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Abstract

In the early 60’s J. B. Keller and D. Levy discovered a fundamental property:
the instability tongues in Mathieu-type equations lose sharpness with the addition
of higher-frequency harmonics in the Mathieu potentials. Twenty years later, V.
Arnold discovered a similar phenomenon on the sharpness of Arnold tongues in
circle maps (and rediscovered the result of Keller and Levy). In this paper we find
a third class of object where a similar type of behavior takes place: area-preserving
maps of the cylinder. loosely speaking, we show that periodic orbits of standard
maps are extra fragile with respect to added drift (i.e. non-exactness) if the potential
of themap is a trigonometric polynomial. That is, higher-frequency harmonicsmake
periodic orbits more robust with respect to “drift". This observation was motivated
by the study of traveling waves in the discretized sine-Gordon equation which in
turn models a wide variety of physical systems.

1. Introduction

Understanding invariant sets of area-preserving maps is one of the central prob-
lems of dynamics and one of the most studied—starting with Poincaré’s geometri-
cal theorem [5,7,15], through KAM theory [2,3,14] and the Aubry-Mather theory
[4,12,13]. All of the results require the exactness assumption.

Much less is known about area-preserving maps which are non-exact, such as
the maps ϕ of the cylinder S × R with a “drift":

∫
ϕ(γ )

v dx −
∫

γ

v dx = δ �= 0 (1)

Here γ is a closed curve encircling the cylinder Rmod1 × R once; see Fig. 1.
Such maps are ubiquitous in Hamiltonian dynamics,and arise in numerous set-

tings. We mention four examples.
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Fig. 1. Non-exact area-preserving cylinder map with δ > 0

1. The Frenkel–Kontorova model of electrons in a crystal lattice [6,9]. The
model consists of an infinite chain of particles on the line a periodic potential V (x)

and with nearest neighbor coupling. The equilibria are the critical points of the total
energy

∑
i∈Z

k

2
(xi+1 − xi )

2 + V (xi );

although the sum is divergent, the variational equation, i.e. the equilibrium condi-
tion

xi+1 − 2xi + xi−1 + k−1V ′(xi ), (2)

is well defined. This discrete analog of the Euler-Lagrange equation has a Hamil-
tonian counterpart obtained by the introduction of the discrete momentum vi =
xi − xi−1:

{
xi+1 = xi + vi − V ′(xi )

vi+1 = vi − V ′(xi )
, (3)

Used it an area-preserving map.
If V ′ is periodic, then (3) defines a cylinder map. However a periodic V ′ leaves

the possibility that V itself may have a “tilt", i.e. a linear part

V (x) = a x + Vperiodic(x),

where Vperiodic(x + T ) = Vperiodic(x) for some fixed T .
The tilt causes themap (3) to be non-exact; (1) holds for this mapwith δ = −aT

(Fig. 2).
2. Chains of coupled pendula. In the special case ofV (x) = c sin x , the Frenkel–

Kontorovamodel has amechanical interpretation as the chain of torsionally coupled
pendula (Fig. 3); here xi denotes the angle of the i th pendulum with the downward
vertical. Now if each pendulum is subjected to a constant torque τ then the potential
acquires a linear part: V (x) = c sin x + τ x , and the corresponding cylinder map
becomes non-exact, with δ = −2πτ .

3. Coupled Josephson junctions. A Josephson junction consists of two super-
conductors separated by a narrow gap of a few angstroms [8]. The junction can
behave as a superconductor or as a resistor, depending on the initial conditions



Arch. Rational Mech. Anal. (2023) 247:32 Page 3 of 18 32

Fig. 2. A the Frenkel–Kontorova model; B the tilt added, leading to the non-exact cylinder
map; C tilt interpreted as torque acting on coupled pendula

Fig. 3. Discretized sine-Gordon equation: pendula with nearest-neighbor torsional coupling

Fig. 4. Josephson junctions: single and coupled. Voltage across the junction is proportional
to 〈ẋ〉

(there were some hopes in the 1970s to use this property as a memory device). This
behavior reminds one of a pendulum with torque δ described by

ẍ + cẋ + sin x = δ (4)

For the |δ| < 1 there are two stable limiting regimes: either the stable equilibrium or
the “running" periodic solution corresponding to the tumblingmotion x = ωt+p(t)
where p is periodic. In fact the same equation (4) is satisfied by the jump x =
arg θ2 − arg θ1 of the phase of the electron wave function across the gap if current
δ is driven across the gap, Fig. 4. The voltage across the gap is proportional to
the average 〈ẋ〉, or the average angular velocity in the pendulum interpretation.
Thus the equilibrium solution with its average 〈ẋ〉 = 0 corresponds to zero voltage
and thus to the superconducting state, while the tumbling solution with the voltage
〈ẋ〉 �= 0 corresponds to the resistive state.
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4. Particle in R subject to a force that varies periodically both in time and
position. The motion of such a particle is governed by

ẍ = 	(x, t),

where 	 is periodic in both variables of period 1 (without loss of generality). The
Poincaré map ϕ : (x, y)t=0 �→ (x, y)t=1, where y = ẋ , is generally non-exact,
satisfying (1) with the drift equal to the average of force 	:

δ =
∫ 1

0

∫ 1

0
	(x, t) dx dt = 〈	〉.

This completes our list of examples where non-exact area-preserving cylinder
maps aries. In this paper we show that periodic orbits of the standard map (3)
are extra sensitive to the added drift δ if the potential has harmonics of only low
frequencies. There are (at least) two known phenomena with a similar flavor: (i)
the sharpness of Arnold tongues in circle maps [1]

x �→ x + ω + ε f (x),

where f is a trigonometric polynomial is related to the degree of f , and (ii), the
sharpness of resonance zones in Hill’s equations

ẍ + (ω2 + εq(t))x = 0,

where q is a trigonometric polynomial is related to the degree of q [11]. The
present paper adds one more example to this list. According to Arnold [1], Gelfand
conjectured the existence of a general theorem which covers cases (i) and (ii); to
this conjecture one can add the problem studied in the present paper.

2. Results

We consider periodic potentials with a linear part added:

V (x) = δ x + εF(x), F(x + 2π) = F(x).

Thus the standard map (3) with such V takes form
{

xi+1 = xi + vi − δ − ε f (xi )

vi+1 = vi − δ − ε f (xi )
, (5)

where f (x) = F ′(x) is periodic of period 2π .
For δ = 0 the cylinder map (5) is exact, and it possesses a p/q periodic orbit

for any integer p, q �= 0, i.e. an orbit satisfying

xi+q = xi + 2pπ, vi+q = vi ;
this follows from Poincaré’s Last Geometric Theorem as generalized by Franks [7].
In his generalization Franks removed the requirement of invariant boundary circles
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Fig. 5. Left: Arnold tongue for theBirkhoff periodic pointwith the rotation numberμ = p/q
is exponentially narrow for trigonometric polynomials. Right: for Diophantine μ one has an
invariant KAM curve only for the drift δ = 0, i.e. the tongue has zero width

of an annulus, replacing it with the assumption of exactness. Since the theorem no
longer applies to the non-exact case δ �= 0, a natural question arises: for what range
of drift δ do periodic orbits persist?We show that if V is a trigonometric polynomial,
then this range becomes narrower if the degree of the trigonometric polynomial f
becomes smaller; furthermore, the tightness of the range is exponentially small in
terms of the period q (Fig. 5). More precisely, one has the following:

Theorem 1. (Width of Arnold tongues) Let f (x) in (5) be a trigonometric polyno-
mial of degree d, and let p ≥ 0, q > 0 be integers. There exist positive constants
ε and c depending only on q and f , such that for any 0 < ε < ε, all p/q periodic
orbits of (5) disappear if the drift |δ| > cε[q/d]; here [·] denotes the integer part.

The other observation of this paper is that the p/q periodic points move on
special curves as δ changes.

Theorem 2. Let p > 0, q > 0 be integers. If the perturbation term f (x) in the
cylinder map (5) is a 2π -periodic analytic function (not necessarily a trigonometric
polynomial), then there exists a positive constant ε depending only on q and f such
that for any |ε| < ε and |δ| < ε, any p/q periodic orbit of the perturbed map (5),
if it exists, lies on the graph of the function

v = μ + v1(x)ε + v2(x)ε2 + · · ·
where μ = 2πp/q and vn(x) is an nth degree polynomial in f (x + kμ) (0 ≤ k ≤
q − 1) and their derivatives up to order n − 1. In particular,

v1(x) = −q + 1

2
f (x) + f (x),

where

f (x) = 1

q

q−1∑
k=0

f (x + kμ) ,

f (x) = 1

q

q−1∑
k=0

(q − k) f (x + kμ) .
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Fig. 6. Iterates of two periodic points (a center and a saddle). The arrows show the direction
of motion of the iterates as δ increases. The two orbits disappear in a saddle-node bifurcation.
As δ changes, these points move with large speed (at least) O(ε−[q/d]) (at bifurcation the
speed becomes infinite)

Remark 1. If f is a trigonometric polynomial, then f and f are trigonometric
polynomials as well, of a degree not exceeding the degree d of f . Moreover, if
d < q, then f = 0.

Remark 2. Birkhoff p/q periodic orbits come in saddle-center pairs. As δ increases
from 0 to a critical value, a pair disappears in a saddle-node bifurcation, Fig. 6. The
first theorem therefore states that critical values of δ are O(ε[q/d]).

Remark 3. A special case of Theorem 1 for q ≤ 3 was proven in [10] by a direct
calculation. Unfortunately, as q increases, the complexity of this calculation tends
to infinity. We overcome this problem by extending Arnold’s approach [1] (that he
used for circle maps) to the maps of the cylinder.

Remark 4. (An implication of Theorem 1 for traveling waves.) Consider an infinite
periodic chain of pendula governed by the discretized sine-Gordon equation with
damping:

ẍk + γ ẋk + ε sin xk = (xk+1 − 2xk + xk−1) + δ. (6)

Fixing q ∈ N and the “twist" p ∈ Z, consider space-periodic “twisted" solutions,
i.e. the ones satisfying

xk+q(t) = xk(t) + 2πp for all t. (7)

According to [10] there exists a constant ε0 = ε0(γ ) depending only on the damping
coefficient γ > 0 such that for all ε ∈ (0, ε0) and for all δ every solution approaches
asymptotically either to an equilibrium or to a traveling wave. This wave satisfies

xk(t) = xk−1(t + T/q),

(that is, each pendulum repeats what its neighbor is doing but with a delay). A
q-fold application of this identity gives

xk(t) = xk−q(t + T )
(7)= xk(t + T ) − 2πp,

i.e.

xk(t + T ) = xk(t) + 2πp,
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so that this solution is periodic modulo rotation xk �→ xk + 2πp (k = 1, . . . , q) in
S = R mod 2π . Now, according to Theorem 1 the equilibria of (6) disappear if
δ > c0εq (a threshhold exponentially small in the number of pendula), and thus (6)
has a globally attracting periodic traveling wave for all such δ. This traveling wave
appears as the result of a saddle-node bifurcation of the equilibria which exist for
smaller δ.

A remarkable fragility of equilibria is illustrated in Fig. 2(C), where shows an
equilibriumofq = 6 coupledpendulawith the same torque applied to each.With the
choice of “gravity” ε = 1

2 the pendula sag by a comparable amount and one might
expect that the equilibrium could withstand the torque of a comparable magnitude.
However, the equilibrium (and hence the corresponding periodic orbit of the map)
disappears for δ > 0.0027, about .05% of the “gravity" ε! Sinusoidal potentials are
thus quite special: they are remarkably bad at pinning down the equilibria.

The effect of non-exactness on the dynamics of the map is of interest in itself;
its understanding would also shed light on physical effects, such as the fragility of
Frenkel–Kontorova equilibria in crystals to imposed voltages.

3. The Preliminaries

The cylinder map (5) with ε = δ = 0 has an invariant circle v = 2πp/q
def= μ

consisting of p/q periodic points. This suggests introducing a shifted momentum

y := v − μ

with which the cylinder map (5) takes a new form,
{

xi+1 = xi + yi + μ + g(xi ; ε, δ)

yi+1 = yi + g(xi ; ε, δ),
(8)

where

g(x; ε, δ) := −δ − ε f (x),

and where f (x) is a 2π -periodic analytic function as in Theorem 2.
This map (8) restricted to a neighborhood of the circle y = 0 can be viewed

as a perturbation of the shift by μ in the x direction; the nth iterate will thus be a
perturbation of the shift by nμ in the x-direction. This suggests writing the n-th
iterate of (8) in the form

{
xn = x0 + nμ + n R(x0, y0, ε, δ)

yn = y0 + n S(x0, y0, ε, δ).
(9)

A quick calculation shows that

n R(x0, y0, ε, δ) = n (y0 + g(x0)) + (n − 1)g(x1) + · · · + 2g(xn−2) + g(xn−1)

n S(x0, y0, ε, δ) = g(x0) + g(x1) + · · · + g(xn−2) + g(xn−1),
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(10)

where {x0, x1, . . . , xn−1} are the x-coordinates of the iterates of (x0, y0) under the
cylinder map (8).
The cylinder map (8) possesses a p/q periodic orbit, xq = x0 + 2πp︸︷︷︸

qμ

, yq = y0, if

and only if for some (x0, y0) the remainders of the q-th iterate vanish:

q R(x0, y0, ε, δ) = q S(x0, y0, ε, δ) = 0. (11)

The overall plan of the proof of Theorem 1 (the main result) is as follows:
The vanishing of the remainders (11) defines y0 and δ as functions of x0 and δ:
y0 = Y (x0, ε), δ = �(x0, ε) Proving prove the narrowness of the Arnold tongue
(as specified in Theorem 1) amounts to showing that the range �(R, ε) is O(εr )–
small, where r = [q/d]. The proof of this narrow range statement goes as follows:
expanding� in powers of ε we consider the first x0–dependent term�r (x0)εr . Our
goal is to show that r > [q/d]. To that end, we prove (i) that �r (x0) is periodic of
periodμ, and (ii), that�r (x0) is a trigonometric polynomial of degree rd. However
a non-constant trigonometric polynomial periodic of periodμ = 2πp/q must have
degree > q, i.e. rd > q, or r > [q/d], as desired.

4. Structure of the Remainders

In this section we examine the n-th iterate of the cylinder map (8) for any n ∈ N

and the associated remainders.
For brevity, we write g(x) = g(x; ε, δ) and g′(x) = ∂

∂x g(x; ε, δ) = −ε f ′(x)

(recall that g(x; ε, δ) := −δ − ε f (x)), and also

g(r)
k := g(r)(x0 + kμ), g(0)

k = g(x0 + kμ) = gk;
f (r)
k := f (r)(x0 + kμ), f (0)

k = f (x0 + kμ) = fk .

The followed lemma gives the structure of the remainders for any iterate of the
cylinder map (8).

Lemma 1. The remainders n R and n S are a convergent series

n R = n R1 + n R2 + · · ·
n S = n S1 + n S2 + · · · ,

where n Rm and n Sm are homogeneous polynomials of degree m in terms of the
items in the list {y0 + g0, g(l)

k (0 ≤ k ≤ n − 1, 0 ≤ l ≤ m − 1)}. The two
series converge for all x0, y0, ε, δ. Moreover, each term of degree m ≥ 2 contains
at least one derivative of g (so that, with g = −δ − ε f (x) these terms are O(ε)).
In particular,

n R1 = n(y0 + g0) + (n − 1)g1 + (n − 2)g2 + · · · + gn−1,

n S1 = g0 + g1 + · · · + gn−1.
(12)
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Proof. goes by induction on n. The statement is trivially true for n = 1, and we
show that if the remainders n R and n S are of the form claimed in the Lemma then
the same is true for n + 1. Indeed,

xn+1 = xn + yn + μ + g(xn)
(9)= x0 + (n + 1)μ + n R + n S + g(xn)︸ ︷︷ ︸

n+1R

.

Thanks to the inductive assumption, it only remains to show that g(xn) is of the
form claimed. Taylor expansion yields

g(xn) = g(x0 + nμ + n R) = gn +
∑
k≥1

1

k!g(k)
n · (n R)k = gn +

∑
k≥1

1

k!g(k)
n ·

⎛
⎝∑

j≥1

n R j

⎞
⎠

k

. (13)

Now mth degree part of (13) is a linear combination (with constant coefficients) of
products

g(k)
n n R j1 · · · n R jr ,

with j1 + · · · + jr = m − 1, and is thus a homogeneous polynomial of degree m
as claimed. Furthermore, every term with m ≥ 2 comes from the series in (13) and
thus contains a derivative of g.

The claim about n+1S is proven similarly:

yn+1 = yn + g(xn)
(9)= y0 + n S + g(xn)︸ ︷︷ ︸

n+1S

.

The rest of the proof is identical to the one above. This completes the proof of
Lemma 1. ��

Remark 5. As an illustration of the lemma, a short computation gives an explicit
form of the degree-2 terms:

n R2 = (n − 2)g′
1 · (y0 + g0) + (n − 3)g′

2 · (2(y0 + g0) + g1) + · · ·
+ g′

n−1 · ((n − 1)(y0 + g0) + (n − 2)g1 + · · · + gn−2)

n S2 = g′
1 · (y0 + g0) + g′

2 · (2(y0 + g0) + g1) + · · ·
+ g′

n−1 · ((n − 1)(y0 + g0) + (n − 2)g1 + · · · + gn−2).

Each term in n R2, n S2 contains the first derivative of g at some shift x0 + kμ.
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5. The Existence of Periodic Orbits

In this section we discuss the existence of the p/q periodic orbits of the cylinder
map (5) using Implicit Function Theorem and then we prove Theorem 2.
We begin by showing that the equations

q R(x, y, ε, δ) = q S(x, y, ε, δ) = 0

uniquely determine δ and y as functions of x and ε for all x ∈ R and for all |ε| < ε

for some positive ε,

{
δ = �(x, ε)

y = Y (x, ε),
(14)

such that q R and q S vanish identically if (14) hold.
Wishing to apply the implicit function theorem, we note that q R(x0, 0, 0, 0) =

q S(x0, 0, 0, 0) = 0 for all x ∈ R and that, using Lemma 1,

∂(q R, q S)

∂(δ, y0)

∣∣∣∣
y=ε=δ=0

=
(

−q(q + 1)

2
q

−q 0

)

for all x . Since the determinant is q2 �= 0, the implicit function theorem applies: for
any x0 there exists an open disk Dx0 centered at the point (x0, 0) in the (x, ε)-plane
such that the implicit function (x, ε) �→ (δ, y) iswell defined by the equations q R =
q S = 0 on the disk Dx0 . The segment [0, 2π ]×{0} in the (x, ε)-plane is covered by
open disks and thus has a finite subcover; but then this finite union contains a strip
nonzero width ε > 0 around the x–axis. Moreover, the functions corresponding
to the overlapping disks coincide. Thus the implicit function (x, ε) �→ (�, Y ) is
defined for all x and for all |ε| < ε.

Proof of Theorem 2. The proof proceeds by induction. If (x0, y0) is a p/q-periodic
point of the map (5) for some δ, then (14) holds Proving the theorem thus amounts
to showing that the coefficients in the expansion of Y (x0, ε) in powers of ε are
polynomials in fk and its derivatives up to order k − 1. We fix ε < ε so that � and
Y are well-defined. As the first step in induction we show that �1 and Y1 in the
expansions

�(x0) = �1(x0)ε + o(ε),

Y (x0) = Y1(x0)ε + o(ε)

are polynomials of degree 1 (i.e. linear) in fk , where 0 ≤ k ≤ q − 1.
Indeed, by Lemma 1,

q S(x0, Y, ε,�) =
∑
m≥1

q Sm(x0, Y, ε,�),
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where, by (12), the linear term is

q S1(x0, Y, ε,�) = −q� − εq f (x0) with f (x0) = 1

q

q−1∑
k=0

fk,

while each higher-degree term q Sm (m ≥ 2) is a homogeneous polynomial of

degree m in the items from the list {Y − � − ε f0, −� − ε fk, ε f (l)
k } with 0 ≤ k ≤

q − 1, 0 ≤ l ≤ m − 1 and thus is of order O(ε2) since �, Y ∼ O(ε), so that

q S(x0, Y, ε,�) = −q� − εq f (x0) + o(ε).

Since the above expression vanishes by the definition of Y,�, we conclude that

� = −ε f (x0) + o(ε), (15)

so that the leading coefficient of ε is

�1(x0) = − f (x0).

Similarly, by Lemma 1, we have

q R(x0, Y, ε,�) =
∑
m≥1

q Rm(x0, Y, ε,�),

where

q R1(x0, Y, ε,�)
(12)= qY − q(q + 1)

2
� − ε

q−1∑
k=0

(q − k) fk,

while each higher-degree term q Rm (m ≥ 2) is a degree-m homogeneous poly-

nomial in the items from the list {Y − � − ε f0, −� − ε fk, ε f (l)
k }, where

0 ≤ k ≤ q − 1, 0 ≤ l ≤ m − 1; and since Y,� ∼ O(ε) all q Rm with m ≥ 2 are
at most O(ε2), so that

q R(x0, Y, ε,�)︸ ︷︷ ︸
=0

= qY − q(q + 1)

2
� − ε

q−1∑
k=0

(q − k) fk + o(ε).

Substituting into this we obtain that Y (x0, ε) = Y1(x0)ε +o(ε), and (15) results in

Y1(x0) = −q + 1

2
f (x0) + f (x0),

where f (x0) = 1

q

q−1∑
k=0

(q − k) fk .

This completes the first step of induction. To carry out the nth inductive step, let
n > 1 and assume that in the expansion

�(x0) = �1(x0)ε + · · · + �n(x0)ε
n + · · · ,

Y (x0) = Y1(x0)ε + · · · + Yn(x0)ε
n + · · · ,

(16)
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each �m(x0) and Ym(x0) with m ≤ n is a polynomial of degree m in f (l)
k with

0 ≤ k ≤ q − 1, 0 ≤ l ≤ m − 1. Our goal is show that then the coefficients �n+1

and Yn+1 are polynomials of degree n + 1 in f (l)
k with 0 ≤ k ≤ q − 1, 0 ≤ l ≤ n.

Just as in the first step, we obtain �n+1 by extracting the coefficient of εn+1 in
q S:

0 = q S(x0, Y, ε,�) = q S1(x0, Y, ε,�) +
n+1∑
m≥2

q Sm(x0, Y, ε,�)

+
∑

m>n+1

q Sm(x0, Y, ε,�).

For m > n + 1, q Sm(x0, Y, ε,�) ∼ o(εn+1), and hence the last sum does not
contribute powers of degree n + 1. On the other hand, since

q S1(x0, Y, ε,�) = −q� − εq f (x0),

q S1 contributes −q�n+1(x0)εn+1, a constant multiple of �n+1. It thus suffices to
show that the terms in the middle sum are polynomials of degree up to n + 1 in
terms of f (l)

k with 0 ≤ k ≤ q − 1, 0 ≤ l ≤ n.
For each m ∈ [2, n + 1], q Sm(x0, Y, ε,�) is a degree-m homogeneous poly-

nomial in the items from the list {Y − � − ε f0, −� − ε fk, ε f (l)
k } with 0 ≤ k ≤

q − 1, 0 ≤ l ≤ m − 1. Thus by the inductive assumption, the coefficient of εn+1

in q Sm (2 ≤ m ≤ n + 1) is a linear combination of the terms

(Yiε
i )mi (� jε

j )m j ( f (l)
k ε)ms

with imi + jm j + ms = n + 1, 0 ≤ l ≤ m − 1.
Since, by Lemma 1, each higher-degree term q Sm (m ≥ 2) has at least one

derivative of g, it follows that ms ≥ 1 and consequently i, j ≤ n, so that the
inductive assumption applies to Yi and� j above. Thus Yi is a polynomial of degree

i in f (l)
k with 0 ≤ k ≤ q − 1 with 0 ≤ l ≤ i − 1, and similarly, � j is a polynomial

of degree j with 0 ≤ k ≤ q − 1, 0 ≤ l ≤ j − 1. Therefore (Yi )
mi (� j )

m j ( f (l)
k )ms

is a polynomial of degree n + 1 in f (l)
k with 0 ≤ k ≤ q − 1, 0 ≤ l ≤ n. This

completes the inductive step for �n+1. The step for Yn+1 is carried out in the same
way, and we have

0 = q R(x0, Y, ε,�) = q R1(x0, Y, ε,�) +
n+1∑
m≥2

q Rm(x0, Y, ε,�)

+
∑

m>n+1

q Rm(x0, Y, ε,�).

Just as before, the last sum does not contribute to the coefficient of εn+1. The first
term

q R1(x0, Y, ε,�) = qY − q(q + 1)

2
� − εq f (x0)
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contributes (
qYn+1 − q(q + 1)

2
�n+1

)
εn+1. (17)

The coefficients of εn+1 in the middle sum are polynomials of degree at most n +1
in terms of f , its shifts and its derivatives up to order n, precisely as we proved
before when treating �n+1. This shows that the coefficient in (17) is a polynomial
of degree at most n + 1 in terms of f , its shifts and its derivatives up to order n.
Since the same is true for �n+1, this holds for Yn+1 as well, thus completing the
induction step and the proof of Theorem 2. ��

6. The Periodicity Lemma

In this section we show that the leading x-dependent coefficient in the ε-
expansion of �(x, ε) is periodic of period μ. This fact plays a key role in the
proof of Theorem 1. Before proving this periodicity we show that this leading co-
efficient is also the leading term up to a constant factor in q R and q S as well, where
is another crucial fact.

Let r ≥ 1 be the smallest power of ε where x first appears in the coefficient of
the expansion of � in powers of ε so that

�(x0, ε) = A(ε) + �r (x0)ε
r + o(εr ), (18)

where A(ε) is a polynomial in ε of degree at most r − 1 with constant coefficients.
We claim that replacing � with its constant part A(ε) in q R(x0, Y, ε,�) = 0 and
q S(x0, Y, ε,�) = 0 changes these from 0 by the amount proportional to �r (x0) in
the leading order:

q R(x0, Y, ε, A(ε)) = q(q + 1)

2
�r (x0)ε

r + o(εr ) (19)

and

q S(x0, Y, ε, A(ε)) = q�r (x0)ε
r + o(εr ). (20)

Here Y = Y (x0, ε). Indeed, by Lemma 1, we have

q R(x0, Y, ε,�) − q R(x0, Y, ε, A(ε))

=
∑
m≥1

q Rm(x0, Y, ε,�) − q Rm(x0, Y, ε, A(ε)).

Starting with m = 1, the terms q R1 and q S1 are linear in δ with constant
coefficients, according to (12) More precisely,

q R1(x0, Y, ε,�) − q R1(x0, Y, ε, A(ε))

= q(Y − � − ε f0) +
q−1∑
k=1

(q − k)(−� − ε fk)
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− q(y0 − A(ε) − ε f0) −
q−1∑
k=1

(q − k)(−A(ε) − ε fk)

= −q�r (x0)ε
r −

q−1∑
k=1

(q − k)�r (x0)ε
r + o(εr )

= −q(q + 1)

2
�r (x0)ε

r + o(εr ).

To complete the proof of (19) it suffices to show that

q Rm(x0, Y, ε,�) − q Rm(x0, Y, ε, A(ε)) = O(εr+1) for m ≥ 2. (21)

By Lemma 1, q Rm(x0, Y, ε, δ) is a homogeneous polynomial of degree m in the

items from the list {Y +g0, g1, . . . , gq−1, g(l)
k }with 1 ≤ l ≤ m −1, 0 ≤ k ≤ q −1

and it contains at least one derivative g(l)
k for some 1 ≤ l ≤ m −1, 0 ≤ k ≤ q −1,

thus contributing an extra factor of ε. Since g(x0; ε, δ) = −δ − ε f (x0), replacing
δ = � = A + �rε

r + o(εr ) by A(ε) changes q Rm by O(εr ) · ε = O(εr+1), thus
completing the proof of (19). The proof of (20) is identical and therefore omitted.

Lemma 2. (Periodicity) For all sufficiently small ε the leading x-dependent coef-
ficient �r in the expansion (18) of � is periodic in μ, and for any x we have

�r (x + μ) = �r (x).

Proof. We fix an initial point (x0, y0 = Y (x0, ε)) and set δ = �(x0, ε) in the
cylinder map (8) (and consequently g(x0; ε, δ) = −�(x0) − ε f (x)).

For future use we observe (dropping ε from the notation for the sake of brevity)
that

Y (x1) = y1, �(x1) = �(x0) (22)

for all sufficiently small ε. Indeed, the orbit (x0, y0 = Y (x0)), (x1, y1), (x2, y2), . . .
is q-periodic under the map with δ = �(x0, ε) by the definition of Y and �; thus
q R and q S vanish at any point of this orbit, and, in particular, at (x1, y1),

q R(x1, y1, ε,�(x0)) = q S(x1, y1, ε,�(x0)) = 0. (23)

On the other hand, by the definition of Y and �,

q R(x1, Y (x1), ε,�(x1)) = q S(x1, Y (x1), ε,�(x1)) = 0. (24)

Provided that the conditions of the implicit function theorem in Section 5 are sat-
isfied, the solution is unique, and thus comparison of (23) and (24) implies (22).
The conditions of the implicit function theorem are satisfied if ε is restricted to be
sufficiently small, and more precisely, that |y1| < ε. To thus end we note that

|y1| = |Y (x0) − �(x0) − ε f (x0)| ≤ cε,

where c is a constant depending only on q and on max | f |. It thus suffices to restrict
ε to ε < ε̄ := min(ε/c, ε), which we do from now on.
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We now proceed with the rest of the proof. Recalling that y0 = Y (x0) we have

q S(x, Y (x), ε, A(ε))

∣∣∣∣
x=x1

x=x0

20= q(�r (x1) − �r (x0))ε
r + o(εr ). (25)

Since x1 = x0 + μ + y0 − �(x0) − ε f (x0) = x0 + μ + O(ε), this implies

q S(x1, Y (x1), ε, A(ε)) − q S(x0, y0, ε, A(ε))

= q(�r (x0 + μ) − �r (x0))ε
r + o(εr ). (26)

We now show that the left-hand side is o(εr ) (thus completing the proof of the
lemma). Consider the orbit (x̃k, ỹk) of the same initial point (x0, y0) but under the
map with δ = A(ε) (instead of δ = �(x0)). We will show that

q S(x̃1, ỹ1, ε, A(ε)) − q S(x0, y0, ε, A(ε)) = o(εr ) (27)

and

q S(x1, Y (x1), ε, A(ε)) − q S(x̃1, ỹ1, ε, A(ε)) = o(εr ), (28)

thus implying that the left-hand side of 25 is o(εr ). Proof of (27). By (10) we have

q S(x̃1, ỹ1, ε, A(ε)) − q S(x0, y0, ε, A(ε))

= −q A(ε) − ε

q−1∑
k=0

f (x̃k) + q A(ε) + ε

q∑
k=1

f (x̃k)

= −ε( f (x̃q) − f (x0)).

However

x̃q
(9)= x0 + 2pπ + q R (x0, y0, ε, A(ε)) ,

which together with (19), shows that the last difference in parentheses is O(εr ),
thus implying 27.
Proof of (28). By Lemma 1,

q S(x̃1, ỹ1, ε, A(ε)) =
∑
m≥1

q Sm(x̃1, ỹ1, ε, A(ε))

and

q S(x1, y1, ε, A(ε)) =
∑
m≥1

q Sm(x1, y1, ε, A(ε)),

where q Sm(x, y, ε, A(ε)) is a degree-m homogeneous polynomial in the items
from the list {y − A(ε) − ε f (x), −A(ε) − ε f (x + kμ), ε f (l)( x + kμ) } with
0 ≤ k ≤ q −1, 1 ≤ l ≤ m −1. We will show that the corresponding terms in each
sum differ by o(εr ). We have

x1 = x0 + y0 + μ − �(x0) − ε f (x0)

y1 = y0 − �(x0) − ε f (x0);
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and

x̃1 = x0 + y0 + μ − A(ε) − ε f (x0)

ỹ1 = y0 − A(ε) − ε f (x0).

Since �(x0) = A(ε) + �r (x0)εr + o(εr ), this implies

x̃1 − x1 = �r (x0)ε
r + o(εr )

ỹ1 − y1 = �r (x0)ε
r + o(εr )

f (l)(x̃1 + kμ) − f (l)(x1 + kμ) = f (l+1)(x1 + kμ)�r (x0)ε
r + o(εr ).

(29)

This O(εr ) difference in x and y results in the o(εr ) difference in the terms q Sm as
we now show. Starting with m = 1 we have

q S1(x̃1, ỹ1, ε, A(ε)) − q S1(x1, y1, ε, A(ε))

(12)= −ε

q−1∑
k=0

( f (x̃1 + kμ) − f (x1 + kμ))

= −ε

q−1∑
k=0

f ′(x1 + kμ)�r (x0)ε
r + o(εr ) = o(εr ).

For m ≥ 2, according to Lemma 1, each term in q Sm contains at least one
derivative of g(x; ε, A(ε)) = −A(ε) − ε f (x) for both q Sm(x1, y1, ε, A(ε)) and
q Sm(x̃1, ỹ1, ε, A(ε)), which contributes a factor of ε. This, together with (29), im-
plies

q Sm(x̃1, ỹ1, ε, A(ε)) − q Sm(x1, y1, ε, A(ε)) = o(εr ).

We showed that q S(x1, y1, ε, A(ε)) − q S(x̃1, ỹ1, ε, A(ε)) = o(εr ). Since y1 =
Y (x1) this proves (28), thus completing the proof of the lemma. ��

7. End of Proof of the Main Theorem

In this last section we complete the proof of Theorem 1 using the results of
the previous sections. The main idea, similar to [1], is to observe that if f is
a trigonometric polynomial of degree d then �r is a trigonometric polynomial
of degree rd. Since �r is nonconstant (by the definition) and periodic of period
2πp/q, one must have rd > q, so that r > [q/d]. This would complete the proof
of the theorem, since �(x, ε) = A(ε) + �r (x)εr + o(εr ) implies that the range of
δ for which p/q-periodic points exist is at most O(εr ) with r > [q/d].

It remains therefore to show that �r is indeed a trigonometric polynomial of
degree at most rd. According to (20),

εr�r (x) = q−1
∑
m≥1

q Sm(x, Y (x, ε), ε, A(ε)) + o(εr ),
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and we must show that the coefficient of εr in the above sum is a trigonometric
polynomial of degree at most rd. According to Lemma 1, q Sm(x, Y (x), ε, A(ε)) is
homogeneous polynomial of degree m in the items from the list

{Y (x) − A(ε) − ε f0, −A(ε) − ε fk, ε f (l)
k }, (30)

with 0 ≤ k ≤ q − 1, 1 ≤ l ≤ m − 1, and thus only finitely many terms - namely
the ones with m ≤ r - contribute to the coefficient of εr . According to Theorem 2
the coefficients Yn in the expansion

Y (x) = Y1(x)ε + Y2(x)ε2 + · · ·
are nth degree polynomials in f , its shifts by μ, and its derivatives. The key point
here is that the power of ε in Y (x) is also the degree of the polynomial Yk in f , its
derivatives and shifts. In addition, ε enters with power 1 in the list (30) as a factor
of every f and its derivatives and shifts (while A(ε) has constant coefficients).
This shows that the coefficient of εr is a polynomial of degree at most r in f , its
derivatives and shifts. Moreover, this coefficient is a finite sum, since only finitely
many terms (m ≤ r ) contribute to it. Finally, since f is a trigonometric polynomial
of degree d, it follows that the coefficient of εr is a trigonometric polynomial of
degree at most rd, as claimed.

This completes the proof of Theorem 1.
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