

Arnold Tongues in Area-Preserving Maps

MARK LEVI & JING ZHOU

Communicated by P. RABINOWITZ

Abstract

In the early 60's J. B. Keller and D. Levy discovered a fundamental property: the instability tongues in Mathieu-type equations lose sharpness with the addition of higher-frequency harmonics in the Mathieu potentials. Twenty years later, V. Arnold discovered a similar phenomenon on the sharpness of Arnold tongues in circle maps (and rediscovered the result of Keller and Levy). In this paper we find a third class of object where a similar type of behavior takes place: area-preserving maps of the cylinder. loosely speaking, we show that periodic orbits of standard maps are extra fragile with respect to added drift (i.e. non-exactness) if the potential of the map is a trigonometric polynomial. That is, higher-frequency harmonics make periodic orbits more robust with respect to "drift". This observation was motivated by the study of traveling waves in the discretized sine-Gordon equation which in turn models a wide variety of physical systems.

1. Introduction

Understanding invariant sets of area-preserving maps is one of the central problems of dynamics and one of the most studied—starting with Poincaré's geometrical theorem [5, 7, 15], through KAM theory [2, 3, 14] and the Aubry-Mather theory [4, 12, 13]. All of the results require the exactness assumption.

Much less is known about area-preserving maps which are non-exact, such as the maps φ of the cylinder $\mathbb{S} \times \mathbb{R}$ with a "drift":

$$\int_{\varphi(\gamma)} v \, dx - \int_{\gamma} v \, dx = \delta \neq 0 \quad (1)$$

Here γ is a closed curve encircling the cylinder $\mathbb{R} \bmod 1 \times \mathbb{R}$ once; see Fig. 1.

Such maps are ubiquitous in Hamiltonian dynamics, and arise in numerous settings. We mention four examples.

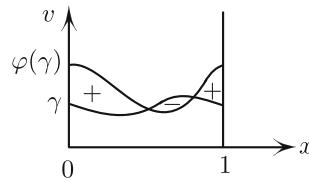


Fig. 1. Non-exact area-preserving cylinder map with $\delta > 0$

1. *The Frenkel–Kontorova model* of electrons in a crystal lattice [6,9]. The model consists of an infinite chain of particles on the line a periodic potential $V(x)$ and with nearest neighbor coupling. The equilibria are the critical points of the total energy

$$\sum_{i \in \mathbb{Z}} \frac{k}{2} (x_{i+1} - x_i)^2 + V(x_i);$$

although the sum is divergent, the variational equation, i.e. the equilibrium condition

$$x_{i+1} - 2x_i + x_{i-1} + k^{-1} V'(x_i), \quad (2)$$

is well defined. This discrete analog of the Euler-Lagrange equation has a Hamiltonian counterpart obtained by the introduction of the discrete momentum $v_i = x_i - x_{i-1}$:

$$\begin{cases} x_{i+1} = x_i + v_i - V'(x_i) \\ v_{i+1} = v_i - V'(x_i) \end{cases}, \quad (3)$$

Used it an area-preserving map.

If V' is periodic, then (3) defines a cylinder map. However a periodic V' leaves the possibility that V itself may have a “tilt”, i.e. a linear part

$$V(x) = a x + V_{\text{periodic}}(x),$$

where $V_{\text{periodic}}(x + T) = V_{\text{periodic}}(x)$ for some fixed T .

The tilt causes the map (3) to be non-exact; (1) holds for this map with $\delta = -aT$ (Fig. 2).

2. *Chains of coupled pendula.* In the special case of $V(x) = c \sin x$, the Frenkel–Kontorova model has a mechanical interpretation as the chain of torsionally coupled pendula (Fig. 3); here x_i denotes the angle of the i th pendulum with the downward vertical. Now if each pendulum is subjected to a constant torque τ then the potential acquires a linear part: $V(x) = c \sin x + \tau x$, and the corresponding cylinder map becomes non-exact, with $\delta = -2\pi\tau$.

3. *Coupled Josephson junctions.* A Josephson junction consists of two superconductors separated by a narrow gap of a few angstroms [8]. The junction can behave as a superconductor or as a resistor, depending on the initial conditions

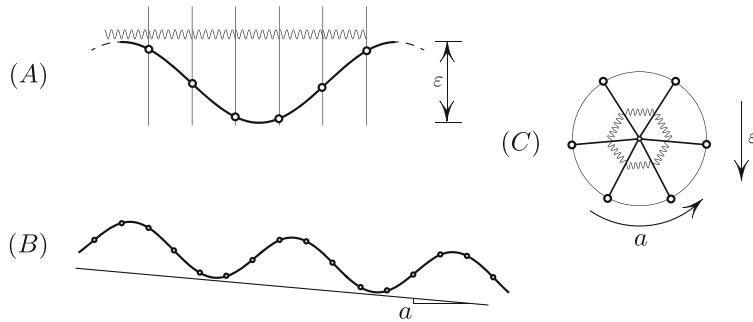


Fig. 2. A the Frenkel–Kontorova model; B the tilt added, leading to the non-exact cylinder map; C tilt interpreted as torque acting on coupled pendula

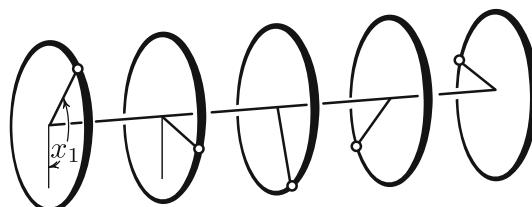


Fig. 3. Discretized sine-Gordon equation: pendula with nearest-neighbor torsional coupling

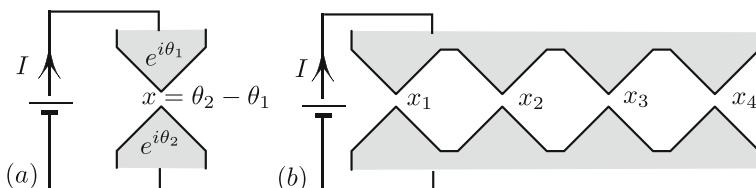


Fig. 4. Josephson junctions: single and coupled. Voltage across the junction is proportional to $\langle \dot{x} \rangle$

(there were some hopes in the 1970s to use this property as a memory device). This behavior reminds one of a pendulum with torque δ described by

$$\ddot{x} + c\dot{x} + \sin x = \delta \quad (4)$$

For the $|\delta| < 1$ there are two stable limiting regimes: either the stable equilibrium or the “running” periodic solution corresponding to the tumbling motion $x = \omega t + p(t)$ where p is periodic. In fact the same equation (4) is satisfied by the jump $x = \arg \theta_2 - \arg \theta_1$ of the phase of the electron wave function across the gap if current δ is driven across the gap, Fig. 4. The voltage across the gap is proportional to the average $\langle \dot{x} \rangle$, or the average angular velocity in the pendulum interpretation. Thus the equilibrium solution with its average $\langle \dot{x} \rangle = 0$ corresponds to zero voltage and thus to the superconducting state, while the tumbling solution with the voltage $\langle \dot{x} \rangle \neq 0$ corresponds to the resistive state.

4. Particle in \mathbb{R} subject to a force that varies periodically both in time and position. The motion of such a particle is governed by

$$\ddot{x} = \Phi(x, t),$$

where Φ is periodic in both variables of period 1 (without loss of generality). The Poincaré map $\varphi : (x, y)_{t=0} \mapsto (x, y)_{t=1}$, where $y = \dot{x}$, is generally non-exact, satisfying (1) with the drift equal to the average of force Φ :

$$\delta = \int_0^1 \int_0^1 \Phi(x, t) \, dx \, dt = \langle \Phi \rangle.$$

This completes our list of examples where non-exact area-preserving cylinder maps aries. In this paper we show that periodic orbits of the standard map (3) are extra sensitive to the added drift δ if the potential has harmonics of only low frequencies. There are (at least) two known phenomena with a similar flavor: (i) the sharpness of Arnold tongues in circle maps [1]

$$x \mapsto x + \omega + \varepsilon f(x),$$

where f is a trigonometric polynomial is related to the degree of f , and (ii), the sharpness of resonance zones in Hill's equations

$$\ddot{x} + (\omega^2 + \varepsilon q(t))x = 0,$$

where q is a trigonometric polynomial is related to the degree of q [11]. The present paper adds one more example to this list. According to Arnold [1], Gelfand conjectured the existence of a general theorem which covers cases (i) and (ii); to this conjecture one can add the problem studied in the present paper.

2. Results

We consider periodic potentials with a linear part added:

$$V(x) = \delta x + \varepsilon F(x), \quad F(x + 2\pi) = F(x).$$

Thus the standard map (3) with such V takes form

$$\begin{cases} x_{i+1} = x_i + v_i - \delta - \varepsilon f(x_i) \\ v_{i+1} = v_i - \delta - \varepsilon f(x_i) \end{cases}, \quad (5)$$

where $f(x) = F'(x)$ is periodic of period 2π .

For $\delta = 0$ the cylinder map (5) is exact, and it possesses a p/q periodic orbit for any integer $p, q \neq 0$, i.e. an orbit satisfying

$$x_{i+q} = x_i + 2p\pi, \quad v_{i+q} = v_i;$$

this follows from Poincaré's Last Geometric Theorem as generalized by Franks [7]. In his generalization Franks removed the requirement of invariant boundary circles

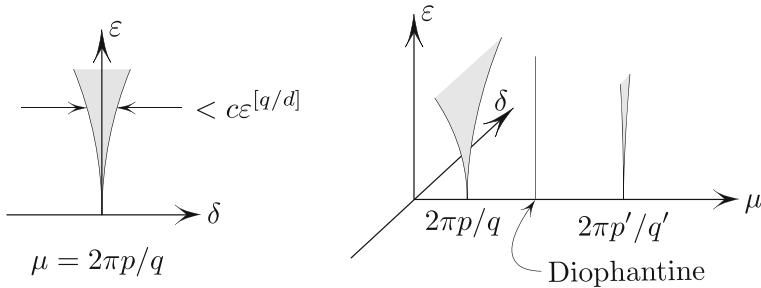


Fig. 5. Left: Arnold tongue for the Birkhoff periodic point with the rotation number $\mu = p/q$ is exponentially narrow for trigonometric polynomials. Right: for Diophantine μ one has an invariant KAM curve only for the drift $\delta = 0$, i.e. the tongue has zero width

of an annulus, replacing it with the assumption of exactness. Since the theorem no longer applies to the non-exact case $\delta \neq 0$, a natural question arises: for what range of drift δ do periodic orbits persist? We show that if V is a trigonometric polynomial, then this range becomes narrower if the degree of the trigonometric polynomial f becomes smaller; furthermore, the tightness of the range is exponentially small in terms of the period q (Fig. 5). More precisely, one has the following:

Theorem 1. (Width of Arnold tongues) *Let $f(x)$ in (5) be a trigonometric polynomial of degree d , and let $p \geq 0, q > 0$ be integers. There exist positive constants $\bar{\varepsilon}$ and c depending only on q and f , such that for any $0 < \varepsilon < \bar{\varepsilon}$, all p/q periodic orbits of (5) disappear if the drift $|\delta| > c\varepsilon^{[q/d]}$; here $[\cdot]$ denotes the integer part.*

The other observation of this paper is that the p/q periodic points move on special curves as δ changes.

Theorem 2. *Let $p > 0, q > 0$ be integers. If the perturbation term $f(x)$ in the cylinder map (5) is a 2π -periodic analytic function (not necessarily a trigonometric polynomial), then there exists a positive constant $\bar{\varepsilon}$ depending only on q and f such that for any $|\varepsilon| < \bar{\varepsilon}$ and $|\delta| < \bar{\varepsilon}$, any p/q periodic orbit of the perturbed map (5), if it exists, lies on the graph of the function*

$$v = \mu + v_1(x)\varepsilon + v_2(x)\varepsilon^2 + \dots$$

where $\mu = 2\pi p/q$ and $v_n(x)$ is an n^{th} degree polynomial in $f(x + k\mu)$ ($0 \leq k \leq q - 1$) and their derivatives up to order $n - 1$. In particular,

$$v_1(x) = -\frac{q+1}{2}\bar{f}(x) + \bar{\bar{f}}(x),$$

where

$$\begin{aligned} \bar{f}(x) &= \frac{1}{q} \sum_{k=0}^{q-1} f(x + k\mu), \\ \bar{\bar{f}}(x) &= \frac{1}{q} \sum_{k=0}^{q-1} (q - k)f(x + k\mu). \end{aligned}$$

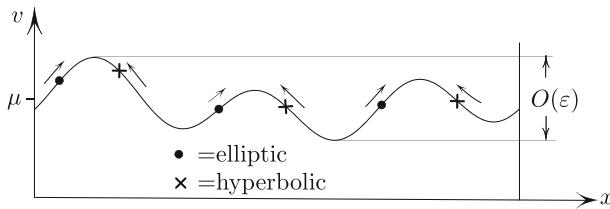


Fig. 6. Iterates of two periodic points (a center and a saddle). The arrows show the direction of motion of the iterates as δ increases. The two orbits disappear in a saddle-node bifurcation. As δ changes, these points move with large speed (at least) $O(\varepsilon^{-[q/d]})$ (at bifurcation the speed becomes infinite)

Remark 1. If f is a trigonometric polynomial, then \bar{f} and $\bar{\bar{f}}$ are trigonometric polynomials as well, of a degree not exceeding the degree d of f . Moreover, if $d < q$, then $\bar{f} = 0$.

Remark 2. Birkhoff p/q periodic orbits come in saddle-center pairs. As δ increases from 0 to a critical value, a pair disappears in a saddle-node bifurcation, Fig. 6. The first theorem therefore states that critical values of δ are $O(\varepsilon^{[q/d]})$.

Remark 3. A special case of Theorem 1 for $q \leq 3$ was proven in [10] by a direct calculation. Unfortunately, as q increases, the complexity of this calculation tends to infinity. We overcome this problem by extending Arnold's approach [1] (that he used for circle maps) to the maps of the cylinder.

Remark 4. (An implication of Theorem 1 for traveling waves.) Consider an infinite periodic chain of pendula governed by the discretized sine-Gordon equation with damping:

$$\ddot{x}_k + \gamma \dot{x}_k + \varepsilon \sin x_k = (x_{k+1} - 2x_k + x_{k-1}) + \delta. \quad (6)$$

Fixing $q \in \mathbb{N}$ and the “twist” $p \in \mathbb{Z}$, consider space-periodic “twisted” solutions, i.e. the ones satisfying

$$x_{k+q}(t) = x_k(t) + 2\pi p \text{ for all } t. \quad (7)$$

According to [10] there exists a constant $\varepsilon_0 = \varepsilon_0(\gamma)$ depending only on the damping coefficient $\gamma > 0$ such that for all $\varepsilon \in (0, \varepsilon_0)$ and for all δ every solution approaches asymptotically either to an equilibrium or to a traveling wave. This wave satisfies

$$x_k(t) = x_{k-1}(t + T/q),$$

(that is, each pendulum repeats what its neighbor is doing but with a delay). A q -fold application of this identity gives

$$x_k(t) = x_{k-q}(t + T) \stackrel{(7)}{=} x_k(t + T) - 2\pi p,$$

i.e.

$$x_k(t + T) = x_k(t) + 2\pi p,$$

so that this solution is periodic modulo rotation $x_k \mapsto x_k + 2\pi p$ ($k = 1, \dots, q$) in $\mathbb{S} = \mathbb{R} \bmod 2\pi$. Now, according to Theorem 1 the equilibria of (6) disappear if $\delta > c_0 \varepsilon^q$ (a threshold exponentially small in the number of pendula), and thus (6) has a globally attracting periodic traveling wave for all such δ . This traveling wave appears as the result of a saddle-node bifurcation of the equilibria which exist for smaller δ .

A remarkable fragility of equilibria is illustrated in Fig. 2(C), where shows an equilibrium of $q = 6$ coupled pendula with the same torque applied to each. With the choice of “gravity” $\varepsilon = \frac{1}{2}$ the pendula sag by a comparable amount and one might expect that the equilibrium could withstand the torque of a comparable magnitude. However, the equilibrium (and hence the corresponding periodic orbit of the map) disappears for $\delta > 0.0027$, about .05% of the “gravity” ε ! Sinusoidal potentials are thus quite special: they are remarkably bad at pinning down the equilibria.

The effect of non-exactness on the dynamics of the map is of interest in itself; its understanding would also shed light on physical effects, such as the fragility of Frenkel–Kontorova equilibria in crystals to imposed voltages.

3. The Preliminaries

The cylinder map (5) with $\varepsilon = \delta = 0$ has an invariant circle $v = 2\pi p/q \stackrel{\text{def}}{=} \mu$ consisting of p/q periodic points. This suggests introducing a shifted momentum

$$y := v - \mu$$

with which the cylinder map (5) takes a new form,

$$\begin{cases} x_{i+1} = x_i + y_i + \mu + g(x_i; \varepsilon, \delta) \\ y_{i+1} = y_i + g(x_i; \varepsilon, \delta), \end{cases} \quad (8)$$

where

$$g(x; \varepsilon, \delta) := -\delta - \varepsilon f(x),$$

and where $f(x)$ is a 2π -periodic analytic function as in Theorem 2.

This map (8) restricted to a neighborhood of the circle $y = 0$ can be viewed as a perturbation of the shift by μ in the x direction; the n th iterate will thus be a perturbation of the shift by $n\mu$ in the x -direction. This suggests writing the n -th iterate of (8) in the form

$$\begin{cases} x_n = x_0 + n\mu + {}_n R(x_0, y_0, \varepsilon, \delta) \\ y_n = y_0 + {}_n S(x_0, y_0, \varepsilon, \delta). \end{cases} \quad (9)$$

A quick calculation shows that

$$\begin{aligned} {}_n R(x_0, y_0, \varepsilon, \delta) &= n(y_0 + g(x_0)) + (n-1)g(x_1) + \dots + 2g(x_{n-2}) + g(x_{n-1}) \\ {}_n S(x_0, y_0, \varepsilon, \delta) &= g(x_0) + g(x_1) + \dots + g(x_{n-2}) + g(x_{n-1}), \end{aligned}$$

(10)

where $\{x_0, x_1, \dots, x_{n-1}\}$ are the x -coordinates of the iterates of (x_0, y_0) under the cylinder map (8).

The cylinder map (8) possesses a p/q periodic orbit, $x_q = x_0 + \underbrace{2\pi p}_{q\mu}$, $y_q = y_0$, if and only if for some (x_0, y_0) the remainders of the q -th iterate vanish:

$${}_q R(x_0, y_0, \varepsilon, \delta) = {}_q S(x_0, y_0, \varepsilon, \delta) = 0. \quad (11)$$

The overall plan of the proof of Theorem 1 (the main result) is as follows: The vanishing of the remainders (11) defines y_0 and δ as functions of x_0 and δ : $y_0 = Y(x_0, \varepsilon)$, $\delta = \Delta(x_0, \varepsilon)$. Proving prove the narrowness of the Arnold tongue (as specified in Theorem 1) amounts to showing that the range $\Delta(\mathbb{R}, \varepsilon)$ is $O(\varepsilon')$ -small, where $r = [q/d]$. The proof of this narrow range statement goes as follows: expanding Δ in powers of ε we consider the first x_0 -dependent term $\Delta_r(x_0)\varepsilon^r$. Our goal is to show that $r > [q/d]$. To that end, we prove (i) that $\Delta_r(x_0)$ is periodic of period μ , and (ii), that $\Delta_r(x_0)$ is a trigonometric polynomial of degree rd . However a non-constant trigonometric polynomial periodic of period $\mu = 2\pi p/q$ must have degree $> q$, i.e. $rd > q$, or $r > [q/d]$, as desired.

4. Structure of the Remainders

In this section we examine the n -th iterate of the cylinder map (8) for any $n \in \mathbb{N}$ and the associated remainders.

For brevity, we write $g(x) = g(x; \varepsilon, \delta)$ and $g'(x) = \frac{\partial}{\partial x}g(x; \varepsilon, \delta) = -\varepsilon f'(x)$ (recall that $g(x; \varepsilon, \delta) := -\delta - \varepsilon f(x)$), and also

$$\begin{aligned} g_k^{(r)} &:= g^{(r)}(x_0 + k\mu), & g_k^{(0)} &= g(x_0 + k\mu) = g_k; \\ f_k^{(r)} &:= f^{(r)}(x_0 + k\mu), & f_k^{(0)} &= f(x_0 + k\mu) = f_k. \end{aligned}$$

The followed lemma gives the structure of the remainders for any iterate of the cylinder map (8).

Lemma 1. *The remainders ${}_n R$ and ${}_n S$ are a convergent series*

$$\begin{aligned} {}_n R &= {}_n R_1 + {}_n R_2 + \dots \\ {}_n S &= {}_n S_1 + {}_n S_2 + \dots, \end{aligned}$$

where ${}_n R_m$ and ${}_n S_m$ are homogeneous polynomials of degree m in terms of the items in the list $\{y_0 + g_0, g_k^{(l)} (0 \leq k \leq n-1, 0 \leq l \leq m-1)\}$. The two series converge for all $x_0, y_0, \varepsilon, \delta$. Moreover, each term of degree $m \geq 2$ contains at least one derivative of g (so that, with $g = -\delta - \varepsilon f(x)$ these terms are $O(\varepsilon)$). In particular,

$$\begin{aligned} {}_n R_1 &= n(y_0 + g_0) + (n-1)g_1 + (n-2)g_2 + \dots + g_{n-1}, \\ {}_n S_1 &= g_0 + g_1 + \dots + g_{n-1}. \end{aligned} \quad (12)$$

Proof. goes by induction on n . The statement is trivially true for $n = 1$, and we show that if the remainders ${}_n R$ and ${}_n S$ are of the form claimed in the Lemma then the same is true for $n + 1$. Indeed,

$$x_{n+1} = x_n + y_n + \mu + g(x_n) \stackrel{(9)}{=} x_0 + (n+1)\mu + \underbrace{{}_n R + {}_n S + g(x_n)}_{n+1 R}.$$

Thanks to the inductive assumption, it only remains to show that $g(x_n)$ is of the form claimed. Taylor expansion yields

$$\begin{aligned} g(x_n) &= g(x_0 + n\mu + {}_n R) = g_n + \sum_{k \geq 1} \frac{1}{k!} g_n^{(k)} \cdot ({}_n R)^k = g_n + \sum_{k \geq 1} \frac{1}{k!} g_n^{(k)} \cdot \\ &\quad \left(\sum_{j \geq 1} {}_n R_j \right)^k. \end{aligned} \tag{13}$$

Now m th degree part of (13) is a linear combination (with constant coefficients) of products

$$g_n^{(k)} {}_n R_{j_1} \cdots {}_n R_{j_r},$$

with $j_1 + \cdots + j_r = m - 1$, and is thus a homogeneous polynomial of degree m as claimed. Furthermore, every term with $m \geq 2$ comes from the series in (13) and thus contains a derivative of g .

The claim about ${}_{n+1} S$ is proven similarly:

$$y_{n+1} = y_n + g(x_n) \stackrel{(9)}{=} y_0 + \underbrace{{}_n S + g(x_n)}_{n+1 S}.$$

The rest of the proof is identical to the one above. This completes the proof of Lemma 1. \square

Remark 5. As an illustration of the lemma, a short computation gives an explicit form of the degree-2 terms:

$$\begin{aligned} {}_n R_2 &= (n-2)g'_1 \cdot (y_0 + g_0) + (n-3)g'_2 \cdot (2(y_0 + g_0) + g_1) + \cdots \\ &\quad + g'_{n-1} \cdot ((n-1)(y_0 + g_0) + (n-2)g_1 + \cdots + g_{n-2}) \\ {}_n S_2 &= g'_1 \cdot (y_0 + g_0) + g'_2 \cdot (2(y_0 + g_0) + g_1) + \cdots \\ &\quad + g'_{n-1} \cdot ((n-1)(y_0 + g_0) + (n-2)g_1 + \cdots + g_{n-2}). \end{aligned}$$

Each term in ${}_n R_2, {}_n S_2$ contains the first derivative of g at some shift $x_0 + k\mu$.

5. The Existence of Periodic Orbits

In this section we discuss the existence of the p/q periodic orbits of the cylinder map (5) using Implicit Function Theorem and then we prove Theorem 2.

We begin by showing that the equations

$${}_q R(x, y, \varepsilon, \delta) = {}_q S(x, y, \varepsilon, \delta) = 0$$

uniquely determine δ and y as functions of x and ε for all $x \in \mathbb{R}$ and for all $|\varepsilon| < \bar{\varepsilon}$ for some positive $\bar{\varepsilon}$,

$$\begin{cases} \delta = \Delta(x, \varepsilon) \\ y = Y(x, \varepsilon), \end{cases} \quad (14)$$

such that ${}_q R$ and ${}_q S$ vanish identically if (14) hold.

Wishing to apply the implicit function theorem, we note that ${}_q R(x_0, 0, 0, 0) = {}_q S(x_0, 0, 0, 0) = 0$ for all $x \in \mathbb{R}$ and that, using Lemma 1,

$$\left. \frac{\partial ({}_q R, {}_q S)}{\partial (\delta, y_0)} \right|_{y=\varepsilon=\delta=0} = \begin{pmatrix} -\frac{q(q+1)}{2} & q \\ -q & 0 \end{pmatrix}$$

for all x . Since the determinant is $q^2 \neq 0$, the implicit function theorem applies: for any x_0 there exists an open disk D_{x_0} centered at the point $(x_0, 0)$ in the (x, ε) -plane such that the implicit function $(x, \varepsilon) \mapsto (\delta, y)$ is well defined by the equations ${}_q R = {}_q S = 0$ on the disk D_{x_0} . The segment $[0, 2\pi] \times \{0\}$ in the (x, ε) -plane is covered by open disks and thus has a finite subcover; but then this finite union contains a strip nonzero width $\bar{\varepsilon} > 0$ around the x -axis. Moreover, the functions corresponding to the overlapping disks coincide. Thus the implicit function $(x, \varepsilon) \mapsto (\Delta, Y)$ is defined for all x and for all $|\varepsilon| < \bar{\varepsilon}$.

Proof of Theorem 2. The proof proceeds by induction. If (x_0, y_0) is a p/q -periodic point of the map (5) for some δ , then (14) holds. Proving the theorem thus amounts to showing that the coefficients in the expansion of $Y(x_0, \varepsilon)$ in powers of ε are polynomials in f_k and its derivatives up to order $k - 1$. We fix $\varepsilon < \bar{\varepsilon}$ so that Δ and Y are well-defined. As the first step in induction we show that Δ_1 and Y_1 in the expansions

$$\begin{aligned} \Delta(x_0) &= \Delta_1(x_0)\varepsilon + o(\varepsilon), \\ Y(x_0) &= Y_1(x_0)\varepsilon + o(\varepsilon) \end{aligned}$$

are polynomials of degree 1 (i.e. linear) in f_k , where $0 \leq k \leq q - 1$.
Indeed, by Lemma 1,

$${}_q S(x_0, Y, \varepsilon, \Delta) = \sum_{m \geq 1} {}_q S_m(x_0, Y, \varepsilon, \Delta),$$

where, by (12), the linear term is

$${}_q S_1(x_0, Y, \varepsilon, \Delta) = -q\Delta - \varepsilon q \bar{f}(x_0) \text{ with } \bar{f}(x_0) = \frac{1}{q} \sum_{k=0}^{q-1} f_k,$$

while each higher-degree term ${}_q S_m$ ($m \geq 2$) is a homogeneous polynomial of degree m in the items from the list $\{Y - \Delta - \varepsilon f_0, -\Delta - \varepsilon f_k, \varepsilon f_k^{(l)}\}$ with $0 \leq k \leq q-1$, $0 \leq l \leq m-1$ and thus is of order $\mathcal{O}(\varepsilon^2)$ since $\Delta, Y \sim \mathcal{O}(\varepsilon)$, so that

$${}_q S(x_0, Y, \varepsilon, \Delta) = -q\Delta - \varepsilon q \bar{f}(x_0) + o(\varepsilon).$$

Since the above expression vanishes by the definition of Y, Δ , we conclude that

$$\Delta = -\varepsilon \bar{f}(x_0) + o(\varepsilon), \quad (15)$$

so that the leading coefficient of ε is

$$\Delta_1(x_0) = -\bar{f}(x_0).$$

Similarly, by Lemma 1, we have

$${}_q R(x_0, Y, \varepsilon, \Delta) = \sum_{m \geq 1} {}_q R_m(x_0, Y, \varepsilon, \Delta),$$

where

$${}_q R_1(x_0, Y, \varepsilon, \Delta) \stackrel{(12)}{=} qY - \frac{q(q+1)}{2}\Delta - \varepsilon \sum_{k=0}^{q-1} (q-k)f_k,$$

while each higher-degree term ${}_q R_m$ ($m \geq 2$) is a degree- m homogeneous polynomial in the items from the list $\{Y - \Delta - \varepsilon f_0, -\Delta - \varepsilon f_k, \varepsilon f_k^{(l)}\}$, where $0 \leq k \leq q-1$, $0 \leq l \leq m-1$; and since $Y, \Delta \sim \mathcal{O}(\varepsilon)$ all ${}_q R_m$ with $m \geq 2$ are at most $\mathcal{O}(\varepsilon^2)$, so that

$$\underbrace{{}_q R(x_0, Y, \varepsilon, \Delta)}_{=0} = qY - \frac{q(q+1)}{2}\Delta - \varepsilon \sum_{k=0}^{q-1} (q-k)f_k + o(\varepsilon).$$

Substituting into this we obtain that $Y(x_0, \varepsilon) = Y_1(x_0)\varepsilon + o(\varepsilon)$, and (15) results in

$$Y_1(x_0) = -\frac{q+1}{2} \bar{f}(x_0) + \bar{\bar{f}}(x_0),$$

where $\bar{\bar{f}}(x_0) = \frac{1}{q} \sum_{k=0}^{q-1} (q-k)f_k$.

This completes the first step of induction. To carry out the n th inductive step, let $n > 1$ and assume that in the expansion

$$\begin{aligned} \Delta(x_0) &= \Delta_1(x_0)\varepsilon + \cdots + \Delta_n(x_0)\varepsilon^n + \cdots, \\ Y(x_0) &= Y_1(x_0)\varepsilon + \cdots + Y_n(x_0)\varepsilon^n + \cdots, \end{aligned} \quad (16)$$

each $\Delta_m(x_0)$ and $Y_m(x_0)$ with $m \leq n$ is a polynomial of degree m in $f_k^{(l)}$ with $0 \leq k \leq q-1, 0 \leq l \leq m-1$. Our goal is to show that then the coefficients Δ_{n+1} and Y_{n+1} are polynomials of degree $n+1$ in $f_k^{(l)}$ with $0 \leq k \leq q-1, 0 \leq l \leq n$.

Just as in the first step, we obtain Δ_{n+1} by extracting the coefficient of ε^{n+1} in ${}_q S$:

$$0 = {}_q S(x_0, Y, \varepsilon, \Delta) = {}_q S_1(x_0, Y, \varepsilon, \Delta) + \sum_{m=2}^{n+1} {}_q S_m(x_0, Y, \varepsilon, \Delta) \\ + \sum_{m>n+1} {}_q S_m(x_0, Y, \varepsilon, \Delta).$$

For $m > n+1$, ${}_q S_m(x_0, Y, \varepsilon, \Delta) \sim o(\varepsilon^{n+1})$, and hence the last sum does not contribute powers of degree $n+1$. On the other hand, since

$${}_q S_1(x_0, Y, \varepsilon, \Delta) = -q\Delta - \varepsilon q \bar{f}(x_0),$$

${}_q S_1$ contributes $-q\Delta_{n+1}(x_0)\varepsilon^{n+1}$, a *constant* multiple of Δ_{n+1} . It thus suffices to show that the terms in the middle sum are polynomials of degree up to $n+1$ in terms of $f_k^{(l)}$ with $0 \leq k \leq q-1, 0 \leq l \leq n$.

For each $m \in [2, n+1]$, ${}_q S_m(x_0, Y, \varepsilon, \Delta)$ is a degree- m homogeneous polynomial in the items from the list $\{Y - \Delta - \varepsilon f_0, -\Delta - \varepsilon f_k, \varepsilon f_k^{(l)}\}$ with $0 \leq k \leq q-1, 0 \leq l \leq m-1$. Thus by the inductive assumption, the coefficient of ε^{n+1} in ${}_q S_m$ ($2 \leq m \leq n+1$) is a linear combination of the terms

$$(Y_i \varepsilon^i)^{m_i} (\Delta_j \varepsilon^j)^{m_j} (f_k^{(l)} \varepsilon)^{m_s}$$

with $im_i + jm_j + m_s = n+1, 0 \leq l \leq m-1$.

Since, by Lemma 1, each higher-degree term ${}_q S_m$ ($m \geq 2$) has at least one derivative of g , it follows that $m_s \geq 1$ and consequently $i, j \leq n$, so that the inductive assumption applies to Y_i and Δ_j above. Thus Y_i is a polynomial of degree i in $f_k^{(l)}$ with $0 \leq k \leq q-1$ with $0 \leq l \leq i-1$, and similarly, Δ_j is a polynomial of degree j with $0 \leq k \leq q-1, 0 \leq l \leq j-1$. Therefore $(Y_i)^{m_i} (\Delta_j)^{m_j} (f_k^{(l)})^{m_s}$ is a polynomial of degree $n+1$ in $f_k^{(l)}$ with $0 \leq k \leq q-1, 0 \leq l \leq n$. This completes the inductive step for Δ_{n+1} . The step for Y_{n+1} is carried out in the same way, and we have

$$0 = {}_q R(x_0, Y, \varepsilon, \Delta) = {}_q R_1(x_0, Y, \varepsilon, \Delta) + \sum_{m=2}^{n+1} {}_q R_m(x_0, Y, \varepsilon, \Delta) \\ + \sum_{m>n+1} {}_q R_m(x_0, Y, \varepsilon, \Delta).$$

Just as before, the last sum does not contribute to the coefficient of ε^{n+1} . The first term

$${}_q R_1(x_0, Y, \varepsilon, \Delta) = qY - \frac{q(q+1)}{2}\Delta - \varepsilon q \bar{f}(x_0)$$

contributes

$$\left(qY_{n+1} - \frac{q(q+1)}{2} \Delta_{n+1} \right) \varepsilon^{n+1}. \quad (17)$$

The coefficients of ε^{n+1} in the middle sum are polynomials of degree at most $n+1$ in terms of f , its shifts and its derivatives up to order n , precisely as we proved before when treating Δ_{n+1} . This shows that the coefficient in (17) is a polynomial of degree at most $n+1$ in terms of f , its shifts and its derivatives up to order n . Since the same is true for Δ_{n+1} , this holds for Y_{n+1} as well, thus completing the induction step and the proof of Theorem 2. \square

6. The Periodicity Lemma

In this section we show that the leading x -dependent coefficient in the ε -expansion of $\Delta(x, \varepsilon)$ is periodic of period μ . This fact plays a key role in the proof of Theorem 1. Before proving this periodicity we show that this leading coefficient is also the leading term up to a constant factor in ${}_q R$ and ${}_q S$ as well, where is another crucial fact.

Let $r \geq 1$ be the smallest power of ε where x first appears in the coefficient of the expansion of Δ in powers of ε so that

$$\Delta(x_0, \varepsilon) = A(\varepsilon) + \Delta_r(x_0)\varepsilon^r + o(\varepsilon^r), \quad (18)$$

where $A(\varepsilon)$ is a polynomial in ε of degree at most $r-1$ with constant coefficients. We claim that replacing Δ with its constant part $A(\varepsilon)$ in ${}_q R(x_0, Y, \varepsilon, \Delta) = 0$ and ${}_q S(x_0, Y, \varepsilon, \Delta) = 0$ changes these from 0 by the amount proportional to $\Delta_r(x_0)$ in the leading order:

$${}_q R(x_0, Y, \varepsilon, A(\varepsilon)) = \frac{q(q+1)}{2} \Delta_r(x_0)\varepsilon^r + o(\varepsilon^r) \quad (19)$$

and

$${}_q S(x_0, Y, \varepsilon, A(\varepsilon)) = q \Delta_r(x_0)\varepsilon^r + o(\varepsilon^r). \quad (20)$$

Here $Y = Y(x_0, \varepsilon)$. Indeed, by Lemma 1, we have

$$\begin{aligned} {}_q R(x_0, Y, \varepsilon, \Delta) - {}_q R(x_0, Y, \varepsilon, A(\varepsilon)) \\ = \sum_{m \geq 1} {}_q R_m(x_0, Y, \varepsilon, \Delta) - {}_q R_m(x_0, Y, \varepsilon, A(\varepsilon)). \end{aligned}$$

Starting with $m = 1$, the terms ${}_q R_1$ and ${}_q S_1$ are linear in δ with constant coefficients, according to (12) More precisely,

$$\begin{aligned} {}_q R_1(x_0, Y, \varepsilon, \Delta) - {}_q R_1(x_0, Y, \varepsilon, A(\varepsilon)) \\ = q(Y - \Delta - \varepsilon f_0) + \sum_{k=1}^{q-1} (q-k)(-\Delta - \varepsilon f_k) \end{aligned}$$

$$\begin{aligned}
& -q(y_0 - A(\varepsilon) - \varepsilon f_0) - \sum_{k=1}^{q-1} (q-k)(-A(\varepsilon) - \varepsilon f_k) \\
& = -q \Delta_r(x_0) \varepsilon^r - \sum_{k=1}^{q-1} (q-k) \Delta_r(x_0) \varepsilon^r + o(\varepsilon^r) \\
& = -\frac{q(q+1)}{2} \Delta_r(x_0) \varepsilon^r + o(\varepsilon^r).
\end{aligned}$$

To complete the proof of (19) it suffices to show that

$${}_q R_m(x_0, Y, \varepsilon, \Delta) - {}_q R_m(x_0, Y, \varepsilon, A(\varepsilon)) = \mathcal{O}(\varepsilon^{r+1}) \text{ for } m \geq 2. \quad (21)$$

By Lemma 1, ${}_q R_m(x_0, Y, \varepsilon, \delta)$ is a homogeneous polynomial of degree m in the items from the list $\{Y + g_0, g_1, \dots, g_{q-1}, g_k^{(l)}\}$ with $1 \leq l \leq m-1$, $0 \leq k \leq q-1$ and it contains at least one derivative $g_k^{(l)}$ for some $1 \leq l \leq m-1$, $0 \leq k \leq q-1$, thus contributing an extra factor of ε . Since $g(x_0; \varepsilon, \delta) = -\delta - \varepsilon f(x_0)$, replacing $\delta = \Delta = A + \Delta_r \varepsilon^r + o(\varepsilon^r)$ by $A(\varepsilon)$ changes ${}_q R_m$ by $\mathcal{O}(\varepsilon^r) \cdot \varepsilon = \mathcal{O}(\varepsilon^{r+1})$, thus completing the proof of (19). The proof of (20) is identical and therefore omitted.

Lemma 2. (Periodicity) *For all sufficiently small ε the leading x -dependent coefficient Δ_r in the expansion (18) of Δ is periodic in μ , and for any x we have*

$$\Delta_r(x + \mu) = \Delta_r(x).$$

Proof. We fix an initial point $(x_0, y_0 = Y(x_0, \varepsilon))$ and set $\delta = \Delta(x_0, \varepsilon)$ in the cylinder map (8) (and consequently $g(x_0; \varepsilon, \delta) = -\Delta(x_0) - \varepsilon f(x)$).

For future use we observe (dropping ε from the notation for the sake of brevity) that

$$Y(x_1) = y_1, \quad \Delta(x_1) = \Delta(x_0) \quad (22)$$

for all sufficiently small ε . Indeed, the orbit $(x_0, y_0 = Y(x_0)), (x_1, y_1), (x_2, y_2), \dots$ is q -periodic under the map with $\delta = \Delta(x_0, \varepsilon)$ by the definition of Y and Δ ; thus ${}_q R$ and ${}_q S$ vanish at any point of this orbit, and, in particular, at (x_1, y_1) ,

$${}_q R(x_1, y_1, \varepsilon, \Delta(x_0)) = {}_q S(x_1, y_1, \varepsilon, \Delta(x_0)) = 0. \quad (23)$$

On the other hand, by the definition of Y and Δ ,

$${}_q R(x_1, Y(x_1), \varepsilon, \Delta(x_1)) = {}_q S(x_1, Y(x_1), \varepsilon, \Delta(x_1)) = 0. \quad (24)$$

Provided that the conditions of the implicit function theorem in Section 5 are satisfied, the solution is unique, and thus comparison of (23) and (24) implies (22). The conditions of the implicit function theorem are satisfied if ε is restricted to be sufficiently small, and more precisely, that $|y_1| < \bar{\varepsilon}$. To thus end we note that

$$|y_1| = |Y(x_0) - \Delta(x_0) - \varepsilon f(x_0)| \leq c\varepsilon,$$

where c is a constant depending only on q and on $\max |f|$. It thus suffices to restrict ε to $\varepsilon < \bar{\varepsilon} := \min(\bar{\varepsilon}/c, \bar{\varepsilon})$, which we do from now on.

We now proceed with the rest of the proof. Recalling that $y_0 = Y(x_0)$ we have

$${}_q S(x, Y(x), \varepsilon, A(\varepsilon)) \Big|_{x=x_0}^{x=x_1} \stackrel{20}{=} q(\Delta_r(x_1) - \Delta_r(x_0))\varepsilon^r + o(\varepsilon^r). \quad (25)$$

Since $x_1 = x_0 + \mu + y_0 - \Delta(x_0) - \varepsilon f(x_0) = x_0 + \mu + O(\varepsilon)$, this implies

$$\begin{aligned} {}_q S(x_1, Y(x_1), \varepsilon, A(\varepsilon)) - {}_q S(x_0, y_0, \varepsilon, A(\varepsilon)) \\ = q(\Delta_r(x_0 + \mu) - \Delta_r(x_0))\varepsilon^r + o(\varepsilon^r). \end{aligned} \quad (26)$$

We now show that the left-hand side is $o(\varepsilon^r)$ (thus completing the proof of the lemma). Consider the orbit $(\tilde{x}_k, \tilde{y}_k)$ of the same initial point (x_0, y_0) but under the map with $\delta = A(\varepsilon)$ (instead of $\delta = \Delta(x_0)$). We will show that

$${}_q S(\tilde{x}_1, \tilde{y}_1, \varepsilon, A(\varepsilon)) - {}_q S(x_0, y_0, \varepsilon, A(\varepsilon)) = o(\varepsilon^r) \quad (27)$$

and

$${}_q S(x_1, Y(x_1), \varepsilon, A(\varepsilon)) - {}_q S(\tilde{x}_1, \tilde{y}_1, \varepsilon, A(\varepsilon)) = o(\varepsilon^r), \quad (28)$$

thus implying that the left-hand side of 25 is $o(\varepsilon^r)$. **Proof of (27)**. By (10) we have

$$\begin{aligned} {}_q S(\tilde{x}_1, \tilde{y}_1, \varepsilon, A(\varepsilon)) - {}_q S(x_0, y_0, \varepsilon, A(\varepsilon)) \\ = -qA(\varepsilon) - \varepsilon \sum_{k=0}^{q-1} f(\tilde{x}_k) + qA(\varepsilon) + \varepsilon \sum_{k=1}^q f(\tilde{x}_k) \\ = -\varepsilon(f(\tilde{x}_q) - f(x_0)). \end{aligned}$$

However

$$\tilde{x}_q \stackrel{9}{=} x_0 + 2p\pi + {}_q R(x_0, y_0, \varepsilon, A(\varepsilon)),$$

which together with (19), shows that the last difference in parentheses is $O(\varepsilon^r)$, thus implying 27.

Proof of (28). By Lemma 1,

$${}_q S(\tilde{x}_1, \tilde{y}_1, \varepsilon, A(\varepsilon)) = \sum_{m \geq 1} {}_q S_m(\tilde{x}_1, \tilde{y}_1, \varepsilon, A(\varepsilon))$$

and

$${}_q S(x_1, y_1, \varepsilon, A(\varepsilon)) = \sum_{m \geq 1} {}_q S_m(x_1, y_1, \varepsilon, A(\varepsilon)),$$

where ${}_q S_m(x, y, \varepsilon, A(\varepsilon))$ is a degree- m homogeneous polynomial in the items from the list $\{y - A(\varepsilon) - \varepsilon f(x), -A(\varepsilon) - \varepsilon f(x + k\mu), \varepsilon f^{(l)}(x + k\mu)\}$ with $0 \leq k \leq q-1$, $1 \leq l \leq m-1$. We will show that the corresponding terms in each sum differ by $o(\varepsilon^r)$. We have

$$\begin{aligned} x_1 &= x_0 + y_0 + \mu - \Delta(x_0) - \varepsilon f(x_0) \\ y_1 &= y_0 - \Delta(x_0) - \varepsilon f(x_0); \end{aligned}$$

and

$$\begin{aligned}\tilde{x}_1 &= x_0 + y_0 + \mu - A(\varepsilon) - \varepsilon f(x_0) \\ \tilde{y}_1 &= y_0 - A(\varepsilon) - \varepsilon f(x_0).\end{aligned}$$

Since $\Delta(x_0) = A(\varepsilon) + \Delta_r(x_0)\varepsilon^r + o(\varepsilon^r)$, this implies

$$\begin{aligned}\tilde{x}_1 - x_1 &= \Delta_r(x_0)\varepsilon^r + o(\varepsilon^r) \\ \tilde{y}_1 - y_1 &= \Delta_r(x_0)\varepsilon^r + o(\varepsilon^r) \\ f^{(l)}(\tilde{x}_1 + k\mu) - f^{(l)}(x_1 + k\mu) &= f^{(l+1)}(x_1 + k\mu)\Delta_r(x_0)\varepsilon^r + o(\varepsilon^r).\end{aligned}\tag{29}$$

This $O(\varepsilon^r)$ difference in x and y results in the $o(\varepsilon^r)$ difference in the terms ${}_q S_m$ as we now show. Starting with $m = 1$ we have

$$\begin{aligned}{}_q S_1(\tilde{x}_1, \tilde{y}_1, \varepsilon, A(\varepsilon)) - {}_q S_1(x_1, y_1, \varepsilon, A(\varepsilon)) \\ \stackrel{(12)}{=} -\varepsilon \sum_{k=0}^{q-1} (f(\tilde{x}_1 + k\mu) - f(x_1 + k\mu)) \\ = -\varepsilon \sum_{k=0}^{q-1} f'(x_1 + k\mu)\Delta_r(x_0)\varepsilon^r + o(\varepsilon^r) = o(\varepsilon^r).\end{aligned}$$

For $m \geq 2$, according to Lemma 1, each term in ${}_q S_m$ contains at least one derivative of $g(x; \varepsilon, A(\varepsilon)) = -A(\varepsilon) - \varepsilon f(x)$ for both ${}_q S_m(x_1, y_1, \varepsilon, A(\varepsilon))$ and ${}_q S_m(\tilde{x}_1, \tilde{y}_1, \varepsilon, A(\varepsilon))$, which contributes a factor of ε . This, together with (29), implies

$${}_q S_m(\tilde{x}_1, \tilde{y}_1, \varepsilon, A(\varepsilon)) - {}_q S_m(x_1, y_1, \varepsilon, A(\varepsilon)) = o(\varepsilon^r).$$

We showed that ${}_q S(x_1, y_1, \varepsilon, A(\varepsilon)) - {}_q S(\tilde{x}_1, \tilde{y}_1, \varepsilon, A(\varepsilon)) = o(\varepsilon^r)$. Since $y_1 = Y(x_1)$ this proves (28), thus completing the proof of the lemma. \square

7. End of Proof of the Main Theorem

In this last section we complete the proof of Theorem 1 using the results of the previous sections. The main idea, similar to [1], is to observe that if f is a trigonometric polynomial of degree d then Δ_r is a trigonometric polynomial of degree rd . Since Δ_r is nonconstant (by the definition) and periodic of period $2\pi p/q$, one must have $rd > q$, so that $r > [q/d]$. This would complete the proof of the theorem, since $\Delta(x, \varepsilon) = A(\varepsilon) + \Delta_r(x)\varepsilon^r + o(\varepsilon^r)$ implies that the range of δ for which p/q -periodic points exist is at most $O(\varepsilon^r)$ with $r > [q/d]$.

It remains therefore to show that Δ_r is indeed a trigonometric polynomial of degree at most rd . According to (20),

$$\varepsilon^r \Delta_r(x) = q^{-1} \sum_{m \geq 1} {}_q S_m(x, Y(x, \varepsilon), \varepsilon, A(\varepsilon)) + o(\varepsilon^r),$$

and we must show that the coefficient of ε^r in the above sum is a trigonometric polynomial of degree at most rd . According to Lemma 1, ${}_q S_m(x, Y(x), \varepsilon, A(\varepsilon))$ is homogeneous polynomial of degree m in the items from the list

$$\{Y(x) - A(\varepsilon) - \varepsilon f_0, -A(\varepsilon) - \varepsilon f_k, \varepsilon f_k^{(l)}\}, \quad (30)$$

with $0 \leq k \leq q-1$, $1 \leq l \leq m-1$, and thus only finitely many terms - namely the ones with $m \leq r$ - contribute to the coefficient of ε^r . According to Theorem 2 the coefficients Y_n in the expansion

$$Y(x) = Y_1(x)\varepsilon + Y_2(x)\varepsilon^2 + \dots$$

are n th degree polynomials in f , its shifts by μ , and its derivatives. The key point here is that the power of ε in $Y(x)$ is also the degree of the polynomial Y_k in f , its derivatives and shifts. In addition, ε enters with power 1 in the list (30) as a factor of every f and its derivatives and shifts (while $A(\varepsilon)$ has constant coefficients). This shows that the coefficient of ε^r is a polynomial of degree at most r in f , its derivatives and shifts. Moreover, this coefficient is a finite sum, since only finitely many terms ($m \leq r$) contribute to it. Finally, since f is a trigonometric polynomial of degree d , it follows that the coefficient of ε^r is a trigonometric polynomial of degree at most rd , as claimed.

This completes the proof of Theorem 1.

Funding Research partially supported by DMS-1909200.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other right-holder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

References

1. ARNOLD, V.I.: Remarks on the perturbation theory for problems of Mathieu type. *Russ. Math. Surv.* **38**(4), 215–233, 1983
2. ARNOLD, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations, vol. 250, second edn. Springer, New York (1988)
3. ARNOLD, V.I.: Mathematical Methods of Classical Mechanics, second edition. Springer, New York (1989)
4. AUBRY, S.: The twist map, the extended Frenkel-Kontorova model and the devil's staircase. *Phys. D*, **7**(1–3):240–258, 1983. Order in chaos (Los Alamos, N.M.,) (1982)
5. BIRKHOFF, G.D.: Proof of Poincaré's geometric theorem. *Trans. Am. Math. Soc.* **14**(1), 14–22, 1913
6. BRAUN, O.M., KIVSHAR, Y.S.: The Frenkel-Kontorova Model: Concepts, Methods, and Applications, first edition. Springer, Berlin (2004)

7. FRANKS, J.: Generalizations of the Poincaré-Birkhoff theorem. *Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II* **128**, 139–151, 1988
8. JOSEPHSON, B.D.: Possible new effects in superconductive tunnelling. *Phys. Lett.* **1**(7), 251–253, 1962
9. LEVI, M.: Dynamics of discrete Frenkel-Kontorova models. In: *Analysis, pp. 471–494. et cetera*. Academic Press, Boston, MA (1990)
10. LEVI, M., SAADATPOUR, A.: Traveling waves in chains of pendula. *Phys. D* **244**, 68–73, 2013
11. LEVY, D.M., KELLER, J.B.: Instability intervals of Hill's equation. *Comm. Pure Appl. Math.* **16**, 469–476, 1963
12. MATHER, J.N.: Existence of quasi-periodic orbits for twist homeomorphisms of the annulus. *Topology* **21**(4), 457–467, 1982
13. MATHER, J.N.: Action minimizing invariant measures for positive definite Lagrangian systems. *Math. Z.* **207**(2), 169–207, 1991
14. MOSER, J.: On invariant curves of area-preserving mappings of an annulus. *Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II*, **1962**:1–20 (1962)
15. POINCARÉ, H.: Sur un théorème de géométrie. *Rendiconti del Circolo matematico di Palermo* **33**(1), 375–407, 1912

MARK LEVI · JING ZHOU
Department of Mathematics,
Penn State University,
State College
PA
USA.
e-mail: mxl48@psu.edu
e-mail: jingzhou@psu.edu

(Received June 21, 2022 / Accepted March 20, 2023)

Published online April 3, 2023

© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE, part of Springer Nature (2023)