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Abstract—Alloy is a declarative formal modeling language with
syntax derived from notations common to object-oriented design
and first-order relational logic semantics. To better understand
the usability of Alloy, the paper presents the results of an
empirical study with 30 participants assessing two types of
modeling tasks: bug fixing and model building based on natural
language specifications. The participants consisted of both novices
and non-novices. Besides accuracy and time to complete tasks,
we also examined the correlation between the performance of
two cognitive tasks and task performance. Results indicate that
overall, non-novices completed the tasks with significantly higher
accuracy (54% more accurate) than novices. In the novice group,
performing more actions using the Alloy analyzer led to more
edits and, eventually, higher scores in the bug fixing tasks. We
found that participants of all levels had much difficulty writing
a model from scratch, and they did not utilize the analyzer to
improve their models. On average, non-novices completed all the
tasks 32 minutes faster than novices. Non-novices who performed
better on the Alloy tasks had higher mental rotation scores, which
indicates the importance of spatial cognition ability in solving
Alloy tasks. Overall, we find that there is a definite need to
improve the usability of the visualizations in the Alloy Analyzer.

Index Terms—Alloy Specification Language, Bug Fixing, Em-
pirical Study, Software Modeling, Usability

I. INTRODUCTION

The Alloy formal specification language [1] aids in con-

structing models in the software design phase and checking

whether specific properties of systems hold. Its back-end

tool, the Alloy Analyzer [2], performs automated analysis on

models, checks assertions, and generates counterexamples to

those assertions if they do not hold. Alloy has been used in

a wide range of applications, such as test case generation [3],

security analysis of Android [4], [5], IoT devices [6], and

verification of critical properties of real systems [7], [8].

Traditionally, working with formal specification languages

has required in-depth mathematical knowledge due to their

complexity, and the learning curve is very steep for non-

mathematicians. In dealing with formal methods and designing

formal specification languages, the most important factors have

been soundness and correctness, and factors like readability,

usability, and comprehension were often overlooked [9]–[13].

Alloy’s design seeks to alleviate this problem with its

easy-to-understand syntax and use of familiar mathematical

concepts such as sets. However, there is very little research

on the usability and comprehension of Alloy as a language

from the user perspective and how it can be best taught to

novices. Krishnamurthi et al. make a case for paying more

attention to human factors in formal methods and state that

performing more user focused research can be beneficial for

building better tools and encouraging more people to learn

formal methods [10]. There has been some work on how

students use Alloy Analyzer in different contexts [14], [15].

However, none of this work is focused on the comprehension

of the Alloy language. This is important to study because

even though the Alloy Analyzer is helpful, its use does not

indicate comprehension of the actual Alloy model specifica-

tions. Moreover, almost all of the prior work is done with non-

novices. There is a clear existing gap of human factor studies

in the literature to understand how expertise plays a role in the

comprehension of Alloy specifications. It has been shown that

including varied expertise in program comprehension studies

can give interesting insights on how developers think about

problem solving [16].

To better understand the usability aspect of Alloy, the paper

presents an empirical study on the comprehension of the

Alloy language in two contexts: fixing bugs and building

models. Both novices and non-novices participated in the

experiment. For the bug fixing tasks, participants were given

natural language specifications for problems and their corre-

sponding Alloy models, which included buggy statements. The

participants were tasked with fixing the problems within the

models so they matched their specifications. To the best of

our knowledge, this is the first study to assess the impact of

experience on the ability to fix syntactic and semantic bugs in
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Alloy models to match specifications. For the model building

task, we presented the participants with a natural language

specification and a blueprint of an Alloy specification for

them to complete. Research has shown that cognitive skills

such as spatial cognition and working memory capacity are

correlated with mathematical ability [17], [18]. In software

engineering studies, a moderate correlation between working

memory capacity and fixing bugs was found by Baum et

al. [19]. Sharafi et al. found that spatial ability and data

structure manipulation are correlated [20]. We wanted to test

whether such correlations exist between cognitive skills and

fixing bugs/building models in Alloy. To do this, we performed

two sets of cognitive tests (mental rotation [21] and operation

span [22]) to explore the correlation between memory capacity

and solving Alloy problems. The contributions of this paper

are as follows:

• An empirical study that explores comprehension of the

Alloy specification language in bug fixing tasks (syntax

and semantic) and a model building task.

• Comprehension pattern differences between novice and

non-novices in Alloy, which has not been studied before.

• A detailed analysis of Alloy Analyzer usage patterns

during the tasks.

• Cognitive tests to investigate the relationship between

working memory capacity and spatial cognition ability

with software modeling, also not studied before.

• Usability guidelines to improve future Alloy releases.

• A complete replication package for verifiability and repli-

cation purposes.

Results indicate that non-novices find and fix Alloy bugs

with significantly higher accuracy (54% more on average) and

complete the bug fixing tasks 32 minutes faster than novices.

These results show that even a few months of familiarity and

working with the Alloy language can make a big difference

in levels of comprehension. We found that building a model

from scratch is difficult for both novices and non-novices.

Many non-novices were not successful in adding the specified

dynamic properties to their model. For the bug fixing tasks, we

found that the number of Alloy Analyzer actions and model

edits correlated, which predicted the accuracy score of novices.

We found that novices and non-novices make incremental

changes before running the model to check whether they

can see a correct instance or fix the issues that generate

counterexamples. On average, novices make more changes

to the Alloy models to get to the correct specification (an

average of 12 more edits for novices compared to non-

novices over all the tasks). We found that spatial cognition and

Alloy bug fixing ability correlated, indicating the importance

of this cognitive skill in understanding Alloy’s underlying

mathematical concepts.

II. RESEARCH QUESTIONS

The paper addresses the following research questions:

• RQ1: What is the difference in accuracy and speed

between novices and non-novices for bug fixings tasks

in Alloy models?

• RQ2: What is the difference in accuracy and speed be-

tween novices and non-novices for building Alloy models

from a requirements specification?

• RQ3: What patterns do we observe in user behavior

during bug fixing and model building tasks?

• RQ4: How do working memory and spatial cognition

ability relate to task correctness?

The results from RQ1 help us explore the differences

between the novices’ and non-novices’ understanding of the

Alloy tasks regarding accuracy and speed in fixing bugs.

RQ2 helps understand how novices and non-novices work

on the model building task. Both these questions can help

us understand how prior exposure to Alloy makes a differ-

ence in problem solving. RQ3 helps us understand detailed

patterns of bug finding and model building in both groups via

recorded snapshots of the specification every time a participant

performed an action using the Analyzer. Finally, RQ4 explores

the relationship between performance on the Alloy tasks,

spatial cognition ability and working memory capacity, which

are two different cognitive skills related to mathematical and

programming abilities.

III. RELATED WORK

The two studies most related to ours are Li et al. [15] and

Danas et al. [14], who performed empirical studies on the

Alloy language in novices. Li et al. [15] explored how the

Alloy tool is used in practice by beginners by logging some

of the user interaction with the Alloy tool when students were

building Alloy models. The students are asked to build Alloy

models, which can indicate their language comprehension. In

contrast, our study is focused on exploring comprehension

by using both bug fixing and model building tasks, which

can give us more detailed information about the participants’

comprehension. Unlike their study, we focus on both novices

and non-novices.

Danas et al. [14] performed studies on both students and

Mechanical Turk participants to explore how different types

of outputs of the Alloy Analyzer model finder are used

in practice. They explored principled output forms (such as

minimal and maximal forms), provenance, and unsatisfiable

cores. Their goal was to see how the different types of outputs

help users understand and debug Alloy models.

Our work is complementary to both of these studies. We

focus on how users find and fix different kinds of bugs

(syntactic and semantic) in Alloy models based on their natural

language specifications. This can indicate how comfortable

the participants are in understanding the Alloy syntax and

language and how they work with the Alloy Analyzer. This

is one of the first works we know of that includes both

novices (N=17) and non-novices (N=13) in an empirical study

on Alloy. The comprehension model and patterns of using

the Alloy Analyzer can be observed in both groups and be

compared to the findings of Li et al. [15]. To our knowledge,

this is also the first study to explore the relationship between

specific cognitive abilities and comprehension of a lightweight

formal language such as Alloy. Exploring these relationships
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TABLE I: Experiment Overview

Goal
Study Alloy specification
language comprehension

Independent Variable Experience (novice and non-novice)

Tasks
Cognitive: Operation Span, Mental Rotation
Alloy Tasks: Syntactic Alloy Error,
Semantic Alloy Bug, Model Building

Dependent Variables
Accuracy, Speed, Usage of Analyzer,
Number of Analyzer Actions,
Number of Edits

can give us insight into what skills are more indicative of

better comprehension of specification languages.

IV. EXPERIMENTAL DESIGN

We describe the experimental design of the study, including

participants, tasks, study instrumentation, and measures. A

complete replication package [23] is available.

A. Experiment Overview

The goal of our controlled experiment [24], [25] is to

explore comprehension of the Alloy specification language in

novices and non-novices in evaluating syntactic and semantic

bug fixing and model building. We designed two different task

categories: cognitive tasks and Alloy tasks. The cognitive tasks

measure working memory capacity and spatial recognition

ability (RQ4) to determine if these abilities play a role in

bug fixing and model building performance. The Alloy tasks

are designed for the participants to locate and fix syntactic

and semantic bugs in the Alloy models and build models

based on a specification. We measure comprehension using

accuracy, speed, number of Analyzer actions, and number of

edits. An overview of the experiment is shown in Table I. The

university’s institutional review board approved the study.

B. Participants and Experience

We recruited 30 participants from different universities and

institutions worldwide. Each potential participant was sent

an email inviting them to participate in the study. If they

accepted the invitation, they were assigned an ID for the pre

and post questionnaires and were sent the study package and

the consent form via email. When the participants submitted

the study, they were compensated with a $10 Amazon e-gift

card.

Our participants had different levels of expertise in Alloy,

ranging from beginners who had recently started learning the

language to experts who had been working with the language

for years. Participants were recruited through emails to class

mailing lists, posts on Alloy messaging boards, and profes-

sional contacts. They were asked to fill out a demographic

questionnaire before the start of the study, which asked them

about their age, gender, affiliation, degree, native language, and

proficiency in English. There were 19 male participants and 11

female participants. Eleven participants were between the ages

of 21-25, nine were between 26-30, seven were between 31-35,

two were 36-40, and one was over 40 years old. Twenty-nine

participants were either pursuing or had Computer Science,

Computer Engineering, or Software Engineering degrees, and

one was pursuing an Industrial and Labor Relations degree.

Three participants were either pursuing a Bachelor’s degree

or held one. The rest of the participants were either pursuing

a graduate degree or held Masters or Doctorate degrees.

We asked the participants to self-report their experience

level, as it has been established [26] that self estimation is

a reliable measurement for programming experience. Partici-

pants completed a post-questionnaire (after they completed the

study to avoid any imposter syndrome bias) that asked them

to rate their programming skills, design skills, knowledge of

set theory, first-order logic, and object-oriented programming

skills. They were also asked to rate their comprehension

level of Alloy syntax and their level of comfort using the

Alloy Analyzer. The post-questionnaire showed us that some

participants were more familiar with Alloy despite only using

it for less than a year, specifically participants who were using

Alloy for research. We decided not to group these participants

with novices, as they had a deeper understanding of Alloy

due to extensive use. Thus, we defined non-novices in Alloy

as having more than one year of experience or having less
than one year of experience but having familiarity with the
language and rating their comfort level in understanding Alloy
syntax higher or equal to 3 out of 5. With this criteria, our

novice group consisted of N=17 and non-novices of N=13.

C. Tasks

The first category of tasks are the cognitive tasks. The

two cognitive tasks were the Operation Span Task [22],

[27] and the 3D Mental Rotation Task [21], which measure

working memory and spatial cognition ability, respectively.

Prior research [19], [20] has shown a correlation between

cognitive tasks and software comprehension tasks. We aimed

to explore whether these correlations exist for bug fixing and

model building tasks in Alloy.

We used a Python version of the Operation Span task [28]

for our study. This task shows a number of letters to the

participant, with a distractor math task between each letter,

and asks them to recall all the letters they have seen in order.

The final calculated score by the application (partial-credit

unit score) is between 0 and 1, with a score of 1 indicating

that the participant has recalled all the letters correctly. Each

participant completed four practice trials and 12 task trials.

We implemented a Java desktop application for the 3D

Mental Rotation task [29]. The task shows an image of a 3D

object to the participant and asks them to choose the correct

rotations of the 3D object from four different images presented

to them. For this task, each participant completed five practice

trials and 20 task trials. Since the participants had to choose

two correct rotations of the 3D object, we gave them 1 point

for each correct choice they made. With this scoring criteria,

the max score for this task would be 40.

The second category of tasks were Alloy tasks. The first

set of Alloy tasks were bug fixing tasks contained in three

models. The second set consisted of a single task asking

participants to build an Alloy model according to a natural
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TABLE II: Semantic bugs in Alloy models’ predicates

Model
Semantic Bugs
Fix a predicate

Original Specification Altered Specification
grade.als s !in a.assigned to s in a.assigned to

balancedBST.als
all nl: n.left.*(left + right) | nl.elem <n.elem
all nr: n.right.*(left + right) | nr.elem >n.elem

some n.left =>n.left.elem <n.elem
some n.right =>n.right.elem >n.elem

(HasAtMostOneChild[n1] &&
HasAtMostOneChild[n2]) =>
(let diff = minus[Depth[n1], Depth[n2]] —
-1 <= diff && diff <= 1)

(HasAtMostOneChild[n1] &&
HasAtMostOneChild[n2]) =>
(let diff = minus[Depth[n1], Depth[n2]] —
-1 <= diff || diff <= 1)

farmer.als
(one item : from - Farmer | {
from’ = from - Farmer - item - from’.eats
to’ = to + Farmer + item })

(one item : from - Farmer | {
from’ = from - Farmer - item
to’ = to - to.eats + Farmer + item })

language specification. We chose three Alloy models from the

GitHub repository by Wang et al. [30], located at [31] for the

bug fixing tasks. The three models we chose are grade.als,

balancedBST.als, farmer.als. The Grade model describes a

gradebook designed to include constraints about the graders

and classes, the BST model specifies a balanced binary search

tree, and the Farmer model seeks to solve the classic River

Crossing Puzzle [32]. Due to their various levels of com-

plexity, we label these models as easy, medium, and difficult,

respectively. We also provide natural language specifications

explaining what problems these Alloy specifications are mod-

eling. The participant was instructed to fix the model in a

way that would adhere to the natural language specification.

We used some of the bugs in ARepair’s [30] buggy models

but introduced some other bugs to fit our task types: syntactic

bugs and semantic bugs. In introducing each syntactic bug,

one line in an Alloy model was changed. These bugs elicit

errors from the Alloy Analyzer that would help the user in

detecting and fixing them, and fixing the bugs requires a

level of understanding of Alloy syntax. We also introduced

semantic bugs into the models. We changed either facts or

constraints within a signature to modify the constraints of

the model. And finally, we also changed some predicates in

the models to change their meanings. The semantic changes

resulted in the Alloy Analyzer showing incorrect instances

or counterexamples to assertions, and the participants were

expected to find and correct these bugs. Table II shows the

semantic bugs in Alloy models’ predicates. The rest of the

tasks can be found in the replication package.

The second set of Alloy tasks was on model building.

After working on the bug fixing tasks, the participants were

asked to build an Alloy model to describe a Linked List.

The natural language specification described the structure and

constraints of the linked list. The specification and the partial

model containing a blueprint of a linked list and its functions

provided to the participants can be found in the replication

package [23].

The participants were always asked to do the cognitive

tasks first and then work on the two sets of Alloy tasks, but

the order of the tasks was randomized within each category

(Alloy or Cognitive). Since the models had different levels of

difficulty, we permuted the order of the tasks to control for

order effects (3! Alloy tasks × 2! Cognitive tasks), ending up

with 12 different variations of the study. Each participant had

to complete two cognitive tasks, fix 10 Alloy bugs in total, and

a subset (who volunteered) were asked to work on the model

building task. The participants were not aware of how many

Alloy bugs there were. The only instructions given to them

were to make sure the Alloy model conforms to the natural

language specification.

D. Dependent Variables

We modified the Alloy Analyzer and instructed the par-

ticipants to use it while working on the tasks. The modified

Analyzer logged snapshots of the open Alloy specification

file every time the user executed a command. The logged

timestamped user actions are as follows.

• Execute: Runs the most recent or the first written com-

mand if no command has been executed so far. The com-

mands can be either “assert” for generating counterexam-

ples to an assertion or “run” for generating instances of

a predicate. The command “run” can be combined with

“show” to show an instance of the model.

• Show Instance: Displays the most recent instance or

counterexample.

• Show MetaModel: Displays a meta model of the currently

open Alloy specification [1], which shows the relation-

ships between different elements (e.g., signatures) of the

specification as an object model.

We derived the following dependent variables.

• Accuracy: Accuracy for bug fixing tasks is calculated

by assigning 1 point to each correct bug fix and half

a point for localizing a bug. There were cases where a

participant would localize the line of the bug but could

not correct it. The maximum score a participant could

receive from all the tasks was 10 points. Tasks for models

Grade and Farmer had a maximum of 3 points, and tasks

for the Balanced BST model had a maximum of 4 points.

Accuracy for the model building task is determined by

how participants solved the subproblems of the tasks. In

the model building task, we asked the participants to build

an Alloy model of a linked list, which included specifying

the properties of connectivity of all nodes and ensuring

that no node points to the linked list head. We also

asked the participants to write predicates for adding and

removing nodes from a linked list and different assertions

to ensure the aforementioned properties hold. We also
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gave points to the participants for building the correct

signatures and relationships in the model.

• Speed: Speed is calculated by looking at the start time

and finish time of the tasks.

• Number of Analyzer Actions: We used the information

from the logs to calculate how many times they performed

an action (Execute, Show Instance, etc.) on each model

to see instances or check assertions.

• Number of Edits: We used the log information to calculate

the number of times the participants edited each model

in the bug fixing task.

E. Study Instrumentation

We sent emails to potential participants inviting them to

participate in the study. Once they accepted the invitation,

another email was sent, which contained the link to the

study package. The participants did the study remotely in

the location of their choice. The study package included the

cognitive and Alloy tasks, a modified version of the Alloy

Analyzer, a tutorial on Alloy for participants to remember the

language syntax and structure, a sample task on Alloy with

the correct answers, and a ReadMe file detailing the steps

to do the study. We also asked the participants to fill out

pre and post questionnaires to gather demographic and self-

reported experience data. Participants were instructed to read

through the ReadMe file that walked them through the steps

of the study. The participants were not given a time limit to

complete the tasks, but they were asked to do the study in one

sitting and without interruption. Finally, they had to submit

the study package, containing all their changed files and the

generated logs, back to the researchers. Note that the study

was not conducted via a web browser since we wanted to take

full advantage of all the Alloy Analyzer functionalities (not

available on web).

V. EXPERIMENTAL RESULTS

A. Pre-processing

We created a master file that included each participant’s

cognitive and Alloy tasks data. For the operation span task,

we gathered the automatically graded scores of the working

memory tasks from the generated files. For the mental rotation

task, a Python script was written to grade the result files.

The automated nature of grading these two tasks eliminates

the possibility of errors in grading. For the Alloy bug fixing

task data, a Python script was written to show the differences

between the Alloy logs generated by each action by creating

HTML files highlighting the differences between each run.

We used the highlighted differences to grade each submission

by looking at the submitted version of the model next to the

original version that included the bugs. One of the authors

ran each of the submissions to make sure they passed all the

checks. We did not auto grade Alloy tasks via a script since

there were multiple ways of fixing a bug in some cases. The

manual nature of running all the submissions shows that the

bug was either fixed or not fixed, leaving no subjective nature

to the grading. When looking at the differences between the

original and submitted files, if a change was made to a buggy

line, we consider this as bug localization. Some participants

also commented on the lines with “bug detected”. Section IV-D

lists the scoring criteria.

Aside from the submitted models from each participant, a

number of files were generated by the Analyzer if the par-

ticipant performed an action. These files include the snapshot

of the Alloy model at the time of action, the type of action

performed (execute, show instance, show metamodel), and the

timestamp of the snapshot. We refer to these snapshots as

“logs”. Due to technical difficulties, we could not process 3

participants’ log files. We also wrote a Python script to extract

the action sequence and time spent between each action. We

used the difference finder to go through all the logs submitted

by the user for each model to show the differences between

the snapshots after each action was performed. For every set

of logs we had (for different participants and models), we

generated an HTML file highlighting the steps they took to

localize and fix the Alloy bugs. From these HTML files,

we acquired information about the number of edits. We used

JASP [33] to run the statistical tests.

B. RQ1 Results: Accuracy and Speed in Bug Fixing Tasks

Research question 1 asks about the accuracy and speed of

novices and non-novices when fixing Alloy bugs. The null and

alternate hypotheses are as follows.

AH0 Having experience (non-novices) working with the

Alloy specification language does not have an effect on the

accuracy of solving the tasks.

AHA Having experience (non-novices) working with the

Alloy specification language has an effect on the accuracy of

solving the tasks.

TH0 Having experience (non-novices) working with the

Alloy specification language does not have an effect on the

speed of solving the tasks.

THA Having experience (non-novices) working with

the Alloy specification language has an effect on the speed of

solving the tasks.

To test the AH hypothesis, we used the participants’

accuracy score on the Alloy bug fixing tasks as a measure

of program comprehension. For each syntactic or semantic

bug, if the participant changed the buggy line, they received

a score of 0.5 for bug localization. If the participant changed

the buggy line and corrected the bug, they received a score

of 1 for that task. There were overall three syntactic bugs and

seven semantic bugs across the three Alloy models, and the

maximum score a participant could receive was 10.

Table III presents the descriptive statistics. Overall, non-

novices performed better on the tasks, and the average accu-

racy score for non-novices (M = 8.615 ± 1.024, N = 13) is

54.17% higher than the average accuracy score for novices

(M = 5.588 ± 2.386, N = 17). We observe the same pattern

in individual models and on different types of tasks as well.

Figure 1 shows the box plots of the overall accuracy score in

both groups. We can see that the scores are widely dispersed

in the novice group, ranging from 1.5 to 8.5, whereas the
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TABLE III: Descriptive Statistics for Accuracy Across the Tasks and Models

AccuracySyntactic AccuracySemantic AccuracyGrade AccuracyBST AccuracyFarmer AccuracyScore

Novice Non-novice Novice Non-novice Novice Non-novice Novice Non-novice Novice Non-novice Novice Non-novice

Valid 17 13 17 13 17 13 17 13 17 13 17 13
Mean 2.382 2.923 3.206 5.692 2.147 2.731 1.735 3.308 1.706 2.577 5.588 8.615
Std. Deviation 0.740 0.188 1.937 0.925 0.880 0.599 0.970 0.855 0.902 0.277 2.386 1.024

Note. AccuracySyntactic and AccuracySemantic are the scores received in semantic and syntactic task types, respectively. AccuracyGrade, AccuracyBST, and
AccuracyFarmer are the scores received from solving the tasks in each model. AccuracyScore is the overall score the participants received for all the tasks
in all the models.

TABLE IV: Descriptive Statistics for Speed (in minutes) for Each Model and Overall

Grade BST Farmer Overall

Novice Non-novice Novice Non-novice Novice Non-novice Novice Non-novice

Valid 17 13 17 13 17 13 17 13
Mean 16.471 12.769 23.471 20.923 41.294 15.385 81.235 49.077
Std. Deviation 10.026 5.761 15.399 8.067 61.531 7.911 66.390 15.787

non-novice group’s scores range from 6 to 9.5, with the

minimum score of 6 being an outlier in this group. We were

also interested in the differences between the scores of all

participants in syntactic and semantic task types. We observe

that the participants performed better in syntactic bug fixing

tasks in general, with the average of M = 2.61 ± 0.625
(maximum score of 3) compared to semantic tasks, with the

average score of M = 4.283± 1.99 (maximum score of 7).

Fig. 1: Box plot of overall accuracy across Alloy tasks.

For the statistical tests, we first tested normality with the

Shapiro-Wilk test. We found the data was not normal in all

the groups. For the non-normal data, we chose to perform the

Mann–Whitney U test, a non-parametric test to compare the

accuracy scores of novice and non-novice groups. Table V

shows that there are significant differences between the total

accuracy scores of two groups (p < .001), Grade tasks

(p = .032), BST tasks (p < .001), and Farmer tasks

(p = .005). We also observed that a significant difference

could be seen between novice and non-novice groups in fixing

syntactic (p = 0.006) and semantic (p < .001) bugs as well.

The significant differences between the two groups give us

evidence to reject the null hypothesis (AH0), meaning that

experience makes a difference in solving Alloy tasks.
To test the TH hypothesis, we measured participants’

speed in completing the bug fixing tasks in each model.

Table IV shows the descriptive statistics for the speed for

each specification and overall for both groups. On average,

novices (Overall column, M = 81.235± 66.39, N = 17) took

32 more minutes to finish the Alloy tasks compared to non-

novices (Overall column, M = 49.077 ± 15.78, N = 13). We

can observe the same pattern in individual models as well.

We ran the Shapiro-Wilk normality test for this data. The

distribution of the Grade model duration was the only normal

distribution, and the t-test was used. For the rest of the tasks

and the overall speed, we used the Mann-Whitney U test to

check for significant differences between the groups, but the

test did not show any significant differences. This indicates a

lack of evidence to reject the null hypothesis (Grade t-test p =

0.24, BST Mann-Whitney U p = 0.85, Farmer Mann-Whitney

U p = 0.18, Overall Mann-Whitney U p = 0.28).

RQ1 Finding: Non-novices performed significantly better

in all task types than novices. Participants received higher

scores on syntactic tasks compared to semantic tasks. We

found that, on average, non-novices finished the bug fixing

tasks 32 minutes faster than novices.

TABLE V: Mann-Whitney U Test Results for Accuracy in

Two Groups

W p Rank-Biserial Correlation

AccuracyScore 18.500 < .001 −0.833
AccuracyGrade 63.000 0.032 −0.430
AccuracyBST 23.500 < .001 −0.787
AccuracyFarmer 46.500 0.005 −0.579
Syntactic 52.000 0.006 −0.529
Semantic 18.000 < .001 −0.837

Note. For the Mann-Whitney test, effect size is given by the
rank biserial correlation. W is The Mann-Whitney statistic (W-
Value) is the sum of the ranks of the first sample

C. RQ2 Results: Accuracy and Speed in Model Building

Of the thirty participants who participated in the study, only

sixteen received a model building task to create an Alloy spec-

ification for a Linked List. We did not send the model building

task to the rest of the participants because we received feed-

back that building models from scratch is complex and very

time consuming for the participants. To answer the research

question about accuracy in model building, we checked their

submitted model to see whether it satisfied the requirements

of a linked list and whether it showed a correct instance. We

gave the participants a partial Alloy model, which included

the blueprint of two predicates (add and remove) and some

signatures that contained incomplete relations (Listing 1). We

graded the accuracy of the subproblems we expected the
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TABLE VI: Participants’ Performance in the Model Building Exercise. (0=incorrect, 0.5=partially correct, 1=correct.)

Participant Signatures Insert Remove Acyclic Connectivity Show Acyclic No Pointer Number of
ID Node Node Property Instance Assertion to Head Actions

Assertion
N3 0 0 0 0 0 0 0 0 -
N4 1 0 0 1 1 1 1 1 71
N5 0 0 0 0 0 0 0 0 -
N6 1 0 0 0 1 1 1 1 37
N7 0.5 0 0 1 0 0 0 0 1
N12 0 0 0 0 0 0 0 0 6
N15 0.5 0 0 0 1 0 0 1 32
N17 0.5 0 0 1 0 0 0 0 31
E4 1 1 1 0 0 1 1 1 1
E5 1 0 0 1 0 1 1 0 -
E6 1 0 0 1 1 1 1 1 36
E7 0 0 0 0 0 0 0 0 10
E8 1 0 1 1 1 1 1 1 13
E9 1 0 0 1 1 1 1 1 -
E10 1 0 1 1 0 1 1 1 75
E11 1 1 0 1 1 1 1 1 68

participants to solve. Table VI describes the accuracy scores

of the novice and non-novice group participants (Novice: N3-

N17, Non-novice: E4-E11). We gave each participant a score

of 1 for each subproblem if it was entirely correct, a score of

0.5 for the signatures if they were partially correct, or a score

of 0 for incomplete or incorrect answers. We ran the models

to see the generated instances of linked lists to confirm their

correctness, and two of the authors graded each subproblem

and met to dispute disagreement on the scores.

Out of all the non-novice participants, only one could

not complete the signatures. Three novice participants could

not complete the signatures and relations inside of them

correctly, three completed half of the relations correctly, and

two completed the signatures. None of the novice participants

could successfully write the Insert Node or Remove Node
predicates. In contrast, two non-novices completed Insert Node
predicate, and three non-novices correctly wrote Remove Node.

Furthermore, three novices and four non-novices correctly

ensured the connectivity property. Seven non-novices and two

novices wrote the correct predicate to show an instance of a

linked list. We also checked how the novice and non-novice

participants wrote assertions to verify the properties in their

models (detailed in Table VI).

The difference between the speed of the two groups was

not statistically significant, but on average, novices spent less

time working on the model building task (M = 37.12±20.87,

N = 8) compared to non-novices (M = 45±24, N = 8).

RQ2 Finding: Overall, we observed that the model building

task was difficult for even the non-novices, especially writing

predicates to create dynamic properties such as adding and

removing a node from the linked list. Non-novices did better

in ensuring the acyclic property, connectivity, showing the

instance, and the assertions to verify the model.

D. RQ3 Results: Behavior Patterns

The null and alternate hypotheses for RQ3 are as follows.

PH0 Having experience (non-novices) working with the

Alloy specification language does not have an effect on the

behavioral patterns of problem solving in Alloy.

PHA Having experience (non-novices) working with the

Alloy specification language has an effect on the behavioral

patterns of problem solving in Alloy.

1 s i g L i n k e d L i s t {
2 head : l one Node
3 }
4 s i g O b j e c t {}
5 s i g Node {
6 d a t a : . . .
7 n e x t : . . .
8 }
9 / / This p r e d i c a t e should i n s e r t a v a l i d item to the l i s t

10 pred add ( l : L i n k e d L i s t , l ’ : L i n k e d L i s t , new : Node ){}
11
12 pred remove ( l : L i n k e d L i s t , l ’ : L i n k e d L i s t , new : Node ){}
13
14 / / A c y c l i c property
15 / / C o n n e c t i v i t y between a l l nodes
16 / / show i n s t a n c e s o f the l i n k e d l i s t
17 / / a s s e r t whether the a c y c l i c property ho lds
18 / / a s s e r t t h a t no node p o i n t s to the l i s t head

Listing 1: Blueprint for Model Building Task

To address RQ3, we explored the data we gathered from the

participant logs to find patterns in the number of actions and

the number of edits in the bug fixing tasks, as well as for the

model building task. We believe that the number of actions

and edits are useful quantitative measures of using the Ana-

lyzer and the work patterns of the participants. The Analyzer

provides an interactive environment for the participants and

gives us data on the number of actions (execute, show model,

show metamodel) performed. Table VII shows the average

number of actions and edits performed by the participants. The

data shows that on average (rounded up to the nearest whole

number), novices performed more actions (M = 58 ± 51, N

= 16) compared to non-novices (M = 31± 23, N = 11). The

same pattern can be observed in the Grade, Farmer, and BST

logs as well. Since the data was not normally distributed, we

used the Mann-Whitney U test but did not see a statistically

significant difference between the number of actions across

each model and overall.

Figures 2a, 2b, 2c show the categorical scatter plots of the

sequence of actions performed by participants. We can see

that as the tasks get more difficult (Difficulty: Grade < BST

< Farmer), the number of actions performed by non-novices

is reduced compared to the number of actions by novices.

We can also see that “Execute” is the most popular action

overall between both groups. Interestingly, participants used

“Show Instance” while working on the BST model the most,

to see valid instances of the balanced binary search tree. We
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TABLE VII: Descriptive Statistics For Number of Logs (Number of Performed Actions) and Edits

GradeLogsNum BSTLogsNum FarmerLogsNum TotalLogs

Novice Non-novice Novice Non-novice Novice Non-novice Novice Non-novice

Valid 16 10 15 11 16 11 16 11
Missing 1 3 2 2 1 2 1 2
Mean 9.375 8.800 26.333 15.818 24.750 7.909 58.813 31.727
Std. Deviation 8.921 6.909 26.351 15.823 32.460 5.467 51.763 23.946

GradeNumberOfEdits BSTNumberofEdits FarmerNumberofEdits NumberOfEdits

Novice Non-novice Novice Non-novice Novice Non-novice Novice Non-novice

Valid 16 10 15 11 16 11 16 11
Missing 1 3 2 2 1 2 1 2
Mean 6.500 9.200 17.600 16.091 20.875 7.273 43.875 31.727
Std. Deviation 5.633 7.525 18.212 16.802 30.785 6.389 39.673 24.816

observe that most of the actions are performed close to the one

before. We also noticed that changes were mostly incremental:

participants only changed one line and performed an action.

We could not find any specific patterns in the differences

between the number of edits in different models. Overall, we

observe that novices make more edits than non-novices on

average (Novice: M = 43.87± 39.67, N = 16, Non-novice: M

= 31.72 ± 24.81, N = 11), but the Mann-Whitney U test did

not show any significant difference between them (p = 0.4).

Additionally, we wanted to know whether performing more

actions correlated with the number of edits in both of the

groups. We looked at the correlation between the number

of edits for each model, the number of actions on each

model, and the overall number of actions and edits. We

found that for both groups, and for each individual model

and overall, the number of actions correlated positively with

the number of edits. This indicates that seeing an instance

of the model helped the participants make edits. Finally, we

ran the linear regression model with bug fixing accuracy as

our dependent variable and the number of actions and edits

as our independent variable in both novice and non-novice

groups. The regression model was statistically significant in

predicting the outcome variable, meaning that the number of

actions and edits had a positive effect on the novice group’s

overall score (p = 0.046, regression equation: Accuracy =

4.192 − 0.07(NumberOfEdits) + 0.032(TotalLogs)). We

could not find this relationship in the non-novice group.

We also examined whether the experience had an effect on

the number of actions (Table VI) participants performed in

the model building task, but we did not find any significant

differences in the number of actions between the two groups

(Mann-Whitney U p = 0.916).

RQ3 Finding: We found that on average non-novices make

fewer edits than novices in bug fixing tasks. The number of

actions performed by novices is, on average higher than by

non-novices. We observed that participants used the “Execute”

action the most, and they made small and incremental edits

before executing the commands again. The number of actions

and edits correlated with bug fixing accuracy for novices.

E. RQ4 Results: Working Memory and Spatial Cognition

Research question 4 asks how working memory and spatial

cognition ability relate to task correctness. The null and

alternate hypotheses are as follows.

CogH0 There is no relationship between working

memory and accuracy, and no relationship between mental

rotation skills and accuracy.

CogHA There exists a relationship between working

memory and accuracy, and mental rotation skills and accuracy.

The data was not normally distributed, so we ran Spear-

man’s correlation to assess the relationship between the oper-

ation span task score and the overall accuracy score in Alloy

bug fixing tasks. The correlation was not statistically signif-

icant (rs = 0.103, p = 0.588). Next, Spearman’s correlation

was run to assess the relationship between mental rotation

task score and overall accuracy score in Alloy tasks. There

was a positive correlation between the two variables, which

was statistically significant (rs = 0.367, p = 0.046). This

finding allows us to reject the null hypothesis and accept

the alternate hypothesis that there is indeed a relationship

between mental rotation task and bug fixing task accuracy. We

also examined the relationship between these cognitive skills

and the participants’ model building scores. We first added

all the scores of the subproblems together to get one single

model building score for each participant. We could not find

statistically significant correlations between the overall model

building score and cognitive task scores. We examined the

relationship between the cognitive task scores and the score

of each of the subproblems in model building, and we only

found one significant correlation between building Signatures

and the Mental Rotation Task (rs = 0.555, p = 0.026).

RQ4 Finding: The statistically significant positive correla-

tion between the bug fixing task accuracy and mental rotation

score suggests that people with such skills might be better

suited to understand Alloy models.

VI. THREATS TO VALIDITY

Internal Validity: The Alloy community is a relatively small

community. The models that were presented in this study

can be considered educational Alloy models. It is possible

that some of the non-novices who have had experience with

Alloy might have seen these models before while learning or

teaching Alloy. We injected 1 to 2 line bugs into the models

ourselves. Hence the models used were sufficiently different

from models found on the web. To have everyone at the same

baseline to start, we asked all the participants to go through
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(a) Grade Action Sequence (b) BST Action Sequence (c) Farmer Action Sequence

Fig. 2: Analyzer Action Sequences across two groups (E1-E13: Non-novices, N1-N17: Novices)

the Alloy tutorial we sent them. They were also presented

with comments on the models that could help them find the

bugs. We also asked the participants not to look online for

answers, but since the study was remote we did not have

any control over this factor. To mitigate this threat, we took

every precaution to make sure the instructions given to the

participants were clear.

External Validity: The Alloy user population is smaller

than the general developer population, making it extremely

difficult to recruit participants. A few users dropped from the

study because they did not understand Alloy and could not

solve the tasks. We did not include their data in our analysis.

Finding non-novices was also challenging because Alloy is

mainly used in academic settings, and finding experts who

were willing to partake in the study was difficult. Despite this,

we secured 13 participants who knew and used Alloy before

through extensive advertising and 17 who were willing to read

the tutorial and learn the language before completing the study.

Construct Validity: All dependent variables were chosen

carefully to ensure they represented what we sought to mea-

sure. Even though we automated most of the log analysis, we

manually validated them to mitigate any errors in calculation.

Conclusion Validity: The unpaired Mann-Whitney test was

used to compare averages of two independent groups which is

suitable for small samples that are not normally distributed.

VII. DISCUSSION AND IMPLICATIONS

Our findings for RQ1 present clear differences between

novices and non-novices in accuracy and speed of working on

bug fixing tasks. It implies that prior exposure to and experi-

ence with the language is important in completing Alloy tasks.

Despite Alloy being more readable and easier to understand

in comparison to other formal languages, it is still challenging

for novices to work on Alloy tasks without much background

on formal methods and the language itself. RQ2 results show

that despite the differences in experience, all participants found

it difficult to build an Alloy model from scratch by looking

at the natural language specification. Novices had a very

difficult time completing the easier subproblems. In contrast,

non-novices had difficulty in completing the harder task of

completing the Insert Node and Remove Node predicates. By

examining the logs, we found only two participants (N17

and E10) ran the Insert Node (add) predicate to see what

instances the Analyzer created. Despite running add and the

analyzer showing an incorrect instance, the participant could

not recognize the issue and could not correct the predicate. An

example of an incorrect instance of add is shown in Figure 3.

The instance shows that the participant did not ensure that

the difference between the linked lists used in the predicate is

only the new node (Node0). They also did not notice that

LinkedList2, which is the first argument of the predicate,

does not contain any nodes. Another common mistake in

writing the Add predicate was that participants did not specify

to the analyzer that the two linked lists in the argument

list of the predicate cannot be the same, which resulted in

wrong instances (included in the replication package). Our

observations highlight the importance of understanding the

instances and visualization in Alloy and that the participants

either did not know how to get information out of the instances

or they were not able to understand their mistakes and fix them.

RQ3 results show that the novices rely more on the Analyzer

to find issues with the model and make more edits to fix bugs.

We also observe that overall and in each task, the number of

actions and edits were correlated, indicating that the instance

generated by the analyzer can help the participant in deciding

about their edits. Furthermore, in the novice population, we

observe that accuracy is affected by the number of actions

and edits. This implies that seeing the instances and interacting

with the analyzer helps the novice participants solve the tasks

more accurately. RQ4 results show that the comprehension

of Alloy language is more related to spatial cognition ability

and not as much related to working memory capacity. We can

rationalize this difference by pointing out that Alloy tasks are

not memory intensive tasks, and they are more related to the

mathematical abilities of a person, which research shows is

correlated with spatial recognition abilities [17].

The post-questionnaire results indicate that 16 users had

trouble completing tasks. Out of the fourteen that said they
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Fig. 3: An incorrect instance Add predicate in model building

did not have trouble with the tasks, eight of them were non-

novices. The findings about the patterns in solving tasks,

specifically the fact that the participants make incremental

and small changes is consistent with the observations of Li

et al. [15], who found that users perform consecutive actions

on models that are only slightly different. The other study [14]

is not comparable to ours because their tasks were different

and dealt with which model outputs (minimality/maximality,

UNSAT cores) people used the most.

Suggested Usability Improvements: Based on the outcome

of this study, we recommend the following improvements to

the Alloy Analyzer as well as the areas of focus for teaching

Alloy. Given that novice users struggled more with semantic

tasks (while they performed relatively well on syntactic ones),

teaching systematic methods for debugging an Alloy model to

locate and fix semantic bugs more quickly (e.g., identifying

an over-constraint that results in unsatisfiability of a model

or a missing constraint that causes an assertion failure) is

recommended. An extension to the Analyzer that automates

this debugging process would also be valuable. In addition,

given that both novices and non-novices tend to work with

the Alloy models in an incremental manner, tool enhancements

that further facilitate this incremental process would also be

helpful (e.g., automated compilation and execution of the

model given a change; generating suggestions for which part

of the model the user should inspect next). Finally, the results

of RQ2 suggest that even non-novice users of Alloy struggle

with inspecting the generated instances to build models. In

our experience, navigating visual instance diagrams is a non-

trivial task that demands a significant amount of cognitive load,

especially for models with complex relations. An alternative

way of visualizing Alloy instances (e.g., one that supports

domain-specific visualization [34]) may help overcome this

challenge. For example, looking at Figure 3, we notice that the

default visualization can highlight the involved nodes better by

perhaps changing their color so users have an easier time un-

derstanding that it is not a correct instance of add. Such details

are easy to miss for novices, especially in bigger instances. The

same concept applies to visualizing counterexamples where

the affected nodes should be highlighted for easier compre-

hension. Overall, users rated their confidence as low/medium

for all tasks. Perhaps these suggested changes will boost their

overall confidence in finding incorrect instances.

Implications: Educators can make use of patterns we find

in novices to better teach Alloy and help them avoid common

mistakes while fixing bugs. In practice, one can choose devel-

opers in the industry who are better at spatial skills to help

with Alloy debugging. Formal specification languages such as

Alloy are used for many safety critical applications [7], [8],

[35]. With the amount of day to day activities that depend on

software running safely and securely, it is important to study

how developers interact with modeling software such that we

can improve them to support novice modelers by learning

how the experts/non-novices behave. We still have a long way

to go in this area, as is clearly evidenced by the literature.

We strongly believe that more studies on formal specification

languages are needed for different types of tasks. The tasks

used in this paper are only the beginning of paving the way

for more studies that can be conducted in this space. One

way we can improve usability and tool support and adoption

of software modeling tools such as Alloy is by learning (via

studies such as this one) how modelers (users) interact with

them. This behavior can then be used in conjunction with

patterns found for novices and experts via static profiling [36].

VIII. CONCLUSIONS AND FUTURE WORK

The paper investigates how novices and non-novices per-

form bug fixing and model building tasks in Alloy. The results

indicate that non-novices perform 54% better than novices

on average and that participants perform better on syntactic

tasks compared to semantic tasks. Non-novices spend less

time working on the bug fixing tasks, and the participants in

both groups use the action “Execute” most frequently while

working on the Alloy models. The study results also show that

small incremental changes are made before re-executing the

model commands. The number of edits and actions performed

is smaller with non-novices and predicts accuracy in the novice

group. Results also show that the model building task was

difficult even for non-novices. Several usability improvements

in Alloy Analyzer visualizations are presented based on the

study results. This study has taken the critical first step towards

digesting a practice that software designers have always en-

gaged in, leading to an understanding that promises to enable

researchers, practitioners, and educators to improve rigorous

software modeling. In future work, we plan to qualitatively

explore the participants’ patterns of problem solving and

perform in-person studies to monitor closely the participants

while working on Alloy tasks.
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