taking more iterations than the
compressible ones.
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TABLE 5 Unsteady linear elasticity in unit square/cube. Iteration counts for the preconditioned
MINRES solver. Polynomial degree k = 3

2D, u =1
1/h=32 1/h = 64 1/h =128
. 1/x 1/x 1/x
0% 107! 1 00 100* 107! 1 00 100* 107! 1 10
10 63 55 37 30 63 55 37 30 65 55 37 28
102 62 54 39 30 63 55 39 30 63 55 39 28
103 62 53 36 27 65 56 39 28 64 56 39 28
104 53 45 32 25 60 50 35 27 62 53 36 27
3D, u=1
1/h=38 1/h =12 1/h =16
T 1/ 1/ 1/
10°* 107! 1 0 107* 107! 1 0 107 107! 1 10
10 79 60 38 28 82 61 39 29 82 61 39 27
10% 75 58 37 26 77 59 38 27 80 60 38 27
103 69 50 31 23 73 55 33 25 76 56 35 23
104 53 30 19 15 58 38 24 18 62 44 27 19

5. Conclusion

In this paper, we presented a robust block-diagonal preconditioner with respect to mesh size # and model
parameters for the condensed H(div)-conforming HDG schemes for the parameter-dependent saddle
point problems, including the generalized Stokes equations and the linear elasticity equations. For the
stiffness matrix, we extended from the optimal ASP for the H(div)-conforming HDG scheme for the
reaction-diffusion equations, which was developed in our previous study. For the Schur complement, we
obtained a general matrix formulation spectrally equivalent to the Schur complement in Theorem 3.3,
based on a newly defined parameter-dependent norm on the element-wise constant space. Then an
explicit computable exact inverse is obtained via the Woodbury matrix identity. Numerical results verify
the robustness of the proposed block preconditioner in both two and three dimensions.

Acknowledgements

The authors would like to thank two anonymous reviewers for constructive criticism, which enables a
better presentation of the material in this paper.

Funding

US National Science Foundation (DMS-2012031).

Conflict of interest

The authors declare no conflict of interest.

€20z Jaquisjdas |0 Uo Josn swe( 840N JO AlsieAlun Aq £666099/81 2 L/S/Sy/a1onle/eulewl/woo dnooiwapese//:sdiy wol) papeojumoq



UNIFORM BLOCK-DIAGONAL PRECONDITIONERS FOR DIVERGENCE-CONFORMING HDG METHODS 1739

REFERENCES

AINSWORTH, M. & Fu, G. (2018) Fully computable a posteriori error bounds for hybridizable discontinuous
Galerkin finite element approximations. J. Sci. Comput., 77, 443—466.

BARRENECHEA, G. R., Bosy, M., DOLEAN, V., NATAF, F. & TOURNIER, P.-H. (2019) Hybrid discontinuous Galerkin
discretisation and domain decomposition preconditioners for the stokes problem. Comput. Methods App!.
Math., 19, 703-722.

BEeNzI, M., GoLuB, G. H. & LIESEN, J. (2005) Numerical solution of saddle point problems. Acta Numer., 14,
1-137.

BENzZI, M. & WATHEN, A. J. (2008) Some preconditioning techniques for saddle point problems. Model Order
Reduction: Theory, Research Aspects and Applications. Berlin: Springer, pp. 195-211.

BERGH, J. & LOFSTROM, J. (1976) Interpolation Spaces: An Introduction. Grundlehren der Mathematischen
Wissenschaften A Series of Comprehensive Studies in Mathematics. Berlin: Springer.

BETTERIDGE, J., GiBsoN, T. H., GRaHAM, . G. & MULLER, E. H. (2021) Multigrid preconditioners for the
hybridised discontinuous Galerkin discretisation of the shallow water equations. J. Comput. Phys., 426,
109948.

BRAMBLE, J. H. & Pasciak, J. E. (1997) Iterative techniques for time dependent stokes problems. Comput. Math.
Appl., 33, 13-30.

BRENNER, S. C. (2004) Korn’s inequalities for piecewise hl vector fields. Math. Comp., 73, 1067-1087.

CAHOUET, J. & CHABARD, J.-P. (1988) Some fast 3d finite element solvers for the generalized stokes problem. Int.
J. Numer. Meth. Fluids, 8, 869—-895.

CHEN, H., Lu, P. & Xu, X. (2014) A robust multilevel method for hybridizable discontinuous Galerkin method for
the Helmholtz equation. J. Comput. Phys., 264, 133-151.

COCKBURN, B. (2016) Static condensation, hybridization, and the devising of the HDG methods. Building Bridges:
Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lect. Notes
Comput. Sci. Eng., vol. 114. Cham: Springer, pp. 129-177.

COCKBURN, B. (2018) Discontinuous Galerkin methods for computational fluid dynamics. Encyclopedia of
Computational Mechanics Second Edition, pp. 1-63.

COCKBURN, B., DuBois, O., GOPALAKRISHNAN, J. & TAN, S. (2014) Multigrid for an HDG method. IMA J. Numer.
Anal., 34, 1386-1425.

COCKBURN, B., GOPALAKRISHNAN, J. & Lazarov, R. (2009) Unified hybridization of discontinuous Galerkin,
mixed and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal., 47,
1319-1365.

CockBURN, B., NGUYEN, N. C. & PErAIRE, J. (2016) HDG methods for hyperbolic problems. Hand-
book of Numerical Methods for Hyperbolic Problems—Basic and Fundamental Issues, vol. 17,
pp- 173-197.

FaBIEN, M. S., KNEPLEY, M. G., MiLLs, R. T. & RIVIERE, B. M. (2019) Manycore parallel computing for a
hybridizable discontinuous Galerkin nested multigrid method. SIAM J. Sci. Comput., 41, C73—-C96.

FARreLL, P. E., MiTCHELL, L. & WECHSUNG, F. (2019) An augmented lagrangian preconditioner for the 3d
stationary incompressible Navier—Stokes equations at high Reynolds number. SIAM J. Sci. Comput., 41,
A3073-A3096.

Fu, G. (2021) Uniform auxiliary space preconditioning for HDG methods for elliptic operators with a parameter
dependent low order term. SIAM J. Sci. Comput., 43, A3912-A3937.

Fu, G., JiN, Y. & Qiu, W. (2019) Parameter-free superconvergent h (div)-conforming HDG methods for the
Brinkman equations. IMA J. Numer. Anal., 39, 957-982.

Fu, G. & KuaNg, W. (2022) A monolithic divergence-conforming hdg scheme for a linear fluid-structure interaction
model. SIAM J. Numer. Anal., 60, 631-658.

Fu, G., LEHRENFELD, C., LINKE, A. & STRECKENBACH, T. (2021) Locking free and gradient robust h (div)-
conforming HDG methods for linear elasticity. J. Sci. Comput., 86, 1-30.

€20z Jaquisjdas |0 Uo Josn swe( 840N JO AlsieAlun Aq £666099/81 2 L/S/Sy/a1onle/eulewl/woo dnooiwapese//:sdiy wol) papeojumoq



1740 G. FU AND W. KUANG

GANDER, M. & HailiaN, S. (2018) Analysis of Schwarz methods for a hybridizable discontinuous Galerkin
discretization: the many-subdomain case. Math. Comp., 87, 1635-1657.

GANDER, M. J. & Hajan, S. (2015) Analysis of Schwarz methods for a hybridizable discontinuous Galerkin
discretization. SIAM J. Numer. Anal., 53, 573-597.

HE, Y.-X., L1, L., LANTERL S. & HUANG, T.-Z. (2016) Optimized Schwarz algorithms for solving time-harmonic
Maxwell’s equations discretized by a hybridizable discontinuous Galerkin method. Comput. Phys. Commun.,
200, 176-181.

HENSON, V. E. & YANG, U. M. (2002) BoomerAMG: a parallel algebraic multigrid solver and preconditioner. App!.
Numer. Math., 41, 155-177.

HigHAaM, N. J. (2002) Accuracy and Stability of Numerical Algorithms. Philadelphia: Society for Industrial and
Applied Mathematics.

JoHNsoN, C. R. & Horn, R. A. (1985) Matrix Analysis. Cambridge: Cambridge University Press.

KoBELKOV, G. M. & OLsHANSKIIL, M. A. (2000) Effective preconditioning of Uzawa type schemes for a generalized
Stokes problem. Numer. Math., 86, 443—470.

LEHRENFELD, C. (2010) Hybrid discontinuous Galerkin methods for solving incompressible flow problems.
Diploma Thesis, MathCCES/IGPM, RWTH Aachen.

LEHRENFELD, C. & SCHOBERL, J. (2016) High order exactly divergence-free hybrid discontinuous Galerkin methods
for unsteady incompressible flows. Comput. Methods Appl. Mech. Eng., 307, 339-361.

L1, L., LANTERI, S. & PERRUSSEL, R. (2014) A hybridizable discontinuous Galerkin method combined to a Schwarz
algorithm for the solution of 3d time-harmonic Maxwell’s equation. J. Comput. Phys., 256, 563-581.

Lu, P, Rupp, A. & KaNscHAT, G. (2020) Hmg-homogeneous multigrid for HDG. arXiv preprint
arXiv:2011.14018.

MARDAL, K.-A. & WINTHER, R. (2004) Uniform preconditioners for the time dependent Stokes problem. Numer.
Math., 98, 305-327.

MARDAL, K.-A. & WINTHER, R. (2011) Preconditioning discretizations of systems of partial differential equations.
Numer. Linear Algebra Appl., 18, 1-40.

MURALIKRISHNAN, S., TRAN, M.-B. & Bul-THANH, T. (2017) ihdg: an iterative HDG framework for partial
differential equations. SIAM J. Sci. Comput., 39, S782-S808.

MURALIKRISHNAN, S., TRAN, M.-B. & Buir-THANH, T. (2018) An improved iterative HDG approach for partial
differential equations. J. Comput. Phys., 367, 295-321.

NGUYEN, N. C. & PERAIRE, J. (2012) Hybridizable discontinuous Galerkin methods for partial differential equations
in continuum mechanics. J. Comput. Phys., 231, 5955-5988.

NGUYEN, N. C., PERAIRE, J. & COCKBURN, B. (2009) An implicit high-order hybridizable discontinuous Galerkin
method for linear convection—diffusion equations. J. Comput. Phys., 228, 3232-3254.

OLsHANSKII, M. A., PETERs, J. & REUSKEN, A. (2006) Uniform preconditioners for a parameter dependent
saddle point problem with application to generalized Stokes interface equations. Numer. Math., 105,
159-191.

OLSHANSKIL, M. A. & ZHILIAKOV, A. (2022) Recycling augmented lagrangian preconditioner in an incompressible
fluid solver. Numer. Linear Algebra Appl., 29, e2415.

PESTANA, J. & WATHEN, A. J. (2015) Natural preconditioning and iterative methods for saddle point systems. SIAM
Rev., 57, 71-91.

PETERS, J., REICHELT, V. & REUSKEN, A. (2005) Fast iterative solvers for discrete Stokes equations. SIAM J. Sci.
Comput., 27, 646-666.

Qru, W. & SHi, K. (2016) A superconvergent HDG method for the incompressible Navier—Stokes equations on
general polyhedral meshes. IMA J. Numer. Anal., 36, 1943-1967.

RHEBERGEN, S. & WELLS, G. N. (2018) Preconditioning of a hybridized discontinuous Galerkin finite element
method for the Stokes equations. J. Sci. Comput., 77, 1936-1952.

RHEBERGEN, S. & WELLS, G. N. (2021) SIAM J. Sci. Comput., arXiv preprint arXiv:2105.09152, 44, A583-A604.

SCHOBERL, J. (2014) C++11 implementation of finite elements in NGSolve. ASC Report 30/2014. Institute for
Analysis and Scientific Computing, Vienna University of Technology.

€20z Jaquisjdas |0 Uo Josn swe( 840N JO AlsieAlun Aq £666099/81 2 L/S/Sy/a1onle/eulewl/woo dnooiwapese//:sdiy wol) papeojumoq



UNIFORM BLOCK-DIAGONAL PRECONDITIONERS FOR DIVERGENCE-CONFORMING HDG METHODS 1741

SCHOBERL, J. & LEHRENFELD, C. (2013) Domain decomposition preconditioning for high order hybrid discontin-
uous Galerkin methods on tetrahedral meshes. Advanced Finite Element Methods and Applications. Berlin:
Springer, pp. 27-56.

SILVESTER, D. & WATHEN, A. (1994) Fast iterative solution of stabilised Stokes systems part ii: using general block
preconditioners. SIAM J. Numer. Anal., 31, 1352-1367.

Tu, X., WANG, B. & ZHANG, J. (2020) Analysis of BDDC algorithms for Stokes problems with hybridizable
discontinuous Galerkin discretizations, 52, 553-570.

WATHEN, A. & SILVESTER, D. (1993) Fast iterative solution of stabilised stokes systems. part i: using simple
diagonal preconditioners. SIAM J. Numer. Anal., 30, 630-649.

Xu, J. (1994) The Auxiliary Space Method and Optimal Multigrid Preconditioning Techniques for Unstructured
Grids, vol. 56. International GAMM-Workshop on Multi-level Methods (Meisdorf), pp. 215-235.

€20z Jaquisjdas |0 Uo Josn swe( 840N JO AlsieAlun Aq £666099/81 2 L/S/Sy/a1onle/eulewl/woo dnooiwapese//:sdiy wol) papeojumoq



	 Uniform block-diagonal preconditioners for divergence-conforming HDG Methods for the generalized Stokes equations and the linear elasticity equations
	1. Introduction
	2. Hdiv-conforming HDG for the model problem
	3. Block-diagonal preconditioners for the condensed system
	4. Numerical results
	5. Conclusion




