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1. Introduction

Econophysics is an emerging branch of statistical physics that incorporate notions

and techniques of traditional physics to economics and finance.19, 23, 38 It has

attracted considerable attention in recent years raising challenges on how various

economical phenomena could be explained by universal laws in statistical physics,

and we refer to Refs. 16, 17, 30 and 36, for a general review.

The primary motivation for studying such models arising from econophysics is

at least two-fold: From the perspective of a policy maker, it is important to deal

with the raise of income inequality21, 22 in order to establish a more equalitarian

society. From a mathematical point of view, we have to understand the fundamental

mechanisms, such as money exchange resulting from individuals, which are usually

agent-based models. Given an agent-based model, one is expected to identify the

limit dynamics as the number of individuals tends to infinity and then its corre-

sponding equilibrium when the model is run for a sufficiently long time (if there is

one), and this guiding approach is carried out in numerous works across different

fields among literature of applied mathematics, see for instance, Refs. 5, 12 and 35.

In this work, we consider the so-called uniform reshuffling model for money

exchange in a closed economic system with N agents and NM total amount of

dollars. The dynamics consists in choosing at random time two individuals and to

redistribute their money between them. To write this dynamics mathematically, we

denote by Xi(t) the amount of dollar agent i has at time t for 1 ≤ i ≤ N . At a

random time generated by a Poisson clock with rate N , two agents (say i and j)

update their purse according to the following rule:(
Xi, Xj

)
 
(
U(Xi +Xj), (1− U)(Xi +Xj)

)
, (1.1)

where U is a uniform random variable over the interval [0, 1] (i.e. U ∼ Uniform[0, 1]).

The uniform reshuffling model is first studied in Ref. 23 via simulation. The agent-

based numerical simulation suggests that, as the number of agents and time go to

infinity, the limiting distribution of money approaches the exponential distribution

as shown in Fig. 1. It is well-known (see for instance Refs. 3, 7, 24 and 33) that

under the large population N → ∞ limit, We can formally show that the law of

the wealth of a typical agent (say X1) satisfies the following limit PDE in a weak

sense:

∂tq(t, x) =

∫ ∞
0

∫ ∞
0

1[0,k+`](x)

k + `
q(t, k)q(t, `)d` dk − q(t, x). (1.2)

Well-posedness of the solution to (1.2) starting from a smooth initial distribution

has been established in Theorem 6 in Ref. 6, thus throughout this work we will

assume that q(t, ·) is smooth for all t ≥ 0. To our best knowledge, the rigorous

derivation of the limit equation (1.2) from the particle system description is absent

in most of the literature on econophysics (just like many other PDEs arising from

models in econophysics14, 26, 29), because the propagation of chaos effect is implic-

itly assumed in the large N limit in most derivations. The remarkable exception
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Fig. 1. (Color online) Simulation results for the uniform reshuffling model. The blue histogram

shows the distribution of money after T = 1000 time unit. The red solid curve is the limiting
exponential distribution proved in Ref. 32. We used N = 10,000 agents, each starting with $10.

is a work of Cortez,20 in which the author showed a uniform-in-time propagation

of chaos by virtue of a delicate coupling argument based on optimal transport. In

Sec. 5 of this paper, we will provide an alternative rigorous justification of Eq. (1.2)

under the limit N →∞.

Once the limit PDE is identified from the interacting particle system, the nat-

ural next step is to study the problem of convergence to equilibrium of the PDE

at hand, it has been shown in Refs. 24 and 33 that the unique (smooth) solution

of (1.2) converges to its exponential equilibrium distribution exponentially fast in

Wasserstein and Fourier metrics. In this work, we demonstrate a polynomial conver-

gence in time using relative entropy, by establishing a entropy–entropy dissipation

inequality (see Theorem 4.1) which is not available among the literature. An illus-

tration of the general strategy used in this work (and implicitly in many of the

works cited above) is shown in Fig. 2.

Although only a very specific binary exchange model is explored in the present

paper, other exchange rules can also be imposed and studied, leading to different

models. To name a few, the so-called immediate exchange model introduced in

Ref. 26 assumes that pairs of agents are randomly and uniformly picked at each

random time, and each of the agents transfer a random fraction of its money to the

other agents, where these fractions are independent and uniformly distributed in

[0, 1]. The uniform reshuffling model with saving propensity investigated in Refs. 15

and 32 suggests that the two interacting agents keep a fixed fraction λ of their

fortune and only the combined remaining fortune is uniformly reshuffled between

the two agents, which makes the uniform reshuffling model the particular case λ = 0.
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Fig. 2. Schematic illustration of the general strategy of our treatment of the uniform reshuffling

dynamics.

For more variants of binary exchange models with (random) saving propensity and

with debts, we refer the readers to Refs. 18 and 31. For recent work on other models

from econophysics, we recommend Refs. 8–11.

This paper is organized as follows: in Sec. 2, we briefly discuss the properties

of the limit equation (1.2). We show in Sec. 3 convergence results for the solution

of (1.2) in Wasserstein distance and in the linearized region. We take on the most

delicate analysis of the entropy–entropy dissipation relation in Sec. 4. Finally, we

present a rigorous treatment of the propagation of chaos phenomenon in Sec. 5.

2. The Limit PDE and Its Properties

We present a heuristic argument behind the derivation of the limit PDE (2.8) arising

from the uniform reshuffling dynamics in Sec. 2.1. Several elementary properties

of the solution of (2.8) are recorded in Sec. 2.2. Section 2.3 is devoted to another

formulation of the uniform reshuffling model, which can be viewed as a lifting of

the reshuffling mechanics (1.1) and is implicitly exploited in Ref. 3. In Sec. 2.4, we

highlight a key ingredient known as the micro-reversibility, of the collision operator

determined by the right side of (2.8), which allows us to construct certain Lyapunov

functions associated with (2.8) (such as entropy).

2.1. Formal derivation of the limit PDE

Introducing N
(i,j)
t independent Poisson processes with intensity 1/N , the dynamics

can be written as

dXi(t) =
∑

j=1..N,j 6=i

(
U(t−)(Xi(t−) +Xj(t−))−Xi(t−)

)
dN

(i,j)
t (2.1)
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with U(t) ∼ Uniform[0, 1] independent of {Xi(t)}1≤i≤N and is generated as fol-

lows: whenever a Poisson clock N
(i,j)
t rings, we generate a Uniform[0, 1]-distributed

random variable U independent of the past. As the number of players N goes to

infinity, one could expect that the processes Xi(t) become independent and of same

law. Therefore, the limit dynamics would be of the form

dX(t) =
(
U(t−)(X(t−) + Y (t−))−X(t−)

)
dN t, (2.2)

where Y (t) is an independent copy of X(t) and N t a Poisson process with

intensity 1. Taking a test function ϕ, the weak formulation of the dynamics is

given by

dE[ϕ(X(t))] = E
[
ϕ
(
U(t)(X(t) + Y (t))

)
− ϕ(X(t))

]
dt. (2.3)

In short, the limit dynamics correspond to the jump process:

X  U(X + Y ). (2.4)

Let us denote q(t, x) the law of the process X(t). To derive the evolution equation

for q(t, x), we need to translate the effect of the jump of X(t) via (2.4) onto q(t, x).

Lemma 2.1. (Hierarchy of probability distributions) Suppose X and Y are two

independent random variables with probability density q(x) supported on [0,∞). Let

Z = U(X+Y ) with U ∼ Uniform([0, 1]) independent of X and Y . Then the density

for the law of Z is given by Q+[q] with

Q+[q](x) =

∫ ∞
m=0

1[0,m](x)

m

(∫ m

z=0

q(z)q(m− z)dz
)

dm (2.5)

=

∫
R+×R+

1[0,k+`](x)

k + `
q(k)q(`)d` dk. (2.6)

Proof. Let us introduce a test function ϕ.

E[ϕ(U(X + Y ))] =

∫
x≥0

∫
y≥0

∫ 1

u=0

ϕ(u(x+ y))q(x)q(y)du dx dy

=

∫
m≥0

∫ m

z=0

∫ 1

u=0

ϕ(um)q(z)q(m− z)du dz dm

=

∫
m≥0

∫ m

z=0

1

m

∫ m

s=0

ϕ(s)q(z)q(m− z)ds dz dm

using the change of variables z = x and m = x+y followed by s = um. We conclude

using Fubini that

E[ϕ(U(X + Y ))] =

∫
s≥0

ϕ(s)

(∫
m≥0

1[0,m](s)
1

m

∫ m

z=0

q(z)q(m− z)dz dm

)
ds

=

∫
s≥0

ϕ(s)Q+[q](s)ds (2.7)

with Q+[q] defined by (2.5).
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We can now write the evolution equation for the law of X(t) (2.2), the density

q(t, x) satisfies weakly:

∂tq(t, x) = G[q](t, x) for t ≥ 0 and x ≥ 0 (2.8)

with

G[q](x) := Q+[q](x)− q(x) =

∫ ∞
0

∫ ∞
0

1[0,k+`](x)

k + `
q(k)q(`)d` dk − q(x). (2.9)

Remark 2.1. We remark here that the well-posedness of the Boltzmann-type

PDE (2.8) has been established in earlier works such as Ref. 33. Also, It has been

shown in Ref. 33 that moments of q(t) exist for all t > 0 as long as q(0) has bounded

moments.

2.2. Evolution of moments

Now we will establish several elementary properties of the solution of (2.8).

Proposition 2.1. Assume that q(t, x) is a classical (and global in time) solution

of (2.8) and define by mk(t) the kth moment of q:

mk(t) :=

∫ ∞
0

xkq(t, x)dx. (2.10)

Then

m′k(t) =
1

k + 1

k∑
j=0

Cjkmj(t)mk−j(t)−mk(t), (2.11)

where Cjk =
(
k
j

)
= k!

j!(k−j)! represents the binomial coefficient.

Proof. Notice that the moment can be written as mk(t) = E[X
k
(t)], where X(t)

satisfies (2.2). Thus, we use the weak formulation of the evolution equation of q(t, x)

(2.3) with ϕ(x) = xk and deduce that

m′k = E
[(
U(X + Y )

)k −Xk]
= E[Uk]E[(X + Y ))k]−mk,

since U is independent of X and Y . Moreover, E[Uk] =
∫ 1

u=0
ukdu = 1

k+1 . Using

the independence of X and Y and expanding lead to (2.11).

Corollary 2.1. Let q(t, x) solution of (2.8) and mk(t) its kth moment (2.10). The

total mass and the mean are preserved, i.e. m′0(t) = m′1(t) = 0 and all the moments

mk(t) converges in time exponentially fast.

Proof. Writing (2.11) for k = 2 leads to

m′2 = −1

3
m2 +

2

3
m2

1 (2.12)
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and thus m2(t) = 2m2
1 +
(
m2(0)−2m2

1

)
e−

1
3 t. More generally, we proceed by induc-

tion to show that mk(t) converges exponentially, more precisely mk(t) is of the

form

mk(t) = m∗k +O(e−
k−1
k+1 t) (2.13)

with m∗k the limit value of mk(t). We first re-write the evolution equation of mk(t):

m′k(t) = −k − 1

k + 1
mk(t) + Pk−1(t) (2.14)

with Pk−1(t) = 1
k+1

∑k−1
j=1 C

j
kmj(t)mk−j(t). By induction, Pk−1(t) has to converge

in time. Using variation of constant in (2.14) gives

mk(t) = mk(0)e−
k−1
k+1 t + e−

k−1
k+1 t

∫ t

s=0

e
k−1
k+1 sPk−1(s)ds, (2.15)

which leads to (2.13).

From the proposition, we observe that the second moment m2(t) converges

exponentially toward the constant 2m2
1. This behavior could be expected as the

equilibrium of the dynamics (2.8) is given by

q∞(x) :=
1

m1
e−

x
m1 1[0,∞)(x) (2.16)

for which the second moment is equal 2m2
1.

Remark 2.2. Moment calculations can be useful in the study of classical spatially

homogeneous Boltzmann equation, and we refer the readers to Ref. 2 for more

information on this regard.

2.3. Pairwise distribution

Before studying the evolution of the entropy of the solution q(t, x), we make a detour

with another formulation of the reshuffling model using a two-particles distribu-

tion. Indeed, the jump process X(t) (2.4) is a “truncated version” of the following

dynamics:

(X,Y ) 
(
U(X + Y ), (1− U)(X + Y )

)
, (2.17)

where U ∼ Uniform([0, 1]). Introducing a test function ϕ(x, y), this dynamics lead

to:

dE[ϕ(X,Y )] = E
[
ϕ
(
U(X + Y ), (1− U)(X + Y )

)
− ϕ(X,Y )

]
dt. (2.18)

We now translate this evolution equation into a PDE.

Proposition 2.2. Let f(t, x, y) the density distribution of the process (X(t), Y (t))

defined via (2.17). It satisfies (weakly) the linear evolution equation:

∂tf = L+[f ]− f (2.19)
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with

L+[f ](x, y) =
1

x+ y

∫ x+y

z=0

f(z, x+ y − z)dz. (2.20)

Proof. The evolution equation (2.17) gives

d

dt

∫
x,y≥0

f(t, x, y)ϕ(x, y)dx dy

=

∫ 1

u=0

∫
x,y≥0

f(t, x, y)ϕ
(
u(x+ y), (1− u)(x+ y)

)
dx dy du

−
∫
x,y≥0

f(t, x, y)ϕ(x, y)dx dy. (2.21)

To identify the operator associated with the equation, let us rewrite the “gain term”

(dropping the dependency in time for simplicity) using two changes of variables:∫ 1

u=0

∫
x,y≥0

f(x, y)ϕ
(
u(x+ y), (1− u)(x+ y)

)
dx dy du

=

∫ 1

u=0

∫
m≥0

∫ m

z=0

f(z,m− z)ϕ
(
um, (1− u)m)

)
dz dm du

=

∫
x′,y′≥0

∫ x′+y′

z=0

f(z, x′ + y′ − z)ϕ(x′, y′)
1

x′ + y′
dz dx′ dy′

with (x′ = um, y′ = (1− u)m) leading to dx′ dy′ = mdu dm.

Remark 2.3. Notice that the operator L (2.20) “flattens” the distribution f over

the diagonals x + y = constant and thus minimizes its entropy over each diagonal

(see Fig. 3). In particular, the equilibria for the dynamics are the distributions of

the form: f∗(x, y) = φ(x+ y).

Fig. 3. The operator L+ (2.20) flattens the distribution f(x, y) over the diagonal lines x + y =
constant.
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Fig. 4. Schematic representation of the evolution of f(t, x, y) and q(t, x). If f belongs to the

manifold of independent functions, i.e. f(t, x, y) = q(t, x)q(t, y), then the evolution of its marginal
q satisfies locally the non-linear equation (2.8). Notice that the manifold of independent function

is not invariant by the flow of the linear PDE. Notice that we have assumed m1 = 1 so that

f∞(x, y) := q∞(x)q∞(y) = e−x−y . Also, the definition of g appears in (4.9).

The linear operator L+ (2.20) is linked to the non-linear operator Q+ (2.5) as

illustrated in Fig. 4. Indeed, assuming X and Y are independent, i.e. f(x, y) =

q(x)q(y), integrating L+[f ] over the ‘extra’ variable y gives∫
y≥0

L+[f ](x, y)dy =

∫
y≥0

1

x+ y

∫ x+y

z=0

q(z)q(x+ y − z)dz dy

=

∫ +∞

m=x

1

m

∫ m

z=0

q(z)q(m− z)dz dy = Q+[q](x).

2.4. Micro-reversibility

The evolution equation for f (2.19) corresponds to a collisional operator with the

kernel:

K
(
x, y;x′, y′

)
=

1

x+ y
δx+y(x′ + y′), (2.22)

where δ denotes the Dirac distribution. Indeed, writing z = (x, y), Eq. (2.19) could

be written as

∂tf(z, t) =

∫
z̃≥0

K
(
z̃; z
)
f(z̃, t) d z̃−

∫
z′≥0

K
(
z; z′

)
f(z, t)dz′, (2.23)

where z′ = (x′, y′) denotes the post-collision position and z̃ = (x̃, ỹ) the pre-collision

position.

Remark 2.4. A more rigorous way to define the kernel K is through a weak

formulation using a test function ϕ(x, y):∫
x′,y′≥0

K
(
x, y;x′, y′

)
ϕ(x′, y′)dx′ dy′ =

1

x+ y

∫ x+y

z=0

ϕ(z, x+ y − z)dz. (2.24)
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Fig. 5. The collisional kernel K (2.22) satisfies a micro-reversibility condition.

The collision kernel K satisfies a micro-reversibility condition (see Fig. 5),

namely:

K
(
z; z′

)
= K

(
z′; z

)
for any z and z′ ∈ R+ × R+. (2.25)

One has to integrate against a test function ϕ to make this statement rigorous.

As a consequence, we deduce the lemma.

Lemma 2.2. Let ϕ(x, y) be a (smooth) test function and f(t, x, y) be the solution

of (2.23). Then

d

dt

∫
z

f(z, t)ϕ(z)dz = −1

2

∫
z,z′

K(z; z′)
(
f(z′, t)− f(z, t)

)(
ϕ(z′)− ϕ(z)

)
dz dz′.

(2.26)

In particular, both the L2 norm and the entropy of f(t, x, y) decay in time.

Proof. We drop the dependency in time to ease the reading:

d

dt

∫
z

f(z)ϕ(z)dz =

∫
z̃,z

K(z̃; z)f(z̃)ϕ(z)d z̃ dz−
∫
z,z′

K(z; z′)f(z)ϕ(z)d z̃ dz

=

∫
z,z′

K(z; z′)f(z)
(
ϕ(z′)− ϕ(z)

)
dz dz′

=

∫
z,z′

K(z′; z)f(z′)
(
ϕ(z)− ϕ(z′)

)
dz dz′

=

∫
z,z′

K(z; z′)f(z′)
(
ϕ(z)− ϕ(z′)

)
dz dz′

=
1

2

∫
z,z′

K(z; z′)
(
f(z)− f(z′)

)(
ϕ(z′)− ϕ(z)

)
dz dz′.

3. Convergence to Equilibrium: Wasserstein and Linearization

We carry out an linearization analysis around the exponential equilibrium distribu-

tion of the solution of (2.8) and demonstrate an explicit rate of convergence under
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the linearized (weighted L2) setting in Sec. 3.1. These arguments are reinforced in

Sec. 3.2 into a local convergence result for the full non-linear equation. A coupling

approach is encapsulated in Sec. 3.3 in order to show that solution q(t, x) of (2.8)

relaxes to its equilibrium q∞ exponentially fast in the Wasserstein distance.

3.1. Linearization around equilibrium

Now we perform a linearization analysis near the global exponential equilibrium

q∞, in a fashion that is similar to Ref. 4. For this purpose, we define the linear

operator L to be

L[h](x) :=

∫ ∞
0

∫ ∞
0

1[0,k+`](x)

k + `
q∞(k + `− x)

(
h(k) + h(`)− h(x)

−h(k + `− x)
)
dk d`.

Setting q = q∞(1 + εh) in the limit ε→ 0, we deduce from (2.8) that

∂th(x) = L[h](x), (3.1)

where h ∈ L2(q∞) is orthogonal to N (L) := Span{1, x} in L2(q∞) because of the

conservation
∫∞
0
q dx =

∫∞
0
q∞dx and

∫∞
0
xq dx =

∫∞
0
xq∞dx. For the linearized

equation (3.1), the natural entropy is the L2(q∞) norm of h:

E =
1

2
‖h‖2L2(q∞) (3.2)

and the entropy dissipation is given by

d

dt
E =

∫
R3

+

1[0,k+`](x)

k + `
q∞(k)q∞(`)

(
h(k) + h(`)

−h(k + `− x)− h(x)
)
h(x)dk d` dx

= −1

4

∫
R3

+

1[0,k+`](x)

k + `
q∞(k)q∞(`)

(
h(k + `− x)

+h(x)− h(k)− h(`)
)2

dk d` dx.

In particular, it implies that the spectrum of L in L2(q∞) is non-positive.

Remark 3.1. It is not hard to show that the linear operator −L enjoys a self-

adjoint property on the space L2(q∞). Thus, the existence of a spectral gap η is

equivalent to

∀h ⊥ N (L), −〈L[h], h〉L2(q∞) := −
∫ ∞
0

L[h](x)h(x)q∞(x)dx ≥ η‖h‖2L2(q∞).

Remark 3.2. Following Ref. 25, we give some comments on the space L2(q∞).

If q is the unique solution of (2.8) and we set q = q∞(1 + εh) as before for

h ⊥ N (L), then (recall that q∞ is the density of an exponential distribution with
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mean M)∫ ∞
0

q log q dx =

∫ ∞
0

q∞(1 + εh) log(q∞(1 + εh))dx

=

∫ ∞
0

q∞ log q∞dx+ ε

∫ ∞
0

(
log

1

M
− 1

M
x

)
hq∞dx

+

∫ ∞
0

q∞(1 + εh)

(
εh− (εh)2

2
± · · ·

)
dx

=

∫ ∞
0

q∞ log q∞dx+
ε2

2

∫ ∞
0

h2q∞dx+O(ε3),

where we used the fact that h ⊥ N (L). Therefore, we can see that ‖h‖2L2(q∞) =∫∞
0
h2q∞dx gives the first-order correction to the expansion of the entropy of q

around q∞.

We will prove that the linearized entropy E (3.2) decays exponentially fast in

time with an explicit sharp decay rate, the essence of which lies in the following

lemma.

Lemma 3.1. Let m1 = 1 and A := {h ∈ L2(q∞) |h ⊥ N (L)}. Then

inf
h∈A

∫∞
0
h2(x)q∞(x)dx∫∞

0
e−z

z (
∫ z
0
h(x)dx)2dz

= 3 (3.3)

and the infimum in (3.3) is attained (up to a non-zero multiplication constant) at

h(x) = 1
2 (x2 − 4x+ 2).

Proof. The key ingredient in the proof is the fact that the so-called Laguerre

polynomials, defined by

Ln(x) =
ex

n!

dn

dxn
(e−xxn) =

n∑
k=0

(
n

k

)
(−1)k

k!
xk, n ≥ 0

form an orthonormal basis for the weighted L2 space L2(q∞).1 Thus, for any h ∈
L2(q∞) which is not identically zero, we can write h =

∑∞
n=0 αnLn, in which

αn ∈ R for all n. Next, notice that the condition h ∈ A implies that α0 = α1 = 0.

Moreover, we have
∫∞
0
h2(x)q∞(x)dx =

∑∞
n=2 α

2
n thanks to the orthonormality of

the Laguerre polynomials {Ln}n≥0. To proceed further, we recall that37 Ln(z) −
Ln+1(z) =

∫ z
0
Ln(x)dx and zL′n(z) = nLn(z)− nLn−1(z) for all n ≥ 1, whence∫ ∞

0

e−z

z

(∫ z

0

h(x)dx

)2

dz

=

∫ ∞
0

e−z

z

( ∞∑
n=2

αn(Ln(z)− Ln+1(z))

)2

dz



May 12, 2023 10:55 WSPC/103-M3AS 2350018

Entropy dissipation and propagation of chaos for the uniform reshuffling model 841

=

∫ ∞
0

e−z

( ∞∑
n,m=2

αnαm

(
Ln(z)− Ln+1(z)

z

)
(Lm(z)− Lm+1(z))

)2

dz

= −
∞∑

n,m=2

αnαm
n+ 1

∫ ∞
0

e−z(Lm(z)− Lm+1(z))dLn+1(z)

=

∞∑
n,m=2

αnαm
n+ 1

∫ ∞
0

Ln+1(z)d
(
e−z(Lm(z)− Lm+1(z))

)

=

∞∑
n,m=2

αnαm
n+ 1

∫ ∞
0

Ln+1(z)Lm+1(z)e−zdz

=

∞∑
n=2

α2
n

n+ 1
≤ 1

3

∞∑
n=2

α2
n.

Finally, notice that the inequality above will become an equality if and only if

αn = 0 for all n ≥ 3, or in other words, if and only if h(x) = L2(x) = 1
2 (x2−4x+2)

up to a non-zero multiplication constant.

We are now in a position to prove the following result.

Theorem 3.1. Assume that h ∈ L2(q∞) solves the linearized equation (3.1), then

we have

‖h(t)‖L2(q∞) ≤ ‖h(0)‖L2(q∞)e
− 1

3 t. (3.4)

Proof. We will only prove the result for m1 = 1, and the general case follows

readily from a change of variable argument. From the discussion above, we already

have that

− d

dt

1

2
‖h‖2L2(q∞) =

∫
R3

+

1[0,k+`](x)

k + `
q∞(k)q∞(`)

· (h(k + `− x) + h(x)− h(k)− h(`))h(x)dk d` dx. (3.5)

Thanks to h ∈ A, it is not hard to see through a change of variable that∫
R3

+

1[0,k+`](x)

k + `
q∞(k)q∞(`)h(k + `− x)h(x)dk d` dx = 0.

Also, a simple calculation yields that∫
R3

+

1[0,k+`](x)

k + `
q∞(k)q∞(`)h2(x)dk d` dx =

∫ ∞
0

h2(x)e−xdx

and∫
R3

+

1[0,k+`](x)

k + `
q∞(k)q∞(`)h(k)h(x)dk d` dx =

∫ ∞
0

e−z

z

(∫ z

0

h(x)dx

)2

dz.
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Consequently, (3.5) reads

− d

dt

1

2
‖h‖2L2(q∞) =

∫ ∞
0

h2(x)e−xdx− 2

∫ ∞
0

e−z

z

(∫ z

0

h(x) dx

)2

dz

≥ 1

3

∫ ∞
0

h2(x)e−xdx =
1

3
‖h‖2L2(q∞),

in which the inequality follows directly from the previous lemma. Thus, we can

conclude by Gronwall’s inequality since d
dt‖h‖

2
L2(q∞) ≤ −

2
3‖h‖

2
L2(q∞).

3.2. Local convergence in L2

We now extend the linearization argument from the previous subsection into a local

convergence result for the full non-linear equation.

Corollary 3.1. There exists some ε > 0 such that if at some time t ≥ 0,∫
|q(t, x)− q∞(x)|2

q∞(x)
dx ≤ ε,

then q converges to q∞ and for any λ < 1
3 , there exists Cλ such that∫

|q(t, x)− q∞(x)|2

q∞(x)
dx ≤ Cλe−λt.

Proof. For a solution q, we denote h(t, x) = (q − q∞)/q∞ and calculate

− d

dt

1

2
‖h‖2L2(q∞) = −

∫
h∂tq = −

∫
h(Q+[q]− q)

= −
∫
hq∞L[h]−

∫
h(x)q∞(x)

1x≤k+`

k + `
q∞(k + `− x)

×h(k)h(`)dx dk d`.

Denote

R(x) =

∫
1x≤k+`

k + `
q∞(k + `− x)h(k)h(`)dk d`

and calculate∣∣∣∣∫ h(x)q∞(x)R(x)dx

∣∣∣∣ ≤ (∫ q∞(x)
1x≤k+`

k + `
q∞(k + `− x)h2(k)h2(`)dx dk d`

)1/2

·
(∫

h2(x)q∞(x)
1x≤k+`

k + `
q∞(k + `− x)dx dk d`

)1/2

.

So first of all,∫
q∞(x)

1x≤k+`

k + `
q∞(k + `− x)h2(k)h2(`)dx dk d`

=

∫
1x≤k+`

k + `
q∞(k)q∞(`)h2(k)h2(`)dx dk d` = ‖h‖4L2(q∞).
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On the other hand,∫
h2(x)q∞(x)

1x≤k+`

k + `
q∞(k + `− x)dx dk d` =

∫
h2(x)q∞(x)dx = ‖h‖2L2(q∞).

Hence, ∣∣∣∣∫ h(x)q∞(x)R(x)dx

∣∣∣∣ ≤ ‖h‖3L2(q∞).

Coming back to the equation, we have that

− d

dt

1

2
‖h‖2L2(q∞) ≥ −

∫
h(x)q∞(x)L[h]dx− ‖h‖3L2(q∞).

Using the previous calculations on the spectral gap of L, we can conclude that

− d

dt

1

2
‖h‖2L2(q∞) ≥

1

3
‖h‖2L2(q∞) − ‖h‖

3
L2(q∞),

which finishes the proof with a Gronwall bound.

We can couple this with an interpolation argument to modify the smallness

assumption in weighted L2 by using the relative entropy, which leads us to Corol-

lary 3.2, whose proof will be deferred to the appendix (as the proof of Corollary 3.2

relies on several a priori estimates established in Sec. 4).

Corollary 3.2. Assume that for some λ0 >
1
2 , supx eλ0xq(0, x) < ∞. Then there

exists some δ > 0 such that if at some time t ≥ 0,∫
q(t, x) log

q(t, x)

q∞(x)
dx ≤ δ,

we have that q converges to q∞ and for any λ < 1
3 , there exists Cλ such that∫

|q(t, x)− q∞(x)|2

q∞(x)
dx ≤ Cλe−λt.

3.3. Coupling and convergence in Wasserstein distance

In this section, we shall employ a coupling argument to demonstrate the conver-

gence of the solution of (2.8) to the exponential probability density function given

by (2.16). Before we state the main result of this section, we first collect several

relevant definitions.

Definition 3.1. The Wasserstein distance with exponent 2 between two probabil-

ity density functions (say f and g) is defined by

W2(f, g) = inf
{√

E[|X − Y |2]; Law(X) = f, Law(Y ) = g
}
,

where the infimum is taken over all pairs of random variables defined on some

probability space (Ω,P) and distributed according to f and g, respectively.

Next, we present a stochastic representation of the evolution equation (2.8),

which is interesting in its own right.
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Proposition 3.1. Assume that qt(x) := q(t, x) is a solution of (2.8) with initial

condition q0(x) being a probability density function supported on R+ with mean m1.

Defining (Xt)t≥0 to be a R+-valued continuous-time pure jump process with jumps

of the form

Xt
rate 1
 U(Xt + Yt), (3.6)

where Yt is a i.i.d. copy of Xt, U ∼ Uniform[0, 1] is independent of (Xt) and

(Yt), and the jump occurs according to a Poisson clock running at the unit rate. If

Law(X0) = q0, then Law(Xt) = qt for all t ≥ 0.

Proof. Taking ϕ to be an arbitrary but fixed test function, we have

d

dt
E[ϕ(Xt)] = E[ϕ(U(Xt + Yt))]− E[ϕ(Xt)]. (3.7)

Denoting q(t, x) as the probability density function of Xt, (3.7) can be rewritten as

d

dt

∫
R+

q(t, x)ϕ(x)dx =

∫
R2

+

∫ 1

0

ϕ(u(k + `))q(k, t)q(`, t)du dk d`

−
∫
R+

q(t, x)ϕ(x)dx.

After a simple change of variables, one arrives at

d

dt

∫
R+

q(t, x)ϕ(x)dx =

∫
R+

(G[q](x, t)− q(t, x))ϕ(x)dx. (3.8)

Thus, q must satisfy ∂tq = G[q] and the proof is completed.

Remark 3.3. Using a similar reasoning, we can show that if (Xt)t≥0 is a R+-valued

continuous-time pure jump process with jumps of the form

Xt
rate 1
 U(Xt + Y t), (3.9)

where Y t is a i.i.d. copy of Xt, U ∼ Uniform[0, 1] is independent of (Xt) and (Y t),

and the jump occurs according to a Poisson clock running at the unit rate. Then

Law(X0) = q∞ implies Law(Xt) = q∞ for all t ≥ 0.

The main result of this section is recorded in the following theorem.

Theorem 3.2. Under the setting of Proposition 3.1, we have

W2(qt, q∞) ≤ e−
1
6 tW2(q0, q∞), ∀ t ≥ 0. (3.10)

Proof. Fixing t ∈ R+, we need to couple the two densities qt and q∞. Suppose

that (Xt)t≥0 and (Xt)t≥0 are R+-valued continuous-time pure jump processes with

jumps of the form (3.6) and (3.9), respectively. We can take (Xt, Yt) and (Xt, Y t)

as in the statement of Proposition 3.1 and Remark 3.3, respectively. Meanwhile,

several independence assumptions can be imposed along the way when we introduce
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the coupling: the copies Yt and Y t are independent, respectively, to Xt and Xt, the

couple (Xt, Xt) is also independent of (Yt, Y t). We insist that the same uniform

random variable U is used in both (3.6) and (3.9) therefore Xt and Xt are not

independent. Moreover, we impose that Law(X0) = q0 and Law(X0) = q∞. As a

consequence of the previous proposition and remark, qt = Law(Xt) and Law(Xt) =

q∞ for all t ≥ 0, whence E[Xt] = E[Y t] = m1 and E(X2
t ) = E(Y 2

t ) = 2m2
1, ∀ t ≥ 0.

Also, we have that E[Xt] = E[Yt] = m1 for all t ≥ 0. Thanks to the aforementioned

coupling, we then have

d

dt
E[(Xt −Xt)

2] = E
[(
U(Xt + Yt −Xt − Y t)

)2 − (Xt −Xt)
2
]

=
1

3

(
E[(Xt −Xt)

2] + E[(Yt − Y t)2] + 2E[(Xt −Xt)(Yt − Y t)]
)

−E[(Xt −Xt)
2]

=
2

3
E[(Xt −Xt)

2] +
2

3
E[Xt −Xt] · E[Yt − Y t]− E[(Xt −Xt)

2]

= −1

3
E[(Xt −Xt)

2].

Now we pick X0 with law q∞ so that W 2
2 (q, q∞) = E[(X0 −X0)2], and an routine

application of Gronwall’s inequality yields (3.10).

4. Entropy Dissipation

We state our main result, Theorem 4.1, in Sec. 4.1 so that readers know exactly

what is at stake. We will present various expressions of the entropy and entropy

dissipation associated to the solution q(t, x) of (2.8), along with a discussion of the

strategy of the proof of Theorem 4.1 in Sec. 4.2. A sequence of auxiliary lemmas

and corollaries are recorded in Secs. 4.3 and 4.4. Finally, a full proof of Theorem 4.1,

built upon all of the preparatory work from 4.1 to 4.4, is shown in 4.5.

4.1. Main result

For the integro-differential equation (2.8), a common strategy7, 24, 33 is to use the

Laplace transform or Fourier transform of (2.8) to prove the exponential decay of

solution of (2.8) to q∞(x) in some Fourier metric. However, little analysis of (2.8)

has been carried out without resorting to Laplace or Fourier transform. In particu-

lar, we would like to show the dissipation of relative entropy, i.e. DKL(q(·, t) ‖ q∞),

along solution trajectories:

d

dt

∫ ∞
0

q log
q

q∞
dx =

d

dt

∫ ∞
0

q log q dx ≤ 0. (4.1)

It is reasonable to expect the validity of (4.1) as the exponential probability density

q∞ maximizes the negative entropy −
∫∞
0
p log p dx among all continuous probabil-

ity density functions supported on [0,∞) with prescribed mean.
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The following proposition together with its proof should be a reminiscent of the

calculations carried out for a standard Boltzmann equation arising from the kinetic

theory of (dilute) gases.40

Proposition 4.1. Let ϕ(x) be a (continuous) test function on R+ and assume that

q is a smooth solution of (2.8), then we have

d

dt

∫ ∞
0

q(t, x)ϕ(x)dx = −1

4

∫
R3

+

1[0,k+`](x)

k + `

(
q(k + `− x)q(x)− q(k)q(`)

)
·
(
ϕ(k + `− x) + ϕ(x)− ϕ(k)− ϕ(`)

)
dk d` dx.

Moreover, inserting ϕ = log q and using mass conservation (i.e. m′0(t) = 0 for all

t ≥ 0), we obtain the dissipation of relative entropy :

d

dt

∫ ∞
0

q(t, x) log q(t, x)dx = −1

4
D[q],

where

D[q] :=

∫
R3

+

1[0,k+`](x)

k + `

(
q(k + `− x)q(x)

− q(k)q(`)
)

log
q(k + `− x)q(x)

q(k)q(`)
dk d` dx ≥ 0. (4.2)

Proof. We notice that the PDE (2.8) can be rewritten as

∂tq(x) =

∫ ∞
0

∫ ∞
0

1[0,k+`](x)

k + `

(
q(k)q(`)− q(x)q(k + `− x)

)
dk d` (4.3)

(thanks to Proposition 2.1). Omitting the time variable for simplicity, we deduce

that

d

dt

∫ ∞
0

q(x)ϕ(x)dx =

∫
R3

+

1[0,k+`](x)

k + `

(
q(k)q(`)− q(x)q(k + `− x)

)
ϕ(x)dk d` dx

=

∫
R3

+

1[0,k+`](x)

k + `
q(k)q(`)

(
ϕ(x)− ϕ(`)

)
dk d` dx

=

∫
R3

+

1[0,k+`](x)

k + `
q(k)q(`)

(
ϕ(k + `− x)− ϕ(k)

)
dk d` dx

=
1

2

∫
R3

+

1[0,k+`](x)

k + `
q(k)q(`)

· (ϕ(k + `− x) + ϕ(x)− ϕ(k)− ϕ(`))dk d` dx
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= −1

4

∫
R3

+

1[0,k+`](x)

k + `

(
q(k + `− x)q(x)− q(k)q(`)

)
· (ϕ(k + `− x) + ϕ(x)− ϕ(k)− ϕ(`))dk d` dx.

Remark 4.1. The dissipation of the relative entropy can also be seen via an alter-

native perspective. Indeed, we fix t ≥ 0 and assume that X1(t) and X2(t) are i.i.d.

R+-valued random variable with its probability density function given by q(t, x),

and we define (Z1, Z2) = (U(X1 +X2), (1− U)(X1 +X2)) with U ∼ Uniform[0, 1]

being independent of X1 and X2. Then we deduce from the PDE (2.8) and

Lemma 2.1 that

2
d

dt
DKL(q ‖ q∞) = H((Z1, Z2), (X1, X2))−H((X1, X2))

≤ H((Z1, Z2))−H((X1, X2)), (4.4)

where H(X,Y ) :=
∫
R ρX(x) log ρY (x)dx represents the cross entropy from Y to X,

if the laws of X and Y are given by ρX and ρY . It can be shown3 that the joint

entropy of (Z1, Z2) is always no more than the joint entropy of (X1, X2), whence

the rightmost side of (4.4) is non-positive.

Corollary 4.1. The exponential distribution q∞ defined in (2.16) is the only

(smooth) equilibrium solution of the PDE (2.8).

Proof. By Proposition 4.1, we see that

q∞(x)q∞(k + `− x) = q∞(k)q∞(`) for all k, `, x ≥ 0 such that k + ` ≥ x.

Since
∫∞
0
q∞(x)dx = 1 and

∫∞
0
xq∞(x)dx = m1, q∞ must be the exponential

probability density provided by (2.16).

We will prove that
∫
q log q

q∞
dx

t→∞−−−→ 0 occurs with a polynomial conver-

gence. Without loss of generality, throughout the argument to be presented below,

we will set m1 = 1, i.e. q∞(x) = e−x for x ≥ 0. Our main result is stated as

follows.

Theorem 4.1. Under the assumptions of Lemma 4.4, there exist some constants

C > 0 and µ > 0 such that we have∫ +∞

x=0

q(x, t) log
q(x, t)

e−x
dx ≤ C

1 + tµ
. (4.5)

To the best of our knowledge, Theorem 4.1 is the first entropy–entropy dissipa-

tion inequality established for the uniform reshuffling dynamics.

Our proof for Theorem 4.1 actually relies on a more technical entropy–entropy

dissipation result which we state below.
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Theorem 4.2. Under the assumptions of Lemma 4.4, there exist some constants

C, C̃ > 0 and θ ∈ (0, 1) such that we have either∫ +∞

x=0

q(x, t) log
q(x, t)

e−x
dx ≤ CDθ (4.6)

or ∫ +∞

x=0

q(x, t) log
q(x, t)

e−x
≤ C̃e−t/C̃ . (4.7)

The proof of Theorem 4.2 is the main goal of the rest of this section. However,

we can easily check that it does imply Theorem 4.1.

Proof. (Proof of Theorem 4.1 assuming Theorem 4.2.) Observe that the relative

entropy is decreasing and continuous in time and therefore we can decompose the

timeline [0,∞) into intervals (sn, tn) and [tn, sn+1] in the following manner. We

have that ∫ +∞

x=0

q(x, t) log
q(x, t)

e−x
≤ C̃e−t/C̃ , ∀ t ∈ [tn, sn+1],

while ∫ +∞

x=0

q(x, t) log
q(x, t)

e−x
> C̃e−t/C̃ , ∀ t ∈ (sn, tn).

Applying Theorem 4.2 at any t ∈ (sn, tn), we see that

d

dt

∫ +∞

x=0

q(x, t) log
q(x, t)

e−x
= −1

4
D ≤ − 1

C

(∫ +∞

x=0

q(x, t) log
q(x, t)

e−x

)1/θ

,

as we need to satisfy the first alternative.

Denoting

E(t) =

∫ +∞

x=0

q(x, t) log
q(x, t)

e−x
,

a straightforward Gronwall estimate then shows that for t ∈ (sn, tn),

E(t) ≤
(
t

C
+ E(sn)−(1−θ)/θ

)θ/(1−θ)
. (4.8)

By the continuity in time of E(t), we also have that

E(sn) ≤ C̃e−sn/C̃ .

By choosing µ = θ/(1− θ) and choosing C̄ large enough s.t.

C̃e−t/C̃ ≤ C̄

1 + tµ
,



May 12, 2023 10:55 WSPC/103-M3AS 2350018

Entropy dissipation and propagation of chaos for the uniform reshuffling model 849

we automatically obtain from (4.8) that

E(t) ≤ C̄

1 + tµ

for all t ∈ (sn, tn). This also trivially applies for t ∈ [tn, sn+1] concluding the

proof.

4.2. Basic expressions of the entropy–entropy dissipation

Let us start by looking at the strong convergence of the pairwise distribution, which

is essentially trivial. Indeed, we recall the linear PDE (2.19), which reads

∂tf = L+[f ]− f,

where

L+[f ](x, y) =
1

x+ y

∫ x+y

z=0

f(z, x+ y − z)dz.

Then denoting

g(t, λ) =
1

λ

∫ λ

0

f(t, z, λ− z)dz, (4.9)

we can rewrite (2.19) as ∂tf(t, x, y) = g(t, x+ y)− f(t, x, y), whence

∂tg(t, λ) =
1

λ

∫ λ

z=0

∂tf(t, z, λ− z)dz

=
1

λ

∫ λ

0

(g(t, λ)− f(t, z, λ− z))dz = 0.

Hence, g(t, λ) = g(0, λ) and trivially (by Gronwall’s inequality)

|f(t, x, y)− g(0, x+ y)| ≤ e−t. (4.10)

Unfortunately, this cannot be used to show the convergence on the actual equation

for q(t, x) because the two models are not equivalent: If q(t, x) solves (2.8), which

is non-linear, then in general f(t, x, y) = q(t, x)q(t, y) does not solve (2.19). The

one exception is when q(t, x) is some exponential. Moreover, f does not necessarily

converge to an exponential but to whatever g(t = 0) was. The rate of convergence

is also too fast as the second moment of q converges much slower for example.

We will still find some of the structure above in the entropy dissipation for q but

that is one reason why the entropy dissipation is not easy to handle. In particular,

the entropy dissipation will vanish whenever f(x, y) = g(x + y) which seems to

create some degeneracy.

Next, we can rewrite the dissipation term in a manner that will make the con-

nection with the exponential more apparent. We define for simplicity f(x, y) =

q(x)q(y), and as before

g(λ) =
1

λ

∫ λ

0

f(z, λ− z)dz =
1

λ

∫ λ

0

q(z)q(λ− z)dz.
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Finally, we also define

h(x) =

∫
R+

g(x+ y)dy.

We remark here that h coincides with the collision gain operator Q+[q] defined

via (2.5). With these definitions, we have

Lemma 4.1. For D := D[q] in (4.2), one has that

D = 2

∫
R2

+

q(x)q(y) log
q(x)q(y)

g(x+ y)
dx dy + 2

∫
R2

+

g(x+ y) log
g(x+ y)

q(x)q(y)
dx dy

or as well that

D = 2

∫
R2

+

q(x)q(y) log
q(x)q(y)

g(x+ y)
dx dy + 2

∫
R2

+

g(x+ y) log
g(x+ y)

h(x)h(y)
dx dy

+ 4

∫
R+

h(x) log
h(x)

q(x)
dx.

Formally this forces g(x + y) to be close to f(x, y) (solution of the linear

PDE (2.19)) so this is a very similar term to the one that we had found when look-

ing at Eq. (2.19). It is some sort of degeneracy because it does not directly force f

to be close to e−x−y so we will have to resolve it. Of course since f(x, y) = q(x)q(y),

f(x, y) = g(x + y) forces q to be some exponential and therefore this should be

possible.

Proof. We can first simply rewrite

D =

∫
R3

+

1y+z≥x

y + z
(f(y + z − x, x)− f(y, z)) log

f(y + z − x, x)

f(y, z)
dx dy dz.

Observe that by swapping x and z,∫
R3

+

1y+z≥x

y + z
(f(y + z − x, x)− f(y, z)) log f(y + z − x, x)

=

∫
R3

+

1y+x≥z

y + x
(f(y + x− z, z)− f(y, x)) log f(y + x− z, z).

Changing variable y → y′ = y + x− z, we get that∫
R3

+

1y+z≥x

y + z
(f(y + z − x, x)− f(y, z)) log f(y + z − x, x)

=

∫
R3

+

1y′+z≥x

y′ + z
(f(y′, z)− f(y′ + z − x, x)) log f(y′, z).

Hence,

D = 2

∫
R3

+

1y+z≥x

y + z
(f(y, z)− f(y + z − x, x)) log f(y, z).
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In other words,

D = 2

∫
R2

+

f(y, z) log f(y, z)dy dz − 2

∫
R2

+

g(y + z) log f(y, z)dy dz.

Now, we observe that∫
R2

+

f(y, z) log g(y + z)dy dz =

∫
R2

+

g(y + z) log g(y + z)dy dz.

Indeed, a change of variable y = x− w and z = w yields∫
R2

+

g(y + z) log g(y + z)dy dz =

∫
R+

xg(x) log g(x)dx.

By the same change of variables, we also have∫
R2

+

f(y, z) log g(y + z)dy dz =

∫
R+

log g(x)

∫ x

0

f(x− w,w)dw dx

=

∫
R+

xg(x) log g(x)dx.

Hence,

D

2
=

∫
R2

+

f(y, z) log
f(y, z)

g(y + z)
dy dz +

∫
R2

+

g(y + z) log
g(y + z)

f(y, z)
dy dz.

Finally, as f(y, z) = q(y)q(z), we may also notice that∫
R2

+

g(y + z) log
g(y + z)

f(y, z)
dy dz =

∫
R2

+

g(y + z) log g(y + z)dy dz

− 2

∫
R2

+

g(y + z) log q(y)dy dz

=

∫
R2

+

g(y + z) log g(y + z)dy dz

− 2

∫
R+

h(y) log q(y)dy.

So we also have that∫
R2

+

g(y + z) log
g(y + z)

f(y, z)
dy dz =

∫
R2

+

g(y + z) log
g(y + z)

h(y)h(z)
dy dz

+ 2

∫
R+

h(y) log
h(y)

q(y)
dy,

concluding the estimate.

Next, we intend to collect here some various bounds stemming from the dissi-

pation term, the essence of those bounds lies in the following lemma.
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Lemma 4.2. We have that∫
q(x) log

q(x)

H(x)
dx ≤

∫
ϕ(y)q(x)q(y) log

q(x)q(y)

g(x+ y)
dx dy,

in which

H(x) =

∫
g(x+ y)ϕ(y)dy

for any ϕ ≥ 0 such that
∫
ϕq dx = 1.

Proof. Indeed, as log is concave,∫
q(x)ϕ(y)q(y) log

g(x+ y)

q(x)q(y)
dx dy ≤

∫
q(x) log

(∫
g(x+ y)

q(x)
ϕ(y)dy

)
dx

=

∫
q(x) log

H(x)

q(x)
dx

and the proof is completed.

As a consequence of this lemma, inserting φ(x) = 1 and then φ(x) = x, we then

deduce that ∫
q(x) log

q(x)

h(x)
dx ≤

∫
q(x)q(y) log

q(x)q(y)

g(x+ y)
dx dy,∫

q(x) log
q(x)

m(x)
dx ≤

∫
xq(x)q(y) log

q(x)q(y)

g(x+ y)
dx dy,

where

m(x) =

∫ ∞
y=0

g(x+ y)y dy =

∫ ∞
x

g(z)(z − x)dz

=

∫ ∞
x

∫ ∞
y

g(z)dz dy =

∫ ∞
x

h(y)dy.

Remark 4.2. We also note that m(0) = 1 (since
∫
h dx =

∫
q dx = 1) and so∫

h logm, dx = −
∫
m′ logm dx = −

∫
h dx = −

∫
xh(x)dx = −1,

by virtue of the fact that
∫
xh(x)dx =

∫
xq(x)dx = 1. Thus,∫

h log
h

m
dx =

∫
h log

h

e−x
dx.

This leads to a possible strategy: Control
∫
h log h

m in terms of
∫
q log q

h ,
∫
h log h

q

and
∫
q log q

m . Then control
∫
q log q

e−x by the previous quantities and
∫
h log h

m .

We can then estimate
∫
xq(x)q(y) log q(x)q(y)

g(x+y) dx dy via
∫
q(x)q(y) log q(x)q(y)

g(x+y) dx dy

and some control on the decay of q at infinity. So in the end this would lead to

some kind of bounds on
∫
q log q

e−x in terms of the dissipation term. We illustrate

the strategy in Fig. 6.
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Fig. 6. (Color online) To measure the decay of the relative entropy
∫
q log q

e−x
, we have to

control the term
∫
h log h

e−x
or similarly the term

∫
g log g

e−x−y
(represented in purple). Indeed,

the dissipation term D already provides a control over the ‘triangle’ of relative entropies (dashed

lines)
∫
f log f

g
,
∫
g log g

h̃
and

∫
h̃ log h̃

g
with h̃(x, y) = h(x)h(y).

However, normally it is not possible to switch relative entropy estimates. Indeed,

it is not so hard to find examples of non-negative functions ϕ, φ, ψ with total mass

1 such that ∫
ϕ log

ϕ

ψ
=∞,

while ∫
φ log

φ

ψ
+

∫
φ log

φ

ϕ
+

∫
ϕ log

ϕ

φ
<∞.

Therefore, this strategy is not obvious to implement. It should work nicely if we

had a control like e−x/C ≤ q(x) ≤ Ce−x but the general case is certainly trickier.

What saves us is the key observation that here h and m are actually very nice

functions in all cases. For example, m and h are monotone decreasing so bounded

from above and bounded from below on any finite interval (from the propagation

of moments on q). This gives us some hope when implementing the aforementioned

machinery. We emphasize here that our entropy–entropy dissipation argument

draws inspiration from earlier works on Becker–Döring equations and coagulation

models.13, 28

4.3. Switching relative entropies

We note that the relative entropy behaves in the following manner.
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Lemma 4.3. For any two µ, ν ∈ P(R+) s.t. µ has a density w.r.t. ν, denoted by
µ
ν , and for any C ≥ 2, then

1

2C

∫
ν/C≤µ≤Cν

(µ− ν)2

ν
+

1

8

∫
µ≤ν/C

ν +
1

4

∫
µ≥Cν

µ log
µ

ν

≤
∫
µ log

µ

ν

≤ C

2

∫
ν/C≤µ≤Cν

(µ− ν)2

ν
+

∫
µ≤ν/C

ν +

∫
µ≥Cν

µ log
µ

ν
. (4.11)

Proof. We observe that∫
µ log

µ

ν
=

∫
ν
(µ
ν

log
µ

ν
+ 1− µ

ν

)
.

On the other hand, around 1, the function φ(x) = x log x + 1 − x satisfies that

φ(x) ≤ (x− 1)2/2 for x ≥ 1 and φ(x) ≤ C
2 (x− 1)2 for 1/C ≤ x ≤ 1. On the other

hand φ(x) ≥ (x − 1)2/2C for 1 ≤ x ≤ C and φ(x) ≥ (x − 1)2/2 for 1/C ≤ x ≤ 1.

Furthermore φ lies between 1/8 and 1 when x ≤ 1/2 and larger than x
4 log x for

x ≥ 2.

Remark 4.3. One can also rewrite a little bit the statement of Lemma 4.3 so that

we do not need to impose that µ and ν are probability measures.

This allows us to “switch” relative entropies between two measures that are

comparable.

Corollary 4.2. There exists a constant C > 0 such that if µ1, µ2, ν ∈ P(R+) with

λ−1µ1 ≤ µ2 ≤ λµ1 and λ ≥ e, then∫
µ1 log

µ1

ν
≤ Cλ3

∫
µ2 log

µ2

ν
+ λ3

∫
µ2 log

µ2

µ1
.

Proof. Apply Lemma 4.3 with C = 2λ first on µ1 and ν to find∫
µ1 log

µ1

ν
≤ λ

∫
ν
2λ≤µ1≤2λν

(µ1 − ν)2

ν
+

∫
µ1≤ ν

2λ

ν +

∫
µ1≥2λν

µ1 log
µ1

ν
.

Thanks to Lemma 4.3 again, we have∫
µ1≤ ν

2λ

ν ≤ 8

∫
µ1 log

µ1

ν
.

Now if µ1 ≤ ν
2λ then µ2 ≤ ν

2 . Similarly if µ1 ≥ 2λν then µ2 ≥ 2ν and moreover

µ1 log
µ1

ν
≤ λµ2 log

λµ2

ν
≤ 3λ log λµ2 log

µ2

ν
.
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Conversely if ν
2λ ≤ µ1 ≤ 2λν then ν

2λ2 ≤ µ2 ≤ 2λ2ν and

(µ1 − ν)2

ν
≤ 2

(
(µ2 − ν)2

ν
+

(µ1 − µ2)2

ν

)
≤ 2

(µ2 − ν)2

ν
+ 4λ

(µ1 − µ2)2

µ1
.

Hence, ∫
ν
2λ≤µ1≤2λν

(µ1 − ν)2

ν
≤ 2

∫
ν

2λ2
≤µ2≤2λ2ν

(µ2 − ν)2

ν

+ 4λ

∫
µ1
λ ≤µ2≤λµ1

(µ1 − µ2)2

µ1
.

Note that by Lemma 4.3 applied with C = λ, we have that∫
µ1
λ ≤µ2≤λµ1

(µ1 − µ2)2

µ1
≤ 2λ

∫
µ2 log

µ2

µ1
.

Also, Lemma 4.3 applied with C = 2λ2 gives rise to∫
ν

2λ2
≤µ2≤2λ2ν

(µ2 − ν)2

ν
≤ 4λ2

∫
µ2 log

µ2

ν
.

Assembling these estimates, the proof is completed.

4.4. Additional a priori estimates

This leads us to try to compare q and h. We first observe that we can get easy

upper bounds.

Lemma 4.4. Assume that for some 0 < λ0 < 1,
∫

eλ0xq(t = 0, x)dx < ∞. Then

we have that

sup
t

∫
eλ0xq(t, x)dx <∞.

Proof. We use a Laplace transform by defining

F (t, λ) =

∫
eλxq(t, x)dx

and note that

∂tF =

∫
R2

+

eλ(y+z) − 1

λ(y + z)
q(y)q(z)dy dz − F =

1

λ

∫ λ

0

(F (µ))2dµ− F.

It is useful to remark right away that the stationary solution to this equation

satisfies that F 2 = ∂λ(λF ) which has solutions of the form 1
1−Cλ . Those do blow-up

but only for λ large enough. As a matter of fact since ∂λF |λ=0 = 1, we can see that

we should even have C = 1. For this reason, denote now G = (1−Cλ)F with some
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C < 1
λ such that G(t = 0, λ) ≤ 1 on [0, λ0]. We first show that supλ∈[0,λ0]G(t, λ) ≤ 1

for all t ≥ 0. Indeed, let λ(t) be such that supλ∈[0,λ0]G(t, λ) = G(t, λ(t)), then

∂t sup
λ∈[0,λ0]

G(t, λ) ≤ ∂tG(t, λ(t)),

this is because ∂λG(t, λ(t)) = 0 if λ(t) < λ0, while if λ(t) = λ0 then ∂λG(t, λ(t)) ≤ 0

and λ′(t) ≤ 0, leading to the same inequality. Now since

∂tG = (λ−1 − C)

∫ λ

0

(G(µ))2

(1− Cµ)2
dµ−G, (4.12)

together with
∫ λ
0

dµ
(1−Cµ)2 = λ

1−Cλ , we deduce that

∂t sup
λ∈[0,λ0]

G(t, λ) ≤

(
sup

λ∈[0,λ0]

G(t, λ)

)2

− sup
λ∈[0,λ0]

G(t, λ),

which yields via the maximum principle that supλ∈[0,λ0]G(t, λ) ≤ 1. Now thanks

to (4.12) again and the elementary observation that ∂t supλ∈[0,λ0]G(t, λ) ≤
supλ∈[0,λ0] ∂tG(t, λ), we arrive at

∂t sup
λ∈[0,λ0]

G(λ) ≤ 0,

which immediately proves the desired upper bound.

Remark 4.4. We believe it is possible to prove the exponential convergence of the

Laplace transform F (t, λ) to 1/(1−λ) over λ ∈ [0, λ0). However, this is not strictly

better than having the exponential convergence in some weak Wasserstein norm

plus the control of the exponential moments that is given above, so we did not try

too much in this direction.

Out of Lemma 4.4, we may deduce pointwise bounds on q and h, for this purpose,

we need the following preparatory result.

Lemma 4.5. We have that

sup
t≥0

h(t, 0) <∞,

i.e. h(t, 0) is uniformly bounded in time.

Proof. To show h(t, 0) is uniformly bounded in time, we write

h(t, 0) =

∫
R2

+

q(y)q(z)

y + z
dy dz = 2

∫∫
y≤z

q(y)q(z)

y + z
dy dz

≤ 2

∫∫
y≤z

q(y)q(z)

z
dy dz

≤ 2 sup
y≤r

q(y)

∫
z≥r

rq(z)

z
dz + 2

∫∫
y≤z,z≤r

q(z)

z
dy dz +

2

r
.
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We know that there exists some r uniformly in time such that∫∫
y≤z,z≤r

q(z)

z
dy dz =

∫
z≤r

q(z)dz ≤ 1

8
.

Moreover, for this r we also have
∫
z≥r

rq(z)
z dz ≤ 1

8 . Thus,

h(t, 0) ≤ 1

2
sup
x≤r

q(x) +
2

r
.

Now we recall the equation for q to find that for any x ≤ r,

∂tq(t, x) ≤ h(t, 0)− q(t, x) ≤ 1

2
sup
x≤r

q(t, x) +
2

r
− q(t, x),

so if x∗ is such that q(t, x∗) = supx≤r q(t, x), then

∂tq(t, x∗) ≤
2

r
− 1

2
q(t, x∗).

By Grownwall’s inequality, we deduce that supx≤r q(t, x) ≤ 4
r , which allows us to

finish the proof.

Corollary 4.3. Assume that for some 0 < λ0 < 1,
∫

eλ0xq(0, x)dx < ∞, then we

have that

sup
t

∫
eλ0xh(t, x)dx <∞, sup

t,x
eλ0xh(t, x) <∞,

q(t, x) ≤ C e−λ0x + q(0, x)e−t for some C > 0.

Proof. The first bound follows from the definition of h. Indeed, as h = Q+[q], we

have ∫
eλ0xh(t, x)dx =

∫
eλ0(y+z) − 1

λ0(y + z)
q(y)q(z)dy dz

≤
∫

eλ0(y+z)q(y)q(z)dy dz <∞.

Next, we observe that h is decreasing in x, so for any x ≥ 0,∫ ∞
0

eλ0yh(t, y)dy ≥
∫ x

0

eλ0yh(t, y)dy

≥ h(t, x)

∫ x

0

eλ0ydy

= h(t, x)
eλ0x − 1

λ0
.

Since h(t, x) ≤ h(t, 0) is uniformly bounded in time, this shows the second point.
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Finally, we recall the equation for q, which reads ∂tq = h − q, so we may

rewrite (2.8) as

q(t, x) = q(0, x)e−t +

∫ t

0

h(s, x)e−(t−s)ds. (4.13)

Moreover, notice that

eλ0x

∫ t

0

h(s, x)e−(t−s)ds ≤ sup
s

(eλ0xh(s, x))

∫ t

0

e−(t−s)ds ≤ sup
s

(eλ0xh(s, x)).

Combining these estimates with (4.13) ends the proof.

We now turn to lower bounds on q and hence h. We start with a lower bound

on q in terms of h.

Lemma 4.6. There exists C such that for any t ≥ 1,

q(t, x) ≥ 1

C
h(t− 1, x). (4.14)

Proof. We note from Eq. (2.8) that

∂th(t, x) = 2

∫ ∞
x

1

λ

∫ λ

0

h(t, z)q(t, λ− z)dz dλ− 2h(t, x).

Therefore,

∂th(t, x) ≥ −2h(t, x)

and we have that for any s ≤ t that

∂tq(t, x) ≥ e−(t−s)h(s, x)− q(t, x),

leading for example to the claimed result

q(t, x) ≥ h(t− 1, x)

C

with C = e2

e−1 , thereby completing the proof.

Unfortunately, this is not enough to give us a bound between q and h which

would solve everything. Instead, we can first deduce a bound near the origin.

Lemma 4.7. There exists a constant C such that

inf
t≥1

inf
x∈[0,2]

h(t, x) ≥ 1

C
, inf

t≥2
inf

x∈[0,2]
q(t, x) ≥ 1

C
. (4.15)

Proof. For any x ≤ 2, we have that

h(t, x) =

∫
1x≤y+z

y + z
q(t, y)q(t, z)dy dz

≥
∫
y,z≥1

1

(y + 1)(z + 1)
q(y)q(z)dy dz =

(∫ ∞
1

q(y)

1 + y
dy

)2

.
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By Cauchy–Schwartz, we have that∫ ∞
1

q(y)dy ≤
(∫ ∞

1

q(y)

1 + y
dy

)1/2(∫ ∞
1

(1 + y)q(y)dy

)1/2

≤
(∫ ∞

1

q(y)

1 + y
dy

)1/2(∫ ∞
0

(1 + y)q(y)dy

)1/2

=
√

2

(∫ ∞
1

q(y)

1 + y
dy

)1/2

.

On the other hand the convergence of all moments of q shows that there exists C

such that for all t ≥ 1, ∫ ∞
1

q(y)dy ≥ 1

C
.

Therefore, there exists C such that h(t, x) ≥ 1
C whenever x ≤ 2 and t ≥ 1. Finally,

we deduce the second result from Lemma 4.6.

We combine the previous result with the following doubling type of argument.

Lemma 4.8. There exists a constant C such that for any x and t ≥ 1, there

holds

q(t, x) ≥ x

C

(
inf

s∈[t−1,t]
inf

y∈[x/2,3x/4]
q(s, y)

)2

.

Proof. This is a simple consequence of a lower bound on h. Indeed, we have

h(t, x) =

∫
1x≤y+z

y + z
q(t, y)q(t, z)dy dz ≥ 2

3x

∫
y,z∈[x/2,3x/4]

q(y)q(z)dy dz.

Therefore,

h(t, x) ≥ x

24

(
inf

y∈[x/2,3x/4]
q(t, y)

)2

.

We can again conclude by virtue of Lemma 4.6.

Lemma 4.9. There exists a constant C such that for any t ≥ 2 and x ≥ 2, we

have

q(t, x) ≥
∫
y≥x

q(t− 1, y)

Cy
dy.

Proof. This is again a consequence of a lower bound on h. Indeed,

h(t, x) =

∫
R2

+

1x≤y+z

y + z
q(t, y)q(t, z)dy dz ≥

∫
y≤x

∫
z≥x

q(y)
q(z)

2z
dy dz.
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Fig. 7. The function φ used in the proof of Corollary 4.4. Notice that φ(y) ≤ 1
y

for all y > 0.

Thus, by the lower bound on q on [0, 2] (thanks to Lemma 4.7), we arrive at

h(t, x) ≥
∫
y≥x

q(t, y)

Cy
dy.

Using Lemma 4.6, we can again conclude.

Owing to Lemma 4.9, we immediately deduce that

Corollary 4.4. There exists some C > 0 such that for any x ≥ 2 and any t ≥
max(Cx, 1)

h(t, x) ≥ e−Cx

C
, q(t, x) ≥ e−Cx

C
.

Proof. Define φ(y) = (y/x−1)+
y for y ≤ 2x and φ = 1/y if y ≥ 2x (see Fig. 7).

Note that φ is Lipschitz with

‖∇φ‖L∞ ≤
1

x2
.

Hence,

x2
∫
φ(y)q(y)dy ≥ x2

∫
φ(y)e−ydy −W1(q, e−x),

in which W1(q, e−x) represents the Wasserstein distance (with exponent 1) between

q and e−x. Thanks to the exponentially fast in time of the convergenceW1(q, e−x)→
0, which is a simple consequence of Theorem 3.2, we deduce that∫

y≥x

q(y)

y
dy ≥

∫
φ(y)e−ydy − C

x2
e−t/6.

Note that ∫
φ(y)e−ydy ≥

∫
y≥2x

e−y

y
dy ≥ e−3x

3x

∫
2x≤y≤3x

dy =
e−3x

3
.

Therefore, from Lemma 4.9, we can conclude provided that C
x2 e−t/6 ≤ e−3x

6 .

4.5. Proof of the main technical result

Armed with all the previous estimates, we can finally present the proof of Theo-

rem 4.2.
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Proof. (Theorem 4.2) We start from the estimates derived in Sec. 4.2 and in par-

ticular from Lemma 4.2 for φ(x) = x, yielding∫
q log

q

m
dx ≤

∫
xq(x)q(y) log

q(x)q(y)

g(x+ y)
dx dy,

where we recall that

g(x) =
1

x

∫ x

0

q(z)q(x− z)dz, m(x) =

∫ ∞
y=0

g(x+ y)ydy =

∫ ∞
y=x

h(y)dy.

In particular ∫
xg(x+ y)dxdy =

∫
xq(x)q(y)dx dy,

so that∫
q log

q

m
dx ≤

∫ (
xq(x)q(y) log

q(x)q(y)

g(x+ y)
+ xg(x+ y)− xq(x)q(y)

)
dx dy.

For some K > 0 to be chosen later, we can decompose the integral into the

domain x ∈ [0,K] and x ∈ [K,+∞). For the first part, we can simply bound∫
x≤K

(
xq(x)q(y) log

q(x)q(y)

g(x+ y)
+ xg(x+ y)− xq(x)q(y)

)
dx dy

≤ K
∫
x≤K

(
q(x)q(y) log

q(x)q(y)

g(x+ y)
+ g(x+ y)− q(x)q(y)

)
dx dy,

since a log a
b + b− a ≥ 0 for any a, b ≥ 0.

By Lemma 4.1, this immediately implies that∫
x≤K

(
xq(x)q(y) log

q(x)q(y)

g(x+ y)
+ xg(x+ y)− xq(x)q(y)

)
dx dy ≤ KD .

On the other hand, denoting φ(x) = x log x + 1 − x, which is a non-negative

convex function on R+ and satisfies φ(x) ≤ Cx for some constant C if x is bounded,

we can first write that for any λ > 0,∫
x≥K

(
xq(x)q(y) log

q(x)q(y)

g(x+ y)
+ xg(x+ y)− xq(x)q(y)

)
dx dy

=

∫
x≥K

g(x+ y)xφ

(
q(x)q(y)

g(x+ y)

)
dx dy

=
1

λ

∫
x≥K

g(x+ y)λxφ

(
q(x)q(y)

g(x+ y)

)
dx dy.

We now perform a classical Fenchel duality estimate on φ, namely xy ≤ φ(x) +

φ∗(y), in which φ∗ denotes the Legendre convex conjugate of φ. One may readily
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check that φ∗(y) = ey − 1 ≤ ey. This lets us deduce for any λ ∈ (0, λ0) that∫
x≥K

(
xq(x)q(y) log

q(x)q(y)

g(x+ y)
+ xg(x+ y)− xq(x)q(y)

)
dx dy

≤ 1

λ

∫
x≥K

g(x+ y)φ ◦ φ
(
q(x)q(y)

g(x+ y)

)
dx dy +

1

λ

∫
x≥K

eλxg(x+ y)dx dy.

We can immediately note that φ ◦ φ ≤ x log x for large x. Thus from Corollary 4.3,

we have that∫
x≥K

(
xq(x)q(y) log

q(x)q(y)

g(x+ y)
+ xg(x+ y)− xq(x)q(y)

)
dx dy

≤ D

λ
+
C

λ
e−(λ0−λ)K .

Combining both estimates gives rise to∫
q log

q

m
≤ (K + 1)

D

λ
+
C

λ
e−(λ0−λ)K

and optimizing in K leads to∫
q log

q

m
≤ CD log

1

D
. (4.16)

The next step is to change this to
∫
h log h

m . We decompose again∫
h log

h

m
=

∫
x≤K

(
h log

h

m
+m− h

)
+

∫
x≥K

(
h log

h

m
+m− h

)
.

We note that since h = −∂xm,∫
x≥K

h logm = −
∫
x≥K

∂xm logm = m(K) logm(K)−m(K).

Applying Corollary 4.3 again, this shows that for some constant C, we have that∫
x≥K

(
h log

h

m
+m− h

)
≤ Ce−K/C . (4.17)

From Corollaries 4.3 and 4.4, we note that on x ≤ K there holds e−CK ≤ q
h ≤ eCK ,

at least provided that t ≥ Cx.

Now in the region x ≤ K, we can use Lemma 4.3 in exactly the same manner

as what we did in Corollary 4.2, which yields that∫
h log

h

m
=

∫ (
h log

h

m
+m− h

)
≤ CeCK

∫
q log

q

m
+ Ce−K/C

≤ CeCKD log
1

D
+ Ce−K/C . (4.18)
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Now we recall that, as a simple consequence of Lemma 4.2, we have∫
h log

h

m
=

∫
h log

h

e−x
. (4.19)

Therefore, we now want to change back from h to q. This is the same process and

taking a second different K̃ and inserting (4.18), it leads to∫
q log

q

e−x
≤ CeCK̃

∫
h log

h

e−x
+ Ce−K̃/C

≤ C2eC(K+K̃)D log
1

D
+ Ce−K/C+CK̃ + Ce−K̃/C ,

provided that t ≥ CK and t ≥ CK̃. Just take now K̃ = K/2C2 so that we have

automatically that t ≥ CK̃ if t ≥ CK and∫
q log

q

e−x
≤ C2e2CKD log

1

D
+ Ce−K/2C

2

. (4.20)

We now have two distinct situation: First of all, consider the case where t ≥
C log 1

D(t) . In that situation, we can take

K = s log
1

D

for any exponent s ≤ 1 as this ensures t ≥ CK. By optimizing the choice of s

in (4.20), we find some exponent θ > 0 (which depends only on C) such that, as

Fig. 8. Simulation of the relative entropy from q to q∞ after t = 10 in the semilogy scale. We
employed forward Euler method with time step-size ∆t = 0.05, space step-size ∆x = 0.01, and

a “random” initial condition q(t = 0, x) having mean value m1 = 5 for the numerical simulation
of (2.8). This experiment suggests that the relaxation of

∫
q log(q/q∞)dx might be exponentially

fast in time, instead of polynomial convergence in time as guaranteed by Theorem 4.1.
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claimed, ∫
q log

q

e−x
≤ CDθ. (4.21)

In the alternative, we have that t ≤ C log 1
D(t) or D(t) ≤ e−t/C . Inserting this

into (4.20) yields that∫
q log

q

e−x
≤ C2e2CKe−t/C + Ce−K/2C

2

.

We now choose K = t/4C2, again ensuring t ≥ CK and giving∫
q log

q

e−x
≤ C̃e−t/C̃ (4.22)

for some different constant C̃.

We end this section with a numerical experiment demonstrating the entropic

convergence of q to q∞, see Fig. 8.

5. Propagation of Chaos

We give the statement of the propagation of chaos, Theorem 5.1 in Sec. 5.1. A

technical lemma that will be employed in the proof of Theorem 5.1 is displayed in

Sec. 5.2. We reveal the full proof of Theorem 5.1 in Sec. 5.3.

5.1. Statement of propagation of chaos

In this section, we try to adapt the martingale-based techniques developed in

Refs. 27 and 34 to justify the propagation of chaos.39 For this purpose, we equip

the space P(R+) with the Wasserstein distance with exponent 1, which is defined

via

W1(µ, ν) = sup
‖∇ϕ‖∞≤1

〈µ− ν, ϕ〉

for µ, ν ∈ P(R+) having finite first moment. We will also need the following version

of Itô’s formula.

Lemma 5.1. Consider an inhomogeneous Poisson process Nt with intensity λ(t),

and a random variable Y (t) left-continuous and adapted to the filtration Ft gen-

erated by Nt. We define the compound jump process Z(t) and M(t) its associated

compensated martingale by

dZ(t) = Y (t)dNt, M(t) = Z(t)− Z(0)−
∫ t

0

Ỹ (s)λ(s)ds, (5.1)

where Ỹ is any other left-continuous and adapted process. Itô’s lemma then implies

that for any C1 function Φ,

dE[Φ(M(t))] = E[Φ(M(t−) + Y (t))− Φ(M(t−))]λ(t)dt

−E[∇Φ(M(t)) · Ỹ (t)λ(t)]dt. (5.2)
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Our main result in this section is stated as follows.

Theorem 5.1. Denote the empirical distribution of the uniform reshuffling

stochastic system (1.1) at time t as

ρemp(t) :=
1

N

N∑
i=1

δXi(t),

and let q(t) be the solution of (2.8) with initial condition q(0). If

E[W1(ρemp(0), q(0))] −→ 0 as N →∞, (5.3)

then we have that

E[W1(ρemp(t), q(t))] −→ 0 as N →∞,

holding for all 0 ≤ t ≤ T with any prefixed T > 0.

5.2. Switching supremum and expectation

We will also make use of the following result, which allows us to interchange the

operation of supremum and of expectation.

Lemma 5.2. Consider a random Radon measure Z on R with
∫
Z(dx) = 0 and

with uniformly bounded second moment
∫

(1 + |x|2)|Z|(dx) ≤ m2 almost surely for

some constant m2. Then there exists a fixed constant C > 0 such that

E

[
sup

‖∇ϕ‖∞≤1

∫
ϕdZ

]
≤ Cm2

(
sup

‖∇ϕ‖∞≤1
E
[∫

ϕdZ

]2) 1
8

.

Proof. This is essentially an interpolation argument. First of all, we can always

assume that ϕ(0) = 0 by subtracting a constant. Introduce a classical convolution

kernel Kε. We have that ‖Kε ? ϕ− ϕ‖L∞ ≤ Cε which implies that∫
ϕZ(dx) ≤

∫
Kε ? ϕZ(dx) + Cε.

Then we reduce ourselves to a compact support: since ‖∇ϕ‖∞ ≤ 1 then |ϕ(x)| ≤ |x|
and ∫

Kε ? ϕZ(dx) ≤
∫
|x|≤R

Kε ? ϕZ(dx) + 2

∫
|x|≥R

|x||Z|(dx)

≤
∫
|x|≤R

Kε ? ϕZ(dx) + 2
m2

R
.

On [−R,R], we have on the other hand that ‖Kε ? ϕ‖H2 ≤ C
ε ‖ϕ‖W 1,∞ ≤ C R

ε .

Hence,

sup
‖∇ϕ‖∞≤1

∫
ϕZ(dx) ≤ CR

ε
sup

‖ϕ‖H2≤1

∫
|x|≤R

ϕZ(dx) + Cm2

(
ε+

1

R

)
.
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Of course

sup
‖ϕ‖H2≤1

∫
|x|≤R

ϕZ(dx) = ‖Z‖H−2([−R,R])

and by using Fourier series

‖Z‖2H−2([−R,R]) =
∑
k

R2

1 + k4

(∫ R

−R
e−ikπx/RdZ

)2

.

Hence by Cauchy–Schwartz,

E

[
sup

‖∇ϕ‖∞≤1

∫
ϕZ(dx)

]
≤ Cm2

(
ε+

1

R

)

+C
R2

ε

∑
k

1

1 + k4
E

(∫ R

−R
e−ikπx/RdZ

)2
1/2

.

Finally, we have that

‖∇e−ikπx/R‖∞ ≤ Ck,

so that

E

(∫ R

−R
e−ikπx/RdZ

)2
 ≤ Ck2 sup

‖∇ϕ‖∞≤1
E

[(∫
ϕdZ

)2
]
.

This allows us to conclude that

E

[
sup

‖∇ϕ‖∞≤1

∫
ϕZ(dx)

]
≤ Cm2

(
ε+

1

R

)

+C
R2

ε

(∑
k

k2

1 + k4
sup

‖∇ϕ‖∞≤1
E

[(∫
ϕdZ

)2
])1/2

or

E

[
sup

‖∇ϕ‖∞≤1

∫
ϕZ(dx)

]
≤ Cm2

(
ε+

1

R

)
+ C

R2

ε

(
sup

‖∇ϕ‖∞≤1
E

[(∫
ϕdZ

)2
])1/2

,

which finishes the proof by setting R = E[(
∫
ϕdZ)2]−1/8 and ε = 1

R .

5.3. Proof of propagation of chaos

The proof of Theorem 5.1 occupies the rest of the section.

Proof. We recall that the map Q+[·] : P(R+)→ P(R+) is defined via

Q+[q](x) =

∫ ∞
0

∫ ∞
0

1[0,k+`](x)

k + `
q(k)q(`)dk d`
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and that a classical solution q(t, x) of

q(t, x) = q(0, x) +

∫ t

0

G[q](s, x)ds (5.4)

exists for 0 ≤ t < ∞, where G = Q+ − Id and q(0, x) is an continuous probability

density function with mean m1 whose support is contained in R+. The map Q+ is

Lipschitz continuous in the sense that

W1(Q+[f ], Q+[g]) ≤W1(f, g) (5.5)

for any f, g ∈ P(R+). Indeed, we have

W1(Q+[f ], Q+[g]) = sup
‖∇ϕ‖∞≤1

E[ϕ(U(X1 + Y1))− ϕ(U(X2 + Y2)],

where X1, Y1 are i.i.d. with law f , X2, Y2 are i.i.d. with law g and U ∼ Uniform[0, 1]

is independent of Xi and Yi for i = 1, 2. By Lipschitz continuity of the test function

ϕ, we obtain

W1(Q+[f ], Q+[g]) ≤ E[2U |X1 −X2|] = E[|X1 −X2|].

We now recall an alternative formulation of W1(f, g), given by

W1(f, g) = inf{E[|X − Y |]; Law(X) = f, Law(Y ) = g},

so in particular, we may take a coupling of X1 and X2 so that W1(f, g) = E[|X1 −
X2|]. Assembling these pieces together, we arrive at (5.5).

We are going to prove a more precise control than (5.5), by working directly

on Q+[f ]. Consider now two random probability measures f and g with bounded

second moment and a deterministic test function ϕ. We have that∫
ϕ(x)(Q+[f ]−Q+[g])dx

=

∫
1x≤k+`

k + `
ϕ(x)(f(dk)− g(dk))(f(d`) + g(d`))dx

=

∫
(f(d`) + g(d`))

∫
Φ`(k)(f(dk)− g(dk)),

where we denote

Φ`(k) =
1

k + `

∫ k+`

0

ϕ(x)dx.

Since
∫
Q+[f ] =

∫
Q+[g], we can always assume without loss of generality that

ϕ(0) = 0, whence |ϕ(x)| ≤ ‖∇ϕ‖∞|x| ≤ |x|. Now we observe that Φ` is deterministic

with

|∂kΦ`(k)| ≤ |ϕ(k + `)|
k + `

+
1

(k + `)2

∫ k+`

0

|ϕ(x)|dx

≤ 1 +
1

(k + `)2

∫ k+`

0

xdx ≤ 3

2
. (5.6)
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By (5.6) and recalling that again Φ` is deterministically obtained from ϕ,

E
[∫

Φ`(k)(f(dk)− g(dk))

]
≤ 3

2
E

[
sup

‖∇ϕ‖∞≤1

∫
ϕ(x)(f(dx)− g(dx))

]
.

Therefore, we conclude that

E

[
sup

‖∇ϕ‖∞≤1

∫
ϕ(x)(Q+[f ]−Q+[g])

]
≤ 3E

[
sup

‖∇ϕ‖∞≤1

∫
ϕ(x)(f(dx)− g(dx))

]
.

(5.7)

We now observe that the empirical measure is a compound jump process: Define

Nt a homogeneous Poisson process with constant intensity λ = (N − 1)/2. Given

τ1, . . . , τk the times when Nt jumps, we take the Yτk independent: At each τk, with

uniform probability 2
N (N−1) we choose a pair i < j and take

Yτk =
1

N

(
δ(x− Uk(Xi(τk−) +Xj(τk−)) + δ(x− (1− Uk)(Xi(τk−) +Xj(τk−))

− δ(x−Xi(τk−))− δ(x−Xj(τk−))
)
,

where the Uk are i.i.d. in [0, 1].

We immediately note that

λE[Yt] =
1

N2

∑
i<j

E
[
δ(x− U (Xi(t−) +Xj(t−)) + δ(x− (1− U)

× (Xi(t−) +Xj(t−))− δ(x−Xi(t−))− δ(x−Xj(t−))
]
, (5.8)

where U is uniformly distributed in [0, 1] and independent of all Xi(t−).

We also remark that we can easily mimic the propagation of moments shown in

Sec. 2 with in particular Proposition 2.1 to prove that

E
[∫

x2ρemp(t, dx)

]
≤ m2 = 2 + E

[∫
x2ρemp(0, dx)

]
. (5.9)

We now show that the empirical measure of the stochastic system satisfies an

approximate version of (5.4). Fix a deterministic test function ϕ with ‖∇ϕ‖∞ ≤ 1,

and consider the time evolution of 〈ρemp, ϕ〉, where for some probability measure

ν, we denote by the duality bracket 〈ν, ϕ〉 =
∫
ϕ dν. We emphasize here that ϕ can

also be random and will indeed be chosen according to ρemp to estimate Wasserstein

distances involving ρemp. Then

dE[〈ρemp, ϕ〉] = dE[〈YtdNt, ϕ〉] = λ〈E[Yt], ϕ〉dt.

Hence by (5.8),

dE[〈ρemp, ϕ〉] =
1

N2

∑
i<j

E
[
ϕ
(
U(Xi +Xj)

)
+ ϕ

(
(1− U)(Xi +Xj)

)
−ϕ(Xi)− ϕ(Xj)

]
dt



May 12, 2023 10:55 WSPC/103-M3AS 2350018

Entropy dissipation and propagation of chaos for the uniform reshuffling model 869

=
1

N2

∑
i,j=1...N,i6=j

E
[
ϕ
(
U(Xi +Xj)

)
− ϕ(Xi)

]
dt

=
1

N2

N∑
i,j=1

E
[
ϕ
(
U(Xi +Xj)

)
− ϕ(Xi)

]
dt+R dt,

where all Xi, Xj are taken at time t− and where

R = − 1

N2

∑
i

E
[
ϕ
(
2UXi

)
− ϕ(Xi)

]
.

Hence, |R| ≤ O( 1
N ) uniformly over ϕ and t ≥ 0. On the other hand, we may

calculate

〈Q+[ρemp], ϕ〉 =
1

N2

∑
i,j

∫
ϕ(x)

1x≤Xi+Xj
Xi +Xj

dx =
1

N2

∑
i,j

∫ 1

0

ϕ(u(Xi +Xj))du,

by the change of variables x = u (Xi +Xj). Therefore,

dE[〈ρemp, ϕ〉] = E[〈G[ρemp], ϕ〉]dt+R dt. (5.10)

By Dynkin’s formula, the compensated process

Mϕ(t) := 〈ρemp(t), ϕ〉 − 〈ρemp(0), ϕ〉 −
∫ t

0

(E[〈G[ρemp(s)], ϕ〉] +R(s))ds

(5.11)

is a martingale. Furthermore, comparing with (5.4), we easily obtain that

〈ρemp(t)− q(t), ϕ〉 = Mϕ(t) + 〈ρemp(0)− q(0), ϕ〉

+E
∫ t

0

〈G[ρemp(s)]−G[q(s)], ϕ〉ds+O
(
t

N

)
.

Taking the supremum over ϕ, we therefore have that

E sup
‖∇ϕ‖∞≤1

〈ρemp(t)− q(t), ϕ〉

≤ E sup
‖∇ϕ‖∞≤1

(|Mϕ(t)|+ 〈ρemp(0)− q(0), ϕ〉)

+

∫ t

0

E sup
‖∇ϕ‖∞≤1

〈G[ρemp(s)]−G[q(s)], ϕ〉ds+O
(
t

N

)
.

By the definition of the W1 distance, we deduce from (5.7) that

EW1(ρemp(t), q(t)) ≤ η(t) + C

∫ t

0

EW1(ρemp(t), q(t))ds+
Ct

N
,

in which we have set

η(t) := E sup
‖∇ϕ‖∞≤1

|Mϕ(t)|+ EW1(ρemp(0), q(0)). (5.12)
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Thus, Gronwall’s inequality gives rise to

EW1(ρemp(t), q(t)) ≤

(
sup
t∈[0,T ]

η(t) +
CT

N

)
eCT . (5.13)

In order to establish propagation of chaos for t ≤ T , it therefore suffices to show

that

sup
t∈[0,T ]

η(t)
N→∞−−−−→ 0. (5.14)

To prove (5.14), we treat each term appearing in the definition of η(t) separately.

The second term in (5.12) approaches to 0 as N →∞ by our assumption.

To handle the first term, let us write Z(t) = 〈ρemp(t), ϕ〉 and M(t) = Mϕ(t) to

simplify the notations. Of course Z(t) is a compound jump process itself and by

combining (5.10) and (5.11)

Mϕ(t) = Z(t)− Z(0)−
∫ t

0

Ỹ (s)ds, Ỹ (t) = 〈G[ρemp(t)], ϕ〉+R.

We may hence use Itô’s lemma as stated in Lemma 5.1, which yields

dE[M2(t)] =
∑
i<j

E
[
M2
ij(t)−M2(t)

]dt

N
− E

[
2M(t)〈G[ρemp(t)], ϕ〉

]
dt

+O
(

1

N

)
dt,

where Mij = M + Yij and we define

Yij :=

〈
1

N
(δUk(Xi+Xj) + δ(1−Uk)(Xi+Xj) − δXi − δXj ), ϕ

〉
.

Therefore, we have

dE[M2(t)] =
∑
i<j

E
[
2M(t)Yij + Y 2

ij

]dt

N
− E

[
2M(t)〈G[ρemp(t)], ϕ〉

]
dt+O

(
1

N

)
dt.

By our previous calculations

1

N

∑
i<j

E[M(t)Yij ]

=
1

N2

∑
i<j

E[M(t)(ϕ(U(Xi +Xj) + ϕ((1− U)(Xi +Xj)− ϕ(Xi)− ϕ(Xj))]

=
1

N2

∑
i 6=j

E[M(t)(ϕ(U(Xi +Xj))− ϕ(Xi))]

=
1

N2

∑
i,j

E[M(t)(ϕ(U(Xi +Xj))− ϕ(Xi))] +O

(
1

N

)
,

as U is random variable independent of M(t) and ρemp(t).
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Therefore,

1

N

∑
i<j

E[M(t)Yij ] = E[M(t)〈G[ρemp(t)], ϕ〉] +O

(
1

N

)
and consequently

dE[M2(t)] =
∑
i<j

E
[
Y 2
ij

]dt

N
+O

(
1

N

)
dt ≤ C

N
dt,

for a constant C that depends only on ‖∇ϕ‖∞. This lets us deduce that

sup
‖∇ϕ‖∞≤1

E
[
M2
ϕ(t)

]
≤ Ct

N
.

Recalling the definition of Mϕ(t), we have that

Mϕ(t) =

∫
ϕ(x)µ(t, dx)

for some random Radon measure µ with uniformly bounded second moment.

Furthermore
∫
µ(t, dx) = 0 since

∫
ρemp(t, dx) = 1 =

∫
ρemp(0, dx) and∫

G[ρemp(t)]dx = 0.

We may hence apply Lemma 5.2 to obtain that

E

[
sup

‖∇ϕ‖∞≤1
Mϕ(t)

]
≤ C t1/8

N1/8
,

which allows to conclude that supt∈[0,T ] η(t)
N→∞−−−−→ 0.

Remark 5.1. One can readily check that

‖Q+[f ]−Q+[g]‖L1(R+) ≤ 2‖f − g‖L1(R+)

for all probability densities f, g whose support are contained in R+, but as we are

working on P(R+), we cannot use any strong distances. Hence, equipping P(R+)

with an appropriate distance so that the operator Q+ has enjoys a Lipschitz con-

tinuity with respect to the chosen distance is an indispensable step to make the

argument above work.

Appendix A. Proof of Corollary 3.2

Proof. The whole strategy is of course to find some δ such that if∫
q(t, x) log

q(t, x)

q∞(x)
dx ≤ δ, (A.1)

then we have for the ε of Corollary 3.1∫
|q(t, x)− q∞(x)|2

q∞(x)
dx ≤ ε. (A.2)
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We start with using Lemma 4.3 for C = 2 and note that

1

4

∫
q∞/2≤q≤2q∞

|q(t, x)− q∞(x)|2

q∞(x)
dx+

1

8

∫
q≤q∞/2

q∞(x)dx

+
log 2

4

∫
q≥2q∞

q(t, x)dx

≤
∫
q(t, x) log

q(t, x)

q∞(x)
dx. (A.3)

Observe that if q ≤ q∞/2 then

|q(t, x)− q∞(x)|2

q∞(x)
≤ q∞(x),

so the first two terms already provides the straightforward bound∫
q≤2q∞

|q(t, x)− q∞(x)|2

q∞(x)
dx ≤ 8

∫
q(t, x) log

q(t, x)

q∞(x)
dx. (A.4)

Now if q ≥ q∞ then

|q(t, x)− q∞(x)|2

q∞(x)
≤ (q(t, x))2

q∞(x)
.

Therefore, for any p > 1,∫
q≥2q∞

|q(t, x)− q∞(x)|2

q∞(x)
dx

≤
∫
q≥2q∞

|q(t, x)|2

q∞(x)
dx

≤
(∫

q≥2q∞
q(t, x)dx

)1−1/p(∫
q≥2q∞

|q(t, x)|p+1

(q∞(x))p
dx

)1/p

.

We now use Corollary 4.3 to find that∫
q≥2q∞

|q(t, x)|p+1

(q∞(x))p
dx ≤ Cp

∫ (
e(−(p+1)λ0+p)x + epx(q(0, x))p+1

)
dx

≤ C ′p

∫
e(−(p+1)λ+p)xdx,

in which λ ∈ ( 1
2 , λ0). Now we take p close enough to 1 such that p − (p + 1)λ < 0

which is always possible if λ0 > 1
2 . For this choice of p, we hence obtain

that ∫
q≥2q∞

|q(t, x)− q∞(x)|2

q∞(x)
dx ≤ Cp

(∫
q≥2q∞

q(x)dx

)1−1/p

.
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Going back to (A.3), we can conclude that∫
q≥2q∞

|q(t, x)− q∞(x)|2

q∞(x)
dx ≤ Cp

(∫
q(t, x) log

q(t, x)

q∞(x)
dx

)1−1/p

and combining this with (A.4), we deduce that for some C and θ ∈ (0, 1),∫
|q(t, x)− q∞(x)|2

q∞(x)
dx ≤ C

(∫
q(t, x) log

q(t, x)

q∞(x)
dx

)θ
≤ Cδθ.

It is enough to choose δ being small enough to conclude the proof.
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Saint-Flour XIX-1989 (Springer, 1991), pp. 165–251.

40. C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook
of Mathematical Fluid Dynamics, Vol. 1 (North-Holland, 2002), pp. 71–305.


