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ABSTRACT

Graph generative models are highly important for sharing surro-
gate data and benchmarking purposes. Real-world complex systems
often exhibit dynamic nature, where the interactions among nodes
change over time in the form of a temporal network. Most temporal
network generation models extend the static graph generation mod-
els by incorporating temporality in the generation process. More
recently, temporal motifs are used to generate temporal networks
with better success. However, existing models are often restricted
to a small set of predefined motif patterns due to the high computa-
tional cost of counting temporal motifs. In this work, we develop a
practical temporal graph generator, Motif Transition Model (MTM),
to generate synthetic temporal networks with realistic global and
local features. Our key idea is modeling the arrival of new events as
temporal motif transition processes. We first calculate the transition
properties from the input graph and then simulate the motif transi-
tion processes based on the transition probabilities and transition
rates. We demonstrate that our model consistently outperforms
the baselines with respect to preserving various global and local
temporal graph statistics and runtime performance.
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1 INTRODUCTION

Graphs are an effective tool to model real-world complex systems
in various domains, such as communications, human interactions,
financial activities, social relations, and protein interactions. One
important problem is the generation of realistic synthetic networks
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Figure 1: An example of motif transition. A wedge motif can have
0.6 probability of evolving into a triangle and 0.4 probability of be-
coming a 3-star.

from a given distribution of real-world networks [4-6]. Graph gen-
erators are necessary for enabling the sharing of surrogate data,
such as computer network traffic or financial networks, and bench-
marking studies, such as scalability and versatility tests [20].

Real-world complex systems often exhibit dynamic nature, where
the interactions among nodes evolve over time. Edges are active
only at certain points in time in temporal networks, such as fi-
nancial transactions, communication networks, and face-to-face
contacts. Temporal graph generation is relatively understudied and
particularly more challenging than static graph generation due to
the diverse and large nature of real-world temporal networks. Most
temporal network generation models focus on reproducing the
global characteristics of real-world networks. They often extend
the static graph generation models by incorporating temporality
in the generation process [10, 12, 13, 17]. Existing models lack a
holistic approach that can consider the structural and temporal
characteristics at the same time.

Temporal motifs, also known as higher-order structures, are an
important building block in temporal networks [14, 21, 26, 32, 34,
38]. Temporal motif-based analysis has been used for many appli-
cations including cattle trade movements [3], editor interactions
in Wikipedia [16], mobile communication networks [22, 24], and
human interactions [46]. Temporal motifs are also a promising and
effective tool for temporal graph generation. Purohit et al. intro-
duced the Structural Temporal Modeling (STM) which computes
the frequencies of a set of atomic motifs and places the motifs
with the preferential attachment mechanism to generate temporal
graphs [36]. Zeno et al. [44] modeled the active node behavior over
time and generate three types of 3-node motifs (one edge, wedge,
and triangle) with different arrival rates. However, these models
suffer from the cost of counting temporal motifs which increases
exponentially as the size of the motif increases. Thus, they are often
limited to a custom set of motifs of limited size which are unable to
capture the structural and temporal characteristics of the networks.

In this work, we develop a realistic and practical temporal graph
generator. For a given input temporal network, our Motif Transi-
tion Model (MTM) generates a synthetic temporal network that
preserves the global and local features of the input network. We
introduce the motif transition to model the evolution of temporal
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motifs as a stochastic process. Figure 1 gives an example where
a wedge motif can transition into two larger temporal motifs by
adding new events. Our model first calculates the transition prop-
erties from the input graph and then simulates the stochastic motif
transition processes based on the transition probabilities and tran-
sition rates. We compare the MTM against several state-of-the-art
temporal graph generative models on real-world networks from
various domains. We demonstrate that our model consistently out-
performs the baselines with respect to preserving various global
and local temporal graph statistics. Furthermore, our model is sig-
nificantly more efficient than the existing baselines.
Our key contributions can be summarized as follows:

e We propose the Motif Transition Model, MTM, to generate
a synthetic network through a stochastic process that accu-
rately captures the global graph statistics and the temporal
motif structures.

e We give algorithms to efficiently compute the motif transi-
tion properties and use those to generate the new graph. In
particular, we do not count the motifs in the process which
makes our model practical and scalable.

o We perform a comprehensive evaluation of our model against
several baselines on various real-world networks. MTM out-
performs the baselines in preserving the global graph charac-
teristics and local temporal motif features of the input graph.
MTM is also highly efficient and scalable to large networks.

2 RELATED WORK

Here we briefly summarize the previous work on the generative
models for temporal networks and temporal network motifs.

2.1 Generative Models for Temporal Networks

Most of the previous studies on generative models for temporal
networks are derived from the extension of static graph generation
models [10, 12, 13]. Gauvin et al. [7] surveyed several random
reference models for temporal networks many of which extend
the Erdés-Renyi and configuration models to temporal networks.
One of the most commonly used static graph generative models
is the stochastic block model [2], which splits nodes into different
groups and then places edges between them according to their
categories. Several dynamic variants of the stochastic block model
are developed [8, 11, 19, 30, 41-43, 45], in which the nodes can
switch classes over time. Recently, Porter et al. [34] developed the
temporal activity state block model TASBM to generate a temporal
network with temporal motif structures. They divide the temporal
graph into multiple time windows and compute the average in-
event and out-event arrival rates for each node. Based on the event
arrival rates between the activity groups, the model generates the
events between each pair of nodes by a Poisson draw.

Inspired by the success of deep graph generative models, Zhou
et al. [48] proposed the TagGen model to generate temporal graphs.
They use a bi-level self-attention mechanism and assemble the
temporal random walk sequences to form a temporal interaction
network. However, their model converts the temporal graph into
a few snapshots, hence the fine-grained timestamp information is
lost during this process. The prohibitive time and space complexity
also make their model impractical for large scale. Another line of
work used higher-order and variable-order Markov chains to model
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the temporal sequence of edges in multiple k-th order pathways
[33, 37]. Most existing temporal graph generative models do not
consider the higher-order structures except temporal walks and
pathways. However, many real-world events do not occur in tra-
versal patterns, such as repetitive monthly auto-payment activities,
which cannot be reproduced by the random walks or higher-order
pathways. In our work, we propose an effective solution to model
any potential correlation between two events that are topologically
and temporally close to each other. Our model is also practical for
large-scale networks.

2.2 Temporal Motifs

Higher-order temporal subgraph structures, i.e., temporal motifs,
are an important property of temporal networks. Several approaches
have been proposed to model temporal motifs [14, 21, 26, 32, 38].
Applications and use cases for temporal motifs are numerous. Jin
et al. [15] proposed trend motifs to investigate the financial and
protein networks with dynamic node weights. Zhao et al. [47] de-
vised communication motifs to study the information propagation
in human communication networks, such as call detail records
(CDR) and Facebook wall post interactions. Zhang et al. [46] in-
troduced motif-driven analysis for human interactions including
phone messages, face-to-face interactions, and sexual contacts. Liu
et al. studied patent oppositions and collaborations [27] and finan-
cial transaction networks [25] by using temporal motifs.
Regarding the temporal graph generative models, Purohit et al.
used temporal motifs to propose Structural Temporal Modeling
(STM) process to generate temporal networks [36]. They select a set
of easy-to-compute atomic motifs, such as wedges, triangles, and
squares, and for each type of atomic motif, the model calculates the
independent motif frequencies (ITeM) which prohibits the overlaps
between motifs [35]. Nodes and motifs in the output graph are
generated based on the ITeM frequency and a preferential attach-
ment function. Similarly, Zeno et al. [44] proposed the DYMOND
model to generate dynamic networks. They consider three types
of undirected static motifs (one edge, wedge, and triangle), and
place motifs on active nodes with different arrival rates. However,
they convert the temporal network into a sequence of snapshots
and only model static motifs which do not contain any timestamp
information. One limitation of these models is that they only se-
lect a limited set of temporal motifs (mostly wedges and triangles),
which are not sufficient to capture more complex subgraph struc-
tures. Another drawback is that they rely on counting the number
of temporal motifs and do not consider the correlations between
temporal motifs of different sizes. Also, the complexity of counting
temporal motifs increases exponentially as the motif size increases,
thus most existing studies does not consider temporal motifs with
more than three events. In our work, we use the full spectrum of
temporal motifs and utilize the transitions among them to generate
realistic synthetic temporal networks—we also do not count the
motifs in the process which makes our model practical and scalable.

3 BACKGROUND

Here we provide the formal definition of temporal motifs, and
introduce a notation method to denote different types of temporal
motifs. The notations and symbols are summarized in Table 4 of
Appendix A.
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3.1 Temporal Motifs

We explore temporal networks which we represent as G = (V,E). V
is the set of nodes and E is the set of timestamped events. Each event
e; € Eisa3-tuple (u;, vj, t;) that represents a directed relation from
the source node u; to the target node v; at time ¢;. The event set E
is a time-ordered list of events such that t; <ty <3 <--- < tE|-
Here we distinguish edges and events, where the edge (u, v) is the
static projection of an event (u, v, t), and there may be multiple
events occurring on the same edge at different times. We also define
the static projection of G as G = {(u;, v;) |¥(u;, vi, t;) € G}.

Definition 3.1. (Temporal motif) Given a temporal network G =
(V,E), an l-event temporal motif (I > 2), denoted by Mlg =(V,E),
is a temporal subgraph in G such that
e V' CV,E'CEIE'| =1,
o M! is a (weakly-connected) subgraph, hence 2 < |V'| < [ +1,
e Each event is connected to at least one of the previous events:
{uj’.+1,uj’.+1} n {u{,v{, .. .,uj'.,vj’.} #0foranyj+1<1(ie,
the motif is a connected subgraph at every timestamp).

For a given [, there are different types of temporal motifs in
terms of connectivity and temporal structure, called as the motif
spectrum. For instance, there are 6 types in the motif spectrum for
M? (see Figure 2), 60 types for M> (see Figure 11 in Appendix C),
and 888 types for M*. We denote each type of temporal motif with
a unique subscript such as Ml? for1 <i<e, M? for1 < i <60, and
M;.1 for 1 < i < 888. We use {Mf} to denote the set of instances of
a motif Ml? in G.

3.2 Motif Notation

To describe the large spectrum of temporal motifs (e.g., M? for
1 < i £ 60), we introduce a digit-based notation. We use 2/ digits
to denote a unique type of [-event temporal motif M f . Each pair
of digits, uv, denotes an event from the node represented by the
first digit u to the node denoted by the second digit v. Digits start
from zero and the digit for each node follows the chronological
order of the node’s appearance in the motif. The sequence of digit
pairs also follows the chronological order of the events. The first
two digits of any temporal motif are always 01, to denote that the
first event occurred from node 0 to node 1. Figure 2 presents some
examples. For instance, 8110 denotes a type of M? that consists
of two opposite events occurring between two nodes (91 and 10).
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Figure 2: Six types of 2-event motifs (left) and an example of 3-
event and 4-event motifs (right). We use 2/ digits to denote a tempo-

ral motif with / events. Each event is given by a pair of digits, where
the source node is the first and the target node is the second digit.
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Similarly, 211202 represents a type of M> where the first event is
from the black node () to the white node (1), the second one is
from the white node (1) to the gray node (2), and the last event is
from the black node (9) to the gray node (2). Based on the definition,
each digit notation denotes one type of temporal motif, and each
type of temporal motif corresponds to a unique digit notation.

4 MOTIF TRANSITION MODEL

In this section, we introduce the motif transition model, MTM, to
generate synthetic temporal networks with realistic global and local
characteristics. Unlike the existing models that generate different
types of temporal motifs independently over time [36, 44], the
core idea of MTM is to model the evolution of temporal motifs
as a stochastic process. For example, a 1-event motif can evolve
into a wedge if there comes a new event that has one node in
common, or a wedge motif can evolve into a triangle if there is a new
event connecting the two nodes that are not directly connected. We
generate temporal synthetic networks by simulating the evolution
of temporal motifs.

4.1 Motif Transition Process

We use motif transition process to model the evolutions of temporal
motifs. Here we givs the definition of motif transition and motif
transition process.

Definition 4.1. (Motif transition) In a given graph G, a motif
Mf = (V’,E’) transitions to a motifM]l.Jrl = (V",E"”) if there is a
new event ey, 1 = (Uj41, V141, tj41) such that

o V" =V ' U{ujy1,v141} and E” = E' Uepyq,
{ujs1,v141} NV’ # 0, i.e, the new event is adjacent to Ml{,

tj41 > t;, where ty is the timestamp of the last event in Mf,

Ml{ does not transition to another motif before ej, arrives, i.e,
there does not exist an event e* = (u*,v*,t*) € G that satisfies
all requirements above and t* < t;,.

We use T(Mf — MJZ.“) to denote the transition, and {T(Mf —

MJI.H)} to denote the set of instances of such transition in the input
graph. We define the arrival time of the new event as the transition
time: Ay = tj4q — 1.

Figure 3 gives some examples of the motif transition. In our digit
notation, the first motif in the transition is always a prefix of the
second motif. For example, a single event (1) can transition into
one of the six types of 2-event motifs by the arrival of a consecutive
event. Similarly, a 2-event motif, say 8110, can transition into a
3-event motif such as 011001, 011002.

Definition 4.2. (Motif transition process) In a given graph G, we
define the motif transition process as a sequence of motif transitions,
TM'— ... —>Mf—>S), with respect to the transition size limit
Imax and transition time limit §. S denotes the stopping state. The
motif transition process starts from 1-event motif and ends at Mf if
either one of the following conditions is true:

o The size of the Mf is equal to the transition size limit, i.e.,

I' = Imax,
e Within the time window (t], t; + 8], there does not exist a new
event e;, 1 to create the next transition T(Mf—)M]l.“).
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Figure 3: Examples of motif transition processes. S indicates that
the transition process ends and no more events can be added to the
current motif. A transition process is sequence of motif transitions
from an event 01 to the transition end S.

Figure 4 gives examples of the motif transition process on a toy
graph for Imax = 3 and § = 5s. There is a motif transition process
from 1s to 5s which stops as the size of the triangle motif is equal
to the transition size limit ax. Another motif transition process
starts at 7s and ends at 9s because there does not exist a new event
in (9s, 14s] to create a new transition.
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Figure 4: Motif transition processes for I, = 3 and § = 5s.
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We categorize events in a temporal network to two classes: cold
events, which are the first in a motif transition process, and hot
events, which are subsequent events added in a motif transition
process. We denote the set of cold events as CE. The first event
in a temporal graph is always a cold event. Each cold event can
only trigger one motif transition process, and each motif transition
process only contains one cold event. Given the state of the current
motif, the motif transition process captures the arrival of the new
event, which can be modeled as a Markov process. Based on this
idea, we develop a graph generative model to simulate temporal
networks as a stochastic process of new event arrivals.

4.2 Graph Generative Model

We use motif transition processes to develop the motif transition
model (MTM), a stochastic model to generate synthetic temporal
networks. Figure 5 gives an overview of the MTM model. Our model
takes a temporal graph as input and generates a synthetic network
in two steps: we first identify the motif transition properties of the
input graph, and then generate the synthetic network by simulating
the motif transition processes.

4.2.1 ldentifying motif transition properties. In this step, we cal-
culate the following five properties from the original input graph,
which are later used for simulating the motif transitions in the
second step.
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e Degree distribution of cold events, Kcg. We create the
static projection of the cold events, denoted by CE, such that
CE = {(ui, v;) |(ui, vi, t;) € CE}. We define K¢ as the list of
in-degrees and out-degrees of the nodes in CE. We use Kcg
to generate the new cold events in the synthetic network.
Timestamps of cold events, Tcg. We identify the times-
tamps of all the cold events in G. We use Tcg in generation
of the cold events in the synthetic network.

Motif transition probabilities, # = [P1, Py, . .. ,P|T|]. We
identify all motif transitions in the input graph and calculate
the conditional probability of each type of motif transitions
T (M —>Mjl. +1y,

) {T (Ml M|

I+1 a4l
POV = HT (ML= + T KT (ME-MED)

where M Jl.“ is a type of (I + 1)-event motif that M f can transi-
tion into and [{7 (M f —M ]l.” )}| is the number of correspond-

ing transition instances. [{7 (M ll —85)}| is the number of tran-
sition processes that end at Mf, and };; |{‘T(M§ —>M]lc+1)}| is

the total number of all motif transition instances from M f .| T
stands for the total number of transition types under the Imax
limit. There are 6 types of 7(M!—M?) transitions, 60 types
of T(M?>—M3) transitions, and 888 types of T (M>—M*)
transitions. Threfore, |T| = 6 when lpax = 2, |T| = 66 when
Imax = 3, and |T| = 954 when [y = 4.

Motif transition rates, A = [A1,A2,... ’A\TI]' Since the
motif transition is nothing but arrival of a new event, in-
spired by the previous works on stochastic temporal net-
work models [29, 34], we use Poisson process to model the
transition time A; (i.e., the arrival time of the new event) for
each type of motif transition. In particular, we set the tran-
sition rate (i.e., the arrival rate of the new event), denoted
as A(M ll —M ]l.“), of a motif transition to the average of the
transition_gimes of all the instances of that motif transition:
1/mean(A;).

Average number of edges in the motif transition pro-
cess, 1. For each motif transition process in the input graph
TM'— ... —>Mf —S), we construct the static projection of

M f and consider the number of edges in it. Then we calculate
the average number of those.

4.2.2  Simulate motif transitions. In the second step, we generate
the synthetic network using the motif transition properties cap-
tured in the first step. We utilize Kcg and Tcg to generate the
cold events, and P, A, i to generate the hot events. We first em-
ploy the configuration model [31] to generate static edges from the
degree distribution Kcg, and then apply weight-constrained link
shuffling [7] to randomly assign the timestamps Tcg on the edges
to create the cold events for the output graph, denoted by CE’.
After generating the cold events, CE’, we process each in the
chronological order to generate the hot events. For each cold event,
we randomly generate a motif transition process using the tran-
sition probabilities of the input graph, . We store all the cold
and hot events in Eqyt. We simulate the timestamps of the new
events by the arrival times generated from the Poisson process
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Figure 5: The proposed motif transition model (MTM).

Algorithm 1 MoTir TRANSITION MODEL (MTM)
Input: A temporal graph as an ordered list of events E, the transition
time constraint &, the transition size constraint Inax
Output: A synthetic temporal graph as a list of events Eqy;

1: Equt <« 0

2: Kcg, Tcg, P, A, pt < COMPUTE MOTIF TRANSITIONS(E, &, Imax)

3: CE’ = CONFIGURATION MoDEL(KE, TCE)

4: for all {u, v, t} € CE’ do

5: Eout « Eout U {u, v, t}

6: V' =lu, v],M =01

7: while number of events in M < [, do

8: M’ « randomly choose by using P(M’|M) € P

9: if M’ = S then

10: break

11: digit,,/, digit, « last two digits of M’ > the new event
12: if digit,, > |V’| then > request a new edge
13: v’ = V'[digit,]

14: randomly choose u’ to form (v, v’) based on Equation 1
15: V’.add(u’)

16: else if digit,s > |V’| then > request a new edge
17: u’ = V’'[digit,]

18: randomly choose v’ to form (u/, v’) based on Equation 1
19: V’.add(v’)
20: else
21: u’ = V’'[digit,]
22: o’ = V'[digit,]
23: t =t +Pois(AM — M’))
24: Eout «— Equt U {t/, 0/, t}
25: M=M

26: return Eq,¢

Pois(4). In particular, we generate the timestamp of a new event as
t11 = tj + Ay, where P(A; > x) = e~**. We continue adding new
events to the transition process until it reaches the stopping state
S. After all cold events have been processed, the model gives the
event list Eqyt as the output graph.

A new event may create an edge that does not exist in the previ-
ous transition. For example, the transition from 01 to 0102 brings
a new event which does not occur on an edge in the current motif.
We consider two ways to select the edge (u’, v’) for the new event:
(1) we randomly select an edge that is in the static projection of the
current output event list, i.e., (u’,v’) € Eout; or (2) we randomly
create a new edge that is not in Eqyt, which will increase the size
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of Eout by one. We set the probability to create a new edge as

|E| - ICE'|

p((',v") ¢ Egu) = m

(1)
where CE is its static projection of cold events for the output graph,
E is the static projection of the input graph, and y is the average
number of edges in motif transition processes. Since each cold event
will transition into a motif with y edges on average, the transition
processes will request (u — 1)|CE’| new edges in addition to the
cold events. For each request we create a new edge based on the
probability in Equation 1, which will fill the difference between the
number of edges in the input graph and the cold events |E| — |CE’|.

4.2.3 MTM algorithm. Algorithm 1 provides the pseudocode of the
motif transition model. We first calculate the motif transitions in
Line 2 using Algorithm 2. Then we simulate the cold events in Line 3,
and generate motif transitions from each cold event until the size
reaches the transition size limit (Line 7) or reaches to the stopping
state S (Line 9). At each step, we randomly select the next transition
according to the calculated transition probabilities (Line 8), and
generate the arrival time of the new event from Poisson distribution
(Line 23). If the transition process requests a new edge, we randomly
select it using Equation (1) (Line 12 to 19). The simulation process
(Line 4 to 26) is a linear algorithm with O(|CE| - lipax) runtime
complexity as the transitions of cold events are limited by lpax.
Algorithm 2 shows the pseudocode for calculating the motif
transitions. We maintain a list of active transitions, which are the
motif transition processes that can be extended by a new event.
For each event, we check all the active transitions to see if the
event can be added to an existing transition (Line 15). If so, we
record the transition count and the transition time (Lines 17 and
18). Note that if the event is added to an existing motif, it cannot
be a cold event (Line 21). Before proceeding to the next event in
the list, we update the set of active transitions (Line 20 and 25).
After getting all the transition counts and transition times, we
calculate the transition probabilities # and the transition rates A
(Line 28 to 31). Note that Algorithm 2 does not explicitly count
the motifs. Identifying the motif transitions (Line 6 to 25) takes
O(|E| - |Tactive|) time. Since each cold event can only trigger one
active transition, the number of active transitions, |7;ctive|, at any
step is no greater than the number of cold events, |CE|, in any lmax -8
time window. The average number of |CE| in any time window is
|CE| bt
transitions are identified, calculating the # and A (Line 28 to 31)

, where |T| is the timespan of the input data. Once the
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Algorithm 2 ComPUTE MOTIF TRANSITIONS

Input: A temporal graph as an ordered list of events E, the transition
time constraint &, the transition size constraint I,y

Output: Degrees and timestamps of cold events Kcg and Tck,
transition probabilities #, transition rates A, average number of
edges in the motif transition processes y

1: CE«— 0 > set of cold events
2: L[] > list of number of edges in motif transition processes
3t Tactive < [] > list of active transition processes
4 A_; «— ([l > list of list of transition times
5: C « [0] » list of # of instances for each motif transition (initially 0)

6: for all (u, v, t) € E do

7: ce = TRUE > cold event flag
8: forall 7 € Tactive do
9: M « the last motif of 7~
10: tmax < the last timestamp of M
11: V’ « all the nodes in M
12: if size of M > lyax Or ¢ — tax > O then
13: Tactive-remove (7)) > 7 ends
14: L.add (number of edges in M)
15: else if {u, v} NV’ # 0 then
16: M — MU (u, v, t) > add the new event
17: CIM > M]=C[M-> M]+1
18: AL M — M’].add (£ — fyax)
19: Tactive-remove (7))
20: Factive-add (7 + M’) > update the list of active transitions
21: ce = FALSE
22: if ce = TRUE then
23: CE « CEU(u, v, t) > add to cold events
24: M — [(u, v, t)]
25: Tactive-add(M”) > update the set of active transitions
26: for all 7 € Tactive do
27: L.add (number of edges in the last motif of 7")
28: for all C([M — M’] € C do
29: P(M’|M) « calculate transition probability using C[M — M’]
30: AM — M’) « mean(1/A;[M — M’])
31: P(M — S)=1-Y(P(M'|M))
32: P « list of P
33: A « listof A
34: Kcg, Tcr < GET DEGREES AND TIMESTAMPS (CE)
35: u «mean (L)
36: return Kcg, Tcg, P, A, p

takes constant time as there are a fixed number of transition types.

Therefore, the time complexity of Algorithm 2 is O(|E| - |CE]| %)
In total, time complexity of MTM becomes O(|E| - |CE| l“i‘"‘fii(s) + |E|).

Note that in practice, the time window Inax - 6 is 1,000 to 16,000
times smaller than the entire timespan of the network, |T|, and the
fraction of cold events is less than 4.5% of all events. MTM requires
constant space to store the transition properties, and |7active| is @
constant at each step. Therefore, the space complexity of MTM is
O(ICE| + |E]) = O(|E]).

5 EXPERIMENTS

In this section, we perform experiments to evaluate our model and
compare its performance against several baseline models on vari-
ous real-world networks. We first investigate the motif transition
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Figure 6: The impact of the transition size limit (/n.«) and the tran-
sition time limit (5). Figure 6a gives the fraction of the cold events
in the input graph. Figure 6b shows the total number of transition
types identified in the real-world network (straight lines) and all
possible types of transitions (dashed line).

properties for different Imax and § values. Then we evaluate the
performance of MTM in three aspects: (1) the ability of preserv-
ing the global statistics of the original input graph, (2) the ability
of preserving the temporal motifs structures in the original input
graph, and (3) and the scalability with respect to the size of the
input graph and the model parameters.

5.1 Setup

All experiments are performed on a Linux operating system run-
ning on a machine with Intel(R) Xeon(R) Gold 6130 CPU proces-
sor at 2.10 GHz with 128 GB memory. We also use NVIDIA V100
16GB GPU to run one of the baseline methods (TagGen model [48]).
We implemented MTM in C++. The code is available at https:
//github.com/erdemUB/KDD23-MTM.

5.1.1 Datasets. We evaluate MTM on several real-world temporal
networks from various domains, including CollegeMsg, Email-EU,
Email-EUx, FBWall, SuperUser, and StackOverflow. The details
and statistics are given in Appendix B.

5.1.2  Baselines. Different from the previous works that model the
static motifs in the snapshots of a temporal network [44], our study
focuses on truly temporal networks where each event has a unique
timestamp. For this purpose, we select two two baseline models,
TASBM [34] and STM [36], which process the temporal networks
in their original forms. In addition, we consider the TagGen [48], a
deep generative framework that uses temporal random walks.

We use the implementation of TASBM! (in C++) and STM? (in
Apache Spark 2.3.0, GraphFrame 0.7.0, and Scala 2.11.8) provided by
the authors. We set the number of time windows to 10 for TASBM
as suggested by the paper. We set « = 1 for STM, as we do not
assume to have domain knowledge of the input graphs. Note that
TagGen considers temporal networks as a sequence of snapshots
by degrading the resolution of the original data. Based on the ex-
periment setups described in the TagGen paper, we convert the
CollegeMsg to 28 snapshots and the Email-EU* to 26 snapshots,
while the original data has 58157 and 31750 unique timestamps re-
spectively. We use the available implementation of TagGen® which
creates the graph as a |V| X |V| X |T| tensor. As the implementation

Thttps://github.com/aporter468/motifsanalyticalmodel
https://github.com/temporal-graphs/STM
Shttps://github.com/davidchouzdw/TagGen
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Figure 7: Comparison of how the models preserve the global graph statistics. For each graph statistic, we show the ratio of the synthetic
networks to the original input graphs. The horizontal dashed line indicates the value of the input graph (ratio=1). The TagGen does not
generate results for SMS-A and FBWall because both datasets have more than 40K nodes which requires more than 384GB memory for allocation.
It also gives networks with very low timespan and mean IET as it generates output graph as a few snapshots, which is why the red bars are

not visible in (f), (g), and (h).

requires 384GB memory for an input graph with 40K nodes and
30 snapshots, we cannot execute the TagGen model on the other
datasets with larger size.

5.2 Impact of Model Parameters

We first investigate the impact of the model parameters, lnax and
. In particular, we compare the number of cold events and the
number of transition types using different parameters. Figure 6
shows the results for Email-EU, and we observe similar patterns
in other datasets. Using a larger Imax and § allows more hot events
to be added to the transitions, which leads to less cold events, as
shown in Figure 6a. The decrease in the number of cold events
slows down as the [jh,x and  increase. The overall number of the
cold events is small compared to the total number of events in the
data, ranging from 3.5% to 4.5%. As the transition size limit (Imax)
increases, the possible types of transitions increases exponentially,
as shown in Figure 6b. However, we do not identify many higher-
order transitions in the real-world networks when using a large
Imax value. For example, there are more than 466K types of possible
T (M f —>M]§) transitions, but we only identify 48K in the Email-EU
data. Changing the transition time limit, §, does not have a strong
impact on the total number of transition types. Based on our obser-
vations, we set Ihax = 4 and § = 1 hour as we achieve less benefits
for larger parameters.

5.3 Preserving Global Graph Properties

Here we examine how well the MTM preserves the general graph
statistics. For each dataset we generate 10 synthetic networks using
the TASBM, STM, and MTM, and take the average values for each
model. While each generated output is a completely different tem-
poral graph, overall we do not observe significant variance between
synthetic graphs generated by the same model. Inspired by the pre-
vious models [34, 36, 48], we evaluate four structural global graph
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metrics: the number of edges, the mean degree (sum of in- and out-
degree), the number of connected components (N-Components),
and the size of the largest connected components (LCC). Besides, we
consider four temporal graph statistics: the number of events, the
entire timespan of the network, the mean inter-event time, and the
maximum number of events on an edge. These metrics are also ex-
amined in the previous studies on temporal networks [18, 28, 29, 39].
Figure 7 presents the ratio of synthetic graph statistics (bars) to
the input graphs (dashed red line). As mentioned in the previous
section, the TagGen model does not apply to SMS-A and FBWall
which has more than 40k nodes.

Overall, MTM performs the best on preserving the global graph
statistics of the input graphs. Except the number of components
and the maximum events per edge metrics, MTM gives synthetic
networks with less than 5% difference than the original graph.
TASBM and STM yield synthetic networks with 2 to 8 times more
edges than the original graphs, whereas the TagGen gives 50%
less edges and degrees for the CollegeMsg data. While our model
gives more accurate number of components than TASBM and STM,
the TagGen performs the best. We also observe that STM tends to
overamplify the size of the largest connected component.

Regarding the temporal graph statistics, MTM yields synthetic
networks with more accurate characteristics than the baseline mod-
els. The error of the mean IET (inter-event time) is less than 20% for
MTM. Although all the models perform poor in preserving the max-
imum number of events on edges, MTM gives synthetic networks
with maximum events on edge significantly closer to the original
graph. The reason is that TASBM generates events between two
nodes purely based on the activity level and the arrival rates, with-
out considering the correlations between the events on the same
edge. STM only captures the repetitions of events through 0101
motifs. TagGen processes the original data as snapshot sequences,
thus cannot capture the temporal characteristics. Our model, MTM,
on the other hand, considers the complete motif spectrum under
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the given event limits, which enables to capture the repetitions in
any step of the transition process.

We also examine the performance of certain distributions us-
ing the Kolmogorov-Smirnov (KS) test. In particular, we consider
the in-degree, out-degree, inter-event time (IET), and timestamp
distributions, and calculate the two sample KS test between the
distributions in the original data and in the synthetic networks.
Table 1 shows the average KS statistics (lower is better). We ob-
serve that MTM consistently outperforms the baseline models for
all distributions over all datasets, except the IET of SMS-A.

5.4 Preserving Local Temporal Motif Statistics

In this part, we evaluate how well the MTM preserves the temporal
motif statistics in the real-world networks compare to the baselines.
For each dataset, we generate 10 synthetic networks using MTM
(with oy = 4 and § = 1 hour) and the baseline models. We
exclude TagGen model here because it generates output graphs as
a sequence of static snapshots which does not contain temporal
motif structures. We consider the inter-event time constraint A¢ for
counting temporal motifs, which requires that the time difference
between each pair of consecutive events in the motif is less than
Ac. Note that using a larger Ac threshold allows to discover more
temporal motifs. However, a large Ac has less power to control the
relevance between consecutive events in the motif, and increases
the computation cost. Given that the mean inter-event time in
all datasets is less than 600 seconds (see Table 5), we set A¢c =1
hour and compute the counts of all 2-event, 3-event, and 4-event
temporal motifs. We compare the number of motifs in the synthetic
networks to the original input. We measure the difference by the
mean squared relative error (MSRE),

r

1
MSRE = ~ Zl:

where [{Mg;, }| is the number of motif instances identified in the
i-th generated synthetic network, |{Mriginal }| is the number of
motif instances in the original network, and r = 10 is the number
of synthetic networks generated.

I{MGi}l - |{Moriginal}| z
H{Mg, } |

Table 1: Kolmogorov-Smirnov (KS) statistics to compare the
distributions in original and synthetic networks (lower is better).

Data Model |In-degree|Out-degree| IET|Timestamp
TASBM 0.311 0.269]| 0.435 1.000
CollegeMsg|STM 0.261 0.398| 0.525 1.000
TagGen 0.224 0.283| 0.984 1.000
MTM 0.075 0.195(0.096 0.078
TASBM 0.918 0.925] 0.408 0.019
Email-Eu* |STM 0.722 0.732] 0.242 0.480
TagGen 0.463 0.463| 0.736 1.000
MTM 0.113 0.080(0.121 0.011
TASBM 0.687 0.631]0.123 0.929
SMS-A STM 0.668 0.653] 0.362 0.067
MTM 0.096 0.225| 0.168 0.003
TASBM 0.231 0.202| 0.445 1.000
FBWall STM 0.431 0.429| 0.513 1.000
MTM 0.030 0.054|0.028 0.008
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Table 2: The MSRE results for temporal motif counts.

Data Model | 2-event| 3-event| 4-event
TASBM| 41.916| 1214.121|17086.425
CollegeMsg|STM 296.274| 3268.675| 7704.935
MTM 0.004 0.001 0.035
TASBM 0.634 2.885 5.852
Email-Eu* |STM 2.457 6.333 6.046
MTM 0.070 0.152 0.230
TASBM 8.946 58.271| 152.080
SMS-A STM 515.802| 3655.160( 4420.164
MTM 0.0001 0.010 0.131
TASBM 3.605 34.467| 171.514
FBWall STM 1569.383(10691.863|11694.559
MTM 0.0001 0.021 0.467
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Figure 8: The MSRE results (color-coded) for all 3-node 3-event mo-
tifs in CollegeMsg network. Each block represents a type of motif;
the row shows the notation of the first two events and the column
shows the third event. Note that there are no 011220 motifs in the
original network thus it does not have a valid MSRE value.

5.4.1 Total temporal motif counts. Table 2 shows the MSRE results
based on the total number of 2-event, 3-event, and 4-event motifs.
MTM significantly outperforms the baseline models across all the
datasets. TASBM and STM cannot preserve the 4-event motifs in
CollegeMsg and FBWall. MTM generates synthetic networks with
very similar motif counts where the MSRE is less than 0.5. Note
that TASBM splits the input data into different time windows and
generate synthetic network for each slice independently. Therefore,
it achieves better MSRE for large datasets such as FBWall when
compared to STM. The MSRE of 3-event motifs is usually 10 times
larger than the 2-event motifs and the error is even larger for the
4-event motifs. Larger size motifs are more complex and difficult to
reproduce through generative models.

5.4.2  Motif spectrum counts. Next, we dive into the motif spec-
trums and measure the MSRE for each type of motifs. Figure 8
gives the MSRE results for all 3-node 3-event motifs in the syn-
thetic CollegeMsg networks. Overall, our model gives 5 to 10 times
smaller MSRE results than the baseline models. TASBM assigns
nodes to different activity groups and then generates the events
between groups with different arrival rates. Since it does not utilize
temporal motifs for graph generation, the MSRE are high for all
types of motifs. STM selects the triangle motifs (011202, 012012,
010221, etc.) as a part of the atomic motif patterns, hence it yields
smaller MSRE for those. However, it cannot reproduce the distribu-
tion of other types of temporal motifs, thus yields high MSRE for
2-event, 3-event, and 4-event motifs in total.
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Figure 9: The trend of the total number of temporal motifs over
time in the original input and the synthetic networks.

5.4.3 Distribution of motif counts over time. Lastly, we investigate
the distributions of the temporal motifs in the synthetic and real-
world networks over time. We split each dataset into 10 equal size
time windows, and generate synthetic networks using the events in
each interval. We calculate the total number of 2-event, 3-event, and
4-event motifs in each time window and show the trends in Figure 9
and Figure 12 of Appendix D. Our model accurately simulates the
trends in temporal motif counts over the time. The baseline models
capture the trends to some extent but do not fit well to the actual
numbers of temporal motifs, especially for the time windows with
less counts of temporal motifs. For example, the last time window
of the CollegeMsg network has only 548 events (1% of the entire
data), but still contains a significant number of temporal motifs.
The generative power of the baseline models degrades significantly
in this window, especially for the STM which does not generate
any 3-event and 4-event motifs. Our model is robust to the changes
in event density over time.

5.5 Runtime Analysis

Here we examine the runtime performance of the MTM. We first
compare our model with baselines on all datasets. Note that we use
a GPU to run TagGen model. Table 3 shows the average runtime of
the 10 experiments. We also give the runtime for motif counting to
show how a hypothetical model that counts motifs would compare.
Our model takes significantly less time when compared to the
baselines. The runtime of both baseline models increases drastically
as the size of the input data increases. For larger datasets such as
the FBWall, our model is 391 and 84 times faster than the TASBM
and STM, respectively. In addition, our model is up to 231 times
faster than motif counting computation. This shows one of the
key benefits of our model: we do not explicitly count the temporal
motifs, instead we only compute the motif transition probabilities.

We also evaluate the runtime of MTM with respect to the two
model parameters, Imax and 8. We select two large datasets (Super

Table 3: The average runtime (seconds) for the generative models.
We also show the number of events (|E|) for each dataset.

Data Email-EUx|CollegeMsg| SMS-A[FBWall
|E| 43035 59835( 548182| 876933
TASBM 24.7 36.8(11454.7|22100.9
STM 146.6 870.2| 2565.1| 4745.9
TagGen 2147.4 15919.8 N/A N/A
Motif Counting 163.2 294.7(37957.7| 1565.7
MTM 2.5 2.8 163.9 56.5
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Figure 10: The average runtime of MTM with respect to the transi-
tion size limit /i,y (left) and the transition time limit § (right).

User and StackOverflow) with more than one million events, and
measure the average runtime for identifying motif transition prop-
erties (step 1) and simulating motif transitions (step 2), respectively.
To explore the impact of Inax, we set & = 1 hour and change Imax
from 2 to 6. Similarly, we set Ijax = 4 and calculate the average
runtime with § = [0.5,1, 2,4, 8, 12, 24] hours. Figure 10 shows the
results. We observe that the runtimes increase gradually as the
two parameters increase. However, the increase is less steep when
Imax > 4 and § > 8. One possible reason is that the higher-order
temporal motifs are less common in real world networks, hence the
additional cost of identifying motif transitions becomes less as the
transition limits increase. Another reason is that larger Imax and §
values allow more events to be added to the transition processes.
As a result, the number of cold events decreases, so as the number
of active transition processes at each time step. This reduces the
cost of identifying temporal motif transitions.

6 CONCLUSION

In this paper, we propose the MTM model to generate a temporal
network that preserves the global and local features of an input
graph. Our model first calculates five motif transition properties
from the input graph, and then generates the synthetic networks
by simulating the motif transition processes. We evaluate the per-
formance of our model on seven datasets from various domains.
The experimental results show that our model is able to preserve
the structural and temporal characteristics of the input graph, such
as the size of the network, the average in- and out-degree, and the
mean inter-event time. Our model shows superior performance on
reproducing the temporal motif spectrums, even for the higher-
order temporal motifs in large networks. Last, but not least, our
model 117 times faster (on average) than the baselines.

One potential opportunity for future research is developing the
real-world applications of the motif transition models, such as gen-
erating temporal network with specified motif spectrums or detect-
ing structural and temporal anomalies. Another possible direction
is to consider other distributions to model the motif transition times,
such as the temporal hawk process [9] and self-exciting cascading
Poisson process [28]. It would also be interesting to explore other
graph characteristics, such as the time-respecting paths and com-
munity structures, in the generated synthetic graphs and compare
against the input network.
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A NOTATIONS

Table 4: Notation of symbols

| Symbol | Description |

G=(V,E) temporal graph

G =(V,E) the static projection of G

M ll temporal motif with [ events

T (M f —M Jl.“) motif transition from M ll to M jl.“

T(M'— ... —S)|motif transition process

P(M JZ.H |M f ) transition probability

MM f —M f +1y  ltransition rate

Ay transition time

CE set of cold events

KcEk degrees of cold events

Tck timestamps of cold events

u average number of edges in
motif transition processes

Imax transition size limit

6 transition time limit

[T| total number of transition types

|T| the timespan of the input graph

B DATA STATISTICS

Table 5: Statistics of the temporal network datasets.

Name Nodes|Edges|Events| Timespan (days) {mean IET (sec.)
CollegeMsg 1.90K| 20.3K| 59.8K 193 273.1
Email-EU 986 24.9K| 332K 803 209.0
Email-EU* 80| 1184| 43.0K 500 514.2
SMS-A 44.4K| 69.0K| 548K 338 53.3
FBWall 47.0K| 274K| 877K 1560 152.9
SuperUser 194K| 925K| 1.44M 2773 166.0
StackOverflow| 260K|4.15M| 6.35M 886 12.0

We use several real-world temporal networks from various do-
mains. Table 5 give the statistics. In addition to the number of nodes,
edges, and events, we give timespan and the mean inter-event time
(i.e., average of the time intervals between all pairs of consecutive
events) for each dataset. CollegeMsg [23] and SMS-A are phone
message networks, in which an event (u, v, t) represents a message
sent from u to v at time t. Email-EU is the emails between members
of a European research institution [23], in which an event (u, v, t)
indicates an email sent from person u to person v at time ¢ (we also
include the Email-EU* network used by [34], which contains 80
densely connected nodes in largest connected component of the
original Email-EU data). FBWall contains the posts between users
on Facebook in the New Orleans region [40], where an event (u, v, t)
denotes user u posted on the user v’s wall at time t. SuperUser and
StackOverflow are the interaction networks from stack exchange
websites [23], where an event (u, v, t) stands for user u posted an
answer/comment on user v’s question/answer at time ¢. The time
resolution of all the networks is one second.
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C ALL 3-EVENT MOTIFS

Here we list all 60 types of 3-event temporal motifs in Figure 11.
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Figure 11: All 60 types of 3-event motifs.

D ADDITIONAL RESULTS
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Figure 12: The trend of the total number of temporal motifs over
time in the original input and the synthetic networks.
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