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motifs as a stochastic process. Figure 1 gives an example where

a wedge motif can transition into two larger temporal motifs by

adding new events. Our model first calculates the transition prop-

erties from the input graph and then simulates the stochastic motif

transition processes based on the transition probabilities and tran-

sition rates. We compare the MTM against several state-of-the-art

temporal graph generative models on real-world networks from

various domains. We demonstrate that our model consistently out-

performs the baselines with respect to preserving various global

and local temporal graph statistics. Furthermore, our model is sig-

nificantly more efficient than the existing baselines.

Our key contributions can be summarized as follows:

• We propose the Motif Transition Model, MTM, to generate

a synthetic network through a stochastic process that accu-

rately captures the global graph statistics and the temporal

motif structures.

• We give algorithms to efficiently compute the motif transi-

tion properties and use those to generate the new graph. In

particular, we do not count the motifs in the process which

makes our model practical and scalable.

• Weperform a comprehensive evaluation of ourmodel against

several baselines on various real-world networks. MTM out-

performs the baselines in preserving the global graph charac-

teristics and local temporal motif features of the input graph.

MTM is also highly efficient and scalable to large networks.

2 RELATEDWORK

Here we briefly summarize the previous work on the generative

models for temporal networks and temporal network motifs.

2.1 Generative Models for Temporal Networks

Most of the previous studies on generative models for temporal

networks are derived from the extension of static graph generation

models [10, 12, 13]. Gauvin et al. [7] surveyed several random

reference models for temporal networks many of which extend

the Erdős-Renyi and configuration models to temporal networks.

One of the most commonly used static graph generative models

is the stochastic block model [2], which splits nodes into different

groups and then places edges between them according to their

categories. Several dynamic variants of the stochastic block model

are developed [8, 11, 19, 30, 41ś43, 45], in which the nodes can

switch classes over time. Recently, Porter et al. [34] developed the

temporal activity state block model TASBM to generate a temporal

network with temporal motif structures. They divide the temporal

graph into multiple time windows and compute the average in-

event and out-event arrival rates for each node. Based on the event

arrival rates between the activity groups, the model generates the

events between each pair of nodes by a Poisson draw.

Inspired by the success of deep graph generative models, Zhou

et al. [48] proposed the TagGen model to generate temporal graphs.

They use a bi-level self-attention mechanism and assemble the

temporal random walk sequences to form a temporal interaction

network. However, their model converts the temporal graph into

a few snapshots, hence the fine-grained timestamp information is

lost during this process. The prohibitive time and space complexity

also make their model impractical for large scale. Another line of

work used higher-order and variable-order Markov chains to model

the temporal sequence of edges in multiple k-th order pathways

[33, 37]. Most existing temporal graph generative models do not

consider the higher-order structures except temporal walks and

pathways. However, many real-world events do not occur in tra-

versal patterns, such as repetitive monthly auto-payment activities,

which cannot be reproduced by the random walks or higher-order

pathways. In our work, we propose an effective solution to model

any potential correlation between two events that are topologically

and temporally close to each other. Our model is also practical for

large-scale networks.

2.2 Temporal Motifs

Higher-order temporal subgraph structures, i.e., temporal motifs,

are an important property of temporal networks. Several approaches

have been proposed to model temporal motifs [14, 21, 26, 32, 38].

Applications and use cases for temporal motifs are numerous. Jin

et al. [15] proposed trend motifs to investigate the financial and

protein networks with dynamic node weights. Zhao et al. [47] de-

vised communication motifs to study the information propagation

in human communication networks, such as call detail records

(CDR) and Facebook wall post interactions. Zhang et al. [46] in-

troduced motif-driven analysis for human interactions including

phone messages, face-to-face interactions, and sexual contacts. Liu

et al. studied patent oppositions and collaborations [27] and finan-

cial transaction networks [25] by using temporal motifs.

Regarding the temporal graph generative models, Purohit et al.

used temporal motifs to propose Structural Temporal Modeling

(STM) process to generate temporal networks [36]. They select a set

of easy-to-compute atomic motifs, such as wedges, triangles, and

squares, and for each type of atomic motif, the model calculates the

independent motif frequencies (ITeM) which prohibits the overlaps

between motifs [35]. Nodes and motifs in the output graph are

generated based on the ITeM frequency and a preferential attach-

ment function. Similarly, Zeno et al. [44] proposed the DYMOND

model to generate dynamic networks. They consider three types

of undirected static motifs (one edge, wedge, and triangle), and

place motifs on active nodes with different arrival rates. However,

they convert the temporal network into a sequence of snapshots

and only model static motifs which do not contain any timestamp

information. One limitation of these models is that they only se-

lect a limited set of temporal motifs (mostly wedges and triangles),

which are not sufficient to capture more complex subgraph struc-

tures. Another drawback is that they rely on counting the number

of temporal motifs and do not consider the correlations between

temporal motifs of different sizes. Also, the complexity of counting

temporal motifs increases exponentially as the motif size increases,

thus most existing studies does not consider temporal motifs with

more than three events. In our work, we use the full spectrum of

temporal motifs and utilize the transitions among them to generate

realistic synthetic temporal networksÐwe also do not count the

motifs in the process which makes our model practical and scalable.

3 BACKGROUND

Here we provide the formal definition of temporal motifs, and

introduce a notation method to denote different types of temporal

motifs. The notations and symbols are summarized in Table 4 of

Appendix A.
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