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THE MODULI SPACE OF MARKED GENERALIZED CUSPS IN
REAL PROJECTIVE MANIFOLDS

SAMUEL A. BALLAS, DARYL COOPER, AND ARIELLE LEITNER

ABSTRACT. In this paper, a generalized cusp is a properly convex manifold
with strictly convex boundary that is diffeomorphic to M X [0, 00) where M
is a closed Euclidean manifold. These are classified by Ballas, Cooper, and
Leitner [J. Topol. 13 (2020), pp. 1455-1496]. The marked moduli space is
homeomorphic to a subspace of the space of conjugacy classes of representa-
tions of w1 M. It has one description as a generalization of a trace-variety,
and another description involving weight data that is similar to that used to
describe semi-simple Lie groups. It is also a bundle over the space of Euclidean
similarity (conformally flat) structures on M, and the fiber is a closed cone in
the space of cubic differentials. For 3-dimensional orientable generalized cusps,
the fiber is homeomorphic to a cone on a solid torus.

INTRODUCTION

A generalized cusp is a properly-convex real-projective manifold, C, such that C'
is diffeomorphic to [0,1) x OC, and m;C is virtually-nilpotent, and dC' contains no
line segment.

From now on, in this paper, we use the term generalized cusp in the narrow
sense that JC' is also compact. It was shown in 2, (0.7)] this implies that = C is
virtually abelian, and that C has a natural affine structure that is a stiffening of
the projective structure.

Let A™ denote affine space, and Aff(n) the affine group. Then C' = Q/p(mC)
where ) C A™ is a non-compact, convex, closed set, bounded by a strictly-convex
hypersurface that covers 9C, and p : m1C — Aff(n) is the holonomy.

The moduli space of marked generalized cusps turns out to be a beautiful object
with interesting structure that admits several different descriptions. We concentrate
on the case that 0C = R"~!/Z"~! then the holonomy p extends over V = R"~ 1
In this case the moduli space 7, consists of all conjugacy classes of monomorphisms
of R"! into Aff(n) such that the orbit of a generic point is a properly-embedded,
strictly-convex hypersurface. It follows from (.2]) that

Theorem 0.1. 7, = P x F where P C S*V s the space of unimodular, positive-
definite quadratic forms on V, and

F={(v, - ,o0)€V": 3Jw>0 Vi#j (v,v;)=—-w}/E,

where %, permutes the summands of V™.

Received by the editors March 6, 2021.

2020 Mathematics Subject Classification. Primary 22-02, 51-02, 57-02.

The first author was partially supported by the NSF grant DMS-1709097. The second author
was partially supported by the University of Sydney Mathematics Research Institute (SMRI). The
third author was partially supported by ISF grant 704/08.

(©2022 American Mathematical Society

111


https://www.ams.org/ecgd/
https://www.ams.org/ecgd/
https://doi.org/10.1090/ecgd/367

112 S. A. BALLAS, ET AL.

Thus one may view a generalized cusp as a Euclidean manifold with extra struc-
ture obtained by a deformation of a standard cusp i.e. equivalent to one in a
hyperbolic manifold. The bundle structure on the moduli space admits several
descriptions.

A generalized cusp is determined up to equivalence by the complete invariant
(x, [B]) comprising the character x : V' — R of p, together with the projective class
of a positive definite quadratic form 5 on V.

A generalized cusp is also determined by [3] together with the Lie algebra weights
& 'V — R of p that are arbitrary subject to a simple geometric constraint (II).
The weights may be regarded as harmonic 1-forms representing elements of H* (9C).
These 1-forms determine transversally measured foliations on dC which, together
with the similarity structure, determine C. For non-diagonalizable holonomy, the
cohomology classes are arbitrary subject to being pairwise orthogonal with respect
to the dual of .

The next description is differential-geometric: as the projective class of the sum
of a quadratic and a cubic differential both defined on 9C'. This exhibits 7,, as the
product of the space of flat conformal structures on 9C' times a cone in the space
of cubic polynomials on V. The second factor is a closed cone in S* V' that is not a
manifold. Points in the interior of this cone correspond to diagonalizable holonomy.
The cone point corresponds to a standard cusp. The cubic is a weighted sum of the
cubes of the weights, and it is harmonic if and only if 92 is an affine sphere.

For three-manifolds this data is encoded by (w,r, h) € C3 subject to Imw > 0
and |r| < 3|h|. Here w determines the conformal structure on 9C, and r,h are
respectively the radial and harmonic components of the cubic polynomial. The
generalized cusp is standard, with cusp shape w, if and only if »r = h = 0.

1. SUMMARY OF RESULTS

Given 1 € Hom(R"™,R) with 1(e1) > ¥(e2) > -+ > 9(ey) > 0 a generalized cusp
Lie group G(¢) C Aff(n) was defined in [2] and generalized cusps correspond to
lattices in G(1). Two generalized cusps are equivalent if they deformation-retract
to affinely isomorphic cusps.

Every generalized cusp is equivalent to a homogeneous one for which G(v¢) acts
transitively on 9S). For these, there is a natural underlying Euclidean metric on
0C. This metric is covered by one on OC = 09) C A™ that is conformally equivalent
to the second fundamental form, and is scaled so that volume(9C) = 1. It follows
from the Bieberbach theorems that C has a finite cover by a generalized cusp with
boundary that is a torus 7"~ ! = R"~!/Z"~1. These are called torus cusps and we
concentrate on them. The general case reduces to this by (L.6).

Set V. =R""!. Tt is shown in [10] that G(¢)) contains a unique closed subgroup
Tr(y)) = V called the translation subgroup that acts simply transitively on 0.
Moreover the image of the holonomy p : Z"~1 — Tr(1)) is a lattice. Thus p extends
to an isomorphism p : V' — Tr(v) called the extended holonomy.

The moduli space of equivalence classes of marked generalized cusps diffeomor-
phic to C' is denoted T(C) and 7, := T (T™! x [0,00)). It consists of equivalence
classes of developing maps, see (4.4). The map that sends a point in 7(C) to
the conjugacy class of the extended holonomy identifies 7 (C') with the subspace
Rep(C) of the quotient space Hom(V, Aff(n))/ Aff(n) consisting of conjugacy classes
of isomorphisms onto translation subgroups, see (4.5). Fenchel-Nielsen coordinates
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provide a lift of Teichmuller space into the representation variety. However, we do
not know if it is possible to lift 7(C) into Hom(m,C, Aff(n)).

Let A,, be the closed Weyl chamber of SL(n + 1,R). There is a family of rep-
resentations parameterized by A, x SLV. Theorem [46] says the holonomy map
identifies 7, with the quotient of A,, x SL'V where (A, A) is identified to (A, A")
whenever A=A’ lies in a certain orthogonal group that depends on .

The Euclidean structure on 9C pulls back to give a unimodular positive definite
quadratic form 3, on V. The character x, : V — R is given by x,(v) = trace(pv).
The complete invariant of p is n(p) = (xp, [Bp]).- It plays the role in our theory
that the character plays in the theory of semi-simple representations, namely two
representations have the same complete invariant if and only if they are conjugate.
The trace-variety x(V) is the set of all characters. Let X,, be the set of all n(p)
topologized as a subspace of (V) x PS* V.

Theorem 1.1. The complete invariant n : T, — X,, is a homeomorphism.

In [11] Dold studies the symmetric product SP™ X = (T]} X) /S, of a topological
space X, where the symmetric group .S,, permutes factors. When X =V and n > 1,
this is distinct from the vector space, S™ V', of symmetric tensors of degree n. The
linear part of the holonomy p has n weights exp&; (counted with multiplicity)
where & € V*, and these give a point £, = [£1,--- ,&,] € SP" V*. The following
description of the moduli space is reminiscent of the classification of semi-simple
Lie groups via roots. Let P C S*V be the space of unimodular positive definite
quadratic forms on V. Define R, to be the subspace of all ([&1, - ,&,],8) in
SP™(V*) x P satisfying the weights equation

(1) w20 Vit (&), =-w

where (-, -) . is the inner product on V* dual to 8. A geometrical interpretation of
this condition is given in (20)).

Theorem 1.2. The weight data v : T,, — R, is given by v(p) = ({,,5,) and is a
homeomorphism, and R,, is a semi-algebraic set. Moreover generalized cusps with
non-diagonalizable holonomy form the subspace of R, where w = 0.

Let F,, = {[v1,---,v,] € SP"V : 3w >0 Vi#j (v,v) =—w} and
U, C SLV be the group of upper triangular unipotent matrices. There is a bundle
isomorphism

0:U, xF, =R, given by G(A’ ['Ulv T 7vn]) = ([51; T ,fn],AtA)
where & (v) = (v;, Av).

The type of p is the number of non-trivial distinct weights of p, and can be any
integer 0 < t < n. It equals the number of non-zero coordinates of 1) and also of
&,. There is an affine projection 7 : @ — (0,00)*. Each fiber has the geometry
of horoball in H"~t. The geometry transverse to the fibers is Hex geometry: the
projective geometry of an open simplex, see [2| Section 1.5].

The similarity structure is part of a certain kind of geometric structure on 0C,
called a cusp geometry, that uniquely determines the cusp up to equivalence. The
extra structure consists of t transversally measured codimension-1 foliations with
flat leaves. The foliations are the preimages of foliations of (0,00)* by coordinate

hyperplanes. When t < n then these foliations are arbitrary, subject to being
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pairwise orthogonal. The transverse measures are harmonic 1-forms representing
the cohomology classes &; given by the weights.

The cusp geometry is also encoded by a polynomial, J, called the shape invariant,
defined up to scaling, that is the sum of the quadratic, 8,, and a cubic. This gives an
embedding of the marked moduli space into the vector space of such polynomials.
Projection onto the quadratic term exhibits the moduli space as a bundle over
P. The fiber is a cone in the space of cubic differentials. The cubic is a linear
combination of the cubes of the weights (39]).

This is reminiscent of the result of Hitchin [15], Labourie [17], and Loftin [19],
that the moduli space of properly convex structures on a closed surface is a vector
bundle over the space of conformal structures, with fiber the space of holomorphic
cubic differentials. However, in general the cubic differentials for generalized cusps
are not holomorphic.

The polynomial J is defined as follows. Choose a basepoint b € 92 C R™ and
an affine map 7 : R — R so that 7(b) = 0 and 7(int Q) > 0. The hyperplane
H = 771(0) is then tangent to Q at b. The hypersurface 9Q is parameterized by
the function p : V- — 0Q given by the orbit, u(v) = p(v)(b) of b. The function
h = 7o p can be thought of as the height of points in 92 above H. However 0f)
is not the graph of h, see (6.16). Then J : V — R is the 3-Jet of h, normalized so
the quadratic term is unimodular. The cubic is zero if and only if C is equivalent
to a cusp in a hyperbolic manifold. This is similar to [20, Thm 4.5], that an affine
hypersurface is quadratic if and only if a certain cubic differential form vanishes
identically. There is a subspace J, C P(S*V @ S* V) defined in (6.3) and

Theorem 1.3. Ifn > 3 then the shape invariant J : T, = Jp is a homeomorphism.
Moreover, the projection w : J, — P is a trivial bundle with fiber homeomorphic to
a closed cone in S3V.

The cubic is harmonic if and only if 0f) is an affine sphere. The moduli space
T, is stratified by type. The stratum for each type is a manifold whose dimension
increases with type, see Proposition 4.81 The frontier of the stratum of type t
consists of the union of strata of smaller type. The largest type corresponds to
diagonalizable holonomy. In particular:

Corollary 1.4. Every generalized cusp is a geometric limit of diagonalizable cusps.
It seems hard to show this directly. Another consequence is:

Theorem 1.5. 7, is contractible, of dimension k = n? —n, and is manifold if and
only if n = 2.

Suppose M = E"/G is a closed Euclidean manifold with holonomy p : 71 M —
Isom(E™). Using the decomposition Isom(E™) = O(n) x R™ gives a surjection
R : Isom(E™) — O(n) called the rotational part. By the Bieberbach theorems [3],
[6] M has a finite cover by a torus T" = E"/H where H is a lattice in R™. Thus
Ro p(mM) is a finite subgroup F C O(n) and we may choose H = ker R o p.
Applying this to the generalized cusp C' = M x [0, 00) shows that there is a finite
cover p : C—C corresponding to H, and C=T" x [0, 00).

This cover induces a map p* : T(C) — T(C) that sends an affine structure on
C to the structure on C that covers it. This structure on C is preserved by the
action of F' by covering transformations. Using the identification of a structure
with its holonomy gives an algebraic formulation. Since H is an abelian normal
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subgroup of G, the action of G on H by conjugation determines a homomorphism
6 : F — Aut(H). Define

Rep(C;60) = {[p] € Rep(C):V f € F p~po(6f)}
where ~ denotes conjugate representations.
Theorem 1.6. The map holo p* : T(C) — Rep(é; 0) is a homeomorphism.

A generalized cusp C' in a 3-manifold is determined by three complex numbers
(w, h,r) subject to Imw > 0 and |¢| < 3|h|. The conformal structure on 9C is
C/(Z®Zw). The parameter w was used by Thurston to describe cusps in hyperbolic
3-manifolds. There is a unique upper-triangular matrix A = A,, € SL(2,R) with
positive eigenvalues such that the Mobius transformation « corresponding to A
satisfies a(w) = 4. Then the quadratic term in J is g, = A'A € S R2,

After identifying R? = C a cubic p € S*R? is uniquely expressible as p =
Re(hz3) + Re(rz|z|?) for some h,r € C. The first term is harmonic and the second
is called radial.

Theorem 1.7. There is a homeomorphism
0: T3 — {(w,h,r) € C*: Im(w) >0, |r| <3|h|}

If ©(x) = (w, h,r) then J(x) = [qu + ¢| with g, A as above, and ¢ = Re(hz® +
rz|z|?) o Ay.

This result determines exactly which cubic differentials appear. One may regard
the generalized cusp for (w,h,r) as a deformation of the hyperbolic cusp corre-
sponding to (w,0,0). The generalized cusps with a fixed conformal structure, w,
on the boundary are parameterized by a point in {(h,7) € C*: |r| < 3|h|}. This
is a cone on a solid torus. The cubic is harmonic if and only if » = 0, in which
case either the cusp holonomy is conjugate in GL(4,R) into a unipotent subgroup
of O(3,1) or into the diagonal subgroup of Aff(R?) where the determinant is one.

We assume the reader is familiar with the main results and definitions up to the
end of Section 1 from [2]. Each facet of the closed Weyl chamber A,, C R™ param-
eterizes those translation groups Tr(¢) of a fixed type. The main new ingredient,
B.4), is a connected set /Nln of representations that give conjugates of generalized
cusps of all types.

The set A, is obtained by a kind of iterated blowup of A, in the sense of al-
gebraic geometry, and each fiber of each blowup consists of pairwise conjugate
representations. There seems to be no obvious way to replace Zn by a continuous
family containing only one representative of each conjugacy class. The subspace
of A, consisting of cusps of type t is the interior of a compact manifold, M, with
boundary. The direction that a sequence p,, € int(M) C gn converges to a point
p € OM determines a point in En that is some conjugate of some representation
corresponding to p.

The paper is organized as follows. In Section [2l we review the translation groups
Tr(v) and show that a marked translation group is uniquely determined by the com-
plete invariant. In Section [3] we introduce a connected space /Nln that continuously
parameterizes translation groups of all types. In Section 4] we prove the complete
invariant provides an embedding of the marked moduli space 7,. In Section [G] we
obtain the characterization (Il) of the weights of marked translation groups. In
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Section [6] we show that a marked translation group is determined by the sum of a
quadratic and a cubic differential. In Section [l we compute 73, the marked mod-
uli space for 3-manifolds. Various routine computational proofs were moved into
Section [§] to avoid disrupting the flow of ideas. Section[dis a summary of notation.

The proof that the shape invariant determines a marked translation group that
is unique up to conjugacy is a rather long and technical computation in Lemma [6.9]
that is an ad hoc algebraic argument. Perhaps there is a better way to establish
this with some differential geometry. The various descriptions of the moduli space
only gradually emerged as we stumbled upon various clues. In particular, the new
parameters in Section [2] were discovered by a very circuitous route.

2. THE COMPLETE INVARIANT

Throughout V = R" ! denotes the extended domain of the holonomy of a marked
generalized cusp, and {eq, -, ey} is the standard basis of R¥, and {e},--- ,e}} is
the dual basis of the dual vector space. If X C R™ then GL(X) C GL(n,R) is the
subgroup that preserves X. Affine space is denoted A™ := R" x 1 C R™*! and the
affine group is Aff(n) := GL(A™) C GL(n+1,R). If X C A" then Aff(X) C Aff(n)
is the subgroup that preserves X. What follows, up to Theorem [2.5] is from [2].

Definition 2.1. Suppose 2 C A" is a closed, convex, subset bounded by a non-
compact, properly embedded, strictly convex hypersurface 992. Also suppose Aff(2)
contains a subgroup 7' = T'(2) 2 (V, +) that acts simply-transitively on 9€2. Then
T is called a translation group and the group G(2) C Aff(Q2) that preserves each
T-orbit is called a cusp Lie group.

The subgroup T is unique. The T-orbit of a point in €2 is called a horosphere.
Horospheres are smooth, strictly-convex hypersurfaces that foliate Q. In particular
0N is a horosphere. Moreover G() = Aff(Q2) unless Q = H", in which case G(2) is
conjugate into a subgroup PO(n,1). A generalized cusp is an affine manifold Q/T
where I' C G(f2) is a torsion-free lattice. Choose a basepoint b € 9. The subgroup
0O(0,b) C G(Q) that fixes b is called a cusp orthogonal group, and is compact, and
G(Q) = O(Q,b) x T. Different notation was used for this in [2, Definition 1.45]. We
focus on torus cusps. Then the holonomy is an isomorphism ¢’ : Z»~! = T C T.
The extended holonomy is the extension of this homomorphism to an isomorphism
0:V —=>T.

Definition 2.2. A marked translation group is an isomorphism 6 : V' — T where
T C Aff(n) is a translation group.

Given a marked translation group 6, there is a direct sum decomposition
(2) V=DaU

where 6(U) is the subgroup of unipotent elements, and 6(D) is the subgroup of
elements for which the largest Jordan block has size 2. Thus (D) contains the
diagonalizable subgroup. In the notation of [2], (1.41)] U = P(¢) and D = T5.

Definition 2.3. The type t : R™ — Z, the unipotent rank u : R® — Z and the
rank r : R"™ — 7Z are defined for x = (x1,--- ,2,) by

t(z) = |{i: z; #0} r(z) = min(t(z),n — 1) uz)+r(z)=n-1
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These functions are used in the context of two families of marked translation
groups that involve a parameter € R™ and for these, r(z) = dim D, and u(z) =
dim U, and t(z) is the number of non-constant weights of §. If ¢ : R™ — R is a
homomorphism we will often identify ¢ with (¢, - ,¢,) € R™ where 1; = 1 (e;).

Definition 2.4. The group Tr(y) = ¢, (V) is defined as follows.

Ap () = {1, ,¢bn): Vi, >0& Tt (; >0<i<t) }} (u=unordered)

Ifpe AL (V)UA,(P) set t =t(¢) andu=u(®) andr=r(y)). ft =0set E =10
and ¥~ = 0, otherwise define ¥~ € V* and E by

d)i(vh e avn—l) = _77[}(’01a e 7vn—170)a E= 1/}1:' Diag(vla e 7vr)
Define (y : V' — Aff(n) by (y(v) = exp fy(v) where fy(v) =

t<n-—1 t=n-1 t=n

F 0

0 veg1 -+ Vrgu ’e/f(v)

0o - 0 Upp1 E 0 0 E 0 0
. 00 v @] [0 v o

. : 0 0 0 0 0 0

0 --- 0 Vpigu

0 --- 0 0

Observe that r+u=mn—1.

Since all the eigenvalues are positive, ¢y : V' — Tr(¢) is an isomorphism, so
Tr(y) =2 R It follows from [2, Theorem 0.2], and we show below that (, is
conjugate to (y if and only if ¢ = ¢'. However Tr(¢)) and Tr(¢’) are conjugate
subgroups if and only if 1 = s’ for some s > 0.

Theorem 2.5.

(a) Tr(y) is a translation group.

(b) If s > 0 then (s = Gy o ((sLy) @ 1) where 1y, is the identity map on R*.
Suppose 6 : V — Aff(n) is a marked translation group; then

(c) 3¢ € A, (V) and 3 B € SLE(V) such that 0 is conjugate to Cy o B.

(d) 39" € A%(V) and 3 B" € SL(V) such that 6 is conjugate to (y o B'.

Proof. (b) The definition shows fsy (v, ,vn—1) = f(sV1,** ,SVp, Vpq1," ", Urtu)-

(a) Given a marked translation group p : V. — Aff(n) then, by [2, Theorem
0.1], there is ¢ € A, (¥) such that p(V) is conjugate into the group T'(v)) defined
in |2 Definition 1.32]. Moreover if ¢ # 0 we may choose ¢y = 1 by [2, Theorem
0.2(iii)] and then T'(¢p) = Tr(z)) as defined in (2.4). This proves (a).

It follows that p = (y o A for some A € GL(V). If r > 0 then there is s > 0
so that A = ((sI;) @ I,)B with B € SL*(V). Then p = sy 0 B by (b). Ifr =0
then ¢ = 0 and (p o (s1) is conjugate to {y. Thus in this case we may also choose
B e SLE(V).

To show 1 is unique, by [2, Theorem 0.2] ¢ is unique up to multiplication by
some s > 0. Suppose (y o B is conjugate to (s o B’. Then (y is conjugate
to (sy o (B'B71Y), and thus to ¢y o ((sI;) @ I,)B’B~!). By [2, Theorem 0.2(v)]
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(sly)®1u)B'B~! € O(E"1,%). By |2, (1.44)] this is a subgroup of the orthogonal
group, thus s = 1. This proves (c).

For (d), when n = 2 the result is easy, so assume n > 3 and det B = —1.
There are two coordinates 1;, 9,11 of ¢ that are either both zero or both non-zero.
Swapping columns i and i + 1 of B gives B’ € SL(V) and swapping ¢; and ;11
gives ¢’ € A%(¥). Then ¢y o B is conjugate to ¢y o B’ by swapping the ¢ and i +1
coordinates in R?*1. O

We regard the second symmetric power, S? V| as the vector space of homogeneous
polynomials 8 : V — R of degree two. The subspace P(V) C S?V consists of
positive definite forms and P(V') C P(V) is the subspace of unimodular forms. Let

: P(V) — P(V) be the projection

T, (8) = (det B)~ /("1

The notation 3 ~ ' means there is A > 0 with 8/ = A3. Given a marked trans-
lation group 6 : V' — Aff(n) the orbit map pgp @ V. — 0Q is the homeomorphism
defined by

(3) pop(v) = (6v) b

where b € 052 is some choice of basepoint. Since 9 is smooth and strictly convex,
there is a unique affine hyperplane H, C A™ with Hy N = b. There is an affine
map 7 : A" — R with 7(Hp) = 0 and 7(int 2) > 0. The height function

Tp

(4) haZTO,ugJ,:V—)R

is only defined up to multiplication by a positive real. Observe that 02 is not the
graph of hg, see (6.16). Note that if &’ is a different choice of basepoint, then there
is unique element A € T(Q) such that Ab = b'. In this case 7/ = 70 A™! is an affine
map such that 7/(Hy) = 0 and 7/(int 2) > 0. Furthermore, g = Ao ugp, and so
7' o pgy =T o pap. It follows that the height function is independent of the choice
of basepoint.

Since 0f2 is strictly convex one obtains positive definite quadratic forms

(5) B(6) =D*hg,  B(8) =7p(B(6)) € P(V)
After rescaling, the orbit map is an isometry from (V, 8) to 092 with the horosphere
metric [2, (2.14)]. The form f is only defined up to scaling. To emphasize this we
usually work with [§] € PP. However it is sometimes convenient to use the natural
identification P = PP. Then one must remember that preserving 3 only means 3
is preserved up to rescaling.

Writing v = Z?:_ll vie; and w; = (Op,p/0v;)p=0 € R™ then (u1,--- ,up—1) is a

basis of the tangent space Tj, 9Q = H,. We may use 7(z) = = det(uq, -+, up—1,)
and a height function is then given by
(6) ho(v) = £det(uq, -, Up—1, po,s(v) — b)

where the sign is chosen so that 7(€2) > 0.

The space Hom(V, Aff(n)) is given the weak topology. This coincides with the
Euclidean topology when it is realized as an algebraic subset of Euclidean space.
The space Hom(V, Aff(n))/ Aff(n) is the quotient space under the action of conju-
gacy. It is not Hausdorff.
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Definition 2.6. Rep(V) C Hom(V, Aff(n)) is the subspace of marked translation

groups, and Rep(V) = Rep(V)/ Aff(n) is the space of conjugacy classes with the
quotient topology.

In [d.4) we define T(V) as equivalence classes of developing maps and show it
is homeomorphic to Rep(V'). Various functions defined on Rep(V) in this section
can then be re-interpreted as functions on 7 (V).

Lemma 2.7. B : ﬁe\p/(V) — P(V) is smooth and covers a continuous map 3 :
Rep(V) — P(V).

Proof. By the discussion above 5 does not depend on the choice of basepoint b or
height function used above. Given a marked translation group 6 every choice of
basepoint b has orbit a convex hypersurface unless b lies in a projective subspace
preserved by 6. Thus in a neighborhood of 6 in f{é;)(V) a fixed choice of basepoint
b can be used for the orbit map. Then the function p : l?eE(V) x V — R given
by u(0,v) = pep(v) is smooth near (0,v). Equations B and (6l then imply hg is
smooth near 6, so B is smooth. It is clear that B (#) is invariant under conjugation of
f. Therefore B covers a map 3 : Rep(V)) — P(V) which is continuous by properties
of the quotient topology. O

The character of a homomorphism p: V — GL(n + 1,R) is x(p) : V — R given
by x(p) = traceop. The trace-variety, x(V'), is the set of characters of all such
homomorphisms. Hom(V, Aff,)) is a real algebraic variety, and x (V) is its image
under a polynomial map. Thus x (V) is a semi-algebraic set, and in particular is
homeomorphic to a subspace of Euclidean space.

By (2.5) a marked translation group is conjugate to an upper triangular group.
The character is not changed by conjugation. The character of an upper-triangular
representation is a function on V that is the sum of (n + 1) functions, each of
which is the exponential of an element of V*. Thus the subspace of x(V') consist-
ing of characters of marked translation groups is homeomorphic to a subspace of
SP™ v
Definition 2.8. Given a marked translation group 6 : V' — Aff(n) then

e The horosphere metric is the unimodular quadratic form 5(0) € P(V)
e The complete invariant is n(0) = (x(0), [5(6)]).

Also O(n(#)) C GL(V) is the subgroup that preserves both x(6) and [3(0)].

Lemma [2.14] implies O(n(#)) is a subgroup of the orthogonal group of § unless
t(d) = 0, in which case it is the group of Euclidean similarities fixing 0.

Proposition 2.9. The complete invariant 1 : Rep(V) = x(V) x P(S?V) is con-
tinuous.

Proof. Tt is well known that x is continuous, and S is continuous by (2.7). O

Definition 2.10. The complete invariant variety is X,, = Im(n). This is homeo-
morphic a subspace of Euclidean space.

A dual vector € € V* is a Lie-algebra weight of 8 : V. — GL(n+1,R), and exp of
is a weight of 8, if the weight space

V(9,¢) = ﬂ ker(f(v) — expo&(v)) # 0

veV
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Let (-,-)s be the inner product on V given by 5. Let 8* € S2V* denote the dual
quadratic form defined by £*(¢) = B(v) if ¢(x) = (v,z). Let (-,-)g~ be inner
product on V* given by 8*. Next we compute the complete invariant, the details
are in Section

Proposition 2.11. Given ¢ € AYX(V) the decomposition V.= D & U for ¢y is
orthogonal with respect to B((y). Set u = u(¢) and t = t(¢), then B((y) ~ B
where forv eV and t <n

wa + Z —2+u+2expwtvz>

1=t+1 =1

and fort =n

n—1 n—1 2 —
v) =Y vl + 1yt (Z zpivi) X(Gp)(v) =1+ Zexp $nvi) + exp < Z m)
i=1 =1 i=1
Moreover, when t < n then det 3’ = by ---1hy 192" and the non-zero Lie
algebra weights of Cy are {§ = Ype] 1 1 < i < t}, and their duals are an orthogonal
basis of D, and B*(&;) = 2 (det ﬁ’)fl/("fl) ¢t Also when t = n then det 8’ =
(CRER Tl SUIFE S

Theorem[2.16]shows that the complete invariant determines a marked translation
group up to conjugacy. Theorem [6.14] shows the same for the shape invariant. The
strategy is the same in both cases. One argument shows the invariant determines
the translation group up to conjugacy. A second discussion shows that the invariant
determines a basis of a lattice in this translation group by determining a coset of
0(0,b) in G(Q).

Corollary 2.12. Supposen > 3 and 0 : V — Aff(n) is a marked translation group.

Then 6 is conjugate to Cy o B for some 1 = (Y1, ,9,) € A, and B € SL*V
and the complete invariant n(0) uniquely determines 1.

Proof. By (2.38)(b) 8 is conjugate to some (0 B with B € SL* V, and 1+ is uniquely
determined by the conjugacy class of 6. If t = n then (, is diagonal, so x(f)
determines 6 up to conjugacy, and hence determines ¢ by (2.5)(b). So suppose
t < n. It follows immediately from the definitions that 8(¢y o B) = 5({y) o B, and

&(Cy 0 B) = &(Cy) o B. Hence §*(& o B) = 3*(&). By (2.11) it follows that 7(0)
determines

(B*&, -, B&) = ¥F (1 - heo1pf T277) (it g Y

up to permutations. Let z; = logt; and y; = log °¢; and = = (z1,--- ,¢) and
y=(y1, -+ ,y). Define v: R* — R by

_ny—1/(n—1
v(z) = log [wf (1 eorpf T27) / )}
—(n—1)"Yoy+ - Faeo1 + (6 +4—3n)zy)
Let e = (1,--- ,1); then y = 2 4+ (v(z))e = (I + G)x where G = e ® v. Then 7(0)
determines y, and recovering the ; amounts to finding = that solves the linear
equation y = (I + G)x.
We claim that I 4+ G is invertible. For the sake of contradiction assume that

0 # w € ker(I + G), then w+ v(w)e = 0. This implies that w = ae for some o # 0.
Since all non-zero multiples of w are also in the kernel there is no loss of generality

—1/(n—1)
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in assuming that o = 1. This implies that e + v(e)e = 0 and so v(e) = —1. From
the definition of v the equation v(e) = —1 becomes —(n —1)"*(2t +3 — 3n) = —1,
or equivalently that t = 2n — 2. However, since n > 3 this implies that t > n,
which is a contradiction. It follows that the x; can be recovered from the y;, and
by exponentiating we recover the ;. ]

The characteristic polynomial of a square matrix A is ¢(4) = det(zI—A). An
affine automorphism of R is given by f(x) = Az +b with linear part A € GL(n,R)
and also given by B € Aff(n) C GL(n + 1,R). Then ¢(B) = (x — 1)c(A). This
means that a translation group has one more zero Lie-algebra weight than the linear
part. The character of a marked translation group determines the weights, thus
the complete invariant determines the weight data.

Lemma 2.13. Suppose 0 : V. — Aff(n) is a marked translation group. Let & =
[E1,- -, &) € SP™" V™ be the Lie-algebra weights of the linear part of 6. Then the
characteristic polynomial cg : V — R|x] given by
cop =det(zl —0) = (z—1) H(a: — expo&;)
i=1
is uniquely determined by x(0). Moreover there is f : X,, = R, with v = fon,
where v : T, — R, is the weight data v(p) = (&, [B,)])-

Proof. Suppose A = 6(v). Then 0(kv) = AF so x(0)(kv) = trace A*. If A has
eigenvalues fig, - - - , jt, counted with multiplicity then pj, := trace(AF) = uf isa
symmetric polynomial function of the eigenvalues. Every symmetric polynomial is
a polynomial in the pg, and in particular the coefficients of ¢(A) have this property.
Hence x(6) determines the characteristic polynomial of 6(v) for every v € V. Thus
X(0) determines the function ¢y = co 6 : V — R|z] which sends v € V to the
characteristic polynomial of 8(v). Since all the eigenvalues of f(v) are positive,
there are & € V* with ¢y = [[/_,(z — expo&;). Hence x(#) determines the Lie
algebra weights £;. The factorization of a polynomial into linear factors is unique
up to order and scaling. It follows that & is also uniquely determined, and thus f
exists. ]

Recall that O(Q2,b) C G(£2) is the group of affine maps that fixes the basepoint
b, and acts on R", preserving 9. The orbit map sy, identities V = R"~1 with
09}, therefore O(,b) also acts on V. Under this identification O(€2,b) C Aff(R™)
is conjugate to O(n(#)) C GL(V) when t > 0. The group Sim(8) C GLV is the
group of similarities that preserve [53].

Lemma 2.14. Suppose 0 is a marked translation group. If t(0) > 0 then there is
an isomorphism f : O(Q,b) — O(n(0)) given by f(A) = p~tAu where p = gy -
V — 09 is the orbit map. If t(8) = 0 then O(n) = Sim(pB).

Proof. Let n = n(0) = (x,[#]) and t = t(¢). By definition O(n) is the subgroup of
Sim(83) that preserves x (). If t = 0 then 6 is unipotent so x is constant and the
result follows. Now assume t > 0, thus y is not constant.

We claim that O(n) is a subgroup of O(8). The character x : V' — R is preserved
by the action of O(n). Now O(n) C Sim(/3), so if the claim is false there is A € O(n)
that moves all points in V' closer to 0. It follows that x(v) = lim,_,.c x(A"v) = x(0)
so x is constant, which contradicts t > 0.
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We claim that f maps into O(n). The orbit map p = g defined in () is given
by u(v) = 6(v)b. Recall that 99 is the orbit of b under Im#. Given A € O(Q,b)
and v € V then A(u(v)) = p(u) for some v € V, and (fA)(v) = u. Since A fixes b
it follows that

(Ou)b = p(u) = A(uw) = (Abv)b = (A(Ov) A1) Ab = (A(Gv) A~ )b
Now A(Ov)A~1 € T(Q), and the action of V on 9 is free, thus u = A(fv)A~1, so
(fA)(v) =u=0""(A(Gv)A™")

Now # and conjugation by A are both group isomorphisms, thus fA is a group
automorphism of (V, +), and it is continuous; thus fA € GLV. Now

trace 0((fA)(v)) = trace fu = trace A(fv)A~' = trace fv

Thus x o (fA) = x. It is clear that fA preserves 3, hence fA € O(n), which proves
the claim.

The lemma is true for @ if and only if it is true for a conjugate of § o B for some
B € GL(V). By Theorem [2.5]it suffices to prove the result when 6 = (. Set
t = t(¢). First consider the case 0 < t < n and define

B= Diag(d)l_l/zv Tty ;1/27¢i/27' ) :/2) € GL(V)
It suffices to assume 6 = Cj; = (y o B. By [2.11)

t
BEH® = (o) X)) =2+ u+ Y expy ihws)
i=1
where (-, -) is the standard inner product on R"~!.

By ([2.13) x(0) determines, and is uniquely determined by, the Lie algebra weights
of §. Thus O(n) is the subgroup of O(B) that preserves the Lie-algebra weights.
Hence it is the subgroup that preserves the subset of V' consisting of the vectors
that are dual with respect to 8 of these weights in V*. By (24) the non-zero duals
are {(y;) Mbge; : 1 < i <t} C V. The action of O(n) permutes this set, but
preserves the lengths of vectors. Thus O(n) is the subgroup of O(3) that permutes
{e;: 1 <i <t} and preserves the vector

’yilwt(wlila"' 7w;1a0,"‘ 30) eV

where the last u coordinates are 0. Clearly this is the same as preserving

(wla"' aw!‘aov""o)ev

Let S(4) be the group of coordinate permutations of R that preserve (¢, -+ ,1y),
then O(n(Cy)) = S(¥) ® O(u). When t < n it follows from [2 Proposition 1.44]
that f(O(,b)) = S(¥) ® O(u) which gives the result.

The remaining case is that t = n, and then (; has n non-zero Lie-algebra
weights & € V* and > ;& = 0. Observe that ¢ is determined up to scaling
by this equation. If B € O(n((y)) then it preserves x((y), and therefore, by
(2.13), permutes these weights, so that & o B = &,; for some permutation o of
{1,---,n}. However Y ;& = 050 1; = p;. Thus p-B-pu~t = A € Aff(n)
permutes the coordinate axes of R™ and preserves ¥. Again by [2, Proposition
1.44] A € O(,b). It follows that O(n(¢y)) C p=t - O(2,b) - p. It is clear that

O(n(¢y)) D ™ - O(Q,0) - . 0
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Suppose 0 : V — Aff(n) is a marked translation group. If we consider a general-
ized cusp as a projective manifold, instead of as an affine one, then the holonomy
might be given as 6, : V — SL(n + 1,R) where

(7) 9*(1}) = OZ(U) . 6(1}) and OL(’U) — (det 9(0))71/n+1

It follows from [2] Prop. 1.29(c)] that if two marked translation groups are conjugate
in GL(n + 1,R) then they are conjugate in Aff(n), and therefore have the same
complete invariant. In (2.15) we show if 6, : V' — SL(n+1,R) is the corresponding
projective translation group then x(6,) determines x (). However the computations
are simpler using ().

We now explain how to recover 0 from 6,. The idea is that to recover the affine
action amounts to determining the weight of 6, that corresponds to the hyperplane
at infinity for affine space. Suppose 6 : V' — GL(n + 1,R) and every weight is real
and positive. Let W(0) = (£9,&1, -+ ,&n) be the Lie algebra weights of 6 counted
with multiplicity. The Lie algebra weight &; is called a middle weight if

VoeV &) <max{g(v) A}

Applied to diagonalizable representations, this is the middle eigenvalue condition
of Choi [§]. It follows that a Lie algebra weight with multiplicity larger than 1 is a
middle weight.

If 0 : V — Aff(n) then &; is a middle weight of § if and only if £ = 0. From (1)
it follows that if W(0) = (€0, &1, -+ ,&n) then W(0,) = (§o — -+ ,&n — 1) where
= (n+1)"137¢&. The characterization above implies that ¢ is a middle weight
for 0 if and only if £ — p is a middle weight for .. Since the middle weight of 6,
only depends on 0,, this shows 6, determines 6.

Proposition 2.15. Let § : V — Aff(n) be a marked translation group and 6, :
V — SL(n+ 1,R) as above. Then x(0,) determines x(6) and vice versa.

Proof. The characteristic polynomial ¢y is determined by x(#) using (2.13). The
constant term of ¢y determines det 6 : V— R, and therefore x(6.)=x(0) (det)_l/n'|r1
is determined. Conversely, given x(6,) the characteristic polynomial ¢y, is deter-
mined by (2.13]), and so the Lie-algebra weights {&; : 1 < i < n} of 0, are deter-
mined. Thus the middle weight & of 6, is determined by x(6.), and 8 = exp(—£)6.
has middle weight 0. ]

Theorem 2.16. If 0.0’ : V — Aff(n) are marked translation groups, then n() =
n(0") if and only if @ and 0’ are conjugate in Aff(n).

Proof. Tt is clear that the complete invariant is a conjugacy invariant. We show
that if n(#) = n(0’) then § and 6’ are conjugate. By (2.13) x(6) determines the
characteristic polynomial and weights of 8, counted with multiplicity. The type of
0 is the maximum over v € V of the number of eigenvalues of §(v) that are not
equal to 1. This is determined by x(6)v, so x(0) determines t(d). In particular
t(0) = t(6').

The first case is that t(d) = n so 6 is diagonalizable. Since t(¢’) = n then ¢’
is also diagonalizable, and therefore semisimple. The character of a semisimple
representation determines the representation up to conjugacy, see for example [18]
pp. 650]. Hence 6 and 6’ are conjugate in GL(n + 1,R). This implies they are
conjugate in Aff(n). If t = 0 then the generalized cusps are equivalent to cusps in
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hyperbolic manifolds. It is well known that these are determined by the Euclidean
similarity structure on the boundary, and hence by [3].

Now assume 0 < t(d) < n. By (2I)(c) every marked translation group is
conjugate in Aff(n) to some ¢, o B where B € SL*V and ¢ € A, (V). After
conjugacies in Aff(n) we may assume 6 = (0 B and ' = (4 o B are both of this
form. Observe that § and ¢’ are conjugate if and only if o (B~1) and ¢’ o (B)~!
are conjugate. Thus it suffices to assume that 6 = (;, and §' = (0 B’ o B~1. We
now change notation by replacing B’ o B~! in this formula with B, so we work with
9:@1/, and 9/:C¢/OB.

By ([212) ¢ is determined by the complete invariant, hence » = ¢, so §' =
6o B. Thus n(8') = n(#) o B. We are given that n(f) = n(#’), so it follows that
B € O(n(#)). Then by Lemma 214l B = u~!Pu for some P € O(,b).

Claim. ¢/ = POP~ 1.

Since 6’ = 0 o (u=1Ppu), given v € V, and recalling b € 95 is the basepoint, and
using u(v) = (0v)(b) gives
0'(v) =00 (u 'Pu)(v) = 0(u ' PO(v)b) = O(u), where u = p " (P((fv)b)) € V
Now P € O(Q,b) fixes the basepoint b so
P((0v)b) = P((v)P~'b) = (P(6v)P~")(b)
Thus
(Bu)b = u(u) = P(O(0)b) = (P(6u)P~1)(b)
Now 6(u) and P(v)P~! are both in T(2) which acts freely on 9. Thus 0(u) =
PO(v)P~1. Now 0'(v) = (u) so 8 = POP~ as claimed. O

There is an interpretation of the complete invariant as a geometric structure on
the boundary of a generalized cusp.

Definition 2.17. A cusp geometry on a torus T = R"~1/Z"~1 is (3,C) where 3
is a Euclidean metric on 7" with volume 1, and C C H'(T;R) \ 0. The type of the
geometry is t = |C|.

If : V — Aff(n) is a marked translation group then there is a properly convex
set Q C R™ that is preserved by 8V and C = Q/0(Z"1) is a generalized cusp.
Given b € 09 the orbit map pgp : V — 08 is a homeomorphism. Let 7 : @ — C
be projection. Then 7¢ := mo pgyp : V — OC can be regarded as the universal
cover of C. A cusp geometry (8, {a1, - ,at}) of type t = t(6) on IC is defined
as follows.

The metric 8 on OC is as defined above. The character x(6) determines Lie-
algebra weights of the representation & : V' — R for 1 < i < t(¢), and o; = [w;] €
H'Y(OC;R) is determined by m*w; = &;.

Thus w; is the harmonic representative of the de-Rham class «;. Generalized
cusps with type t < m correspond to choices of non-zero cohomology classes that
are orthogonal with respect to the dual of £, and all such cusp geometries are
realized by generalized cusps. Those of type t = n are determined by (). Observe
that one can recover the complete invariant from the cusp geometry.

Proposition 2.18. Suppose 01,05 : V — Aff(n) are marked translation groups and
C; = Q;/0;(V) are corresponding generalized cusps. Then 01 and 05 are conjugate if
and only if there is a map f :0C1 — OCs that preserves the cusp geometries defined
above, and [ is in the correct homotopy class, as determined by the marking.
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Proof. The existence of f implies the two generalized cusps have the same complete
invariant. Then #; and 6, are conjugate by (2.16]). Conversely, if 6, and 0y are
conjugate, then C; and C5 are equivalent cusps and so have the same cusp geometry.

|

3. NEW PARAMETERS

In this section we define another family of translation groups in ([8.4)). First we
motivate the definition in dimension n = 4. The reader may choose to replace 4 by
n in what follows, and introduce - - - in the formulae.

The goal is to construct a connected algebraic family of Lie groups that gives
conjugates of all the translation groups Tr(¢), and such that the diagonalizable ones
are dense. Recall that t = n is diagonalizable, and t < n is non-diagonalizable.

Refer to (2.11)) for the following discussion. If we reparameterize ¢y in the diag-
onal case using t; = /¥;v; then B(Cy)(t) = [|¢]|2+ 6% where § = 1y, /2 S Vit
When 1, = max;1; then |5| < n||t||, so B varies in a compact subset of S? V.
Hence, if the character remains bounded along a sequence in this subspace, there
is a subsequence for which the complete invariants converge. Then, after a suitable
conjugacy, the limit should be a marked generalized cusp of smaller type. To ob-
tain an algebraic family set ¢; = 1/A?, then v; = A\;t;. The diagonal group Tr(z))
consists of the matrices exp(M), for those M shown below, satisfying (9]).

(8)

Mt 0 0 0 0 J R P P VD i
0 Xty O 0 0 0 1 0 0 At
M=| 0 0 XMtz 0 0|, P=[0 0 1 0 At
0 0 0 Mts O 0 0 0 I Ve
0 0 0o 0 0 0 0 0 0 1

©) 0= wwi=> (1/A)Niti) = > _ N\ 't

The orbits flatten in the directions for which A; — 0. To prevent this, conjugate
M by the matrix P in (8) to get:

(10)
0 ts t3 ty O 1 —1 1
0 Xats 0 0t (1) _%2 _%3 _% 8
R=P'MP=10 0 Asts 0 t3 | +A1t1
0 0 0 0 0
0 0 0 Aty g 0 0 0 0 0
0 0 0 0 0

We may assume that 1; decreases with i, and it follows that \; increases with i. We
want this new family to contain only polynomials (rather than rational functions)
in the parameters, so that they are defined whenever

(11) 0< <A\
To do this we introduce extra parameters x; for 2 < i < 4, and require

(12) )\iFLi = )\1
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then
to  t3  tx 0

Aato 0 0 t
0 Asts 0 ts | +11
0 0 /\4t4 ty

0 O 0 0 0

Using () we replace ¢; by
t1= - (A3 ta + A3t + )\thz;) = — (Kot + Kats + Katy)
and this gives a family of representations
Dy RP — Aff(4), Dy x(ta,t3,ts) =exp R

parameterized by those (A, ) satisfying (1) and ([I2). When A; > 0 then &; =
A1/Ai € [0,1] so A determines x € [0,1]3. We will see that the conjugacy class of
the image group only depends on A. Thus the same collection of conjugacy classes
of groups is obtained by restricting to ; € [0,1]. Restricting x to a compact set
helps later with the point-set topology, when we quotient out by this compact set.
Finally, since t; is expressed in terms of the other t;, the terms for ¢ = 1 are
different to the other terms. Thus we replace the index set 1 <i <4 by 0 <4 < 3,
to emphasize the special role of A\g. This leads to the following definitions.
Given A € Hom(R", R) define A\;_1 = A(e;). The subspace

(13)  Aw={0, A1) [0 2 <A Ao < ooe < Ay} CR

is called the (closed) Weyl chamber. It is a fundamental domain for the action by
signed coordinate permutations on R™. Observe that A\; = 0 if and only if t < n

cooo
co o
|
co o x
(v}
|
oo o5
w
|
oo o5
B
oo oo

and 7 < u(\).
The blown up Weyl chamber is
(14) Ay ={(M\K) €Ay x [0,1]"F + Ao = Aiks}

The projections p; : A, — A, and py : A, — [0,1]"~! are defined by p;(\, k) = A
and pa(A\, k) = k. Since A\; > g it follows that p; is surjective. When \; # 0
then x; = Ag/A; is determined by \;. However when A; = 0 then Ay = 0 also,
thus ; € [0,1] is arbitrary. One may regard A, as obtained from A, by a kind
of blowup of the subset of A, where A\g = 0, and the x coordinates record certain
tangent directions when some of the coordinates of A\ are zero.

We make frequent use of the following inverse function theorem.

Lemma 3.1 ([13] Corollary 10.1.6]). Let f : X — Y be a continuous bijection
between locally compact spaces. If Y is Hausdorff and f is a proper map, then f is
a homeomorphism.

Let D, = {(\, k) € (0,00)" x [0,1]""1 : X\g = A\ik;}. A point in D,, determines
a diagonalizable marked translation group via (B8.4]), however the coordinates of A
are in arbitrary order subject only to A\g = min );, rather than non-increasing.

Lemma 3.2. Given (\ k) € A, set t = t(\) and u = u(\). Ift = n then
pa(pytN) = k. Ift(\) < n then pa(py*A) = [0,1]" x 0 where 0 = (0,---,0) €
[0, 1]*~ 171, Moreover

(a) Zln C cl D,

(b) p1 has compact fibers
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(¢) p1: A, — A, is a quotient map.

Proof. If t = n then all A\; > 0 and A determines k. Otherwise t < n and A; = 0 if
and only if ¢ < u. For ¢ > 1 then &; is the set of solutions in [0,1] of 0 = Ay = k; ;.
For 1 < i < u then \; = 0 and &; € [0,1] is arbitrary. For u < ¢ < n — 1 then
A\i > 0, s0 k; = 0. This gives the formula for py(p;')), and (b) is an immediate
consequence.

For (a), we prove there is a sequence (A(m),x(m)) € D, that converges to
(A k) € Ay. If t = n then (A, k) € D, so a constant sequence suffices. Otherwise
Ao = 0. Since k € [0,1]"~! there is a sequence k(m) € (0,1]"~! that converges to
k. Now define Ag(m) = m™! and A\;(m) by Ao(m) = \j(m)k;(m) for j > 0. Then
(A(m), k(m)) € D,, and converges to (A, k). When \; = 0 for all ¢ < u then the
coordinates of xk need not be monotonic. This is where we exploit that there is no
ordering requirement for the A coordinates in D,,.

For (c), let B = gn/ ~ be the space of fibers of p; equipped with the quotient
topology. The map f : B — A, induced by p; is a proper continuous bijection.
Moreover A,, is compact and Hausdorff. Also B is locally compact because pl_l(K )
is compact whenever K is compact. Hence f is a homeomorphism by Lemma

B.1 O

Remark 3.3. (c) is where [0,1]"! is compact is needed. The reader might like to
consider what B becomes if [0,1]™ is replaced by [0,00)™ in the definition of A,,.

We now define another family of Lie groups T'(\, k) that varies continuously with
(A, k) € Ay,. Theorem [3.10Ishows that the families of Lie groups T'(A, k) and Tr(¢))
are conjugate.

Definition 3.4. For each (\ k) € /Nln U D,, define @, ,, :=expogpy . : V — Aff(n)
where ¢y . : V — aff(n) is given by

0 U1 Vg - Un—1 0 —>\0 K1 - Kp-1 0

0 Moy O --- 0 V1 0o - 0

Prr(v) = | Lo+ (uR) :
An—1Un—1 Un—1

and v = (vy, -+ ,0p-1) € V,and A= (N, -+ , Ap—1), and & = (K1, , fn—1). Also
t(A, k) :=Im(¢xx) and T(\, k) :=Im(P) ).

If (\, k) € D,, then @, , is diagonalizable. It follows if (A, k) € A,, then Dy 4 s
the limit of these diagonalizable representations by (8.2])(a). This fact is exploited
to prove that T'(\, k) is a translation group. The proof of the following is routine
and in Section [8

Proposition 3.5.

(a) Given (\,k) € D, let h; = A2 for 1 <i<n—1 and ¢, = \y>. Then there
is Q € SL(n+1,R) and f € GL(V) given by f(vi, -+ ,vn—1) = A3(A1v1, -, A—1Un_1)
such that Q®y Q' =y of, and QT(\,k)Q™ ! = Tr(¢) .
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(b) T'(\, k) is a translation group that preserves a convez set Q(A, k) C R™, and
0N, k) =T(N\k)-0. Also n(Pxrx) = (X, ., [Br]) where

K

1—|—/~£§ KiKo - K1Ku
Kok1 14+ /@% cee Koku
0
Br.=14+rk®@ Kk = : :
Kuk1l  KuR2 ... 1+kK2
0 I,
n—1

Xow (U1, yUp—1) = 1L+ exp (=Ao(k,v)) + Z exp(A;v;)
i=1

Define » = (1+ ||&||>)Y =V, then det B, = »"~ ' and B = » ' B is unimodular.

Definition 3.6. If Q = I+M € GL(k,R) and M? = oM then the preferred square
root of Q) is

SQ) =1+ '(V1+ta—1)M

This is a square root since (I+xM)? = [ +(2z+a2?)M = Q when 2z +az? = 1.
If v € R¥ then M = v ® v has rank 1 and the condition holds with a = |Jv]|2.
Moreover, if @ is symmetric and positive definite, then so is S. Observe that
B = Bo = ||v]|? is given by the identity matrix in the standard basis.

Lemma 3.7. If S = S1+k®x) then S~ : (V, Bo) — (V, B.) is an isometry, where
B is defined in (3.5). Moreover S~! varies continuously with k.

This gives a re-parameterization of ®, ,, that makes the horosphere metric stan-
dard.

Definition 3.8. @i’n : V. — Aff(n) is given by fbiﬁ =®y, .0 S~ where § =

S(I+k®k)e GL(V).

If t < n then k; = 0 whenever A; # 0. By (8.5) this re-parameterization does not
change the character. However if t = n the character of (I)i_,n is more complicated.
Fortunately we will not need an explicit formula for it in this case. It follows from

B.D) that

Corollary 3.9. The map A, — Hom(V, Aff,,) given by (A, k) — By, is continu-
ous. The complete invariant of ®y. . is given by B(®3 ) (v) = (v,v), and if t(X) <n
then

n—1

X(q))%,n)(vh e avn—l) =2+u+ Z exp(/\ivi)
1=u-+1

The next result shows that the conjugacy classes of the family of groups Tr(v)
coincide with the conjugacy classes of the groups T'()\, k), and that the conjugacy
class of T'(\, k) only depends on A. Changing x but keeping A fixed changes the
conjugacy class of @, , (as detected by the horosphere metric) without changing
the conjugacy class of T'(\, k).

Theorem 3.10. Given (A, k) € A, then T(\, k) is conjugate to Tr(yp) in Aff(n)
where 1 is defined in terms of A as follows.
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Set u = u(N) and t = t(\). When t = 0 then A = 0 and define ¢ = 0. When
t =n define ¢ as in BO)(a). When0 <t <n thent+u=n—1 and

giv@n A= ()\Oa e 7)\71—1) = (Oa e 70a)\u+17' ' ')\u—i-t) e R"
deﬁne w = (wla"' ﬂﬁn) = (Al_l-?-h 7A1_H2»t507"' 50) S Rn

Proof. When t = n this follows (3.5). When t = 0 then {, = ®¢ and the result
follows. This leaves the case 1 <t < n. Define F,C € GL(V) by F (v, ,vp—1) =
(Vat1, ", Vutt, V1, ,vu) and C' = F - Diag(cq, -+ ,c,—1), where the ¢; are de-
termined below. From (IEI)

t

(15) B(@y,0C Z cvl,  xX(@x,0C0)(v) =2+u+ Y exp(Auticivi)
=1
By @2.11)
t n—1 t
By)() ~ Y il + 7t D v x(G)(v) =2+ u+ Y exp(du;)
=1

i=t+1 =1

We will now show how to choose C so that ¢, and ‘IJiK o C have the same complete
invariant, then they are conjugate by (2.16). The characters are equal if Ay y;¢; = 14
for i <t. Now ¢; = >‘u-2m when i <t and ¢; = ¥/ Ay for i < t, hence c? = P21p;.
Then from ([15])

B(D% thwzv + Z vy

1=t+1
For i > t define ¢; = \/_ then
n—1
B(®x,0C thwzv + Z oo} ~Zw gt Y v~ BG)(w)
i=t+1 i=t+1

O

It is messy to directly construct a conjugating matrix, since it varies continuously
only when the type does not change. In general the representations ® , and
®, . are not conjugate if k # £’ because they have different complete invariants.
However:

Corollary 3.11. If 0 : V — Aff(n) is a marked translation group then there are
B,C € SL*V and (M k) € An such that 6 is equivalent to ® .o B and to <I>J- oC.

Proof. The first claim follows from (2.5)(c) and (B.10), and the second claim from
this and (B.8]). O

The proof of [L4 now follows from (8.2)(a) and (B.11).

Corollary 3.12. If s > 0 and (), k), (s- \, k') € A, then T(\, k) = T(s- A, k') are
congugate subgroups of Aff(n). In particular, if t(A) < n then T'(\, k) is conjugate
to T'(\,0).

Proof. By B.10) T'(\, k) and T'(\, k") are always conjugate. Thus to prove the result

we may assume that x’ = k. Let f: V = V be f(v) = sv. By B3) x(Psrn) =

X(q)A,R) of and B((I)sk,ﬁ) = B((I)A,K)~ Now ﬂ(@A,nof) ~ 526((1)%&) ~ ﬂ(@k,ﬁ) Thus
Dy and @y . o f are marked translation groups with the same complete invariant.
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Thus they are conjugate by (2.16). The second statement follows by continuity
because, if t(A) < n, then A\g = 0so (A,0) € A,. O

It is interesting that in the non-diagonalizable case we may choose £ = 0, and
then ¢y o has a simple form as given in (3.4]), however the diagonalizable ones are
more complicated.

4. TOPOLOGY OF THE MODULI SPACE

Recall V = R""! and define Rep,, to be the subspace of Hom(V, Aff,))/ Aff,,
that consists of conjugacy classes of holonomy representations of marked generalized
torus cusps of dimension n. First we establish that Rep,, is a quotient of A xSL*V
and that the complete invariant provides an embedding of Rep,,. We use this to
prove that the holonomy map is a homeomorphism hol : 7, — Rep,,. Finally we
compute the stratification of 7, and prove (L3]).

It follows from (2.5) and (B8.10) that every marked translation group is conjugate
to @fﬁ o A for some (A, k) € A, and A € SL* V. Moreover if t(\) < n then it

suffices to use k = 0 so (I)io =®, 0.

Lemma 4.1. The map U: A, xSL*V — Rep,, given by \TI(()\, k),B) = [<I>§\-’,_g o B]
s continuous, and covers a continuous surjection W : A, x SL*V — Rep,, .

Proof. Continuity of ¥ follows from B.9). To prove ¥ is well defined we must show
that <I>L o B is conjugate to <I>A , o B. To do this, it suffices to show they have
the same complete invariant. Clearly it suffices to do this when B = 1. This now
follows from (B.9).

Recall p; : Zn — A,, and we have ¥ op; = V. fU C Rep,, is open then, since
U is continuous, U1(U) = py }(¥~1(U)) is open. Since p; is a quotient map by
B.2)(c), it follows that ¥~1(U) is open, so ¥ is continuous. O

In what follows we use § € P in place of [§] € PP. Recall the compete invariant
7 : Rep,, = x(V)xP and the codomain is homeomorphic to a subspace of Euclidean
space. In particular a closed subset of the codomain is locally compact.

Lemma 4.2. no ¥ : A, x SL*V — x(V) x P is proper and continuous, and
X, = n(Rep,,) is a closed subset of x(V) x P, and is homeomorphic to a closed
subset of Fuclidean space.

Proof. Continuity of n o ¥ follows from (2.9) and (4.1). Suppose ((a;,k;), B;) €
A, x SLTV and
(x> 8i) = n(¥(a;, Bj)) = n(®;, .. © B))
is a bounded sequence in x(V) x P. Then §; = Bij is bounded. The map
0 : SL*V — SLV given by 6(B) = B'B is proper, thus Bj is bounded. After
passing to a subsequence we may assume lim B; = B € SLTV. By (B.8)
i _ 1
Do, i, = Payom; S

Now #; € [0,1]"* s0 S; = S(I + r; ® ;) is bounded. Since the map that sends
an element of SL* V' to its inverse is proper, B;l is bounded. Thus (B;l 0 8;) is
bounded. Also x; is bounded, so

Xj o (B; ' 0 8)) = trace((®a, x, © S; ') 0 Bj) o (B; ! 0 ;) = trace(Pq, ;)
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is bounded. Let u; be the last component of a;, then y; is the largest component
of a;. Referring to (B.4) we see that ®, . (en—1) has an eigenvalue of exp p1; in the
(n,n) entry and all other eigenvalues are equal to 1. Since trace(®,, x,) is bounded,
and p; > 0, it follows that p; is bounded. Thus a; is bounded. Hence no ¥ is
proper. After taking a subsequence lima; = a and a € A,, because A, is a closed
subset of R”. Thus lim(a;, Bj) = (a,B) € A, X SL*V, and limn o U(a;, B;) =
no¥(a,B) € Imn. Thus Imno ¥ is closed in x(V) x P. By ({I) Im¥ = Rep,,;
thus Im7n o ¥ = n(Rep,,) is closed. O

By (2.16), if B, B’ € SL* V then fbiﬁ oB and fIJiK o B’ represent the same point
in Rep,, if and only if they have the same complete invariant. By definition [2.8] this
is equivalent to B’ € B - O(n(@f\-ﬁ)). Since ﬁ(@f\-ﬁ) is standard, and the character
does not depend on £, the group O(n(®y ) does not depend on .

Let 7: A, x SL¥V — (A x SL* V') / ~ be projection, where (X, B) ~ (X, B')
if and only if A = X and B’ € B-O(n(®y.,,)) for some £ with (A, k) € A,. Tt follows
there is an injective function

U, : (A4, xSL*V)/~ — Rep,

such that ¥ = ¥, o 7. Equip the domain with the quotient topology, then V¥, is
continuous by (4.1)). Surjectivity of ¥, follows from (2.5) and (3.10). Theorem [L.1]
follows from ({.5) and:

Theorem 4.3. W, is a homeomorphism, and n : Rep,, = X,, is a homeomorphism,
and Rep,, is homeomorphic to a closed subset of Fuclidean space.

Proof. By @.2) no ¥, : (An x SL* V)/ ~ —» X, is proper and continuous. It
is bijective because n and ¥, are. Since X, is homeomorphic to a closed subspace
of Euclidean space, it is Hausdorff and locally compact. Given z = (A, A) € A4,, x
SL* V there are compact neighborhoods L C A, of A and K  SL¥ V of A. Then
U=1Lx(0(m-1)-K)C A, x SL¥V is compact because O(n — 1) is compact.
Since O(n(@ﬁ;ﬁ)) C O(n—1) it follows that 7(U) is a compact neighborhood of 7z,
thus (An x SL* V) / ~ is locally compact. Hence no U, is a homeomorphism by
B.I). Tt follows that n is an homeomorphism, and ¥, is a homeomorphism. The
last conclusion follows from (4.2). O

In ([2.5)) generalized cusps were classified and shown to be equivalent to ones with
holonomy in Tr(¢) for some ¢ € A, (¥). Recall that ¢); = 1/A? when \; > 0. In
[2l Theorem 0.2(v)] gives a bijection © that is essentially the same as U, but the
topology on the domain is different. It follows from the above that, if the reciprocals
of the coordinates of ¢ converge suitably, then the conjugacy class of Tr(¢)) has a
limit that is another translation group.

Informally, two generalized cusps are close if, after shrinking them, they are
nearly affine isomorphic. It turns out this is equivalent to their holonomies being
close up to conjugacy. Our definition of marked moduli space is based on the
notion of developing maps as is done in [9, Sec 1]. Recall C = (V/Z"~1) x [0, 00)
so C' =V x [0,00) is the universal cover.

Definition 4.4. Let 731 be the space of developing maps dev : C — A" for marked
generalized cusps with underlying space C. We endow T, with the compact-open
topology. There is an equivalence relation on 7, that is generated by homotopy,
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and composition with an affine isomorphism. The quotient space is the marked
moduli space T,.

When n < 3 homotopy implies isotopy for homeomorphisms of T". However
when n > 5, there are infinitely many isotopy classes homotopic to the identity, see
[14, Theorem 4.1]. We have used homotopy rather than isotopy in the definition of
T, in order to obtain the following.

Theorem 4.5. The holonomy hol : T,, — Rep,, is a homeomorphism.

Proof. First we define hol. Suppose dev : C — A" is the developing map of a
generalized cusp. Then g € Z"~! = 7;C acts on C = V x [0,00) by g - (v,t) =
(v+ g,t) so the extended holonomy p can be recovered from dev using that for
x € Im(dev)

(pg)(x) = dev((g,0) + dev ™" (z))

It follows that there is a map hol : 7,, — Hom(V, Aff(n)). Moreover this formula
shows p is determined by the restriction of dev to a compact set. Since 7~;l has the
compact-open topology, it follows that hol is continuous. It is clear that p is the
holonomy, and is therefore well defined on the equivalence class [dev] € T,. Thus
hol covers a continuous map hol : 7, — Rep,,.

Next, we construct an inverse to hol. By ([43) ¥, is a homeomorphism so we
may replace Rep,, by (A4, x SL* V) [ ~. Given ((A,k),B) € A, x SL* V, define a
developing map

f=Fuep:Vx[0,00) 5> R*x1=A" by  f(v,2) = (P .(Bv))(z0, - ,0,1)

Observe that f(V,0) is the orbit of the origin, so Im(f) = Q(\, k) defined in (B.5).
More generally f(V,z) is a horosphere for fixed z > 0. It follows that f is the
developing map for a generalized cusp with holonomy @fﬁ o B, thus f € T,.

Define F : A, x SL*V — 7T, by ﬁ((A,/@),B) = fan,p. Clearly F is contin-
uous. By properties of the quotient topology, F' covers a continuous map F :
(An x SL* V) / ~ — Tp. Since hol has a continuous inverse F o W1 it follows

hol is a homeomorphism. |

Proof of [LBL If C is a torus then C' = C and the result follows from (4.5). Tt only
remains to prove that the holonomy of C uniquely determines the holonomy of C.
Now p|é determines the extended holonomy o : V' — Aff™. We claim o determines
the rotational part R : mC — O(n) and therefore determines p : mC — A™. This
follows from the observation that R is uniquely determined by the action of pm;C
on oV by conjugacy. This in turn is determined by the action by conjugacy of m1C
on m; C. O

In the sequel we will use hol to identify these two spaces. If dev is the developing
map for a generalized cusp with holonomy p then we identify [dev] € T, with
[p] = hol[dev] € Rep,,. It follows from the above that:

Theorem 4.6. hol ! o¥* : (An x SL* V) / ~ — T, is a homeomorphism.

To analyze the subspaces of 7, consisting of cusps of fixed type it is easier to
work with (y than with @, ..
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Definition 4.7. Given 0 < t < n the stratum of type t of T, is the subspace
Tn(t) C T, that consists of all marked cusps with holonomy conjugate into some
Tr(v) with t(y) = t.

The holonomy of a generalized cusp is conjugate to ¢,0A where (¢, A) € A, (T)x
SL* V. The coordinates of ¢ are ordered. Below we show each stratum is a manifold
by showing it is the quotient of a smooth manifold by a compact group that acts
freely. To do this involves enlarging the set of pairs (¢, A) by relaxing the ordering
and using ¢ € A%(¥), defined in ([24)). The equivalence relation on A%(¥) x SLE V
is then given by a free action of ¢ x O(u). This technique can only be employed
with individual strata, but not all of 7, since the dimension of O(u) changes with
type. We will see that 7, is not a manifold with boundary when n > 3. The proof
of the next result actually determines the topology of each stratum.

Proposition 4.8. For each 0 < t < n the stratum T,(t) C T, is a connected
smooth manifold without boundary and dim T, (t) < dim7,(t + 1) when t < n.
Moreover cl(Tp(t)) = Ui<t Tn(i). If n > 3 then the fundamental group m (T, (n))
is not trivial.

Proof. Let Wy = (0,00)t xSLE V. By (2.5) there is a surjective map 7 : Wy — T, (t)
given by m(1), A) = [Cy o A] where A € SL* V| and ¢ = (¢1,--- ,4) € Wi, and
W = (1, 0,0, ,0) € A%(D).

The first case is t < n,sot+u=n—1. Recal V.= D ¢ U from (2)) where
D=R'@®0and U =0dR". Let ¥y C O(t) be the subgroup that permutes the
coordinates axes of R*, and Gy = Ly ®O(u) C SL* V. There is an action of a € Gy
on (¢, A) € Wy given by

. o 0
a(p, A) = (6", ad), where o = (O B
Here we regard ¢ € D* = Hom(D,R) and o* is the dual action on D* so o*9p =
thoo~t. The marked translation groups given by (1, A) and (1), A) are conjugate
because they have the same complete invariant. Now B does not change 7, and
o~ ! from o* cancels with the o in «, so w(a(, A)) = m(¥, A).
We claim that 7=1(¢, A) = Gy - (v, A). Suppose (', A’) = 7(¢), A). There is
o € Y so that the coordinates of o are non-increasing. Thus we may assume 1)
and ¢’ both have this property. By the classification [2] 1.44 & 0.2(v)] it then follows
that ¢ = ¢" and A’ € O(u) - A. The claim follows. Hence 7,(t) is homeomorphic
to Wi /Gy. Moreover the subgroup O(u) acts trivially on the first factor of Wy, and
by left multiplication on the second factor, so

To(t) 22 [(0,00)t x (O(u)\SLE V)] /%%

Now O(u)\ SL* V is a symmetric space. Since ¥ is finite, and acts freely on the
second factor, it follows that 7, (t) is a manifold.

This leaves the case t = n, in which case u = 0 and the representations are
diagonal. Let Mono(V, Aff(n)) C Hom(V, Aff(n)) be the subspace of injective maps.
Define f : W,, — Mono(V, Aff(n)) by f(¢,A) = ¢y o A. Then f is injective and
we use it to identify W, with Z = f(W,). Let 3, C Aff(n) be the subgroup
that permutes the standard basis of R™. Then 3, acts freely by conjugacy on
Mono(V, Aff(n)).

), o€y, BeO(u)

Claim. This action preserves Z.
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We identify ¥,, with the group of permutations of {1,---,n}. Suppose o € X.
If o(n) = n then the action of o on W, is as above. In particular the subgroup
Yn_1 C X, that fixes n preserves Z.

Let o € ¥ be the transposition o = (n — 1,n). Since X,,_; and o generate %,
it suffices to show that o preserves Z. Given ¢ = (¢1,--- ,1,) € (0,00)" then
0@0*1 = (yr o B where

1/ —2/thn - ~Un—1/%n
w/ = (Q/Jn/%hl)(?/)h T 7wn72,¢n,wn71)

Let § = |det B|Y/("=1; then 6~'B € SLTV, and (54 (v) = Cyr(6v) by (2.5)(b),
thus (g o B = f(6¢',67'B) € Z. This proves the claim.

If two elements of Z are conjugate, then they are conjugate by an element of
Yn. This is because both representations are diagonal, so a conjugacy must pre-
serve the coordinate axes. Thus the conjugacy is by a signed permutation matrix.
However a signed permutation matrix is the product of a permutation matrix and
a diagonal matrix with +1 on the diagonal. But diagonal matrices centralize these
representations, so they are conjugate via a coordinate permutation.

Hence T,(n) = Z/%,,. Now W, has two components, and these are swapped by
every odd element of X,. Thus

Tn(n) 22 [(0,00)" x SL* V] /% 22 ((0,00)" x SLV) / Alt

where Alt C ¥, is the alternating subgroup, and it acts freely. In particular 717, (n)
surjects to Alt, and Alt is non-trivial if n > 3, the last claim in the theorem follows.
Moreover cl(7,(t)) = U;<t T, (7) follows from the corresponding fact for the Weyl
chamber A,. Finally dim 7y = dim Wy — dim Gy = (t + dim SL V') — dim O(u) and
dimV =n—1. |

Proof of [LAl There is a deformation retraction 7,, — 7,(0) to the O-stratum given
by scaling A, and 7(0) = P is homeomorphic to Euclidean space of dimension
n(n — 1)/2. Thus T, is contractible. In [2| Prop 6.2] 72 was parameterized as
{(z,y) € R? : 0 < 2 < y} and is thus a manifold with boundary. Suppose T,
is a manifold M with boundary and n > 3. Let NV C 7, be the subspace of
non-diagonalizable generalized cusps.

We claim that OM = N. Since Y = T, \ N is the stratum of diagonalizable
generalized cusps, it follow from (4.8)) that Y is a manifold without boundary, and
dimY =dim7, so 9M NY = 0. Thus OM C N. If ¢y € A, (V) and t(p) =n —1
then 1 has exactly one zero coordinate. Let Z C AN be the subset of [p] with
p = (p o A with t(¢0) = n — 1 and all the coordinates of v are distinct. Then no
element of %, fixes [p] because if 0 € ¥,,_1 and o) = ¢ then o = 1. Tt follows
a neighborhood of [p] in M is homeomorphic to a neighborhood U of a point in
A, (W) x SLEV that projects to [p]. But p is in the boundary of A, (¥) x SL*V
so [p] is in the boundary of the quotient. Thus Z C OM. But Z is dense in A and
OM is closed in M so N C OM. This proves the claim.
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Since M is contractible m{M = 0. Also miM = mY because a manifold and its
interior have the same fundamental group. By (&8) mY # 1 when n > 3. This
contradicts that 7,, is a manifold. O

5. THE WEIGHTS DATA v

In this section we prove (1.2). We will often identify the space P of unimodular
positive definite quadratic forms with PP. There is an action of A € GLV on Rep,,

given by A - [p] = [po A=Y, If v(p) = ([&1, - , &, [3]), then

(16) vipo AT ) = (oA Lo AT [BoAT))

This restricts to an action on Im v that covers a transitive action on P.

Lemma 5.1. If p= @, .0 A with A € SLEV then v(p) = ([0, ,En_1], B) where
(€ir&j) e = M6 — = x\iAjbij — @

and % = (14 ||&]|2)Y =1 and @ = N33~

Proof. Let 8 = f(p), and (-, ), is the inner product on V' corresponding to 5 € SV,
and || - ||, the associated norm. Let || - || be the standard norm on V' for which the
standard basis is orthonormal and (-,-) the associated inner product. We may
assume p = &, ,. By (.5)(b) the matrix of § in the standard basis is given by
Q = > (I +Kx®k). The matrix of the dual form 3* on V* with respect to the dual
basis is then Q1.

From (B.4) the Lie algebra weights for p are &y, -+ ,&,—1 € V* where

(17) So(v) = =Ao(k,v), & =Nef for 1<i<n-—1
For the following, refer to the discussion after ([B.6). Now Q = s» *(I1+M) where
M =k ® Kk, then M? = ||s]|>?M, so Q7! = »(1+M)~! = »(1—(1 + ||s]|?)~* M).

If 1 <4,57 <n—1 then define @w by
(18) (€1, 65) e = (Ni€f, Aje5) e = 22X (615 — (L + [|6]1) " hiky) = 2eXid;0i5 — @
Now Aiki = Mg 50 @ = 2A3(1 + ||k]|?) 7 = Asescd 7.

We claim (I8) holds in all cases: 0 <4,5 <n—1. If \g = 0 then {, = 0 and (L8]
holds in all cases. Otherwise A9 > 0 and using A\;k; = A then (I7)) implies

n—1 n—1
(19) So=-ND N2, so D A=0
=1 =0

To compute (£, §;) 5+, replace &y by the above and then use (L8)) in the case ¢,5 > 1
already established. Some algebra then shows (18] holds in all cases. ]

The lemma implies the inner product of distinct weights is always —w. This has
a geometric interpretation. Consider a set of n vectors {vy, -+ ,v,} in V = R*~!
equipped with the standard inner product such that for some w > 0 the vectors
satisfy the equation

(20) Vizgj  (vi,v) =-@
If w = 0 this just says the vectors are pairwise orthogonal, and for dimension
reasons at least one is zero. If @ > 0 then set R” = V @ Re,, with the standard

inner product. Equation (20) is equivalent to the pairwise orthogonality of the
vectors {u; = v; + \/we,} in R™. In this case the {u;} are an orthogonal basis of
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R™ that represent points in the hyperplane x,, = y/w, and the {v;} are the images
of these vectors under orthogonal projection into V.

Proof of Theorem [L.2. We will abuse notation by identifying 7, = Rep,, and write
p instead of [p] for a point in Rep,,. First we prove that v is a homeomorphism.
Suppose v(p) = ([0, ,&€n—1], ). Then x = x, : V — R is given by x(v) =
Z?:_Ol exp&;v. Thus the complete invariant n(p) = (x, 8) is a continuous function
of v(p). By (2.16) 7 is injective; hence v is injective.
Recall R,, € SP™(V) x P is the subset of all ([{o,- - ,&n—1], ) such that

(21) Jw>0 Vi#j (§,&) =@

We must show that Im(v) = R,,. By (B.1) Imv C R,,. It remains to show that R,, C
Imv. In what follows we will always choose an ordering for x = ([£o, -+ ,&n—1],8) €
R, so that [|£]|s+ is a non-decreasing function of . Define k by &; # 0 if and only
if i > k, and define w = — (&g, &1)

B* "

Case 1 (w = 0). This is the non-diagonal case. Then (2I)) is equivalent to requiring
the &; are pairwise orthogonal with respect to 5*. Since dimV = n — 1 it follows
that & = 0. Define

(22) A= V ﬁ*(gz)u K:(O,'“ 70)
then Ao = 0. Observe these values are consistent with (5.1). From (B.5)(b) the
weight data is

(23) I/((I)/\O) = ([Ov aovAkGZa"' ’)‘n—le:—ILBO)v BO(’U) = HUH2
Now Bi(N\ief) = A2 = 8*(&). Then \e; are obviously pairwise 3j-orthogonal,
and &, are pairwise *-orthogonal since @w = 0. Thus there is an isometry A :
(V,8) = (V, o) with
(Nief) o AH = A" (Nief) =&,  B=ppo A
Then x € Imv because applying (16) to ([23) gives

V((I)X,O o Ail) = ([607 e aé?L—lLB) =
This proves R,, C Imv in Case[1l

Case 2 (w > 0). This is the diagonal case. Identify V with the subspace of R™
where z,, = 0, and extend S to R™ so that S(e,) = 1 and e, is orthogonal to V.
Let Lg: (V, ) = (V*, %) be the natural isometry given by (L,v)w = (v,w), and
let r; = Lglfi be the vectors in V' dual to the weights. Then (2I)) is equivalent to
the pairwise orthogonality of the vectors

{u; =7 +vVowe, :0<i<n-—1} CR"
Since ||u;|| > @ > 0 this is a basis of R™. Moreover (e, u;) = /. Writing e,, in
terms of this orthogonal basis e, = S 7' puiu; with p; = V@ /|uil|2 > 0. Thus
Yopir; = 0 and & = Lg(r;) so > & = 0. Set A\; = u;z and k; = Ag/\; then
ST ;%€ = 0. Define
(€05~ > &l B) 1= v(®@a k)

Then Z/\i_Qfl’- = 0 by (19), and by ([@8) ( §,§;>ﬁ,* = 2A\20;; — w. Now & = e}
for ¢ > 0, so in particular {¢] : 1 <i < n — 1} is a basis of V*. There is a unique
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A € GLV such that A*¢, = ¢ for all i > 1. By ([[9) & = —A3 Z;:ll A;2¢l and
€0 = —N2 3 A% it follows that A*€) = &. Now

(€,€7) . = 203055 — w0 = (&,&5) .

and it follows that A* is an isometry between the metrics (8’)* and 5* on V*. This
proves R, C Imv in Case[2

In both cases we have shown R,, C Imv so v is surjective. Thus v is a bijection.
Let Y =nov~!:R, = X,. By [&3) 7 is a homeomorphism, so Y is a bijection.
Above we showed that 7(p) is a continuous function of v(p), and it follows that T
is continuous.

We claim T is proper. Suppose v(pm) = (m, Bm) is unbounded, and suppose
for contradiction that Y(v(pm)) = n(pm) = (x(Pm), Bm) is bounded. Then there is
a component &, ; € V* of p, = (o, 1 €mon—1) € SP” V* that is unbounded.
Thus X(pm) = Y, €xp&m,; is unbounded, a contradiction. This proves the claim.

By (4.2) X, is locally compact, and R, is a closed subset of Euclidean space and
thus locally compact. By (B.1) T is a homeomorphism. Since 7 is a homeomorphism
it follows that v = Y~! o 7 is a homeomorphism.

By definition [[l R,, is a semi-algebraic set. By (&.1) w = 0 if and only if Ag = 0,
and this is equivalent to the holonomy being non-diagonalizable by ([2.4). Now R,
is a subspace of SP™(V*) x P. There is an action of A~! € U on the latter given
by

AL ([517 T >§n]7B) = ([51 oA, yEno ALAtBA)
that preserves R,. By Gram-Schmidt, every B € P can be written uniquely as
B = A*A for some A € U. Thus the action U on P is simply transitive. Hence the
image of v is the orbit under U of F¥ x 8y where 8y € P is the standard form ( , ).
The dual of F} is F,, C SP™(V) that consists of [vy,--- ,v,] such that

Jw>0 Vi#j (v,v) =—w

The solutions of this equation are preserved by multiplication by non-negative
scalar, so F), is a cone. O

6. CUBIC DIFFERENTIALS

In this section we will show that when n > 3 a generalized cusp C' =2 T~ ! x [0, 00)
is uniquely determined up to equivalence by the projective class [J], called the
shape invariant, of a certain polynomial J = ¢ + ¢ where ¢,c : R*' — R are
homogeneous polynomials of degree 2 and 3 respectively. One may regard ¢ as a
similarity structure (Euclidean structure up to scaling) on 771, and ¢ as a cubic
differential on 7™~ !. When n = 2 then the shape invariant does not determine the
cusp, but the moduli space is described in |2, Section 6].

Definition 6.1. A calibrated vector space is a pair (V,4¥) where V is a vector
space and ¥ : V — R is a function, called the calibration. A linear isomorphism
f:V = V' is an isometry between the calibrated vector spaces (V,4) and (V', ')
if § = ¢ o f. The group of self isometries of (V, ) is written O(¢). Two calibrations
9,9 are similar if there is A > 0 with ¢ = A\, and this is denoted ¥ ~ ¥'.

A calibration can be viewed as an interesting generalization of a norm. For
example, there is a calibrated vector space (R?#®,9) with ¢ an octic polynomial such
that the compact form of the exceptional Lie group Ejg is the identity component
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of O(19), see [12], where they use the term stabilize instead of isometry. We follow
[1] in using the term isometry.

Definition 6.2. A cusp-space is a calibrated vector space, (V,4), that is similar
to some (R”*1,§A7,{) where 9, : R"™! — R is given by

Ox (U1, p_1) = ((v,v> + (v,m)z) + % (—/\O(v,/@>3 + z_: )\ﬂ)?)

i=1
and (X, k) € A, and (-,-) is the standard inner product on R"!.

In the non-diagonalizable case when x = 0, this simplifies to 9y 9 = (v,v) +
3 2?2_11 Ay
Definition 6.3. The space of cusp-space structures on the vector space V is
JV)={[W] : (V,9) is a cusp-space} C P (S*V & S* V)
equipped with the subspace topology, and J,, = J(R"™1).

If f:R™ — R is a smooth function, the k-Jet is the polynomial given by the
truncated Taylor expansion of f around 0 consisting of all terms of total degree at
most k.

Definition 6.4. Suppose T is a translation group, and W is a real vector space, and
0 : W — T is an isomorphism. The shape invariant for 0 is [J] where h is a height
function for T, and J = J(6) is the 3-Jet of h at 0, and [J] € P(S* W @& S*> W).

The height function A is unique up to multiplication by a positive real, thus
the projective class [J] of J is well defined. Moreover the terms of degree 0 and
1 in J vanish, so J = ¢+ ¢ with ¢ € S>W and ¢ € S*W. When W = V then
det ¢ is defined using the standard basis of V', and §(0) = 7q is unimodular where
v = (det ¢)~Y/ 4™V We use the map F : J(V) = P @®S*V given by Flq+ ] =
v(q + ¢) to identify J (V) with a subspace of P @ S* V. In this way we can work
with polynomials instead of equivalence classes up to scaling.

It is easy to check that if B € Aff(n) then J(BO#B~') = J(f), and that if
A € GLV then J(#oA) = J(#)oA. Consider the diagonal translation subgroup G =
Tr(¢) where ¢ = Y | ;e with all ¢; > 0 as in (2.4). Let D(n) C GL(n + 1,R)
be the subgroup of positive diagonal matrices with 1 in the bottom right corner.
Then G is a codimension-1 subgroup of D(n). To compute the calibration for ¢
we avoid choosing a basis of the Lie algebra, g, of G, but instead work with the
natural basis of D(n).

Let A = R” be the R-algebra with addition and multiplication defined compo-
nentwise, so

(al’ R 7an)(b17 . ;bn) = (alb17 . ;anbn)
This multiplication is called the Hadamard product. Observe that p = (1,---,1) is
the multiplicative identity in A, and for n > 0 then a™ € A is the element obtained
by raising each component of a to power n. Let A, C A be the subset with all co-
ordinates strictly positive, made into a group using Hadamard multiplication. The
map A — gl(n+1,R) given by (21, ,z,) — Diag(zy, - ,p,0) is used to identify
the Lie algebra A (with zero Lie bracket) to the Lie algebra of D(n), and the group
homomorphism 0 : A, — GL(n+1,R) given by 6(z1,- -+ ,z,) = Diag(z1,- -+ ,zp, 1)
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identifies A, (with Hadamard multiplication) to D(n). Regarding A as the Lie al-
gebra of A, then exp: A — A, is coordinate-wise exponentiation. Define an inner
product on A by

<I y P = Z@Z)zxzyz

Then (zy, z)y = (x,y2)y 50 (z,Y)y = (P, xy)w, and
g=kery =p-:={zeA: (pa)y=0}
may be regarded as the Lie algebra of Tr(1)).

Lemma 6.5. Ift(¢)) =n then d oexp : g — Tr(v) s a marked translation group,
and the shape invariant is [J( o exp)] = [Jy] where

Jy(x) = (1/2){p,a%)y + (1/6)(p, 2°)y
Proof. Since g = ker v

5 o exp(g) = {Diag(exp(a1), -+ ,exp(en) 1) : S s = 0 } = Tr(y)

Let 99 C R™ be the orbit of p under Tr(t) then the tangent space to 9 at p is
pt. We use the height function h = hy oexp : g — R"™ where hy(y) = 1 (y) — 1 (p);
then

h(z) = —(p) + (exp(x) +Z

The terms of degree 0 and 1 vanish, because (p, 2°), = z/J(p), and (p, x), = 0 since
x €pt. O

The proof of the following is in Section

Proposition 6.6. If (\,k) € A, then [J(®y )] = [Ir.] € T(V). Moreover in
the diagonalizable case Ao > 0, and (V,J(®y )) is similar to (g, Jy) where ¥ is
determined in the proof.

Lemma [6.7] shows how the weight data v determines the calibration. The cubic
term c in the 3-Jet J = g + ¢ is a weighted sum of the cubes of the weights &;, see
[B9). Later we will see that one can recover these weights from [J]. In general a
polynomial might be the sum of cubes in distinct way, but see [22] and Theorem
(1.4) in [23] for a uniqueness statement concerning the expression of a cubic as a
sum of cubes in some special cases. The proof of the following is in Section

Lemma 6.7. Ifn > 3 then there is a map K : R,, — P®S*V such that [Kov] = [J]
and K is continuous and proper. If p is a marked translation group and x = v(p) =

([€os -+ én—1], B) € Ry, then K(z) = B(p) + c(p) with

()= (1/3) & (&), +2) ") w= (66,

i=0
Corollary 6.8. J: 7, — P ®S*V is continuous and proper.

Proof. By (&.5) hol™' : Rep,, — 7y, is a homeomorphism and by (6.7) K : R,, —
P@S?V is continuous and proper, and v : Rep,, — R, is homeomorphism by (L.2);
thus J = K o v ohol™! is continuous and proper. ([l



140 S. A. BALLAS, ET AL.

It remains to show that the shape invariant [J] = [¢ + ¢] determines a unique
generalized cusp. The method used is to show that the local maxima of the cubic,
¢, restricted to the unit sphere of the quadratic, ¢, enable one to determine .
This follows from Lemmas [6.9} for the diagonalizable case and [6.10] in the non-
diagonalizable case. The proofs are in Section [8

Lemma 6.9 (Diagonalizable case). Assume n > 3. Given ¢ € A,, let (R",Jy, =
g+ c) be the calibrated vector space with Jy(z) = (1/2){p,2%)y + (1/6)(p, z3).
Let g={x e R" : (p,x)y =0}, and S ={v € g: (v,v)y =1}, and s = 1);. For
1 <i < n define v; = (se; — Pip)/||se; — ip|ly. Then
K ={xeS:(c|S) has a local maximum at x} = {v; : 1 <i<n}

Moreover © # j = o = (v;,v;)y < 0. If 1 < i,j,k < n and i, j,k are pairwise
distinct then
11— 2¢i/s

1-— ’(/)1/5

(i) /s = aijaik/(aijaik - Ozjk), (i)  6c(v;) =

Also |[K*t|>n—1 where KT ={ve K: ¢(v) >0 }.

Observe that the calibration determines K and thus the vectors v;, and the
inner products c;;. Then (i) shows that v is defined up to scaling by this, and
(ii) can be used to determine the scaling. For the corresponding result in the non-
diagonalizable case, it is more convenient to work with ¥, o instead of (y, since the
calibration is J = ||v|? + (1/3) 3 \iv3.

Lemma 6.10 (Non-diagonalizable case). Given A = (0,A1,--+ , A1) € Ay, let
J() = |[v]|? + c(v) where ¢ = (1/3) Y A\jv? and S = {v € V : Y v} = 1}. Then
J((I))\’o) = 19)\’0 = J(’U) and

Kt ={veS:(cS) has a local mazx at v, and c(v) >0} = {e; : \; > 0}

Moreover c(e;) = \i/3 for e; € KT, and if a # b € Kt then (a,b) = 0, and
|[KT|=t—-1<n-1.

The subgroup O(2,b) C G(Q) that stabilizes b € I is conjugate to the subgroup
O(n) € GLV that preserves V, by (2.14). The following shows that the latter is
the same as the subgroup that preserves J. These results are keys steps in showing
n and [J] are powerful invariants.

Lemma 6.11. If6 : V — T is a marked translation group then O(J(0)) = O(n(9)).

Proof. This is easy when t = 0 since the generalized cusp is standard, and the cubic
term in J is 0. Thus we may assume t > 0 and then by (2.14) O(n(f)) C GLV is
conjugate to the stabilizer of the basepoint in PGL 2. Since J(#) is preserved by the
latter O(n(8)) € O(J(0)). To show the reverse inclusion, by (2.5)(c), every marked
translation group is given by B((y o A)B~! for some A € SL*V and B € Aff(n).
Now O(J(6)) and O(n(#)) are both unchanged under conjugation by B. Moreover
J(@oA)=J(f)oAandn(doA)=n(f)oA. Thus is suffices to prove the result for
0 = Cy.

Suppose J = g + ¢ where ¢ = [ is the horosphere metric on V' given by (y
and O(q) € GL(V) is the subgroup that preserves ¢g. Set t = t(¢). Let W =
{& € V* : 1 < i < t} be the set of non-zero Lie algebra weights for ¢,. Then
O(n(¢y)) is the subgroup of O(g) that preserves the character x = x(({y), and
O(J(¢y)) is the subgroup of Sim(g) that preserves the cubic c¢. Arguing as in (2.14))
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O(J(¢y)) € O(q) since t > 0. The result will follow by showing that preserving x
is equivalent to preserving W is equivalent to preserving c.

By (2.13) preserving x is equivalent to preserving the characteristic polynomial
G =c¢,. Let WT D W be the multiset of all Lie-algebra weights of the linear part
of ¢p. Then W] = n and W contains the zero weight with multiplicity n—t. The
coefficients of G are the elementary symmetric functions of the elements of W.
Thus preserving G is equivalent to preserving W. By [B9) ¢ = (1/3x) ZA;QQO’.
Thus if W is preserved, then c is preserved.

For the converse, suppose ¢ is preserved. When t(A) < n then by (6.10) O(J(¢y))
preserves KT = {e; : ¢; > 0} and since c(e;) = 9;/3 it follows that O(J((y))
preserves S = {w;e; : 1 <i < n}. It follows that W is preserved in this case.

This leaves the case t(A) = n. By (6.9) O(J({y)) preserves K and therefore
permutes the coordinates of 1. Moreover the formula for ¢(v;) in (6.9) shows that
c(v;) = c(v;) if and only if ¢; = 1;. Comparing this to (3.5) one sees that the
weights are preserved. Thus O(J((y)) preserves W. O

We now have the ingredients to show that [J] determines .

Lemma 6.12. Ifn >3, and A, A’ € SL¥V, and [J(Cy 0 A)] = [J(Cyp 0 A')] then
=1

Proof. In what follows we scale J = ¢ + ¢ so that ¢ is unimodular, and talk about
this calibration instead of its projective class. Let S = {v € V : ¢(v) = 1} and
K C S the set of points at which ¢|S has a local maximum, and let Kt C K be
the subset where ¢ > 0. Observe that |K | is an invariant of the similarity class of
a cusp space.

Let (-,-)4 be the inner product on V' determined by ¢. Then the set {{a,b), :
a,b € Kt} is also an invariant of the similarity class. By (6.6) the calibration
on a marked translation group is similar to some 9, ,, and in the diagonalizable
case also to some Jy. First suppose |[K*| > 2 and choose two distinct elements
a,be KT.

Case 1 ((a,b)qy = 0). Then (6.9) implies that t < n, and (6.10) implies the coor-
dinates of A are given by c(v) as v ranges over K. Moreover v¢; = 1/A\? so 9 is
determined by [J] in this case.

Case 2 ({(a,b)q # 0). Then (6.10Q) implies t = n, so (V,J(¢y o A)) is similar to
(9,Jy). It follows from (6.9)(i) that J determines ¢ up to multiplication by a
positive scalar.

Thus we may assume ¢’ = sy with s > 0. By 2.5)(a) (sp = (p o ((sL B 1y).
If [J(Cy o A)] = [J(Cyr o A')] it follows that [J((y)] = [J({y © B)] where B =
((sIy)®I4)A’A7L. Thus B € O(J(¢))), so det B = £1. Since |det A| = |det A’| = 1
it follows that det((sI,) I,) = s* = +1. Thus s = 1, so ¢’ = ).

Case 3 (|JK*| <1). If t = n then |KT| > n —1 by (6.9). Since n > 3 it follows
that t < n which contradicts t = n. The result now follows from (6.10) as before.

O

Lemma 6.13. Suppose p,p’ : V. — Aff(n) are marked translation groups and
n>3. If [J(p)] = [J(p')] then p and p' are conjugate.
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Proof. We may assume p = (y o f and p’ = (g o f' with f, f' € SLE V. It follows
from (6.12) that ¢» = ¢’. Then [J(p)] = [J(p')] implies f~' o f" € O(J((y)), thus
f~to f € O(n(¢y)) by 6II). Hence p and p’ have the same complete invariant,
and so are conjugate by (2.16). O

Theorem 6.14. Suppose n > 3. Let T, be the space of marked generalized cusps
homeomorphic to T" 1 x [0,00). The shape invariant J : T, — Jp is a homeo-
morphism. Moreover K : R,, = J, is a homeomorphism.

Proof. By (6.13) J is injective. By (6.8) J is continuous and proper. The image
of J is contained in 7, by (6.6), and surjectivity follows from the proof of [6.6]
Moreover 7, is homeomorphic to a subspace of Euclidian space and is therefore
locally compact and Hausdorff. Also 7, is locally compact by (43), so J is a
homeomorphism by B.1). Now J = K owv, and v is a homeomorphism by (1.2),
thus IC is a homeomorphism. O

Proof of L3l J = K ov where J and K are both homeomorphisms by (6.14), and
v: Tn — Ry is a homeomorphism by (L.1). The second component of v is a map
7, : T, — P that is a trivial bundle by (L2). So 7 =7, 0J 1 : J, — P is also a
trivial bundle.

The fiber of 7, is a closed cone C' C S* V described in the proof of [L2] So the
fiber of 7 is J(C') and is homeomorphic to C' using the restriction of J. The cone
structure on J(C) can be seen directly as follows. The expression for the cubic ¢ in
(6.0) has the property that if the weights are all multiplied by s > 0 then the cubic
is also multiplied by s. ]

6.1. The affine normal. Refer to chapter 1 of [20], see also [19] and [16l Lemma
4.1]. Suppose S C R" is a smooth strictly convex hypersurface and p is a point in S.
Then the tangent hyperplane to S at p intersects S only at p and S lies on one side
of P. An affine normal to S at p is vector 0 # v = v(p) € R™ with the following
property. Given § > 0 let P(4) be the hyperplane parallel to P on the side of P
that contains .S, and distance ¢ from P. Let x(d) be the center of mass of SN P(J).
Then (z(0) — p)/d converges to a non-zero multiple of v. We also require that v
points to the convex side of S. Then v is defined up to positive scalar multiples.

It follows from this that affine normals are preserved by affine maps: if A is an
affine map of R™ then A(v(p)) is an affine normal to A(S). Since affine maps are
not conformal, the affine normal is not in general orthogonal to S at p. A convex
hypersurface in R™ is an affine sphere if there is a point b € RP™ such that every
affine normal passes through b.

There is a decomposition S?’(R") = I, ® Xy, into the harmonic cubics J,, and
the radial cubics %, given by

A ={peSR"): Ap=0},  Bn={|z|*v,z): veR"}

The group O(n) acts on S*(R™) preserving this decomposition, and by [24, Theorem
0.3] the action on each summand is irreducible.

The material from here to (6.17)) is not used in this paper, so we have omitted the
proofs. It is included to avert a possible misperception. The map 7 : S (R") — R™
given by m(p) = (2n + 4)"'V(Ap) is projection onto %, followed by the map
|lz||*(v, ) + v. More generally, if 3 is a positive definite quadratic form on R"
then there is an isometry L € GL(n,R) from || - ||? to 8. Hence L(.%,) and L(%»)
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are preserved by O(8) and 7, = Lowro L™ : S3(R™) — R™. The following says
that the affine normal is the radial part of the cubic term in a Taylor expansion.

Proposition 6.15. Suppose U C R™ is a neighborhood of 0 and f : U — R is C3.
Let S C R be the graph of f and suppose f(z) = B(z) + c(z) + o(||z||®) and
B € S2R™ is positive definite, and ¢ € S>R™. Then an affine normal to S at 0 is
€n+1 — (Qn)_lﬂﬁ (C)

This can be deduced from formula (3.4) on page 48 of [20]. This formula goes
back at least to 1923, see Blaschke [4].

Recall that the radial flow ® : R — Aff,, for a generalized cusp lie group G(2)
centralizes it, and ®,(2) C  whenever ¢ <0, see [2], (1.11)]. If § = @) , the radial
flow is ®;(z) = z—tey if t < n, and otherwise t(\) = n and ®;(z) = e ‘(z—C)+C
where C' € R" is the center of ®. Refer to () for the definition of 7 and Hj in
the following. Now we may assume that Q = Q(A, k) in (8.5) and b = 0 and Hj, is
21 = 0. Then 7(x1, - ,x,) = azx; for some a > 0.

It is more convenient in the following to redefine the radial flow when t = n to
be & : (—1,00) — Aff,, given by ®4(z) = (t+1)"- (2 — C)+ C. Then D is always
the identity and I = R or (—1, 00) is the domain of ® as appropriate.

Then FF'=60 x ® : V x I — R"™ are coordinates on a subset of R™ that contains
Q. In these coordinates the height function hy describes (an open subset of) Hy as
a graph over 0X) rather than vice versa, as one might naively imagine.

Lemma 6.16. Scale 7 so that if t < n then 7(x1, - ,2n) = 21 and if t = n then
7(C) = =1. Then F(V x0) = 9Q and F({(v,t): t =hg(v)}) C Hp.

If J(0) = [8+¢] then (6.15) implies that 5 and the radial-cubic part of ¢ determine
the affine normal to F~(Hj,).

Proposition 6.17. Let ||| be the standard inner product on V', and let 0 : V. — T
be a marked translation group, and let S be a horosphere for T, and ® a radial flow
for 8, and J(0) = B + ¢ with 8 unimodular. The following are equivalent

(a

flow lines of ® are affine normals to S.

)
(b) S is an affine sphere.
(c) ¢ is harmonic with respect to f i.e. m,(c) =0
(d) T is conjugate to Tr(s,---,s) with s > 0.

Proof. Flow lines of ® limit on the center of the radial flow, so (a) = (b). For the
converse, assume S is an affine sphere with center w € RP™. Then T fixes w. If the
affine normals to S are parallel, then S is an elliptic paraboloid, [5], [21]. In this
case T is conjugate to Tr(0,---,0), and w is the center of ®. Otherwise w € R™.
Thus T is diagonalizable. We may assume 7" = Tr(y) with all the coordinates of
¥ > 0 and w = 0. Again w is the center of ®. Thus (b)=(a). In this case we
claim ¢ = (s,---,s). This is because S is an affine sphere asymptotic to the sides
of a simplex, and by [7] it follows that S is unique up to affine maps preserving the
simplex. Thus (b)=(d). For (d)=-(b) when s = 0 then S is an elliptic paraboloid
and when s > 0 then S is defined by [[«; = 1. These are well known affine spheres.
It remains to show (c)<(d). Using (6.2) we may assume

n—1

J=[B+d  B) =PI+ {v,r)?  3e(v) = Ao, k) + Y Niv}

i=1
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If Ao = 0 we may choose £ = 0 then ¢ is harmonic with respect to (v) = |v||?
if and only if A = 0, showing (c)<(d) in this case. Otherwise A\g > 0. First we
perform a linear change of coordinates on V so that 8(v) = ||v||?.

Let T € GL(V) be defined by T(v) = v + a(v, k)k where o = ||| 72(=1 + (1 +
[|%]/2)~1/2); then B(Tw) = ||v||?. Now we compute the cubic 3\;'(c o T) using the
Hadamard product on V, and k; = \; /Ao .

3G (co T)o = —(Tv, k) + (571, (T0)®)

= (v, 5)° + 3afv, K)[lu]* + (7", 0%)

—(2+[I8]*) +2y/1 + [|s[]?
]t/ 1 + (]2

where = —(1+ a||f<a||2)3 +3a% +a|k|? =

Set m = dim V; then
3\ 'V (coT) = (675 + 3a(2m + 4)) (v, k) + 6(x™ ", v)

= (6u,v)
where u=— m2 + ||/i||2—m k4Kt
&1 k)21 + [[5]2

Then coT is harmonic with respect to | - ||* if and only if u = 0. Since u is a linear
combination of x and k™! it follows that x = s(1,---,1) for some s € [0,1]. Then

|£]? = ms? and u = 0 implies

(5_2 +m(s? —1)/ms*\/1+ ms2) s=s5"

This implies s — 1 = 0. Hence s = 1 so x; = 1 and \; = A\g. Thus (¢)<(d) when
Ao > 0. O

7. THREE DIMENSIONS

In dimension 3 every generalized cusp is equivalent to 2y ,/I' for some lattice
inT C T(\ k), and 9Q) 4 is the orbit of 0 under T'(\, k). From (B0) in the proof
of [3.5 one sees that in dimension 3 9Q, , is the graph y = f(z1,22) in R? shown
below where for t < 3 we have chosen k = 0.

t f)\ (1‘1, .1?2)

A7y + Ay e + A2 (—2 (1 Ay )~ R0/ M0% (14 )\2372)_(/\0/’\2)2)

)\flfcl - )\fz log(1+ A1) + )\glfcg - )\EQ log(1 + Aoxs)
27 /2 4+ Xy Teg — Ay P log(1 + Aawa)
(21 +23)/2

The function fy varies continuously with A on the subspace A9 = 0, and is also
continuous when Aj, A2 > 0 are constant as Ao — 0, but is not continuous in
general. This family of surfaces only varies continuously with A subject to these
constraints.

A Euclidean torus is determined by a parallelogram in V' = R? of area 1. This in
turn determines the quadratic form . Using 8 we may identify a Lie-algebra weight
in V* with a vector in V. Thus a generalized cusp in a 3-manifold is specified by
this parallelogram, together with three vectors a, b, ¢ in V satisfying (a,b) = (b, c) =
(¢,a) = w < 0 (see Figure[l). The Lie algebra weights of the holonomy are given

Ol N W
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by & (x) = (v,x)g where v € {a,b,c}. The cusp is diagonalizable if and only if
w < 0.

Two such collections of data define equivalent cusps if and only if there is an
isometry of R? taking one parallelogram to the other and that permutes the set of
vectors {a, b, c}. The type of the generalized cusp is the number of non-zero vectors.
The dual vectors in V* are harmonic 1-forms that represent elements of H'(7T?;R)
and determine the cusp geometry defined in (2.17).

\(

Type IR 3

FIGURE 1. Generalized cusps in dimension 3

There is a decomposition S*(R?) = % @ %> into harmonic and radial cubics is
given by

My = (x(x® = 3y%),y(y* — 32°)), o= (z(2” +y°),y(=® +¢?))

with coordinate projections 7, and m,. By (6.17) the cubic is harmonic with
respect to § if and only if the holonomy is conjugate into Tr(s, s, s) for some s > 0.

Regarding V = R? = C via z = z + iy, and recalling that the real part of a
holomorphic function is harmonic, it follows that

A = {Re(hz®) : h € C}, Ry = {Re(rz|z|?) : r € C}
This gives an isomorphism of real vector spaces 6 : C2 — S*> R? given by O(h,r) =
Re(hz® +72|2|?). The action of SO(2) 2 U(1) = {w € C: |w| = 1} on S* R? is then
w.0(h,r) = O(w3h,wr). The standard Euclidean structure on C? gives an inner
product on S*R? given by [|0(h,7)||> = |h|? + |r|?, and SO(2) acts by isometries.
Let 3o be the quadratic form z2 + 3% on R2.

Theorem 7.1. The image of the embedding J : T3 — P(R?) x S3R2? is
J(Ts) = {(A'A,co A) € P(R?) x B2 : |mye| <3|m,cl, A€SLER)}
Moreover |m,c| = 3|7, c| gives the subspace of non-diagonalizable generalized cusps.

Proof. In this proof we identify S*R2 = C2 using 6, and T3 = Rep; using the
holonomy. There is a surjection As x SL*V — Rep;. The action of A € SLEV
on T3 defined in (I6) is conjugate by J to the action on P(R?) x S*R given by
A-(B,c) = (Bo A7t co A1), This action preserves the product structure. The
stabilizer of Sy is O(2).

Claim 1. Suppose (A, k) € Az and A = (Ao = 0, A, A2) and £ = 0 and ¢ = (P x)
is the cubic. Then 7, ¢ = z and 7,c = 3Z where z = (A1 + iX2)/12.
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Definition B.4] the Lie algebra weights are & = \ef for i € {1,2}, and { = 0.
Using Lemma [6.7] then x = 0 so » = 1 and formula ([B9)) gives
3¢ = A6+ A28 = Mi(e])® + Aa(e3)® = M + Aoy
Expressing this in terms of the generators of % and %5 gives

12¢ = A [2(2? = 3y?) + 3z(2® + 42)] + Xo[y(y® — 322) + 3y(a® + ¢?)]

So
12h = Mz(z® — 3y°) + Aay(y® — 327) 12r = 3\ z(2® + 9°) + 3y (a® + v?)
=Re (A1 +1iX2)z%) =Re (3(\1 —iX2)z|z[?)
127 (c) = A1+ i 1275 (c) = 3(A\1 — iA2)
This proves Claim [ |

Now 73(3) is the stratum of diagonalizable cusps, so B = T3 \ T3(3) consists of
all marked generalized cusps with non-diagonalizable holonomy. Let 7 : P(R?) x
S*R — P(R?) be projection and consider the subspace N = BN (7o .J)" 6y C T3
of non-diagonalizable holonomies for the standard quadratic form By = || - ||2.

Claim 2 (J(N) = {(Bo, h,r) : |r] = 3|h|}). If [p] € N then [p] = [P0 o A] with
t(A\) < 3 and A € SO(2). Under the identification V' = C, the action of SO(2) on
V is given by the action of U(1) on C. If J(® ) = (#,3%), and A is rotation by 6,
and w = exp(if) then J(®y o0 A) = (wz, 3wZ).

Since A1, Ag > 0 then z = Ay 4+ i)y = |z|exp(ig) is arbitrary subject to ¢ €
[0,7/2]. We need to show that given h,r € C with |r| = 3|h| there are z,w € C
with |w| = 1 and z as above such that (h,r) = (w32, 3wZ).

Let h = |h|exp(ia) and r = 3|h|exp(f) then |z| = |h|. We need a = 30 + ¢ and
B = 60 — ¢ where = means mod 27. Thus 40 = o + 5. There is 6 € [0,7/2] with
this property. The second equation implies ¢ = 6 — 3. Rewriting the first equation
gives

a—30=a—-30+40—a—-p)=0—-0=¢
The astute reader may notice that there are two solutions of 40 = 0 in [0, 7/2], and
they give different values for ¢. Thus w and z are not always uniquely determined,
even though h and r are. This proves Claim [2
Using the action of SL'V on 73 then B is the orbit of IV so

J(B) ={(B,¢c) € P(RQ) x $3R? : ¢l =3|m,.cl, BE€P}

Consider f : P x C? — R given by f(B,h,r) = 3|h| —|r|, and set P = T3(3). When
A = (1,1,1) then (6.17) implies the cubic is harmonic so r = 0, and h # 0 thus
J(P) contains a point where f > 0. Since J is injective, J(P) C C?\ f~1(0). By
(4.8) P is connected, so fo J(P) > 0.

By (6.8) J : T3 — P x C? is proper, and the domain and codomain are locally
compact, thus J(73) is closed. By (4.8), P is a 6-manifold without boundary. Since
J: P — P x C?is an embedding, and P x C? is a 6-manifold, J(P) is open by
invariance of domain. Hence J(P) = f~1(0,00). O

Proof of [L7l Let U C SL(2,R) be the subspace of upper-triangular matrices with
positive eigenvalues. Then g : U — P given by g(A) = A'A4 is a homeomorphism.
Let G = ¢! and

C={ce S3R?: |7 el <3|m,.cl }={(rh) € C?: |r| < 3|h| }
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Define f: P xC — P x S*R? by f(Q,¢) = (Q,co G(Q)). The SL(2,R) orbit of
C x {Bo} is all of T(3), so the image of f is J(73). Hence f is an embedding, since
it has inverse f~3(Q,c) = (Q,co (G(Q))™1).

If A= G(Q) then f(Q,c) = (Q,co A) and, using the action of A € SL(2,R) on
shape invariants,

A f(Q.0) = ((A)71QA™ (coA) o A7) = (I, ¢)

so f~toJ : T3 — P x C is a homeomorphism because J is an embedding. There
is a homeomorphism h: P - H ={z€ C: Imz > 0 } given by h(Q) = aa(%)
where A = G(Q) and a4 is the M&bius transformation corresponding to A. Then
O=(hxIg)oftoJ: T3 — H xC is a homeomorphism. O

Now we describe the strata of 73. Let m : 73 — P be projection. The fiber
71(By) is the cone F = {(h,r) € C? : |r| < 3|h|} stratified as follows. For
k€ {0,1,2,3}, let Ty, = T3(k) N7 1(By). Then Ty = (0,0) € C? is the cone point,
and 71 = {(w®|w|~2,3w) : w € C\ 0} is the open cone of a (3,1) curve in S* x S*.
In this case ¢ is the cube of a linear polynomial. Also Tp = dF — (Ty U Tp), and
T3 = int(F). The stratification is preserved by the action of SL(2,R) which also
preserves the fibering and acts transitively on the base space P.

8. DEFERRED PROOFS

Proof of 211l The character and Lie-algebra weights can be read off from Defini-
tion[2.4] To compute 5 we use (&) with basepoint b = (e1 +---+et) + e,41. When
r=t<n from (2.4)

t n—1 n—1
pop(v)—b ="y (exp(trv;)—l)ei+ Y U16i+1+< Z%Uz (1/2) Y Uf) et41
i=1 1=t+41 i=t+41

Computing u; = (Oug,p/0v;)y=0 gives

(U, yup—1) = (Pre1 — Yregq1, Peea — Poeppr, -+ ,Pper — Peey1, ee42,  €n)
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By (@) ho(v) = £det(ug, -, un—1, 1o p(v) —b) gives

b exp(thev) — 1
" exp(ifyuz) - 1
. " exp(teve) — 1
holv) =Fdet | L g 0 - 0 - S i+ (1/2) ) v
1 Vg4+1
1 Un—-1
" exp(eun) — 1
by exp(Yyvg) — 1
= det ) :
Uy exp(yeve) — 1
—h —thy e by — S v+ (1/2) 22;11 v}
t n—1
=t Z%(GXP(U%W) — 1= ) + (1/2)" Z vy
i=1 i=t+1

Taking the second derivative of hy(v) at v = 0 yields

t n—1
B=pr > gidv? + et Y do?

i=1 1=t+41

Observe that the matrix of 5/ = 7,/)t_(t+1) B is diagonal in the standard basis and
det 8’ is as claimed. From this it is clear that the Lie algebra weights &; are pairwise
B*-orthogonal. Thus their duals are pairwise S-orthogonal.

By Definition [2.4] the non-zero Lie algebra weights are §; = ¢¢e] with 1 <i < t.
Now (z,e;)g = ief(x). Let v = det(8)~1/"71 then B = v- B so (z,e;)p =
~ypier(x). Thus the dual of & € V* with respect to § is

(24) & = (i) e €V
and
(25) [€ill g = B*(&:)

= B((vs) " ees)

= ((y¢i) e )?B(eq)

= (v %9; 2g)vB (ei)

= (v )
(26) SRR A

If t = n choose basepoint b =e1 + -+ e,41; then

.uQ,b(U) —b= i(eXp(d)nﬂi) - 1)62' + (eXp <_ i 1/%%‘) - 1) €n

i=1
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thus u; = (Opep/0vi)v=0 = ¥ne; — Y;e,. Then (@) gives

wn eXP(¢nv1) -1
he(v) = d ' :
e(v) « Un eXp(d’nvn—l) -1
—py =Py o =,y exp(— S0 ) — 1

n—1 n—1
=YY i (exp(daor) = 1) +up (exp (— > w) - 1)
=1 i=1

Taking the second derivative at v = 0 gives
_ n—1 n—1 2
B=on | > thidv} + " (— > wm)
i=1 i=1

Then 8" = ¢, ™ 5 gives the form shown in the proposition. Now

1 (hn + 1) P11ho E Y11
, (CPX Va(n + ¥2)  aths . Vathn—1
1%5 = :
¢7L—11/)1 e 1/}n—1¢n—2 wn—l(djn + 1/%—1)

The determinant of this matrix is a polynomial of degree 2(n — 1). Row ¢ has a
factor of 1;. The sum of the rows is a multiple of ¥ 4+ s - - - + ¢,,. Setting ¢, =0
gives a matrix of rank 1 so ¥"~2 is a factor. Hence

det(¢n5/) = 041/11 e 1/}n—1 272(1 + 1/)1 + - d’n—l)

for some constant a. Equating coefficients of 17! gives o = 1. Thus

det 8" = 1 - p19y (191 + - Y1)
O

Proof of B.5l (a) Givenv = (v, ,v,_1) € V define vy € V by A\y vo+--- At v,
= 0. Let

D S ST P Xovg 0 .- 0
0 1 0 0 At 0 XMNvi O 0
P=1o o . o0 > =l o o - 0 :
0 0 0 TR W 0 0 Ap1Vn1 O
0 0 0 0 1 0 0
then
0 v o0 Vpg 0 L=t =Xt o
0 )\11}1 0 U1 0 0
P 'rP=1y o 0 o |+ Aowo
0 0 0 )\nflvnfl Un—1
0 0 0 0 0 .- 0



150 S. A. BALLAS, ET AL.

Now )\alvo = —)\flvl cee— )\gilvn,l so vg = —(kK1v1 + -+ + Kp—1Up—1) = —(V, K)
where k; = Ag/A;. Then
0 V1 VUn—1 0 —Xo K1 o+ Kn-1 O
0 )\1’01 0 e U1 0 e 0
P 'rP= 0 0 0 N R A
0 0 0 An—lvn—l Un—1
0 0 0 - 0 0 s 0
= ¢xx(v)

Set R = expr then @), = P"'RP. From (2.4) using

f(v1> e 7’U’n71) = )\8()\1'017 e 7)\7171,07171)7

Y ANV 0 0
0 YnXedova 0 0
0 0 0
Gy (fv) =exp
0 ¢n>\3>\n71vn71 0
D DD YD
0 0
Using ¥, A3 = 1 and ¥;\; = /\i—1 gives
)\1’()1 0 te 0
0 )\2’02 0 0
0 0
Cy(fv) = exp
0 An—1Un—1 0
_)‘(2) 22:11 )‘Zlvi 0
0 0

By the definition of vy above we have —\3 E?:_ll /\Z-_lvi = Aovo. Let M € GL(n +
1,R) be defined by

M(xlal" 7xn+1):($n7x1,"',xn_17xn+1)
Then
)\0’[)0 0 s 0
0 Avr 0 0
M7y (ju)M = exp | 0 0o | =R

0 )\n—lvn—l 0

0 0
SO
(27) MGy o )M = R= PPy, P~}

Set @ = M P; then Q®, Q' = (y of as asserted.
To prove (b) we exploit the fact that every @, , is a limit of the diagonalizable
ones above. Given an integer k > 0 define f;, : R? — R by
fe(s,t) = Zsj_ktj/j!

j=k
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This is analytic and fo(s,t) = exp(st), and for s # 0

fi(s,t) = 571(68t - 1), fa(s,t) = 872(6875 —1—st)

Also f1(0,t) =t and fo(0,t) = t2/2. For s > 0 the map fi(s,—): R — (=51, 00)
is a diffeomorphism when we interpret —0~! = —oo, and f2(s, —) : R — R is convex
and proper. Then

e)\o’uo * e * Z?;J )\Zlfl()\i, U’i)
0 eMv1 (... 0 fl()\lavl)
PT'RP=| 0 o 0 :
: : 0 ern1vn-t J1i(An—1,vn-1)
0 0 0 1

Set z; = fi(\,v;) and y = > i LA 1fl(/\z, v;). Write the last column of P~!RP
as (y, 21, ,2n_1,1)T. Now

(28) )\alvo = —()\flvl 4+ )\;Elvn,l)

Observe that s~1fi(s,t) = fa(s,t) + s~ 1t. Thus

n—1

(29) /\alfl()\o, 1)0) = fg()\o, 110) + )\511)0 = fg()\o,vo) — Z /\i_lvi

i=1

Then

n—1
y=>_ AN v)

i=0
n—1

=Xy ' f1( Ao, vo) + Z A (i)
i=1

<f2 o, Vo) — Z)\ ) + Z fa(N) + A7 vz) using (29)
(30) = Z fa(Xis i)
i=0

The orbit of the origin under T'(\, ) is a hypersurface S = S(A, k) in R™ that is

the locus of the points (y,x1, - ,2,—1) as v varies in V. Solving x = f1(¢,v) for v
gives
(31) v="h(lx):= L "log(1l+ L)

This defines h(¢,z) whenever 1 + fx > 0 and ¢ # 0. Observe that h(¢,z) =
x+£-0(2?), so if we define h(0, x) = x then h is analytic on the subset of R? where
1+ ¢z > 0. Define g(¢,x) = {=2(fx —log(1+¢x)) for 1+ ¢z > 0 and £ # 0. Observe
that g(¢,7) = 2%/2 4+ O(23), thus if we define g(0,2) = x?/2, then g is analytic for
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14 4x > 0. Then
f2(,v) = fa(€, 07  log(1 + L))
= 6_2(66671 log(1+£x) _ 1 _log(1 + £x))
= (72 (x —log(1 + L))
(32) =g, )
The hypersurface S = S(\, k) is given by

n—1
Yy = ZfQ(Aiavi) by (B30)

i=0

n—1 n—1

= /2 (Ao, = /\Zlvi> + Y g, w)
i—1 i=1
n—1
Cve = —Xo Z A & fa(Nisvi) = g( N )

i=1
n—1 n—1
= f2 (/\07 -> Hih()\i,l‘i)> + Y g w)
i=1 i=1
VU = h()\“l‘l) & KR; = )\0/)\,
=: F(\ K, x) definition
Here © = (z1, - ,2p—1). Up to this point we have assumed (\, k) € D,, so every
A; > 0. However the function F' is defined and analytic whenever (A, k) € A,, UD,,
and 1+ \z; > 0 for all 7. It follows that y = F(\, k,z) defines a hypersurface
S(A, k) for each (A, k) € A,.
Also S(A, k) is the orbit of 0 under T'(\, k) whenever (A, k) € D,,. Since A,, C

clD,, and ®) . is a continuous function of (A, k) it follows that S(A, k) is the orbit
of 0 under T(\, k) whenever (A, k) € A,,. For fixed (A, k)

h(\i, ;) = z; + O(2?) by (B1)

n—1 1
Z I{ih()\i, :ci) =
i=1

n

ki(zi +O(27))

(]

k) + O([l[|*)

— o~

Using this and fa(\, ) = 22/2 + O(a?) gives

f2 (Ao, - Z_: mh(Ai,ri)> = (1/2)(k, 2)* + O(|||°)

Also
g(\i xi) = 27 /2 + O(x}) by ([B2)

n—1 n—1
F(\ k,x) = fa <)\0, - Z Hﬁ@m%‘)) + Z g(Xi,x;) by definition above
=1 =1

= (1/2) ({5, 2)* + [ll|*) + O(l|=[|*)
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It follows that S(\, k) is strictly convex at 0. Since T'(\, k) acts transitively by
affine maps S(\, k) is strictly convex everywhere. One checks that F(\, k, ) is a
proper function of x € {(x1, -+ ,2,—1) : 14+ Naz; > 0 } for fixed A\, k. Hence
S(, k) is properly embedded, and therefore bounds a convex domain (A, k) C R™
that is preserved by T(A, k).
By B1) v; = z; + O(2?); thus @, . (v) = (y,71, -+ ,2,_1) Where
y = (1/2) ({k,0)* + [[v]|*) + O(llv]*)

which gives the formula for the metric 4. The formula for the character x, , follows
immediately from Definition B.4] as the sum of the exponentials of the diagonal
terms. It only remains to compute det 5’. Now

B'(v) = (K, 0)* + ||v]®

Choose an orthonormal basis with respect to ||-||? of V' that contains /||x||. In this
basis 3’ is diagonal, and the only diagonal entry that is not 1 is 1+ (k,x/||x||)? =
1+ ||x[|?. Hence det 8/ =1+ ||x|*. O

Proof of [6.6] Suppose (\,k) € A,. First consider the diagonalizable case. By
B.5), @, is conjugate to (y o f, where 1, = )\52 and ; = ){2 for1<i<n-1.
This defines a linear map v : A — R and we have g = ker. Since J is an invariant
of conjugacy classes, we may replace @y .. by (yof. In this proof summation is over
the integers from 1 to n — 1. Consider the linear map f : R*~! — A given by

Ti=f(or, e vpm1) = (UJnUl, c Yo, — Z%‘Ui)
Then g = Im f = ker . Recall f(v1,--+ ,v,-1) = A3(A1v1, -+ , Ay—10n_1). Thus
fof(v) = N (Wahivr, - P Ano1vp-1, = Y bidivr)
= (M1, A1t —AG DA ) U AGYn =1 by BI)(a)
(33) = (M1, An—1Un—1, = Ao Z Kiv;) )\0)\;1 =k, by ([14)
It follows from Definition 2.4] that ¢, = é o expof. The calibration, Jy, on g is

given by (6.3])
(34) Jy(@) = (1/2)(p,2*)y + (1/6)(p, 2°)y
The calibration J = J(¢y 0 f) = J(doexpof of). By (63) Jy = J(d o exp), so

J = Jy o fof. The calibration J on V is obtained from this factorization by using
B3] to substitute z = f(fv) into ([B4).

(0, 2%y =D ilhivi)® + 4 (—Ao > Hivi)2
= va + (Z Iiﬂ}i)z AN =1 & P Ns =1

Let (-,-) denote the standard inner product on R"~1; then
(35) (p.a?)y = (v,0) + (v, K)°

and

(2% =Y i) + ¥n (—/\o vai)g
(36) =" Nv} = do(k,v)? N =1 & YA =1



154 S. A. BALLAS, ET AL.

Then (B3) and (B4) give
J(v) = (1/2)(p, 2%y + (1/6){p, %)y
= (1/2) ((v,0) + (0,5)%) + (1/6) (= Do, v)* + D Aiw?)

This gives the result in the diagonalizable case.

By (B.12) in the non-diagonalizable case we may assume 6 = @, ,, = expopy x
with Ag = 0 and Kk = 0. For 1 < i < n — 1 define v, = v; + (v,k)k;. By (8.4)
dak(v1, -+ ,vp—1) = D+ N where

0 0 0o .- 0 0 v w' - vy 0
0 Mvy 0 - 0 o --- 0 vy
D: . . . N: . .
An—l'Un—l 0 Un—1
0 e 0 0 e 0
Relabel the standard basis of R**! as eg,- - ,e,. Then 09 is the orbit in affine

space R” @ e, C R""! of 0@ e, under this group. We compute the series expansion
for exp(D + N)e, to degree 3.

exp(D+ N) =1+ (D+ N)+ (1/2)(D + N)?> 4+ (1/6)(D 4+ N)> 4+ O(|Jv||*)

Using that De,, = 0 and N3 = 0 and DN?¢,, = 0 gives
(37)
exp(D+ N)en = (I+ N + (1/2)(DN + N?) + (1/6)(D*N + NDN)) e + O(Jol| %)

In the following summation is over integers from 1 ton — 1
Ne,, = Zviei, N?e, = (|Jv]|* + (v, K)?)eq
DNe, =3 Avie;, NDNe, = (Z )\ivf’) €0, DNe, = Noole,

The only term linear in v; is Ne,, so the supporting hyperplane to 02 at 0 is the
coordinate hyperplane vy = 0 in R™. Thus in the definition of J we may take the
height function 7 to be the vg-coordinate, and it follows that J is the coefficient of

eo in (37)
Jeo = (1/2)N, + (1/6)NDNey = ((1/2) (Jvll? + (v, )2) + (1/6) > Aivf) o

Since Ao = 0 in the non-diagonalizable case, this is the calibration 9, , in (6.2) as
claimed. O

Proof of [6.11 We claim the formula for ¢(p) holds when p = @, ,,. By (6.6])

%J(‘I)A)R)(U) = (<U,U> + <’U,/@>2) + % (—)\0<U,/{>3 + z_: /\z’l}?>

i=1

Then J = g+ ¢, and the term s defined in (5.I) ensures that ¢ is unimodular. Thus

n—1
(38) c:=c(p) = 3% <—)\0<v, K)3 + Z Aw?)

i=1
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By (8.4) the weights of @, , are & = Xe) for 1 < i < n—1 and & given by
&(v) = —Ao{(v, k). Then (BY) becomes:

n—1
(39) Bc = A%
=0

By BD) X = (€3, &), + and @ = — (€1, €2+, 50 22 A% = (6, ) + )"
This proves the claim.

If A€ SL*V then c(po A) = c(p) o A and & (po A) = &(p) o A. Tt follows that
the formula holds for p = @5, o A. Every marked translation group is conjugate
to such p, and both sides are conjugacy invariants, so the formula for ¢(p) holds in
general.

The formula shows K is continuous. It only remains to show K is proper. Suppose
J(pm) is a bounded sequence, then we must show

K(pm) = ([£1(pm), -+ s &n(pm)], B(pm))

is bounded. Now B(p,,) and ¢(p,,) are both bounded, so it only remains to prove
the weights &;(p,,) are bounded. Suppose for a contradiction that some &;(p,)
is unbounded. We show that this implies ¢(p,,) is not bounded, which gives a
contradiction.

We may assume p,, = fI)i-(m)ﬁ(m) o B,, with B,, € SL* V. The matrix of B(pm)
in the standard basis of V' is B!, B,,. Since this is bounded, B,, is bounded, and we
may subsequence so B,, converges to Bs, € SLT V. It follows that the weights of
@f\-(m)ﬁ(m) are unbounded. Hence A(m) = (Apm.0, -+ , Am,n—1) is unbounded. Since
Am,i increases with 4 it follows that A, ,,—1 — oo.

The matrix of B(P(m),x(m)) is [+x @ £ and & € [0,1]"~* is bounded. Thus the
weights of ® (), x(m) are unbounded. The weights determine the cubic via B9 and
& =Nl for 1 <i<n—1,and &(v) = —Ao(v, &) = —Ao S0, AoA; v, We now
evaluate this cubic at the point v,, = ep—1 — t;p(e1 + -+ 4+ ep—2) € V where t,, is
chosen so that (k,v) = 0. This simplifies the first summand in [B9) to & (vy,) = 0.
If t < n then we may choose xk = 0 and t,, = 0.

If t = n since A\, p—1 2> Ay for all 4 and &; = )\0)\;1 it follows that k,_1 < k;
for all 7. Now t,, is determined by

n—2
0=<I£,U>=Kn_1—tm2/£i & Kk; >0

i=1

implies 0 < t,, < 1/(n —2). In what follows we omit the subscript m from A, ;.
Setting v = v, in (B9) and recalling that & = ;e gives

(40)  3sec(® ) <Z A2 ) 02 )P =N — £, LZ Ai
Since \; < A\,—1, and ¢, < 1/(n —2),
(41) 35¢(®x ) (V) = An—1(1 = (n = 2)/(n - 2)%)

Since 0 < k; < 1 it follows that ||n\| <n—1; thus > = (14 [|&]>)Y D < 1402
If n > 3 then (1 — (n—2)/(n—2)3) > 0. Usmg An—1 —> 00 as m — oo and x is
bounded, it follows that ¢(®, ) is unbounded, a contradiction.
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This leaves the case that n = 3 then (B8) gives
33c(®rw) (@, y) = Ma® + Aay® + A5 2 (= Ao ((Mo/ A1)z + (Ao/A2)y))?
The coefficients of this cubic are
(A2 =A% =3X5/(MA3),  —3Ag/(ATAz), (AT = Ag)AT”

Since ¢ is bounded we may assume each coefficient has absolute value at most b.
The second term gives A4 < b-A;A3. Then A3 — A3 > A3 —b- A\ A2 But Ay > \; so
A=A = A3 — b MA3 > A — b A = A3 (Mo — b)

Hence Xy — b < (A3 — )\3)/\2_3 < b, s0 Ay < 2b. Since \; < A for ¢ = 0,1 it follows
that all the A; < 2b. This is a contradiction. Hence K is proper. (]

Proof of 6.9 Let L={s-e;:1<i<n, s>0} be the set of positive coordinate
axes in R™ and 7 : R™ — g orthogonal projection with respect to (-,-),. We will
show that the local maxima of (¢|S) are the points (7L) N S.

Write J = Jy. Since ¢|S = 1 it follows that J|S = 1+ ¢|S . First we find the
critical points of J|S. The derivative of J at v € R™ is
(42) AT, (w) = (o, w)y + (1/2) (0%, w)y
If v € S then w € T,S if and only if (v,w)y = 0 and (p,w)y, = 0. Thus v is a
critical point of J|S if and only if

Yw € R" ((v,w)y =0 and (p,w)y=0) = (v}, w)y, =0
This is equivalent to
Ja,BER v?=av+ Bp

Writing v = (21, -+ ,x,) then each z; is a solution of t* = at + 3. Let s, be the
two solutions of this quadratic and set

Ay ={i: 1<i<n v, =s_}

Thus {Ay, A_} is a partition of {1,---,n} and i € A if and only if v; = s, . Let

€1, ,e, be the standard basis of R™ and define

(43) ei:Zei so  p=e, +e_
iCAy

then

(44) v=wv(Ay) =5 +5 e_

The standard basis is orthogonal so (e, ,e_)y = 0. Now v € pt implies

0= (p,v)y =(e, +e_,s.e, +s5 e )y=5(e e )p+s5 (e_,e )y

Since (e, e, )y, (e_,e_)y > 0 it follows that 5,5 < 0. We choose the labelling so
that

(45) s, >0 and 5. <0
Then there is t > 0 so that

s, =t-(e_,e_)y s_=—t-(e,,e,)y
Hence

thov={e e Yye, —(e,,e,)ype_
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We will ignore the t factor in what follows. This is justified by observing that the
critical points of J restricted to ¢ - S are the critical points of J|S multiplied by ¢.
Then

(46) 5, :<6_,6_>¢ 5_ :_<6+76+>'¢' 0:—<6+,6_>w

s,= > %, s .=—Y ¢, and s=s —s5 =Y = (pp)y
i=1

i€A_ i€A,

We have shown the critical points of J|S are in one to one correspondence with
the non-empty subsets A, C {1,---,n} with non-empty complement. Given a
quadratic form @ define 1 (Q) to be the dimension of the positive eigenspace. This
is the Morse index of —@Q. Thus a non-degenerate critical point is a local maximum
if and only if the Hessian has p = 0.

Claim 1. The critical point of f = J|S at v = v(A4) is non-degenerate, and
W f,) = A4 — 1.

Assuming this we prove the lemma. The claim implies the local maxima occur
when |[A;| =1s0o Ay = {i} for some 1 < i <mn. When Ay = {i} by (43)

€, =6 € =pD—€
By (6]
5 =5— <€i7€i>w 5 = _<ei7€i>w
USiIlg <61‘, 67;>w = d)z and (@)
v(Ay) = (s — i)ei — Yi(p — e;) = se; — ip
Now e; and p — e; are idempotents, and e;(p — ¢;) = 0 so
(47) (0(A1)? = (s = vi)’ei — ¥} (p - e:)
Using (p, e;)y = ¢; and (p,p — e;)y =6 — ; gives
6c(v(Ay)) = (p, (V(A4))%)y
= (s — )’ (p, ey — V3 (p,p— i)y by @D)
= (i(s — ¥:)® — ¥ (s — ¥y))
=1i(s — i) ((s — i) — ¥7)

(48) = Yi(s —1hi)s(s — 21;)
Now
(49) (A7 = (5 — i)t + 7 (s — ) = sebi(s — )

It follows that the critical point, v;, on S for A = {i} is

. v(Ay) _ (s —i)e; —i(p — €;) __sei—tip
(Al 51p;(s — ;) llse; — viplly
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Thus
6c(vi) = 6¢(v(A)/[lv(AD)5
= thi(s — i)s(s — 200)/(s¢i(s — )%/ using (48), (49)
= (5 —2¢;)/V/5vi(s — ;)

_ %(1 — 23/5)/\/1— Gifs

If ¢(v;) < 0 then v; > s/2. Since s = > 1;, and all ¢p; > 0, it follows that c(v;) < 0
for at most one value of i. Thus |[K*| > n — 1. To compute «;; start with

(se; — Pip, 5e; — Y;p)y = 57(ei, €5)yp + Yithj (D, P)y — 5 (Y {€s, D)y + Yilp €5)y)
= 6ij87i + Piths — 280,95
= 5¢i(dij5 — 1))
Using this for i # j gives
aij = (Ui, v5)y = (s€; — ¥ip, sej — U;p)y/([lse; — Yip|lyllse; — v;plly)
(—sty)/ sti(s — i)sis (s — ;)
= —\Joiti/ (s — ) (s — )

<0

When ¢, j, k are all distinct

v — Yivr(s — Pi)(s — ;) (s — i) (s — i)
b an/ m—1+\/ (5 — ¥j)(s — Yr)Pitjbithy
=1+ (s — i)/

=5/¢;

Hence aijaik/(aijaik — Oz]'k) = 1/)1/5
Let m : R™ — g be orthogonal projection. Since g = p* it follows that

(p, @)y
nlw) = o — LIy
(P, p)y
Using that p = e; + - - - e,,, and that the standard basis {e1, -+ ,e,} is orthogonal,

gives
(ps€i)y = (€isei)y
and (p,p)y =5 S0
m(e;) = e — ((€i, €i)p/8)p
Thus the local maxima are on the projections of the coordinate axes:
v(Ay) =5 (e)
This proves the lemma, modulo Claim [

Claim 2. At v =v(Ay) then
d*(J|S)u(w, w) = (5/2)(e, —e_,w?)y forwe T,S.
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Assuming this, the quadratic form
(50) Q(wa w) = <€+ —€_, w2>1/2

is defined and non-singular on all of T,R™ = R™ and u(Q|T,S) = u(d*(J|S),). Let
L : R™ — R"™ be the linear map defined by

LAy = £1
Then
(51) Qa.y) = (Le,y)y
Nowp=e, +e_soLp=e, —e_ and
Lv=1L(s,e, +s5 e )=s5.e —5 e_

Now TS is the orthogonal complement with respect to the inner product (-, -), of
the subspace spanned by {p, v}, because S is a sphere in the orthogonal complement
of p. Using (51)) and L = L~! shows that T, S is also the orthogonal complement
with respect to @ of the subspace W spanned by {Lp, Lv}.

Claim 3. Q|W is non-singular and p(Q|W) = 1.
Assuming this, since W and T,V are orthogonal with respect to @, it follows
that
w(@Q) = QW) + p(QITSV) = 1+ u(Q|T.S5)

From (B0) u(Q) = |A4| so p(Q|T,S) = |Ay| — 1 which proves Claim [l
To prove Claim Bl we first evaluate Q(Lp, Lp), and Q(Lp, Lv), and Q(Lv, Lv) to
obtain the matrix of @ in the basis {Lp, Lv}.

Q(Lp, Lp) = (L*p, Lp)y by (E1)
= (p, Lp)y
=(e, +e_,e, —e_ )y
=—5_ —5, by (46)

Q(Lv, Lv) = (v, L)y

5 +s e ,5.e. —5 € )y

= +64
:53<6+,6+>¢ —52_<6,7€7>1/1
— 2 (s ) —52(s.)

=-—5.5.(s5, +5_)

(p, Lo}y

=(e, +e_,s.e, —5_e_ )y
s
s

+<e+7e+>¢ _57<6776—>¢
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. - Q(Lp,Lp) Q(Lp, Lv)
- den( Q) = e | 7P GO0

= det [ (_52+5j55:) —575+2(Zf:|— 5_) ]
=s,5 [(5,+5 )" —4s5,5 ]

=55 (s, -5 )°

=55 5

<0

Thus Q|W has one eigenvalue of each sign, which proves Claim [3

It only remains to prove Claim [2l Give a critical point v = v(A4) of f := J|S
we compute d2(J|S),. Let v : (—¢,€) — S be a smooth curve with v(0) = v and
v (0) =w € T,,S. Then

(o= 25
i=1 z=7(t)
Lo =Y L oo+ X v
i=1 i lz=v i=1 tlz=v
= d*J,(w,w) + dJ,(y"(0))
In the following everything is evaluated at ¢ = 0
(V7w =1 y=70) €S

= (7,7 =0
="+ (V7w =0
=" € (=0, / () v+ TS

Using v(0) = v and 7/(0) = w

7(0) = = ({w, w)y / (v, v)y) v+t

for some t € T, S. Since dJ, vanishes on T,S we get
(52)  d*fo(w,w) = (foy)"(0) = d*Jy(w, w) = ((w,w)y/{v,0)y) dJ,(v)

Now we compute these two terms

d? 1 1
I, (w,w) = — —{(v+ tw)?, —{(v+ tw)?,
o) = | (G0 P+ G+ )
= <w2,p)¢ + <’Uw2ap>7/1
(53) = <wa w>w + <'Ua w2>¢

By @2) dJ,(v) = (v,v)y + (1/2){(v?,v)y, so

(54) (<w= w>¢/<vv U>1P) de(U) = <w7 w>¢ + (1/2) (<U7U2>w/<%”>w) <w7 w>¢
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At the critical point v = v(Ay) =s,e, +5_e_ so

(v,v)yp =(s,e, +5_ €e_,5.e, +5_e_)y
=57 (e e )y +52 (e e )y
=52 (—s_)+s5’s,
=5,5 (s_—5,)
=—5.5_5

(v,0%)y = (s, e, +s5 e ,5°e, +5 € )y
=5 (e e )y +52 (e e )y
=s’s_ 455,
=55 (s —s.)(s +5,)
=—5.5 5(5, +5_)

Thus (v,v?)y/(v,v)y =6, +5_. Using this with (54) gives

((w,w)y /(v,0)4) dJy(v) = (w,w)y + (1/2) (5, +5_) (w,w)y
Using this and (B3] to substitute into ([B2)) gives
& fo(w,w) = (w,w)y + (v, W)y — (1+(1/2)(s, +5_)){w,w)y
= (v,w?)y — (1/2)((s, +5_)w,w)y
= (v,w?)y = (1/2)((s, +5_)p,w?)y
From { 3) p=e; +e_ andv=s,e, +5_e_ from (44). Then
deU(w,w) =(s.e, +5_6_,w2>¢ —(1/2){(s, +s_)(es + e_),w2>¢
=(s,e, +5 e —(1/2)(s, +5 )(e, +e ), w)y
= (1/2)s(e, —e_,w?)y

where we used s = s — s_. This proves Claim [2 ]

Proof of 610l This proof uses different coordinates to the proof of [6.91 In this
lemma summation is over the set of integers in [1, 7 — 1] unless otherwise indicated,
and (-,-) is the standard inner product on V =R""1. A point v = Y v;e; € Sis a
critical point of ¢|S if and only if there is some o € V' such that for all w € V' we
have de,(w) = a - (v, w) because T,S = v1. Thus

(55) dey(w) = Z \ivPw; = aZviwi

This equation is satisfied if and only if Vi \;v? = av;. Since \; > 0 the requirement
that c(v) = (1/3)yv® > 0 implies ¢v? > 0; thus a # 0. Thus the set of positive
critical points of ¢|S is

W={veS: Ia#0 v’ =av}
Given v € W, let A = {i : v; # 0}, then A is not empty and i € A = \; # 0 and

v=uv(4) = aZ/\i_lei

i€A
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Claim. d?(c|S) at v = v(A) is the restriction to T,S of the quadratic form on V'

Q) = (zw% —Zw?)
where A°={1,---,n—1}\ A.

Observe that Q is non-degenerate and v = v(A) € (e; : i € A) and T,5 = vt
so Q|T,S is also non-degenerate. If follows that v(A) is a local maximum of (¢|S)
if o >0and |[Al = 1or a < 0 and A° = 0. In the first case A = {i} and
v(A) = e; and c(e;) = A;/3 > 0. In the second case A = {1,---,n — 1} and
v(A) = —(n —1)"Y23 ¢; so c(v(A)) < 0. This proves the lemma modulo the
claim.

To prove the claim, adapting the derivation of (52)) gives

(56) d*(c|S)y(w, w) = d*c,(w,w) — ((w, w)/{v,v))de, (v)
Using A\jv; = a for i € A and A\;ju; =0 for ¢ ¢ A gives
(57) d?c,(w,w) = 2 Z \vjw? =2 Z aw?

i€A
Using (B5) gives
(58) d.(v) = Zavﬂ;i =a{v,v) =« cveS (v =1
Hence
(59) ((w,w)/ (v, 0))de, (v) = @y w}
Substituting into (&6

(60) d?(c|S)y(w, w) = QZawf — aZw? =« (Z w? — Z w?)

i€A i€A i€ A°

which proves the claim. O

9. NOTATION/CHEAT SHEET

V = Rn—l Tn—l — V/zn—l

T, = space of generalized cusps for C = T"~1 x [0, 1)

T, = {developing maps}/{homotopy, affine maps}

Rep, C Hom(V, Aff,)/ Aff,  Rep, = A, x SL¥V/ ~y = A, x SLEV/ ~(5

€p0A] @) D04 (3.1)

U,, € SL'V is upper-triangular unipotent matrices

Fo={(vi, - ,on) €V™ : 3@>0 Vi#£j (v,v)=—-w}/S,

T = F, x U,

Sﬁ_ V = all positive definite quadratic forms on V'
P={BeSiV|det3=1}=PS2V

U, =P using A~! — 3 = A’ A is metric on T" !

F,, parameterizes o € Rep,, with 8(c) = 8y and By(v) = Y v?, s0 A =1

General p € Rep,, is p=00 A with A=t € U, and 0 € F,,

Lie algebra weights of linear part of p are &1,...,&, € V* st for all i # j we have
<§i7 §j>ﬁ =-w
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in terms of Lie alg. weights invariant € space
cubic c(p) = (1/3) (&) /(I&l13 + =) shape J(p) = (c(p), B(p)) TIn
character  x(p) =3 exp&; complete  1(p) = (x(p), B(p))  Xn

€] =&, - &al € VT /20 weight data  v(p) € ([£(p)], B(p))  Rn

All arrows are homeomorphisms
Xn TIn

n L1l 614 7
complete invariant shape
holonomy invariant
Tn Rep,, -
hol l4.4]
L2 weight

data
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