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Abstract. We use high-resolution mobile phone data with geolocation information and pro-
pose a novel technical framework to study how social influence propagates within a phone
communication network and affects the offline decision to attend a performance event. Our
fine-grained data are based on the universe of phone calls made in a European country
between January and July 2016. We isolate social influence from observed and latent homo-
phily by taking advantage of the rich spatial-temporal information and the social interactions
available from the longitudinal behavioral data. We find that influence stemming from phone
communication is significant and persists up to four degrees of separation in the communica-
tion network. Building on this finding, we introduce a new “influence” centrality measure
that captures the empirical pattern of influence decay over successive connections. A valida-
tion test shows that the average influence centrality of the adopters at the beginning of each
observational period can strongly predict the number of eventual adopters and has a stronger
predictive power than other prevailing centrality measures such as the eigenvector centrality
and state-of-the-art measures such as diffusion centrality. Our centrality measure can be used
to improve optimal seeding strategies in contexts with influence over phone calls, such as tar-
geted or viral marketing campaigns. Finally, we quantitatively demonstrate how raising the
communication probability over each connection, as well as the number of initial seeds, can
significantly amplify the expected adoption in the network and raise net revenue after taking
into account the cost of these interventions.
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1. Introduction

systems (IS) and the social influence literature that stud-
ies explicitly how phone communications mediate social

Social influence, mediated through various communica-
tion channels, plays an important role in influencing con-
sumer behavior (Banerjee et al. 2013, Sundararajan et al.
2013, Mobius and Rosenblat 2014). According to the media
richness theory, different communication media vary in
their ability to enable communication and information
exchange and in their ease of use (Dennis and Kinney
1998). Phone calls are an especially important communica-
tion channel through which social influence takes place; it
offers a comparably high level of media richness as offline
channels—thereby facilitating information flows and
social influence—while also maintaining high ease of use
(i.e., low cost) as online channels (Table 1).

Despite phone communication’s prevalence and impor-
tance, there exists limited studies in the information

influence.’ A quantitative framework that credibly
obtains estimates on social influence from phone com-
munications is important in business and management
settings because it can inform personalized mobile tar-
geting (Ghose et al. 2019, Zhang et al. 2019) and viral
marketing (Aral and Walker 2011) applications, which
are increasingly commonly used in practice.

We fill this gap in the literature by developing a novel
framework to quantitatively estimate the pattern of
social influence via phone communications. We use
high-resolution mobile phone data with geolocation
information (call detail records (CDRs)) and propose a
technical framework to study how social influence pro-
pagates within a phone communication network and
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Table 1. Comparison of Three Communication Channels in Terms of Media Richness and Ease of Use

Factors Phone Offline Online
Media richness (Dennis and Intimacy of relationship High High Low
Kinney 1998) Nonverbal cues (e.g., emotion) Yes Yes No
Synchronicity Yes Yes No
Ease of use Time cost Low High Low
Location constraint No Yes No
Penetration rate High Not applicable Medium

affects the offline decision to attend a performance
event. Our fine-grained data are based on the universe
of phone calls made in a European country between Jan-
uary and July 2016. Our data contain the entire history of
each mobile phone user’s phone calls and geolocations
(registered by the nearest cell towers). We measure net-
work connections based on phone calls: two individuals
are connected if there have been calls between them;
additionally, we exploit the temporal dimension of
phone calls to construct the sequence of dynamic com-
munications over time—what we refer to as communi-
cation cascades. We measure adoption behavior using
geolocation information—specifically, attending an off-
line performance event that occurred recurrently during
July 2016. Social influence in our context is defined as the
process by which a user, who has attended the event,
influences another user to subsequently attend the same
event via direct phone calls or indirectly through more
than one degree of phone call separation in the commumni-
cation cascades. We exploit the twenty-two occurrences
of the performance: after each performance, we measure
the impact of past attendees’ phone calls on subsequent
attendance by individuals receiving the call. By exploit-
ing the temporal variation in the phone communication
network and the repeated event occurrence, we construct
a rolling window of “treated” individuals—those who
have received calls from past attendees—and we estimate
social influence based on comparing the behavior of these
treated individuals and other nontreated individuals.

A key difficulty for credibly estimating social influ-
ence based on behavioral and network data are to con-
trol for homophily: two connected individuals may
have correlated behaviors either because they have corre-
lated preferences (homophily) or because one’s behavior
affects the other’s (influence). The presence of homophily
implies that the assignment of treatment is nonrandom.
In this work, we introduce a novel technical framework
to address this key challenge, by utilizing the rich mobil-
ity and network information in phone communication
data. For observed homophily, we follow Eckles and Bak-
shy (2021) to adjust for behaviors highly relevant to the
decision of interest using individuals’ revealed prefer-
ences (i.e., mobility history). Although observed homo-
phily can be controlled for, latent homophily is driven by
unobserved factors and is generally difficult to purge. We
address this in two ways. First, we follow McFowland

and Shalizi (2023) and exploit the information contained
in a historical social network (different from communication
cascades) that captures the user’s past network connec-
tion history, that is, two individuals are connected in this
network if reciprocal calls® exist between them in the
month prior to the event. To the extent that any user-level
characteristics simultaneously affect behavior and predict
network connections—even if these characteristics are not
observed—we can use the historical social network to
control for such characteristics and thereby control for
latent homophily and isolate social influence. Because
network data are high dimensional, to operationalize
this strategy, we extract from the network data a low-
dimensional, latent-feature representation of each individ-
ual using an efficient network representation learning
approach, node2vec (Grover and Leskovec 2016), based on
the user’s historical social network. We then use the latent
positions of each user as covariates to control for latent
homophily. Second, we follow Belo and Ferreira (2022) to
use the eventual adoption decisions of one’s connections as
a proxy for the focal individual’s unobserved preferences
toward the adoption decision. Controlling for such infor-
mation, therefore, also helps control latent homophily.

We use observed and latent homophily to create a
matched control unit for each treated user, and we imple-
ment a matching-based difference-in-differences strategy
to estimate social influence. We find that the influence
stemming from phone communication is significant: a
direct phone call with a past attendee raises the likeli-
hood of future performance attendance by 87.61%, rela-
tive to the base adoption likelihood of 0.0098. The effect
transmits over the network to second-degree neighbors of
the past attendees and increases their likelihood of future
attendance by 68.65%. Overall, we find that the effect per-
sists up to four degrees of separation in the communica-
tion network: even being indirectly connected with a
past attendee via a network path of length four signifi-
cantly raises one’s likelihood of future attendance.

Building on our empirical finding, we develop a new
influence centrality measure that captures the empirical
pattern of influence decay over successive connections.
A node’s influence centrality captures the expected
increase in adoption in the network. Different from the
standard Katz centrality, where the indirect influence
decays exponentially at a common rate across succes-
sive connections, our influence centrality takes into
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account the empirically estimated separation-specific
rates of decay and thus could be more relevant in empir-
ical settings for increasing expected adoptions in the
network. Our notion of influence centrality is useful for
applications involving optimal seeding strategies in net-
work contexts where social influence is present. We con-
duct two exercises to demonstrate this point. First, we
conduct an in-sample test and show that the average influ-
ence centrality of those who have previously attended the
event can significantly predict the number of eventual
adopters. It has stronger predictive power than analogous
measures constructed based on other prevailing centrali-
ties, such as the diffusion and Katz centralities. Second, we
quantitatively demonstrate, in a simulated environment
where high-centrality nodes are targeted to be the initial
adopters. Raising the communication probability over
each connection and the number of initial seeds can signifi-
cantly amplify the overall expected adoption and may be
desirable despite the cost of these interventions. This exer-
cise can inform optimal seeding in viral and targeted mar-
keting campaigns.

We summarize our contributions as follows. First, we
develop a novel framework to estimate social influence,
where we exploit the spatial-temporal information to
control for observed and latent homophily using a
matching-based difference-in-differences strategy. Sec-
ond, we apply this framework using high-resolution
CDRs and provide credible estimates of direct and
long-range social influence over phone calls on offline
behavior. We find social influence stemming from
phone communications to be significant and persist up
to four degrees of separation. Finally, we propose
influence centrality, which is designed to capture the
empirical pattern of influence decay over successive
connections. The measure can be used to improve opti-
mal seeding strategies in network contexts with social
influence, such as targeted or viral marketing cam-
paigns. We quantitatively demonstrate how raising the
communication probability over each connection and
the number of initial seeds can significantly amplify
the expected adoption in the network and may be
desirable despite the cost of these interventions.

2. Literature Review

2.1. Social Influence Identification in Networks
Identifying social influence effect in observational stud-
ies can be challenging from a methodological stand-
point (Shalizi and Thomas 2011). The reason is that
individual decision-making in a social network can be
affected by several factors, including homophily, exoge-
nous factors, and social influence (Manski 1993). Vari-
ous empirical approaches for studying social influence
based on observational data have been adopted in the IS
and social influence literature. First, in an instrumental
variable approach, a standard instrumental variable

might be the behavior of two-degree neighbors who are
not neighbors of the focus user (de Matos et al. 2014).
Next, propensity score matching has been applied in
many empirical settings, including studies of the effects
of instant messaging on the adoption of mobile applica-
tions (Aral et al. 2009), favoriting behavior on the songs
individuals listen to (Dewan et al. 2017), and online
content contributions (Rishika and Ramaprasad 2019).
Finally, structural modeling, such as hierarchical
Bayesian modeling, has been used to study the effects
of social influence and latent homophily on dynamic
and repeated consumer purchases (Ma et al. 2015).

The key to separating social influence from homo-
phily and other exogenous variables lies in the use of
effective control variables. Recent studies on social influ-
ence in statistics and IS provide promising solutions to
partially address this issue using rich behavioral and
network data that have become increasingly available
on digital platforms. First, it has been shown that adjust-
ing for high-dimensional behavioral data relevant to
adoption behavior can remove the majority of the esti-
mation (selection) bias, leading to statistically indistin-
guishable results from those obtained via a randomized
experiment (Eckles and Bakshy 2021). Second, sufficient
conditions for unbiased and consistent estimates of social
influence have been established theoretically when con-
trolling for estimated locations in a latent space, based on
certain network generation processes (McFowland and
Shalizi 2023). Third, it has also been shown that eventual
adoption decisions of neighbors may serve as a proxy for
latent user preferences (Belo and Ferreira 2022). Inspired
by these studies and exploiting the rich spatial-temporal
information in CDRs, we propose innovative ways to
operationalize and account for observed homophily with
mobility data and latent homophily with latent positions
learned from the social network and neighbors’ eventual
adoption decisions.

2.2. Social Influence Using Mobile Phone Data
An abundance of literature studies how online beha-
viors diffuse through information technology (IT)-
enabled social networks, as reviewed in Sundararajan
et al. (2013). This literature has important managerial
and strategic implications for online marketing and
platform designs. However, because of the differences in
the nature of the communication studied (summarized in
Table 1), findings on online word of mouth (WOM) may
not provide direct guidance on the situation of phone
communication and the diffusion of influence through
this different medium. Despite its importance as a
medium of information exchange, how phone commu-
nications mediate social influence has scarcely been
studied in the IS and social influence literature.

Phone call data have been used in studying the pur-
chase of caller ring-back tones (Ma et al. 2015, Zhang
et al. 2018), switching of mobile carriers (Hu et al. 2019)
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and the use of phone plans for unlimited calls (Belo and
Ferreira 2022), and adoption of new mobile phone mod-
els (de Matos et al. 2014). Our study differs from these
papers in several aspects. First, Hu et al. (2019) and de
Matos et al. (2014) only use phone call relationships to
construct a proxy of social networks. Our work relates
to theirs, but we focus on the social influence that travels
through phone communications. Specifically, our study
uses significantly richer panel data—for each phone
call, we observe the time stamp and location of both the
call initiator and receiver, and our analysis is designed
to fully use the richness of the data, both spatial and
temporal. By contrast, only static networks are con-
structed based on collapsed, cross-sectional data using
phone calls aggregated over a period of time (9 months
in Hu et al. (2019) and 11 months in de Matos et al.
(2014)). It is precisely because of these differences and
the additional details we can observe that we can esti-
mate social influence mediated via phone calls. Second,
although Ma et al. (2015) and Zhang et al. (2018) study
the influence of exposure to caller ring-back tones result-
ing from phone calls, they do not explicitly examine
how phone conversations mediate social influence. In
contrast, our study focuses specifically on how social
influence spreads through phone conversations, leverag-
ing their unique media richness compared with other
communication channels as discussed in Table 1. By
examining this specific channel, our study provides new
insights into the ways in which social influence operates
and the behaviors it influences, beyond the scope of pre-
vious studies that focused solely on caller ring-back
tones. Third, all these studies focus on adoption decisions
directly related to phone use, while our focus is on offline
adoption behavior, which is arguably a more general
type of behavior that may be influenced through phone
communication. Offline decisions are common and of
obvious interest in marketing applications; indeed, many
important behaviors pertain to offline settings and entail
a certain degree of effort, such as voter turnout (Bond
et al. 2012), receiving immunizations (Banerjee et al.
2019), and healthy habits (Christakis and Fowler 2013).
Our paper extends this IS and social influence literature
and constitutes one of the first studies investigating the
effect of social influence through phone calls on an offline
adoption decision using the large-scale CDR data.

2.3. Indirect Social Influence in Network
Environment

In the study of social influence in a network environ-
ment, one may consider both the direct influence (i.e.,
influence on one’s immediate neighbors in the network)
and the indirect influence (i.e., influence beyond one’s
immediate neighbors) on adoption decisions. The IS lit-
erature predominantly examines the direct influence on
different types of technology adoption decisions (Aral
et al. 2009, Katona et al. 2011, de Matos et al. 2014,

Dewan et al. 2017, Rishika and Ramaprasad 2019). How-
ever, studies have found only limited and inconsistent
evidence that positive influence may extend beyond
direct neighbors in the social network. On the one hand,
indirect influence was initially found to be more effective
than direct influence in medical innovation (Burt 1987,
den Bulte and Lilien 2001). More recently, it was shown
that online messages play a role in political mobilization
and have an effect on two-degree neighbors in the Face-
book friendship network (Bond et al. 2012). Similarly, it
was shown that indirect (i.e., two-hop) neighbors, like
direct neighbors, exert influence in the context of caller
ring-back tone adoption decisions (Zhang et al. 2018). On
the other hand, this effect can be negative beyond imme-
diate neighbors; for example, it was shown that the likeli-
hood of individuals taking deworming was reduced if
their direct first-order or indirect second-order social con-
tacts were exposed to it (Kremer and Miguel 2007). Con-
trasting with these views, several studies show that
influence was restricted to immediate neighbors in the
social network, such as the case of cooperative behavior
in local public goods games (S. Suri 2011) or decisions to
get vaccination against influenza (Rao et al. 2007, Mobius
and Rosenblat 2014).

Our paper aims to extend and enrich this literature on
indirect social influence and examines for the first time
the potential cascading effect of influence through the
medium of phone communication. This research ques-
tion is interesting to study in the phone communication
medium for two reasons. On the one hand, because of
the personal and persuasive nature of phone communi-
cation and the ease with which it is established, social
influence via phone calls may extend beyond immediate
neighbors in the communication network. For instance,
upon receiving a positive impression of an event from a
colleague who attended it, individuals may be eager to
transmit and share that impression with their acquain-
tances. On the other hand, phone calls are a form of syn-
chronous oral communication that allows for less time for
contemplation and fewer opportunity for selective self-
presentation, which may reduce the impact of the commu-
nication on behavior (Berger and Iyengar 2013) and
hence its propagation in the network. Addressing this
research question has direct implications for IS and
marketing research. Indeed, if the effect of phone com-
munication is restricted to immediate neighbors, then
businesses should mainly target individuals who have
many direct connections in their communication net-
work. Otherwise, businesses should instead consider
targeting individuals who have many indirect neigh-
bors to capitalize on the cascading effect of influence.

2.4. Network Centrality and Application in
Seeding in Social Networks

There is a rich body of literature on centrality measures of

nodes in a network (Leng et al. 2020, Bloch et al. 2023).
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Intuitively, centrality quantifies how “central” a node is,
according to different criteria, and therefore captures
how important the node is in the network. This structural
importance of nodes is a crucial concept in network sci-
ence with many applications; in particular, it has been
widely applied to identify key individuals in social net-
works, bottleneck locations in infrastructure networks, or
superspreaders of epidemics (Newman 2018).

Defining node centrality (i.e., the importance of nodes)
for a certain application has generated much theoretical
interest in IS and network science research (Sundararajan
et al. 2013). In business research, one notable application
of network centrality is seeding. The key idea is to target
a small subset of individuals in the network for inter-
vention, leading to a maximal spread of information or
adoption decisions. In contrast to approaches based on
influence or utility maximization (Kempe et al. 2003, Dou
et al. 2013, Li et al. 2018, Mallipeddi et al. 2022), which
often involve computationally intensive procedures, es-
pecially in large networks, centrality-based seeding is
computationally efficient and easy to interpret. Different
centralities have been proven effective in a variety of con-
texts, for example, betweenness centrality (Jackson 2008),
Katz-Bonacich centrality (Ballester et al. 2006), diffusion
centrality (Banerjee et al. 2013), eigenvector centrality
(Golub and Jackson 2010), and degree centrality (Jackson
2019). A commonality of these centrality measures is the
focus on the context of information spreading or diffu-
sion in the network, where the implication for adoption
remains implicit. In contrast, in this work, we propose
influence centrality that is designed to capture the empir-
ical pattern of influence decay over successive connec-
tions. Thus, influence centrality is directly related to social
influence and thereby contributes more explicitly to increas-
ing overall expected adoption. In addition, different from
the standard Katz/eigenvector centrality or the state-of-
the-art diffusion centrality, where the indirect influence
decays exponentially at a common rate across successive
connections, our influence centrality incorporates dif-
ferent weights for neighbors at different geodesic dis-
tances from the focal user using empirically estimated
separation-specific rates of decay. This is another notable
difference from existing centrality measures which we
will discuss from a technical perspective in Section 5.

3. Technical Framework
We develop a technical framework for studying the social
influence that happens through phone communications

and its effect on offline decisions using CDRs. The pro-
posed technical framework consists of three steps: (1)
identify the adoption decision based on the visitation or
attendance inferred from the phone user’s mobility; (2)
use phone data to construct communication cascades,
identifying individuals who have direct phone calls or
are indirectly connected with adopters; and (3) isolate
social influence via phone calls from homophily, the
measurement of the latter is operationalized using the
mobility and phone call data.

3.1. Setting

We consider a large-scale mobile phone data set, CDRs,
collected in a small European country. The data set
includes individual phone use records (i.e., phone calls,
text messages, and Internet activities using the data ser-
vice) and the location of the cell tower with which each
record was associated. The mobile carrier we collaborate
with is the only network provider in the country, mean-
ing that the activity of all individuals who have been
connected to any cell tower in the country has been
recorded. The data set covers seven months, from Janu-
ary 2016 to July 2016. The cultural event under consider-
ation took place 22 times in July 2016 on most weekdays
(plus a few weekend days). The historical data from Jan-
uary to June 2016 are used to collect user behavior indi-
cators as appropriate controls, which we discuss in
more detail in Section 3.2.1. Table 2 shows the statistics
indicating daily average phone use for every individual
in the mobile phone data set used in this study.

We consider the offline adoption behavior of attend-
ing an international cultural performance in the country.
Although the performance venue was located in a city
park, the event took place late in the evening, which
reduced the chance of passers-by being mistakenly
identified as adopters. Three cell towers are located
within a 500-meter distance and cover an area of radius
of about 0.25-1.5 kilometers. We assume that the indivi-
duals who were connected to any of these three cell
towers during the event period (with a buffer time of
30 minutes before and after) are the ones who attended
the event (i.e., made the adoption decision). We discuss
the statistical implication of violating this assumption at
the end of this section. For notational convenience, we
call the cultural performance the “product” and the
attendees “adopters.”

We divide the overall data set into nonoverlapping
observation periods; each observation period is defined

Table 2. Basic Statistics About the Mobile Phone Data Set (Daily Average per Person)

Mean Standard deviation Minimum 25th percentile 50th percentile 75th percentile Maximum

Number of calls 2.84 3.64
Number of texts 3.04 5.73
Number of activities using data service 29.07 65.00

Number of total activities 34.95 66.40

0.00 0.92 2.00 3.65 68.90
0.00 0.67 1.81 4.00 45.65
0.00 0.00 3.20 36.90 3,355.10
0.00 4.00 11.00 43.08 3,359.58
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asT =[s,s+1], where T € ¥, s € S, and [ is the length of
each period. Here, W is the set of all observation periods,
and S is the set of the starting time instances of each
period. For each performance day, we choose the obser-
vation period T in Figure 1(a) to be a period of | =
24 hours, starting with the beginning of the performance
each day. The motivation for choosing this threshold is
that the cultural performance took place each evening,
and we would like to keep the observation periods nono-
verlapping (so that the communication cascades defined
later will not interfere with each other).

We now introduce several key concepts in this paper
in Figure 1(a). First, we define Dr as the set of initial
adopters for the observation period T. We identify indivi-
duals as initial adopters if they were connected to one of
the three cell towers nearest the performance venue dur-
ing a time interval at the beginning of the period T in
Figure 1(a), where the time interval is defined as the
time window of the performance (with a buffer time of
*+30minutes). This strategy is similar to the one in Toole
et al. (2015), which uses connections made to three cell
towers near an auto-parts manufacturing plant to label
whether individuals worked at the plant.

Second, we construct a communication cascade as a
directed graph Cr = (Z1,Er), where the node set Z1 =
{1,2,3,...,n} is a set of n individuals who have at least
one mobile phone activity in T; meanwhile, the edge set
Er ={(i,j)} is a collection of ordered node pairs (i, j),
conditioned such that i € Z7 has information about the
product when the communication with j€Zr takes
place and that i will spread the information to j. We

Figure 1. (Color online) Technical Framework

(a)

hop 1 hop 2 hop 3

20
/!@ 20 " a

cannot obtain the actual content of the communication
because of privacy considerations. The assumption that
information of interest has been transmitted through
the observed communication channel has been adopted
in prior studies (Aral et al. 2009).

We define the third concept, hop index, for an individ-
ual i in 71, as the length of the path from individual i to
an individual j € Dr. Therefore, an individual i of hop
index h is h-degrees of separation from an initial adopter
in Dr. In our analysis, we define treatment groups as
individuals who have not yet made an adoption deci-
sion and have been connected via a single path to an
initial adopter” in only one observation period. In addi-
tion, we define one treatment group for each hop & as
the group of individuals (from any observation period)
with a finite hop index /. If  is an isolated node in Cr for
all observation periods (i.e., if 7 is not connected directly
or indirectly to any adopter), then the hop index would
be infinity; hence, we use these nodes as the control
group, as in Figure 1(b).

Finally, we define the adoption period to be the period
that starts immediately after the observation period in
which one received a treatment,* until the last day of the
performance. Figure 1(a) illustrates the adoption period
in connection with the observation period.

Our data set includes 19 observation periods. We do not
construct the observation periods for the last three days of
the performance because individuals who received infor-
mation through phone communications on these days did
not have enough time to attend the event. For each obser-
vation period T, we construct a communication cascade

(b)

treatment group control group

20
|n|t|a| K & l%

adopter a. :g:

= X ) o .
& & ? a@ .!. j communication cascade dlsiia?;e:;idp:zm
= \ \ 7777777777777777777777777777777777777777
,. AE] @ @ a
i) i
.‘ (1] D D
| , &0 26 &0 g6
initial adoptar I communication l "future" adoption t a
cascade decision s 38 .9‘ 38

observation period

adoption period

a0 26 &¢ g6

matching for hop 1 matching for hop 2

Notes. (a) Each observation period is separated into two parts: (1) identifying the initial adopter and (2) constructing the phone communication
cascade. After this observation period, we evaluate the eventual adoption decisions in the adoption period. (b) Identifying treatment and control
groups. In the upper panel, we show how to construct the treatment group and the control group. Individuals connected to the initial adopter
directly (labeled as hop 1) and indirectly (labeled as hop 2 and higher) in the communication cascade Cr are categorized in the treatment group
during the observation period T. Individuals who are disconnected from any initial adopters through the information cascade Cr across all obser-
vation periods are labeled as the control group. As demonstrated in the lower panel of (b), we aggregate all observation periods and perform

empirical analysis separately for each hop index group.
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and compute the hop index for each individual appear-
ing in Cr. We remove individuals who had less than five
observations in the past six months to ensure that we
have sufficient information to control for. To reduce the
chance that individuals are communicating through
other information channels, we exclude the following
data: (1) phone calls between parties (i.e., the caller and
the receiver) that were served by the same cell tower,
thereby reducing the chance of including face-to-face
communications; (2) individuals whose network geode-
sic distance from the initial adopter in the communica-
tion network (with reciprocal phone communication)
from the two months prior to the event was shorter than
their hop indices; thus, we avoid inflation on hop indi-
ces computation; and (3) individuals who were discon-
nected from any individuals in the historical social
network. After removing individuals using these crite-
ria, our data set include 23,581 individuals across four
treatment groups. Another 21,652 individuals who were
disconnected from all communication cascades were in
a single control group.

3.2. Difference-in-Differences in Combination
with Behavioral Matching

Identifying the social influence effect is challenging,
especially when using observational data. That individ-
ual decision making (e.g., adoption behavior) in a social
network can be affected by a number of factors is widely
recognized. The first factor is the correlation or homo-
phily effect (McPherson et al. 2001), which suggests that
individuals tend to become neighbors (connected in the
network) because of a shared background or interest,
which in turn leads to the adoption by both individuals.
The second set of factors is exogenous factors (i.e., exter-
nal causes common to network neighbors (Manski 1993),
such as marketing campaigns). The third set of factors is
peer effects (i.e., social influence), which states that one’s
adoption is either directly or indirectly affected by com-
munication with one’s neighbors who have adopted the
behavior.

We use a difference-in-differences (DID) model in
combination with propensity score matching (PSM)
(Rishika et al. 2013, Li 2016, Dewan et al. 2017, Jung et al.

Table 3. Research Design of the Empirical Strategy

2019). We control for homophily using behavioral vari-
ables: For observed homophily, we use visited locations
in mobility history; for latent homophily, we use latent
positions inferred from a historical social network and
neighbors” eventual adoption behaviors. We also per-
form sensitivity analysis and robustness checks on the
results. Table 3 summarizes the empirical strategy of
this paper.

3.2.1. Behavioral Matching Based on Observed and
Latent Homophily. To ensure similarities between the
treated group and the control group in the DID analysis,
we first adopt a matching-based estimation framework
to assemble a matched sample of the treated and control
units. Deciding on which variables to use to match indi-
viduals is a critical question. Existing studies rely pri-
marily on socio-demographic information (de Matos
et al. 2014, Jung et al. 2019), but this approach has three
shortcomings. (1) Such information is not always avail-
able. (2) It does not capture the latent preferences (e.g.,
latent homophily; Ma et al. 2015). (3) It cannot adapt to
changes in individual tastes and preferences. To address
these issues, we design a behavioral matching frame-
work based on observed homophily (visited locations in
mobility history) and latent homophily (latent prefer-
ences inferred from the historical social network, and
neighbors’ eventual adoption decisions). We demon-
strate these three types of behavioral covariates, com-
puted using the mobile phone data, in Figure 2.

3.2.1.1. Observed Homophily: Revealed Preferences
from Mobility History. We first use individuals” history
of visited locations to control for observed homophily.
The theoretical foundations for using visited locations
are revealed preference theory and consumer behavioral
theory, which together suggest that consumer choices,
serving as revealed preferences, are indicative of con-
sumer preferences (Samuelson 1938, McFadden 2001).
Furthermore, co-occurrence of locations and mobility tra-
jectory similarities between individuals have been dem-
onstrated to reveal similarities in preferences (Ghose
et al. 2019). Thus, we use individual mobility histories on
weekends (i.e., the frequency with which individuals

Identification strategy

Sensitivity analysis and robustness checks

1. Observed homophily (x) PSM
2. Latent homophily (c,f)

1. Balance in propensity scores and covariates
2. Rosenbaum sensitivity test
3. Other matching strategies and Post-Lasso estimation

. Observed homophily (x) DID + PSM
. Latent homophily (c, f)

Trend before and after treatment (T,fter,,=1)

. Pretreatment difference (mp,=1) '

. Matched pair fixed effect (1)

. Time-varying common shocks (v;)

oUW N

Shuffle test
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Figure 2. (Color online) Three Types of Behavioral Covariates Extracted from the Mobile Phone Data to Approximate Observed

and Latent Homophilous Covariates
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Observed homophily Latent homophily

visit different places) as data for the revealed preference.
We specifically use mobility behaviors on weekends
because behavior in one’s spare time offers a better
proxy for individuals” preferences. In addition, it has
been shown that adjusting for behavioral covariates rel-
evant to the adoption decision of interest reduces the
estimation bias substantively and yields an estimate
that is statistically indistinguishable from what is
obtained through randomized controlled trials (RCTs)
in a Facebook context (Eckles and Bakshy 2021). In our
case, mobility behaviors are highly relevant to the adop-
tion decision of interest, which also is measured using
location visits.

We consider an individual-location matrix M, where
the ith row and kth column correspond to the ith indi-
vidual and kth location (i.e., of the kth cell tower),
respectively, and where m; represents the number of
times that individual i has visited location k during a
six-month period prior to the performance month. We
then apply principal component analysis (PCA) and
project M onto a subspace established by the top eigen-
vectors of its covariance matrix to obtain an eigen-
preference matrix in which the ith column, x;, represents
the latent preferences of individual i. We choose 19 prin-
cipal components (PCs) (x; € R% where d, = 19) in the
adoption behavior of attending the cultural perfor-
mance, such that they explain more than 90% of the vari-
ance in M.

3.2.1.2. Latent Homophily: Neighbors’ Eventual Adop-
tion Decisions and Latent Preferences Learned from
The Historical Social Network. In this section, we explain
how we control for latent homophily (Ma et al. 2015).
We control for two sources of latent homophily: (1)
using neighbors’ eventual adoption decisions as a proxy
for user fixed effects, following (Belo and Ferreira 2022);
and (2) latent positions learned from the historical social
network. We discuss how we control for these two
sources of latent homophily in sequence.

> 7
\ /‘\
/"’R‘\/ ~ 7 e

non-adopter

\. ‘\|/ __ reciprocal calls in

the past month

Eventual adoption behavior of neighbors
on historical social network (f)

Latent homophily

First, we follow Belo and Ferreira (2022) to control for
the adoption behaviors of neighbors (in the historical
social network) as a proxy for individuals” interest in
and attitude toward the adoption decision. The ratio-
nale behind this proxy is that, as a result of homophily,
adopters are more likely to be connected to adopters
and nonadopters to nonadopters. These connections
lead to a positive correlation between being an adopter
and having neighbors who also are adopters. Conse-
quently, neighbors’ eventual adoption decisions (observed
by the end of their respective adoption periods) are a direct
reflection of the focal individuals’ interests and prefer-
ences.” Therefore, adding these variables helps partially
control for latent homophily. We specifically use two mea-
sures, the number and percentage of neighbors who
ended up adopting the behavior, as the control variables
(denoted as f; € R? for individual ).

Second, we use latent positions learned from the his-
torical social network to further control for latent homo-
phily. Social networks can be informative about latent
characteristics of individuals resulting from homophily
(McPherson et al. 2001). McFowland and Shalizi (2023)
establish sufficient conditions under which controlling
for estimated locations in a latent space leads to asymp-
totically unbiased and consistent social influence esti-
mates, assuming a certain network formation process
(e.g., either a stochastic block model or a continuous
latent space model).® We adapt their approach to con-
trolling for latent covariates encoded in the historical
social networks in order to reduce bias due to latent
homophily; specifically, we propose using an efficient net-
work representation learning approach, node2vec (Grover
and Leskovec 2016), to learn feature representations for
the individuals using the historical social network.
Although this approach corresponds to a relaxation of
the specific assumptions in McFowland and Shaliz
(2023) in terms of the network formation process, the
principle behind node2vec remains that the network is
homophilous, that is, nodes with similar characteristics
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and preferences will be more likely to form a link. In
other words, individuals that have similar network
positions (e.g., they connect to one another or to the
same others, or they lie in the same social community)
remain close in a low-dimensional latent space. There-
fore, latent positions computed using node2vec (c; € R*
for individual i where d. = 16 in our case, determined
through hyperparameter tuning) can be used as covari-
ates in a regression to control for latent homophily. We
include more details on node2vec and how the parameter
d.is determined in Online Appendix A.

3.2.1.3. Behavioral Matching. As mentioned previ-
ously, there are multiple treatment groups for each
period T, and one for each finite hop index (Figure 1(b)).
For each treatment group, every individual is matched
to one individual in the control group. Thus, we use
PSM to control for observed homophily, drawn from
mobility histories, and for latent homophily, drawn
from latent positions from the historical social network
and neighbors’ eventual adoption decisions. The pro-
pensity score for being treated in hop & is defined as the
conditional probability of being connected to the initial
adopter via i hops, which we estimate based on indivi-
duals’ latent preferences using the logistic regression.
We estimate the propensity score model for each treat-
ment group and for the control group. Specifically, for
each hop index, we compute,

. (]P’(Di =1)

——t ) = " o® " aP® ‘o .
og ]P’(D1»=O)> ay +x;0 + ol +flaf + &,

where ()’ is the transpose operation; o € R* is the coef-
ficient vector for observed homophily; o’ € R% is the
coefficient vector for latent positions; & € R* is the
coefficient vector for neighbors” eventual adoption deci-
sions at the end of their respective adoption periods;
ags € R is the intercept; and &; is the error term. We use the
estimated coefficients to predict the time-invariant pro-
pensity scores of each user and match individuals using
the predicted propensity scores.

3.2.2. DID on Matched Samples. The DID approach
compares the changes in the adoption decisions of the

treated units before and after the treatment (i.e., the
communication) to the adoption decisions in the control
units over the same period of time. The behavioral
matching framework in the previous section helps sub-
stantially improve the similarity between the treatment
and the control group and to account for (both observed
and latent) homophily, thereby enhancing the inference
related to the DID analysis and improving the consis-
tency of the estimates (Stewart and Swaffield 2008). We
conduct the analysis on the matched samples separately
for each of the treatment groups. In other words, we
apply the DID model to the treatment group associated
with each hop index and to the corresponding matched
units in the control group.

The DID model takes a panel data set as its input; we
illustrate this structure in Figure 3. Following the stan-
dard in constructing panels to measure diffusion pro-
cesses, individuals leave the panel after they adopt the
behavior. Consider a matched pair s, as shown in Figure
3; the treated individual, Bob (for hop index 1, without
loss of generality), is on the left panel, and the matched
control individual, Anne, is on the right panel. Assume
that Bob was treated (i.e., he received a phone call) on
day 3 and attended the event on day 5. We add a series
of 1s after the treatment day for aftery;. Because Bob
adopted on day 5, we remove the dates after day 5.
Anne, the matched control individual, neither received
a call nor adopted; hence, the columns of “adoption”
and “received call” are filled with zeros. Because Anne
is matched with Bob, we let aftero; = after,i; for Anne.

We use a linear probability model with a binary out-
come variable as follows:

observed homophily  latent homophily
~ =

——f
Zgjt = X0ty +cgac + flop + Dy aftery;

homophily phone communications

+ D=1 + Taftery=1 + 7] + Vi + Egjr. @

sj=

In Equation (1), t is the index for a day in the time period
during which the event took place; ()’ is the transpose
operation; s indexes a matched pair of treated and con-
trol units; j denotes a treated (j = 1) or a control (j = 0)
unit; and € is the error term. The dependent variable

Figure 3. (Color online) Panel Structure for the DID Model, Showing the Data Structure for a Treated Individual (Bob) and a

Control Individual (Anne)
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zsj; is the adoption behavior of the (treated or control)
unit j in the matched pair s at time ¢, where z ; = 1 indi-
cates adoption and z; = 0 indicates nonadoption. D; is
a treatment dummy variable that equals one if the unit
is in the treatment group and zero if it is in the control
group; afterg; is a dummy variable that equals one for
the time period after the treatment (e.g., direct or indi-
rect communication) and zero for the time period before
the treatment.

The main parameter of interest is 7, which measures
the change in the likelihood of adoption if the individual
had been included in the treatment group correspond-
ing to hop £ (i.e., if he or she had received the phone call
during the observation period with & hop distances
from the initial adopter). We use 7tp,=1 € R to denote the
pretreatment difference in the two groups, which turns
on for the treatment unit in the matched pair s. We use
Tlaftery=1 € R to denote the time trend in the control
group before and after the treatment is received. This
variable turns on after the treatment is received and var-
ies across the matched pairs s. We further use the fixed
effect (n,) at the level of matched pairs s to capture
the potential, unobserved, time-invariant heterogene-
ity.” Finally, to control for common shocks over time
that affect the adoption behavior (e.g., a discount for an
event occurring at a certain time period t), we include
the time fixed effect v; which is specific for each time
period ¢, thus addressing the possible time-varying
common shocks. The time fixed effect v, differs from
Tlafter,, =1, because the former is fixed effect at f and is the
same across different units, whereas the latter differs
across matched pairs. We use a, € R%, . € R%,and as €
R? to represent the coefficients for the observed mobility
covariates (x), latent positions (cs), and the neighbors’
eventual adoption behaviors by the end of their respec-
tive adoption periods (f;).

We provide a final remark on potential measurement
errors. The first source of measurement errors in using
phone data to estimate social influence is identifying
adoption decisions. Adopters may not actually use their
phones when attending the event, or individuals may
pass by the performance venue without attending it.
These measurement errors can affect two variables: (1)
the adoption decisions of individuals in the treatment
group and the control group zy; and (2) the identifica-
tion of initial adopters, leading to errors in the treatment
Dq;. Second, each observation period in our setting is
limited to 24 hours, and any phone calls made with ini-
tial adopters directly of indirectly beyond this period
can generate a measurement error in the treatment vari-
able D;;. The classic result in the econometrics literature
shows that (1) a mismeasured outcome z,; does not lead
to a bias and (2) a mismeasured predictor (e.g., the treat-
ment variable D;;) will bias the effect toward zero (Lewbel
2007). In other words, a mismeasured adoption outcome
does not bias our estimate of the social influence effect.

However, if we have measurement errors in identifying
the initial adopters or if some treatments are missing after
the observation period, this will lead to an underestima-
tion of the social influence effect. Nevertheless, our results
remain valid even with these types of measurement
errors. We discuss the impact of measurement errors on
our social influence estimates in more detail in Online
Appendix B, closely following theorem 1 of Lewbel
(2007). Overall, despite potential measurement errors, our
results remain valid.

4. Empirical Results
4.1. Long-Range Effect of Social Influence via
Phone Communication
We use the technical framework developed in Section 3
to quantify the long-range effect of social influence via
phone calls based on CDRs. The summary statistics of
all control variables we use are included in Online
Appendix C. As described in the previous section, our
identification strategy consists of matching followed by
DID analysis. To visually demonstrate how the DID esti-
mator works, in Figure D1 of Online Appendix D, we
plot the over time survival rate separately for the treat-
ment and the control groups. As we can see, starting
from the date of the treatment—having received the
phone call—the two groups exhibit a widening gap in
survival rates (one minus the probability of adoption),
as the treated group becomes differentially more likely
to attend the event and therefore are subsequently
dropped out of the sample. The differential surviving
rate quantitatively reflects the cumulative effects of
social influence over time.

We are now ready to present our main empirical
results. We present the main estimates on the change in
the adoption likelihood (i.e., attending the event) due
to social influence through phone communication in
Table 4. The detailed estimation results are presented in
Tables E1 and E2 in Online Appendix E. In Figure 4, we
present the estimates, with respect to different hop indi-
ces, relative to the adoption likelihood of the control
group. Our analysis reveals that being a direct contact of
an initial adopter increases the likelihood of attending
the event by 87.61%.® For individuals who are two
degrees of separation away from the initial adopter, the
increase in adoption likelihood is 68.65%. The effect of
social influence on adoption likelihood weakens as the
degree of separation increases. Individuals who are three
degrees of separation away from the initial adopter have
a 53.10% increase in adoption likelihood, whereas those
who are four degrees of separation away have a 46.71%
increase. Interestingly, we find that the increase in ad-
option likelihood from direct neighbors to two-degree
indirect neighbors decreases by 21.65% (—27%). The

increase in adoption likelihood for three-degree neigh-
bors is further reduced by 22.64% (— %) compared
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Table 4. Social Influence Estimate (y;,) from Equation (1)
Dependent variable: Adoption
Hop 1 Hop 2 Hop 3 Hop 4
Dy; afterg; 0.0086*** 0.0067*** 0.0052*** 0.0046***
(0.0004) (0.0003) (0.0006) (0.0006)
Time fixed effect (v;) v v v v
Pair fixed effect (1;) v v v v
Time trend (T[aftersﬂzl) v v v v
Pretreatment difference (mtpy=1) v v v v
Observations 360,226 368,000 60,398 49,680
Residual standard error 0.0386 0.0341 0.0227 0.0205
(df = 348,243) (df = 355,980) (df = 58,007) (df = 47,680)

Note. Robust standard errors in parentheses.
*p < 0.1; %p < 0.05; **p < 0.01.

with the increase observed for two-degree neighbors.
Overall, we observe a significant positive effect of influ-
ence through phone communication from hop one to
hop four, demonstrating the long-range impact of social
influence via phone communications. This finding sug-
gests the potential of viral and seeded marketing designs
using phone communications. Although the treatment
effect for hop five is also significant, the estimate is not
robust to unobserved confounders, as confirmed by
the Rosenbaum sensitivity analysis (see Section 4.2 for
details). Therefore, we limit our analysis to hops one to
four, representing four degrees of separation.

Our empirical results on the long-range and decaying
social influence motivate us to better understand this
observation in two aspects: (1) whether the results are
reliable according to different robustness checks and (2)
what might be the mechanism behind the long-range
effect. We address the first point in Section 4.2 and the
second in Section 4.3.

4.2. Robustness Check

4.2.1. Balance Between the Treatment Group and the
Control Group. Checking covariate and propensity
score imbalance postmatching is important to assess the
quality of the matching technique. In our study, the
standardized differences in the covariates of the treat-
ment group and the control group after matching are far
below the rule-of-thumb value (Figure F1 of Online
Appendix F1). After matching, we achieved substantial
reductions in the differences between treatment and
control groups for all latent homophily-related covari-
ates and most observed homophily-related covariates,
as indicated by significant coefficients in Table F1 of
Online Appendix F1. We observe that the distributions
of the propensity scores for the control and treated
groups are similar and have a significant postmatching
overlap (using Figure F2 and Table F2 in Online Appen-
dix F1). Both robustness checks in the covariates and the
propensity score demonstrate that the matched pairs in
the treatment and control groups are well balanced.

4.2.2. Sensitivity Analysis Toward Unobserved Con-
founders. As the treatment assignments in our study
(i.e., the phone calls) are not randomized, there may still
be some level of bias in our analysis, despite our efforts
to control for observed and latent homophily. We ana-
lyze the sensitivity with respect to the selection on
unobservables using the Rosenbaum bounds approach
(Rosenbaum 2005). It evaluates the extent to which
unobserved variables might affect an individual’s
assignment into the treatment or control group and,
therefore, the inference. We use the odds ratio of treat-
ment assignment (I') to quantify the amount of bias from
unobserved variables required to change the results qual-
itatively. Our results, as shown in Figure F3 in Online
Appendix F2, indicate that the critical level of I' at which
we would question the validity of the PSM is greater
than 8.5 (hop 1), 7.4 (hop 2), 2.0 (hop 3), and 2.0 (hop 4).
Specifically, for hop 1, when I is greater than 8.5 the
upper bound p value is larger than 0.05, indicating that
the confidence interval for the social influence effect
would include zero if an unobserved confounder caused
the odds ratio of the treatment assignment to differ
between the treatment and control groups more than 8.5.

Figure 4. (Color online) Change in Adoption Likelihood
from Social Influence Through Phone Communications (Rela-
tive to the Matched Control Group)
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Note. The vertical line corresponds to the 95% confidence interval.
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This interpretation applies to other hops as well. Although
there is no clear consensus on a rule-of-thumb value for T,
some studies have suggested that anything above I' = 1.5
indicates substantial insensitivity to unobserved confoun-
ders (Sen 2014, Ransbotham et al. 2019). Our I values are
sufficiently larger than this value across four hops, indicat-
ing that our results demonstrate substantial insensitivity to
hidden bias and strong support for the existence of social
influence through phone communications up to four
degrees of separation. However, beyond the fourth hop,
the results are no longer robust to unobserved confoun-
ders, and therefore, we exclude them from our analysis. In
summary, our findings, as shown in Figure 4, are robust to
a plausible range of unobserved selection bias, up to the
fourth hop.

4.2.3. Shuffle Test. To further validate our findings on
the impact of social influence through phone communi-
cations, we perform the “shuffle test” introduced by
Anagnostopoulos et al. (2008). This shuffle test aims to
exclude the effect of social influence while retaining
other factors, such as observed homophily and latent
homophily. This method, adapted by Belo and Ferreira
(2022), provides a lower bound in absolute terms for the
effect of social influence (see appendix E of Belo and Fer-
reira (2022)).

To conduct this test, we shuffle the dates of the phone
calls (hence, the treatment) within each treatment group
(for each hop index) so that the overall adoption rate

and the adoption curve (by time) remain the same. We
further constrain the shuffling to include only the indivi-
duals that were treated in the same week, similar to the
approach in Belo and Ferreira (2022). This restriction
addresses the concern that the adoption dates may con-
ceal unobserved effects leading to adoption. Specifi-
cally, unrestricted shuffling may not be desirable in the
presence of temporal clustering in the adoption pattern.
For instance, it could lead to the assignment of late adop-
tion dates to early adopters. We then use the same DID
strategy on the matched pairs (according to observed
and latent homophily) to compute the change in adop-
tion likelihood on the shuffled data. Afterward, we com-
pute the empirical distribution of the effect of social
influence using the shuffled data, and we compare this
distribution with the effect of social influence from the
original data. We can reject the null hypothesis of no
social influence if the estimates from the original data fall
outside the 95% confidence interval of the parameter
obtained from the randomized data. Figure 5 shows that
the estimates from the original data are outside the 95%
confidence interval of the estimates obtained from the
shuffling procedure. Additionally, the estimates obtained
from the shuffled data are significantly lower than those
obtained from the original data for all hop indices. Hence,
we reject the null hypothesis that y, =0 for h € {1,2,3,4}
and conclude that social influence increases the likelihood
of adoption up to four degrees of separation. Given that
randomization provides a lower bound for the effect of

Figure 5. (Color online) Distribution of Estimates over 100 Shuffles of Adoption Dates
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social influence, this test indicates that the observed pat-
terns of social influence up to four degrees of separation
are not likely to be driven entirely by the effects of homo-
phily or other unobserved confounders.

4.2.4. Other Observational Analysis Methods. We test
a series of methods (including coarsened exact matching,
subclassification, Mahalanobis distance matching, and
post-Lasso estimation), with results shown in Figure G1
in Online Appendix G. All methods present the long-
range social influence effect with a decay pattern as the
degree of separation increases, suggesting the robustness
of our findings with respect to the observational methods.

4.3. Mechanism: Information Loss Along Phone
Communication Cascade

The empirical findings motivated us to investigate the
potential mechanism that leads to the decay of social
influence along the hop indices in the communication
cascades. To this end, we adopt a simple structural
Bayesian approach that models a sequential update
process through information sharing, following Zhang
(2010). In this process, information about the quality of
the event (i.e., the subject of adoption) is shared through
WOM communication via phone calls.

In the following paragraphs, we discuss the utility
function and the Bayesian learning process. Let u;(Si)
denote the utility of user i to adopt the decision at time ¢,
based on state variables contained in Sy = {I;;, (3}, where
I+ is a set of signals i received up to t and Cy is the idiosyn-
cratic utility shock to individual i. Following Zhang
(2010), we have’

ui(Si) = a0 — OZPG% + Cit, ()

where 0, characterizes any unobservable quality compo-
nent of the product at time #; a is the associated utility
weight; p captures i’s risk-averse tendency. Because of
the time and monetary costs of attending the event (i.e.,
relative to resharing content on social media or down-
loading an app), we assume that individuals are risk-
averse. We follow Zhang (2010) and introduce the
quadratic term ap6? to capture this tendency, allowing
for a positive risk-averse tendency p. Based on this utility,
individuals then make an adoption decision using a sig-
moid function:

1

We assume that individuals have prior knowledge
about the distribution of 6;, which is assumed to be i.i.d.
normal with fixed mean u and variance 0%: 0 ~ N (u,
03). In our context, such prior knowledge might be
obtained from television or offline advertisements of the
event. In addition, user i might receive a private signal
s;+ of the unobserved quality 0;.

P(u;(Si)) = 3

We next describe two types of information update
processes. The signal S; might be derived from the
experience of attending the event (for initial adopters)
or from communicating with their neighbors (for noni-
nitial adopters). In addition to their prior knowledge
and their own private signals (available if they have
attended the event), individuals can gather private sig-
nals from individuals with whom they communicate
via phone calls. That is, compared with individuals in
the control group, those in the treatment groups can
fine-tune their quality signals if they also receive private
signals from phone communications.

According to Bayes’s rule, the expectation of the poste-
rior distribution of 0, is a weighted average of the poste-
rior mean p and the private signal, which follows a
normal distribution with mean s; and standard devia-
tion o, If one’s private signal is the only information
available (e.g., in the case of initial adopters, after they
attended the event), then the rule for updating the expec-
tation of 0; is (following equation (8) of Zhang (2010)):

05t + 07

E(gtllit) = 90%%0‘?#’ I,‘t = {Sit}- (4)
On the other hand, if an individual 7 receives r private
signals by communicating with others (e.g., in the case
of any noninitial adopters from hop 1 onward in the cas-
cade), the expectation of the posterior distribution of 6,
is a weighted average of the prior mean u and the sam-
ple average of these signals (following equation (9) of
Zhang (2010)):

2 r 2
OBy 5+ 02

E(O4|I) =
(f|lt) Gé+652

, i = {s1t, ..., sm)- @)
We then use simulation to understand two elements. The
first element is information loss along the communication
chain from hop 1 to subsequent hops, which is repre-
sented by the difference in the expectation of the poste-
rior probability on 0; (when simulation stops) between
the initial adopter and individuals in later hops. We let

Information loss = %Z E(O4I) — %Z E(OiLi))|,
i€Zy h| €L
(6)

where 7 is the set of initial adopters and 7, is the set of
individuals in hop .

The second element is how information loss affects
adoption decisions and, in turn, social influence. The
strength of social influence is computed as

Strength of social influence
= P(ui(Si,1=1)) — P(ui(Si,1=0))- @)
In this setup, the effect of social influence is quantified
by the difference in the probability of adoption before
and after receiving the information via phone calls. In
the simulation, we let 69 =0.1,0,=0.1, 2 = 1, p=0.1,
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and C; ~N(0,0.1). The prior mean for all individuals is
set at yu = 0.5. Given the reputation of the event, the ini-
tial adopter is likely to receive a private signal reflecting
the high quality of the event, in which case we set s;; =
0.9 if i € Zy. In our empirical setting, we consider only a
single-path communication cascade; therefore, the pri-
vate signal would come only from the individual who
communicated with .

The simulation process aims to mimic social learning
in phone communication using the following steps in
sequence:

1. The initial adopter computes the posterior using
Equation (4), after receiving their private signals through
attending the event.

2. The initial adopter communicates with and sends
a private signal (drawn from the posterior from Equa-
tion (4)) to the individuals in hop 1 (which is set as the
current hop index).

3. Individuals in the current hop update their poste-
rior probability, according to Equation (5).

4. Compute the adoption probability of the individual
(who received the information signal) using Equation (3).

5. Repeat steps 3 and 4 to start the next hop and all
subsequent iterations up to the fifth iteration."

We simulate the process 1,000 times over a single
branch of a hypothetical communication cascade. The
results are presented in Figure 6. As shown in the left
panel, we see that information loss increases as the hop
index increases, which provides evidence that informa-
tion is lost along the communication cascade. The right
panel shows social influence based on the difference in
adoption probability, computed using the prior signal
and the posterior signal. That is, for each user in the
communication cascade, we compute the difference in
the adoption probability before and after the phone
communication. We see that social influence decreases
along the hop indices because of the information loss.
This simple Bayesian model provides a mechanism that
may explain the empirically observed decay of social
influence in Section 4.1.

5. Influence Centrality

Centrality is an important characteristic for nodes in a
network. It has been widely used in network-based
systems—for example, in seeding for marketing pur-
poses. Defining node centrality for a given application
has generated substantial theoretical interest in IS, net-
work science, and economics research (Sundararajan et al.
2013, Liu 2019). Because centrality measures can be used
to understand how diffusion processes on digital and
information networks may alter a wide variety of eco-
nomic outcomes, centrality’s definition and quantification
may vary, depending on the substantive settings. One
immediate implication of the long-range effect of social
influence in Section 4.1 is the development of a new
context-dependent centrality measure, which we call
influence centrality. Influence centrality is designed to
quantify the structural importance of nodes, relating the
overall increase in expected adoption to a node that
serves as the “injection” node (i.e., the individual who is
seeded to diffuse a certain product or behavior).

5.1. Influence Centrality: A New Centrality Based
on Social Influence Effect

Consider a marketing firm or a public health agency
that aims to use WOM through mobile phone communi-
cations to spread information about a product or health-
related behavior—for example, an offline event in the
former case or the benefits of immunization in the latter.
To what degree does the overall increase in expected
adoption rely on who the firm or agency approaches
first (e.g., to offer free tickets or free trials)? Given that
we are interested in social influence, this question is dif-
ferent from questions about increasing the spread of
information in the network, which is the motivation
behind many widely applied centrality measures. Our
centrality measure answers this question by quantifying
the importance of a user in the network with regard to
the increase in expected adoption if this user is the only one
initially informed.

Figure 6. (Color online) Information Loss in a Bayesian Learning Process (According to Equation (6)) Can Lead to Social Influ-

ence Decay (According to Equation (7))
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The measure is defined in a random walk fashion
using an independent cascade model (Easley and Klein-
berg 2010). Assume that each informed individual calls
a neighbor in the social network with probability p, and
that call from the seeded individual increases the adop-
tion likelihood of immediate neighbors by y;. As social
influence propagates, it reaches longer distances over
the social network; we assume that this initial seed
increases the adoption likelihood of each of the second-
degree neighbors (who has been called with probability
p?) by y,, of each third-degree neighbor (who has been
called with probability p°) by 3, and so on. Recall that
the adjacency matrix of the historical social network is
A. The two-hop adjacency matrix, which captures indi-
viduals who can reach one another by two hops, is A2.
Similarly, the i-hop adjacency matrix A" measures the
expected number of walks of length / between each pair
of individuals. The diffusion process continues until a
fixed degree of separation is reached. We can therefore
define influence centrality, abbreviated as IC, as follows:

H
IC(A;p,v,H)=> 7,pA)" -1, ®)
h=1
where H is the maximal reach of the social influence
(we choose H = 4 as informed by our empirical results
in Section 4.1), and 1 is an all-one vector. The values
of y={y,,...,yy} are estimated empirically using our
framework and account for the decaying strength of
social influence.

IC bears similarities to and generalizes prevailing cen-
trality measures. The main difference between IC and
other centrality measures is its focus on increasing social
influence and expected adoption, as well as its capability
of accounting for heterogeneity between neighbors at dif-
ferent hop indices (via ). From this perspective, IC can
be perceived as assigning a weight y, to edges in a ran-
dom walk matrix (pA)", where the edge weights can be
estimated empirically through the technical frame-
work in Section 3. If y = {1},11{:1, p=1,and H=1,1Cis
proportional to the degree centrality. If y = {1}}", and

H = o0, IC becomes proportional to either the Katz cen-
trality or the eigenvector centrality, depending on
whether p is smaller than the inverse of the largest
eigenvalue of A or not."" Finally, IC is most similar to
the diffusion centrality proposed in Banerjee et al.
(2013) among all centrality measures. However, the
focus of the former is to amplify the influence on adoption
(hence different y), for different /1) while the latter (and
indeed most centralities in the literature) is on the diffu-
sion of information (hence y/, is homogeneous across dif-
ferent ). In all these approaches, the communication
(diffusion) probability p can be estimated either empiri-
cally or using simulations to test for robustness. For exam-
ple, we estimate p from the historical data: On each day of
the month prior to the event, each individual communi-
cated, on average, with 7% of the individuals they com-
municated with during the whole month. Hence p is set
to be 0.07 in our analysis.

Following the evaluation procedure described in Bane-
rjee et al. (2013), we conduct regression analyses to evalu-
ate the predictive power of mean and median centrality
of those who have information about the product initially
(e.g., those who attended the event) on the number of
eventual adopters for each observation period. To per-
form the analyses, we first compute degree centrality,
eigenvector centrality, Katz centrality, diffusion centrality
and influence centrality using the historical social net-
work.'? Then, for each observation period, we compute
the mean and median centrality of initial adopters using
any centrality measure above (as the independent vari-
ables), and record the total number of individuals that
eventually adopted (as the dependent variable) after
excluding initial adopters. This processing step gives us a
pair of data points for each of the 19 observation periods.
To test the predictive power of different centralities
toward the number of adoptions, we then regress the
dependent variable (total number of adopters) on the
independent variables (mean and median of a certain
centrality of initial adopters) and show the coefficient of
determination (R?) of the regression model in Figure 7.

Figure 7. (Color online) Proportion of Variance in the Total Number of Adopters Explained by the Centrality of the Initial
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We can see that IC outperforms the other centrality mea-
sures in predicting the number of adopters; hence, it is
a stronger predictor of adoption behavior, thanks to
accounting for quantitative estimates of social influence
over successive connections. This experiment suggests
the possibility of IC being used to inform strategies for
commercial firms in promoting product adoption (Aral
et al. 2009), for the government in encouraging voter turn-
out (Bond et al. 2012), and for public health agencies in
promoting immunization programs (Banerjee et al. 2019).

5.2. Policy Implication in Seeding and
Viral Marketing

The proposed influence centrality, combined with the
empirical results in Section 4.1, has a number of policy
implications because managers and campaigners can use
such knowledge to improve their decision making as they
promote new products or behaviors. In this section, we
quantitatively demonstrate how raising the communication
probability over each connection (thus promoting phone
communications) and the number of initial seeds can signif-
icantly amplify the expected adoption. First, IC can be
applied in seeded marketing to identify a set of individuals
for targeted interventions that can maximize overall likeli-
hood of adoption."® Second, we quantitatively demonstrate
in a simulated environment where high-centrality nodes
are targeted to be the initial adopters, raising the communi-
cation probability over each connection and the number of
initial seeds can significantly amplify the overall expected
adoption and may be desirable despite the cost of these
interventions. This exercise can inform optimal seeding in
viral and targeted marketing campaigns.

To further investigate these policy implications, we
conduct two analyses. The simulation procedure used
in these analyses is summarized in the following steps:

1. Compute IC on the historical social network A.

2. Rank the centrality measures and select the top m
individuals as seeds (initial adopters), where m is a pre-
determined number.

3. For neighbors of each seeded individual (for the
first iteration) or neighbors of individuals who have
received influence in the previous iteration but has
not yet diffused influence (for subsequent iterations),
decide whether each specific neighbor receives the
phone call (hence influence), according to a predeter-
mined communication probability p. If the individual
receives the phone call, then the adoption likelihood
for that individual will increase by ), where / is the
individual’s distance to the initial adopter in the net-
work. Keep track of the total increase (from multiple
iterations) in adoption likelihood for each individual
who has received influence. The upper bound of the
total increase in the adoption likelihood is one.

4. Start subsequent iterations by repeating step 3 up
to the fourth iteration (i.e., up to hop 4 neighbors of ini-
tial adopters, inspired by our empirical results).

5. Compute the increase in expected adoption by sum-
ming up the effect of social influence (y) on all indivi-
duals who receive the treatment (based on their distance
to the initial adopter). The hop index of a specific indi-
vidual who has received the information is based on the
degree of separation from an initial adopter.

Two factors may play a role in the total increase in
expected adoption: the number of seeds m and the com-
munication probability p. In the following sections, we
first examine how these two factors are related to the
increase in expected adoption (Section 5.2.1); we then
examine two marketing strategies based on these two
factors, analyzing the cost and benefit of these strategies
(Section 5.2.2).

5.2.1. Expected Adoption with Respect to Seeding and
Communication Probability. Figure 8 shows the increase
in expected adoption as a function of the two factors we
consider: the number of seeds and the phone communi-
cation probability. In Figure 8(a), we see that the increase
in communication probability leads to an increase in the
expected adoption, as expected. However, this effect is

Figure 8. (Color online) Overall Increase in Expected Adoption Based on the Different (a) Communication Probability, (b) Number
of Initial Seeds, and (c) Joint Effect of These Two Factors, with Color in the Heatmap Indicating the Increase in Expected Adoption
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not linear; instead, two phases of transition indicate
where the increase is more significant: The increase (on a
logarithmic scale) is the most significant before reaching
the probability of p = 0.2, and it slows down up to p = 0.4.
After this point, the effect of seeding becomes saturated.
A similar pattern can be observed in Figure 8(b), which
shows the effect of the number of seeds. Indeed, the ini-
tial 20-30 seeds lead to a significant increase in expected
adoption (again on a logarithmic scale) before the effect
saturates. This saturation is understandable because the
seeds were chosen according to decreasing influence cen-
trality. We could also investigate the joint effect of the
two strategies, that is, increasing the number of seeds (1)
and promoting the probability of communication (p),
which is illustrated in Figure 8(c). These results confirm
that both the number of seeds and the communication
probability play a role in the increase in expected adop-
tions. The former is related to seeded marketing, and the
latter to viral marketing. This analysis motivates us to
examine two marketing strategies based on these two fac-
tors in the following section.

5.2.2. Cost-Benefit Analysis in Seeding and Viral Mar-
keting. To analyze the cost-effectiveness of the two fac-
tors discussed in the previous section, we examine two
marketing strategies in seeded WOM and viral market-
ing. We first describe the strategies as follows.

Strategy 1: Seed m individuals, through promo-
tional offers and/or free tickets. This strategy has a
direct effect on increasing expected adoption.

Strategy 2: Seed m individuals; in addition, pro-
mote phone communication across the network by
designing viral features into the advertising content
(Aral and Walker 2011). Either the marketing team of
an advertising firm or a third-party content market-
ing firm can design such features. As a result of this
action, the communication probability p increases in

all iterations of step 3 of the simulation, resulting in
an increase in expected adoption.

For strategy 1, we consider a base communication
probability of p = 0.07, which is similarly estimated
from historical data as in Section 5.1. For strategy 2, we
consider three levels of marketing services that involve
engineering viral content. These levels lead to adoption
probabilities of p = 0.12 (basic), p = 0.15 (pro), and p =
0.17 (diamond), respectively.'*

We set the cost of adding a seed to be c; and the cost of
designing viral features to increase p to be ¢, (this cost
increases as we go from the basic level to the diamond
level). Thus, the cost of the two strategies is as follows:

Strategy 1: ¢; X m.
Strategy 2: ¢; X m +c,.

We collect statistics from real-world data to make the
simulation more realistic. We set the benefit of every
100% increase' in expected adoption at $88 (the aver-
age ticket price for the offline event in this study) and
compute the total benefit as this amount times the
increase in units of expected adoption. We set ¢; = $22 (}
of the ticket price) and ¢, € {$202,$337,$560} for the
three levels of services for viral content design.'® By sub-
tracting the cost from the benefit, we can analyze the
cost-effectiveness of the strategies under different num-
bers of seeds .

Figure 9 shows the net benefit (benefit minus cost) of
the strategies as a function of the number of seeds. The
“no viral marketing” scenario corresponds to Strategy
1, whereas the other three scenarios correspond to Strat-
egy 2. As expected, the net benefit increases as the num-
ber of seeds increases for all levels of viral marketing
efforts. The addition of viral features leads to an increased
net benefit in all scenarios; the increase is most pro-
nounced when the number of seeds is small, although this
effect becomes saturated when more seeds are added. In
addition, for the same level of net benefit, one can either

Figure 9. (Color online) Policy Simulations Using the Two Marketing Strategies, with Different Service Levels and Number
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improve the viral content or increase the number of seeds.
For example, using the “pro” service and seeding 8 indivi-
duals generates roughly the same net benefit compared
with using the “basic” service and seeding 32 individuals.
These findings demonstrate that both a seeding strategy
based on IC and promoting communications in the social
network using viral features are effective in promoting
adoption. Engineering viral content to increase communi-
cation probability is particularly effective when the num-
ber of seeds is small (toward the left end of Figure 9), for
example, practical constraints limit the ability to expand
seeding. The marketing strategies may both be profitable,
despite their costs, and a cost-benefit analysis can be used
to estimate their net benefit.

6. Discussion

Phone communications play a crucial role in facilitating
information exchange due to their unique characteris-
tics, as shown in Table 1. The availability of large-scale
and longitudinal mobile phone communication data
and the associated mobility information from CDRs has
allowed us to identify social influence on one’s immedi-
ate and distant neighbors in the phone communication
network. In this study, we propose a new technical
framework to investigate how social influence spreads
through this communication channel. Our findings de-
monstrate that social influence through phone commu-
nication can impact an offline adoption decision up to
four degrees of separation in the phone communication
network. This finding improves our fundamental under-
standing of how social influence spreads through an
underexplored phone communication channel. More-
over, our empirical results have inspired the develop-
ment of a new centrality measure, influence centrality,
which evaluates the structural importance of nodes in
amplifying expected adoption. This centrality measure
offers a new perspective on leveraging the complex struc-
ture of social networks for marketing purposes via
mobile phone communications, thus expanding the exist-
ing literature in network science. This measure provides
a fresh perspective on using the complex structure of
social networks for marketing purposes through mobile
phone communications, expanding the existing literature
in network science.

6.1. Theoretical and Managerial Implications

6.1.1. Quantitative Framework for Studying Social Influ-
ence via Phone Communication. Despite the wide-
spread use of mobile phones and their potential for
mobile advertising campaigns, understanding social
influence on adoption behaviors through phone com-
munication has been hampered by the lack of practical
tools for identifying influence in large-scale networks.
Our study proposes a technical framework for studying
the impact of social influence mediated through phone

communications using CDRs, which have become in-
creasingly accessible in recent years (see Online Appen-
dix I). Our framework carries several potential and
practical implications. (1) Our methodology for isolating
social influence from homophily (and in particular, both
observed and latent homophily) using social interaction
and behavioral data can be helpful in empirical IS re-
search when socio-demographic information is not avail-
able. (2) Our framework can be applied to other adoption
decisions and other types of social interaction data, such
as Facebook, Twitter, and Yelp, or communication
media, such as video calls or text messages. Overall, our
analysis demonstrate the potential of combining large-
scale spatial-temporal data and network mining with
econometric models to better understand and quantify
social influence. As discussed in Section 5.2, this under-
standing and quantitative estimate can lead to more
effective strategies in seeded and viral marketing.

6.1.2. Seeded WOM and Viral Marketing. Seeded WOM
and viral marketing are popular techniques used in the
advertising industry and in public health campaigns
and government initiatives. Despite their effectiveness,
identifying the right individuals to seed remains a chal-
lenge. In network contexts, centrality measures are often
used to select influential seeds. However, existing cen-
trality measures focus on information spread and diffu-
sion, while neglecting the importance of social influence.
To address this gap, we propose a new centrality mea-
sure called IC. Unlike existing measures, IC focuses on
amplifying social influence, leading to an increase in
expected adoption. Our empirical findings on the decay-
ing patterns of social influence reveal the heterogeneity
of influence across different hop indices from a focal
individual’s perspective. Additionally, IC’s context-
dependent nature and ability to capture heterogeneity
can lead to more effective marketing strategies for
commercial firms and for successful campaigns for
humanitarian and public health goals. Our study offers
new perspectives on developing targeted seeding strat-
egies and identifying influential individuals in social
networks. By incorporating IC into seeding and viral
marketing strategies, organizations can more effec-
tively harness the power of social influence to achieve
their goals.

6.1.3. Extending Hyper-Contextual Mobile Targeting
to Phone Communication Networks. Mobile targeting
enables personalized advertising based on hyper-
contextual insights derived from mobile phone usage
data, including location (where), time (when), search
behavior (how and what), and copresence with others
(with whom). Our study builds on this theory by
extending the concept of copresence (with whom) to
include phone communication networks. We demon-
strate that social influence can spread through phone
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communication networks, allowing firms to target in-
dividuals who have interacted with recent product
adopters, even indirectly. Our findings highlight the
importance of considering phone communication net-
works when designing hyper-contextual mobile target-
ing strategies.

6.2. Limitations and Future Work

Our study has several limitations that provide avenues
for future research. First, although we measure observed
and latent homophily by analyzing detailed behavioral
information, the CDR data are not comprehensive and
cannot capture social interactions that take place through
other communication channels (e.g., online or email
interactions). This limitation in observability is a general
concern for most, if not all, social influence studies using
data collected from one digital platform (such as online
social media (Bond et al. 2012) or messaging apps (Aral
and Walker 2014)): Because of ethical and privacy consid-
erations, and the technical challenge in merging social
interactions from multiple communication media, most
studies only obtain social interactions from one medium.
Consequently, our method, relying on the CDR data,
establishes upper bounds on influence estimates when
communications through other channels are unobserved.
Second, we do not observe the content of phone commu-
nications due to data privacy and confidentiality reasons.
As a result, the social influence effect on event attendance
that we intend to measure may not have taken place
through phone calls. Future studies might use surveys,
similar to that in Lovett et al. (2013), to assess the proba-
bility of relevant information being spread through
phone communications. Third, because of the lack of suf-
ficient data, we investigate the treatment effects of a sin-
gle communication path between the initial adopter and
an individual a certain distance away in the communica-
tion work. Future studies might consider multiplicative
effects of social influence with multiple communication
paths. Fourth, our empirical context focuses on attending
an offline performance event, so the generalizability of
the findings is limited to similar offline behaviors. Future
studies may apply the proposed framework to investi-
gate which real-world offline behaviors are amenable to
phone communication. Our framework might also be
used to study heterogeneity in the effects of social influ-
ence (e.g., with respect to factors such as tie strength) or
how social influence varies as time elapses.

Acknowledgments

The authors thank the senior editor, associate editor, and
anonymous reviewers for constructive comments and sug-
gestions throughout the review process and Ernest Liu and
Francis DiTraglia for helpful discussion and suggestions.

Endnotes

T Although studies have investigated the role of mobile phones in
information exchange and the emergence of multiplex communication

networks (Matous et al. 2014), they have not specifically examined the
role of phone communication in social influence. In contrast, several
studies investigate social influence through phone call data as a proxy
for social connections (de Matos et al. 2014, Hu et al. 2019, Belo and Fer-
reira 2022) or exposure to ring-back tones they hear (Ma et al. 2015,
Zhang et al. 2018), but these studies do not directly analyze social influ-
ence that is mediated through phone calls.

2 Reciprocity helps to reduce the possibility of including spam calls.

8 We do so to avoid the difficulty in disentangling the multiplica-
tion effect of social influence.

# For a member of the control group, the adoption period aligns with
that of the matched individual in a treatment group (more details are
provided in Section 3.2 when we construct the panel data).

®Simulation studies have demonstrated the effectiveness of this
proxy over a wide range of parameters, independent of the net-
work’s structure, and with varying levels of homophily and the
product’s baseline level of adoption (Belo and Ferreira 2022).

& More formally, the assumptions made in McFowland and Shalizi
(2023) are as follows: (1) for the underlying network models, all
links in the historical social network are conditionally independent
of each other, given the latent positions for each individual; and (2)
in observations of the whole network, adoption provides no addi-
tional information about an individual’s latent positions.

“In understanding diffusion of adoption decisions, not adding the
individual-level fixed effects is customary, because such fixed
effects would capture the adoption perfectly and thereby absorb the
effect of interest (Belo and Ferreira 2022).

8 For the ease of readability in the paper’s description, we round the
numbers to four digits, but in the calculation, we use the eight-digit
decimals provided in Table E1 of Online Appendix E.

1In this utility function, without loss of generality and following
the setting in the literature of Bayesian learning (Acemoglu et al.
2011), we consider individuals to be homogeneous and therefore do
not include user covariates.

% We do not present the result after the fifth hop because the value
of interest converges.

" For both the eigenvector centrality and the Katz centrality, p
needs to be smaller than the inverse of the largest eigenvalue of the
adjacency matrix A.

2 We compute degree centrality by summing the number of con-
tacts of each initial adopter, normalized by N —1, where N is the
number of individuals who appear in the historical social network
A. The eigenvector centrality is based on the leading eigenvector of
A. We set the diffusion probability p in diffusion centrality, Katz
centrality, and influence centrality to be 0.07. We compute the diffu-
sion centrality using H as the diameter of the largest connected
component of the historical social network.

13 Although marketing agencies can solve an optimization problem
to determine the optimal set of seeds, this calculation is seldom
done in practice. The reason is that the influence maximization
problem, using an independent cascade model, is a nondeterminis-
tic polynomial-time hardness (NP-hard) problem for which approx-
imations are needed but computationally expensive given the large
size of social networks.

4 We use these specific probabilities as illustrative examples. Mar-
keting firms can estimate these costs according to their context.

'5 This 100% increase in expected adoption could result from, for
example, 30% increase in expected adoption for an individual A
and 70% for another B.

6 We obtained these reference prices from the following content
marketing  platform: https://z3i.zerys.com/#/pricingcalculator.
Figure H1 of Online Appendix H shows the prices for the three tiers
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of content marketing services to create viral content. These prices
are adopted for illustrative purposes and marketing firms can esti-
mate them based on their own context.
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