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Abstract. We use high-resolution mobile phone data with geolocation information and pro
pose a novel technical framework to study how social influence propagates within a phone 
communication network and affects the offline decision to attend a performance event. Our 
fine-grained data are based on the universe of phone calls made in a European country 
between January and July 2016. We isolate social influence from observed and latent homo
phily by taking advantage of the rich spatial-temporal information and the social interactions 
available from the longitudinal behavioral data. We find that influence stemming from phone 
communication is significant and persists up to four degrees of separation in the communica
tion network. Building on this finding, we introduce a new “influence” centrality measure 
that captures the empirical pattern of influence decay over successive connections. A valida
tion test shows that the average influence centrality of the adopters at the beginning of each 
observational period can strongly predict the number of eventual adopters and has a stronger 
predictive power than other prevailing centrality measures such as the eigenvector centrality 
and state-of-the-art measures such as diffusion centrality. Our centrality measure can be used 
to improve optimal seeding strategies in contexts with influence over phone calls, such as tar
geted or viral marketing campaigns. Finally, we quantitatively demonstrate how raising the 
communication probability over each connection, as well as the number of initial seeds, can 
significantly amplify the expected adoption in the network and raise net revenue after taking 
into account the cost of these interventions.
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1. Introduction
Social influence, mediated through various communica
tion channels, plays an important role in influencing con
sumer behavior (Banerjee et al. 2013, Sundararajan et al. 
2013, Mobius and Rosenblat 2014). According to the media 
richness theory, different communication media vary in 
their ability to enable communication and information 
exchange and in their ease of use (Dennis and Kinney 
1998). Phone calls are an especially important communica
tion channel through which social influence takes place; it 
offers a comparably high level of media richness as offline 
channels—thereby facilitating information flows and 
social influence—while also maintaining high ease of use 
(i.e., low cost) as online channels (Table 1).

Despite phone communication’s prevalence and impor
tance, there exists limited studies in the information 

systems (IS) and the social influence literature that stud
ies explicitly how phone communications mediate social 
influence.1 A quantitative framework that credibly 
obtains estimates on social influence from phone com
munications is important in business and management 
settings because it can inform personalized mobile tar
geting (Ghose et al. 2019, Zhang et al. 2019) and viral 
marketing (Aral and Walker 2011) applications, which 
are increasingly commonly used in practice.

We fill this gap in the literature by developing a novel 
framework to quantitatively estimate the pattern of 
social influence via phone communications. We use 
high-resolution mobile phone data with geolocation 
information (call detail records (CDRs)) and propose a 
technical framework to study how social influence pro
pagates within a phone communication network and 

1 

INFORMATION SYSTEMS RESEARCH 
Articles in Advance, pp. 1–21 

ISSN 1047-7047 (print), ISSN 1526-5536 (online) https://pubsonline.informs.org/journal/isre 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

8.
27

.1
04

.9
4]

 o
n 

07
 A

ug
us

t 2
02

3,
 a

t 2
0:

52
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 

mailto:yan.leng@mccombs.utexas.edu
https://orcid.org/0000-0002-7084-2700
mailto:xdong@robots.ox.ac.uk
mailto:emoro@mit.edu
mailto:pentland@mit.edu
https://doi.org/10.1287/isre.2023.1231


affects the offline decision to attend a performance 
event. Our fine-grained data are based on the universe 
of phone calls made in a European country between Jan
uary and July 2016. Our data contain the entire history of 
each mobile phone user’s phone calls and geolocations 
(registered by the nearest cell towers). We measure net
work connections based on phone calls: two individuals 
are connected if there have been calls between them; 
additionally, we exploit the temporal dimension of 
phone calls to construct the sequence of dynamic com
munications over time—what we refer to as communi
cation cascades. We measure adoption behavior using 
geolocation information—specifically, attending an off
line performance event that occurred recurrently during 
July 2016. Social influence in our context is defined as the 
process by which a user, who has attended the event, 
influences another user to subsequently attend the same 
event via direct phone calls or indirectly through more 
than one degree of phone call separation in the communi
cation cascades. We exploit the twenty-two occurrences 
of the performance: after each performance, we measure 
the impact of past attendees’ phone calls on subsequent 
attendance by individuals receiving the call. By exploit
ing the temporal variation in the phone communication 
network and the repeated event occurrence, we construct 
a rolling window of “treated” individuals—those who 
have received calls from past attendees—and we estimate 
social influence based on comparing the behavior of these 
treated individuals and other nontreated individuals.

A key difficulty for credibly estimating social influ
ence based on behavioral and network data are to con
trol for homophily: two connected individuals may 
have correlated behaviors either because they have corre
lated preferences (homophily) or because one’s behavior 
affects the other’s (influence). The presence of homophily 
implies that the assignment of treatment is nonrandom. 
In this work, we introduce a novel technical framework 
to address this key challenge, by utilizing the rich mobil
ity and network information in phone communication 
data. For observed homophily, we follow Eckles and Bak
shy (2021) to adjust for behaviors highly relevant to the 
decision of interest using individuals’ revealed prefer
ences (i.e., mobility history). Although observed homo
phily can be controlled for, latent homophily is driven by 
unobserved factors and is generally difficult to purge. We 
address this in two ways. First, we follow McFowland 

and Shalizi (2023) and exploit the information contained 
in a historical social network (different from communication 
cascades) that captures the user’s past network connec
tion history, that is, two individuals are connected in this 
network if reciprocal calls2 exist between them in the 
month prior to the event. To the extent that any user-level 
characteristics simultaneously affect behavior and predict 
network connections—even if these characteristics are not 
observed—we can use the historical social network to 
control for such characteristics and thereby control for 
latent homophily and isolate social influence. Because 
network data are high dimensional, to operationalize 
this strategy, we extract from the network data a low- 
dimensional, latent-feature representation of each individ
ual using an efficient network representation learning 
approach, node2vec (Grover and Leskovec 2016), based on 
the user’s historical social network. We then use the latent 
positions of each user as covariates to control for latent 
homophily. Second, we follow Belo and Ferreira (2022) to 
use the eventual adoption decisions of one’s connections as 
a proxy for the focal individual’s unobserved preferences 
toward the adoption decision. Controlling for such infor
mation, therefore, also helps control latent homophily.

We use observed and latent homophily to create a 
matched control unit for each treated user, and we imple
ment a matching-based difference-in-differences strategy 
to estimate social influence. We find that the influence 
stemming from phone communication is significant: a 
direct phone call with a past attendee raises the likeli
hood of future performance attendance by 87.61%, rela
tive to the base adoption likelihood of 0.0098. The effect 
transmits over the network to second-degree neighbors of 
the past attendees and increases their likelihood of future 
attendance by 68.65%. Overall, we find that the effect per
sists up to four degrees of separation in the communica
tion network: even being indirectly connected with a 
past attendee via a network path of length four signifi
cantly raises one’s likelihood of future attendance.

Building on our empirical finding, we develop a new 
influence centrality measure that captures the empirical 
pattern of influence decay over successive connections. 
A node’s influence centrality captures the expected 
increase in adoption in the network. Different from the 
standard Katz centrality, where the indirect influence 
decays exponentially at a common rate across succes
sive connections, our influence centrality takes into 

Table 1. Comparison of Three Communication Channels in Terms of Media Richness and Ease of Use

Factors Phone Offline Online

Media richness (Dennis and 
Kinney 1998)

Intimacy of relationship High High Low
Nonverbal cues (e.g., emotion) Yes Yes No
Synchronicity Yes Yes No

Ease of use Time cost Low High Low
Location constraint No Yes No
Penetration rate High Not applicable Medium

Leng et al.: Long-Range Social Influence in Phone Communication Networks 
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account the empirically estimated separation-specific 
rates of decay and thus could be more relevant in empir
ical settings for increasing expected adoptions in the 
network. Our notion of influence centrality is useful for 
applications involving optimal seeding strategies in net
work contexts where social influence is present. We con
duct two exercises to demonstrate this point. First, we 
conduct an in-sample test and show that the average influ
ence centrality of those who have previously attended the 
event can significantly predict the number of eventual 
adopters. It has stronger predictive power than analogous 
measures constructed based on other prevailing centrali
ties, such as the diffusion and Katz centralities. Second, we 
quantitatively demonstrate, in a simulated environment 
where high-centrality nodes are targeted to be the initial 
adopters. Raising the communication probability over 
each connection and the number of initial seeds can signifi
cantly amplify the overall expected adoption and may be 
desirable despite the cost of these interventions. This exer
cise can inform optimal seeding in viral and targeted mar
keting campaigns.

We summarize our contributions as follows. First, we 
develop a novel framework to estimate social influence, 
where we exploit the spatial-temporal information to 
control for observed and latent homophily using a 
matching-based difference-in-differences strategy. Sec
ond, we apply this framework using high-resolution 
CDRs and provide credible estimates of direct and 
long-range social influence over phone calls on offline 
behavior. We find social influence stemming from 
phone communications to be significant and persist up 
to four degrees of separation. Finally, we propose 
influence centrality, which is designed to capture the 
empirical pattern of influence decay over successive 
connections. The measure can be used to improve opti
mal seeding strategies in network contexts with social 
influence, such as targeted or viral marketing cam
paigns. We quantitatively demonstrate how raising the 
communication probability over each connection and 
the number of initial seeds can significantly amplify 
the expected adoption in the network and may be 
desirable despite the cost of these interventions.

2. Literature Review
2.1. Social Influence Identification in Networks
Identifying social influence effect in observational stud
ies can be challenging from a methodological stand
point (Shalizi and Thomas 2011). The reason is that 
individual decision-making in a social network can be 
affected by several factors, including homophily, exoge
nous factors, and social influence (Manski 1993). Vari
ous empirical approaches for studying social influence 
based on observational data have been adopted in the IS 
and social influence literature. First, in an instrumental 
variable approach, a standard instrumental variable 

might be the behavior of two-degree neighbors who are 
not neighbors of the focus user (de Matos et al. 2014). 
Next, propensity score matching has been applied in 
many empirical settings, including studies of the effects 
of instant messaging on the adoption of mobile applica
tions (Aral et al. 2009), favoriting behavior on the songs 
individuals listen to (Dewan et al. 2017), and online 
content contributions (Rishika and Ramaprasad 2019). 
Finally, structural modeling, such as hierarchical 
Bayesian modeling, has been used to study the effects 
of social influence and latent homophily on dynamic 
and repeated consumer purchases (Ma et al. 2015).

The key to separating social influence from homo
phily and other exogenous variables lies in the use of 
effective control variables. Recent studies on social influ
ence in statistics and IS provide promising solutions to 
partially address this issue using rich behavioral and 
network data that have become increasingly available 
on digital platforms. First, it has been shown that adjust
ing for high-dimensional behavioral data relevant to 
adoption behavior can remove the majority of the esti
mation (selection) bias, leading to statistically indistin
guishable results from those obtained via a randomized 
experiment (Eckles and Bakshy 2021). Second, sufficient 
conditions for unbiased and consistent estimates of social 
influence have been established theoretically when con
trolling for estimated locations in a latent space, based on 
certain network generation processes (McFowland and 
Shalizi 2023). Third, it has also been shown that eventual 
adoption decisions of neighbors may serve as a proxy for 
latent user preferences (Belo and Ferreira 2022). Inspired 
by these studies and exploiting the rich spatial-temporal 
information in CDRs, we propose innovative ways to 
operationalize and account for observed homophily with 
mobility data and latent homophily with latent positions 
learned from the social network and neighbors’ eventual 
adoption decisions.

2.2. Social Influence Using Mobile Phone Data
An abundance of literature studies how online beha
viors diffuse through information technology (IT)- 
enabled social networks, as reviewed in Sundararajan 
et al. (2013). This literature has important managerial 
and strategic implications for online marketing and 
platform designs. However, because of the differences in 
the nature of the communication studied (summarized in 
Table 1), findings on online word of mouth (WOM) may 
not provide direct guidance on the situation of phone 
communication and the diffusion of influence through 
this different medium. Despite its importance as a 
medium of information exchange, how phone commu
nications mediate social influence has scarcely been 
studied in the IS and social influence literature.

Phone call data have been used in studying the pur
chase of caller ring-back tones (Ma et al. 2015, Zhang 
et al. 2018), switching of mobile carriers (Hu et al. 2019) 
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and the use of phone plans for unlimited calls (Belo and 
Ferreira 2022), and adoption of new mobile phone mod
els (de Matos et al. 2014). Our study differs from these 
papers in several aspects. First, Hu et al. (2019) and de 
Matos et al. (2014) only use phone call relationships to 
construct a proxy of social networks. Our work relates 
to theirs, but we focus on the social influence that travels 
through phone communications. Specifically, our study 
uses significantly richer panel data—for each phone 
call, we observe the time stamp and location of both the 
call initiator and receiver, and our analysis is designed 
to fully use the richness of the data, both spatial and 
temporal. By contrast, only static networks are con
structed based on collapsed, cross-sectional data using 
phone calls aggregated over a period of time (9 months 
in Hu et al. (2019) and 11 months in de Matos et al. 
(2014)). It is precisely because of these differences and 
the additional details we can observe that we can esti
mate social influence mediated via phone calls. Second, 
although Ma et al. (2015) and Zhang et al. (2018) study 
the influence of exposure to caller ring-back tones result
ing from phone calls, they do not explicitly examine 
how phone conversations mediate social influence. In 
contrast, our study focuses specifically on how social 
influence spreads through phone conversations, leverag
ing their unique media richness compared with other 
communication channels as discussed in Table 1. By 
examining this specific channel, our study provides new 
insights into the ways in which social influence operates 
and the behaviors it influences, beyond the scope of pre
vious studies that focused solely on caller ring-back 
tones. Third, all these studies focus on adoption decisions 
directly related to phone use, while our focus is on offline 
adoption behavior, which is arguably a more general 
type of behavior that may be influenced through phone 
communication. Offline decisions are common and of 
obvious interest in marketing applications; indeed, many 
important behaviors pertain to offline settings and entail 
a certain degree of effort, such as voter turnout (Bond 
et al. 2012), receiving immunizations (Banerjee et al. 
2019), and healthy habits (Christakis and Fowler 2013). 
Our paper extends this IS and social influence literature 
and constitutes one of the first studies investigating the 
effect of social influence through phone calls on an offline 
adoption decision using the large-scale CDR data.

2.3. Indirect Social Influence in Network 
Environment

In the study of social influence in a network environ
ment, one may consider both the direct influence (i.e., 
influence on one’s immediate neighbors in the network) 
and the indirect influence (i.e., influence beyond one’s 
immediate neighbors) on adoption decisions. The IS lit
erature predominantly examines the direct influence on 
different types of technology adoption decisions (Aral 
et al. 2009, Katona et al. 2011, de Matos et al. 2014, 

Dewan et al. 2017, Rishika and Ramaprasad 2019). How
ever, studies have found only limited and inconsistent 
evidence that positive influence may extend beyond 
direct neighbors in the social network. On the one hand, 
indirect influence was initially found to be more effective 
than direct influence in medical innovation (Burt 1987, 
den Bulte and Lilien 2001). More recently, it was shown 
that online messages play a role in political mobilization 
and have an effect on two-degree neighbors in the Face
book friendship network (Bond et al. 2012). Similarly, it 
was shown that indirect (i.e., two-hop) neighbors, like 
direct neighbors, exert influence in the context of caller 
ring-back tone adoption decisions (Zhang et al. 2018). On 
the other hand, this effect can be negative beyond imme
diate neighbors; for example, it was shown that the likeli
hood of individuals taking deworming was reduced if 
their direct first-order or indirect second-order social con
tacts were exposed to it (Kremer and Miguel 2007). Con
trasting with these views, several studies show that 
influence was restricted to immediate neighbors in the 
social network, such as the case of cooperative behavior 
in local public goods games (S. Suri 2011) or decisions to 
get vaccination against influenza (Rao et al. 2007, Mobius 
and Rosenblat 2014).

Our paper aims to extend and enrich this literature on 
indirect social influence and examines for the first time 
the potential cascading effect of influence through the 
medium of phone communication. This research ques
tion is interesting to study in the phone communication 
medium for two reasons. On the one hand, because of 
the personal and persuasive nature of phone communi
cation and the ease with which it is established, social 
influence via phone calls may extend beyond immediate 
neighbors in the communication network. For instance, 
upon receiving a positive impression of an event from a 
colleague who attended it, individuals may be eager to 
transmit and share that impression with their acquain
tances. On the other hand, phone calls are a form of syn
chronous oral communication that allows for less time for 
contemplation and fewer opportunity for selective self- 
presentation, which may reduce the impact of the commu
nication on behavior (Berger and Iyengar 2013) and 
hence its propagation in the network. Addressing this 
research question has direct implications for IS and 
marketing research. Indeed, if the effect of phone com
munication is restricted to immediate neighbors, then 
businesses should mainly target individuals who have 
many direct connections in their communication net
work. Otherwise, businesses should instead consider 
targeting individuals who have many indirect neigh
bors to capitalize on the cascading effect of influence.

2.4. Network Centrality and Application in 
Seeding in Social Networks

There is a rich body of literature on centrality measures of 
nodes in a network (Leng et al. 2020, Bloch et al. 2023). 
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Intuitively, centrality quantifies how “central” a node is, 
according to different criteria, and therefore captures 
how important the node is in the network. This structural 
importance of nodes is a crucial concept in network sci
ence with many applications; in particular, it has been 
widely applied to identify key individuals in social net
works, bottleneck locations in infrastructure networks, or 
superspreaders of epidemics (Newman 2018).

Defining node centrality (i.e., the importance of nodes) 
for a certain application has generated much theoretical 
interest in IS and network science research (Sundararajan 
et al. 2013). In business research, one notable application 
of network centrality is seeding. The key idea is to target 
a small subset of individuals in the network for inter
vention, leading to a maximal spread of information or 
adoption decisions. In contrast to approaches based on 
influence or utility maximization (Kempe et al. 2003, Dou 
et al. 2013, Li et al. 2018, Mallipeddi et al. 2022), which 
often involve computationally intensive procedures, es
pecially in large networks, centrality-based seeding is 
computationally efficient and easy to interpret. Different 
centralities have been proven effective in a variety of con
texts, for example, betweenness centrality (Jackson 2008), 
Katz-Bonacich centrality (Ballester et al. 2006), diffusion 
centrality (Banerjee et al. 2013), eigenvector centrality 
(Golub and Jackson 2010), and degree centrality (Jackson 
2019). A commonality of these centrality measures is the 
focus on the context of information spreading or diffu
sion in the network, where the implication for adoption 
remains implicit. In contrast, in this work, we propose 
influence centrality that is designed to capture the empir
ical pattern of influence decay over successive connec
tions. Thus, influence centrality is directly related to social 
influence and thereby contributes more explicitly to increas
ing overall expected adoption. In addition, different from 
the standard Katz/eigenvector centrality or the state-of- 
the-art diffusion centrality, where the indirect influence 
decays exponentially at a common rate across successive 
connections, our influence centrality incorporates dif
ferent weights for neighbors at different geodesic dis
tances from the focal user using empirically estimated 
separation-specific rates of decay. This is another notable 
difference from existing centrality measures which we 
will discuss from a technical perspective in Section 5.

3. Technical Framework
We develop a technical framework for studying the social 
influence that happens through phone communications 

and its effect on offline decisions using CDRs. The pro
posed technical framework consists of three steps: (1) 
identify the adoption decision based on the visitation or 
attendance inferred from the phone user’s mobility; (2) 
use phone data to construct communication cascades, 
identifying individuals who have direct phone calls or 
are indirectly connected with adopters; and (3) isolate 
social influence via phone calls from homophily, the 
measurement of the latter is operationalized using the 
mobility and phone call data.

3.1. Setting
We consider a large-scale mobile phone data set, CDRs, 
collected in a small European country. The data set 
includes individual phone use records (i.e., phone calls, 
text messages, and Internet activities using the data ser
vice) and the location of the cell tower with which each 
record was associated. The mobile carrier we collaborate 
with is the only network provider in the country, mean
ing that the activity of all individuals who have been 
connected to any cell tower in the country has been 
recorded. The data set covers seven months, from Janu
ary 2016 to July 2016. The cultural event under consider
ation took place 22 times in July 2016 on most weekdays 
(plus a few weekend days). The historical data from Jan
uary to June 2016 are used to collect user behavior indi
cators as appropriate controls, which we discuss in 
more detail in Section 3.2.1. Table 2 shows the statistics 
indicating daily average phone use for every individual 
in the mobile phone data set used in this study.

We consider the offline adoption behavior of attend
ing an international cultural performance in the country. 
Although the performance venue was located in a city 
park, the event took place late in the evening, which 
reduced the chance of passers-by being mistakenly 
identified as adopters. Three cell towers are located 
within a 500-meter distance and cover an area of radius 
of about 0.25–1.5 kilometers. We assume that the indivi
duals who were connected to any of these three cell 
towers during the event period (with a buffer time of 
30 minutes before and after) are the ones who attended 
the event (i.e., made the adoption decision). We discuss 
the statistical implication of violating this assumption at 
the end of this section. For notational convenience, we 
call the cultural performance the “product” and the 
attendees “adopters.”

We divide the overall data set into nonoverlapping 
observation periods; each observation period is defined 

Table 2. Basic Statistics About the Mobile Phone Data Set (Daily Average per Person)

Mean Standard deviation Minimum 25th percentile 50th percentile 75th percentile Maximum

Number of calls 2.84 3.64 0.00 0.92 2.00 3.65 68.90
Number of texts 3.04 5.73 0.00 0.67 1.81 4.00 45.65
Number of activities using data service 29.07 65.00 0.00 0.00 3.20 36.90 3,355.10
Number of total activities 34.95 66.40 0.00 4.00 11.00 43.08 3,359.58
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as T � [s, s + l], where T ∈Ψ, s ∈ S, and l is the length of 
each period. Here, Ψ is the set of all observation periods, 
and S is the set of the starting time instances of each 
period. For each performance day, we choose the obser
vation period T in Figure 1(a) to be a period of l �

24hours, starting with the beginning of the performance 
each day. The motivation for choosing this threshold is 
that the cultural performance took place each evening, 
and we would like to keep the observation periods nono
verlapping (so that the communication cascades defined 
later will not interfere with each other).

We now introduce several key concepts in this paper 
in Figure 1(a). First, we define DT as the set of initial 
adopters for the observation period T. We identify indivi
duals as initial adopters if they were connected to one of 
the three cell towers nearest the performance venue dur
ing a time interval at the beginning of the period T in 
Figure 1(a), where the time interval is defined as the 
time window of the performance (with a buffer time of 
630minutes). This strategy is similar to the one in Toole 
et al. (2015), which uses connections made to three cell 
towers near an auto-parts manufacturing plant to label 
whether individuals worked at the plant.

Second, we construct a communication cascade as a 
directed graph CT � (IT,ET), where the node set IT �

{1, 2, 3, : : : , n} is a set of n individuals who have at least 
one mobile phone activity in T; meanwhile, the edge set 
ET � {(i, j)} is a collection of ordered node pairs (i, j), 
conditioned such that i ∈ IT has information about the 
product when the communication with j ∈ IT takes 
place and that i will spread the information to j. We 

cannot obtain the actual content of the communication 
because of privacy considerations. The assumption that 
information of interest has been transmitted through 
the observed communication channel has been adopted 
in prior studies (Aral et al. 2009).

We define the third concept, hop index, for an individ
ual i in IT, as the length of the path from individual i to 
an individual j ∈ DT. Therefore, an individual i of hop 
index h is h-degrees of separation from an initial adopter 
in DT. In our analysis, we define treatment groups as 
individuals who have not yet made an adoption deci
sion and have been connected via a single path to an 
initial adopter3 in only one observation period. In addi
tion, we define one treatment group for each hop h as 
the group of individuals (from any observation period) 
with a finite hop index h. If i is an isolated node in CT for 
all observation periods (i.e., if i is not connected directly 
or indirectly to any adopter), then the hop index would 
be infinity; hence, we use these nodes as the control 
group, as in Figure 1(b).

Finally, we define the adoption period to be the period 
that starts immediately after the observation period in 
which one received a treatment,4 until the last day of the 
performance. Figure 1(a) illustrates the adoption period 
in connection with the observation period.

Our data set includes 19 observation periods. We do not 
construct the observation periods for the last three days of 
the performance because individuals who received infor
mation through phone communications on these days did 
not have enough time to attend the event. For each obser
vation period T, we construct a communication cascade 

Figure 1. (Color online) Technical Framework 

Notes. (a) Each observation period is separated into two parts: (1) identifying the initial adopter and (2) constructing the phone communication 
cascade. After this observation period, we evaluate the eventual adoption decisions in the adoption period. (b) Identifying treatment and control 
groups. In the upper panel, we show how to construct the treatment group and the control group. Individuals connected to the initial adopter 
directly (labeled as hop 1) and indirectly (labeled as hop 2 and higher) in the communication cascade CT are categorized in the treatment group 
during the observation period T. Individuals who are disconnected from any initial adopters through the information cascade CT across all obser
vation periods are labeled as the control group. As demonstrated in the lower panel of (b), we aggregate all observation periods and perform 
empirical analysis separately for each hop index group.
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and compute the hop index for each individual appear
ing in CT. We remove individuals who had less than five 
observations in the past six months to ensure that we 
have sufficient information to control for. To reduce the 
chance that individuals are communicating through 
other information channels, we exclude the following 
data: (1) phone calls between parties (i.e., the caller and 
the receiver) that were served by the same cell tower, 
thereby reducing the chance of including face-to-face 
communications; (2) individuals whose network geode
sic distance from the initial adopter in the communica
tion network (with reciprocal phone communication) 
from the two months prior to the event was shorter than 
their hop indices; thus, we avoid inflation on hop indi
ces computation; and (3) individuals who were discon
nected from any individuals in the historical social 
network. After removing individuals using these crite
ria, our data set include 23,581 individuals across four 
treatment groups. Another 21,652 individuals who were 
disconnected from all communication cascades were in 
a single control group.

3.2. Difference-in-Differences in Combination 
with Behavioral Matching

Identifying the social influence effect is challenging, 
especially when using observational data. That individ
ual decision making (e.g., adoption behavior) in a social 
network can be affected by a number of factors is widely 
recognized. The first factor is the correlation or homo
phily effect (McPherson et al. 2001), which suggests that 
individuals tend to become neighbors (connected in the 
network) because of a shared background or interest, 
which in turn leads to the adoption by both individuals. 
The second set of factors is exogenous factors (i.e., exter
nal causes common to network neighbors (Manski 1993), 
such as marketing campaigns). The third set of factors is 
peer effects (i.e., social influence), which states that one’s 
adoption is either directly or indirectly affected by com
munication with one’s neighbors who have adopted the 
behavior.

We use a difference-in-differences (DID) model in 
combination with propensity score matching (PSM) 
(Rishika et al. 2013, Li 2016, Dewan et al. 2017, Jung et al. 

2019). We control for homophily using behavioral vari
ables: For observed homophily, we use visited locations 
in mobility history; for latent homophily, we use latent 
positions inferred from a historical social network and 
neighbors’ eventual adoption behaviors. We also per
form sensitivity analysis and robustness checks on the 
results. Table 3 summarizes the empirical strategy of 
this paper.

3.2.1. Behavioral Matching Based on Observed and 
Latent Homophily. To ensure similarities between the 
treated group and the control group in the DID analysis, 
we first adopt a matching-based estimation framework 
to assemble a matched sample of the treated and control 
units. Deciding on which variables to use to match indi
viduals is a critical question. Existing studies rely pri
marily on socio-demographic information (de Matos 
et al. 2014, Jung et al. 2019), but this approach has three 
shortcomings. (1) Such information is not always avail
able. (2) It does not capture the latent preferences (e.g., 
latent homophily; Ma et al. 2015). (3) It cannot adapt to 
changes in individual tastes and preferences. To address 
these issues, we design a behavioral matching frame
work based on observed homophily (visited locations in 
mobility history) and latent homophily (latent prefer
ences inferred from the historical social network, and 
neighbors’ eventual adoption decisions). We demon
strate these three types of behavioral covariates, com
puted using the mobile phone data, in Figure 2.

3.2.1.1. Observed Homophily: Revealed Preferences 
from Mobility History. We first use individuals’ history 
of visited locations to control for observed homophily. 
The theoretical foundations for using visited locations 
are revealed preference theory and consumer behavioral 
theory, which together suggest that consumer choices, 
serving as revealed preferences, are indicative of con
sumer preferences (Samuelson 1938, McFadden 2001). 
Furthermore, co-occurrence of locations and mobility tra
jectory similarities between individuals have been dem
onstrated to reveal similarities in preferences (Ghose 
et al. 2019). Thus, we use individual mobility histories on 
weekends (i.e., the frequency with which individuals 

Table 3. Research Design of the Empirical Strategy

Identification strategy Sensitivity analysis and robustness checks

1. Observed homophily (x) 
2. Latent homophily (c, f) 

PSM 1. Balance in propensity scores and covariates 
2. Rosenbaum sensitivity test 
3. Other matching strategies and Post-Lasso estimation 

1. Observed homophily (x) 
2. Latent homophily (c, f) 
3. Trend before and after treatment (πaftersjt�1) 
4. Pretreatment difference (πDsj�1) 
5. Matched pair fixed effect (ηs) 
6. Time-varying common shocks (νt) 

DID + PSM Shuffle test
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visit different places) as data for the revealed preference. 
We specifically use mobility behaviors on weekends 
because behavior in one’s spare time offers a better 
proxy for individuals’ preferences. In addition, it has 
been shown that adjusting for behavioral covariates rel
evant to the adoption decision of interest reduces the 
estimation bias substantively and yields an estimate 
that is statistically indistinguishable from what is 
obtained through randomized controlled trials (RCTs) 
in a Facebook context (Eckles and Bakshy 2021). In our 
case, mobility behaviors are highly relevant to the adop
tion decision of interest, which also is measured using 
location visits.

We consider an individual-location matrix M, where 
the ith row and kth column correspond to the ith indi
vidual and kth location (i.e., of the kth cell tower), 
respectively, and where mik represents the number of 
times that individual i has visited location k during a 
six-month period prior to the performance month. We 
then apply principal component analysis (PCA) and 
project M onto a subspace established by the top eigen
vectors of its covariance matrix to obtain an eigen- 
preference matrix in which the ith column, xi, represents 
the latent preferences of individual i. We choose 19 prin
cipal components (PCs) (xi ∈ Rdx where dx � 19) in the 
adoption behavior of attending the cultural perfor
mance, such that they explain more than 90% of the vari
ance in M.

3.2.1.2. Latent Homophily: Neighbors’ Eventual Adop
tion Decisions and Latent Preferences Learned from 
The Historical Social Network. In this section, we explain 
how we control for latent homophily (Ma et al. 2015). 
We control for two sources of latent homophily: (1) 
using neighbors’ eventual adoption decisions as a proxy 
for user fixed effects, following (Belo and Ferreira 2022); 
and (2) latent positions learned from the historical social 
network. We discuss how we control for these two 
sources of latent homophily in sequence.

First, we follow Belo and Ferreira (2022) to control for 
the adoption behaviors of neighbors (in the historical 
social network) as a proxy for individuals’ interest in 
and attitude toward the adoption decision. The ratio
nale behind this proxy is that, as a result of homophily, 
adopters are more likely to be connected to adopters 
and nonadopters to nonadopters. These connections 
lead to a positive correlation between being an adopter 
and having neighbors who also are adopters. Conse
quently, neighbors’ eventual adoption decisions (observed 
by the end of their respective adoption periods) are a direct 
reflection of the focal individuals’ interests and prefer
ences.5 Therefore, adding these variables helps partially 
control for latent homophily. We specifically use two mea
sures, the number and percentage of neighbors who 
ended up adopting the behavior, as the control variables 
(denoted as fi ∈ R2 for individual i).

Second, we use latent positions learned from the his
torical social network to further control for latent homo
phily. Social networks can be informative about latent 
characteristics of individuals resulting from homophily 
(McPherson et al. 2001). McFowland and Shalizi (2023) 
establish sufficient conditions under which controlling 
for estimated locations in a latent space leads to asymp
totically unbiased and consistent social influence esti
mates, assuming a certain network formation process 
(e.g., either a stochastic block model or a continuous 
latent space model).6 We adapt their approach to con
trolling for latent covariates encoded in the historical 
social networks in order to reduce bias due to latent 
homophily; specifically, we propose using an efficient net
work representation learning approach, node2vec (Grover 
and Leskovec 2016), to learn feature representations for 
the individuals using the historical social network. 
Although this approach corresponds to a relaxation of 
the specific assumptions in McFowland and Shaliz 
(2023) in terms of the network formation process, the 
principle behind node2vec remains that the network is 
homophilous, that is, nodes with similar characteristics 

Figure 2. (Color online) Three Types of Behavioral Covariates Extracted from the Mobile Phone Data to Approximate Observed 
and Latent Homophilous Covariates 
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and preferences will be more likely to form a link. In 
other words, individuals that have similar network 
positions (e.g., they connect to one another or to the 
same others, or they lie in the same social community) 
remain close in a low-dimensional latent space. There
fore, latent positions computed using node2vec (ci ∈ Rdc 

for individual i where dc � 16 in our case, determined 
through hyperparameter tuning) can be used as covari
ates in a regression to control for latent homophily. We 
include more details on node2vec and how the parameter 
dc is determined in Online Appendix A.

3.2.1.3. Behavioral Matching. As mentioned previ
ously, there are multiple treatment groups for each 
period T, and one for each finite hop index (Figure 1(b)). 
For each treatment group, every individual is matched 
to one individual in the control group. Thus, we use 
PSM to control for observed homophily, drawn from 
mobility histories, and for latent homophily, drawn 
from latent positions from the historical social network 
and neighbors’ eventual adoption decisions. The pro
pensity score for being treated in hop h is defined as the 
conditional probability of being connected to the initial 
adopter via h hops, which we estimate based on indivi
duals’ latent preferences using the logistic regression. 
We estimate the propensity score model for each treat
ment group and for the control group. Specifically, for 
each hop index, we compute,

log P(Di � 1)

P(Di � 0)

� �

� αps
0 + x′

i a
ps
x + c′

i a
ps
c + f′

i a
ps
f + ξi, 

where ()′ is the transpose operation; aps
x ∈ Rdx is the coef

ficient vector for observed homophily; a
ps
c ∈ Rdc is the 

coefficient vector for latent positions; a
ps
f ∈ R2 is the 

coefficient vector for neighbors’ eventual adoption deci
sions at the end of their respective adoption periods; 
αps

0 ∈ R is the intercept; and ξi is the error term. We use the 
estimated coefficients to predict the time-invariant pro
pensity scores of each user and match individuals using 
the predicted propensity scores.

3.2.2. DID on Matched Samples. The DID approach 
compares the changes in the adoption decisions of the 

treated units before and after the treatment (i.e., the 
communication) to the adoption decisions in the control 
units over the same period of time. The behavioral 
matching framework in the previous section helps sub
stantially improve the similarity between the treatment 
and the control group and to account for (both observed 
and latent) homophily, thereby enhancing the inference 
related to the DID analysis and improving the consis
tency of the estimates (Stewart and Swaffield 2008). We 
conduct the analysis on the matched samples separately 
for each of the treatment groups. In other words, we 
apply the DID model to the treatment group associated 
with each hop index and to the corresponding matched 
units in the control group.

The DID model takes a panel data set as its input; we 
illustrate this structure in Figure 3. Following the stan
dard in constructing panels to measure diffusion pro
cesses, individuals leave the panel after they adopt the 
behavior. Consider a matched pair s, as shown in Figure 
3; the treated individual, Bob (for hop index 1, without 
loss of generality), is on the left panel, and the matched 
control individual, Anne, is on the right panel. Assume 
that Bob was treated (i.e., he received a phone call) on 
day 3 and attended the event on day 5. We add a series 
of 1 s after the treatment day for aftersjt. Because Bob 
adopted on day 5, we remove the dates after day 5. 
Anne, the matched control individual, neither received 
a call nor adopted; hence, the columns of “adoption” 
and “received call” are filled with zeros. Because Anne 
is matched with Bob, we let afters0t � afters1t for Anne.

We use a linear probability model with a binary out
come variable as follows:

zsjt � x′
sjax

zffl}|ffl{
observed homophily

+ c′
sjac + f′

sjaf

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{
latent homophily

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
homophily

+ γhDsj aftersjt
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

phone communications

+ πDsj�1 + πaftersjt�1 + ηs + νt + ɛsjt: (1) 

In Equation (1), t is the index for a day in the time period 
during which the event took place; ()′ is the transpose 
operation; s indexes a matched pair of treated and con
trol units; j denotes a treated (j � 1) or a control (j � 0) 
unit; and ɛsjt is the error term. The dependent variable 

Figure 3. (Color online) Panel Structure for the DID Model, Showing the Data Structure for a Treated Individual (Bob) and a 
Control Individual (Anne) 
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zsjt is the adoption behavior of the (treated or control) 
unit j in the matched pair s at time t, where zsjt � 1 indi
cates adoption and zsjt � 0 indicates nonadoption. Dsj is 
a treatment dummy variable that equals one if the unit 
is in the treatment group and zero if it is in the control 
group; aftersjt is a dummy variable that equals one for 
the time period after the treatment (e.g., direct or indi
rect communication) and zero for the time period before 
the treatment.

The main parameter of interest is γh, which measures 
the change in the likelihood of adoption if the individual 
had been included in the treatment group correspond
ing to hop h (i.e., if he or she had received the phone call 
during the observation period with h hop distances 
from the initial adopter). We use πDsj�1 ∈ R to denote the 
pretreatment difference in the two groups, which turns 
on for the treatment unit in the matched pair s. We use 
πaftersjt�1 ∈ R to denote the time trend in the control 
group before and after the treatment is received. This 
variable turns on after the treatment is received and var
ies across the matched pairs s. We further use the fixed 
effect (ηs) at the level of matched pairs s to capture 
the potential, unobserved, time-invariant heterogene
ity.7 Finally, to control for common shocks over time 
that affect the adoption behavior (e.g., a discount for an 
event occurring at a certain time period t), we include 
the time fixed effect νt which is specific for each time 
period t, thus addressing the possible time-varying 
common shocks. The time fixed effect νt differs from 
πaftersjt�1, because the former is fixed effect at t and is the 
same across different units, whereas the latter differs 
across matched pairs. We use ax ∈ Rdx , ac ∈ Rdc , and af ∈

R2 to represent the coefficients for the observed mobility 
covariates (xsj), latent positions (csj), and the neighbors’ 
eventual adoption behaviors by the end of their respec
tive adoption periods (fsj).

We provide a final remark on potential measurement 
errors. The first source of measurement errors in using 
phone data to estimate social influence is identifying 
adoption decisions. Adopters may not actually use their 
phones when attending the event, or individuals may 
pass by the performance venue without attending it. 
These measurement errors can affect two variables: (1) 
the adoption decisions of individuals in the treatment 
group and the control group zsjt and (2) the identifica
tion of initial adopters, leading to errors in the treatment 
Dsj. Second, each observation period in our setting is 
limited to 24 hours, and any phone calls made with ini
tial adopters directly of indirectly beyond this period 
can generate a measurement error in the treatment vari
able Dsj. The classic result in the econometrics literature 
shows that (1) a mismeasured outcome zsjt does not lead 
to a bias and (2) a mismeasured predictor (e.g., the treat
ment variable Dsj) will bias the effect toward zero (Lewbel 
2007). In other words, a mismeasured adoption outcome 
does not bias our estimate of the social influence effect. 

However, if we have measurement errors in identifying 
the initial adopters or if some treatments are missing after 
the observation period, this will lead to an underestima
tion of the social influence effect. Nevertheless, our results 
remain valid even with these types of measurement 
errors. We discuss the impact of measurement errors on 
our social influence estimates in more detail in Online 
Appendix B, closely following theorem 1 of Lewbel 
(2007). Overall, despite potential measurement errors, our 
results remain valid.

4. Empirical Results
4.1. Long-Range Effect of Social Influence via 

Phone Communication
We use the technical framework developed in Section 3
to quantify the long-range effect of social influence via 
phone calls based on CDRs. The summary statistics of 
all control variables we use are included in Online 
Appendix C. As described in the previous section, our 
identification strategy consists of matching followed by 
DID analysis. To visually demonstrate how the DID esti
mator works, in Figure D1 of Online Appendix D, we 
plot the over time survival rate separately for the treat
ment and the control groups. As we can see, starting 
from the date of the treatment—having received the 
phone call—the two groups exhibit a widening gap in 
survival rates (one minus the probability of adoption), 
as the treated group becomes differentially more likely 
to attend the event and therefore are subsequently 
dropped out of the sample. The differential surviving 
rate quantitatively reflects the cumulative effects of 
social influence over time.

We are now ready to present our main empirical 
results. We present the main estimates on the change in 
the adoption likelihood (i.e., attending the event) due 
to social influence through phone communication in 
Table 4. The detailed estimation results are presented in 
Tables E1 and E2 in Online Appendix E. In Figure 4, we 
present the estimates, with respect to different hop indi
ces, relative to the adoption likelihood of the control 
group. Our analysis reveals that being a direct contact of 
an initial adopter increases the likelihood of attending 
the event by 87.61%.8 For individuals who are two 
degrees of separation away from the initial adopter, the 
increase in adoption likelihood is 68.65%. The effect of 
social influence on adoption likelihood weakens as the 
degree of separation increases. Individuals who are three 
degrees of separation away from the initial adopter have 
a 53.10% increase in adoption likelihood, whereas those 
who are four degrees of separation away have a 46.71% 
increase. Interestingly, we find that the increase in ad
option likelihood from direct neighbors to two-degree 
indirect neighbors decreases by 21.65% (� γ2�γ1

γ1
). The 

increase in adoption likelihood for three-degree neigh
bors is further reduced by 22.64% (� γ3�γ2

γ2
) compared 
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with the increase observed for two-degree neighbors. 
Overall, we observe a significant positive effect of influ
ence through phone communication from hop one to 
hop four, demonstrating the long-range impact of social 
influence via phone communications. This finding sug
gests the potential of viral and seeded marketing designs 
using phone communications. Although the treatment 
effect for hop five is also significant, the estimate is not 
robust to unobserved confounders, as confirmed by 
the Rosenbaum sensitivity analysis (see Section 4.2 for 
details). Therefore, we limit our analysis to hops one to 
four, representing four degrees of separation.

Our empirical results on the long-range and decaying 
social influence motivate us to better understand this 
observation in two aspects: (1) whether the results are 
reliable according to different robustness checks and (2) 
what might be the mechanism behind the long-range 
effect. We address the first point in Section 4.2 and the 
second in Section 4.3.

4.2. Robustness Check
4.2.1. Balance Between the Treatment Group and the 
Control Group. Checking covariate and propensity 
score imbalance postmatching is important to assess the 
quality of the matching technique. In our study, the 
standardized differences in the covariates of the treat
ment group and the control group after matching are far 
below the rule-of-thumb value (Figure F1 of Online 
Appendix F1). After matching, we achieved substantial 
reductions in the differences between treatment and 
control groups for all latent homophily-related covari
ates and most observed homophily-related covariates, 
as indicated by significant coefficients in Table F1 of 
Online Appendix F1. We observe that the distributions 
of the propensity scores for the control and treated 
groups are similar and have a significant postmatching 
overlap (using Figure F2 and Table F2 in Online Appen
dix F1). Both robustness checks in the covariates and the 
propensity score demonstrate that the matched pairs in 
the treatment and control groups are well balanced.

4.2.2. Sensitivity Analysis Toward Unobserved Con
founders. As the treatment assignments in our study 
(i.e., the phone calls) are not randomized, there may still 
be some level of bias in our analysis, despite our efforts 
to control for observed and latent homophily. We ana
lyze the sensitivity with respect to the selection on 
unobservables using the Rosenbaum bounds approach 
(Rosenbaum 2005). It evaluates the extent to which 
unobserved variables might affect an individual’s 
assignment into the treatment or control group and, 
therefore, the inference. We use the odds ratio of treat
ment assignment (Γ) to quantify the amount of bias from 
unobserved variables required to change the results qual
itatively. Our results, as shown in Figure F3 in Online 
Appendix F2, indicate that the critical level of Γ at which 
we would question the validity of the PSM is greater 
than 8.5 (hop 1), 7.4 (hop 2), 2.0 (hop 3), and 2.0 (hop 4). 
Specifically, for hop 1, when Γ is greater than 8.5 the 
upper bound p value is larger than 0.05, indicating that 
the confidence interval for the social influence effect 
would include zero if an unobserved confounder caused 
the odds ratio of the treatment assignment to differ 
between the treatment and control groups more than 8.5. 

Table 4. Social Influence Estimate (γh) from Equation (1)

Dependent variable: Adoption

Hop 1 Hop 2 Hop 3 Hop 4

Dsj aftersjt 0.0086*** 0.0067*** 0.0052*** 0.0046***
(0.0004) (0.0003) (0.0006) (0.0006)

Time fixed effect (νt) ✓ ✓ ✓ ✓

Pair fixed effect (ηs) ✓ ✓ ✓ ✓

Time trend (πaftersjt�1) ✓ ✓ ✓ ✓

Pretreatment difference (πDsj�1) ✓ ✓ ✓ ✓

Observations 360,226 368,000 60,398 49,680
Residual standard error 0.0386 0.0341 0.0227 0.0205

(df � 348,243) (df � 355,980) (df � 58,007) (df � 47,680)

Note. Robust standard errors in parentheses.
*p < 0.1; **p < 0.05; ***p < 0.01.

Figure 4. (Color online) Change in Adoption Likelihood 
from Social Influence Through Phone Communications (Rela
tive to the Matched Control Group) 

Note. The vertical line corresponds to the 95% confidence interval.
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This interpretation applies to other hops as well. Although 
there is no clear consensus on a rule-of-thumb value for Γ, 
some studies have suggested that anything above Γ � 1:5 
indicates substantial insensitivity to unobserved confoun
ders (Sen 2014, Ransbotham et al. 2019). Our Γ values are 
sufficiently larger than this value across four hops, indicat
ing that our results demonstrate substantial insensitivity to 
hidden bias and strong support for the existence of social 
influence through phone communications up to four 
degrees of separation. However, beyond the fourth hop, 
the results are no longer robust to unobserved confoun
ders, and therefore, we exclude them from our analysis. In 
summary, our findings, as shown in Figure 4, are robust to 
a plausible range of unobserved selection bias, up to the 
fourth hop.

4.2.3. Shuffle Test. To further validate our findings on 
the impact of social influence through phone communi
cations, we perform the “shuffle test” introduced by 
Anagnostopoulos et al. (2008). This shuffle test aims to 
exclude the effect of social influence while retaining 
other factors, such as observed homophily and latent 
homophily. This method, adapted by Belo and Ferreira 
(2022), provides a lower bound in absolute terms for the 
effect of social influence (see appendix E of Belo and Fer
reira (2022)).

To conduct this test, we shuffle the dates of the phone 
calls (hence, the treatment) within each treatment group 
(for each hop index) so that the overall adoption rate 

and the adoption curve (by time) remain the same. We 
further constrain the shuffling to include only the indivi
duals that were treated in the same week, similar to the 
approach in Belo and Ferreira (2022). This restriction 
addresses the concern that the adoption dates may con
ceal unobserved effects leading to adoption. Specifi
cally, unrestricted shuffling may not be desirable in the 
presence of temporal clustering in the adoption pattern. 
For instance, it could lead to the assignment of late adop
tion dates to early adopters. We then use the same DID 
strategy on the matched pairs (according to observed 
and latent homophily) to compute the change in adop
tion likelihood on the shuffled data. Afterward, we com
pute the empirical distribution of the effect of social 
influence using the shuffled data, and we compare this 
distribution with the effect of social influence from the 
original data. We can reject the null hypothesis of no 
social influence if the estimates from the original data fall 
outside the 95% confidence interval of the parameter 
obtained from the randomized data. Figure 5 shows that 
the estimates from the original data are outside the 95% 
confidence interval of the estimates obtained from the 
shuffling procedure. Additionally, the estimates obtained 
from the shuffled data are significantly lower than those 
obtained from the original data for all hop indices. Hence, 
we reject the null hypothesis that γh � 0 for h ∈ {1, 2, 3, 4}

and conclude that social influence increases the likelihood 
of adoption up to four degrees of separation. Given that 
randomization provides a lower bound for the effect of 

Figure 5. (Color online) Distribution of Estimates over 100 Shuffles of Adoption Dates 

Notes. The x axis is the change in adoption likelihood resulting from phone communication. The y axis is the frequency of the estimates over the 
100 shuffles. The red vertical line represents the coefficient obtained using the original data. (a) Hop 1. (b) Hop 2. (c) Hop 3. (d) Hop 4.
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social influence, this test indicates that the observed pat
terns of social influence up to four degrees of separation 
are not likely to be driven entirely by the effects of homo
phily or other unobserved confounders.

4.2.4. Other Observational Analysis Methods. We test 
a series of methods (including coarsened exact matching, 
subclassification, Mahalanobis distance matching, and 
post-Lasso estimation), with results shown in Figure G1 
in Online Appendix G. All methods present the long- 
range social influence effect with a decay pattern as the 
degree of separation increases, suggesting the robustness 
of our findings with respect to the observational methods.

4.3. Mechanism: Information Loss Along Phone 
Communication Cascade

The empirical findings motivated us to investigate the 
potential mechanism that leads to the decay of social 
influence along the hop indices in the communication 
cascades. To this end, we adopt a simple structural 
Bayesian approach that models a sequential update 
process through information sharing, following Zhang 
(2010). In this process, information about the quality of 
the event (i.e., the subject of adoption) is shared through 
WOM communication via phone calls.

In the following paragraphs, we discuss the utility 
function and the Bayesian learning process. Let ui(Sit)

denote the utility of user i to adopt the decision at time t, 
based on state variables contained in Sit � {Iit,ζit}, where 
Iit is a set of signals i received up to t and ζit is the idiosyn
cratic utility shock to individual i. Following Zhang 
(2010), we have9

ui(Sit) � αθt � αρθ2
t + ζit, (2) 

where θt characterizes any unobservable quality compo
nent of the product at time t; α is the associated utility 
weight; ρ captures i’s risk-averse tendency. Because of 
the time and monetary costs of attending the event (i.e., 
relative to resharing content on social media or down
loading an app), we assume that individuals are risk- 
averse. We follow Zhang (2010) and introduce the 
quadratic term αρθ2

t to capture this tendency, allowing 
for a positive risk-averse tendency ρ. Based on this utility, 
individuals then make an adoption decision using a sig
moid function:

P(ui(Sit)) �
1

1 + e�ui(Sit)
: (3) 

We assume that individuals have prior knowledge 
about the distribution of θt, which is assumed to be i:i:d:

normal with fixed mean µ and variance σ2
θ: θ ~ N (µ, 

σ2
θ): In our context, such prior knowledge might be 

obtained from television or offline advertisements of the 
event. In addition, user i might receive a private signal 
sit of the unobserved quality θt.

We next describe two types of information update 
processes. The signal Sit might be derived from the 
experience of attending the event (for initial adopters) 
or from communicating with their neighbors (for noni
nitial adopters). In addition to their prior knowledge 
and their own private signals (available if they have 
attended the event), individuals can gather private sig
nals from individuals with whom they communicate 
via phone calls. That is, compared with individuals in 
the control group, those in the treatment groups can 
fine-tune their quality signals if they also receive private 
signals from phone communications.

According to Bayes’s rule, the expectation of the poste
rior distribution of θt is a weighted average of the poste
rior mean µ and the private signal, which follows a 
normal distribution with mean sit and standard devia
tion σs. If one’s private signal is the only information 
available (e.g., in the case of initial adopters, after they 
attended the event), then the rule for updating the expec
tation of θt is (following equation (8) of Zhang (2010)):

E(θt|Iit) �
σ2
θsit + σ2

s µ

σ2
θ + σ2

s
, Iit � {sit}: (4) 

On the other hand, if an individual i receives r private 
signals by communicating with others (e.g., in the case 
of any noninitial adopters from hop 1 onward in the cas
cade), the expectation of the posterior distribution of θt 
is a weighted average of the prior mean µ and the sam
ple average of these signals (following equation (9) of 
Zhang (2010)):

E(θt|Iit) �
σ2
θ

Pr
j�1 sjt + σ2

s µ

σ2
θ + σ2

s
, Iit � {s1t, : : : , srt}: (5) 

We then use simulation to understand two elements. The 
first element is information loss along the communication 
chain from hop 1 to subsequent hops, which is repre
sented by the difference in the expectation of the poste
rior probability on θt (when simulation stops) between 
the initial adopter and individuals in later hops. We let

Information loss �
1

|I0|

X

i∈I0

E(θt|Iit) �
1

|Ih|

X

j∈Ih

E(θt|Ijt)

�
�
�
�
�

�
�
�
�
�
,

(6) 
where I0 is the set of initial adopters and Ih is the set of 
individuals in hop h.

The second element is how information loss affects 
adoption decisions and, in turn, social influence. The 
strength of social influence is computed as

Strength of social influence

� P(ui(Si, t�1)) � P(ui(Si, t�0)): (7) 
In this setup, the effect of social influence is quantified 
by the difference in the probability of adoption before 
and after receiving the information via phone calls. In 
the simulation, we let σθ � 0:1, σs � 0:1, α � 1, ρ � 0:1, 
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and ζit ~ N (0, 0:1). The prior mean for all individuals is 
set at µ � 0:5. Given the reputation of the event, the ini
tial adopter is likely to receive a private signal reflecting 
the high quality of the event, in which case we set sit �

0.9 if i ∈ I 0. In our empirical setting, we consider only a 
single-path communication cascade; therefore, the pri
vate signal would come only from the individual who 
communicated with i.

The simulation process aims to mimic social learning 
in phone communication using the following steps in 
sequence: 

1. The initial adopter computes the posterior using 
Equation (4), after receiving their private signals through 
attending the event.

2. The initial adopter communicates with and sends 
a private signal (drawn from the posterior from Equa
tion (4)) to the individuals in hop 1 (which is set as the 
current hop index).

3. Individuals in the current hop update their poste
rior probability, according to Equation (5).

4. Compute the adoption probability of the individual 
(who received the information signal) using Equation (3).

5. Repeat steps 3 and 4 to start the next hop and all 
subsequent iterations up to the fifth iteration.10

We simulate the process 1,000 times over a single 
branch of a hypothetical communication cascade. The 
results are presented in Figure 6. As shown in the left 
panel, we see that information loss increases as the hop 
index increases, which provides evidence that informa
tion is lost along the communication cascade. The right 
panel shows social influence based on the difference in 
adoption probability, computed using the prior signal 
and the posterior signal. That is, for each user in the 
communication cascade, we compute the difference in 
the adoption probability before and after the phone 
communication. We see that social influence decreases 
along the hop indices because of the information loss. 
This simple Bayesian model provides a mechanism that 
may explain the empirically observed decay of social 
influence in Section 4.1.

5. Influence Centrality
Centrality is an important characteristic for nodes in a 
network. It has been widely used in network-based 
systems—for example, in seeding for marketing pur
poses. Defining node centrality for a given application 
has generated substantial theoretical interest in IS, net
work science, and economics research (Sundararajan et al. 
2013, Liu 2019). Because centrality measures can be used 
to understand how diffusion processes on digital and 
information networks may alter a wide variety of eco
nomic outcomes, centrality’s definition and quantification 
may vary, depending on the substantive settings. One 
immediate implication of the long-range effect of social 
influence in Section 4.1 is the development of a new 
context-dependent centrality measure, which we call 
influence centrality. Influence centrality is designed to 
quantify the structural importance of nodes, relating the 
overall increase in expected adoption to a node that 
serves as the “injection” node (i.e., the individual who is 
seeded to diffuse a certain product or behavior).

5.1. Influence Centrality: A New Centrality Based 
on Social Influence Effect

Consider a marketing firm or a public health agency 
that aims to use WOM through mobile phone communi
cations to spread information about a product or health- 
related behavior—for example, an offline event in the 
former case or the benefits of immunization in the latter. 
To what degree does the overall increase in expected 
adoption rely on who the firm or agency approaches 
first (e.g., to offer free tickets or free trials)? Given that 
we are interested in social influence, this question is dif
ferent from questions about increasing the spread of 
information in the network, which is the motivation 
behind many widely applied centrality measures. Our 
centrality measure answers this question by quantifying 
the importance of a user in the network with regard to 
the increase in expected adoption if this user is the only one 
initially informed.

Figure 6. (Color online) Information Loss in a Bayesian Learning Process (According to Equation (6)) Can Lead to Social Influ
ence Decay (According to Equation (7)) 
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The measure is defined in a random walk fashion 
using an independent cascade model (Easley and Klein
berg 2010). Assume that each informed individual calls 
a neighbor in the social network with probability p, and 
that call from the seeded individual increases the adop
tion likelihood of immediate neighbors by γ1. As social 
influence propagates, it reaches longer distances over 
the social network; we assume that this initial seed 
increases the adoption likelihood of each of the second- 
degree neighbors (who has been called with probability 
p2) by γ2, of each third-degree neighbor (who has been 
called with probability p3) by γ3, and so on. Recall that 
the adjacency matrix of the historical social network is 
A. The two-hop adjacency matrix, which captures indi
viduals who can reach one another by two hops, is A2. 
Similarly, the h-hop adjacency matrix Ah measures the 
expected number of walks of length h between each pair 
of individuals. The diffusion process continues until a 
fixed degree of separation is reached. We can therefore 
define influence centrality, abbreviated as IC, as follows:

IC(A; p, g, H) �
XH

h�1
γh(pA)

h
· 1, (8) 

where H is the maximal reach of the social influence 
(we choose H � 4 as informed by our empirical results 
in Section 4.1), and 1 is an all-one vector. The values 
of g � {γ1, : : : ,γH} are estimated empirically using our 
framework and account for the decaying strength of 
social influence.

IC bears similarities to and generalizes prevailing cen
trality measures. The main difference between IC and 
other centrality measures is its focus on increasing social 
influence and expected adoption, as well as its capability 
of accounting for heterogeneity between neighbors at dif
ferent hop indices (via g). From this perspective, IC can 
be perceived as assigning a weight γh to edges in a ran
dom walk matrix (pA)

h, where the edge weights can be 
estimated empirically through the technical frame
work in Section 3. If g � {1}

H
h�1, p � 1, and H � 1, IC is 

proportional to the degree centrality. If g � {1}
H
h�1 and 

H � ∞, IC becomes proportional to either the Katz cen
trality or the eigenvector centrality, depending on 
whether p is smaller than the inverse of the largest 
eigenvalue of A or not.11 Finally, IC is most similar to 
the diffusion centrality proposed in Banerjee et al. 
(2013) among all centrality measures. However, the 
focus of the former is to amplify the influence on adoption 
(hence different γh for different h) while the latter (and 
indeed most centralities in the literature) is on the diffu
sion of information (hence γh is homogeneous across dif
ferent h). In all these approaches, the communication 
(diffusion) probability p can be estimated either empiri
cally or using simulations to test for robustness. For exam
ple, we estimate p from the historical data: On each day of 
the month prior to the event, each individual communi
cated, on average, with 7% of the individuals they com
municated with during the whole month. Hence p is set 
to be 0.07 in our analysis.

Following the evaluation procedure described in Bane
rjee et al. (2013), we conduct regression analyses to evalu
ate the predictive power of mean and median centrality 
of those who have information about the product initially 
(e.g., those who attended the event) on the number of 
eventual adopters for each observation period. To per
form the analyses, we first compute degree centrality, 
eigenvector centrality, Katz centrality, diffusion centrality 
and influence centrality using the historical social net
work.12 Then, for each observation period, we compute 
the mean and median centrality of initial adopters using 
any centrality measure above (as the independent vari
ables), and record the total number of individuals that 
eventually adopted (as the dependent variable) after 
excluding initial adopters. This processing step gives us a 
pair of data points for each of the 19 observation periods. 
To test the predictive power of different centralities 
toward the number of adoptions, we then regress the 
dependent variable (total number of adopters) on the 
independent variables (mean and median of a certain 
centrality of initial adopters) and show the coefficient of 
determination (R2) of the regression model in Figure 7. 

Figure 7. (Color online) Proportion of Variance in the Total Number of Adopters Explained by the Centrality of the Initial 
Adopters 
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We can see that IC outperforms the other centrality mea
sures in predicting the number of adopters; hence, it is 
a stronger predictor of adoption behavior, thanks to 
accounting for quantitative estimates of social influence 
over successive connections. This experiment suggests 
the possibility of IC being used to inform strategies for 
commercial firms in promoting product adoption (Aral 
et al. 2009), for the government in encouraging voter turn
out (Bond et al. 2012), and for public health agencies in 
promoting immunization programs (Banerjee et al. 2019).

5.2. Policy Implication in Seeding and 
Viral Marketing

The proposed influence centrality, combined with the 
empirical results in Section 4.1, has a number of policy 
implications because managers and campaigners can use 
such knowledge to improve their decision making as they 
promote new products or behaviors. In this section, we 
quantitatively demonstrate how raising the communication 
probability over each connection (thus promoting phone 
communications) and the number of initial seeds can signif
icantly amplify the expected adoption. First, IC can be 
applied in seeded marketing to identify a set of individuals 
for targeted interventions that can maximize overall likeli
hood of adoption.13 Second, we quantitatively demonstrate 
in a simulated environment where high-centrality nodes 
are targeted to be the initial adopters, raising the communi
cation probability over each connection and the number of 
initial seeds can significantly amplify the overall expected 
adoption and may be desirable despite the cost of these 
interventions. This exercise can inform optimal seeding in 
viral and targeted marketing campaigns.

To further investigate these policy implications, we 
conduct two analyses. The simulation procedure used 
in these analyses is summarized in the following steps: 

1. Compute IC on the historical social network A.
2. Rank the centrality measures and select the top m 

individuals as seeds (initial adopters), where m is a pre
determined number.

3. For neighbors of each seeded individual (for the 
first iteration) or neighbors of individuals who have 
received influence in the previous iteration but has 
not yet diffused influence (for subsequent iterations), 
decide whether each specific neighbor receives the 
phone call (hence influence), according to a predeter
mined communication probability p. If the individual 
receives the phone call, then the adoption likelihood 
for that individual will increase by γh, where h is the 
individual’s distance to the initial adopter in the net
work. Keep track of the total increase (from multiple 
iterations) in adoption likelihood for each individual 
who has received influence. The upper bound of the 
total increase in the adoption likelihood is one.

4. Start subsequent iterations by repeating step 3 up 
to the fourth iteration (i.e., up to hop 4 neighbors of ini
tial adopters, inspired by our empirical results).

5. Compute the increase in expected adoption by sum
ming up the effect of social influence (g) on all indivi
duals who receive the treatment (based on their distance 
to the initial adopter). The hop index of a specific indi
vidual who has received the information is based on the 
degree of separation from an initial adopter.

Two factors may play a role in the total increase in 
expected adoption: the number of seeds m and the com
munication probability p. In the following sections, we 
first examine how these two factors are related to the 
increase in expected adoption (Section 5.2.1); we then 
examine two marketing strategies based on these two 
factors, analyzing the cost and benefit of these strategies 
(Section 5.2.2).

5.2.1. Expected Adoption with Respect to Seeding and 
Communication Probability. Figure 8 shows the increase 
in expected adoption as a function of the two factors we 
consider: the number of seeds and the phone communi
cation probability. In Figure 8(a), we see that the increase 
in communication probability leads to an increase in the 
expected adoption, as expected. However, this effect is 

Figure 8. (Color online) Overall Increase in Expected Adoption Based on the Different (a) Communication Probability, (b) Number 
of Initial Seeds, and (c) Joint Effect of These Two Factors, with Color in the Heatmap Indicating the Increase in Expected Adoption 
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not linear; instead, two phases of transition indicate 
where the increase is more significant: The increase (on a 
logarithmic scale) is the most significant before reaching 
the probability of p � 0.2, and it slows down up to p � 0.4. 
After this point, the effect of seeding becomes saturated. 
A similar pattern can be observed in Figure 8(b), which 
shows the effect of the number of seeds. Indeed, the ini
tial 20–30 seeds lead to a significant increase in expected 
adoption (again on a logarithmic scale) before the effect 
saturates. This saturation is understandable because the 
seeds were chosen according to decreasing influence cen
trality. We could also investigate the joint effect of the 
two strategies, that is, increasing the number of seeds (m) 
and promoting the probability of communication (p), 
which is illustrated in Figure 8(c). These results confirm 
that both the number of seeds and the communication 
probability play a role in the increase in expected adop
tions. The former is related to seeded marketing, and the 
latter to viral marketing. This analysis motivates us to 
examine two marketing strategies based on these two fac
tors in the following section.

5.2.2. Cost-Benefit Analysis in Seeding and Viral Mar
keting. To analyze the cost-effectiveness of the two fac
tors discussed in the previous section, we examine two 
marketing strategies in seeded WOM and viral market
ing. We first describe the strategies as follows. 

Strategy 1: Seed m individuals, through promo
tional offers and/or free tickets. This strategy has a 
direct effect on increasing expected adoption.

Strategy 2: Seed m individuals; in addition, pro
mote phone communication across the network by 
designing viral features into the advertising content 
(Aral and Walker 2011). Either the marketing team of 
an advertising firm or a third-party content market
ing firm can design such features. As a result of this 
action, the communication probability p increases in 

all iterations of step 3 of the simulation, resulting in 
an increase in expected adoption.

For strategy 1, we consider a base communication 
probability of p � 0.07, which is similarly estimated 
from historical data as in Section 5.1. For strategy 2, we 
consider three levels of marketing services that involve 
engineering viral content. These levels lead to adoption 
probabilities of p � 0.12 (basic), p � 0.15 (pro), and p �
0.17 (diamond), respectively.14

We set the cost of adding a seed to be cs and the cost of 
designing viral features to increase p to be cv (this cost 
increases as we go from the basic level to the diamond 
level). Thus, the cost of the two strategies is as follows: 

Strategy 1: cs × m.
Strategy 2: cs × m + cv.

We collect statistics from real-world data to make the 
simulation more realistic. We set the benefit of every 
100% increase15 in expected adoption at $88 (the aver
age ticket price for the offline event in this study) and 
compute the total benefit as this amount times the 
increase in units of expected adoption. We set cs � $22 (1

4 
of the ticket price) and cv ∈ {$202, $337, $560} for the 
three levels of services for viral content design.16 By sub
tracting the cost from the benefit, we can analyze the 
cost-effectiveness of the strategies under different num
bers of seeds m.

Figure 9 shows the net benefit (benefit minus cost) of 
the strategies as a function of the number of seeds. The 
“no viral marketing” scenario corresponds to Strategy 
1, whereas the other three scenarios correspond to Strat
egy 2. As expected, the net benefit increases as the num
ber of seeds increases for all levels of viral marketing 
efforts. The addition of viral features leads to an increased 
net benefit in all scenarios; the increase is most pro
nounced when the number of seeds is small, although this 
effect becomes saturated when more seeds are added. In 
addition, for the same level of net benefit, one can either 

Figure 9. (Color online) Policy Simulations Using the Two Marketing Strategies, with Different Service Levels and Number 
of Seeds 
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improve the viral content or increase the number of seeds. 
For example, using the “pro” service and seeding 8 indivi
duals generates roughly the same net benefit compared 
with using the “basic” service and seeding 32 individuals. 
These findings demonstrate that both a seeding strategy 
based on IC and promoting communications in the social 
network using viral features are effective in promoting 
adoption. Engineering viral content to increase communi
cation probability is particularly effective when the num
ber of seeds is small (toward the left end of Figure 9), for 
example, practical constraints limit the ability to expand 
seeding. The marketing strategies may both be profitable, 
despite their costs, and a cost-benefit analysis can be used 
to estimate their net benefit.

6. Discussion
Phone communications play a crucial role in facilitating 
information exchange due to their unique characteris
tics, as shown in Table 1. The availability of large-scale 
and longitudinal mobile phone communication data 
and the associated mobility information from CDRs has 
allowed us to identify social influence on one’s immedi
ate and distant neighbors in the phone communication 
network. In this study, we propose a new technical 
framework to investigate how social influence spreads 
through this communication channel. Our findings de
monstrate that social influence through phone commu
nication can impact an offline adoption decision up to 
four degrees of separation in the phone communication 
network. This finding improves our fundamental under
standing of how social influence spreads through an 
underexplored phone communication channel. More
over, our empirical results have inspired the develop
ment of a new centrality measure, influence centrality, 
which evaluates the structural importance of nodes in 
amplifying expected adoption. This centrality measure 
offers a new perspective on leveraging the complex struc
ture of social networks for marketing purposes via 
mobile phone communications, thus expanding the exist
ing literature in network science. This measure provides 
a fresh perspective on using the complex structure of 
social networks for marketing purposes through mobile 
phone communications, expanding the existing literature 
in network science.

6.1. Theoretical and Managerial Implications
6.1.1. Quantitative Framework for Studying Social Influ
ence via Phone Communication. Despite the wide
spread use of mobile phones and their potential for 
mobile advertising campaigns, understanding social 
influence on adoption behaviors through phone com
munication has been hampered by the lack of practical 
tools for identifying influence in large-scale networks. 
Our study proposes a technical framework for studying 
the impact of social influence mediated through phone 

communications using CDRs, which have become in
creasingly accessible in recent years (see Online Appen
dix I). Our framework carries several potential and 
practical implications. (1) Our methodology for isolating 
social influence from homophily (and in particular, both 
observed and latent homophily) using social interaction 
and behavioral data can be helpful in empirical IS re
search when socio-demographic information is not avail
able. (2) Our framework can be applied to other adoption 
decisions and other types of social interaction data, such 
as Facebook, Twitter, and Yelp, or communication 
media, such as video calls or text messages. Overall, our 
analysis demonstrate the potential of combining large- 
scale spatial-temporal data and network mining with 
econometric models to better understand and quantify 
social influence. As discussed in Section 5.2, this under
standing and quantitative estimate can lead to more 
effective strategies in seeded and viral marketing.

6.1.2. Seeded WOM and Viral Marketing. Seeded WOM 
and viral marketing are popular techniques used in the 
advertising industry and in public health campaigns 
and government initiatives. Despite their effectiveness, 
identifying the right individuals to seed remains a chal
lenge. In network contexts, centrality measures are often 
used to select influential seeds. However, existing cen
trality measures focus on information spread and diffu
sion, while neglecting the importance of social influence. 
To address this gap, we propose a new centrality mea
sure called IC. Unlike existing measures, IC focuses on 
amplifying social influence, leading to an increase in 
expected adoption. Our empirical findings on the decay
ing patterns of social influence reveal the heterogeneity 
of influence across different hop indices from a focal 
individual’s perspective. Additionally, IC’s context- 
dependent nature and ability to capture heterogeneity 
can lead to more effective marketing strategies for 
commercial firms and for successful campaigns for 
humanitarian and public health goals. Our study offers 
new perspectives on developing targeted seeding strat
egies and identifying influential individuals in social 
networks. By incorporating IC into seeding and viral 
marketing strategies, organizations can more effec
tively harness the power of social influence to achieve 
their goals.

6.1.3. Extending Hyper-Contextual Mobile Targeting 
to Phone Communication Networks. Mobile targeting 
enables personalized advertising based on hyper- 
contextual insights derived from mobile phone usage 
data, including location (where), time (when), search 
behavior (how and what), and copresence with others 
(with whom). Our study builds on this theory by 
extending the concept of copresence (with whom) to 
include phone communication networks. We demon
strate that social influence can spread through phone 
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communication networks, allowing firms to target in
dividuals who have interacted with recent product 
adopters, even indirectly. Our findings highlight the 
importance of considering phone communication net
works when designing hyper-contextual mobile target
ing strategies.

6.2. Limitations and Future Work
Our study has several limitations that provide avenues 
for future research. First, although we measure observed 
and latent homophily by analyzing detailed behavioral 
information, the CDR data are not comprehensive and 
cannot capture social interactions that take place through 
other communication channels (e.g., online or email 
interactions). This limitation in observability is a general 
concern for most, if not all, social influence studies using 
data collected from one digital platform (such as online 
social media (Bond et al. 2012) or messaging apps (Aral 
and Walker 2014)): Because of ethical and privacy consid
erations, and the technical challenge in merging social 
interactions from multiple communication media, most 
studies only obtain social interactions from one medium. 
Consequently, our method, relying on the CDR data, 
establishes upper bounds on influence estimates when 
communications through other channels are unobserved. 
Second, we do not observe the content of phone commu
nications due to data privacy and confidentiality reasons. 
As a result, the social influence effect on event attendance 
that we intend to measure may not have taken place 
through phone calls. Future studies might use surveys, 
similar to that in Lovett et al. (2013), to assess the proba
bility of relevant information being spread through 
phone communications. Third, because of the lack of suf
ficient data, we investigate the treatment effects of a sin
gle communication path between the initial adopter and 
an individual a certain distance away in the communica
tion work. Future studies might consider multiplicative 
effects of social influence with multiple communication 
paths. Fourth, our empirical context focuses on attending 
an offline performance event, so the generalizability of 
the findings is limited to similar offline behaviors. Future 
studies may apply the proposed framework to investi
gate which real-world offline behaviors are amenable to 
phone communication. Our framework might also be 
used to study heterogeneity in the effects of social influ
ence (e.g., with respect to factors such as tie strength) or 
how social influence varies as time elapses.
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Endnotes
1 Although studies have investigated the role of mobile phones in 
information exchange and the emergence of multiplex communication 

networks (Matous et al. 2014), they have not specifically examined the 
role of phone communication in social influence. In contrast, several 
studies investigate social influence through phone call data as a proxy 
for social connections (de Matos et al. 2014, Hu et al. 2019, Belo and Fer
reira 2022) or exposure to ring-back tones they hear (Ma et al. 2015, 
Zhang et al. 2018), but these studies do not directly analyze social influ
ence that is mediated through phone calls.
2 Reciprocity helps to reduce the possibility of including spam calls.
3 We do so to avoid the difficulty in disentangling the multiplica
tion effect of social influence.
4 For a member of the control group, the adoption period aligns with 
that of the matched individual in a treatment group (more details are 
provided in Section 3.2 when we construct the panel data).
5 Simulation studies have demonstrated the effectiveness of this 
proxy over a wide range of parameters, independent of the net
work’s structure, and with varying levels of homophily and the 
product’s baseline level of adoption (Belo and Ferreira 2022).
6 More formally, the assumptions made in McFowland and Shalizi 
(2023) are as follows: (1) for the underlying network models, all 
links in the historical social network are conditionally independent 
of each other, given the latent positions for each individual; and (2) 
in observations of the whole network, adoption provides no addi
tional information about an individual’s latent positions.
7 In understanding diffusion of adoption decisions, not adding the 
individual-level fixed effects is customary, because such fixed 
effects would capture the adoption perfectly and thereby absorb the 
effect of interest (Belo and Ferreira 2022).
8 For the ease of readability in the paper’s description, we round the 
numbers to four digits, but in the calculation, we use the eight-digit 
decimals provided in Table E1 of Online Appendix E.
9 In this utility function, without loss of generality and following 
the setting in the literature of Bayesian learning (Acemoglu et al. 
2011), we consider individuals to be homogeneous and therefore do 
not include user covariates.
10 We do not present the result after the fifth hop because the value 
of interest converges.
11 For both the eigenvector centrality and the Katz centrality, p 
needs to be smaller than the inverse of the largest eigenvalue of the 
adjacency matrix A.
12 We compute degree centrality by summing the number of con
tacts of each initial adopter, normalized by N � 1, where N is the 
number of individuals who appear in the historical social network 
A. The eigenvector centrality is based on the leading eigenvector of 
A. We set the diffusion probability p in diffusion centrality, Katz 
centrality, and influence centrality to be 0.07. We compute the diffu
sion centrality using H as the diameter of the largest connected 
component of the historical social network.
13 Although marketing agencies can solve an optimization problem 
to determine the optimal set of seeds, this calculation is seldom 
done in practice. The reason is that the influence maximization 
problem, using an independent cascade model, is a nondeterminis
tic polynomial-time hardness (NP-hard) problem for which approx
imations are needed but computationally expensive given the large 
size of social networks.
14 We use these specific probabilities as illustrative examples. Mar
keting firms can estimate these costs according to their context.
15 This 100% increase in expected adoption could result from, for 
example, 30% increase in expected adoption for an individual A 
and 70% for another B.
16 We obtained these reference prices from the following content 
marketing platform: https://z3i.zerys.com/#/pricingcalculator. 
Figure H1 of Online Appendix H shows the prices for the three tiers 
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of content marketing services to create viral content. These prices 
are adopted for illustrative purposes and marketing firms can esti
mate them based on their own context.
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