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THE MODULI SPACE OF MARKED GENERALIZED CUSPS IN

REAL PROJECTIVE MANIFOLDS

SAMUEL A. BALLAS, DARYL COOPER, AND ARIELLE LEITNER

Abstract. ln this paper, a generalized cusp is a properly convex manifold
with strictly convex boundary that is diffeomorphic to M × [0,∞) where M
is a closed Euclidean manifold. These are classified by Ballas, Cooper, and
Leitner [J. Topol. 13 (2020), pp. 1455-1496]. The marked moduli space is
homeomorphic to a subspace of the space of conjugacy classes of representa-
tions of π1M . It has one description as a generalization of a trace-variety,
and another description involving weight data that is similar to that used to
describe semi-simple Lie groups. It is also a bundle over the space of Euclidean
similarity (conformally flat) structures on M , and the fiber is a closed cone in
the space of cubic differentials. For 3-dimensional orientable generalized cusps,
the fiber is homeomorphic to a cone on a solid torus.

Introduction

A generalized cusp is a properly-convex real-projective manifold, C, such that C
is diffeomorphic to [0, 1)× ∂C, and π1C is virtually-nilpotent, and ∂C contains no
line segment.

From now on, in this paper, we use the term generalized cusp in the narrow
sense that ∂C is also compact. It was shown in [2, (0.7)] this implies that π1C is
virtually abelian, and that C has a natural affine structure that is a stiffening of
the projective structure.

Let An denote affine space, and Aff(n) the affine group. Then C = Ω/ρ(π1C)
where Ω ⊂ An is a non-compact, convex, closed set, bounded by a strictly-convex
hypersurface that covers ∂C, and ρ : π1C → Aff(n) is the holonomy.

The moduli space of marked generalized cusps turns out to be a beautiful object
with interesting structure that admits several different descriptions. We concentrate
on the case that ∂C ∼= Rn−1/Zn−1, then the holonomy ρ extends over V ∼= Rn−1.
In this case the moduli space Tn consists of all conjugacy classes of monomorphisms
of Rn−1 into Aff(n) such that the orbit of a generic point is a properly-embedded,
strictly-convex hypersurface. It follows from (1.2) that

Theorem 0.1. Tn
∼= P × F where P ⊂ S2 V is the space of unimodular, positive-

definite quadratic forms on V , and

F = {(v1, · · · , vn) ∈ V n : ∃$ ≥ 0 ∀ i )= j 〈vi, vj〉 = −$}/Σn

where Σn permutes the summands of V n.
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Thus one may view a generalized cusp as a Euclidean manifold with extra struc-
ture obtained by a deformation of a standard cusp i.e. equivalent to one in a
hyperbolic manifold. The bundle structure on the moduli space admits several
descriptions.

A generalized cusp is determined up to equivalence by the complete invariant
(χ, [β]) comprising the character χ : V → R of ρ, together with the projective class
of a positive definite quadratic form β on V .

A generalized cusp is also determined by [β] together with the Lie algebra weights
ξi : V → R of ρ that are arbitrary subject to a simple geometric constraint (1).
The weights may be regarded as harmonic 1-forms representing elements of H1(∂C).
These 1-forms determine transversally measured foliations on ∂C which, together
with the similarity structure, determine C. For non-diagonalizable holonomy, the
cohomology classes are arbitrary subject to being pairwise orthogonal with respect
to the dual of β.

The next description is differential-geometric: as the projective class of the sum
of a quadratic and a cubic differential both defined on ∂C. This exhibits Tn as the
product of the space of flat conformal structures on ∂C times a cone in the space
of cubic polynomials on V . The second factor is a closed cone in S3 V that is not a
manifold. Points in the interior of this cone correspond to diagonalizable holonomy.
The cone point corresponds to a standard cusp. The cubic is a weighted sum of the
cubes of the weights, and it is harmonic if and only if ∂Ω is an affine sphere.

For three-manifolds this data is encoded by (w, r, h) ∈ C3 subject to Imw > 0
and |r| ≤ 3|h|. Here w determines the conformal structure on ∂C, and r, h are
respectively the radial and harmonic components of the cubic polynomial. The
generalized cusp is standard, with cusp shape w, if and only if r = h = 0.

1. Summary of results

Given ψ ∈ Hom(Rn, R) with ψ(e1) ≥ ψ(e2) ≥ · · · ≥ ψ(en) ≥ 0 a generalized cusp
Lie group G(ψ) ⊂ Aff(n) was defined in [2] and generalized cusps correspond to
lattices in G(ψ). Two generalized cusps are equivalent if they deformation-retract
to affinely isomorphic cusps.

Every generalized cusp is equivalent to a homogeneous one for which G(ψ) acts
transitively on ∂Ω. For these, there is a natural underlying Euclidean metric on
∂C. This metric is covered by one on ∂C̃ = ∂Ω ⊂ An that is conformally equivalent
to the second fundamental form, and is scaled so that volume(∂C) = 1. It follows
from the Bieberbach theorems that C has a finite cover by a generalized cusp with
boundary that is a torus Tn−1 = Rn−1/Zn−1. These are called torus cusps and we
concentrate on them. The general case reduces to this by (1.6).

Set V = Rn−1. It is shown in [10] that G(ψ) contains a unique closed subgroup
Tr(ψ) ∼= V called the translation subgroup that acts simply transitively on ∂Ω.
Moreover the image of the holonomy ρ : Zn−1 → Tr(ψ) is a lattice. Thus ρ extends
to an isomorphism ρ : V → Tr(ψ) called the extended holonomy.

The moduli space of equivalence classes of marked generalized cusps diffeomor-
phic to C is denoted T (C) and Tn := T (Tn−1 × [0,∞)). It consists of equivalence
classes of developing maps, see (4.4). The map that sends a point in T (C) to
the conjugacy class of the extended holonomy identifies T (C) with the subspace
Rep(C) of the quotient space Hom(V, Aff(n))/ Aff(n) consisting of conjugacy classes
of isomorphisms onto translation subgroups, see (4.5). Fenchel-Nielsen coordinates
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provide a lift of Teichmuller space into the representation variety. However, we do
not know if it is possible to lift T (C) into Hom(π1C, Aff(n)).

Let An be the closed Weyl chamber of SL(n + 1, R). There is a family of rep-
resentations parameterized by An × SLV . Theorem 4.6 says the holonomy map
identifies Tn with the quotient of An × SL V where (λ, A) is identified to (λ, A′)
whenever A−1A′ lies in a certain orthogonal group that depends on λ.

The Euclidean structure on ∂C pulls back to give a unimodular positive definite
quadratic form βρ on V . The character χρ : V → R is given by χρ(v) = trace(ρv).
The complete invariant of ρ is η(ρ) = (χρ, [βρ]). It plays the role in our theory
that the character plays in the theory of semi-simple representations, namely two
representations have the same complete invariant if and only if they are conjugate.
The trace-variety χ(V ) is the set of all characters. Let Xn be the set of all η(ρ)
topologized as a subspace of χ(V ) × P S2 V .

Theorem 1.1. The complete invariant η : Tn → Xn is a homeomorphism.

In [11] Dold studies the symmetric product SPn X = (
∏n

1 X) /Sn of a topological
space X, where the symmetric group Sn permutes factors. When X = V and n > 1,
this is distinct from the vector space, Sn V , of symmetric tensors of degree n. The
linear part of the holonomy ρ has n weights exp ξi (counted with multiplicity)
where ξi ∈ V ∗, and these give a point ξρ = [ξ1, · · · , ξn] ∈ SPn V ∗. The following
description of the moduli space is reminiscent of the classification of semi-simple
Lie groups via roots. Let P ⊂ S2 V be the space of unimodular positive definite
quadratic forms on V . Define Rn to be the subspace of all ([ξ1, · · · , ξn],β) in
SPn(V ∗) × P satisfying the weights equation

∃ $ ≥ 0 ∀ i )= j 〈ξi, ξj〉β∗ = −$(1)

where 〈·, ·〉
β∗ is the inner product on V ∗ dual to β. A geometrical interpretation of

this condition is given in (20).

Theorem 1.2. The weight data ν : Tn −→ Rn is given by ν(ρ) = (ξρ,βρ) and is a
homeomorphism, and Rn is a semi-algebraic set. Moreover generalized cusps with
non-diagonalizable holonomy form the subspace of Rn where $ = 0.

Let Fn = {[v1, · · · , vn] ∈ SPn V : ∃ $ ≥ 0 ∀ i )= j 〈vi, vi〉 = −$} and
Un ⊂ SL V be the group of upper triangular unipotent matrices. There is a bundle
isomorphism

θ : Un × Fn → Rn given by θ(A, [v1, · · · , vn]) = ([ξ1, · · · , ξn], AtA)

where ξi(v) = 〈vi, Av〉.

The type of ρ is the number of non-trivial distinct weights of ρ, and can be any
integer 0 ≤ t ≤ n. It equals the number of non-zero coordinates of ψ and also of
ξρ. There is an affine projection π : Ω → (0,∞)t. Each fiber has the geometry
of horoball in Hn−t. The geometry transverse to the fibers is Hex geometry : the
projective geometry of an open simplex, see [2, Section 1.5].

The similarity structure is part of a certain kind of geometric structure on ∂C,
called a cusp geometry, that uniquely determines the cusp up to equivalence. The
extra structure consists of t transversally measured codimension-1 foliations with
flat leaves. The foliations are the preimages of foliations of (0,∞)t by coordinate
hyperplanes. When t < n then these foliations are arbitrary, subject to being
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pairwise orthogonal. The transverse measures are harmonic 1-forms representing
the cohomology classes ξi given by the weights.

The cusp geometry is also encoded by a polynomial, J , called the shape invariant,
defined up to scaling, that is the sum of the quadratic, βρ, and a cubic. This gives an
embedding of the marked moduli space into the vector space of such polynomials.
Projection onto the quadratic term exhibits the moduli space as a bundle over
P. The fiber is a cone in the space of cubic differentials. The cubic is a linear
combination of the cubes of the weights (39).

This is reminiscent of the result of Hitchin [15], Labourie [17], and Loftin [19],
that the moduli space of properly convex structures on a closed surface is a vector
bundle over the space of conformal structures, with fiber the space of holomorphic
cubic differentials. However, in general the cubic differentials for generalized cusps
are not holomorphic.

The polynomial J is defined as follows. Choose a basepoint b ∈ ∂Ω ⊂ Rn and
an affine map τ : Rn → R so that τ (b) = 0 and τ (intΩ) > 0. The hyperplane
H = τ−1(0) is then tangent to Ω at b. The hypersurface ∂Ω is parameterized by
the function µ : V → ∂Ω given by the orbit, µ(v) = ρ(v)(b) of b. The function
h = τ ◦ µ can be thought of as the height of points in ∂Ω above H. However ∂Ω
is not the graph of h, see (6.16). Then J : V → R is the 3-Jet of h, normalized so
the quadratic term is unimodular. The cubic is zero if and only if C is equivalent
to a cusp in a hyperbolic manifold. This is similar to [20, Thm 4.5], that an affine
hypersurface is quadratic if and only if a certain cubic differential form vanishes
identically. There is a subspace Jn ⊂ P(S2 V ⊕ S3 V ) defined in (6.3) and

Theorem 1.3. If n ≥ 3 then the shape invariant J : Tn → Jn is a homeomorphism.
Moreover, the projection π : Jn → P is a trivial bundle with fiber homeomorphic to
a closed cone in S3 V .

The cubic is harmonic if and only if ∂Ω is an affine sphere. The moduli space
Tn is stratified by type. The stratum for each type is a manifold whose dimension
increases with type, see Proposition 4.8. The frontier of the stratum of type t
consists of the union of strata of smaller type. The largest type corresponds to
diagonalizable holonomy. In particular:

Corollary 1.4. Every generalized cusp is a geometric limit of diagonalizable cusps.

It seems hard to show this directly. Another consequence is:

Theorem 1.5. Tn is contractible, of dimension k = n2 −n, and is manifold if and
only if n = 2.

Suppose M = En/G is a closed Euclidean manifold with holonomy ρ : π1M →
Isom(En). Using the decomposition Isom(En) = O(n) ! Rn gives a surjection
R : Isom(En) → O(n) called the rotational part. By the Bieberbach theorems [3],
[6] M has a finite cover by a torus Tn = En/H where H is a lattice in Rn. Thus
R ◦ ρ(π1M) is a finite subgroup F ⊂ O(n) and we may choose H = ker R ◦ ρ.
Applying this to the generalized cusp C ∼= M × [0,∞) shows that there is a finite
cover p : C̃ → C corresponding to H, and C̃ ∼= Tn × [0,∞).

This cover induces a map p∗ : T (C) → T (C̃) that sends an affine structure on
C to the structure on C̃ that covers it. This structure on C̃ is preserved by the
action of F by covering transformations. Using the identification of a structure
with its holonomy gives an algebraic formulation. Since H is an abelian normal
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subgroup of G, the action of G on H by conjugation determines a homomorphism
θ : F → Aut(H). Define

Rep(C̃; θ) = {[ρ] ∈ Rep(C̃) : ∀ f ∈ F ρ ∼ ρ ◦ (θf)}

where ∼ denotes conjugate representations.

Theorem 1.6. The map hol ◦ p∗ : T (C) → Rep(C̃; θ) is a homeomorphism.

A generalized cusp C in a 3-manifold is determined by three complex numbers
(w, h, r) subject to Im w > 0 and |c| ≤ 3|h|. The conformal structure on ∂C is
C/(Z⊕Zw). The parameter w was used by Thurston to describe cusps in hyperbolic
3-manifolds. There is a unique upper-triangular matrix A = Aw ∈ SL(2, R) with
positive eigenvalues such that the Mobius transformation α corresponding to A
satisfies α(w) = i. Then the quadratic term in J is qw = AtA ∈ S2 R2.

After identifying R2 ≡ C a cubic p ∈ S3 R2 is uniquely expressible as p =
Re(hz3) + Re(rz|z|2) for some h, r ∈ C. The first term is harmonic and the second
is called radial.

Theorem 1.7. There is a homeomorphism

Θ : T3 −→ {(w, h, r) ∈ C3 : Im(w) > 0, |r| ≤ 3|h|}

If Θ(x) = (w, h, r) then J(x) = [qw + c] with qw, Aw as above, and c = Re(hz3 +
rz|z|2) ◦ Aw.

This result determines exactly which cubic differentials appear. One may regard
the generalized cusp for (w, h, r) as a deformation of the hyperbolic cusp corre-
sponding to (w, 0, 0). The generalized cusps with a fixed conformal structure, w,
on the boundary are parameterized by a point in {(h, r) ∈ C2 : |r| ≤ 3|h|}. This
is a cone on a solid torus. The cubic is harmonic if and only if r = 0, in which
case either the cusp holonomy is conjugate in GL(4, R) into a unipotent subgroup
of O(3, 1) or into the diagonal subgroup of Aff(R3) where the determinant is one.

We assume the reader is familiar with the main results and definitions up to the
end of Section 1 from [2]. Each facet of the closed Weyl chamber An ⊂ Rn param-
eterizes those translation groups Tr(ψ) of a fixed type. The main new ingredient,
(3.4), is a connected set Ãn of representations that give conjugates of generalized
cusps of all types.

The set Ãn is obtained by a kind of iterated blowup of An in the sense of al-
gebraic geometry, and each fiber of each blowup consists of pairwise conjugate
representations. There seems to be no obvious way to replace Ãn by a continuous
family containing only one representative of each conjugacy class. The subspace
of Ãn consisting of cusps of type t is the interior of a compact manifold, M , with
boundary. The direction that a sequence ρn ∈ int(M) ⊂ Ãn converges to a point
p ∈ ∂M determines a point in Ãn that is some conjugate of some representation
corresponding to p.

The paper is organized as follows. In Section 2 we review the translation groups
Tr(ψ) and show that a marked translation group is uniquely determined by the com-
plete invariant. In Section 3 we introduce a connected space Ãn that continuously
parameterizes translation groups of all types. In Section 4 we prove the complete
invariant provides an embedding of the marked moduli space Tn. In Section 5 we
obtain the characterization (1) of the weights of marked translation groups. In
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Section 6 we show that a marked translation group is determined by the sum of a
quadratic and a cubic differential. In Section 7 we compute T3, the marked mod-
uli space for 3-manifolds. Various routine computational proofs were moved into
Section 8 to avoid disrupting the flow of ideas. Section 9 is a summary of notation.

The proof that the shape invariant determines a marked translation group that
is unique up to conjugacy is a rather long and technical computation in Lemma 6.9
that is an ad hoc algebraic argument. Perhaps there is a better way to establish
this with some differential geometry. The various descriptions of the moduli space
only gradually emerged as we stumbled upon various clues. In particular, the new
parameters in Section 2 were discovered by a very circuitous route.

2. The complete invariant

Throughout V ≡ Rn−1 denotes the extended domain of the holonomy of a marked
generalized cusp, and {e1, · · · , ek} is the standard basis of Rk, and {e∗1, · · · , e∗k} is
the dual basis of the dual vector space. If X ⊂ Rn then GL(X) ⊂ GL(n, R) is the
subgroup that preserves X. Affine space is denoted An := Rn × 1 ⊂ Rn+1 and the
affine group is Aff(n) := GL(An) ⊂ GL(n+1, R). If X ⊂ An then Aff(X) ⊂ Aff(n)
is the subgroup that preserves X. What follows, up to Theorem 2.5, is from [2].

Definition 2.1. Suppose Ω ⊂ An is a closed, convex, subset bounded by a non-
compact, properly embedded, strictly convex hypersurface ∂Ω. Also suppose Aff(Ω)
contains a subgroup T = T (Ω) ∼= (V, +) that acts simply-transitively on ∂Ω. Then
T is called a translation group and the group G(Ω) ⊂ Aff(Ω) that preserves each
T -orbit is called a cusp Lie group.

The subgroup T is unique. The T -orbit of a point in Ω is called a horosphere.
Horospheres are smooth, strictly-convex hypersurfaces that foliate Ω. In particular
∂Ω is a horosphere. Moreover G(Ω) = Aff(Ω) unless Ω ∼= Hn, in which case G(Ω) is
conjugate into a subgroup PO(n, 1). A generalized cusp is an affine manifold Ω/Γ
where Γ ⊂ G(Ω) is a torsion-free lattice. Choose a basepoint b ∈ ∂Ω. The subgroup
O(Ω, b) ⊂ G(Ω) that fixes b is called a cusp orthogonal group, and is compact, and
G(Ω) = O(Ω, b)!T . Different notation was used for this in [2, Definition 1.45]. We
focus on torus cusps. Then the holonomy is an isomorphism θ′ : Zn−1 → Γ ⊂ T .
The extended holonomy is the extension of this homomorphism to an isomorphism
θ : V → T .

Definition 2.2. A marked translation group is an isomorphism θ : V → T where
T ⊂ Aff(n) is a translation group.

Given a marked translation group θ, there is a direct sum decomposition

(2) V = D ⊕ U

where θ(U) is the subgroup of unipotent elements, and θ(D) is the subgroup of
elements for which the largest Jordan block has size 2. Thus θ(D) contains the
diagonalizable subgroup. In the notation of [2, (1.41)] U = P (ψ) and D = T2.

Definition 2.3. The type t : Rn → Z, the unipotent rank u : Rn → Z and the
rank r : Rn → Z are defined for x = (x1, · · · , xn) by

t(x) = |{i : xi )= 0}| r(x) = min(t(x), n − 1) u(x) + r(x) = n − 1
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These functions are used in the context of two families of marked translation
groups that involve a parameter x ∈ Rn and for these, r(x) = dim D, and u(x) =
dim U , and t(x) is the number of non-constant weights of θ. If ψ : Rn → R is a
homomorphism we will often identify ψ with (ψ1, · · · ,ψn) ∈ Rn where ψi = ψ(ei).

Definition 2.4. The group Tr(ψ) = ζψ(V ) is defined as follows.

An(Ψ) := {(ψ1, · · · ,ψn) : ψ1 ≥ ψ2 ≥ · · · ≥ ψn ≥ 0}
Au

n(Ψ) := {(ψ1, · · · ,ψn) : ∀ i ψi ≥ 0 & ∃ t (ψi > 0 ⇔ i ≤ t) }} (u=unordered)

If ψ ∈ Au
n(Ψ)∪An(Ψ) set t = t(ψ) and u = u(ψ) and r = r(ψ). If t = 0 set E = ∅

and ψ− = 0, otherwise define ψ− ∈ V ∗ and E by

ψ−(v1, · · · , vn−1) = −ψ(v1, · · · , vn−1, 0), E = ψt· Diag(v1, · · · , vr)

Define ζψ : V → Aff(n) by ζψ(v) = exp fψ(v) where fψ(v) =

t < n − 1 t = n − 1 t = n





E 0

0





0 vr+1 · · · vr+u ψ−(v)
0 · · · 0 vr+1
...

...
0 · · · 0 vr+u

0 · · · 0 0












E 0 0
0 0 ψ−(v)
0 0 0








E 0 0
0 ψ−(v) 0
0 0 0





Observe that r + u = n − 1.

Since all the eigenvalues are positive, ζψ : V → Tr(ψ) is an isomorphism, so
Tr(ψ) ∼= Rn−1. It follows from [2, Theorem 0.2], and we show below that ζψ is
conjugate to ζψ′ if and only if ψ = ψ′. However Tr(ψ) and Tr(ψ′) are conjugate
subgroups if and only if ψ = sψ′ for some s > 0.

Theorem 2.5.

(a) Tr(ψ) is a translation group.
(b) If s > 0 then ζsψ = ζψ ◦ ((s Ir) ⊕ Iu) where Ik is the identity map on Rk.
Suppose θ : V → Aff(n) is a marked translation group; then
(c) ∃! ψ ∈ An(Ψ) and ∃ B ∈ SL±(V ) such that θ is conjugate to ζψ ◦ B.
(d) ∃ ψ′ ∈ Au

n(Ψ) and ∃ B′ ∈ SL(V ) such that θ is conjugate to ζψ′ ◦ B′.

Proof. (b) The definition shows fsψ(v1, · · · , vn−1) = f(sv1, · · · , svr, vr+1, · · · , vr+u).
(a) Given a marked translation group ρ : V → Aff(n) then, by [2, Theorem

0.1], there is ψ ∈ An(Ψ) such that ρ(V ) is conjugate into the group T (ψ) defined
in [2, Definition 1.32]. Moreover if ψ )= 0 we may choose ψt = 1 by [2, Theorem
0.2(iii)] and then T (ψ) = Tr(ψ) as defined in (2.4). This proves (a).

It follows that ρ = ζψ ◦ A for some A ∈ GL(V ). If r > 0 then there is s > 0
so that A = ((s Ir) ⊕ Iu)B with B ∈ SL±(V ). Then ρ = ζsψ ◦ B by (b). If r = 0
then ψ = 0 and ζ0 ◦ (s I) is conjugate to ζ0. Thus in this case we may also choose
B ∈ SL±(V ).

To show ψ is unique, by [2, Theorem 0.2] ψ is unique up to multiplication by
some s > 0. Suppose ζψ ◦ B is conjugate to ζsψ ◦ B′. Then ζψ is conjugate
to ζsψ ◦ (B′B−1), and thus to ζψ ◦ ((s Ir) ⊕ Iu)B′B−1). By [2, Theorem 0.2(v)]
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((s Ir)⊕ Iu)B′B−1 ∈ O(En−1,ψ). By [2, (1.44)] this is a subgroup of the orthogonal
group, thus s = 1. This proves (c).

For (d), when n = 2 the result is easy, so assume n ≥ 3 and det B = −1.
There are two coordinates ψi,ψi+1 of ψ that are either both zero or both non-zero.
Swapping columns i and i + 1 of B gives B′ ∈ SL(V ) and swapping ψi and ψi+1

gives ψ′ ∈ Au
n(Ψ). Then ζψ ◦B is conjugate to ζψ′ ◦B′ by swapping the i and i + 1

coordinates in Rn+1. !

We regard the second symmetric power, S2 V , as the vector space of homogeneous
polynomials β : V → R of degree two. The subspace P̃(V ) ⊂ S2 V consists of
positive definite forms and P(V ) ⊂ P̃(V ) is the subspace of unimodular forms. Let
πP : P̃(V ) → P(V ) be the projection

πP (β) = (detβ)−1/(n−1)β

The notation β ∼ β′ means there is λ > 0 with β′ = λβ. Given a marked trans-
lation group θ : V → Aff(n) the orbit map µθ,b : V → ∂Ω is the homeomorphism
defined by

(3) µθ,b(v) = (θv) b

where b ∈ ∂Ω is some choice of basepoint. Since ∂Ω is smooth and strictly convex,
there is a unique affine hyperplane Hb ⊂ An with Hb ∩ Ω = b. There is an affine
map τ : An → R with τ (Hb) = 0 and τ (intΩ) > 0. The height function

(4) hθ = τ ◦ µθ,b : V → R

is only defined up to multiplication by a positive real. Observe that ∂Ω is not the
graph of hθ, see (6.16). Note that if b′ is a different choice of basepoint, then there
is unique element A ∈ T (Ω) such that Ab = b′. In this case τ ′ = τ ◦A−1 is an affine
map such that τ ′(Hb′) = 0 and τ ′(intΩ) > 0. Furthermore, µθ,b′ = A ◦µθ,b, and so
τ ′ ◦ µθ,b′ = τ ◦ µθ,b. It follows that the height function is independent of the choice
of basepoint.

Since ∂Ω is strictly convex one obtains positive definite quadratic forms

(5) β̃(θ) = D2 hθ, β(θ) = πP(β̃(θ)) ∈ P(V )

After rescaling, the orbit map is an isometry from (V,β) to ∂Ω with the horosphere

metric [2, (2.14)]. The form β̃ is only defined up to scaling. To emphasize this we
usually work with [β] ∈ PP. However it is sometimes convenient to use the natural
identification P ≡ PP. Then one must remember that preserving β only means β
is preserved up to rescaling.

Writing v =
∑n−1

i=1 viei and ui = (∂µθ,b/∂vi)v=0 ∈ Rn then (u1, · · · , un−1) is a
basis of the tangent space Tb ∂Ω ∼= Hb. We may use τ (x) = ± det(u1, · · · , un−1, x)
and a height function is then given by

(6) hθ(v) = ± det(u1, · · · , un−1, µθ,b(v) − b)

where the sign is chosen so that τ (Ω) ≥ 0.
The space Hom(V, Aff(n)) is given the weak topology. This coincides with the

Euclidean topology when it is realized as an algebraic subset of Euclidean space.
The space Hom(V, Aff(n))/ Aff(n) is the quotient space under the action of conju-
gacy. It is not Hausdorff.



GENERALIZED CUSPS 119

Definition 2.6. R̃ep(V ) ⊂ Hom(V, Aff(n)) is the subspace of marked translation

groups, and Rep(V ) = R̃ep(V )/ Aff(n) is the space of conjugacy classes with the
quotient topology.

In (4.4) we define T (V ) as equivalence classes of developing maps and show it
is homeomorphic to Rep(V ). Various functions defined on Rep(V ) in this section
can then be re-interpreted as functions on T (V ).

Lemma 2.7. β̃ : R̃ep(V ) → P(V ) is smooth and covers a continuous map β :
Rep(V ) → P(V ).

Proof. By the discussion above β̃ does not depend on the choice of basepoint b or
height function used above. Given a marked translation group θ every choice of
basepoint b has orbit a convex hypersurface unless b lies in a projective subspace
preserved by θ. Thus in a neighborhood of θ in R̃ep(V ) a fixed choice of basepoint

b can be used for the orbit map. Then the function µ : R̃ep(V ) × V → R given
by µ(θ, v) = µθ,b(v) is smooth near (θ, v). Equations (3) and (6) then imply hθ is

smooth near θ, so β̃ is smooth. It is clear that β̃(θ) is invariant under conjugation of

θ. Therefore β̃ covers a map β : Rep(V ) → P(V ) which is continuous by properties
of the quotient topology. !

The character of a homomorphism ρ : V → GL(n + 1, R) is χ(ρ) : V → R given
by χ(ρ) = trace ◦ρ. The trace-variety, χ(V ), is the set of characters of all such
homomorphisms. Hom(V, Affn) is a real algebraic variety, and χ(V ) is its image
under a polynomial map. Thus χ(V ) is a semi-algebraic set, and in particular is
homeomorphic to a subspace of Euclidean space.

By (2.5) a marked translation group is conjugate to an upper triangular group.
The character is not changed by conjugation. The character of an upper-triangular
representation is a function on V that is the sum of (n + 1) functions, each of
which is the exponential of an element of V ∗. Thus the subspace of χ(V ) consist-
ing of characters of marked translation groups is homeomorphic to a subspace of
SPn+1 V ∗.

Definition 2.8. Given a marked translation group θ : V → Aff(n) then

• The horosphere metric is the unimodular quadratic form β(θ) ∈ P(V )
• The complete invariant is η(θ) = (χ(θ), [β(θ)]).

Also O(η(θ)) ⊂ GL(V ) is the subgroup that preserves both χ(θ) and [β(θ)].

Lemma 2.14 implies O(η(θ)) is a subgroup of the orthogonal group of β unless
t(θ) = 0, in which case it is the group of Euclidean similarities fixing 0.

Proposition 2.9. The complete invariant η : Rep(V ) → χ(V ) × P(S2 V ) is con-
tinuous.

Proof. It is well known that χ is continuous, and β is continuous by (2.7). !
Definition 2.10. The complete invariant variety is Xn = Im(η). This is homeo-
morphic a subspace of Euclidean space.

A dual vector ξ ∈ V ∗ is a Lie-algebra weight of θ : V → GL(n+1, R), and exp ◦ξ
is a weight of θ, if the weight space

V (θ, ξ) :=
⋂

v∈V

ker(θ(v) − exp ◦ξ(v)) )= 0



120 S. A. BALLAS, ET AL.

Let 〈·, ·〉β be the inner product on V given by β. Let β∗ ∈ S2 V ∗ denote the dual
quadratic form defined by β∗(φ) = β(v) if φ(x) = 〈v, x〉. Let 〈·, ·〉β∗ be inner
product on V ∗ given by β∗. Next we compute the complete invariant, the details
are in Section 8.

Proposition 2.11. Given ψ ∈ Au
n(Ψ) the decomposition V = D ⊕ U for ζψ is

orthogonal with respect to β(ζψ). Set u = u(ψ) and t = t(ψ), then β(ζψ) ∼ β′

where for v ∈ V and t < n

β′(v) =
t∑

i=1

ψiv
2
i + ψ−1

t

n−1∑

i=t+1

v2
i χ(ζψ)(v) = 2 + u +

t∑

i=1

exp(ψtvi)

and for t = n

β′(v) =
n−1∑

i=1

ψiv
2
i + ψ−1

n

(
n−1∑

i=1

ψivi

)2

χ(ζψ)(v) = 1 +
n−1∑

i=1

exp(ψnvi) + exp

(
−

n−1∑

i=1

ψivi

)

Moreover, when t < n then det β′ = ψ1 · · ·ψt−1ψ
t+2−n
t and the non-zero Lie

algebra weights of ζψ are {ξi = ψte∗i : 1 ≤ i ≤ t}, and their duals are an orthogonal

basis of D, and β∗(ξi) = ψ2
t (detβ′)−1/(n−1) ψ−1

i . Also when t = n then det β′ =
ψ1 · · ·ψn−1ψ−1

n

∑n
i=1 ψi.

Theorem 2.16 shows that the complete invariant determines a marked translation
group up to conjugacy. Theorem 6.14 shows the same for the shape invariant. The
strategy is the same in both cases. One argument shows the invariant determines
the translation group up to conjugacy. A second discussion shows that the invariant
determines a basis of a lattice in this translation group by determining a coset of
O(∂Ω, b) in G(Ω).

Corollary 2.12. Suppose n ≥ 3 and θ : V → Aff(n) is a marked translation group.
Then θ is conjugate to ζψ ◦ B for some ψ = (ψ1, · · · ,ψn) ∈ An and B ∈ SL± V ,
and the complete invariant η(θ) uniquely determines ψ.

Proof. By (2.5)(b) θ is conjugate to some ζψ ◦B with B ∈ SL± V , and ψ is uniquely
determined by the conjugacy class of θ. If t = n then ζψ is diagonal, so χ(θ)
determines θ up to conjugacy, and hence determines ψ by (2.5)(b). So suppose
t < n. It follows immediately from the definitions that β(ζψ ◦B) = β(ζψ) ◦B, and
ξi(ζψ ◦ B) = ξi(ζψ) ◦ B. Hence β∗(ξi ◦ B) = β∗(ξi). By (2.11) it follows that η(θ)
determines

(β∗ξ1, · · · ,β∗ξt) = ψ2
t

(
ψ1 · · ·ψt−1ψ

t+2−n
t

)−1/(n−1)
(ψ−1

1 , · · · ,ψ−1
t )

up to permutations. Let xi = logψi and yi = log β∗ξi and x = (x1, · · · , xt) and
y = (y1, · · · , yt). Define v : Rt → R by

v(x) = log
[
ψ2

t

(
ψ1 · · ·ψt−1ψ

t+2−n
t

)−1/(n−1)
]

= −(n − 1)−1(x1 + · · · + xt−1 + (t + 4 − 3n)xt)

Let e = (1, · · · , 1); then y = x + (v(x))e = (I + G)x where G = e ⊗ v. Then η(θ)
determines y, and recovering the ψi amounts to finding x that solves the linear
equation y = (I + G)x.

We claim that I + G is invertible. For the sake of contradiction assume that
0 )= w ∈ ker(I +G), then w + v(w)e = 0. This implies that w = αe for some α )= 0.
Since all non-zero multiples of w are also in the kernel there is no loss of generality
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in assuming that α = 1. This implies that e + v(e)e = 0 and so v(e) = −1. From
the definition of v the equation v(e) = −1 becomes −(n− 1)−1(2t + 3− 3n) = −1,
or equivalently that t = 2n − 2. However, since n ≥ 3 this implies that t > n,
which is a contradiction. It follows that the xi can be recovered from the yi, and
by exponentiating we recover the ψi. !

The characteristic polynomial of a square matrix A is c(A) = det(x I−A). An
affine automorphism of Rn is given by f(x) = Ax+b with linear part A ∈ GL(n, R)
and also given by B ∈ Aff(n) ⊂ GL(n + 1, R). Then c(B) = (x − 1)c(A). This
means that a translation group has one more zero Lie-algebra weight than the linear
part. The character of a marked translation group determines the weights, thus
the complete invariant determines the weight data.

Lemma 2.13. Suppose θ : V → Aff(n) is a marked translation group. Let ξθ =
[ξ1, · · · , ξn] ∈ SPn V ∗ be the Lie-algebra weights of the linear part of θ. Then the
characteristic polynomial cθ : V → R[x] given by

cθ = det(xI − θ) = (x − 1)
n∏

i=1

(x − exp ◦ξi)

is uniquely determined by χ(θ). Moreover there is f : Xn → Rn with ν = f ◦ η,
where ν : Tn −→ Rn is the weight data ν(ρ) = (ξρ, [βρ]).

Proof. Suppose A = θ(v). Then θ(kv) = Ak so χ(θ)(kv) = traceAk. If A has
eigenvalues µ0, · · · , µn counted with multiplicity then pk := trace(Ak) =

∑
µk

i is a
symmetric polynomial function of the eigenvalues. Every symmetric polynomial is
a polynomial in the pk, and in particular the coefficients of c(A) have this property.
Hence χ(θ) determines the characteristic polynomial of θ(v) for every v ∈ V . Thus
χ(θ) determines the function cθ = c ◦ θ : V → R[x] which sends v ∈ V to the
characteristic polynomial of θ(v). Since all the eigenvalues of θ(v) are positive,
there are ξi ∈ V ∗ with cθ =

∏n
i=0(x − exp ◦ξi). Hence χ(θ) determines the Lie

algebra weights ξi. The factorization of a polynomial into linear factors is unique
up to order and scaling. It follows that ξθ is also uniquely determined, and thus f
exists. !

Recall that O(Ω, b) ⊂ G(Ω) is the group of affine maps that fixes the basepoint
b, and acts on Rn, preserving ∂Ω. The orbit map µθ,b identities V ∼= Rn−1 with
∂Ω, therefore O(Ω, b) also acts on V . Under this identification O(Ω, b) ⊂ Aff(Rn)
is conjugate to O(η(θ)) ⊂ GL(V ) when t > 0. The group Sim(β) ⊂ GL V is the
group of similarities that preserve [β].

Lemma 2.14. Suppose θ is a marked translation group. If t(θ) > 0 then there is
an isomorphism f : O(Ω, b) → O(η(θ)) given by f(A) = µ−1Aµ where µ = µθ,b :
V → ∂Ω is the orbit map. If t(θ) = 0 then O(η) = Sim(β).

Proof. Let η = η(θ) = (χ, [β]) and t = t(θ). By definition O(η) is the subgroup of
Sim(β) that preserves χ(θ). If t = 0 then θ is unipotent so χ is constant and the
result follows. Now assume t > 0, thus χ is not constant.

We claim that O(η) is a subgroup of O(β). The character χ : V → R is preserved
by the action of O(η). Now O(η) ⊂ Sim(β), so if the claim is false there is A ∈ O(η)
that moves all points in V closer to 0. It follows that χ(v) = limn→∞ χ(Anv) = χ(0)
so χ is constant, which contradicts t > 0.
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We claim that f maps into O(η). The orbit map µ = µθ,b defined in (3) is given
by µ(v) = θ(v)b. Recall that ∂Ω is the orbit of b under Im θ. Given A ∈ O(Ω, b)
and v ∈ V then A(µ(v)) = µ(u) for some u ∈ V , and (fA)(v) = u. Since A fixes b
it follows that

(θu)b = µ(u) = A(µv) = (Aθv)b = (A(θv)A−1)Ab = (A(θv)A−1)b

Now A(θv)A−1 ∈ T (Ω), and the action of V on ∂Ω is free, thus θu = A(θv)A−1, so

(fA)(v) = u = θ−1
(
A(θv)A−1

)

Now θ and conjugation by A are both group isomorphisms, thus fA is a group
automorphism of (V, +), and it is continuous; thus fA ∈ GLV . Now

trace θ((fA)(v)) = trace θu = traceA(θv)A−1 = trace θv

Thus χ ◦ (fA) = χ. It is clear that fA preserves β, hence fA ∈ O(η), which proves
the claim.

The lemma is true for θ if and only if it is true for a conjugate of θ ◦B for some
B ∈ GL(V ). By Theorem 2.5 it suffices to prove the result when θ = ζψ. Set
t = t(ψ). First consider the case 0 < t < n and define

B = Diag(ψ−1/2
1 , · · · ,ψ−1/2

t ,ψ1/2
t , · · · ,ψ1/2

t ) ∈ GL(V )

It suffices to assume θ = ζ⊥ψ := ζψ ◦ B. By (2.11)

β(ζ⊥ψ )(v) = 〈v, v〉 χ(ζ⊥ψ )(v) = 2 + u +
t∑

i=1

exp(ψ−1/2
i ψtvi)

where 〈·, ·〉 is the standard inner product on Rn−1.
By (2.13) χ(θ) determines, and is uniquely determined by, the Lie algebra weights

of θ. Thus O(η) is the subgroup of O(β) that preserves the Lie-algebra weights.
Hence it is the subgroup that preserves the subset of V consisting of the vectors
that are dual with respect to β of these weights in V ∗. By (24) the non-zero duals
are {(γψi)−1ψtei : 1 ≤ i ≤ t} ⊂ V . The action of O(η) permutes this set, but
preserves the lengths of vectors. Thus O(η) is the subgroup of O(β) that permutes
{ei : 1 ≤ i ≤ t} and preserves the vector

γ−1ψt(ψ
−1
1 , · · · ,ψ−1

r , 0, · · · , 0) ∈ V

where the last u coordinates are 0. Clearly this is the same as preserving

(ψ1, · · · ,ψr, 0, · · · , 0) ∈ V

Let S(ψ) be the group of coordinate permutations of Rr that preserve (ψ1, · · · ,ψr),
then O(η(ζψ)) = S(ψ) ⊕ O(u). When t < n it follows from [2, Proposition 1.44]
that f(O(Ω, b)) = S(ψ) ⊕ O(u) which gives the result.

The remaining case is that t = n, and then ζψ has n non-zero Lie-algebra
weights ξi ∈ V ∗ and

∑
ψiξi = 0. Observe that ψ is determined up to scaling

by this equation. If B ∈ O(η(ζψ)) then it preserves χ(ζψ), and therefore, by
(2.13), permutes these weights, so that ξi ◦ B = ξσi for some permutation σ of
{1, · · · , n}. However

∑
ψiξσi = 0 so ψi = ψσi. Thus µ · B · µ−1 = A ∈ Aff(n)

permutes the coordinate axes of Rn and preserves ψ. Again by [2, Proposition
1.44] A ∈ O(Ω, b). It follows that O(η(ζψ)) ⊂ µ−1 · O(Ω, b) · µ. It is clear that
O(η(ζψ)) ⊃ µ−1 · O(Ω, b) · µ. !
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Suppose θ : V → Aff(n) is a marked translation group. If we consider a general-
ized cusp as a projective manifold, instead of as an affine one, then the holonomy
might be given as θ∗ : V → SL(n + 1, R) where

(7) θ∗(v) = α(v) · θ(v) and α(v) = (det θ(v))−1/n+1

It follows from [2, Prop. 1.29(c)] that if two marked translation groups are conjugate
in GL(n + 1, R) then they are conjugate in Aff(n), and therefore have the same
complete invariant. In (2.15) we show if θ∗ : V → SL(n+1, R) is the corresponding
projective translation group then χ(θ∗) determines χ(θ). However the computations
are simpler using χ(θ).

We now explain how to recover θ from θ∗. The idea is that to recover the affine
action amounts to determining the weight of θ∗ that corresponds to the hyperplane
at infinity for affine space. Suppose θ : V → GL(n + 1, R) and every weight is real
and positive. Let W(θ) = (ξ0, ξ1, · · · , ξn) be the Lie algebra weights of θ counted
with multiplicity. The Lie algebra weight ξi is called a middle weight if

∀ v ∈ V ξi(v) ≤ max{ξj(v) : j )= i }

Applied to diagonalizable representations, this is the middle eigenvalue condition
of Choi [8]. It follows that a Lie algebra weight with multiplicity larger than 1 is a
middle weight.

If θ : V → Aff(n) then ξi is a middle weight of θ if and only if ξi = 0. From (7)
it follows that if W(θ) = (ξ0, ξ1, · · · , ξn) then W(θ∗) = (ξ0 − µ, · · · , ξn − µ) where
µ = (n + 1)−1

∑
ξi. The characterization above implies that ξ is a middle weight

for θ if and only if ξ − µ is a middle weight for θ∗. Since the middle weight of θ∗
only depends on θ∗, this shows θ∗ determines θ.

Proposition 2.15. Let θ : V → Aff(n) be a marked translation group and θ∗ :
V → SL(n + 1, R) as above. Then χ(θ∗) determines χ(θ) and vice versa.

Proof. The characteristic polynomial cθ is determined by χ(θ) using (2.13). The

constant term of cθ determines det θ : V →R, and therefore χ(θ∗)=χ(θ) (det)−1/n+1

is determined. Conversely, given χ(θ∗) the characteristic polynomial cθ∗ is deter-
mined by (2.13), and so the Lie-algebra weights {ξi : 1 ≤ i ≤ n} of θ∗ are deter-
mined. Thus the middle weight ξ of θ∗ is determined by χ(θ∗), and θ = exp(−ξ)θ∗
has middle weight 0. !

Theorem 2.16. If θ, θ′ : V → Aff(n) are marked translation groups, then η(θ) =
η(θ′) if and only if θ and θ′ are conjugate in Aff(n).

Proof. It is clear that the complete invariant is a conjugacy invariant. We show
that if η(θ) = η(θ′) then θ and θ′ are conjugate. By (2.13) χ(θ) determines the
characteristic polynomial and weights of θ, counted with multiplicity. The type of
θ is the maximum over v ∈ V of the number of eigenvalues of θ(v) that are not
equal to 1. This is determined by χ(θ)v, so χ(θ) determines t(θ). In particular
t(θ) = t(θ′).

The first case is that t(θ) = n so θ is diagonalizable. Since t(θ′) = n then θ′

is also diagonalizable, and therefore semisimple. The character of a semisimple
representation determines the representation up to conjugacy, see for example [18,
pp. 650]. Hence θ and θ′ are conjugate in GL(n + 1, R). This implies they are
conjugate in Aff(n). If t = 0 then the generalized cusps are equivalent to cusps in
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hyperbolic manifolds. It is well known that these are determined by the Euclidean
similarity structure on the boundary, and hence by [β].

Now assume 0 < t(θ) < n. By (2.5)(c) every marked translation group is
conjugate in Aff(n) to some ζψ ◦ B where B ∈ SL± V and ψ ∈ An(Ψ). After
conjugacies in Aff(n) we may assume θ = ζψ ◦ B and θ′ = ζψ′ ◦ B′ are both of this
form. Observe that θ and θ′ are conjugate if and only if θ ◦ (B−1) and θ′ ◦ (B)−1

are conjugate. Thus it suffices to assume that θ = ζψ and θ′ = ζψ′ ◦ B′ ◦ B−1. We
now change notation by replacing B′ ◦B−1 in this formula with B, so we work with
θ = ζψ and θ′ = ζψ′ ◦ B.

By (2.12) ψ is determined by the complete invariant, hence ψ = ψ′, so θ′ =
θ ◦ B. Thus η(θ′) = η(θ) ◦ B. We are given that η(θ) = η(θ′), so it follows that
B ∈ O(η(θ)). Then by Lemma 2.14 B = µ−1Pµ for some P ∈ O(Ω, b).

Claim. θ′ = P θP−1.

Since θ′ = θ ◦ (µ−1Pµ), given v ∈ V , and recalling b ∈ ∂Ω is the basepoint, and
using µ(v) = (θv)(b) gives

θ′(v) = θ ◦ (µ−1Pµ)(v) = θ(µ−1P θ(v)b) = θ(u), where u = µ−1 (P ((θv)b)) ∈ V

Now P ∈ O(Ω, b) fixes the basepoint b so

P ((θv)b) = P ((θv)P−1b) = (P (θv)P−1)(b)

Thus
(θu)b = µ(u) = P (θ(v)b) = (P (θv)P−1)(b)

Now θ(u) and P θ(v)P−1 are both in T (Ω) which acts freely on ∂Ω. Thus θ(u) =
P θ(v)P−1. Now θ′(v) = θ(u) so θ′ = P θP−1 as claimed. !

There is an interpretation of the complete invariant as a geometric structure on
the boundary of a generalized cusp.

Definition 2.17. A cusp geometry on a torus T ∼= Rn−1/Zn−1 is (β, C) where β
is a Euclidean metric on T with volume 1, and C ⊂ H1(T ; R) \ 0. The type of the
geometry is t = |C|.

If θ : V → Aff(n) is a marked translation group then there is a properly convex
set Ω ⊂ Rn that is preserved by θV and C = Ω/θ(Zn−1) is a generalized cusp.
Given b ∈ ∂Ω the orbit map µθ,b : V → ∂Ω is a homeomorphism. Let π : Ω → C
be projection. Then πC := π ◦ µθ,b : V → ∂C can be regarded as the universal
cover of ∂C. A cusp geometry (β, {α1, · · · ,αt}) of type t = t(θ) on ∂C is defined
as follows.

The metric β on ∂C is as defined above. The character χ(θ) determines Lie-
algebra weights of the representation ξi : V → R for 1 ≤ i ≤ t(ψ), and αi = [ωi] ∈
H1(∂C; R) is determined by π∗ωi = ξi.

Thus ωi is the harmonic representative of the de-Rham class αi. Generalized
cusps with type t < n correspond to choices of non-zero cohomology classes that
are orthogonal with respect to the dual of β, and all such cusp geometries are
realized by generalized cusps. Those of type t = n are determined by (1). Observe
that one can recover the complete invariant from the cusp geometry.

Proposition 2.18. Suppose θ1, θ2 : V → Aff(n) are marked translation groups and
Ci = Ωi/θi(V ) are corresponding generalized cusps. Then θ1 and θ2 are conjugate if
and only if there is a map f :∂C1 → ∂C2 that preserves the cusp geometries defined
above, and f is in the correct homotopy class, as determined by the marking.
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Proof. The existence of f implies the two generalized cusps have the same complete
invariant. Then θ1 and θ2 are conjugate by (2.16). Conversely, if θ1 and θ2 are
conjugate, then C1 and C2 are equivalent cusps and so have the same cusp geometry.

!

3. New parameters

In this section we define another family of translation groups in (3.4). First we
motivate the definition in dimension n = 4. The reader may choose to replace 4 by
n in what follows, and introduce · · · in the formulae.

The goal is to construct a connected algebraic family of Lie groups that gives
conjugates of all the translation groups Tr(ψ), and such that the diagonalizable ones
are dense. Recall that t = n is diagonalizable, and t < n is non-diagonalizable.

Refer to (2.11) for the following discussion. If we reparameterize ζψ in the diag-

onal case using ti =
√
ψivi then β(ζψ)(t) = ‖t‖2 + δ2 where δ = ψ−1/2

n
∑n−1

i=1

√
ψiti.

When ψn = maxi ψi then |δ| ≤ n‖t‖, so β varies in a compact subset of S2 V .
Hence, if the character remains bounded along a sequence in this subspace, there
is a subsequence for which the complete invariants converge. Then, after a suitable
conjugacy, the limit should be a marked generalized cusp of smaller type. To ob-
tain an algebraic family set ψi = 1/λ2

i , then vi = λiti. The diagonal group Tr(ψ)
consists of the matrices exp(M), for those M shown below, satisfying (9).
(8)

M =





λ1t1 0 0 0 0
0 λ2t2 0 0 0
0 0 λ3t3 0 0
0 0 0 λ4t4 0
0 0 0 0 0




, P =





1 −λ−1
2 −λ−1

3 −λ−1
4 λ−2

1

0 1 0 0 λ−1
2

0 0 1 0 λ−1
3

0 0 0 1 λ−1
4

0 0 0 0 1





(9) 0 =
∑

ψivi =
∑

(1/λ2
i )(λiti) =

∑
λ−1

i ti

The orbits flatten in the directions for which λi → 0. To prevent this, conjugate
M by the matrix P in (8) to get:
(10)

R := P−1MP =





0 t2 t3 t4 0
0 λ2t2 0 0 t2
0 0 λ3t3 0 t3
0 0 0 λ4t4 t4
0 0 0 0 0




+λ1t1





1 −λ−1
2 −λ−1

3 −λ−1
4 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0





We may assume that ψi decreases with i, and it follows that λi increases with i. We
want this new family to contain only polynomials (rather than rational functions)
in the parameters, so that they are defined whenever

(11) 0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ λ4

To do this we introduce extra parameters κi for 2 ≤ i ≤ 4, and require

(12) λiκi = λ1
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then

R =





0 t2 t3 t4 0
0 λ2t2 0 0 t2
0 0 λ3t3 0 t3
0 0 0 λ4t4 t4
0 0 0 0 0




+ t1





λ1 −κ2 −κ3 −κ4 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0





Using (9) we replace t1 by

t1 = −λ1

(
λ−1

2 t2 + λ−1
3 t3 + λ−1

4 t4
)

= − (κ2t2 + κ3t3 + κ4t4)

and this gives a family of representations

Φλ,κ : R3 → Aff(4), Φλ,κ(t2, t3, t4) = expR

parameterized by those (λ,κ) satisfying (11) and (12). When λ1 > 0 then κi =
λ1/λi ∈ [0, 1] so λ determines κ ∈ [0, 1]3. We will see that the conjugacy class of
the image group only depends on λ. Thus the same collection of conjugacy classes
of groups is obtained by restricting to κi ∈ [0, 1]. Restricting κ to a compact set
helps later with the point-set topology, when we quotient out by this compact set.
Finally, since t1 is expressed in terms of the other ti, the terms for i = 1 are
different to the other terms. Thus we replace the index set 1 ≤ i ≤ 4 by 0 ≤ i ≤ 3,
to emphasize the special role of λ0. This leads to the following definitions.

Given λ ∈ Hom(Rn, R) define λi−1 = λ(ei). The subspace

(13) An = {(λ0, . . . ,λn−1) | 0 ≤ λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn−1} ⊂ Rn

is called the (closed) Weyl chamber. It is a fundamental domain for the action by
signed coordinate permutations on Rn. Observe that λi = 0 if and only if t < n
and i ≤ u(λ).

The blown up Weyl chamber is

(14) Ãn = {(λ,κ) ∈ An × [0, 1]n−1 : λ0 = λiκi}

The projections p1 : Ãn → An and p2 : Ãn → [0, 1]n−1 are defined by p1(λ,κ) = λ
and p2(λ,κ) = κ. Since λi ≥ λ0 it follows that p1 is surjective. When λi )= 0
then κi = λ0/λi is determined by λi. However when λi = 0 then λ0 = 0 also,
thus κi ∈ [0, 1] is arbitrary. One may regard Ãn as obtained from An by a kind
of blowup of the subset of An where λ0 = 0, and the κ coordinates record certain
tangent directions when some of the coordinates of λ are zero.

We make frequent use of the following inverse function theorem.

Lemma 3.1 ([13, Corollary 10.1.6]). Let f : X → Y be a continuous bijection
between locally compact spaces. If Y is Hausdorff and f is a proper map, then f is
a homeomorphism.

Let Dn = {(λ,κ) ∈ (0,∞)n × [0, 1]n−1 : λ0 = λiκi}. A point in Dn determines
a diagonalizable marked translation group via (3.4), however the coordinates of λ
are in arbitrary order subject only to λ0 = minλi, rather than non-increasing.

Lemma 3.2. Given (λ,κ) ∈ Ãn set t = t(λ) and u = u(λ). If t = n then
p2(p

−1
1 λ) = κ. If t(λ) < n then p2(p

−1
1 λ) = [0, 1]u × 0 where 0 = (0, · · · , 0) ∈

[0, 1]n−1−u. Moreover

(a) Ãn ⊂ cl Dn

(b) p1 has compact fibers
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(c) p1 : Ãn → An is a quotient map.

Proof. If t = n then all λi > 0 and λ determines κ. Otherwise t < n and λi = 0 if
and only if i ≤ u. For i ≥ 1 then κi is the set of solutions in [0, 1] of 0 = λ0 = κiλi.
For 1 ≤ i ≤ u then λi = 0 and κi ∈ [0, 1] is arbitrary. For u < i ≤ n − 1 then
λi > 0, so κi = 0. This gives the formula for p2(p

−1
1 λ), and (b) is an immediate

consequence.
For (a), we prove there is a sequence (λ(m),κ(m)) ∈ Dn that converges to

(λ,κ) ∈ Ãn. If t = n then (λ,κ) ∈ Dn so a constant sequence suffices. Otherwise
λ0 = 0. Since κ ∈ [0, 1]n−1 there is a sequence κ(m) ∈ (0, 1]n−1 that converges to
κ. Now define λ0(m) = m−1 and λj(m) by λ0(m) = λj(m)κj(m) for j > 0. Then
(λ(m),κ(m)) ∈ Dn, and converges to (λ,κ). When λi = 0 for all i ≤ u then the
coordinates of κ need not be monotonic. This is where we exploit that there is no
ordering requirement for the λ coordinates in Dn.

For (c), let B = Ãn/ ∼ be the space of fibers of p1 equipped with the quotient
topology. The map f : B → An induced by p1 is a proper continuous bijection.
Moreover An is compact and Hausdorff. Also B is locally compact because p−1

1 (K)
is compact whenever K is compact. Hence f is a homeomorphism by Lemma
3.1. !

Remark 3.3. (c) is where [0, 1]n−1 is compact is needed. The reader might like to
consider what B becomes if [0, 1]n is replaced by [0,∞)n in the definition of Ãn.

We now define another family of Lie groups T (λ,κ) that varies continuously with
(λ,κ) ∈ Ãn. Theorem 3.10 shows that the families of Lie groups T (λ,κ) and Tr(ψ)
are conjugate.

Definition 3.4. For each (λ,κ) ∈ Ãn ∪ Dn define Φλ,κ := exp ◦φλ,κ : V → Aff(n)
where φλ,κ : V → aff(n) is given by

φλ,κ(v) =





0 v1 v2 · · · vn−1 0
0 λ1v1 0 · · · 0 v1
...

. . .
...

λn−1vn−1 vn−1

0 · · · 0




+ 〈v,κ〉





−λ0 κ1 · · · κn−1 0
0 · · · 0
...

...

0 · · · 0





and v = (v1, · · · , vn−1) ∈ V , and λ = (λ0, · · · ,λn−1), and κ = (κ1, · · · ,κn−1). Also
t(λ,κ) := Im(φλ,κ) and T (λ,κ) := Im(Φλ,κ).

If (λ,κ) ∈ Dn then Φλ,κ is diagonalizable. It follows if (λ,κ) ∈ Ãn then Φλ,κ is
the limit of these diagonalizable representations by (3.2)(a). This fact is exploited
to prove that T (λ,κ) is a translation group. The proof of the following is routine
and in Section 8.

Proposition 3.5.

(a) Given (λ,κ) ∈ Dn let ψi = λ−2
i for 1 ≤ i ≤ n− 1 and ψn = λ−2

0 . Then there
is Q ∈ SL(n+1, R) and f ∈ GL(V ) given by f(v1, · · · , vn−1) = λ2

0(λ1v1, · · · ,λn−1vn−1)
such that QΦλ,κQ−1 = ζψ ◦ f, and QT (λ,κ)Q−1 = Tr(ψ) .
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(b) T (λ,κ) is a translation group that preserves a convex set Ω(λ,κ) ⊂ Rn, and
∂Ω(λ,κ) = T (λ,κ) · 0. Also η(Φλ,κ) = (χλ,κ , [β′

κ]) where

β′
κ = I +κ⊗ κ =





1 + κ2
1 κ1κ2 · · · κ1κu

κ2κ1 1 + κ2
2 · · · κ2κu

...
...

κuκ1 κuκ2 . . . 1 + κ2
u

0

0 Ir





χλ,κ(v1, · · · , vn−1) = 1 + exp (−λ0〈κ, v〉) +
n−1∑

i=1

exp(λivi)

Define κ = (1 + ‖κ‖2)1/(n−1); then det β′
κ = κn−1 and βκ = κ−1β′

κ is unimodular.

Definition 3.6. If Q = I +M ∈ GL(k, R) and M2 = αM then the preferred square
root of Q is

S̃(Q) = I +α−1(
√

1 + α− 1)M

This is a square root since (I +xM)2 = I +(2x+αx2)M = Q when 2x+αx2 = 1.
If v ∈ Rk then M = v ⊗ v has rank 1 and the condition holds with α = ‖v‖2.
Moreover, if Q is symmetric and positive definite, then so is S̃. Observe that
β′

0 = β0 = ‖v‖2 is given by the identity matrix in the standard basis.

Lemma 3.7. If S̃ = S̃(I +κ⊗κ) then S̃−1 : (V,β0) → (V,β′
κ) is an isometry, where

β′
κ is defined in (3.5). Moreover S̃−1 varies continuously with κ.

This gives a re-parameterization of Φλ,κ that makes the horosphere metric stan-
dard.

Definition 3.8. Φ⊥
λ,κ : V → Aff(n) is given by Φ⊥

λ,κ = Φλ,κ ◦ S̃−1 where S̃ =

S̃(I + κ⊗ κ) ∈ GL(V ).

If t < n then κi = 0 whenever λi )= 0. By (3.5) this re-parameterization does not
change the character. However if t = n the character of Φ⊥

λ,κ is more complicated.
Fortunately we will not need an explicit formula for it in this case. It follows from
(3.7) that

Corollary 3.9. The map Ãn → Hom(V, Affn) given by (λ,κ) :→ Φ⊥
λ,κ is continu-

ous. The complete invariant of Φ⊥
λ,κ is given by β(Φ⊥

λ,κ)(v) = 〈v, v〉, and if t(λ) < n
then

χ(Φ⊥
λ,κ)(v1, · · · , vn−1) = 2 + u +

n−1∑

i=u+1

exp(λivi)

The next result shows that the conjugacy classes of the family of groups Tr(ψ)
coincide with the conjugacy classes of the groups T (λ,κ), and that the conjugacy
class of T (λ,κ) only depends on λ. Changing κ but keeping λ fixed changes the
conjugacy class of Φλ,κ (as detected by the horosphere metric) without changing
the conjugacy class of T (λ,κ).

Theorem 3.10. Given (λ,κ) ∈ Ãn then T (λ,κ) is conjugate to Tr(ψ) in Aff(n)
where ψ is defined in terms of λ as follows.
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Set u = u(λ) and t = t(λ). When t = 0 then λ = 0 and define ψ = 0. When
t = n define ψ as in (3.5)(a). When 0 < t < n then t + u = n − 1 and

given λ = (λ0, · · · ,λn−1) = (0, · · · , 0,λu+1, · · ·λu+t) ∈ Rn

define ψ = (ψ1, · · · ,ψn) = (λ−2
u+1, · · · ,λ−2

u+t, 0, · · · , 0) ∈ Rn

Proof. When t = n this follows (3.5). When t = 0 then ζ0 = Φ0,0 and the result
follows. This leaves the case 1 ≤ t < n. Define F, C ∈ GL(V ) by F (v1, · · · , vn−1) =
(vu+1, · · · , vu+t, v1, · · · , vu) and C = F · Diag(c1, · · · , cn−1), where the ci are de-
termined below. From (3.9)

β(Φ⊥
λ,κ ◦ C)(v) ∼

n−1∑

i=1

c2
i v

2
i , χ(Φ⊥

λ,κ ◦ C)(v) = 2 + u +
t∑

i=1

exp(λu+icivi)(15)

By (2.11)

β(ζψ)(v) ∼
t∑

i=1

ψiv
2
i + ψ−1

t

n−1∑

i=t+1

v2
i , χ(ζψ)(v) = 2 + u +

t∑

i=1

exp(ψtvi)

We will now show how to choose C so that ζψ and Φ⊥
λ,κ ◦C have the same complete

invariant, then they are conjugate by (2.16). The characters are equal if λu+ici = ψt

for i ≤ t. Now ψi = λ−2
u+i when i ≤ t and ci = ψt/λu+i for i ≤ t, hence c2

i = ψ2
tψi.

Then from (15)

β(Φ⊥
λ,κ ◦ C)(v) ∼ ψ2

t

t∑

i=1

ψiv
2
i +

n−1∑

i=t+1

c2
i v

2
i

For i > t define ci =
√
ψt then

β(Φ⊥
λ,κ ◦ C)(v) ∼ ψ2

t

t∑

i=1

ψiv
2
i +

n−1∑

i=t+1

ψtv
2
i ∼

t∑

i=1

ψiv
2
i + ψ−1

t

n−1∑

i=t+1

v2
i ∼ β(ζψ)(v)

!
It is messy to directly construct a conjugating matrix, since it varies continuously

only when the type does not change. In general the representations Φλ,κ and
Φλ,κ′ are not conjugate if κ )= κ′ because they have different complete invariants.
However:

Corollary 3.11. If θ : V → Aff(n) is a marked translation group then there are
B, C ∈ SL± V and (λ,κ) ∈ Ãn such that θ is equivalent to Φλ,κ ◦B and to Φ⊥

λ,κ ◦C.

Proof. The first claim follows from (2.5)(c) and (3.10), and the second claim from
this and (3.8). !

The proof of 1.4 now follows from (3.2)(a) and (3.11).

Corollary 3.12. If s > 0 and (λ,κ), (s · λ,κ′) ∈ Ãn then T (λ,κ) = T (s · λ,κ′) are
conjugate subgroups of Aff(n). In particular, if t(λ) < n then T (λ,κ) is conjugate
to T (λ, 0).

Proof. By (3.10) T (λ,κ) and T (λ,κ′) are always conjugate. Thus to prove the result
we may assume that κ′ = κ. Let f : V → V be f(v) = sv. By (3.5) χ(Φsλ,κ) =
χ(Φλ,κ)◦f and β(Φsλ,κ) = β(Φλ,κ). Now β(Φλ,κ ◦f) ∼ s2β(Φλ,κ) ∼ β(Φλ,κ). Thus
Φsλ,κ and Φλ,κ ◦f are marked translation groups with the same complete invariant.



130 S. A. BALLAS, ET AL.

Thus they are conjugate by (2.16). The second statement follows by continuity
because, if t(λ) < n, then λ0 = 0 so (λ, 0) ∈ Ãn. !

It is interesting that in the non-diagonalizable case we may choose κ = 0, and
then φλ,0 has a simple form as given in (3.4), however the diagonalizable ones are
more complicated.

4. Topology of the moduli space

Recall V = Rn−1 and define Repn to be the subspace of Hom(V, Affn)/ Affn

that consists of conjugacy classes of holonomy representations of marked generalized
torus cusps of dimension n. First we establish that Repn is a quotient of Ãn×SL± V ,
and that the complete invariant provides an embedding of Repn. We use this to
prove that the holonomy map is a homeomorphism hol : Tn → Repn. Finally we
compute the stratification of Tn and prove (1.5).

It follows from (2.5) and (3.10) that every marked translation group is conjugate
to Φ⊥

λ,κ ◦ A for some (λ,κ) ∈ Ãn and A ∈ SL± V . Moreover if t(λ) < n then it

suffices to use κ = 0 so Φ⊥
λ,0 = Φλ,0.

Lemma 4.1. The map Ψ̃ : Ãn ×SL± V → Repn given by Ψ̃((λ,κ), B) = [Φ⊥
λ,κ ◦B]

is continuous, and covers a continuous surjection Ψ : An × SL± V → Repn.

Proof. Continuity of Ψ̃ follows from (3.9). To prove Ψ is well defined we must show
that Φ⊥

λ,κ ◦ B is conjugate to Φ⊥
λ,κ′ ◦ B. To do this, it suffices to show they have

the same complete invariant. Clearly it suffices to do this when B = I. This now
follows from (3.9).

Recall p1 : Ãn → An and we have Ψ ◦ p1 = Ψ̃. If U ⊂ Repn is open then, since
Ψ̃ is continuous, Ψ̃−1(U) = p−1

1 (Ψ−1(U)) is open. Since p1 is a quotient map by
(3.2)(c), it follows that Ψ−1(U) is open, so Ψ is continuous. !

In what follows we use β ∈ P in place of [β] ∈ PP. Recall the compete invariant
η : Repn → χ(V )×P and the codomain is homeomorphic to a subspace of Euclidean
space. In particular a closed subset of the codomain is locally compact.

Lemma 4.2. η ◦ Ψ : An × SL± V → χ(V ) × P is proper and continuous, and
Xn = η(Repn) is a closed subset of χ(V ) × P, and is homeomorphic to a closed
subset of Euclidean space.

Proof. Continuity of η ◦ Ψ follows from (2.9) and (4.1). Suppose ((aj,κj), Bj) ∈
Ãn × SL± V and

(χj ,βj) = η(Ψ(aj , Bj)) = η(Φ⊥
aj ,κj

◦ Bj)

is a bounded sequence in χ(V ) × P. Then βj = Bt
jBj is bounded. The map

θ : SL± V → SL V given by θ(B) = BtB is proper, thus Bj is bounded. After
passing to a subsequence we may assume lim Bj = B ∈ SL± V . By (3.8)

Φ⊥
aj ,κj

= Φaj ,κj ◦ S̃−1
j

Now κj ∈ [0, 1]n−1 so S̃j = S̃(I + κj ⊗ κj) is bounded. Since the map that sends

an element of SL± V to its inverse is proper, B−1
j is bounded. Thus (B−1

j ◦ S̃j) is
bounded. Also χj is bounded, so

χj ◦ (B−1
j ◦ S̃j) = trace((Φaj ,κj ◦ S̃−1

j ) ◦ Bj) ◦ (B−1
j ◦ S̃j) = trace(Φaj ,κj )



GENERALIZED CUSPS 131

is bounded. Let µj be the last component of aj , then µj is the largest component
of aj . Referring to (3.4) we see that Φaj ,κj (en−1) has an eigenvalue of expµj in the
(n, n) entry and all other eigenvalues are equal to 1. Since trace(Φaj ,κj ) is bounded,
and µj > 0, it follows that µj is bounded. Thus aj is bounded. Hence η ◦ Ψ is
proper. After taking a subsequence lim aj = a and a ∈ An because An is a closed
subset of Rn. Thus lim(aj , Bj) = (a, B) ∈ An × SL± V , and lim η ◦ Ψ(aj , Bj) =
η ◦ Ψ(a, B) ∈ Im η. Thus Im η ◦ Ψ is closed in χ(V ) × P. By (4.1) ImΨ = Repn;
thus Im η ◦Ψ = η(Repn) is closed. !

By (2.16), if B, B′ ∈ SL± V then Φ⊥
λ,κ ◦B and Φ⊥

λ,κ ◦B′ represent the same point
in Repn if and only if they have the same complete invariant. By definition 2.8 this
is equivalent to B′ ∈ B · O(η(Φ⊥

λ,κ)). Since β(Φ⊥
λ,κ) is standard, and the character

does not depend on κ, the group O(η(Φ⊥
λ,κ)) does not depend on κ.

Let π : An ×SL± V →
(
An × SL± V

)
/ ∼ be projection, where (λ, B) ∼ (λ′, B′)

if and only if λ = λ′ and B′ ∈ B ·O(η(Φ⊥
λ,κ)) for some κ with (λ,κ) ∈ Ãn. It follows

there is an injective function

Ψ∗ :
(
An × SL± V

)
/ ∼ −→ Repn

such that Ψ = Ψ∗ ◦ π. Equip the domain with the quotient topology, then Ψ∗ is
continuous by (4.1). Surjectivity of Ψ∗ follows from (2.5) and (3.10). Theorem 1.1
follows from (4.5) and:

Theorem 4.3. Ψ∗ is a homeomorphism, and η : Repn → Xn is a homeomorphism,
and Repn is homeomorphic to a closed subset of Euclidean space.

Proof. By (4.2) η ◦ Ψ∗ :
(
An × SL± V

)
/ ∼ −→ Xn is proper and continuous. It

is bijective because η and Ψ∗ are. Since Xn is homeomorphic to a closed subspace
of Euclidean space, it is Hausdorff and locally compact. Given x = (λ, A) ∈ An ×
SL± V there are compact neighborhoods L ⊂ An of λ and K ⊂ SL± V of A. Then
U = L × (O(n − 1) · K) ⊂ An × SL± V is compact because O(n − 1) is compact.
Since O(η(Φ⊥

λ,κ)) ⊂ O(n−1) it follows that π(U) is a compact neighborhood of πx,

thus
(
An × SL± V

)
/ ∼ is locally compact. Hence η ◦ Ψ∗ is a homeomorphism by

(3.1). It follows that η is an homeomorphism, and Ψ∗ is a homeomorphism. The
last conclusion follows from (4.2). !

In (2.5) generalized cusps were classified and shown to be equivalent to ones with
holonomy in Tr(ψ) for some ψ ∈ An(Ψ). Recall that ψi = 1/λ2

i when λi > 0. In
[2, Theorem 0.2(v)] gives a bijection Θ that is essentially the same as Ψ∗, but the
topology on the domain is different. It follows from the above that, if the reciprocals
of the coordinates of ψ converge suitably, then the conjugacy class of Tr(ψ) has a
limit that is another translation group.

Informally, two generalized cusps are close if, after shrinking them, they are
nearly affine isomorphic. It turns out this is equivalent to their holonomies being
close up to conjugacy. Our definition of marked moduli space is based on the
notion of developing maps as is done in [9, Sec 1]. Recall C = (V/Zn−1) × [0,∞)
so C̃ = V × [0,∞) is the universal cover.

Definition 4.4. Let T̃n be the space of developing maps dev : C̃ → An for marked
generalized cusps with underlying space C. We endow T̃n with the compact-open
topology. There is an equivalence relation on T̃n that is generated by homotopy,
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and composition with an affine isomorphism. The quotient space is the marked
moduli space Tn.

When n ≤ 3 homotopy implies isotopy for homeomorphisms of Tn. However
when n ≥ 5, there are infinitely many isotopy classes homotopic to the identity, see
[14, Theorem 4.1]. We have used homotopy rather than isotopy in the definition of
Tn in order to obtain the following.

Theorem 4.5. The holonomy hol : Tn → Repn is a homeomorphism.

Proof. First we define hol. Suppose dev : C̃ → An is the developing map of a
generalized cusp. Then g ∈ Zn−1 = π1C acts on C̃ = V × [0,∞) by g · (v, t) =
(v + g, t) so the extended holonomy ρ can be recovered from dev using that for
x ∈ Im(dev)

(ρg)(x) = dev((g, 0) + dev−1(x))

It follows that there is a map h̃ol : T̃n → Hom(V, Aff(n)). Moreover this formula
shows ρ is determined by the restriction of dev to a compact set. Since T̃n has the
compact-open topology, it follows that h̃ol is continuous. It is clear that ρ is the
holonomy, and is therefore well defined on the equivalence class [dev] ∈ Tn. Thus

h̃ol covers a continuous map hol : Tn → Repn.
Next, we construct an inverse to hol. By (4.3) Ψ∗ is a homeomorphism so we

may replace Repn by
(
An × SL± V

)
/ ∼. Given ((λ,κ), B) ∈ Ãn × SL± V , define a

developing map

f = fλ,κ,B : V × [0,∞) → Rn × 1 = An by f(v, z) = (Φ⊥
λ,κ(Bv))(z, 0, · · · , 0, 1)

Observe that f(V, 0) is the orbit of the origin, so Im(f) = Ω(λ,κ) defined in (3.5).
More generally f(V, z) is a horosphere for fixed z > 0. It follows that f is the
developing map for a generalized cusp with holonomy Φ⊥

λ,κ ◦ B, thus f ∈ T̃n.

Define F̃ : Ãn × SL± V → T̃n by F̃ ((λ,κ), B) = fλ,κ,B . Clearly F̃ is contin-

uous. By properties of the quotient topology, F̃ covers a continuous map F :(
An × SL± V

)
/ ∼ → Tn. Since hol has a continuous inverse F ◦ Ψ−1

∗ , it follows
hol is a homeomorphism. !

Proof of 1.6. If C is a torus then C̃ = C and the result follows from (4.5). It only
remains to prove that the holonomy of C̃ uniquely determines the holonomy of C.
Now ρ|C̃ determines the extended holonomy σ : V → Affn. We claim σ determines
the rotational part R : π1C → O(n) and therefore determines ρ : π1C → An. This
follows from the observation that R is uniquely determined by the action of ρπ1C
on σV by conjugacy. This in turn is determined by the action by conjugacy of π1C
on π1C̃. !

In the sequel we will use hol to identify these two spaces. If dev is the developing
map for a generalized cusp with holonomy ρ then we identify [dev] ∈ Tn with
[ρ] = hol[dev] ∈ Repn. It follows from the above that:

Theorem 4.6. hol−1 ◦Ψ∗ :
(
An × SL± V

)
/ ∼ −→ Tn is a homeomorphism.

To analyze the subspaces of Tn consisting of cusps of fixed type it is easier to
work with ζψ than with Φλ,κ.
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Definition 4.7. Given 0 ≤ t ≤ n the stratum of type t of Tn is the subspace
Tn(t) ⊂ Tn that consists of all marked cusps with holonomy conjugate into some
Tr(ψ) with t(ψ) = t.

The holonomy of a generalized cusp is conjugate to ζψ◦A where (ψ, A) ∈ An(Ψ)×
SL± V . The coordinates of ψ are ordered. Below we show each stratum is a manifold
by showing it is the quotient of a smooth manifold by a compact group that acts
freely. To do this involves enlarging the set of pairs (ψ, A) by relaxing the ordering
and using ψ ∈ Au

n(Ψ), defined in (2.4). The equivalence relation on Au
n(Ψ)×SL± V

is then given by a free action of Σt × O(u). This technique can only be employed
with individual strata, but not all of Tn, since the dimension of O(u) changes with
type. We will see that Tn is not a manifold with boundary when n ≥ 3. The proof
of the next result actually determines the topology of each stratum.

Proposition 4.8. For each 0 ≤ t ≤ n the stratum Tn(t) ⊂ Tn is a connected
smooth manifold without boundary and dim Tn(t) < dim Tn(t + 1) when t < n.
Moreover cl(Tn(t)) = ∪i≤t Tn(i). If n ≥ 3 then the fundamental group π1(Tn(n))
is not trivial.

Proof. Let Wt = (0,∞)t×SL± V . By (2.5) there is a surjective map π : Wt → Tn(t)
given by π(ψ, A) = [ζψ′ ◦ A] where A ∈ SL± V , and ψ = (ψ1, · · · ,ψt) ∈ Wt, and
ψ′ = (ψ1, · · · ,ψt, 0, · · · , 0) ∈ Au

n(Ψ).
The first case is t < n, so t + u = n − 1. Recall V = D ⊕ U from (2) where

D = Rt ⊕ 0 and U = 0 ⊕ Ru. Let Σt ⊂ O(t) be the subgroup that permutes the
coordinates axes of Rt, and Gt = Σt⊕O(u) ⊂ SL± V . There is an action of α ∈ Gt

on (ψ, A) ∈ Wt given by

α(ψ, A) = (σ∗ψ,αA) , where α =

(
σ 0
0 B

)
, σ ∈ Σt, B ∈ O(u)

Here we regard ψ ∈ D∗ = Hom(D, R) and σ∗ is the dual action on D∗ so σ∗ψ =
ψ ◦σ−1. The marked translation groups given by (ψ, A) and α(ψ, A) are conjugate
because they have the same complete invariant. Now B does not change η, and
σ−1 from σ∗ cancels with the σ in α, so π(α(ψ, A)) = π(ψ, A).

We claim that π−1(ψ, A) = Gt · (ψ, A). Suppose π(ψ′, A′) = π(ψ, A). There is
σ ∈ Σt so that the coordinates of σψ are non-increasing. Thus we may assume ψ
and ψ′ both have this property. By the classification [2, 1.44 & 0.2(v)] it then follows
that ψ = ψ′ and A′ ∈ O(u) · A. The claim follows. Hence Tn(t) is homeomorphic
to Wt/Gt. Moreover the subgroup O(u) acts trivially on the first factor of Wt, and
by left multiplication on the second factor, so

Tn(t) ∼=
[
(0,∞)t ×

(
O(u)\ SL± V

)]
/Σt

Now O(u)\ SL± V is a symmetric space. Since Σt is finite, and acts freely on the
second factor, it follows that Tn(t) is a manifold.

This leaves the case t = n, in which case u = 0 and the representations are
diagonal. Let Mono(V, Aff(n)) ⊂ Hom(V, Aff(n)) be the subspace of injective maps.
Define f : Wn → Mono(V, Aff(n)) by f(ψ, A) = ζψ ◦ A. Then f is injective and
we use it to identify Wn with Z = f(Wn). Let Σn ⊂ Aff(n) be the subgroup
that permutes the standard basis of Rn. Then Σn acts freely by conjugacy on
Mono(V, Aff(n)).

Claim. This action preserves Z.



134 S. A. BALLAS, ET AL.

We identify Σn with the group of permutations of {1, · · · , n}. Suppose σ ∈ Σ.
If σ(n) = n then the action of σ on Wn is as above. In particular the subgroup
Σn−1 ⊂ Σn that fixes n preserves Z.

Let σ ∈ Σ be the transposition σ = (n − 1, n). Since Σn−1 and σ generate Σn,
it suffices to show that σ preserves Z. Given ψ = (ψ1, · · · ,ψn) ∈ (0,∞)n then
σζψσ−1 = ζψ′ ◦ B where

B =





1
1

· · ·
1

−ψ1/ψn −ψ2/ψn · · · −ψn−1/ψn




,

ψ′ = (ψn/ψn−1)(ψ1, · · · ,ψn−2,ψn,ψn−1)

Let δ = | detB|1/(n−1); then δ−1B ∈ SL± V , and ζδψ′(v) = ζψ′(δv) by (2.5)(b),
thus ζψ′ ◦ B = f(δψ′, δ−1B) ∈ Z. This proves the claim.

If two elements of Z are conjugate, then they are conjugate by an element of
Σn. This is because both representations are diagonal, so a conjugacy must pre-
serve the coordinate axes. Thus the conjugacy is by a signed permutation matrix.
However a signed permutation matrix is the product of a permutation matrix and
a diagonal matrix with ±1 on the diagonal. But diagonal matrices centralize these
representations, so they are conjugate via a coordinate permutation.

Hence Tn(n) ∼= Z/Σn. Now Wn has two components, and these are swapped by
every odd element of Σn. Thus

Tn(n) ∼=
[
(0,∞)n × SL± V

]
/Σt

∼= ((0,∞)n × SL V ) / Alt

where Alt ⊂ Σn is the alternating subgroup, and it acts freely. In particular π1Tn(n)
surjects to Alt, and Alt is non-trivial if n ≥ 3, the last claim in the theorem follows.
Moreover cl(Tn(t)) = ∪i≤t Tn(i) follows from the corresponding fact for the Weyl
chamber An. Finally dim Tt = dim Wt − dim Gt = (t + dim SL V ) − dimO(u) and
dim V = n − 1. !

Proof of 1.5. There is a deformation retraction Tn → Tn(0) to the 0-stratum given
by scaling λ, and T (0) ∼= P is homeomorphic to Euclidean space of dimension
n(n − 1)/2. Thus Tn is contractible. In [2, Prop 6.2] T2 was parameterized as
{(x, y) ∈ R2 : 0 ≤ x ≤ y} and is thus a manifold with boundary. Suppose Tn

is a manifold M with boundary and n ≥ 3. Let N ⊂ Tn be the subspace of
non-diagonalizable generalized cusps.

We claim that ∂M = N . Since Y = Tn \ N is the stratum of diagonalizable
generalized cusps, it follow from (4.8) that Y is a manifold without boundary, and
dim Y = dim Tn so ∂M ∩ Y = ∅. Thus ∂M ⊂ N . If ψ ∈ ∂An(Ψ) and t(ψ) = n − 1
then ψ has exactly one zero coordinate. Let Z ⊂ N be the subset of [ρ] with
ρ = ζψ ◦ A with t(ψ) = n − 1 and all the coordinates of ψ are distinct. Then no
element of Σn−1 fixes [ρ] because if σ ∈ Σn−1 and σψ = ψ then σ = I. It follows
a neighborhood of [ρ] in M is homeomorphic to a neighborhood U of a point in
An(Ψ) × SL± V that projects to [ρ]. But ρ is in the boundary of An(Ψ) × SL± V
so [ρ] is in the boundary of the quotient. Thus Z ⊂ ∂M . But Z is dense in N and
∂M is closed in M so N ⊂ ∂M . This proves the claim.
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Since M is contractible π1M = 0. Also π1M = π1Y because a manifold and its
interior have the same fundamental group. By (4.8) π1Y )= 1 when n ≥ 3. This
contradicts that Tn is a manifold. !

5. The weights data ν

In this section we prove (1.2). We will often identify the space P of unimodular
positive definite quadratic forms with PP. There is an action of A ∈ GL V on Repn

given by A · [ρ] = [ρ ◦ A−1]. If ν(ρ) = ([ξ1, · · · , ξn], [β]), then

(16) ν(ρ ◦ A−1) = ([ξ1 ◦ A−1, · · · , ξn ◦ A−1], [β ◦ A−1])

This restricts to an action on Im ν that covers a transitive action on P.

Lemma 5.1. If ρ = Φλ,κ ◦A with A ∈ SL± V then ν(ρ) = ([ξ0, · · · , ξn−1],β) where

〈ξi, ξj〉β∗ = κλ2
i δij −$ = κλiλjδij −$

and κ = (1 + ‖κ‖2)1/(n−1) and $ = λ2
0κ(2−n).

Proof. Let β = β(ρ), and 〈·, ·〉β is the inner product on V corresponding to β ∈ S2 V ,
and ‖ · ‖β the associated norm. Let ‖ · ‖ be the standard norm on V for which the
standard basis is orthonormal and 〈·, ·〉 the associated inner product. We may
assume ρ = Φλ,κ. By (3.5)(b) the matrix of β in the standard basis is given by
Q = κ−1(I+κ⊗κ). The matrix of the dual form β∗ on V ∗ with respect to the dual
basis is then Q−1.

From (3.4) the Lie algebra weights for ρ are ξ0, · · · , ξn−1 ∈ V ∗ where

(17) ξ0(v) = −λ0〈κ, v〉, ξi = λie
∗
i for 1 ≤ i ≤ n − 1

For the following, refer to the discussion after (3.6). Now Q = κ−1(I+M) where
M = κ⊗ κ, then M2 = ‖κ‖2M , so Q−1 = κ(I+M)−1 = κ(I−(1 + ‖κ‖2)−1M).

If 1 ≤ i, j ≤ n − 1 then define $ by

(18) 〈ξi, ξj〉β∗ = 〈λie
∗
i ,λje

∗
j 〉β∗ = κλiλj

(
δij − (1 + ‖κ‖2)−1κiκj

)
= κλiλjδij −$

Now λiκi = λ0 so $ = κλ2
0(1 + ‖κ‖2)−1 = λ2

0κκ1−n.
We claim (18) holds in all cases: 0 ≤ i, j ≤ n− 1. If λ0 = 0 then ξ0 = 0 and (18)

holds in all cases. Otherwise λ0 > 0 and using λiκi = λ0 then (17) implies

(19) ξ0 = −λ2
0

n−1∑

i=1

λ−2
i ξi, so

n−1∑

i=0

λ−2
i ξi = 0

To compute 〈ξ0, ξj〉β∗ , replace ξ0 by the above and then use (18) in the case i, j ≥ 1
already established. Some algebra then shows (18) holds in all cases. !

The lemma implies the inner product of distinct weights is always −$. This has
a geometric interpretation. Consider a set of n vectors {v1, · · · , vn} in V = Rn−1

equipped with the standard inner product such that for some $ ≥ 0 the vectors
satisfy the equation

(20) ∀ i )= j 〈vi, vj〉 = −$

If $ = 0 this just says the vectors are pairwise orthogonal, and for dimension
reasons at least one is zero. If $ > 0 then set Rn = V ⊕ Ren with the standard
inner product. Equation (20) is equivalent to the pairwise orthogonality of the
vectors {ui = vi +

√
$en} in Rn. In this case the {ui} are an orthogonal basis of
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Rn that represent points in the hyperplane xn =
√
$, and the {vi} are the images

of these vectors under orthogonal projection into V .

Proof of Theorem 1.2. We will abuse notation by identifying Tn = Repn and write
ρ instead of [ρ] for a point in Repn. First we prove that ν is a homeomorphism.

Suppose ν(ρ) = ([ξ0, · · · , ξn−1],β). Then χ = χρ : V → R is given by χ(v) =∑n−1
i=0 exp ξiv. Thus the complete invariant η(ρ) = (χ,β) is a continuous function

of ν(ρ). By (2.16) η is injective; hence ν is injective.
Recall Rn ⊂ SPn(V ) × P is the subset of all ([ξ0, · · · , ξn−1],β) such that

(21) ∃ $ ≥ 0 ∀ i )= j 〈ξi, ξj〉β∗ = −$

We must show that Im(ν) = Rn. By (5.1) Im ν ⊂ Rn. It remains to show that Rn ⊂
Im ν. In what follows we will always choose an ordering for x = ([ξ0, · · · , ξn−1],β) ∈
Rn so that ‖ξ‖β∗ is a non-decreasing function of i. Define k by ξi )= 0 if and only
if i ≥ k, and define $ = −〈ξ0, ξ1〉β∗ .

Case 1 ($ = 0). This is the non-diagonal case. Then (21) is equivalent to requiring
the ξi are pairwise orthogonal with respect to β∗. Since dimV = n − 1 it follows
that ξ0 = 0. Define

(22) λi =
√
β∗(ξi), κ = (0, · · · , 0)

then λ0 = 0. Observe these values are consistent with (5.1). From (3.5)(b) the
weight data is

(23) ν(Φλ,0) = ([0, · · · , 0,λke∗k, · · · ,λn−1e
∗
n−1],β0), β0(v) = ‖v‖2

Now β∗
0(λie∗i ) = λ2

i = β∗(ξi). Then λie∗i are obviously pairwise β∗
0 -orthogonal,

and ξi are pairwise β∗-orthogonal since $ = 0. Thus there is an isometry A :
(V,β) → (V,β0) with

(λie
∗
i ) ◦ A−1 = A∗(λie

∗
i ) = ξi, β = β0 ◦ A−1

Then x ∈ Im ν because applying (16) to (23) gives

ν(Φλ,0 ◦ A−1) = ([ξ0, · · · , ξn−1],β) = x

This proves Rn ⊂ Im ν in Case 1.

Case 2 ($ > 0). This is the diagonal case. Identify V with the subspace of Rn

where xn = 0, and extend β to Rn so that β(en) = 1 and en is orthogonal to V .
Let Lβ : (V,β) → (V ∗,β∗) be the natural isometry given by (Lβv)w = 〈v, w〉β and

let ri = L−1
β ξi be the vectors in V dual to the weights. Then (21) is equivalent to

the pairwise orthogonality of the vectors

{ui = ri +
√
$en : 0 ≤ i ≤ n − 1} ⊂ Rn

Since ‖ui‖ ≥ $ > 0 this is a basis of Rn. Moreover 〈en, ui〉 =
√
$. Writing en in

terms of this orthogonal basis en =
∑n−1

i=0 µiui with µi =
√
$/‖ui‖2

β
> 0. Thus∑

µiri = 0 and ξi = Lβ(ri) so
∑

µiξi = 0. Set λi = µ−2
i and κi = λ0/λi then∑

λ−2
i ξi = 0. Define

([ξ′0, · · · , ξ′n−1],β
′) := ν(Φλ,κ)

Then
∑

λ−2
i ξ′i = 0 by (19), and by (18) 〈ξ′i, ξ′j〉β′∗ = κλ2

i δij − $. Now ξ′i = λie∗i
for i > 0, so in particular {ξ′i : 1 ≤ i ≤ n − 1} is a basis of V ∗. There is a unique
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A ∈ GL V such that A∗ξ′i = ξi for all i ≥ 1. By (19) ξ′0 = −λ2
0

∑n−1
i=1 λ−2

i ξ′i and

ξ0 = −λ2
0

∑n−1
i=1 λ−2

i ξi it follows that A∗ξ′0 = ξ0. Now

〈ξ′i, ξ′j〉β′∗ = κλ2
i δij −$ = 〈ξi, ξj〉β∗

and it follows that A∗ is an isometry between the metrics (β′)∗ and β∗ on V ∗. This
proves Rn ⊂ Im ν in Case 2.

In both cases we have shown Rn ⊂ Im ν so ν is surjective. Thus ν is a bijection.
Let Υ = η ◦ ν−1 : Rn → Xn. By (4.3) η is a homeomorphism, so Υ is a bijection.
Above we showed that η(ρ) is a continuous function of ν(ρ), and it follows that Υ
is continuous.

We claim Υ is proper. Suppose ν(ρm) = (xm,βm) is unbounded, and suppose
for contradiction that Υ(ν(ρm)) = η(ρm) = (χ(ρm),βm) is bounded. Then there is
a component ξm,i ∈ V ∗ of xm = (ξm,0, · · · , ξm,n−1) ∈ SPn V ∗ that is unbounded.
Thus χ(ρm) =

∑
i exp ξm,i is unbounded, a contradiction. This proves the claim.

By (4.2) Xn is locally compact, and Rn is a closed subset of Euclidean space and
thus locally compact. By (3.1) Υ is a homeomorphism. Since η is a homeomorphism
it follows that ν = Υ−1 ◦ η is a homeomorphism.

By definition 1 Rn is a semi-algebraic set. By (5.1) $ = 0 if and only if λ0 = 0,
and this is equivalent to the holonomy being non-diagonalizable by (2.4). Now Rn

is a subspace of SPn(V ∗) × P. There is an action of A−1 ∈ U on the latter given
by

A−1 · ([ξ1, · · · , ξn], B) = ([ξ1 ◦ A, · · · , ξn ◦ A], AtBA)

that preserves Rn. By Gram-Schmidt, every B ∈ P can be written uniquely as
B = AtA for some A ∈ U . Thus the action U on P is simply transitive. Hence the
image of ν is the orbit under U of F ∗

n ×β0 where β0 ∈ P is the standard form 〈 , 〉.
The dual of F ∗

n is Fn ⊂ SPn(V ) that consists of [v1, · · · , vn] such that

∃ $ ≥ 0 ∀ i )= j 〈vi, vj〉 = −$

The solutions of this equation are preserved by multiplication by non-negative
scalar, so Fn is a cone. !

6. Cubic differentials

In this section we will show that when n ≥ 3 a generalized cusp C ∼= Tn−1×[0,∞)
is uniquely determined up to equivalence by the projective class [J ], called the
shape invariant, of a certain polynomial J = q + c where q, c : Rn−1 → R are
homogeneous polynomials of degree 2 and 3 respectively. One may regard q as a
similarity structure (Euclidean structure up to scaling) on Tn−1, and c as a cubic
differential on Tn−1. When n = 2 then the shape invariant does not determine the
cusp, but the moduli space is described in [2, Section 6].

Definition 6.1. A calibrated vector space is a pair (V,ϑ) where V is a vector
space and ϑ : V → R is a function, called the calibration. A linear isomorphism
f : V → V ′ is an isometry between the calibrated vector spaces (V,ϑ) and (V ′,ϑ′)
if ϑ = ϑ′◦f . The group of self isometries of (V,ϑ) is written O(ϑ). Two calibrations
ϑ,ϑ′ are similar if there is λ > 0 with ϑ′ = λϑ, and this is denoted ϑ ∼ ϑ′.

A calibration can be viewed as an interesting generalization of a norm. For
example, there is a calibrated vector space (R248,ϑ) with ϑ an octic polynomial such
that the compact form of the exceptional Lie group E8 is the identity component
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of O(ϑ), see [12], where they use the term stabilize instead of isometry. We follow
[1] in using the term isometry.

Definition 6.2. A cusp-space is a calibrated vector space, (V,ϑ), that is similar
to some (Rn−1,ϑλ,κ) where ϑλ,κ : Rn−1 → R is given by

ϑλ,κ(v1, · · · , vn−1) =
(
〈v, v〉 + 〈v,κ〉2

)
+

1

3

(
−λ0〈v,κ〉3 +

n−1∑

i=1

λiv
3
i

)

and (λ,κ) ∈ Ãn and 〈·, ·〉 is the standard inner product on Rn−1.

In the non-diagonalizable case when κ = 0, this simplifies to ϑλ,0 = 〈v, v〉 +
1
3

∑n−1
i=1 λiv3

i .

Definition 6.3. The space of cusp-space structures on the vector space V is

J (V ) = {[ϑ] : (V,ϑ) is a cusp-space} ⊂ P
(
S2 V ⊕ S3 V

)

equipped with the subspace topology, and Jn = J (Rn−1).

If f : Rn → R is a smooth function, the k-Jet is the polynomial given by the
truncated Taylor expansion of f around 0 consisting of all terms of total degree at
most k.

Definition 6.4. Suppose T is a translation group, and W is a real vector space, and
θ : W → T is an isomorphism. The shape invariant for θ is [J ] where h is a height
function for T , and J = J(θ) is the 3-Jet of h at 0, and [J ] ∈ P(S2 W ⊕ S3 W ).

The height function h is unique up to multiplication by a positive real, thus
the projective class [J ] of J is well defined. Moreover the terms of degree 0 and
1 in J vanish, so J = q + c with q ∈ S2 W and c ∈ S3 W . When W = V then
det q is defined using the standard basis of V , and β(θ) = γq is unimodular where
γ = (det q)−1/ dim V . We use the map F : J (V ) → P ⊕ S3 V given by F [q + c] =
γ(q + c) to identify J (V ) with a subspace of P ⊕ S3 V . In this way we can work
with polynomials instead of equivalence classes up to scaling.

It is easy to check that if B ∈ Aff(n) then J(BθB−1) = J(θ), and that if
A ∈ GL V then J(θ◦A) = J(θ)◦A. Consider the diagonal translation subgroup G =
Tr(ψ) where ψ =

∑n
i=1 ψie∗i with all ψi > 0 as in (2.4). Let D(n) ⊂ GL(n + 1, R)

be the subgroup of positive diagonal matrices with 1 in the bottom right corner.
Then G is a codimension-1 subgroup of D(n). To compute the calibration for ζψ
we avoid choosing a basis of the Lie algebra, g, of G, but instead work with the
natural basis of D(n).

Let A = Rn be the R-algebra with addition and multiplication defined compo-
nentwise, so

(a1, · · · , an)(b1, · · · , bn) = (a1b1, · · · , anbn)

This multiplication is called the Hadamard product. Observe that p = (1, · · · , 1) is
the multiplicative identity in A, and for n > 0 then an ∈ A is the element obtained
by raising each component of a to power n. Let A+ ⊂ A be the subset with all co-
ordinates strictly positive, made into a group using Hadamard multiplication. The
map A → gl(n+1, R) given by (x1, · · · , xn) :→ Diag(x1, · · · , xn, 0) is used to identify
the Lie algebra A (with zero Lie bracket) to the Lie algebra of D(n), and the group
homomorphism δ : A+ → GL(n+1, R) given by δ(x1, · · · , xn) = Diag(x1, · · · , xn, 1)
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identifies A+ (with Hadamard multiplication) to D(n). Regarding A as the Lie al-
gebra of A+ then exp : A → A+ is coordinate-wise exponentiation. Define an inner
product on A by

〈x, y〉ψ = ψ(xy) =
n∑

i=1

ψixiyi

Then 〈xy, z〉ψ = 〈x, yz〉ψ so 〈x, y〉ψ = 〈p, xy〉ψ, and

g = kerψ = p⊥ := {x ∈ A : 〈p, x〉ψ = 0 }

may be regarded as the Lie algebra of Tr(ψ).

Lemma 6.5. If t(ψ) = n then δ ◦ exp : g → Tr(ψ) is a marked translation group,
and the shape invariant is [J(δ ◦ exp)] = [Jψ] where

Jψ(x) = (1/2)〈p, x2〉ψ + (1/6)〈p, x3〉ψ
Proof. Since g = kerψ

δ ◦ exp(g) = {Diag(exp(x1), · · · , exp(xn), 1) :
∑

ψixi = 0 } = Tr(ψ)

Let ∂Ω ⊂ Rn be the orbit of p under Tr(ψ) then the tangent space to ∂Ω at p is
p⊥. We use the height function h = hψ ◦ exp : g → Rn where hψ(y) = ψ(y)−ψ(p);
then

h(x) = −ψ(p) + ψ(exp(x)) = −ψ(p) +
∞∑

i=0

1

n!
〈p, xn〉ψ

The terms of degree 0 and 1 vanish, because 〈p, x0〉ψ = ψ(p), and 〈p, x〉ψ = 0 since
x ∈ p⊥. !

The proof of the following is in Section 8.

Proposition 6.6. If (λ,κ) ∈ An then [J(Φλ,κ)] = [ϑλ,κ] ∈ J (V ). Moreover in
the diagonalizable case λ0 > 0, and (V, J(Φλ,κ)) is similar to (g, Jψ) where ψ is
determined in the proof.

Lemma 6.7 shows how the weight data ν determines the calibration. The cubic
term c in the 3-Jet J = q + c is a weighted sum of the cubes of the weights ξi, see
(39). Later we will see that one can recover these weights from [J ]. In general a
polynomial might be the sum of cubes in distinct way, but see [22] and Theorem
(1.4) in [23] for a uniqueness statement concerning the expression of a cubic as a
sum of cubes in some special cases. The proof of the following is in Section 8.

Lemma 6.7. If n ≥ 3 then there is a map K : Rn → P⊕S3 V such that [K◦ν] = [J ]
and K is continuous and proper. If ρ is a marked translation group and x = ν(ρ) =
([ξ0, · · · , ξn−1],β) ∈ Rn, then K(x) = β(ρ) + c(ρ) with

c(ρ) = (1/3)
n−1∑

i=0

ξ3
i

(
〈ξi, ξi〉β∗ + $

)−1
, $ = −〈ξ1, ξ2〉β∗

Corollary 6.8. J : Tn → P ⊕ S3 V is continuous and proper.

Proof. By (4.5) hol−1 : Repn → Tn is a homeomorphism and by (6.7) K : Rn →
P⊕S3 V is continuous and proper, and ν : Repn → Rn is homeomorphism by (1.2);
thus J = K ◦ ν ◦ hol−1 is continuous and proper. !
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It remains to show that the shape invariant [J ] = [q + c] determines a unique
generalized cusp. The method used is to show that the local maxima of the cubic,
c, restricted to the unit sphere of the quadratic, q, enable one to determine ψ.
This follows from Lemmas 6.9; for the diagonalizable case and 6.10 in the non-
diagonalizable case. The proofs are in Section 8.

Lemma 6.9 (Diagonalizable case). Assume n ≥ 3. Given ψ ∈ An let (Rn, Jψ =
q + c) be the calibrated vector space with Jψ(x) = (1/2)〈p, x2〉ψ + (1/6)〈p, x3〉ψ.
Let g = {x ∈ Rn : 〈p, x〉ψ = 0}, and S = {v ∈ g : 〈v, v〉ψ = 1}, and s =

∑
ψi. For

1 ≤ i ≤ n define vi = (sei − ψip)/‖sei − ψip‖ψ. Then

K = {x ∈ S : (c|S) has a local maximum at x} = {vi : 1 ≤ i ≤ n}
Moreover i )= j ⇒ αij := 〈vi, vj〉ψ < 0. If 1 ≤ i, j, k ≤ n and i, j, k are pairwise
distinct then

(i) ψi/s = αijαik/(αijαik − αjk), (ii) 6c(vi) =
1√
ψi

1 − 2ψi/s√
1 − ψi/s

Also |K+| ≥ n − 1 where K+ = {v ∈ K : c(v) > 0 }.

Observe that the calibration determines K and thus the vectors vi, and the
inner products αij . Then (i) shows that ψ is defined up to scaling by this, and
(ii) can be used to determine the scaling. For the corresponding result in the non-
diagonalizable case, it is more convenient to work with Ψλ,0 instead of ζψ, since the
calibration is J = ‖v‖2 + (1/3)

∑
λiv3

i .

Lemma 6.10 (Non-diagonalizable case). Given λ = (0,λ1, · · · ,λn−1) ∈ An, let
J(v) = ‖v‖2 + c(v) where c = (1/3)

∑
λiv3

i and S = {v ∈ V :
∑

v2
i = 1}. Then

J(Φλ,0) = ϑλ,0 = J(v) and

K+ = {v ∈ S : (c|S) has a local max at v, and c(v) > 0} = {ei : λi > 0}
Moreover c(ei) = λi/3 for ei ∈ K+, and if a )= b ∈ K+ then 〈a, b〉 = 0, and
|K+| = t − 1 ≤ n − 1.

The subgroup O(Ω, b) ⊂ G(Ω) that stabilizes b ∈ ∂Ω is conjugate to the subgroup
O(η) ⊂ GL V that preserves V , by (2.14). The following shows that the latter is
the same as the subgroup that preserves J . These results are keys steps in showing
η and [J ] are powerful invariants.

Lemma 6.11. If θ : V → T is a marked translation group then O(J(θ)) = O(η(θ)).

Proof. This is easy when t = 0 since the generalized cusp is standard, and the cubic
term in J is 0. Thus we may assume t > 0 and then by (2.14) O(η(θ)) ⊂ GL V is
conjugate to the stabilizer of the basepoint in PGLΩ. Since J(θ) is preserved by the
latter O(η(θ)) ⊂ O(J(θ)). To show the reverse inclusion, by (2.5)(c), every marked
translation group is given by B(ζψ ◦ A)B−1 for some A ∈ SL± V and B ∈ Aff(n).
Now O(J(θ)) and O(η(θ)) are both unchanged under conjugation by B. Moreover
J(θ ◦A) = J(θ) ◦A and η(θ ◦A) = η(θ) ◦A. Thus is suffices to prove the result for
θ = ζψ.

Suppose J = q + c where q = β is the horosphere metric on V given by ζψ
and O(q) ⊂ GL(V ) is the subgroup that preserves q. Set t = t(ψ). Let W =
{ξi ∈ V ∗ : 1 ≤ i ≤ t} be the set of non-zero Lie algebra weights for ζψ. Then
O(η(ζψ)) is the subgroup of O(q) that preserves the character χ = χ(ζψ), and
O(J(ζψ)) is the subgroup of Sim(q) that preserves the cubic c. Arguing as in (2.14)
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O(J(ζψ)) ⊂ O(q) since t > 0. The result will follow by showing that preserving χ
is equivalent to preserving W is equivalent to preserving c.

By (2.13) preserving χ is equivalent to preserving the characteristic polynomial
G = cζψ . Let W+ ⊃ W be the multiset of all Lie-algebra weights of the linear part
of ζψ. Then |W+| = n and W+ contains the zero weight with multiplicity n−t. The
coefficients of G are the elementary symmetric functions of the elements of W+.
Thus preserving G is equivalent to preserving W . By (39) c = (1/3κ)

∑
λ−2

i ξ3
i .

Thus if W is preserved, then c is preserved.
For the converse, suppose c is preserved. When t(λ) < n then by (6.10) O(J(ζψ))

preserves K+ = {ei : ψi > 0} and since c(ei) = ψi/3 it follows that O(J(ζψ))
preserves S = {ψiei : 1 ≤ i ≤ n}. It follows that W is preserved in this case.

This leaves the case t(λ) = n. By (6.9) O(J(ζψ)) preserves K and therefore
permutes the coordinates of ψ. Moreover the formula for c(vi) in (6.9) shows that
c(vi) = c(vj) if and only if ψi = ψj . Comparing this to (3.5) one sees that the
weights are preserved. Thus O(J(ζψ)) preserves W . !

We now have the ingredients to show that [J ] determines ψ.

Lemma 6.12. If n ≥ 3, and A, A′ ∈ SL± V , and [J(ζψ ◦ A)] = [J(ζψ′ ◦ A′)] then
ψ = ψ′.

Proof. In what follows we scale J = q + c so that q is unimodular, and talk about
this calibration instead of its projective class. Let S = {v ∈ V : q(v) = 1} and
K ⊂ S the set of points at which c|S has a local maximum, and let K+ ⊂ K be
the subset where c > 0. Observe that |K+| is an invariant of the similarity class of
a cusp space.

Let 〈·, ·〉q be the inner product on V determined by q. Then the set {〈a, b〉q :
a, b ∈ K+} is also an invariant of the similarity class. By (6.6) the calibration
on a marked translation group is similar to some ϑλ,κ, and in the diagonalizable
case also to some Jψ. First suppose |K+| ≥ 2 and choose two distinct elements
a, b ∈ K+.

Case 1 (〈a, b〉q = 0). Then (6.9) implies that t < n, and (6.10) implies the coor-
dinates of λ are given by c(v) as v ranges over K+. Moreover ψi = 1/λ2

i so ψ is
determined by [J ] in this case.

Case 2 (〈a, b〉q )= 0). Then (6.10) implies t = n, so (V, J(ζψ ◦ A)) is similar to
(g, Jψ). It follows from (6.9)(i) that J determines ψ up to multiplication by a
positive scalar.

Thus we may assume ψ′ = sψ with s > 0. By (2.5)(a) ζsψ = ζψ ◦ ((s Ir ⊕ Iu).
If [J(ζψ ◦ A)] = [J(ζψ′ ◦ A′)] it follows that [J(ζψ)] = [J(ζψ ◦ B)] where B =
((s Ir)⊕Iu)A′A−1. Thus B ∈ O(J(ψ)), so detB = ±1. Since | detA| = | det A′| = 1
it follows that det((s Ir) ⊕ Iu) = sr = ±1. Thus s = 1, so ψ′ = ψ.

Case 3 (|K+| ≤ 1). If t = n then |K+| ≥ n − 1 by (6.9). Since n ≥ 3 it follows
that t < n which contradicts t = n. The result now follows from (6.10) as before.

!

Lemma 6.13. Suppose ρ, ρ′ : V → Aff(n) are marked translation groups and
n ≥ 3. If [J(ρ)] = [J(ρ′)] then ρ and ρ′ are conjugate.
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Proof. We may assume ρ = ζψ ◦ f and ρ′ = ζψ′ ◦ f ′ with f, f ′ ∈ SL± V . It follows
from (6.12) that ψ = ψ′. Then [J(ρ)] = [J(ρ′)] implies f−1 ◦ f ′ ∈ O(J(ζψ)), thus
f−1 ◦ f ′ ∈ O(η(ζψ)) by (6.11). Hence ρ and ρ′ have the same complete invariant,
and so are conjugate by (2.16). !

Theorem 6.14. Suppose n ≥ 3. Let Tn be the space of marked generalized cusps
homeomorphic to Tn−1 × [0,∞). The shape invariant J : Tn −→ Jn is a homeo-
morphism. Moreover K : Rn → Jn is a homeomorphism.

Proof. By (6.13) J is injective. By (6.8) J is continuous and proper. The image
of J is contained in Jn by (6.6), and surjectivity follows from the proof of 6.6.
Moreover Jn is homeomorphic to a subspace of Euclidian space and is therefore
locally compact and Hausdorff. Also Tn is locally compact by (4.3), so J is a
homeomorphism by (3.1). Now J = K ◦ ν, and ν is a homeomorphism by (1.2),
thus K is a homeomorphism. !

Proof of 1.3. J = K ◦ ν where J and K are both homeomorphisms by (6.14), and
ν : Tn → Rn is a homeomorphism by (1.1). The second component of ν is a map
πν : Tn → P that is a trivial bundle by (1.2). So π = πν ◦ J−1 : Jn → P is also a
trivial bundle.

The fiber of πν is a closed cone C ⊂ S3 V described in the proof of 1.2. So the
fiber of π is J(C) and is homeomorphic to C using the restriction of J . The cone
structure on J(C) can be seen directly as follows. The expression for the cubic c in
(6.7) has the property that if the weights are all multiplied by s > 0 then the cubic
is also multiplied by s. !

6.1. The affine normal. Refer to chapter 1 of [20], see also [19] and [16, Lemma
4.1]. Suppose S ⊂ Rn is a smooth strictly convex hypersurface and p is a point in S.
Then the tangent hyperplane to S at p intersects S only at p and S lies on one side
of P . An affine normal to S at p is vector 0 )= ν = ν(p) ∈ Rn with the following
property. Given δ > 0 let P (δ) be the hyperplane parallel to P on the side of P
that contains S, and distance δ from P . Let x(δ) be the center of mass of S ∩P (δ).
Then (x(δ) − p)/δ converges to a non-zero multiple of ν. We also require that ν
points to the convex side of S. Then ν is defined up to positive scalar multiples.

It follows from this that affine normals are preserved by affine maps: if A is an
affine map of Rn then A(ν(p)) is an affine normal to A(S). Since affine maps are
not conformal, the affine normal is not in general orthogonal to S at p. A convex
hypersurface in Rn is an affine sphere if there is a point b ∈ RPn such that every
affine normal passes through b.

There is a decomposition S3(Rn) = Hn ⊕Rn into the harmonic cubics Hn, and
the radial cubics Rn given by

Hn = {p ∈ S3(Rn) : ∆p = 0}, Rn = {‖x‖2〈v, x〉 : v ∈ Rn}

The group O(n) acts on S3(Rn) preserving this decomposition, and by [24, Theorem
0.3] the action on each summand is irreducible.

The material from here to (6.17) is not used in this paper, so we have omitted the
proofs. It is included to avert a possible misperception. The map π : S3(Rn) → Rn

given by π(p) = (2n + 4)−1∇(∆p) is projection onto Rn followed by the map
‖x‖2〈v, x〉 :→ v. More generally, if β is a positive definite quadratic form on Rn

then there is an isometry L ∈ GL(n, R) from ‖ · ‖2 to β. Hence L(Hn) and L(Rn)
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are preserved by O(β) and πβ = L ◦ π ◦ L−1 : S3(Rn) → Rn. The following says
that the affine normal is the radial part of the cubic term in a Taylor expansion.

Proposition 6.15. Suppose U ⊂ Rn is a neighborhood of 0 and f : U → R is C3.
Let S ⊂ Rn+1 be the graph of f and suppose f(x) = β(x) + c(x) + o(‖x‖3) and
β ∈ S2 Rn is positive definite, and c ∈ S3 Rn. Then an affine normal to S at 0 is
en+1 − (2n)−1πβ (c).

This can be deduced from formula (3.4) on page 48 of [20]. This formula goes
back at least to 1923, see Blaschke [4].

Recall that the radial flow Φ : R → Affn for a generalized cusp lie group G(Ω)
centralizes it, and Φt(Ω) ⊂ Ω whenever t ≤ 0, see [2, (1.11)]. If θ = Φλ,κ the radial
flow is Φt(x) = x− te1 if t < n, and otherwise t(λ) = n and Φt(x) = e−t(x−C)+C
where C ∈ Rn is the center of Φ. Refer to (4) for the definition of τ and Hb in
the following. Now we may assume that Ω = Ω(λ,κ) in (3.5) and b = 0 and Hb is
x1 = 0. Then τ (x1, · · · , xn) = αx1 for some α > 0.

It is more convenient in the following to redefine the radial flow when t = n to
be Φ : (−1,∞) → Affn given by Φt(x) = (t+1)−1 · (x−C)+C. Then Φ0 is always
the identity and I = R or (−1,∞) is the domain of Φ as appropriate.

Then F = θ × Φ : V × I → Rn are coordinates on a subset of Rn that contains
Ω. In these coordinates the height function hθ describes (an open subset of) Hb as
a graph over ∂Ω rather than vice versa, as one might näıvely imagine.

Lemma 6.16. Scale τ so that if t < n then τ (x1, · · · , xn) = x1 and if t = n then
τ (C) = −1. Then F (V × 0) = ∂Ω and F ({(v, t) : t = hθ(v)}) ⊂ Hb.

If J(θ) = [β+c] then (6.15) implies that β and the radial-cubic part of c determine
the affine normal to F−1(Hb).

Proposition 6.17. Let ‖ ·‖ be the standard inner product on V , and let θ : V → T
be a marked translation group, and let S be a horosphere for T , and Φ a radial flow
for θ, and J(θ) = β + c with β unimodular. The following are equivalent

(a) flow lines of Φ are affine normals to S.
(b) S is an affine sphere.
(c) c is harmonic with respect to β i.e. πβ (c) = 0
(d) T is conjugate to Tr(s, · · · , s) with s ≥ 0.

Proof. Flow lines of Φ limit on the center of the radial flow, so (a) ⇒ (b). For the
converse, assume S is an affine sphere with center w ∈ RPn. Then T fixes w. If the
affine normals to S are parallel, then S is an elliptic paraboloid, [5], [21]. In this
case T is conjugate to Tr(0, · · · , 0), and w is the center of Φ. Otherwise w ∈ Rn.
Thus T is diagonalizable. We may assume T = Tr(ψ) with all the coordinates of
ψ > 0 and w = 0. Again w is the center of Φ. Thus (b)⇒(a). In this case we
claim ψ = (s, · · · , s). This is because S is an affine sphere asymptotic to the sides
of a simplex, and by [7] it follows that S is unique up to affine maps preserving the
simplex. Thus (b)⇒(d). For (d)⇒(b) when s = 0 then S is an elliptic paraboloid
and when s > 0 then S is defined by

∏
xi = 1. These are well known affine spheres.

It remains to show (c)⇔(d). Using (6.2) we may assume

J = [β + c], β(v) = ‖v‖2 + 〈v,κ〉2, 3c(v) = −λ0〈v,κ〉3 +
n−1∑

i=1

λiv
3
i
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If λ0 = 0 we may choose κ = 0 then c is harmonic with respect to β(v) = ‖v‖2

if and only if λ = 0, showing (c)⇔(d) in this case. Otherwise λ0 > 0. First we
perform a linear change of coordinates on V so that β(v) = ‖v‖2.

Let T ∈ GL(V ) be defined by T (v) = v + α〈v,κ〉κ where α = ‖κ‖−2(−1 + (1 +
‖κ‖2)−1/2); then β(Tv) = ‖v‖2. Now we compute the cubic 3λ−1

0 (c ◦ T ) using the
Hadamard product on V , and κi = λi/λ0 .

3λ−1
0 (c ◦ T )v = −〈Tv,κ〉3 + 〈κ−1, (Tv)3〉

= γ〈v,κ〉3 + 3α〈v,κ〉‖v‖2 + 〈κ−1, v3〉

where γ = −
(
1 + α‖κ‖2

)3
+ 3α2 + α3‖κ‖2 =

−(2 + ‖κ‖2) + 2
√

1 + ‖κ‖2

‖κ‖4
√

1 + ‖κ‖2

Set m = dim V ; then

3λ−1
0 ∇2(c ◦ T ) =

(
6γ‖κ‖2 + 3α(2m + 4)

)
〈v,κ〉 + 6〈κ−1, v〉

= 〈6u, v〉

where u = −
(

m

‖κ‖2
+

‖κ‖2 − m

‖κ‖2
√

1 + ‖κ‖2

)
κ + κ−1

Then c ◦T is harmonic with respect to ‖ · ‖2 if and only if u = 0. Since u is a linear
combination of κ and κ−1 it follows that κ = s(1, · · · , 1) for some s ∈ [0, 1]. Then
‖κ‖2 = ms2 and u = 0 implies

(
s−2 + m(s2 − 1)/ms2

√
1 + ms2

)
s = s−1

This implies s2 − 1 = 0. Hence s = 1 so κi = 1 and λi = λ0. Thus (c)⇔(d) when
λ0 > 0. !

7. Three dimensions

In dimension 3 every generalized cusp is equivalent to Ωλ,κ/Γ for some lattice
in Γ ⊂ T (λ,κ), and ∂Ωλ,κ is the orbit of 0 under T (λ,κ). From (30) in the proof
of 3.5 one sees that in dimension 3 ∂Ωλ,κ is the graph y = fλ(x1, x2) in R3 shown
below where for t < 3 we have chosen κ = 0.

t fλ(x1, x2)

3 λ−1
1 x1 + λ−1

2 x2 + λ−2
0

(
−2 + (1 + λ1x1)−(λ0/λ1)

2
+ (1 + λ2x2)−(λ0/λ2)

2
)

2 λ−1
1 x1 − λ−2

1 log(1 + λ1x1) + λ−1
2 x2 − λ−2

2 log(1 + λ2x2)
1 x2

1/2 + λ−1
2 x2 − λ−2

2 log(1 + λ2x2)
0 (x2

1 + x2
2)/2

The function fλ varies continuously with λ on the subspace λ0 = 0, and is also
continuous when λ1,λ2 > 0 are constant as λ0 → 0, but is not continuous in
general. This family of surfaces only varies continuously with λ subject to these
constraints.

A Euclidean torus is determined by a parallelogram in V = R2 of area 1. This in
turn determines the quadratic form β. Using β we may identify a Lie-algebra weight
in V ∗ with a vector in V . Thus a generalized cusp in a 3-manifold is specified by
this parallelogram, together with three vectors a, b, c in V satisfying 〈a, b〉 = 〈b, c〉 =
〈c, a〉 = $ ≤ 0 (see Figure 1). The Lie algebra weights of the holonomy are given
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by ξv(x) = 〈v, x〉β where v ∈ {a, b, c}. The cusp is diagonalizable if and only if
$ < 0.

Two such collections of data define equivalent cusps if and only if there is an
isometry of R2 taking one parallelogram to the other and that permutes the set of
vectors {a, b, c}. The type of the generalized cusp is the number of non-zero vectors.
The dual vectors in V ∗ are harmonic 1-forms that represent elements of H1(T 2; R)
and determine the cusp geometry defined in (2.17).

Figure 1. Generalized cusps in dimension 3

There is a decomposition S3(R2) = H2 ⊕ R2 into harmonic and radial cubics is
given by

H2 = 〈x(x2 − 3y2), y(y2 − 3x2)〉, R2 = 〈x(x2 + y2), y(x2 + y2)〉

with coordinate projections πH and πR . By (6.17) the cubic is harmonic with
respect to β if and only if the holonomy is conjugate into Tr(s, s, s) for some s ≥ 0.

Regarding V = R2 ∼= C via z = x + iy, and recalling that the real part of a
holomorphic function is harmonic, it follows that

H2 = {Re(hz3) : h ∈ C}, R2 = {Re(rz|z|2) : r ∈ C}

This gives an isomorphism of real vector spaces θ : C2 → S3 R2 given by θ(h, r) =
Re(hz3 + rz|z|2). The action of SO(2) ∼= U(1) = {ω ∈ C : |ω| = 1} on S3 R2 is then
ω.θ(h, r) = θ(ω3h,ωr). The standard Euclidean structure on C2 gives an inner
product on S3 R2 given by ‖θ(h, r)‖2 = |h|2 + |r|2, and SO(2) acts by isometries.
Let β0 be the quadratic form x2 + y2 on R2.

Theorem 7.1. The image of the embedding J : T3 → P(R2) × S3 R2 is

J(T3) = {(AtA, c ◦ A) ∈ P(R2) × S3 R2 : |πRc| ≤ 3|πH c|, A ∈ SL(2, R) }

Moreover |πRc| = 3|πH c| gives the subspace of non-diagonalizable generalized cusps.

Proof. In this proof we identify S3 R2 ≡ C2 using θ, and T3 ≡ Rep3 using the
holonomy. There is a surjection Ã3 × SL± V → Rep3. The action of A ∈ SL± V
on T3 defined in (16) is conjugate by J to the action on P(R2) × S3 R given by
A · (β, c) = (β ◦ A−1, c ◦ A−1). This action preserves the product structure. The
stabilizer of β0 is O(2).

Claim 1. Suppose (λ,κ) ∈ Ã3 and λ = (λ0 = 0,λ1,λ2) and κ = 0 and c = c(Φλ,κ)
is the cubic. Then πH c = z and πRc = 3z where z = (λ1 + iλ2)/12.
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Definition 3.4, the Lie algebra weights are ξi = λie∗i for i ∈ {1, 2}, and ξ0 = 0.
Using Lemma 6.7 then κ = 0 so κ = 1 and formula (39) gives

3c = λ−2
1 ξ3

1 + λ−2
2 ξ3

2 = λ1(e
∗
1)

3 + λ2(e
∗
2)

3 = λ1x
3 + λ2y

3

Expressing this in terms of the generators of H2 and R2 gives

12c = λ1[x(x2 − 3y2) + 3x(x2 + y2)] + λ2[y(y2 − 3x2) + 3y(x2 + y2)]

So

12h = λ1x(x2 − 3y2) + λ2y(y2 − 3x2) 12r = 3λ1x(x2 + y2) + 3λ2y(x2 + y2)

= Re
(
(λ1 + iλ2)z

3) = Re
(
3(λ1 − iλ2)z|z|2

)

∴ 12πH (c) = λ1 + iλ2 12πR(c) = 3(λ1 − iλ2)

This proves Claim 1. !
Now T3(3) is the stratum of diagonalizable cusps, so B = T3 \ T3(3) consists of

all marked generalized cusps with non-diagonalizable holonomy. Let π : P(R2) ×
S3 R → P(R2) be projection and consider the subspace N = B ∩ (π ◦ J)−1β0 ⊂ T3

of non-diagonalizable holonomies for the standard quadratic form β0 = ‖ · ‖2.

Claim 2 (J(N) = {(β0, h, r) : |r| = 3|h|}). If [ρ] ∈ N then [ρ] = [Φλ,0 ◦ A] with
t(λ) < 3 and A ∈ SO(2). Under the identification V = C, the action of SO(2) on
V is given by the action of U(1) on C. If J(Φλ,0) = (z, 3z), and A is rotation by θ,
and ω = exp(iθ) then J(Φλ,0 ◦ A) = (ω3z, 3ωz).

Since λ1,λ2 ≥ 0 then z = λ1 + iλ2 = |z| exp(iφ) is arbitrary subject to φ ∈
[0,π/2]. We need to show that given h, r ∈ C with |r| = 3|h| there are z,ω ∈ C
with |ω| = 1 and z as above such that (h, r) = (ω3z, 3ωz).

Let h = |h| exp(iα) and r = 3|h| exp(β) then |z| = |h|. We need α ≡ 3θ + φ and
β ≡ θ − φ where ≡ means mod 2π. Thus 4θ ≡ α + β. There is θ ∈ [0,π/2] with
this property. The second equation implies φ ≡ θ− β. Rewriting the first equation
gives

α− 3θ ≡ α− 3θ + (4θ − α− β) ≡ θ − β ≡ φ

The astute reader may notice that there are two solutions of 4θ ≡ 0 in [0,π/2], and
they give different values for φ. Thus ω and z are not always uniquely determined,
even though h and r are. This proves Claim 2.

Using the action of SLV on T3 then B is the orbit of N so

J(B) = {(β, c) ∈ P(R2) × S3 R2 : |πRc| = 3|πH c|, β ∈ P}
Consider f : P ×C2 → R given by f(β, h, r) = 3|h|− |r|, and set P = T3(3). When
λ = (1, 1, 1) then (6.17) implies the cubic is harmonic so r = 0, and h )= 0 thus
J(P ) contains a point where f > 0. Since J is injective, J(P ) ⊂ C2 \ f−1(0). By
(4.8) P is connected, so f ◦ J(P ) > 0.

By (6.8) J : T3 → P × C2 is proper, and the domain and codomain are locally
compact, thus J(T3) is closed. By (4.8), P is a 6-manifold without boundary. Since
J : P → P × C2 is an embedding, and P × C2 is a 6-manifold, J(P ) is open by
invariance of domain. Hence J(P ) = f−1(0,∞). !
Proof of 1.7. Let U ⊂ SL(2, R) be the subspace of upper-triangular matrices with
positive eigenvalues. Then g : U → P given by g(A) = AtA is a homeomorphism.
Let G = g−1 and

C = {c ∈ S3 R2 : |πRc| ≤ 3|πH c| } ≡ {(r, h) ∈ C2 : |r| ≤ 3|h| }
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Define f : P × C → P × S3 R2 by f(Q, c) = (Q, c ◦ G(Q)). The SL(2, R) orbit of
C × {β0} is all of T (3), so the image of f is J(T3). Hence f is an embedding, since
it has inverse f−1(Q, c) = (Q, c ◦ (G(Q))−1).

If A = G(Q) then f(Q, c) = (Q, c ◦ A) and, using the action of A ∈ SL(2, R) on
shape invariants,

A · f(Q, c) = ((At)−1QA−1, (c ◦ A) ◦ A−1) = (I, c)

so f−1 ◦ J : T3 → P × C is a homeomorphism because J is an embedding. There
is a homeomorphism h : P → H = {z ∈ C : Im z > 0 } given by h(Q) = αA(i)
where A = G(Q) and αA is the Möbius transformation corresponding to A. Then
Θ = (h × IC) ◦ f−1 ◦ J : T3 → H × C is a homeomorphism. !

Now we describe the strata of T3. Let π : T3 → P be projection. The fiber
π−1(β0) is the cone F = {(h, r) ∈ C2 : |r| ≤ 3|h|} stratified as follows. For
k ∈ {0, 1, 2, 3}, let Tk = T3(k) ∩ π−1(β0). Then T0 = (0, 0) ∈ C2 is the cone point,
and T1 = {(w3|w|−2, 3w) : w ∈ C \ 0} is the open cone of a (3, 1) curve in S1 ×S1.
In this case c is the cube of a linear polynomial. Also T2 = ∂F − (T1 ∪ T0), and
T3 = int(F ). The stratification is preserved by the action of SL(2, R) which also
preserves the fibering and acts transitively on the base space P.

8. Deferred proofs

Proof of 2.11. The character and Lie-algebra weights can be read off from Defini-
tion 2.4. To compute β we use (5) with basepoint b = (e1 + · · ·+ et)+ en+1. When
r = t < n from (2.4)

µθ,b(v)−b =
t∑

i=1

(exp(ψtvi)−1)ei+
n−1∑

i=t+1

viei+1+

(
−

t∑

i=1

ψivi + (1/2)
n−1∑

i=t+1

v2
i

)
et+1

Computing ui = (∂µθ,b/∂vi)v=0 gives

(u1, · · · , un−1) = (ψte1 − ψ1et+1,ψte2 − ψ2et+1, · · · ,ψtet − ψtet+1, et+2, · · · , en)
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By (6) hθ(v) = ± det(u1, · · · , un−1, µθ,b(v) − b) gives

hθ(v) = ± det





ψt exp(ψtv1) − 1
ψt exp(ψtv2) − 1

. . .
...

ψt exp(ψtvt) − 1
−ψ1 −ψ2 · · · −ψt 0 · · · 0 −

∑t
i=1 ψivi + (1/2)

∑n−1
t+1 v2

i

1 vt+1

. . .
...

1 vn−1





= det





ψt exp(ψtv1) − 1
ψt exp(ψtv2) − 1

. . .
...

ψt exp(ψtvt) − 1
−ψ1 −ψ2 · · · −ψt −

∑t
i=1 ψivi + (1/2)

∑n−1
t+1 v2

i





= ψt
t−1

t∑

i=1

ψi(exp(ψtvi) − 1 − ψtvi) + (1/2)ψt
t

n−1∑

i=t+1

v2
i

Taking the second derivative of hθ(v) at v = 0 yields

β̃ = ψt+1
t

t∑

i=1

ψidv2
i + ψt

t
n−1∑

i=t+1

dv2
i

Observe that the matrix of β′ = ψt
−(t+1)β̃ is diagonal in the standard basis and

detβ′ is as claimed. From this it is clear that the Lie algebra weights ξi are pairwise
β∗-orthogonal. Thus their duals are pairwise β-orthogonal.

By Definition 2.4, the non-zero Lie algebra weights are ξi = ψte∗i with 1 ≤ i ≤ t.
Now 〈x, ei〉β′ = ψie∗i (x). Let γ = det(β′)−1/n−1, then β = γ · β′ so 〈x, ei〉β =
γψie∗i (x). Thus the dual of ξi ∈ V ∗ with respect to β is

ξ∗i = (γψi)
−1ψtei ∈ V(24)

and

‖ξi‖β∗ = β∗(ξi)(25)

= β((γψi)
−1ψtei)

= ((γψi)
−1ψt)

2β(ei)

= (γ−2ψ−2
i ψ2

t )γβ
′(ei)

= (γ−2ψ−2
i ψ2

t )γψi

= γ−1ψ2
tψ

−1
i(26)

If t = n choose basepoint b = e1 + · · · + en+1; then

µθ,b(v) − b =
n−1∑

i=1

(exp(ψnvi) − 1)ei +

(
exp

(
−

n−1∑

i=1

ψivi

)
− 1

)
en
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thus ui = (∂µθ,b/∂vi)v=0 = ψnei − ψien. Then (6) gives

hθ(v) = det





ψn exp(ψnv1) − 1
. . .

...
ψn exp(ψnvn−1) − 1

−ψ1 −ψ2 · · · −ψn−1 exp(−
∑n−1

i=1 ψivi) − 1





= ψn−2
n

n−1∑

i=1

ψi (exp(ψnvi) − 1) + ψn−1
n

(
exp

(
−

n−1∑

i=1

ψivi

)
− 1

)

Taking the second derivative at v = 0 gives

β̃ = ψn
n




n−1∑

i=1

ψidv2
i + ψ−1

n

(
−

n−1∑

i=1

ψidvi

)2




Then β′ = ψ−n
n β̃ gives the form shown in the proposition. Now

ψnβ
′ =





ψ1(ψn + ψ1) ψ1ψ2 · · · ψ1ψn−1

ψ2ψ1 ψ2(ψn + ψ2) ψ2ψ3 · · · ψ2ψn−1
...

ψn−1ψ1 · · · ψn−1ψn−2 ψn−1(ψn + ψn−1)





The determinant of this matrix is a polynomial of degree 2(n − 1). Row i has a
factor of ψi. The sum of the rows is a multiple of ψ1 +ψ2 · · · +ψn. Setting ψn = 0
gives a matrix of rank 1 so ψn−2

n is a factor. Hence

det(ψnβ
′) = αψ1 · · ·ψn−1ψ

n−2
n (1 + ψ1 + · · ·ψn−1)

for some constant α. Equating coefficients of ψn−1
n gives α = 1. Thus

det β′ = ψ1 · · ·ψn−1ψ
−1
n (1 + ψ1 + · · ·ψn−1)

!

Proof of 3.5. (a) Given v = (v1, · · · , vn−1) ∈ V define v0 ∈ V by λ−1
0 v0+· · ·λ−1

n−1vn−1

= 0. Let

P =





1 −λ−1
1 · · · −λ−1

n−1 λ−2
0

0 1 0 0 λ−1
1

0 0
. . . 0

...
0 0 0 1 λ−1

n−1

0 0 0 0 1




, r =





λ0v0 0 · · · 0
0 λ1v1 0 · · · 0

0 0
. . . 0

...
0 · · · 0 λn−1vn−1 0
0 · · · 0





then

P−1rP =





0 v1 · · · vn−1 0
0 λ1v1 0 · · · v1

0 0
. . . 0

...
0 0 0 λn−1vn−1 vn−1

0 0 0 . . . 0




+ λ0v0





1 −λ−1
1 · · · −λ−1

n−1 0
0 · · · 0
...

...

0 · · · 0




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Now λ−1
0 v0 = −λ−1

1 v1 · · · − λ−1
n−1vn−1 so v0 = −(κ1v1 + · · · + κn−1vn−1) = −〈v,κ〉

where κi = λ0/λi. Then

P−1rP =





0 v1 · · · vn−1 0
0 λ1v1 0 · · · v1

0 0
. . . 0

...
0 0 0 λn−1vn−1 vn−1

0 0 0 . . . 0




+〈v,κ〉





−λ0 κ1 · · · κn−1 0
0 · · · 0
...

...

0 · · · 0





= φλ,κ(v)

Set R = exp r then Φλ,κ = P−1RP . From (2.4) using

f(v1, · · · , vn−1) = λ2
0(λ1v1, · · · ,λn−1vn−1),

ζψ(fv)=exp





ψnλ
2
0λ1v1 0 · · · 0
0 ψnλ

2
0λ2v2 0 · · · 0

0 0
. . . 0

...
...

... 0 ψnλ
2
0λn−1vn−1 0

−
∑n−1

i=1 ψiλ
2
0λivi 0

0 · · · 0





Using ψnλ2
0 = 1 and ψiλi = λ−1

i gives

ζψ(fv) = exp





λ1v1 0 · · · 0
0 λ2v2 0 · · · 0

0 0
. . .

...
...

... 0 λn−1vn−1 0
−λ2

0

∑n−1
i=1 λ−1

i vi 0
0 · · · 0





By the definition of v0 above we have −λ2
0

∑n−1
i=1 λ−1

i vi = λ0v0. Let M ∈ GL(n +
1, R) be defined by

M(x1, · · · , xn+1) = (xn, x1, · · · , xn−1, xn+1)

Then

M−1ζψ(fv)M = exp





λ0v0 0 · · · 0
0 λ1v1 0 · · · 0

0 0
. . .

...
...

... 0 λn−1vn−1 0
0 · · · 0




= R

so

(27) M−1(ζψ ◦ f)M = R = PΦλ,κP−1

Set Q = MP ; then QΦλ,κQ−1 = ζψ ◦ f as asserted.
To prove (b) we exploit the fact that every Φλ,κ is a limit of the diagonalizable

ones above. Given an integer k ≥ 0 define fk : R2 → R by

fk(s, t) =
∞∑

j=k

sj−ktj/j!
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This is analytic and f0(s, t) = exp(st), and for s )= 0

f1(s, t) = s−1(est − 1), f2(s, t) = s−2(est − 1 − st)

Also f1(0, t) = t and f2(0, t) = t2/2. For s ≥ 0 the map f1(s,−) : R → (−s−1,∞)
is a diffeomorphism when we interpret −0−1 = −∞, and f2(s,−) : R → R is convex
and proper. Then

P−1RP =





eλ0v0 ∗ · · · ∗
∑n−1

i=0 λ−1
i f1(λi, vi)

0 eλ1v1 0 · · · 0 f1(λ1, v1)

0 0
. . . 0

...
...

... 0 eλn−1vn−1 f1(λn−1, vn−1)
0 · · · 0 0 1





Set xi = f1(λi, vi) and y =
∑n−1

i=0 λ−1
i f1(λi, vi). Write the last column of P−1RP

as (y, x1, · · · , xn−1, 1)T . Now

(28) λ−1
0 v0 = −(λ−1

1 v1 + · · · + λ−1
n−1vn−1)

Observe that s−1f1(s, t) = f2(s, t) + s−1t. Thus

λ−1
0 f1(λ0, v0) = f2(λ0, v0) + λ−1

0 v0 = f2(λ0, v0) −
n−1∑

i=1

λ−1
i vi(29)

Then

y =
n−1∑

i=0

λ−1
i f1(λi, vi)

=λ−1
0 f1(λ0, v0) +

n−1∑

i=1

λ−1
i f1(λi, vi)

=

(
f2(λ0, v0) −

n−1∑

i=1

λ−1
i vi

)
+

n−1∑

i=1

(
f2(λi) + λ−1

i vi

)
using (29)

=
n−1∑

i=0

f2(λi, vi)(30)

The orbit of the origin under T (λ,κ) is a hypersurface S = S(λ,κ) in Rn that is
the locus of the points (y, x1, · · · , xn−1) as v varies in V . Solving x = f1(7, v) for v
gives

(31) v = h(7, x) := 7−1 log(1 + 7x)

This defines h(7, x) whenever 1 + 7x > 0 and 7 )= 0. Observe that h(7, x) =
x+ 7 ·O(x2), so if we define h(0, x) = x then h is analytic on the subset of R2 where
1+ 7x > 0. Define g(7, x) = 7−2(7x− log(1+ 7x)) for 1+ 7x > 0 and 7 )= 0. Observe
that g(7, x) = x2/2 + O(x3), thus if we define g(0, x) = x2/2, then g is analytic for
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1 + 7x > 0. Then

f2(7, v) = f2(7, 7
−1 log(1 + 7x))

= 7−2(e++
−1 log(1++x) − 1 − log(1 + 7x))

= 7−2(7x − log(1 + 7x))

= g(7, x)(32)

The hypersurface S = S(λ,κ) is given by

y =
n−1∑

i=0

f2(λi, vi) by (30)

= f2

(
λ0,−λ0

n−1∑

i=1

λ−1
i vi

)
+

n−1∑

i=1

g(λi, xi)

∵ v0 = −λ0

n−1∑

i=1

λ−1
i vi & f2(λi, vi) = g(λi, xi)

= f2

(
λ0,−

n−1∑

i=1

κih(λi, xi)

)
+

n−1∑

i=1

g(λi, xi)

∵ vi = h(λi, xi) & κi = λ0/λi

=: F (λ,κ, x) definition

Here x = (x1, · · · , xn−1). Up to this point we have assumed (λ,κ) ∈ Dn so every
λi > 0. However the function F is defined and analytic whenever (λ,κ) ∈ Ãn ∪Dn

and 1 + λixi > 0 for all i. It follows that y = F (λ,κ, x) defines a hypersurface
S(λ,κ) for each (λ,κ) ∈ Ãn.

Also S(λ,κ) is the orbit of 0 under T (λ,κ) whenever (λ,κ) ∈ Dn. Since Ãn ⊂
clDn and Φλ,κ is a continuous function of (λ,κ) it follows that S(λ,κ) is the orbit

of 0 under T (λ,κ) whenever (λ,κ) ∈ Ãn. For fixed (λ,κ)

h(λi, xi) = xi + O(x2) by (31)

∴
n−1∑

i=1

κih(λi, xi) =
n−1∑

i=1

κi(xi + O(x2
i ))

= 〈κ, x〉 + O(‖x‖2)

Using this and f2(λ, x) = x2/2 + O(x3) gives

f2

(
λ0,−

n−1∑

i=1

κih(λi, xi)

)
= (1/2)〈κ, x〉2 + O(‖x‖3)

Also

g(λi, xi) = x2
i /2 + O(x3

i ) by (32)

∴ F (λ,κ, x) = f2

(
λ0,−

n−1∑

i=1

κih(λi, xi)

)
+

n−1∑

i=1

g(λi, xi) by definition above

= (1/2)
(
〈κ, x〉2 + ‖x‖2

)
+ O(‖x‖3)
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It follows that S(λ,κ) is strictly convex at 0. Since T (λ,κ) acts transitively by
affine maps S(λ,κ) is strictly convex everywhere. One checks that F (λ,κ, x) is a
proper function of x ∈ {(x1, · · · , xn−1) : 1 + λixi > 0 } for fixed λ,κ. Hence
S(λ,κ) is properly embedded, and therefore bounds a convex domain Ω(λ,κ) ⊂ Rn

that is preserved by T (λ,κ).
By (31) vi = xi + O(x2

i ); thus Φλ,κ(v) = (y, x1, · · · , xn−1) where

y = (1/2)
(
〈κ, v〉2 + ‖v‖2

)
+ O(‖v‖3)

which gives the formula for the metric β′. The formula for the character χλ,κ follows
immediately from Definition 3.4 as the sum of the exponentials of the diagonal
terms. It only remains to compute detβ′. Now

β′(v) = 〈κ, v〉2 + ‖v‖2

Choose an orthonormal basis with respect to ‖ ·‖2 of V that contains κ/‖κ‖. In this
basis β′ is diagonal, and the only diagonal entry that is not 1 is 1 + 〈κ,κ/‖κ‖〉2 =
1 + ‖κ‖2. Hence detβ′ = 1 + ‖κ‖2. !
Proof of 6.6. Suppose (λ,κ) ∈ An. First consider the diagonalizable case. By
(3.5), Φλ,κ is conjugate to ζψ ◦ f, where ψn = λ−2

0 and ψi = λ−2
i for 1 ≤ i ≤ n − 1.

This defines a linear map ψ : A → R and we have g = kerψ. Since J is an invariant
of conjugacy classes, we may replace Φλ,κ by ζψ ◦ f. In this proof summation is over
the integers from 1 to n − 1. Consider the linear map f : Rn−1 → A given by

x := f(v1, · · · , vn−1) =
(
ψnv1, · · · ,ψnvn−1,−

∑
ψivi

)

Then g = Im f = kerψ. Recall f(v1, · · · , vn−1) = λ2
0(λ1v1, · · · ,λn−1vn−1). Thus

f ◦ f(v) = λ2
0(ψnλ1v1, · · · ,ψnλn−1vn−1,−

∑
ψiλivi)

= (λ1v1, · · · ,λn−1vn−1,−λ2
0

∑
λ−1

i vi) ∵ λ2
0ψn = 1 by (3.5)(a)

= (λ1v1, · · · ,λn−1vn−1,−λ0

∑
κivi) ∵ λ0λ

−1
i = κi by (14)(33)

It follows from Definition 2.4 that ζψ = δ ◦ exp ◦f . The calibration, Jψ, on g is
given by (6.5)

(34) Jψ(x) = (1/2)〈p, x2〉ψ + (1/6)〈p, x3〉ψ
The calibration J = J(ζψ ◦ f) = J(δ ◦ exp ◦f ◦ f). By (6.5) Jψ = J(δ ◦ exp), so
J = Jψ ◦ f ◦ f. The calibration J on V is obtained from this factorization by using
(33) to substitute x = f(fv) into (34).

〈p, x2〉ψ =
∑

ψi(λivi)
2 + ψn

(
−λ0

∑
κivi

)2

=
∑

v2
i +

(∑
κivi

)2
∵ ψiλ

2
i = 1 & ψnλ

2
0 = 1

Let 〈·, ·〉 denote the standard inner product on Rn−1; then

(35) 〈p, x2〉ψ = 〈v, v〉 + 〈v,κ〉2

and

〈p, x3〉ψ =
∑

ψi(λivi)
3 + ψn

(
−λ0

∑
κivi

)3

=
∑

λiv
3
i − λ0〈κ, v〉3 ∵ ψiλ

2
i = 1 & ψnλ

2
0 = 1(36)
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Then (35) and (36) give

J(v) = (1/2)〈p, x2〉ψ + (1/6)〈p, x3〉ψ

= (1/2)
(
〈v, v〉 + 〈v,κ〉2

)
+ (1/6)

(
−λ0〈κ, v〉3 +

∑
λiv

3
i

)

This gives the result in the diagonalizable case.
By (3.12) in the non-diagonalizable case we may assume θ = Φλ,κ = exp ◦φλ,κ

with λ0 = 0 and κ = 0. For 1 ≤ i ≤ n − 1 define v′i = vi + 〈v,κ〉κi. By (3.4)
φλ,κ(v1, · · · , vn−1) = D + N where

D=





0 0 0 · · · 0
0 λ1v1 0 · · ·
...

. . .
...

λn−1vn−1 0
0 · · · 0




N =





0 v
′

1 v2
′ · · · vn−1

′ 0
0 0 · · · 0 v1
...

. . .
...

vn−1

0 · · · 0





Relabel the standard basis of Rn+1 as e0, · · · , en. Then ∂Ω is the orbit in affine
space Rn⊕en ⊂ Rn+1 of 0⊕en under this group. We compute the series expansion
for exp(D + N)en to degree 3.

exp(D + N) = I + (D + N) + (1/2)(D + N)2 + (1/6)(D + N)3 + O(‖v‖4)

Using that Den = 0 and N3 = 0 and DN2en = 0 gives
(37)
exp(D + N)en =

(
I + N + (1/2)(DN + N2) + (1/6)(D2N + NDN)

)
en + O(‖v‖4)

In the following summation is over integers from 1 to n − 1

Nen =
∑

viei, N2en =
(
‖v‖2 + 〈v,κ〉2

)
e0

DNen =
∑

λiv
2
i ei, NDNen =

(∑
λiv

3
i

)
e0, D2Nen =

∑
λ2

i v
3
i ei

The only term linear in vi is Nen, so the supporting hyperplane to ∂Ω at 0 is the
coordinate hyperplane v0 = 0 in Rn. Thus in the definition of J we may take the
height function τ to be the v0-coordinate, and it follows that J is the coefficient of
e0 in (37)

Je0 = (1/2)N2en + (1/6)NDNen =
(
(1/2)

(
‖v‖2 + 〈v,κ〉2

)
+ (1/6)

∑
λiv

3
i

)
e0

Since λ0 = 0 in the non-diagonalizable case, this is the calibration ϑλ,κ in (6.2) as
claimed. !

Proof of 6.7. We claim the formula for c(ρ) holds when ρ = Φλ,κ. By (6.6)

κJ(Φλ,κ)(v) =
(
〈v, v〉 + 〈v,κ〉2

)
+

1

3

(
−λ0〈v,κ〉3 +

n−1∑

i=1

λiv
3
i

)

Then J = q+c, and the term κ defined in (5.1) ensures that q is unimodular. Thus

c := c(ρ) =
1

3κ

(
−λ0〈v,κ〉3 +

n−1∑

i=1

λiv
3
i

)
(38)
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By (3.4) the weights of Φλ,κ are ξi = λie∗i for 1 ≤ i ≤ n − 1 and ξ0 given by
ξ0(v) = −λ0〈v,κ〉. Then (38) becomes:

3κc =
n−1∑

i=0

λ−2
i ξ3

i(39)

By (5.1) κλ2
i = 〈ξi, ξi〉β∗ +$ and $ = −〈ξ1, ξ2〉β∗ , so κ−1λ−2

i = (〈ξi, ξi〉β∗ + $)−1.
This proves the claim.

If A ∈ SL± V then c(ρ ◦ A) = c(ρ) ◦ A and ξi(ρ ◦ A) = ξi(ρ) ◦ A. It follows that
the formula holds for ρ = Φλ,κ ◦ A. Every marked translation group is conjugate
to such ρ, and both sides are conjugacy invariants, so the formula for c(ρ) holds in
general.

The formula shows K is continuous. It only remains to show K is proper. Suppose
J(ρm) is a bounded sequence, then we must show

κ(ρm) = ([ξ1(ρm), · · · , ξn(ρm)],β(ρm))

is bounded. Now β(ρm) and c(ρm) are both bounded, so it only remains to prove
the weights ξi(ρm) are bounded. Suppose for a contradiction that some ξi(ρm)
is unbounded. We show that this implies c(ρm) is not bounded, which gives a
contradiction.

We may assume ρm = Φ⊥
λ(m),κ(m) ◦Bm with Bm ∈ SL± V . The matrix of β(ρm)

in the standard basis of V is Bt
mBm. Since this is bounded, Bm is bounded, and we

may subsequence so Bm converges to B∞ ∈ SL± V . It follows that the weights of
Φ⊥

λ(m),κ(m) are unbounded. Hence λ(m) = (λm,0, · · · ,λm,n−1) is unbounded. Since
λm,i increases with i it follows that λm,n−1 → ∞.

The matrix of β(Φλ(m),κ(m)) is I +κ⊗ κ and κ ∈ [0, 1]n−1 is bounded. Thus the
weights of Φλ(m),κ(m) are unbounded. The weights determine the cubic via (39) and

ξi = λie∗i for 1 ≤ i ≤ n − 1, and ξ0(v) = −λ0〈v,κ〉 = −λ0
∑n−1

i=1 λ0λ
−1
i vi. We now

evaluate this cubic at the point vm = en−1 − tm(e1 + · · · + en−2) ∈ V where tm is
chosen so that 〈κ, v〉 = 0. This simplifies the first summand in (39) to ξ0(vm) = 0.
If t < n then we may choose κ = 0 and tm = 0.

If t = n since λm,n−1 ≥ λm,i for all i and κi = λ0λ
−1
i it follows that κn−1 ≤ κi

for all i. Now tm is determined by

0 = 〈κ, v〉 = κn−1 − tm

n−2∑

i=1

κi & κi ≥ 0

implies 0 < tm ≤ 1/(n − 2). In what follows we omit the subscript m from λm,i.
Setting v = vm in (39) and recalling that ξi = λie∗i gives

(40) 3κc(Φλ,κ)(vm) =

(
n−2∑

i=1

λ−2
i (−λitm)3

)
+ λ−2

n−1(λn−1)
3 = λn−1 − t3m

n−2∑

i=1

λi

Since λi ≤ λn−1, and tm ≤ 1/(n − 2),

(41) 3κc(Φλ,κ)(vm) ≥ λn−1(1 − (n − 2)/(n − 2)3)

Since 0 ≤ κi ≤ 1 it follows that ‖κ‖ ≤ n − 1; thus κ = (1 + ‖κ‖2)1/(n+1) ≤ 1 + n2.
If n > 3 then (1 − (n − 2)/(n − 2)3) > 0. Using λn−1 → ∞ as m → ∞ and κ is
bounded, it follows that c(Φλ,κ) is unbounded, a contradiction.
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This leaves the case that n = 3 then (38) gives

3κc(Φλ,κ)(x, y) = λ1x
3 + λ2y

3 + λ−2
0 (−λ0((λ0/λ1)x + (λ0/λ2)y))3

The coefficients of this cubic are

(λ4
2 − λ4

0)λ
−3
2 , −3λ4

0/(λ1λ
2
2), −3λ4

0/(λ2
1λ2), (λ4

1 − λ4
0)λ

−3
1

Since c is bounded we may assume each coefficient has absolute value at most b.
The second term gives λ4

0 ≤ b · λ1λ2
2. Then λ4

2 − λ4
0 ≥ λ4

2 − b · λ1λ2
2. But λ2 ≥ λ1 so

λ4
2 − λ4

0 ≥ λ4
2 − b · λ1λ

2
2 ≥ λ4

2 − b · λ3
2 = λ3

2(λ2 − b)

Hence λ2 − b ≤ (λ4
2 − λ4

0)λ
−3
2 ≤ b, so λ2 ≤ 2b. Since λi ≤ λ2 for i = 0, 1 it follows

that all the λi ≤ 2b. This is a contradiction. Hence K is proper. !

Proof of 6.9. Let L = {s · ei : 1 ≤ i ≤ n, s > 0} be the set of positive coordinate
axes in Rn and π : Rn → g orthogonal projection with respect to 〈·, ·〉ψ. We will
show that the local maxima of (c|S) are the points (πL) ∩ S.

Write J = Jψ. Since q|S = 1 it follows that J |S = 1 + c|S . First we find the
critical points of J |S. The derivative of J at v ∈ Rn is

(42) dJv(w) = 〈v, w〉ψ + (1/2)〈v2, w〉ψ
If v ∈ S then w ∈ TvS if and only if 〈v, w〉ψ = 0 and 〈p, w〉ψ = 0. Thus v is a
critical point of J |S if and only if

∀w ∈ Rn (〈v, w〉ψ = 0 and 〈p, w〉ψ = 0) =⇒ 〈v2, w〉ψ = 0

This is equivalent to
∃ α,β ∈ R v2 = αv + βp

Writing v = (x1, · · · , xn) then each xi is a solution of t2 = αt + β. Let s± be the
two solutions of this quadratic and set

A± = {i : 1 ≤ i ≤ n vi = s±}

Thus {A+, A−} is a partition of {1, · · · , n} and i ∈ A+ if and only if vi = s+ . Let
e1, · · · , en be the standard basis of Rn and define

(43) e± =
∑

i∈A±

ei so p = e+ + e−

then

(44) v = v(A+) = s+e+ + s−e−

The standard basis is orthogonal so 〈e+ , e−〉ψ = 0. Now v ∈ p⊥ implies

0 = 〈p, v〉ψ = 〈e+ + e− , s+e+ + s−e−〉ψ = s+〈e+ , e+〉ψ + s−〈e− , e−〉ψ
Since 〈e+ , e+〉ψ, 〈e− , e−〉ψ > 0 it follows that s+s− < 0. We choose the labelling so
that

(45) s+ > 0 and s− < 0

Then there is t > 0 so that

s+ = t · 〈e− , e−〉ψ s− = −t · 〈e+ , e+〉ψ
Hence

t−1 · v = 〈e− , e−〉ψe+ − 〈e+ , e+〉ψe−
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We will ignore the t factor in what follows. This is justified by observing that the
critical points of J restricted to t · S are the critical points of J |S multiplied by t.
Then

(46) s+ = 〈e− , e−〉ψ s− = −〈e+ , e+〉ψ 0 = −〈e+ , e−〉ψ

s+ =
∑

i∈A−

ψi, s− = −
∑

i∈A+

ψi, and s = s+ − s− =
n∑

i=1

ψi = 〈p, p〉ψ

We have shown the critical points of J |S are in one to one correspondence with
the non-empty subsets A+ ⊂ {1, · · · , n} with non-empty complement. Given a
quadratic form Q define µ(Q) to be the dimension of the positive eigenspace. This
is the Morse index of −Q. Thus a non-degenerate critical point is a local maximum
if and only if the Hessian has µ = 0.

Claim 1. The critical point of f = J |S at v = v(A+) is non-degenerate, and
µ(d2fv) = |A+| − 1.

Assuming this we prove the lemma. The claim implies the local maxima occur
when |A+| = 1 so A+ = {i} for some 1 ≤ i ≤ n. When A+ = {i} by (43)

e+ = ei e− = p − ei

By (46)

s+ = s − 〈ei, ei〉ψ s− = −〈ei, ei〉ψ
Using 〈ei, ei〉ψ = ψi and (44)

v(A+) = (s − ψi)ei − ψi(p − ei) = sei − ψip

Now ei and p − ei are idempotents, and ei(p − ei) = 0 so

(47) (v(A+))3 = (s − ψi)
3ei − ψ3

i (p − ei)

Using 〈p, ei〉ψ = ψi and 〈p, p − ei〉ψ = s − ψi gives

6c(v(A+)) = 〈p, (v(A+))3〉ψ
= (s − ψi)

3〈p, ei〉ψ − ψ3
i 〈p, p − ei〉ψ by (47)

=
(
ψi(s − ψi)

3 − ψ3
i (s − ψi)

)

= ψi(s − ψi)
(
(s − ψi)

2 − ψ2
i

)

= ψi(s − ψi)s(s − 2ψi)(48)

Now

(49) ‖v(A+)‖2
ψ = (s − ψi)

2ψi + ψ2
i (s − ψi) = sψi(s − ψi)

It follows that the critical point, vi, on S for A = {i} is

vi :=
v(A+)

‖v(A+)‖ψ
=

(s − ψi)ei − ψi(p − ei)√
sψi(s − ψi)

=
sei − ψip

‖sei − ψip‖ψ
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Thus

6c(vi) = 6c(v(A+))/‖v(A+)‖3
ψ

= ψi(s − ψi)s(s − 2ψi)/(sψi(s − ψi))
3/2 using (48), (49)

= (s − 2ψi)/
√

sψi(s − ψi)

=
1√
ψi

(1 − 2ψi/s)/
√

1 − ψi/s

If c(vi) < 0 then ψi > s/2. Since s =
∑

ψi, and all ψi > 0, it follows that c(vi) < 0
for at most one value of i. Thus |K+| ≥ n − 1. To compute αij start with

〈sei − ψip, sej − ψjp〉ψ = s2〈ei, ej〉ψ + ψiψj〈p, p〉ψ − s (ψj〈ei, p〉ψ + ψi〈p, ej〉ψ)

= δijs
2ψi + ψiψjs − 2sψiψj

= sψi(δijs − ψj)

Using this for i )= j gives

αij = 〈vi, vj〉ψ = 〈sei − ψip, sej − ψjp〉ψ/(‖sei − ψip‖ψ‖sej − ψjp‖ψ)

= (−sψiψj)/
√

sψi(s − ψi)sψj(s − ψj)

= −
√
ψiψj/(s − ψi)(s − ψj)

< 0

When i, j, k are all distinct

1 − αjk/αijαik = 1 +

√
ψjψk(s − ψi)(s − ψj)(s − ψi)(s − ψk)

(s − ψj)(s − ψk)ψiψjψiψk

= 1 + (s − ψi)/ψi

= s/ψi

Hence αijαik/(αijαik − αjk) = ψi/s.
Let π : Rn → g be orthogonal projection. Since g = p⊥ it follows that

π(x) = x − 〈p, x〉ψ
〈p, p〉ψ

p

Using that p = e1 + · · · en, and that the standard basis {e1, · · · , en} is orthogonal,
gives

〈p, ei〉ψ = 〈ei, ei〉ψ
and 〈p, p〉ψ = s so

π(ei) = ei − (〈ei, ei〉ψ/s)p

Thus the local maxima are on the projections of the coordinate axes:

v(A+) = s · π(ei)

This proves the lemma, modulo Claim 1.

Claim 2. At v = v(A+) then

d2(J |S)v(w, w) = (s/2)〈e+ − e− , w2〉ψ for w ∈ TvS.
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Assuming this, the quadratic form

(50) Q(w, w) = 〈e+ − e− , w2〉ψ

is defined and non-singular on all of TvRn ≡ Rn and µ(Q|TvS) = µ(d2(J |S)v). Let
L : Rn → Rn be the linear map defined by

L|A± = ± I

Then

(51) Q(x, y) = 〈Lx, y〉ψ

Now p = e+ + e− so Lp = e+ − e− and

Lv = L(s+e+ + s−e−) = s+e+ − s−e−

Now TvS is the orthogonal complement with respect to the inner product 〈·, ·〉ψ of
the subspace spanned by {p, v}, because S is a sphere in the orthogonal complement
of p. Using (51) and L = L−1 shows that TvS is also the orthogonal complement
with respect to Q of the subspace W spanned by {Lp, Lv}.

Claim 3. Q|W is non-singular and µ(Q|W ) = 1.

Assuming this, since W and TvV are orthogonal with respect to Q, it follows
that

µ(Q) = µ(Q|W ) + µ(Q|TsV ) = 1 + µ(Q|TvS)

From (50) µ(Q) = |A+| so µ(Q|TvS) = |A+| − 1 which proves Claim 1.
To prove Claim 3 we first evaluate Q(Lp, Lp), and Q(Lp, Lv), and Q(Lv, Lv) to

obtain the matrix of Q in the basis {Lp, Lv}.

Q(Lp, Lp) = 〈L2p, Lp〉ψ by (51)

= 〈p, Lp〉ψ
= 〈e+ + e− , e+ − e−〉ψ
= −s− − s+ by (46)

Q(Lv, Lv) = 〈v, Lv〉ψ
= 〈s+e+ + s−e− , s+e+ − s−e−〉ψ
= s2

+
〈e+ , e+〉ψ − s2

−〈e− , e−〉ψ
= s2

+
(−s−) − s2

−(s+)

= −s−s+(s+ + s−)

Q(Lp, Lv) = 〈p, Lv〉ψ
= 〈e+ + e− , s+e+ − s−e−〉ψ
= s+〈e+ , e+〉ψ − s−〈e− , e−〉ψ
= s+(−s−) − s−s+

= −2s−s+
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∴ det(Q|W ) = det

[
Q(Lp, Lp) Q(Lp, Lv)
Q(Lp, Lv) Q(Lv, Lv)

]

= det

[
−(s+ + s−) −2s+s−

−2s+s− −s−s+(s+ + s−)

]

= s+s−

[
(s+ + s−)2 − 4s+s−

]

= s+s−(s+ − s−)2

= s+s−s2

< 0

Thus Q|W has one eigenvalue of each sign, which proves Claim 3.
It only remains to prove Claim 2. Give a critical point v = v(A+) of f := J |S

we compute d2(J |S)v. Let γ : (−ε, ε) → S be a smooth curve with γ(0) = v and
γ′(0) = w ∈ TvS. Then

(f ◦ γ)′(t) =
n∑

i=1

∂f

∂xi

∣∣∣∣
x=γ(t)

γ′
i(t)

∴ (f ◦ γ)′′(0) =
n∑

i,j=1

∂2f

∂x2
i

∣∣∣∣
x=v

γ′
i(0)γ′

j(0) +
n∑

i=1

∂f

∂xi

∣∣∣∣
x=v

γ′′(0)

= d2Jv(w, w) + dJv(γ′′(0))

In the following everything is evaluated at t = 0

〈γ, γ〉ψ = 1 ∵ γ = γ(0) ∈ S

⇒ 〈γ′, γ〉ψ = 0

⇒ 〈γ′′, γ〉ψ + 〈γ′, γ′〉ψ = 0

⇒ γ′′ ∈ (−〈γ′, γ′〉ψ/〈γ, γ〉ψ) γ + TvS

Using γ(0) = v and γ′(0) = w

γ′′(0) = − (〈w, w〉ψ/〈v, v〉ψ) v + t

for some t ∈ TvS. Since dJv vanishes on TvS we get

(52) d2fv(w, w) = (f ◦ γ)′′(0) = d2Jv(w, w) − (〈w, w〉ψ/〈v, v〉ψ) dJv(v)

Now we compute these two terms

d2Jv(w, w) =
d2

dt2

∣∣∣∣
t=0

(
1

2
〈(v + tw)2, p〉ψ +

1

6
〈(v + tw)3, p〉ψ

)

= 〈w2, p〉ψ + 〈vw2, p〉ψ
= 〈w, w〉ψ + 〈v, w2〉ψ(53)

By (42) dJv(v) = 〈v, v〉ψ + (1/2)〈v2, v〉ψ, so

(〈w, w〉ψ/〈v, v〉ψ) dJv(v) = 〈w, w〉ψ + (1/2)
(
〈v, v2〉ψ/〈v, v〉ψ

)
〈w, w〉ψ(54)
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At the critical point v = v(A+) = s+e+ + s−e− so

〈v, v〉ψ = 〈s+e+ + s−e− , s+e+ + s−e−〉ψ
= s2

+
〈e+ , e+〉ψ + s2

−〈e− , e−〉ψ
= s2

+
(−s−) + s2

−s+

= s+s−(s− − s+)

= −s+s−s

〈v, v2〉ψ = 〈s+e+ + s−e− , s2
+
e+ + s2

−e−〉ψ
= s3

+
〈e+ , e+〉ψ + s3

−〈e− , e−〉ψ
= s3

+
s− + s3

−s+

= s+s−(s− − s+)(s− + s+)

= −s+s−s(s+ + s−)

Thus 〈v, v2〉ψ/〈v, v〉ψ = s+ + s− . Using this with (54) gives

(〈w, w〉ψ/〈v, v〉ψ) dJv(v) = 〈w, w〉ψ + (1/2)
(
s+ + s−

)
〈w, w〉ψ

Using this and (53) to substitute into (52) gives

d2fv(w, w) = 〈w, w〉ψ + 〈v, w2〉ψ − (1 + (1/2)(s+ + s−))〈w, w〉ψ
= 〈v, w2〉ψ − (1/2)〈(s+ + s−)w, w〉ψ
= 〈v, w2〉ψ − (1/2)〈(s+ + s−)p, w2〉ψ

From (43) p = e+ + e− and v = s+e+ + s−e− from (44). Then

d2fv(w, w) = 〈s+e+ + s−e− , w2〉ψ − (1/2)〈(s+ + s−)(e+ + e−), w2〉ψ
= 〈s+e+ + s−e− − (1/2)(s+ + s−)(e+ + e−), w2〉ψ
= (1/2)s〈e+ − e− , w2〉ψ

where we used s = s+ − s−. This proves Claim 2. !

Proof of 6.10. This proof uses different coordinates to the proof of 6.9. In this
lemma summation is over the set of integers in [1, n−1] unless otherwise indicated,
and 〈·, ·〉 is the standard inner product on V = Rn−1. A point v =

∑
viei ∈ S is a

critical point of c|S if and only if there is some α ∈ V such that for all w ∈ V we
have dcv(w) = α · 〈v, w〉 because TvS = v⊥. Thus

(55) dcv(w) =
∑

λiv
2
i wi = α

∑
viwi

This equation is satisfied if and only if ∀i λiv2
i = αvi. Since λi ≥ 0 the requirement

that c(v) = (1/3)ψv3 > 0 implies ψv2 > 0; thus α )= 0. Thus the set of positive
critical points of c|S is

W = {v ∈ S : ∃ α )= 0 ψv2 = αv}

Given v ∈ W , let A = {i : vi )= 0}, then A is not empty and i ∈ A ⇒ λi )= 0 and

v = v(A) = α
∑

i∈A

λ−1
i ei
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Claim. d2(c|S) at v = v(A) is the restriction to TvS of the quadratic form on V

Q(w) = α

(
∑

A

w2
i −

∑

Ac

w2
i

)

where Ac = {1, · · · , n − 1} \ A.

Observe that Q is non-degenerate and v = v(A) ∈ 〈ei : i ∈ A〉 and TvS = v⊥

so Q|TvS is also non-degenerate. If follows that v(A) is a local maximum of (c|S)
if α > 0 and |A| = 1 or α < 0 and Ac = ∅. In the first case A = {i} and
v(A) = ei and c(ei) = λi/3 > 0. In the second case A = {1, · · · , n − 1} and
v(A) = −(n − 1)−1/2

∑
ei so c(v(A)) < 0. This proves the lemma modulo the

claim.
To prove the claim, adapting the derivation of (52) gives

(56) d2(c|S)v(w, w) = d2cv(w, w) − (〈w, w〉/〈v, v〉)dcv(v)

Using λivi = α for i ∈ A and λivi = 0 for i /∈ A gives

(57) d2cv(w, w) = 2
∑

λiviw
2
i = 2

∑

i∈A

αw2
i

Using (55) gives

(58) dc(v) =
∑

αvivi = α〈v, v〉 = α ∵ v ∈ S ∴ 〈v, v〉 = 1

Hence

(59) (〈w, w〉/〈v, v〉)dcv(v) = α
∑

w2
i

Substituting into (56)

(60) d2(c|S)v(w, w) = 2
∑

i∈A

αw2
i − α

∑
w2

i = α

(
∑

i∈A

w2
i −

∑

i∈Ac

w2
i

)

which proves the claim. !

9. Notation/Cheat sheet

V = Rn−1 Tn−1 = V/Zn−1

Tn = space of generalized cusps for C ∼= Tn−1 × [0, 1)
Tn = {developing maps}/{homotopy, affine maps}
Repn ⊂ Hom(V, Affn)/ Affn Repn

∼= An × SL± V/ ∼ψ
∼= Ãn × SL± V/ ∼(λ,κ)

[ξψ ◦A] (2.4) [Φ(λ,κ)◦A] (3.4)
Un ⊂ SLV is upper-triangular unipotent matrices
Fn = {(v1, · · · , vn) ∈ V n : ∃ $ ≥ 0 ∀ i )= j 〈vi, vi〉 = −$}/Σn

Tn
∼= Fn × Un

S2
+ V = all positive definite quadratic forms on V

P = {β ∈ S2
+ V | detβ = 1} ≡ P S2

+ V
Un

∼= P using A−1 :→ β = AtA is metric on Tn−1

Fn parameterizes σ ∈ Repn with β(σ) = β0 and β0(v) =
∑

v2
i , so A = I

General ρ ∈ Repn is ρ = σ ◦ A with A−1 ∈ Un and σ ∈ Fn

Lie algebra weights of linear part of ρ are ξ1, . . . , ξn ∈ V ∗ st for all i )= j we have
〈ξi, ξj〉β = −$
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in terms of Lie alg. weights invariant ∈ space
cubic c(ρ) = (1/3)

∑
(ξi)

3 /(‖ξi‖2
β + $) shape J(ρ) = (c(ρ),β(ρ)) Jn

character χ(ρ) =
∑

exp ξi complete η(ρ) = (χ(ρ),β(ρ)) Xn

[ξ(ρ)] = [ξ1, . . . ξn] ∈ V ∗n/Σn weight data ν(ρ) ∈ ([ξ(ρ)],β(ρ)) Rn

All arrows are homeomorphisms

Xn Jn

Tn Repn .

Un × Fn Rn

holonomy

hol 4.4

1.2

ν

weight

data

η 1.1

complete invariant

6.14 J

shape

invariant

Θ
1.2

K 6.14
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