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We investigate the uniform reshuffling model for money exchanges: two agents picked
uniformly at random redistribute their dollars between them. This stochastic dynamics
is of mean-field type and eventually leads to a exponential distribution of wealth. To
better understand this dynamics, we investigate its limit as the number of agents goes to
infinity. We prove rigorously the so-called propagation of chaos which links the stochastic
dynamics to a (limiting) nonlinear partial differential equation (PDE). This deterministic
description, which is well-known in the literature, has a flavor of the classical Boltzmann
equation arising from statistical mechanics of dilute gases. We prove its convergence
toward its exponential equilibrium distribution in the sense of relative entropy.
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1. Introduction

Econophysics is an emerging branch of statistical physics that incorporate notions
and techniques of traditional physics to economics and finance? 2338 Tt has
attracted considerable attention in recent years raising challenges on how various
economical phenomena could be explained by universal laws in statistical physics,
and we refer to Refs. [16, [17), [30] and 136l for a general review.

The primary motivation for studying such models arising from econophysics is
at least two-fold: From the perspective of a policy maker, it is important to deal

2111221 i order to establish a more equalitarian

with the raise of income inequality
society. From a mathematical point of view, we have to understand the fundamental
mechanisms, such as money exchange resulting from individuals, which are usually
agent-based models. Given an agent-based model, one is expected to identify the
limit dynamics as the number of individuals tends to infinity and then its corre-
sponding equilibrium when the model is run for a sufficiently long time (if there is
one), and this guiding approach is carried out in numerous works across different
fields among literature of applied mathematics, see for instance, Refs. [5, [12| and [35.

In this work, we consider the so-called uniform reshuffling model for money
exchange in a closed economic system with N agents and NM total amount of
dollars. The dynamics consists in choosing at random time two individuals and to
redistribute their money between them. To write this dynamics mathematically, we
denote by X;(t) the amount of dollar agent i has at time ¢ for 1 < ¢ < N. At a
random time generated by a Poisson clock with rate N, two agents (say ¢ and j)
update their purse according to the following rule:

(X5, X;5) ~ (U(Xi + X;), 1= U)(X; + X;)), (1.1)

where U is a uniform random variable over the interval [0, 1] (i.e. U ~ Uniform|0, 1]).
The uniform reshuffling model is first studied in Ref. [23] via simulation. The agent-
based numerical simulation suggests that, as the number of agents and time go to
infinity, the limiting distribution of money approaches the exponential distribution
as shown in Fig. [1} It is well-known (see for instance Refs. [3| 7, 24 and [33]) that
under the large population N — oo limit, We can formally show that the law of
the wealth of a typical agent (say Xi) satisfies the following limit PDE in a weak
sense:

1
Oq(t, ) / / [Okkf]g q(t, k)q(t,0)de dk — q(t, x). (1.2)

Well-posedness of the solution to starting from a smooth initial distribution
has been established in Theorem 6 in Ref. [6, thus throughout this work we will
assume that ¢(¢,-) is smooth for all ¢ > 0. To our best knowledge, the rigorous
derivation of the limit equation from the particle system description is absent
in most of the literature on econophysics (just like many other PDEs arising from
models in econophysicst® 2% 29) " because the propagation of chaos effect is implic-
itly assumed in the large IV limit in most derivations. The remarkable exception
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Fig. 1. (Color online) Simulation results for the uniform reshuffling model. The blue histogram
shows the distribution of money after " = 1000 time unit. The red solid curve is the limiting
exponential distribution proved in Ref.[321 We used N = 10,000 agents, each starting with $10.

is a work of Cortez?? in which the author showed a uniform-in-time propagation
of chaos by virtue of a delicate coupling argument based on optimal transport. In
Sec. of this paper, we will provide an alternative rigorous justification of Eq.
under the limit N — oo.

Once the limit PDE is identified from the interacting particle system, the nat-
ural next step is to study the problem of convergence to equilibrium of the PDE
at hand, it has been shown in Refs. [24] and B3| that the unique (smooth) solution
of converges to its exponential equilibrium distribution exponentially fast in
Wasserstein and Fourier metrics. In this work, we demonstrate a polynomial conver-
gence in time using relative entropy, by establishing a entropy—entropy dissipation
inequality (see Theorem which is not available among the literature. An illus-
tration of the general strategy used in this work (and implicitly in many of the
works cited above) is shown in Fig.

Although only a very specific binary exchange model is explored in the present
paper, other exchange rules can also be imposed and studied, leading to different
models. To name a few, the so-called immediate exchange model introduced in
Ref. 26] assumes that pairs of agents are randomly and uniformly picked at each
random time, and each of the agents transfer a random fraction of its money to the
other agents, where these fractions are independent and uniformly distributed in
[0, 1]. The uniform reshuffling model with saving propensity investigated in Refs. [I5
and [32] suggests that the two interacting agents keep a fixed fraction A of their
fortune and only the combined remaining fortune is uniformly reshuffled between
the two agents, which makes the uniform reshuffling model the particular case A = 0.
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Fig. 2. Schematic illustration of the general strategy of our treatment of the uniform reshuffling
dynamics.

For more variants of binary exchange models with (random) saving propensity and
with debts, we refer the readers to Refs. [18 and [31. For recent work on other models
from econophysics, we recommend Refs. [8HI1l

This paper is organized as follows: in Sec. [2| we briefly discuss the properties
of the limit equation . We show in Sec. |3| convergence results for the solution
of in Wasserstein distance and in the linearized region. We take on the most
delicate analysis of the entropy—entropy dissipation relation in Sec. @ Finally, we
present a rigorous treatment of the propagation of chaos phenomenon in Sec.

2. The Limit PDE and Its Properties

We present a heuristic argument behind the derivation of the limit PDE arising
from the uniform reshuffling dynamics in Sec. Several elementary properties
of the solution of are recorded in Sec. Section is devoted to another
formulation of the uniform reshuffling model, which can be viewed as a lifting of
the reshuffling mechanics and is implicitly exploited in Ref.[3l In Sec. we
highlight a key ingredient known as the micro-reversibility, of the collision operator
determined by the right side of , which allows us to construct certain Lyapunov
functions associated with (such as entropy).

2.1. Formal derivation of the limit PDE

Introducing Nt(i’j )

can be written as

dXi(t)= > (U@E=)(Xi(t=) + X;(t-)) — Xi(t=)) dN"P (2.1)
J=1..N,j#i

independent Poisson processes with intensity 1/N, the dynamics
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with U(t) ~ Uniform[0, 1] independent of {X,(¢)}1<i<n and is generated as fol-

lows: whenever a Poisson clock Nt(w )

rings, we generate a Uniform|0, 1]-distributed
random variable U independent of the past. As the number of players N goes to
infinity, one could expect that the processes X;(t) become independent and of same

law. Therefore, the limit dynamics would be of the form
dX(t) = (U{t=)(X(t—)+ Y(t—)) — X(t—))dNy, (2.2)

where Y(t) is an independent copy of X(t) and N; a Poisson process with
intensity 1. Taking a test function ¢, the weak formulation of the dynamics is
given by

dE[p(X(1)] = E[p(U()(X (1) + Y (1)) — (X (t))] dt. (2.3)
In short, the limit dynamics correspond to the jump process:
X ~UX+Y). (2.4)

Let us denote g(t, ) the law of the process X (t). To derive the evolution equation
for q(t, z), we need to translate the effect of the jump of X (t) via (2.4)) onto q(t, z).

Lemma 2.1. (Hierarchy of probability distributions) Suppose X and Y are two
independent random variables with probability density q(x) supported on [0,00). Let
Z =U(X+Y) with U ~ Uniform([0, 1]) independent of X andY . Then the density
for the law of Z is given by Q4 [q] with

@l = [~ 22O (" yeygtm - )z ) am (25)

m=0 m =0

Lio 4 ()
= —————~q(k)q(¢)dl dk. 2.6
L T awato (26)

Proof. Let us introduce a test function .

E[p(U(X +Y)) />0/>O/u plule +)a(@)a(y)du de dy
/m>0 /: /u:()ga(um)q(z)q(mfz)du dz dm
:/m>0 /:;/: o(s)a(2)q(m — 2)ds d= dm

using the change of variables z = x and m = x+y followed by s = um. We conclude
using Fubini that

e+ = [ o) ([ tomtoln [ atatm—2)dzdm)

=0

- / )@ lal(s)ds (2.7)

with Q4 [g] defined by (2.5). ]
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We can now write the evolution equation for the law of X (¢ - the density
q(t, z) satisfies weakly:

Owq(t,z) = Glq](t,z) fort>0 and x>0 (2.8)
with

Glal(x) == Q[al( / / 11[0/:;@]6 g(k)g(0)de dk — q(z).  (2.9)

Remark 2.1. We remark here that the well-posedness of the Boltzmann-type
PDE has been established in earlier works such as Ref. [33. Also, It has been
shown in Ref. B3| that moments of ¢(t) exist for all ¢ > 0 as long as ¢(0) has bounded
moments.

2.2. FEwvolution of moments

Now we will establish several elementary properties of the solution of (2.8]).

Proposition 2.1. Assume that q(t,z) is a classical (and global in time) solution
of (2.8) and define by my(t) the kth moment of ¢:

m = - xk X X. .
o(t) / g(t2)d (2.10)
Then
k
(1) = g D2 Clmy(Omi(0) = mao), (2.11)
j=0

where C,z = (’;) = ﬁ represents the binomial coefficient.

Proof. Notice that the moment can be written as my(t) = E[Yk(t)], where X (t)
satisfies (2.2)). Thus, we use the weak formulation of the evolution equation of ¢(t, z)

with () = 2¥ and deduce that
my =E[(UX +7))" - X"]
= E[U*E[(X +Y))"] - mu,

since U is independent of X and Y. Moreover, E[U*] = fu1:0 uFdu = k— Using
the independence of X and Y and expanding lead to (2.11)). |

Corollary 2.1. Let q(t,x) solution of (2.8) and my(t) its kth moment (2.10). The
total mass and the mean are preserved, i.e. m{(t) = m/(t) = 0 and all the moments
mg(t) converges in time exponentially fast.

Proof. Writing (2.11)) for k = 2 leads to

1 2
my = —gmat gmf (2.12)
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and thus ma(t) = 2m? + (m2(0) — 2m§)e_%t. More generally, we proceed by induc-
tion to show that my(t) converges exponentially, more precisely my(t) is of the
form
my(t) = mi + Oe” F1t) (2.13)
with m; the limit value of my(t). We first re-write the evolution equation of my(¢):
k—1
/

mk(t) = 7mmk(t) + Pp_1(t) (2.14)

with P, _1(t) = =5 25;11 Cimy(t)my_;(t). By induction, Py_1(t) has to converge

in time. Using variation of constant in (2.14) gives

k—1 k—1

¢
mp(t) = my(0)e” 1t 4 efmt/ e%st,l(s)ds, (2.15)
s=0
which leads to ([2.13]). O

From the proposition, we observe that the second moment mo(t) converges
exponentially toward the constant 2m?2. This behavior could be expected as the
equilibrium of the dynamics (2.8)) is given by

1 .
foo(z) := —e ™11 o0y () (2.16)
my

for which the second moment is equal 2m3.

Remark 2.2. Moment calculations can be useful in the study of classical spatially
homogeneous Boltzmann equation, and we refer the readers to Ref. 2] for more
information on this regard.

2.3. Pairwise distribution

Before studying the evolution of the entropy of the solution ¢(t, z), we make a detour
with another formulation of the reshuffling model using a two-particles distribu-
tion. Indeed, the jump process X () (2.4)) is a “truncated version” of the following
dynamics:

(X,)Y)~ (UX+Y),1-U)(X+Y)), (2.17)

where U ~ Uniform([0, 1]). Introducing a test function ¢(x,y), this dynamics lead
to:

dE[(X,Y)]| =E[p(U(X +Y),1-U)(X+Y)) —(X,Y)]dt. (2.18)
We now translate this evolution equation into a PDE.

Proposition 2.2. Let f(t,z,y) the density distribution of the process (X (t),Y (t))
defined via (2.17). It satisfies (weakly) the linear evolution equation:

hf=Lilfl—f (2.19)
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with

1 z+y
Li[fl(z,y) = SCJFZJ/:o flz,x+y—2z)dz. (2.20)

Proof. The evolution equation (2.17)) gives
d

z,y>0

:/:o/ >Of(t7m,y)@(u(x+y)7(l—u)(x—i—y))dx dy du

f/ [t z,9)p(z,y)dr dy. (2.21)
z,y>0

To identify the operator associated with the equation, let us rewrite the “gain term”
(dropping the dependency in time for simplicity) using two changes of variables:

/:0 / . f(x,y)%’(u(x +y),(1—u)(z+ y))dm dy du
:/ / m f(z,m—Z)cp(um,(l —u)m))dz dm du
u=0 Jm>0 J2z=0

a'+y’ 1
= 22 +y — 2, y)——dzdz' dy’
Lo e e el e daldy
with (2/ = um,y’ = (1 — u)m) leading to dz’ dy’ = mdu dm. m|

Remark 2.3. Notice that the operator L “flattens” the distribution f over
the diagonals x + y = constant and thus minimizes its entropy over each diagonal
(see Fig. . In particular, the equilibria for the dynamics are the distributions of
the form: fi(x,y) = é(x + y).

L f(z,y) yp  Li[f](z,y)
"flatten”
diagonals

P

X X
> >

Fig. 3. The operator Ly (2.20) flattens the distribution f(x,y) over the diagonal lines x +y =
constant.
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Fig. 4. Schematic representation of the evolution of f(¢,z,y) and q(t,z). If f belongs to the
manifold of independent functions, i.e. f(t,z,y) = q(t,z)q(t,y), then the evolution of its marginal
q satisfies locally the non-linear equation . Notice that the manifold of independent function
is not invariant by the flow of the linear PDE. Notice that we have assumed m; = 1 so that
foo(Z,Y) := oo (%)qoo (y) = e~®Y. Also, the definition of g appears in (&.9).

The linear operator L, (2.20)) is linked to the non-linear operator Q4 (2.5) as
illustrated in Fig. |4l Indeed, assuming X and Y are independent, i.e. f(z,y) =
q(z)q(y), integrating L [f] over the ‘extra’ variable y gives

[ tnenan= [ [ ity sy

>0 +Y J.—0

+oo m
- /m:x - /ZZO a(z)a(m — 2)dz dy = Q+[q)(x).

2.4. Micro-reversibility

The evolution equation for f (2.19) corresponds to a collisional operator with the
kernel:

K(x7 y yl) = 5:c+y(x/ + y'), (2.22)

z+y
where ¢ denotes the Dirac distribution. Indeed, writing z = (z,y), Eq. (2.19)) could
be written as
O f(z,t) = / K(z;z)f(2,t) dz — / K (z;2') f(z,t)d2, (2.23)
7>0 2/>0

where z’ = (2/,3’) denotes the post-collision position and z = (Z, §) the pre-collision
position.

Remark 2.4. A more rigorous way to define the kernel K is through a weak
formulation using a test function ¢(x,y):

T+y

1
/ K(a:, Yy, y’)gp(a&’, y)da' dy = —— olz,x+y—2)dz.  (2.24)
z’,y' >0 T+ Y J:.=0
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y "micro-reversibility"
K(z;z') = K(z’;z)

Lﬂ jump rate

Fig. 5. The collisional kernel K (2.22) satisfies a micro-reversibility condition.

R

The collision kernel K satisfies a micro-reversibility condition (see Fig. ,
namely:

K(z;z') = K(z';z) for any z and 2’ € R, x R. (2.25)

One has to integrate against a test function ¢ to make this statement rigorous.
As a consequence, we deduce the lemma.

Lemma 2.2. Let o(x,y) be a (smooth) test function and f(t,z,y) be the solution

of - Then
/f z,t)p = —7/ K(z;2')(f(Z',t) — f(2.1))(o(2') — p(z))dz dz’.
(2.26)
In particular, both the L? norm and the entropy of f(t,x,y) decay in time.

Proof. We drop the dependency in time to ease the reading:

%/zf(z) dz_/ K(#2)f ()dzdz—/ K(2:7)f(2)¢(z)d# dz
-/ Kl )1 (0) (ola) — pla) dm
= | K)ot  ola)) dadi
-/ Kl 1) (ple) — pla)) dn s
-3/ K1)~ 1) (o)~ el)dndd. g
3. Convergence to Equilibrium: Wasserstein and Linearization

We carry out an linearization analysis around the exponential equilibrium distribu-
tion of the solution of (2.8)) and demonstrate an explicit rate of convergence under
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the linearized (weighted L?) setting in Sec. These arguments are reinforced in
Sec. into a local convergence result for the full non-linear equation. A coupling
approach is encapsulated in Sec. in order to show that solution ¢(t, z) of
relaxes to its equilibrium ¢., exponentially fast in the Wasserstein distance.

3.1. Linearization around equilibrium

Now we perform a linearization analysis near the global exponential equilibrium
(oo, in a fashion that is similar to Ref. [4l For this purpose, we define the linear
operator L to be

/ / ]lmkkfe ook + € — ) (h(k) + h(€) — h(z)

—h(k+{—x))dk d.
Setting ¢ = goo(1 + €h) in the limit € — 0, we deduce from (2.8)) that
Och(z) = L[h](z), (3.1)

where h € L?(gso) is orthogonal to N'(£) := Span{l,z} in L?(gs) because of the
conservation [~ qdx = [ geodx and [ wqdz = [;° 2qeoda. For the linearized
equation (3.1, the natural entropy is the L?(gso) norm of h:

1
= SlIhls (32)

(go0)

and the entropy dissipation is given by

dp / quw)qm(@ (h(k) + h(0)

—h(k+ ¢ — ) — h(z))h(z)dk d¢ dx

B _% /]R Wflm(lﬂ)qm(@ (h(k+ ¢ —2)

+h(z) — h(k) — h(£)) dk d¢ dz.
In particular, it implies that the spectrum of £ in L?(gs) is non-positive.

Remark 3.1. It is not hard to show that the linear operator —L enjoys a self-
adjoint property on the space L?(qs). Thus, the existence of a spectral gap 7 is
equivalent to

Vh LN(L), —(L[h], h)r2g.) : / L[h Goo (@) dz > n[|A]1 72y

Remark 3.2. Following Ref. 25, we give some comments on the space L%(qu).
If ¢ is the unique solution of (2.8) and we set ¢ = ¢oo(1l + €h) as before for
h L N(L), then (recall that g, is the density of an exponential distribution with
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mean M)

/qloqux:/ Goo(1 + €h)log(geo (1 + €h))dx
0 0

> > 11

+/Oooqoo(1+sh) (sh (sg)z j:> dx

oo 2 00
:/ qoologqoodm—i—%/ hzqood:r:—l—O(ag),
0 0

where we used the fact that h 1 N(L). Therefore, we can see that ”hH%?(qw) =

fooo h%¢.odx gives the first-order correction to the expansion of the entropy of ¢
around ¢eo.

We will prove that the linearized entropy E (3.2)) decays exponentially fast in
time with an explicit sharp decay rate, the essence of which lies in the following
lemma.

Lemma 3.1. Letm; =1 and A := {h € L*(¢) |h L N(L)}. Then
foo h?(2)gos () da

in
0 o—z 2
heA fo x)dx)?dz

=3 (3.3)

and the infimum in (3.3) is attained (up to a non-zero multiplication constant) at
h(z) = 1(2? — 4z + 2).

Proof. The key ingredient in the proof is the fact that the so-called Laguerre
polynomials, defined by

e dr _. . "L /n\ (—1)F
Ln(x):adxn(e x)z<k‘>(kz') F, n>0

k=0

form an orthonormal basis for the weighted L? space L?(qs )Y Thus, for any h €
L?(goo) which is not identically zero, we can write h = Y7, Ly, in which
an € R for all n. Next, notice that the condition h € A implies that ag = a7 = 0.
Moreover, we have [;° h?(2)qoo(x)dz = >, 2 thanks to the orthonormality of
the Laguerre polynomials {L,}n>0- To proceed further, we recall that®? L, (z) —
Lni1(2) = [ Ln(z)dz and zL},(2) = nLy(2) — nLn—1(2) for all n > 1, whence

/OOO e: (/Ozh(x)dx)gdz
:/OOO °”

0o 2
p, <Z o (Ly(2) — Ln+1(z))> dz
n=2
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/ ( Z U iy < n(2) —ZLn+1(Z)> (L (2) — Lmﬂ(z))>2 dz

n,m=2

- Z Z"j’”f/ 7Z(Lm(z) *Lm+1(2))dLn+1(z)

n,m=2

— Z ‘:L"fff /OOO Lys+1(2)d(e”*(Lim(2) = Lin+1(2)))

n,m=2 + 1
[e'S) 2 00
_ Oy 1 2
I D
n=2 n=2

Finally, notice that the inequality above will become an equality if and only if
oy, = 0 for all n > 3, or in other words, if and only if h(z) = Le(z) = §(2® — 4z +2)
up to a non-zero multiplication constant. O

We are now in a position to prove the following result.

Theorem 3.1. Assume that h € L?(qs,) solves the linearized equation (3.1)), then
we have

P22 gy < (O] 22 gucye™ 5" (3-4)

Proof. We will only prove the result for m; = 1, and the general case follows
readily from a change of variable argument. From the discussion above, we already
have that

d1 Lo kg ()
b7z — Qo (k) g (£
~ 2 S Mhlag. = / ) o (R)ae ()

(h(k + £ — ) + h(z) — h(k) — h(0))h(z)dk df dz.  (3.5)

Thanks to h € A, it is not hard to see through a change of variable that

1
/ Boatti®) | ) oo (OB (k + € — 2)(e) dk df di = 0.
R3 k + E

Also, a simple calculation yields that

]1 o0
/ qu(kz)qw (Oh2(z)dk dt dz = / h2(z)e " dx
]R3 k + € 0

and

/RS qu(k)qw(é)h(k)h(x)dk df dz = /OOO e: </0 h(z)dx)ZdZ-
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Consequently, (3.5 reads

d 1 [ ewera—2 [T (] ) ae) d
g = [ w@ear 2 [T ([ i) a

1 002 —x 1 2
5| e = Zihlag),

in which the inequality follows directly from the previoub lemma. Thus, we can
conclude by Gronwall’s inequality since - ||h[2, —2||h12. (geo)" O

\%

(QOO) -

3.2. Local convergence in L?

We now extend the linearization argument from the previous subsection into a local
convergence result for the full non-linear equation.

Corollary 3.1. There exists some € > 0 such that if at some time t > 0,

2
[later) el

then q converges to qoo and for any A < 57 there exists Cy such that

|q(t7 .’E) — Goo (CL’)|
oo ()

2
dx < CAe*’\t

Proof. For a solution ¢, we denote h(t,2) = (¢ — ¢o0)/¢oo and calculate

bl = = [ b0 = [ 1@Qsld - )
— [ ol = [ B ) g ()

x h(k)h(€)dz dk df.

Denote

Rz) = / ]l;i’“;‘ doo (k£ — 2) (k)R (0)dk di

and calculate

/h ) oo () R(z)dz| <

1/2
< </qoo(x)ﬂ,:fffqoo(k+£—x)h2(k)h2(z)dx dk dé)

1 1/2
-(/h2(fc>qoo(x) ngzéqoo(k:—i—é—x)dxdkdé) .

So first of all,

1
/qoo(x) ;i’“;eqm(lﬂ—i—é—:c)hQ(k)h2(€)da: dk dt

1,
:/?%%Mw%www#mM%wzwmmw
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On the other hand,

1,
[ B @a ) g+ €= ) ke = [ (@) = (b3, .

Hence,

<Al gy

/ hM2)goo () R(z)dx

Coming back to the equation, we have that
d1
by = = [ h@)a @) Llbld — [
Using the previous calculations on the spectral gap of £, we can conclude that
d1 1
—£§||h||%2(qoo) > g”h”%z(qm) —12ll32 gy

which finishes the proof with a Gronwall bound. D

We can couple this with an interpolation argument to modify the smallness
assumption in weighted L? by using the relative entropy, which leads us to Corol-
lary whose proof will be deferred to the appendix (as the proof of Corollary
relies on several a priori estimates established in Sec. .

Corollary 3.2. Assume that for some Ao > %, sup,, €*%q(0,z) < co. Then there
exists some § > 0 such that if at some time t > 0,

q(t,x)
/q(t7 x) log () dx <0,

we have that q converges to qo, and for any A < %7 there exists Cy such that

/ la(t2) = oo (@) ) o xe
Goo () B .

3.3. Coupling and convergence in Wasserstein distance

In this section, we shall employ a coupling argument to demonstrate the conver-
gence of the solution of to the exponential probability density function given
by . Before we state the main result of this section, we first collect several
relevant definitions.

Definition 3.1. The Wasserstein distance with exponent 2 between two probabil-
ity density functions (say f and g) is defined by

Wa(f.g) = inf { VE[X =Y Law(X) = f, Law(Y) = g},

where the infimum is taken over all pairs of random variables defined on some
probability space (2,P) and distributed according to f and g, respectively.

Next, we present a stochastic representation of the evolution equation (2.8)),
which is interesting in its own right.
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Proposition 3.1. Assume that q.(x) := q(t,x) is a solution of with initial
condition qo(x) being a probability density function supported on Ry with mean m;.
Defining (X¢)i>0 to be a Ry -valued continuous-time pure jump process with jumps
of the form

ratc 1

Xi U(X: +Yy), (3.6)

where Y; is a i.i.d. copy of Xz, U ~ Uniform[0,1] is independent of (X:) and
(Yy), and the jump occurs according to a Poisson clock running at the unit rate. If
Law(Xo) = qo, then Law(X;) = q; for allt > 0.

Proof. Taking ¢ to be an arbitrary but fixed test function, we have

d
@ Blo(X)] = Elp(U(X, + ¥)) - Elp(X)] (37
Denoting ¢(t, z) as the probability density function of X, (3.7)) can be rewritten as
L dx—/ / w(k + 0))q(k, )q(l, t) du dk df
dt R+ R2

- / a(t,2) () da.
R

After a simple change of variables, one arrives at

d
5 [ atoe@is = [ (Glalw.0 - att.o)ee)da. (38)
Thus, ¢ must satisfy d;¢ = G[q] and the proof is completed. |

Remark 3.3. Using a similar reasoning, we can show that if (X;);>0 is a Rj-valued
continuous-time pure jump process with jumps of the form

X, "BU(X, 4+ 7, (3.9)
where Y is a i.i.d. copy of Xy, U ~ Uniform[0, 1] is independent of (X;) and (Y),

and the jump occurs according to a Poisson clock running at the unit rate. Then
Law(X() = oo implies Law(X;) = qoo for all ¢ > 0.

The main result of this section is recorded in the following theorem.

Theorem 3.2. Under the setting of Proposition 3.1} we have
Wa(ge, goo) < €75 Wa(qo, gc), V> 0. (3.10)

Proof. Fixing t € R, we need to couple the two densities ¢; and ¢o,. Suppose
that (X;)¢>0 and (X¢);>0 are Ry -valued continuous-time pure jump processes with
jumps of the form and (3.9)), respectively. We can take (X¢,Y;) and (X¢,Y)
as in the statement of Proposition and Remark [3.3] respectively. Meanwhile,
several independence assumptions can be imposed along the way when we introduce
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the coupling: the copies Y; and Y, are independent, respectively, to X; and X;, the
couple (X, X;) is also independent of (YV;,Y;). We insist that the same uniform
random variable U is used in both and therefore X; and X, are not
independent. Moreover, we impose that Law(Xg) = ¢o and Law(X) = ¢o0. As a
consequence of the previous proposition and remark, ¢; = Law(X;) and Law(X;) =
oo for all t > 0, whence E[X,] = E[Y,] = m; and E(X?) = E(Y?) =2m?2, Vt > 0.
Also, we have that E[X;] = E[Y;] = my for all ¢ > 0. Thanks to the aforementioned
coupling, we then have

%E[(Xt — X)) =E[UXi+Y, =X, = V)" = (X — X1)?]
— L (B, — X2+ EL(Y; - T + 2B((X, - ) (%, - F))
—E[(X; — X})?]
= 2E[(X, - X0 + SEIX, - X]E[Y; - V] - E[(X, - X))
— —3EI( - X)?,

Now we pick Xo with law g so that WZ(q, ¢so) = E[(Xo — X0)?], and an routine
application of Gronwall’s inequality yields (3.10]). D

4. Entropy Dissipation

We state our main result, Theorem in Sec. so that readers know exactly
what is at stake. We will present various expressions of the entropy and entropy
dissipation associated to the solution ¢(t, z) of , along with a discussion of the
strategy of the proof of Theorem in Sec. A sequence of auxiliary lemmas
and corollaries are recorded in Secs. f.3]and [£.4] Finally, a full proof of Theorem [4.1]
built upon all of the preparatory work from to[£4] is shown in

4.1. Main result

For the integro-differential equation (2.8)), a common strategy™ 2% B3l is to use the
Laplace transform or Fourier transform of to prove the exponential decay of
solution of t0 oo () in some Fourier metric. However, little analysis of
has been carried out without resorting to Laplace or Fourier transform. In particu-
lar, we would like to show the dissipation of relative entropy, i.e. Dxr.(q(*,t) || goo ),
along solution trajectories:

oo

d q d [
= log L dg = — log g dz < 0. 4.1
ai ), 1esdv dt/o qlogqdx < (4.1)

It is reasonable to expect the validity of (4.1)) as the exponential probability density
(oo Maximizes the negative entropy — fooo plogp dxr among all continuous probabil-
ity density functions supported on [0, 00) with prescribed mean.
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The following proposition together with its proof should be a reminiscent of the
calculations carried out for a standard Boltzmann equation arising from the kinetic
theory of (dilute) gases 4"

Proposition 4.1. Let p(x) be a (continuous) test function on Ry and assume that
q is a smooth solution of (2.8)), then we have

i /OOO ot )ple)dr = / W(q(me—m)q(m) — q(k)q(0))

(p(k 4+ £ — 2) + () — p(k) — p(£)) dk d¢ da.

Moreover, inserting ¢ = logq and using mass conservation (i.e. my(t) =0 for all
t > 0), we obtain the dissipation of relative entropy:

o0

1
i q(t,x)logq(t,x)dx = —ZD[q],

where
Dig] = /Rs %,f;ﬂ(m)(q(kw—w)q(w)

q(k + ¢ —x)q(x) dk dt dz > 0. (4.2)

—q(k)q(£)) log R

Proof. We notice that the PDE ([2.8)) can be rewritten as

o) = [ [T qhgg(e) - ayath+ - w)akae (43

(thanks to Proposition [2.1]). Omitting the time variable for simplicity, we deduce
that

% OOO a(z)p(z)de = /]R %,f;f;m) (a(k)q(0) — q(@)q(k + £ — z)) () dk dl dz

- /H@+ WQ%)Q(@(@(@ —(0))dk dl dx

= /R& %%ﬂwq(k)qw) (p(k + £ —z) — p(k)) dk d¢ dx

. 1 ]1[07]@4_5](%)
=3 /R'i'r Wq(k)q(f)

(pk+L0—2)+@(x) — (k) —p))dk dl dx



Entropy dissipation and propagation of chaos for the uniform reshuffling model 847

-2 / i W (q(k + £ — 2)q(z) — g(K)q(0)

(plk+€—2x)+p(x) —plk) —p))dk dl dz. O

Remark 4.1. The dissipation of the relative entropy can also be seen via an alter-
native perspective. Indeed, we fix t > 0 and assume that X;(¢) and X»(t) are i.i.d.
R -valued random variable with its probability density function given by ¢(t, ),
and we define (Z1, Z2) = (U(X1 + X2), (1 = U)(X1 + X3)) with U ~ Uniform|0, 1]
being independent of X; and X,. Then we deduce from the PDE and
Lemma 2.1] that

24 Dt (g a0e) = (21, 22), (X1, X))~ H((X, Xs)
< H((Z1, 22)) — H((X1, X2)), (4.4)

where H(X,Y) := [; px(z)log py (x)dx represents the cross entropy from Y to X,
if the laws of X and Y are given by px and py. It can be shown? that the joint
entropy of (71, Zs) is always no more than the joint entropy of (X7, X3), whence
the rightmost side of is non-positive.

Corollary 4.1. The exponential distribution q., defined in (2.16) is the only
(smooth) equilibrium solution of the PDE (2.8)).

Proof. By Proposition we see that
Qoo (Z)Goo(k + € — ) = goo(k)qoo(¢) for all k, ¢, > 0 such that k+ £ > x.

Since [y ¢oo(z)dz = 1 and fooo Tqoo(x)dT = My, oo must be the exponential
probability density provided by (2.16)). ]

We will prove that f qlog q%odx 1229 0 occurs with a polynomial conver-
gence. Without loss of generality, throughout the argument to be presented below,
we will set m; = 1, ie. goo(z) = 7% for z > 0. Our main result is stated as
follows.

Theorem 4.1. Under the assumptions of Lemma [L.4] there exist some constants
C >0 and p > 0 such that we have

+oo
q(,1) ¢
/a::O q(z,t)log ejd:c < T (4.5)

To the best of our knowledge, Theorem is the first entropy—entropy dissipa-
tion inequality established for the uniform reshuffling dynamics.

Our proof for Theorem [4.1] actually relies on a more technical entropy—entropy
dissipation result which we state below.
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Theorem 4.2. Under the assumptions of Lemma [£.4] there exist some constants
C,C >0 and 6 € (0,1) such that we have either

+o0o
/_0 q(z,t)log qi:i,zt) dx < D’ (4.6)
or
+oo t - ~
/ q(x,t)log qifli,w) < Ce /€, (4.7)
z=0

The proof of Theorem [£.2]is the main goal of the rest of this section. However,
we can easily check that it does imply Theorem [1]

Proof. (Proof of Theorem assuming Theorem [1.2]) Observe that the relative
entropy is decreasing and continuous in time and therefore we can decompose the
timeline [0,00) into intervals (s,,t,) and [t, Sn+1] in the following manner. We
have that

o0 t ~ ~
/ g(x,t)log qffi;) < Ce 9, Ve [ty snpal,
x=0

while
e 9z, t) _ A ¢
/ q(z,t)log ——= > Ce™VC Vte (sp,tn)
=0 e
Applying Theorem at any t € (sp, ty), we see that
d [T q(z,t) 1 1 Feo q(z,t) 1/6
= HlogL = —p<—— t)log B2
[ a0t - ip< -2 (/x_o afarty1og )

as we need to satisfy the first alternative.
Denoting

+oo
B0 = [ atwyiog 120,

x
=0
a straightforward Gronwall estimate then shows that for ¢ € (s,,t,),

. 0/(1-0)
E(t) < (C + E(sn)(19>/9> .

By the continuity in time of E(t), we also have that
E(sp) < Ce=*n/C.
By choosing p = 6/(1 — ) and choosing C' large enough s.t.

Ce /€ < ¢
—1+tH

)
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we automatically obtain from (4.8) that

C
Et) <
()= 14 t#
for all t € (sp,t,). This also trivially applies for ¢t € [t,, Sp+1] concluding the
proof. O

4.2. Basic expressions of the entropy—entropy dissipation

Let us start by looking at the strong convergence of the pairwise distribution, which
is essentially trivial. Indeed, we recall the linear PDE ([2.19)), which reads

atf:L+[f]_f7

where

1 oty
Lilflen) = [ featy -2z

Then denoting
1 )\
g(t, ) = X/ flt,z,\—2)dz, (4.9)
0
we can rewrite (2.19)) as Oy f (¢, z,y) = g(t,x + y) — f(t,z,y), whence
1 >\
Og(t, \) = X/ Ouf(t, 2z, A —2)dz
z=0

A
_ %/0 (Gt A) — F(t 2\ — 2))dz = 0.

Hence, g(t,\) = ¢g(0, A) and trivially (by Gronwall’s inequality)

|f(t,2,y) — g(0,2 +y)| < e (4.10)

Unfortunately, this cannot be used to show the convergence on the actual equation
for q(t,z) because the two models are not equivalent: If g(t, ) solves (2.8)), which
is non-linear, then in general f(t,z,y) = q(t,z)q(t,y) does not solve . The
one exception is when ¢(¢, x) is some exponential. Moreover, f does not necessarily
converge to an exponential but to whatever g(t = 0) was. The rate of convergence
is also too fast as the second moment of ¢ converges much slower for example.

We will still find some of the structure above in the entropy dissipation for ¢ but
that is one reason why the entropy dissipation is not easy to handle. In particular,
the entropy dissipation will vanish whenever f(x,y) = g(x + y) which seems to
create some degeneracy.

Next, we can rewrite the dissipation term in a manner that will make the con-
nection with the exponential more apparent. We define for simplicity f(z,y) =
q(x)q(y), and as before

1 1A
g(\) = X / fz,A—2)dz = X/ q(2)g(\ — 2)d=z.
0 0
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Finally, we also define
h(z) =/ 9(x +y)dy.
Ry

We remark here that h coincides with the collision gain operator @Q[q] defined
via ([2.5). With these definitions, we have

Lemma 4.1. For D := D[q] in ([1.2)), one has that

B - o 1@aly) . R
DQ/Rz;Q( Ja(y)] 8 gty dy+2/Rz+g( +y)1 8 ) W
or as well that
_ a(@)ay) , . o I tY)
D= Z/JRQ+ q(z)q(y) log g(x+y)d dy+2/]R2+ gz +y)l gih(x)h(y)d dy
h(x)
+4/]R+ h(z)log @) dz.

Formally this forces g(z + y) to be close to f(z,y) (solution of the linear
PDE (2.19)) so this is a very similar term to the one that we had found when look-
ing at Eq. . It is some sort of degeneracy because it does not directly force f
to be close to e *~¥ so we will have to resolve it. Of course since f(z,y) = q(z)q(y),
f(z,y) = g(x + y) forces ¢ to be some exponential and therefore this should be
possible.

Proof. We can first simply rewrite

_ ]lJrzZ:v _ _ f(y+Z—l‘,,’E)
D= [ e ) o M

Observe that by swapping = and z,

/ Lrte2e 1y 42— a2) — fly, ) log f(y+ 2 — @)
RE YTz

dx dy dz.

/Ri %(f(y+x—z,z)ff(y,x))logf(erxfz’Z)_

Changing variable y — v =y + x — z, we get that

[, 2 = ) = ) o o+ 2 =)

-/ ) - 2 s 109,

Hence,

DQ/Ri %w%z)#(yﬂww))logﬂy,z).
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In other words,

D= 2/ [y, z)log f(y, z)dy dz — 2/ g(y + z)log f(y,z)dy dz.
R?F R2

+

Now, we observe that

/]R2 f(y,z)logg(y—I—z)dydz:/]Rz gy + z)logg(y + 2)dy dz.
T T

Indeed, a change of variable y = x — w and z = w yields

/ 9y +2)logg(y + 2)dy dz = / xg(x)log g(x)dx.
R2 R

+ +

By the same change of variables, we also have

/ f(y,Z)logg(y+2)dde=/ logg(x)/ flz —w,w)dw dx
Ri 0

Ry
= / xg(x)log g(z)dx.
Ry
Hence,
D / fly,z) / 9(y + 2)
— = ,2)log ———dy dz + + 2)log ——=dy dz.
5 Rif(y ) st Rig(y ) log fa.) Y
Finally, as f(y,2) = q(y)q(z), we may also notice that
/ g(y + 2)log Mdy dz = / gy +2)logg(y + z)dy dz
R2 fly,z) R2.

- 2/2 g(y + z)logq(y)dy dz
R

+

= /u@ gy +z)logg(y + z)dy dz

T

- 2/ h(y)log q(y)dy.
Ry
So we also have that

9y +2) 9y +2)
gy+zlog7dydz:/ g(y + z) log dy dz
/Ri R TS e B G)
h(y)
+2 h(y) log dy,
R, ) q(y)
concluding the estimate. O

Next, we intend to collect here some various bounds stemming from the dissi-
pation term, the essence of those bounds lies in the following lemma.
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Lemma 4.2. We have that

q(z) q(z)q(y)
/q(fﬂ) log H() dx < /w(y)q(w)q(y) log md:ﬂ dy,

in which
H(x) = /g(w +y)e(y)dy
for any ¢ > 0 such that [ pqdx =1.

Proof. Indeed, as log is concave,

g(z +y) . o g(z +y) .
/q(ﬂ«“)w(y)Q(y) log 7q<x)q(y)d dy < /Q( )1 g(/ T @(y)dy> d

and the proof is completed. O

As a consequence of this lemma, inserting ¢(z) = 1 and then ¢(z) = z, we then
deduce that

[atwyios Bz < [ atwratotop LW di gy,

(2) 9(z +y)
/ q(x)log :1(55 ))d / zq(x)q(y) log de dy,

gz +y)

where

m<x>=/°° o +y>ydy=/;g<z><z—x>dz

/ / dzdy/:oh(y)dy.

Remark 4.2. We also note that m(0) =1 (since [hdz = [gdx =1) and so

/hlogm,dac:f/mllogmdx:f/hdx:f/xh(x)dm:fl,

by virtue of the fact that [zh(x)dz = [ zq(x)dz = 1. Thus,

/hlog—dx:/hlogfdx.
m e~ "

This leads to a possible strategy: Control [ hlog 2 in terms of [ glog £, [ hlog %

and [ qlog L. Then control [ g¢log =% by the previous quantities and [hlog L.

We can then estimate [ zq(z)q(y)log qq((g;)i;’)) dz dy via [ q(z)q(y)log qq((mz)j_(;/)) dx dy
and some control on the decay of ¢ at infinity. So in the end this would lead to
some kind of bounds on f qlog e‘_lm in terms of the dissipation term. We illustrate

the strategy in Fig. [0}
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manifold
{/(z,y) = q(z)q(y)}

vector space

\/ {f(z,y) = oz + )}

projection projection
Ly)dy Pu(f)= [ yf(.y)de
A= [ s ()= v

v

P(R+)
q(z) (=rn=nw)

Fig. 6. (Color online) To measure the decay of the relative entropy fqlog ——, we have to

control the term fhlog 2 or similarly the term [ glog m (represented in purple). Indeed,
the dlbblpatlon term D already prov1deb a control over the ‘triangle’ of relative entropies (dashed

lines) fflog fglog 2 and fhlogf with h(z,y) = h(z)h(y).

However, normally it is not possible to switch relative entropy estimates. Indeed,
it is not so hard to find examples of non-negative functions ¢, ¢, 1 with total mass

1 such that
/ plog £ = oo,
(0

/gi)log%—i-/d)log +/g010g < 00.

Therefore, this strategy is not obvious to implement. It should work nicely if we
had a control like e=*/C < ¢(x) < Ce™* but the general case is certainly trickier.
What saves us is the key observation that here h and m are actually very nice

while

functions in all cases. For example, m and h are monotone decreasing so bounded
from above and bounded from below on any finite interval (from the propagation
of moments on ¢). This gives us some hope when implementing the aforementioned
machinery. We emphasize here that our entropy—entropy dissipation argument
draws inspiration from earlier works on Becker—Doring equations and coagulation

models/3 28

4.3. Switching relative entropies

We note that the relative entropy behaves in the following manner.
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Lemma 4.3. For any two p,v € P(Ry) s.t. p has a density w.r.t. v, denoted by
B and for any C > 2, then

1 2?1 1
T BTy
2C Jyjc<p<cw ¥ 8 Jusvic 4 uzcw v
m
< [ ulog®
,/u og

N2
< 9/ u-ﬁ-/ u—l—/ ulogﬁ. (4.11)
2 v/C<u<Cr v u<v/C u>Cuy v

Proof. We observe that

/ulogﬁ:/u(ﬁlogﬁ—kl—ﬁ).
v v 14 14

On the other hand, around 1, the function ¢(z) = xlogz + 1 — = satisfies that
¢(z) < (z—1)%/2 for z > 1 and ¢(z) < §(z —1)? for 1/C < z < 1. On the other
hanqu(x)_(m—l)/20f0r1<x<Cand¢() (r—1)2/2for 1/C < x < 1.
Furthermore ¢ lies between 1/8 and 1 when z < 1/2 and larger than Flogx for
T > 2. O

Remark 4.3. One can also rewrite a little bit the statement of Lemma [£.3] so that
we do not need to impose that g and v are probability measures.

This allows us to “switch” relative entropies between two measures that are
comparable.

Corollary 4.2. There exists a constant C > 0 such that if p1, p2, v € P(Ry) with
)\_lul < s < A1 and X > e, then

/yllog <C/\3/u log +)\3/,u210g%
1

Proof. Apply Lemma [£3] with C' = 2 first on pq and v to find

/NllOg&SA/ (= v)? / V+/ i log 22
v £ <1 <22 v B H1>2xp v

Thanks to Lemma [£.3] again, we have

/ V§8/ullog&.
1< v

Now if py < 55 then pp < §. Similarly if gy > 2Av then po > 2v and moreover

L
2X

X
2

A
11 log il < Auslog alac < 3Xlog Ao log &.
v v v
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Conversely if %\ p1 < 2Mv then 555 < g < 2)\2v and

_ _ 2 )2 2
(Ml v) ( 2 — V) (Ml [42) ) < 2(#2 v) + 4)\(N1 p2) _
14 v M1
Hence,
[ ey (52— )?
2 <py <22 v <oty v
+4)\/ (ILL1 - /LQ)Q
Bl <pa<Aipa 1231
Note that by Lemma [£.3] applied with C' = X, we have that
2
/ Mgw/mbg&,
B <pa<im H1 H1
Also, Lemma applied with C' = 2?2 gives rise to
)2
/ M§4)\2/u210g&.
sz Spe<2azy VY v
Assembling these estimates, the proof is completed. O

4.4. Additional a priori estimates

This leads us to try to compare ¢ and h. We first observe that we can get easy
upper bounds.

Lemma 4.4. Assume that for some 0 < X\g < 1, [e*%q(t = 0,2)dz < co. Then
we have that

sup/e’\”q(t7x)dx < 00.
¢

Proof. We use a Laplace transform by defining

F(t,\) = /e)"’cq(t,x)dac

and note that

O F AT -1 dyds—F =L [ (FGo2du-F
= _ z z2—F == —F.
; /Rz+ O qa(y)q(z)dy A/0 (F ()" dp
It is useful to remark right away that the stationary solution to this equation
satisfies that F> = 95 (AF') which has solutions of the form —. Those do blow-up
but only for A large enough. As a matter of fact since 9y F|yx=o = 1, we can see that
we should even have C' = 1. For this reason, denote now G = (1 — C\)F with some
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C < 3 such that G(t = 0, ) < 1on [0, Ag]. We first show that SUPepo,a] G(E:A) <1
for all t > 0. Indeed, let A(¢) be such that supyc ) G(t, A) = G(t, A()), then

0; sup G(t,\) < 0:G(t, A(t)),
AE[0,20]

this is because O\G(t, A\(t)) = 0 if A(t) < Ao, while if A(£) = Ap then O G (¢, A(t)) <0
and X (t) <0, leading to the same inequality. Now since

A 2
8,G = (A1 — C)/O mdu e (4.12)

we deduce that

together with fo)\ (1_d+u)2 = =25

2
9 sup G(t,\) < sup G(t,\) | — sup G(t,A),
A€E[0,M0] A€E[0,M0] A€E[0,M0]

which yields via the maximum principle that sup,co 5, G(t,A) < 1. Now thanks
to (4.12) again and the elementary observation that O;supyecip . G(t,A) <
SUPxejo,xo] HG (¢, A), We arrive at

O sup G(A) <0,
A€[0,X0]

which immediately proves the desired upper bound. O

Remark 4.4. We believe it is possible to prove the exponential convergence of the
Laplace transform F'(t, A) to 1/(1—X) over A € [0, \g). However, this is not strictly
better than having the exponential convergence in some weak Wasserstein norm
plus the control of the exponential moments that is given above, so we did not try
too much in this direction.

Out of Lemma we may deduce pointwise bounds on g and h, for this purpose,
we need the following preparatory result.

Lemma 4.5. We have that

sup h(t,0) < co
>0

i.e. h(t,0) is uniformly bounded in time.

Proof. To show h(t,0) is uniformly bounded in time, we write

h(t,0) :/R2 %dydz?//yq%dydz
§2// Mdydz

2
Squpq(y)/ d +2// d dz +
y<r z>r <z,z<r
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We know that there exists some r uniformly in time such that

1
// Mdydz:/ q(z)dz < -.
y<z,z<r < z<r 8

Moreover, for this r we also have [ . raz) g, < %. Thus,

z

1 2
h(t,0) < 3 supg(z) + .

z<r

Now we recall the equation for ¢ to find that for any = < r,

1 2
6t‘1(t7'r) S h(t70) - Q(tvx) S 5 sup Q(t7x) =+ ; - Q(ta I)v

z<r

so if x, is such that q(t,r.) = sup,, q(t, ), then

—_

atQ(tax*) S % 5 (t,$*).

[\

By Grownwall’s inequality, we deduce that sup, <, q(t,z) < 4 which allows us to

— r

finish the proof. O

Corollary 4.3. Assume that for some 0 < A\g < 1, [e*®q(0,z)dz < oo, then we
have that

sup/e)‘oxh(t,:z:)dx < oo, supe Th(t,x) < oo,
t t,x

q(t,z) < Ce 2% 4 q(0,2)e™  for some C > 0.

Proof. The first bound follows from the definition of h. Indeed, as h = Q4[q], we
have

e)‘U (U+Z) — ]_

Th(t 2)de = [ — =
/ (t.) Aoy + 2)

q(y)q(z)dy dz

< /e“(y*z)q(y)q(Z)dy dz < o0.

Next, we observe that h is decreasing in z, so for any =z > 0,

/ e’\oyh(t,y)dyZ/ e Vh(t,y)dy
0 0

> h(t,x) / eV dy
0

et 1

Since h(t,z) < h(t,0) is uniformly bounded in time, this shows the second point.



858 F. Cao, P.-E. Jabin & S. Motsch

Finally, we recall the equation for ¢, which reads d;¢ = h — ¢, so we may

rewrite (2.8)) as
t
q(t,r) = q(0,x)e™" +/ h(s,z)e” =% ds. (4.13)
0
Moreover, notice that

¢ ¢
e)“’”/ h(s,z)e” "9 ds < sup(e’\”“h(s,x))/ e~ =9 ds < sup(e*®h(s, z)).
0 s 0 s

Combining these estimates with (4.13]) ends the proof. |

We now turn to lower bounds on ¢ and hence h. We start with a lower bound
on ¢ in terms of h.

Lemma 4.6. There exists C such that for any t > 1,

1
q(t,x) > 6h(t —1,z). (4.14)
Proof. We note from Eq. (2.8)) that

Oh(t,z) = 2/30OO % /0/\ h(t, z)q(t, A\ — z)dz dX — 2h(t, z).
Therefore,
Och(t,x) > —2h(t, x)
and we have that for any s < ¢ that
dq(t, ) > e (s, x) — q(t, ),
leading for example to the claimed result

h(t—1,x)
C

with C = <2 thereby completing the proof. O

e—17

q(t,z) >

Unfortunately, this is not enough to give us a bound between ¢ and h which
would solve everything. Instead, we can first deduce a bound near the origin.

Lemma 4.7. There exists a constant C such that

inf inf h(t,x)zi, inf inf q(tm)zl

—. 4.15
t>1 z€[0,2] C’  t>22€0,2] C ( )

Proof. For any x < 2, we have that

]]'ZE z
ta) = [ EE gt )att, ) dy s

> /%221 m(J(y)Q(Z)dy dz = </100 fiy)ydyf :
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By Cauchy—Schwartz, we have that

/100 q(y)dy < (/100 f(ﬂ/d@ v (/loo(l + y)q(y)dy> v
([ fg_y)ydy)m ([Ta+ y)q(y)dy)l/Q
([ )

On the other hand the convergence of all moments of ¢ shows that there exists C

SuCh (hat fOI‘ all t > 17

Therefore, there exists C' such that h(t,z) > é whenever x < 2 and ¢ > 1. Finally,
we deduce the second result from Lemma [4.6] ]

We combine the previous result with the following doubling type of argument.

Lemma 4.8. There exists a constant C' such that for any x and t > 1, there
holds

2
x
t > — inf inf .
altz) 2 C <s€[1tnl,t]y€[z>r21,31/4] q(s’y)>

Proof. This is a simple consequence of a lower bound on h. Indeed, we have

h(t,x) = /mq(t,y)q(t,z)dy dz > 3%/ q(y)q(z)dy dz.

y+z y,2€[x /2,32 /4]

Therefore,
- 2
h(t,x) > — inf t .
(@)= 24 <y€[w}121,3$/4] al ’y))
We can again conclude by virtue of Lemma O

Lemma 4.9. There exists a constant C such that for any t > 2 and x > 2, we

have
q(t —1,y)
q(t, z 2/ D 2 gy,
(t,z) . Ty Yy

Proof. This is again a consequence of a lower bound on h. Indeed,

1
h(t,nc):/]R2 ;jry—: q(t,v)q tzdydz>/< /> dydz
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>y

Fig. 7. The function ¢ used in the proof of Corollary Notice that ¢(y) < % for all y > 0.

Thus, by the lower bound on ¢ on [0, 2] (thanks to Lemma , we arrive at

q(t,y)
h(t,x 2/ EASCL
(t,z) . Cy Yy

Using Lemma we can again conclude. O

Owing to Lemma [£.9] we immediately deduce that

Corollary 4.4. There exists some C > 0 such that for any x > 2 and any t >
max(Cz, 1)

—Cz —Cuz

e e

h(t,x) > o q(t,z) >

Proof. Define ¢(y) = W for y <2z and ¢ = 1/y if y > 2z (see Fig. .
Note that ¢ is Lipschitz with

1
[Vl <
Hence,
2 / (y)aly)dy > 2 / dly)e v dy — Wi(q,e™),

in which Wy (g, e™%) represents the Wasserstein distance (with exponent 1) between
g and e~ *. Thanks to the exponentially fast in time of the convergence W1 (g,e™%) —
0, which is a simple consequence of Theorem [3.2] we deduce that

/ Mdy > /¢(y)e_ydy— %e_t/ﬁ.
y>z Y T

Note that

y e Y e—3ac e—3ac
d(y)e Vdy = —dy > dy = :
y>2x Yy 3x 20 <y<3z 3
3

Therefore, from Lemma , we can conclude provided that x%e’t/ 6 < %. O

4.5. Proof of the main technical result

Armed with all the previous estimates, we can finally present the proof of Theo-
rem
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Proof. (Theorem We start from the estimates derived in Sec. and in par-
ticular from Lemma for ¢(z) = z, yielding

/qlog %dm < /xq(x)q(y) log mdw dy,

where we recall that

1 T oo o0
o) = [ o= m@)= [ a@rwiy= | niy
In particular
[ st -+ idedy = [ aat@iatuido iy
so that
Jator Lo < [ (watont)os K 4 g+ 9) ~ ante)ats) ) o .

For some K > 0 to be chosen later, we can decompose the integral into the
domain z € [0, K| and z € [K, +00). For the first part, we can simply bound

/<K (fcq(fﬂ)q(y) log m +zg(r +y) - xCI(x)Q(y)) dx dy

q(x)q(y)
<K/ ( 1og7+gm+y —q(z)q(y) | dz dy,
» LM+ o +1) — a()alw)
since alog 7 +b—a > 0 for any a,b > 0.

By Lemma this immediately implies that

q(x)q(y) )
zq(z)q(y)log ——= + zg(z + y) — xq(z)q(y) | dz dy < KD.
[ (sat@atmio 298 1 sgto ) - zatwrato)

On the other hand, denoting ¢(x) = xzlogx + 1 — x, which is a non-negative
convex function on Ry and satisfies ¢(z) < Cx for some constant C' if x is bounded,
we can first write that for any A > 0,

[ (sat@atio 29+ agta+) - satwa) ) oy

= /ng(x +y)zd (M) dz dy

- i/xZKg(x +y)Aré (M) da dy.

We now perform a classical Fenchel duality estimate on ¢, namely zy < ¢(z) +
¢*(y), in which ¢* denotes the Legendre convex conjugate of ¢. One may readily
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check that ¢*(y) =e¥ — 1 < e¥. This lets us deduce for any A € (0, Ag) that

[ (sateatmion 529 1 agto +) - zatwao) ) oy

l o M l Az
< /\/mng(w+y)¢ ¢(g(x+y)>dxdy+)\/@}<e g(z +y)dx dy.

We can immediately note that ¢ o ¢ < xlogx for large x. Thus from Corollary
we have that

/@K (rcq(fcM(y) log m +zg(x+y) - fo(fU)Q(y)) dx dy

D C
< Z 4 Zem (oK
=5 + )\e

Combining both estimates gives rise to
q D C —(Mo—NK
log— < (K+1)—+ — o
/qogm,( +1)+ 4 e
and optimizing in K leads to
q 1
qlog - < CDlog D (4.16)

The next step is to change this to [ hlog % We decompose again

h h h
/hlog—:/ (hlog+m—h>+/ (hlog—i—m—h).
m <K m z>K m

We note that since h = —0,m,
/ hlogm:—/ Oymlogm = m(K)logm(K) — m(K).
> K > K

Applying Corollary again, this shows that for some constant C, we have that

/ (h log L h) < Ce K/C, (4.17)
> K m

From Corollariesand we note that on z < K there holds e ¢ ¥ < % < eCK,
at least provided that t > Cz.

Now in the region x < K, we can use Lemma in exactly the same manner
as what we did in Corollary which yields that

/hlogﬁ :/(hlogh—i-m—h)
m m

< CeCK/qlog a + Ce K/C

m

1
< Ce“% Dlog D + Ce K/, (4.18)
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Now we recall that, as a simple consequence of Lemma we have
h h
/ hlog— = [ hlog—. (4.19)
m e

Therefore, we now want to change back from h to ¢. This is the same process and
taking a second different K and inserting (4.18]), it leads to

- h ~
/qlog% < CeCK/hlog— + Ce /€
e~ " e~ "
< C2CK+EK) Dlog 1 + Ce K/CHCK | =K/C
— D b

provided that ¢ > CK and t > CK. Just take now K = K/QC2 so that we have
automatically that ¢ > CK if t > CK and

1
/qlog e% < C?e2“K Dlog ) + Ce K207, (4.20)

We now have two distinct situation: First of all, consider the case where t >
C'log ﬁ. In that situation, we can take

1
K:slogﬁ

for any exponent s < 1 as this ensures ¢ > CK. By optimizing the choice of s
in (4.20)), we find some exponent 6§ > 0 (which depends only on C) such that, as

103 4 2
N — relative entropy /qlog(q/qm)dz
— = fitting ¢ . ¢~ 0-5883¢
£ 1024
2
=
=
2
=
—
101 4

time (t)

Fig. 8. Simulation of the relative entropy from g to goo after ¢t = 10 in the semilogy scale. We
employed forward Euler method with time step-size At = 0.05, space step-size Az = 0.01, and
a “random” initial condition ¢(¢ = 0, x) having mean value mi = 5 for the numerical simulation
of (2-8). This experiment suggests that the relaxation of [ glog(g/geo)dx might be exponentially
fast in time, instead of polynomial convergence in time as guaranteed by Theorem @
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claimed,
/qlog % <cD’. (4.21)
e xr

In the alternative, we have that t < Clog% or D(t) < e~/ Inserting this
into (4.20) yields that

/qlog 4 < 220K ~t/C | o K/2C7,
PR
We now choose K = t/4C?, again ensuring t > CK and giving
/qlog e% < Cet/C (4.22)
for some different constant C. O

We end this section with a numerical experiment demonstrating the entropic
convergence of ¢ to o, see Fig. [§

5. Propagation of Chaos

We give the statement of the propagation of chaos, Theorem in Sec. A
technical lemma that will be employed in the proof of Theorem is displayed in
Sec. We reveal the full proof of Theorem [5.1]in Sec.

5.1. Statement of propagation of chaos

In this section, we try to adapt the martingale-based techniques developed in
Refs. 27 and [34] to justify the propagation of chaos? For this purpose, we equip
the space P(R;) with the Wasserstein distance with exponent 1, which is defined
via

Wi(p,v) = sup (u—v,9)
IVelloo<t

for p, v € P(R4) having finite first moment. We will also need the following version
of It6’s formula.

Lemma 5.1. Consider an inhomogeneous Poisson process Ny with intensity A(t),
and a random variable Y (t) left-continuous and adapted to the filtration F; gen-
erated by Ny. We define the compound jump process Z(t) and M(t) its associated
compensated martingale by

dZ(t) = Y(t)dN,, M(t) = Z(t) — Z(0) — /Ot Y (s)A(s)ds, (5.1)

where Y is any other left-continuous and adapted process. Ité’s lemma then implies
that for any C' function ®,
dE[®(M (t))] = E[®(M(t—) + Y () — R(M(i—))]A(t)dt

—E[VO(M(t)) - Y (t)A(t)]dt. (5.2)
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Our main result in this section is stated as follows.

Theorem 5.1. Denote the empirical distribution of the uniform reshuffling
stochastic system (1.1) at time t as

1 N
pemn() = % D 3x, (0
i=1

and let q(t) be the solution of with initial condition ¢(0). If
E[Wi(pemp(0),¢(0))] =0 as N — oo, (5.3)
then we have that
E[W1(pemp(t), q(t)] = 0 as N — oo,
holding for all 0 <t < T with any prefived T > 0.

5.2. Switching supremum and expectation

We will also make use of the following result, which allows us to interchange the
operation of supremum and of expectation.

Lemma 5.2. Consider a random Radon measure Z on R with [ Z(dz) = 0 and
with uniformly bounded second moment [(1+ |z|?)|Z|(dz) < ms almost surely for
some constant my. Then there exists a fized constant C' > 0 such that

2\ §
E sup /(de < Cmgy sup [E [/godZ] .
IVelleo<1 Velloo<1

Proof. This is essentially an interpolation argument. First of all, we can always
assume that ¢(0) = 0 by subtracting a constant. Introduce a classical convolution
kernel K. We have that ||K. *x ¢ — ¢||r~ < Ce which implies that

/@Z(dx) < /KE «oZ(dz) + Ce.

Then we reduce ourselves to a compact support: since ||Vl||oo < 1 then |p(z)] < |z|
and

/Kg*gaZ(dx)</I$SRK€*¢Z(dx)+2/ 12| Z|(dz)

|2|>R
g/ Kg*wZ(dx)+2@.
o] <R R

On [—R, R], we have on the other hand that || K. x | gz < g”(pHWl,oo < CE.
Hence,

1
sup /@Z(dm) < C’E sup / wZ(dx) + Cmy <5+ ) .
jel<R R

Velloo<1 € llellg2<t
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Of course

sup / 0Z(dx) = || Z||g-2(1-r,R))
|2|<R

H(\9HH2 Sl
2
R2 R )
- </ e—zkﬂ'm/Rdz> )
-R

Hence by Cauchy—Schwartz,

1

<Cmgy | e+ =

R 1 [ i
C— —FE I /A
+ 13 ; 1 + ]{?4 /;R ¢

Hve—ikmc/RHOO < Ck,

R 2 2
E / e"hme/Raz ) | <Ck* sup E ( / godZ) .
—-R HV‘PHocgl

This allows us to conclude that

1
S Cm2 (5+R>

R2 k-2 9 1/2
+C— —— sup E (/godZ)
€ (Zk: L+ K vp)est l

. B2 91\ 1/2
< Cmg (er > +C— sup E (/cde) ,
R € \IVello<1

which finishes the proof by setting R = E[([ ¢dZ)*~'/% and e = . O

and by using Fourier series

122 r.R) =

E| sup / o7 (dz)

IVelloo <1

1/2

Finally, we have that

so that

E

sup /apZ(dx)

IVeolloo<1

or

EL sup /cpZ(dx)

[Velleo<1

5.3. Proof of propagation of chaos
The proof of Theorem [5.1] occupies the rest of the section.

Proof. We recall that the map Q4[] : P(Ry) — P(R,) is defined via

/ / ﬂ[ok’“f]g q(k)q(0)dk de
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and that a classical solution ¢(¢,x) of

a(t,7) = g(0,2) + / Gla)(s, z)ds (5.4)

exists for 0 < t < oo, where G = Q4+ — Id and ¢(0, x) is an continuous probability
density function with mean m; whose support is contained in R;. The map Q4 is
Lipschitz continuous in the sense that

Wi(Q+[f], Q+lg]) < Wi(f, ) (5.5)
for any f,g € P(Ry). Indeed, we have

Wi(Q+[f], Q+lg)) = ||VSLHIP<1]E[<P(U(X1 + Y1) — p(U(X2 + Y2)],

where X1,V are i.i.d. with law f, X5, Y5 are i.i.d. with law g and U ~ Uniform[0, 1]
is independent of X; and Y; for ¢ = 1,2. By Lipschitz continuity of the test function
©, we obtain

W1(Q+[f], Q+lg)) < E[2U| X1 — Xo|] = E[| X1 — Xof].
We now recall an alternative formulation of Wi (f, g), given by

so in particular, we may take a coupling of X; and X5 so that Wi(f,g) = E[| X1 —
X5|]. Assembling these pieces together, we arrive at (5.5).

We are going to prove a more precise control than , by working directly
on Q4 [f]. Consider now two random probability measures f and g with bounded
second moment and a deterministic test function ¢. We have that

/ P(@)(Q+ 1] - Q4 o)) da
- / ﬂ%ij F(dk) = g(dk))(f(d0) + g(d0))da

- / (F(db) + g(do)) / Do(k)(F(dk) - g(dk)),

where we denote

1 ket
Py(k) = m/o p(z)dz.

Since [Q4[f] = [Q4+lg], we can always assume without loss of generality that
©(0) = 0, whence |p(z)]| < ||V¢|loolz| < |2z|. Now we observe that ®, is deterministic
with

© k__i_g 1 k-+¢
i) < EEEDL s [ s

1 k+/4
<1+ / zdr <
0

| W
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By (5.6) and recalling that again ®, is deterministically obtained from ¢,
3
B| [ @k)(f(ab) - g(ah))| < 55| swp_ [ pla)(f(dz) - gldo))|.
2 {Ivelles<t

Therefore, we conclude that

E < 3E

sup / o) Q4 1f] — QL))

IVelloo<1

sup / () (f(da) — g(dx»] .

IVelloo <1

(5.7)
We now observe that the empirical measure is a compound jump process: Define
N, a homogeneous Poisson process with constant intensity A = (N — 1)/2. Given

Ti,..., Tk the times when NV; jumps, we take the Y;, independent: At each 73, with
uniform probability m we choose a pair 7 < 7 and take

1
~ (00 = U (Xi(me=) + X (=) + 6 (@ = (1 = U) (X =) + X (72-))
—8(z = Xi(1p—)) = d(z — X;(76—))),
where the Uy, are i.i.d. in [0, 1].
We immediately note that

Y, =

AE[Y;] = % S E[6(@ - U (Xi(t-) + X;(t-)) + 8(z — (1 - U)
X (Xi(t=) + X;(t=)) = 6(z — Xi(t=)) = 6(z — X;(t=-))],  (5.8)
where U is uniformly distributed in [0, 1] and independent of all X (t—).

We also remark that we can easily mimic the propagation of moments shown in
Sec. 2 with in particular Proposition [2.1] to prove that

E[ / et dx)} <ms—2+E { / 2o (0, d:c)} . (5.9)

We now show that the empirical measure of the stochastic system satisfies an
approximate version of (5.4). Fix a deterministic test function ¢ with ||[Ve|s < 1,
and consider the time evolution of (pemp, ), where for some probability measure
v, we denote by the duality bracket (v, ) = [ ¢ dv. We emphasize here that ¢ can
also be random and will indeed be chosen according to pemp to estimate Wasserstein
distances involving pemp. Then

AE[(pemp, )] = dE[(Y;dNy, ¢)] = ME[Y], ¢) dt.
Hence by ,

Tl pemp )] = 303 S E[p(U(X: + X)) + (1 - U)(X: + X))

1<J

—o(X3) — o(X;)]dt
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% S E[p(UX: + X)) — o(X)]dt

i,j=1...N,i#j

N
% Z Elp(U(X; + X)) — o(X;)] dt + Rdt,
i,j=1
where all X;, X; are taken at time t— and where
R= —% > E[p(2UX;) — (X))
i
Hence, |R| < O(5) uniformly over ¢ and ¢t > 0. On the other hand, we may
calculate

(Qlpomels) = 55 3 [ ola) XA 0 sz/ w(X: + X)) du,

J
by the change of variables = u (X; + X). Therefore,
dE[{pemp; )] = E[(G[pemp], @)]dt + R dt. (5.10)

By Dynkin’s formula, the compensated process

My (t) = (pemp(t), ) — (Pemp(0), @) — /O (E[(Glpemp(s)], )] + R(s))ds
(5.11)

is a martingale. Furthermore, comparing with ([5.4)), we easily obtain that

(Pemp(t) = q(t),0) = My(t) + (pemp(0) — q(0), )

¢ t
4B [ (Glouns(9)] - Glato)l s + 0 5 ).
0
Taking the supremum over ¢, we therefore have that

E sup <pomp(t) - q(t), 90>
IVelloe<1

<E _sup_ (M0)]+ (np(0) = 0).)

¢ t

# B sw_(Gloamp(o] - Gl s + 0[5 ):
0 (IVeolloe <1

By the definition of the W, distance, we deduce from (5.7) that

Ct

W (s (1,0(0) < (0) +C [ B (0, 05+ o

in which we have set

n(t):=E sup  [My(t)] + EW1(pemp(0), (0))- (5.12)
IVl <1
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Thus, Gronwall’s inequality gives rise to

EW1 (pemp (1), q(t)) < ( sup 7n(t) + Cg) . (5.13)
t€[0,T]

In order to establish propagation of chaos for ¢ < T, it therefore suffices to show
that

sup 7(t) RN} (5.14)
t€[0,T)

To prove , we treat each term appearing in the definition of 7(t) separately.
The second term in approaches to 0 as N — oo by our assumption.

To handle the first term, let us write Z(t) = (pemp(t), p) and M (t) = M,(t) to
simplify the notations. Of course Z(t) is a compound jump process itself and by

combining and
My (t) = Z(t) — Z(0) */0 Y(s)ds, Y(t) = (Glpemp(t)]; ) + R.

We may hence use It6’s lemma as stated in Lemma [5.1] which yields

()] = YOB[ME () — M2(1)] s — ERM)Gloemp (D), )] dt

1<j

1
— | dt
+4N),
where M;; = M +Y;; and we define
1
Yij = <N(5Uk(xi+xj) + 5(1—Uk)(X¢+Xj) —0x, — 5X,-)7<P>-

Therefore, we have

dE[M?(t)] = > E[2M (t)Y;; + Yﬂ di

i<j

— E[2M (t)(G[pemp(t)], >]dt+0<N) dt.

By our previous calculations

1
~ SEM()Y;)

1<J

= Z]E UX; + X;) +o(1=U)(X; + X;) — o(X;) — p(X;))]

1<j

= 2 SEMO) (U (X + X,)) — o(X)
i#j

= s LB+ )~ of xl+o().

as U is random variable independent of M (t) and pemp(t)-
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Therefore,
1
+ SEIM(1)Yy] = EM () Gloenn (0], ) + O 57
i<y
and consequently
C
2 . < I
=> E[V7] +O< >dtth,
1<j
for a constant C' that depends only on || V|| This lets us deduce that
Ct
sup ]E[MQ( )] < —.
IVl <t N

Recalling the definition of M, (t), we have that

M, () = [ (ot da)

for some random Radon measure p with uniformly bounded second moment.
Furthermore [ p(t,dz) = 0 since [ pemp(t,dz) = 1 = [ pemp(0,dz) and

[ Glpemp(®) di = 0.
We may hence apply Lemma[5.2) to obtain that

£1/8
E| sup M,()| <C—%,
IVell<t N1/E
which allows to conclude that sup,eo ) 7(t) RN O

Remark 5.1. One can readily check that

1Q+[f] = Q+lglllrry) < 21f — gl wy)

for all probability densities f, g whose support are contained in Ry, but as we are
working on P(R, ), we cannot use any strong distances. Hence, equipping P(R.)
with an appropriate distance so that the operator ()4 has enjoys a Lipschitz con-
tinuity with respect to the chosen distance is an indispensable step to make the
argument above work.

Appendix A. Proof of Corollary

Proof. The whole strategy is of course to find some § such that if

/q(tw) log alt, 2) dx <6, (A1)

oo (T)

then we have for the ¢ of Corollary

|Q(t7x) _ QOo(x)|2
/ (@) dr <e. (A.2)
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We start with using Lemma [£.3] for C' = 2 and note that
1 t,x) — goo(2)|? 1
7/ lq(t, @) — goo ()] d:c+f/ oo (2)d
4 J g 12<0<2400 Goo () 8 Ja<qu/2

log 2
4 Jo>2q.

< /q(t,x)log ZS’(g dx. (A.3)

Observe that if ¢ < ¢ /2 then

la(t, %) — goo ()
oo (T)

< QOO(I>7

so the first two terms already provides the straightforward bound

lq(t,2) = goo () [? q(t, )
/ngm () dr < 8/q(t,x) log () dz. (A.4)
Now if ¢ > ¢, then
|Q(t»x) — QOo(x)lz < (q(t,x))2
Goo () T geolw)

Therefore, for any p > 1,

o 2
[ lato) -G,
4229

oo (T)

g Ja(t, )

- /q>2q(x, oo ()

We now use Corollary [£.3] to find that

dx

t p+1
|, Mt < [0 e (q(0.0)) ) da
qdZ4900 oo

<c / o~ (DD g

in which X\ € (%, Ao)- Now we take p close enough to 1 such that p — (p+1)A < 0
which is always possible if Ag > % For this choice of p, we hence obtain
that

/quqoo lq(t, x;;(go(xw dz < C, (/QQ%O q(x)dx> 171/11.
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Going back to (A.3)), we can conclude that

/>2 lq(t, ) = goo (@) ? dz < C, (/q(t,x) log q(t, ) dx) 1-1/p

oo (T) oo (T)

and combining this with (A.4), we deduce that for some C and 0 € (0,1),

/ |q<t"”;oo(q°°(m)|2 dr < C(/q(t,x) log 252 dx)e < 4.

) oo ()

It is enough to choose § being small enough to conclude the proof. O
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