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Abstract

Spiral waves are striking self-organized coherent structures that organize spatio-
temporal dynamics in dissipative, spatially extended systems. In this paper, we
provide a conceptual approach to various properties of spiral waves. Rather than
studying existence in a specific equation, we study properties of spiral waves in
general reaction-diffusion systems. We show that many features of spiral waves
are robust and to some extent independent of the specific model analyzed. To ac-
complish this, we present a suitable analytic framework, spatial radial dynamics,
that allows us to rigorously characterize features such as the shape of spiral waves
and their eigenfunctions, properties of the linearization, and finite-size effects. We
believe that our framework can also be used to study spiral waves further and
help analyze bifurcations, as well as provide guidance and predictions for exper-
iments and numerical simulations. From a technical point of view, we introduce
non-standard function spaces for the well-posedness of the existence problem which
allow us to understand properties of spiral waves using dynamical systems tech-
niques, in particular exponential dichotomies. Using these pointwise methods, we
are able to bring tools from the analysis of one-dimensional coherent structures
such as fronts and pulses to bear on these inherently two-dimensional defects.
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CHAPTER 1

Introduction

Spiral waves have been observed in numerous experiments, for instance in the
Belousov—Zhabotinsky reaction, during the oxidation of carbon-monoxide on plat-
inum surfaces, during arrhythmias in cardiac tissue, and as transient states during
the aggregation of the slime mold Dictyostelium discoideum. Archimedean spiral
waves, which are illustrated in Figure 1.1, have also been found in numerical sim-
ulations of many different reaction-diffusion systems. Their importance is owed
to their prominent role in organizing the collective spatio-temporal dynamics, but
possibly also to their aesthetic appeal. Observing spiral wave dynamics, one imme-
diately notices both the topological nature of these defects, where a constant phase
line terminates at the center, as well as the active nature of the center which emits
waves that propagate away from the spiral center.

Excitable media. Excitable media are characterized by the presence of a
stable homogeneous rest state so that small perturbations return to this rest state,
while large perturbations above a certain threshold lead to excitation waves. Early
interest in spiral waves was motivated by self-organized excitation waves in muscle
tissue; see [108] for an early reference and [109] for a comprehensive exposition
and review of this earlier literature. Early works focused on the organization of
excitation waves into spiral structures, ignoring or postulating dynamics in the
center of the spiral. However, in the context of excitable media, the core of the
spiral is thought of as the key organizing element, creating sequences of excitation

FicUrRE 1.1. Shown is a contour plot of an Archimedean planar
spiral wave for a fixed value of time. The spiral wave rotates rigidly
with temporal frequency w, around its center or core, and consec-
utive spiral arms are approximately equidistant in the radial direc-
tion with period 27 /k., where k, is the spatial wavenumber. Each
spiral arm moves with speed approximately equal to w,/ks in the
radial direction.
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waves that emanate from the center in a medium that might otherwise simply return
to a uniform rest state. More mathematical approaches, many in the context of the
FitzHugh—Nagumo equation and mean-curvature description of excitation waves,
resolved the core structure in spiral waves to a much more refined degree; see, for
instance, [17, 58, 106] and [16, 32, 48, 69] for more recent perspectives. Among the
outcomes are accurate predictions of the frequencies of spiral waves in the singular
fast-reaction limit.

Oscillatory media. Spiral waves were studied also in oscillatory media, which
are characterized by the presence of stable time-periodic oscillations. In this sce-
nario, one would try to describe a spatially extended system that exhibits temporal
oscillations at every point in physical space through a scalar variable that monitors
the phase of the oscillation. One thereby obtains a map from the two-dimensional
spatial domain into the circle. Spiral waves now correspond to the states where this
phase variable has a non-trivial winding number away from the center of rotation.
The core can then be thought of as merely a necessary phase singularity. Similar
to the difficulty in excitable media, the core region is not easily resolved within the
context of simple approximations. The first consistent results on existence of spiral
waves focused on reaction-diffusion systems that coupled phase and amplitude of
oscillations. In the simplest form, the kinetics possess a gauge symmetry, and the
resulting equations are referred to as A-w-systems or complex Ginzburg—Landau
equations in the literature. In a peculiar limit where dispersion of oscillations can
be eliminated, these systems reduce to the classical Ginzburg—Landau model of
superconductivity, where spiral waves correspond to stationary vortices. Existence
of spiral waves in these systems with gauge symmetry was established in a series
of papers [44-46, 60, 61] and later extended to systems without gauge symmetry,
but near Hopf bifurcation [102]. We refer to [3] for an overview of dynamics in
oscillatory media as captured by the complex Ginzburg-Landau equation and to
[83] for a broader discussion including both oscillatory and excitable media.

Both these perspectives can be explored in the FitzHugh—Nagumo system,
which, depending on reaction rates and levels of input currents, can be excitable or
oscillatory. In the excitable regime, without further stimulus, the kinetics return
to a stable rest state. Changing the input current as a homotopy parameter, stable
periodic oscillations arise through a Hopf bifurcation and develop quickly into re-
laxation oscillations. Clearly, properties of the medium change quite dramatically
during this homotopy. Nevertheless, spirals typically exist throughout and appear
almost oblivious to these changes in the medium. Only in the regime of weak ex-
citability, when a short temporal stimulus of small size is not sufficient to trigger
an excitation in the kinetics, does one see spiral waves disappear.

Instabilities of spiral waves. Much of more recent theoretical and exper-
imental work has focused on the phenomenology of instabilities of spiral waves.
The interest was stimulated to a large extent by observations of spiral instabilities
leading to breakup and spatio-temporal turbulence in reaction-diffusion systems,
but also in cardiac tissue, where spiral waves and their instabilities are thought
to be responsible for cardiac arrhythmias, tachycardia, and ventricular fibrillation
(see [18] for a collection of more recent contributions to the role of spiral waves in
cardiac tissue). We refer to Figure 12.8 for simulations that illustrate some of the
instabilities we will describe in the next paragraphs.
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The meander instability is an apparent instability of the spiral tip motion.
It is often supercritical and leads to two-frequency dynamics, where the spiral
tip evolves on epicycloids. At parameter values when the relative direction in
which the two super-imposed circular motions occur changes sign one observes
a drifting trajectory of the spiral tip. Frequency locking is not observed. The
effect of the meandering motion of the tip are waves of compression and expansion
in the far-field, which organize along super-spirals that rotate in the same or in
the opposite direction of the primary spiral, with the transition happening at the
drifting transition; see [65, 105] for examples of experimental analysis of transitions,
and [10, 37, 42, 90, 101] for theoretical explanations based on effective tip motion
on the FEuclidean group. More complicated tip dynamics have also been observed;
see [87, 110] for (numerical) experiments and [4, 38] for theory.

More dramatic instabilities cause spiral breakup, where the compression and
expansion of the waves emitted by the spiral wave grow in time and space, leading
to filamentation and complex dynamics; see for instance [74] for experiments and
[2, 6, 7, 47] for analysis. The compression and expansion can be modulated in the
lateral direction of wave trains, leading to different fragmentation phenomenologies;
see [39, 68]. Spatio-temporal growth of perturbations has been described in terms
of properties of dispersion relations at wave trains [92] and the resulting subcritical
instabilities are often very sensitive to noise and domain size.

A related instability results in alternans, which are characterized by the prop-
erty that the spiral arms are elongated and shortened periodically in time. Alter-
nans have approximately twice the temporal period of the spiral waves from which
they bifurcate. They have been implicated in the transition from tachycardia to
fibrillation [79, 86], and we refer to the review article [1] and the special issue [27] for
analysis, modeling, and computations of alternans, and to [33] for recent spectral
computations.

A different type of period-doubling instabilities can be associated with a period-
doubling instability of the oscillations in the medium, which leads to line defects
and slow drifting of the spiral core; see [78, 111] for experimental observations,
[43] for numerical explorations and analysis, [99] for analysis, and [33] for recent
spectral computations.

During the creation of spirals from initial conditions and in the evolution of
disturbances near instability thresholds, characteristic transport of disturbances
can be observed. Spirals are formed when the core sends out waves so that the
part of the domain occupied by the rigidly-rotating Archimedean structure grows
in time. This outward transport is crucial even when the spiral is apparently
rotating inwards and the apparent phase of wave trains propagates towards the
center of rotation [43]. Spirals are notably insensitive to perturbations far away
from the core and easily regenerate even after large perturbations in the far field.
The super-spiral patterns that appear at meandering instabilities grow temporally
outward from the core, yet with a weakly decaying amplitude; disturbances that
lead to far-field breakup grow outward both temporally and spatially; disturbances
in core breakup appear to grow at first in the core region only; spirals near the
period-doubling regime rotate inwards, yet disturbances are transported away from
the core.

It is this phenomenology of robustness and instabilities that motivates the
analysis presented here, hopefully putting both analysis and numerical simulations
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on a more precise footing. Before delving into our setup, we caution the reader
that the transport properties described and exploited here may be different for
spiral waves observed in other circumstances, such as the often multi-armed slowly
rotating waves in Bénard convection [20] or the spiral arms of galaxies [19].

Setup and conceptual assumptions. Our approach to the analysis of spi-
ral waves is largely model-independent and provides a framework in which the
phenomena mentioned above can be analyzed systematically. Rather than making
assumptions directly on the system that guarantee, for instance, excitability, gauge
invariants, or closeness to a Hopf bifurcation, we make conceptual assumptions that
require the existence of particular solutions.

We consider general reaction-diffusion systems

(1.1) ug = DAu+ f(u), weRN, ze€Q, t>0,

where either Q = R? or Q = {|z| < R} with R > 1 supplemented with appropriate
boundary conditions at |x| = R. We assume that D > 0 is a diagonal diffusion
matrix with strictly positive entries on the diagonal and that the nonlinearity f :
RY — R describing the kinetics is of class CP with p sufficiently large.

We are interested in spiral waves that exhibit an asymptotic spatially-periodic
structure as indicated in Figure 1.1 and formalize this characterization through the
following assumptions. First, we consider (1.1) with z € R in one space dimension
and assume that the resulting system admits a spatio-temporally periodic wave-
train solution of the form u(x,t) = u(kx — wt), where the profile uqo(§) is 27-
periodic (80 that uee(§) = ueo(€ + 2m) for all £ € R) for an appropriate temporal
frequency w # 0 and spatial wavenumber k # 0. The wavelength or spatial period
of the wave train is therefore 27/k. Next, we consider (1.1) on the unbounded
plane Q = R?, since this allows us to characterize the shape of spiral waves in an
asymptotic sense far away from the center of rotation. In polar coordinates (7, ¢),
which are related via @ = r(cos¢,sinp) to the Cartesian coordinate z € R?, this
characterization (which we will make more precise in §3.1) roughly reads

(1.2) u(z,t) = ue(r,p — wt) ~ too (kr + ¢ — wt + 0(r)) with '(r) — 0 as r — oo,

where u(z,t) is the solution written in Cartesian coordinates, and u.(r, ) is the
spiral-wave profile written in polar coordinates. Note that the spiral wave rotates
around the origin with constant angular velocity and resembles a periodic wave
train along any fixed ray emanating from the origin. Some of our results study the
effect of finite domain size by truncation to large bounded disks Q = {|z| < R}. A
key message of these results is that the effect of this restriction is very weak, and in
fact exponentially small in R. Besides this characterization of spiral waves through
their limiting shape far away from the center of rotation, we note that the choice
of an unbounded domain also introduces spatial translation in addition to rotation
as a symmetry of the equation, a property that has been recognized as crucial to
understanding the behavior of spiral waves especially near meandering transitions
[10].

We note that our results all require D > 0, thus excluding some prominent
prototypical models. We do not claim that our results readily extend to the case
of vanishing diffusivities in one or more species. It appears that most phenomena
observed for systems where diffusivity vanishes in one or more components are
quite robust in regards to introducing small diffusion into these components. On
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the other hand, the vanishing of diffusivities appears to introduce structure that
might be helpful in understanding some of the instabilities listed above and an
adaptation and extension of the results presented here could well shed light on
these phenomena.

Scope of results. Our main results can be roughly grouped into three cate-
gories.

The first set of results is concerned with the characterization of spiral waves as
special equilibria of (1.1) in a corotating frame:

(1) Conceptual characterization: we give a precise far-field description of spi-
ral waves refining (1.2);

(2) Asymptotics: we derive universal expansions of 6(r) in terms of properties
of the wave train es;

(3) Group velocity and multiplicity: we clarify the role of the group velocity of
the asymptotic wave trains for properties of spiral waves, especially local
multiplicity and uniqueness;

(4) Robustness: we show that spiral waves exist for open classes of reaction
diffusion systems, that is, they persist and vary continuously in an appro-
priate sense upon variations of system parameters.

The second set of results is concerned with properties of the linearization L.
about a spiral wave. In a corotating frame 1) = ¢ — wt, spiral waves are equilibria,
and the goal is then to relate the phenomenology of instabilities described above to
properties of the linearization. Our results characterize the spectral properties of
this linear operator:

(1) Essential spectra: we characterize the essential spectrum of £, and Fred-
holm indices of £,— X in terms of spectra and (generalized) group velocities
of the asymptotic wave train;

(2) Ezponential weights: we describe the change of essential spectra when
L, is considered in spaces of exponentially weighted functions in terms
of group velocities of the asymptotic wave train; we show in particular
that, in a typical stable scenario, the essential spectrum has strictly nega-
tive real part in spaces of functions with small exponential radial growth,
reflecting outward transport of the oscillatory phase;

(3) Point spectra: we describe the shape of eigenfunctions and resonance poles
in the far field, giving predictions for the phenomenology of instabilities
caused by point spectrum;

(4) Adjoints and response to perturbations: we characterize properties of ad-
joint eigenfunctions and prove in particular that adjoint eigenfunctions
associated with translation and rotation modes are typically exponentially
localized, thus explaining on a linear level the robustness of tip motion of
spiral waves with respect to perturbations in the far field.

Figure 1.2 illustrates spectra of the linearization, Fredholm indices, group velocities,
and point spectra schematically.

The last set of results is concerned with finite-size effects. We add a conceptual
assumption on the interaction of the wave trains with boundary conditions: typi-
cally, wave trains are not compatible with a boundary condition, that is, e, (kx—wt)
is not a solution to the reaction-diffusion system in = < 0 when, say, Neumann
boundary conditions are imposed at = = 0. Since wave trains are time periodic,
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FIGURE 1.2. Spectra of spiral waves in L?(R?) (left), L7 (R?) (cen-
ter), and L%(Jz| < R) (right). The essential spectrum is periodic
with vertical period iw,, and the borders of regions with constant
Fredholm index are given by the Floquet spectra of wave trains.
For positive group velocities, the Fredholm index to the left of the
Fredholm border is ¢ = —1. Exponential weights push spectral
borders associated with positive group velocities to the left, and
the resulting spectra generically move smoothly with the weight
7. Eigenvalues do not depend on the exponential weight but may
emerge from essential spectra; examples for the latter are trans-
lation and rotation eigenvalues at +iw, and 0, respectively, and
the green eigenvalue near 2iw,. On large bounded disks of radius
R > 1, eigenvalues cluster along curves given by the absolute spec-
trum of wave trains that do not depend on the radius R. We refer
to Figures 12.4 and 12.5 for numerically computed examples.

we therefore assume the existence of a time-periodic solution ups(z,wt) on < 0
that satisfies the boundary condition at £ = 0 and converges to the wave train
Ups (T, wt) ~ U (kx — wt) as © — —oo. For these boundary layers, the wave trains
transport small disturbances from x = —oo towards the boundary at x = 0, and we
therefore refer to these solutions as boundary sinks. We can now envision patching
the spiral wave with such a boundary sink to obtain a solution on a large but finite
disk as illustrated in Figure 1.3. Our results show the existence of truncated spiral
waves and characterize their spectra:

(1) Truncation by gluing: we prove the existence of rotating waves on disks of
radius R for sufficiently large R whose profiles consist of the spiral wave
glued together with a boundary sink;

(2) Spectra of truncated spirals: we show that spectra of the linearizations
around truncated spiral waves converge as R — oo; the limit consists of a
continuous part and a discrete part;

(3) Eaxtended point spectrum: the discrete part of the limiting spectrum con-
sists of the union of the spectra of £, considered on the plane in suitable
exponentially weighted spaces and the boundary sink considered on R™;

(4) Absolute spectra: the continuous part of the limiting spectrum is not given
by the essential spectrum but by semi-algebraic curves, which we refer to
as the absolute spectrum, belonging to the wave trains.

See again Figure 1.2 for a schematic representation of the results on spectra.
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Planar spiral wave Boundary sink Spiral wave on bounded disk
2w 2n 27
£ wt P \ \\\l
0 0 0
0 r oo -00 X 0 O

spiral  shifted sink R

FIGURE 1.3. From left to right, we show contour plots of a pla-
nar spiral wave u.(r,¢) in polar coordinates (r, ) connecting its
core at r = 0 with a wave train in the far field at r = oo, a
one-dimensional boundary sink us(z,wt) in (z,wt) coordinates for
z < 0 connecting the same wave train at £ = —oo to Neumann
boundary conditions at = 0, and a truncated spiral wave in po-
lar coordinates (r, ) on a disk of radius R > 1 with Neumann
boundary conditions at » = R that consists of the planar spiral
wave glued together with the boundary sink (shifted by R to the
right) to accommodate the boundary conditions at r = R.

Techniques. Our approach to the analysis of spiral waves is based on the
method of spatial dynamics, casting existence and eigenvalue problems as evolution
problems in the radial direction and using pointwise matching and gluing construc-
tions in determining existence, bifurcation, and spectral properties. This method
has been used extensively in the study of existence and bifurcation problems for
elliptic equations starting with the pioneering work of Kirchgéssner [59] and con-
tinued later for instance in [53, 70, 71] to capture small-amplitude solutions. Most
relevant for our perspective here are the adaptation to radial dynamics [103] and to
bifurcation to spiral waves [102]. While in all of those examples, solutions are con-
structed as small perturbations of a spatially constant trivial solution, our approach
is global in nature and can be compared with [95] where properties of time-periodic
solutions asymptotic to wave trains in the far field are classified based on conceptual
assumptions, not necessarily assuming that solutions are close to a trivial state. In
such a global context, spatial dynamics are based on a pointwise description of the
linear operator as an evolution problem via exponential dichotomies. In the context
of elliptic equations on multi-dimensional domains, exponential dichotomies were
first constructed in [82] and later used in [93] to clarify the relation to Fredholm
properties of the related elliptic operator, building on earlier work [29, 76, 77] for
ordinary differential equations. Later work on exponential dichotomies for multi-
dimensional domains includes, for instance, [12, 13, 30, 63, 64].

The approach via spatial dynamics allows us to utilize dynamical systems meth-
ods which provide powerful tools to study fine asymptotics of solutions to differen-
tial equations, in particular characterizing exponential asymptotics and the analy-
sis of neutral, non-exponential modes via center-manifold reduction and geometric
blowup. These fine asymptotics are essential here in many places, in particular
when characterizing the asymptotic behavior of the phase function 6(r) of spiral
waves in (1.2) in the far field, the shape of eigenfunctions in the point spectrum
representing super spirals of compression and expansion, or the clustering of eigen-
functions near the absolute spectrum in large bounded disks.
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Many of the constructions here have been used in related but simpler situations
[95, 98]. A major complication for spiral waves stems from the fact that there is no
simple way to compactify at infinity: treating the Laplacian in radial coordinates
Opr + %& + r%(“)w@ as a non-autonomous dynamical system in r, we notice that the
derivative operator in ¢ disappears at » = oo due to the factor %2 On the other
hand, we see that the derivative wd,, introduced by passing to a corotating frame,
is unbounded relative to the Laplacian so that the operator A+wd, is not sectorial.

We overcome these difficulties by choosing appropriate anisotropic function spaces

with norms based on r~!|d,u| + |02 u| and using compactifications at infinity only
on finite-dimensional reduced center manifolds.

The challenges arising here are somewhat unique and not readily comparable to
other work on defects in the literature. We remark however that a similar question
of truncation of defects has been analyzed in [75] for Ginzburg-Landau vortices.
The problem there is quite different as the relevant linear operators are mostly
self-adjoint, and much more information is accessible explicitly. On the other hand,
the absence of convective transport necessitates the use of algebraically weighted
spaces, and the techniques are generally quite different from our approach here.

Outline. We present background material on wave trains in §2 before stating
our main results in §3. Section 4 presents proofs of the main properties of wave
trains collected in §2. In §5, we develop the framework of exponential dichotomies
in the context of spiral waves, laying the basis for all later technical analyses. Using
these exponential dichotomies, we study Fredholm properties of the linearization
in §6. We establish robustness of spiral waves and derive far-field expansions in
§7 and analyze point spectra in §8. The next three sections are concerned with
the truncation of spiral waves to large disks: we cover the gluing construction with
boundary sinks in §9, analyze the accumulation points of spectra for operators in
large disks in §10, and finally describe the limits of spectra including the effect of
boundary sinks in §11. We conclude with a discussion, focusing in particular on
the implications of our results to observations in experiments and simulations, in
§12.



CHAPTER 2

Background Material on Wave Trains

We consider the reaction-diffusion system
(2.1) us = Dugy, + f(u), zeR, wueRY,

where we may think of v € RY as a vector of chemical concentrations. Further-
more, D = diag(d;) > 0 is a positive, diagonal diffusion matrix and f is a smooth
nonlinearity. We refer to the coordinate system (x,t) as the laboratory frame to
distinguish it from coordinate frames that move with a travelling wave. Note that
velocities of movement and transport depend on the underlying reference system.

We assume that (2.1) has a wave-train solution u(z,t) = u(kz — wt) for a
certain non-zero wavenumber k, non-zero temporal frequency w, and wave speed
¢ = w/k, where the function u, is 2w-periodic in its argument £ = kx — wt. Note
that any such wave train u(§) is a 27-periodic solution of the ordinary differential
equation (ODE)

(2.2) —wu' = k*Du” + f(u).

We are interested in the linearization of (2.1) at the wave train and specifically
in spectral information in the laboratory wave as this is the frame in which we
will later view spiral waves. It is easier to compute the spectrum of the relevant
linear operator in the frame that moves with the wave train, and we will there-
fore do this first in §2.1, before we transfer these results in §2.3 to the laboratory
frame in which we will need the spectral information. In §2.2, we will show that
wave trains typically come in families where the profile u., and the temporal fre-
quency w are parametrized by the spatial wavenumber k. In §2.4, we will explore
a spatial-dynamics formulation of the linear eigenvalue problem associated with a
wave train, introduce and calculate relative Morse indices that can be thought of as
the difference of the dimensions of generalized unstable and stable eigenspaces of a
spatial-dynamics operator, and link the relative Morse index to group velocities —
these concepts and calculations will be used throughout the remainder of the paper.
Finally, in §2.5, we consider instabilities of plane waves that are transverse to the
direction of propagation.

In passing, we remark that much of the discussion in this section can be pre-
sented in a simpler way by exploiting Floquet theory for parabolic equations (as
developed, for instance, in [62]). We prefer the slightly more complicated approach
below since it naturally generalizes to travelling waves which are not necessarily
spatially periodic [93] and, in particular, provides us with a framework that we will
encounter again when we study spiral waves.

9
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2.1. Spectra of wave trains in the co-moving frame

In the scaled co-moving coordinates £ = kx — wt, the reaction-diffusion system
(2.1) becomes

(2.3) up = k? Duge + wue + f(u), E€R, ucRY,

where u(&,t) = uxo(§) is an equilibrium solution. Linearizing (2.3) at this equilib-
rium us., we obtain the differential operator

(2.4) Leo 1= k?Dee + wde + f' (o (€)),

which we consider as an unbounded operator on L?(R, CV) with domain H?(R, CY).
The spectrum of L., on L?(R,CY), given by the set of A\ € C for which L., — A
does not have a bounded inverse, can be computed using the Bloch-wave ansatz

u(§) = e Fup(9),

where v € iR and uy, is 27-periodic in §. Denoting by ¢ = w/k the phase velocity of

the wave train in the laboratory frame, we arrive at the family of operators Lo (V)
defined by

(2.5) Leo(v)up = D (ke + v)*up + (kO + v)up + f (oo (€))tp,
which we consider as unbounded operators on L2(S1, CV) with domain H?(S!, CV),
where S1 := R/27Z. For each v € iR, the spectrum of L, (v) on L2(S1,CY) is a
discrete set in C, and the union over v € iR of the spectra of L., (v) on L?(S!,CV)
gives the spectrum of L, on L?(R,C); see, for instance, [40]. Thus, the spectrum
of L., is given by curves of the form A = A (v) where v € iR. These curves
are referred to as the (linear) dispersion curves. Alternatively, we can rewrite the
eigenvalue problem
Leou = Au

as the ordinary differential equation
(2.6) kug = v

kve = —D " ev + [ (uao(€))u — Au]

with 27-periodic coefficients. We denote by ®(\) the associated period map which
maps an initial value to the solution of (2.6) evaluated at £ = 27. In particular,
the ODE (2.6) has a solution that is bounded uniformly in £ € R if and only if the
Evans function® [40]

(2.7) E(\v) == det [®(\) — ez’”’/k} —0

vanishes for some v € iR. The set of all A for which F(\,v) = 0 has a purely
imaginary solution v is the spectrum of L., on L*(R,C"); see again [40]. Since
(2.7) defines an analytic function of A and v, we can solve (2.7) for A as functions of
v and find again an at most countable set of solution curves of the form A = A, (v)
with v € iR. For any element A in the spectrum with d\E(\,v) # 0 for some
v € iR, we can solve E(A,v) = 0 locally for A = Ao (v) as a function of v. For such
elements, the linear group velocity

A w e
Gl T T TR T T ¢

INotation: we will never include a symbol for the identity operator when writing down scalar
multiples of the identity.
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in the original laboratory frame is well defined. If A € iR, then the first term
—dMco/dv is the derivative of the temporal frequency A of solutions of the linearized
PDE with respect to the spatial wavenumber v: this term gives the group velocity in
the co-moving frame, i.e. the velocity with which wave packets with wavenumbers
close to v would propagate. The second term w/k compensates for the moving frame
in which we computed the group velocity. Note that a dispersion curve A (v) has
a vertical tangent precisely at points where ¢4 is real. Note also that E(0,0) =0
since (ul, (), kul (§)) is a bounded solution of (2.6) with A =0 and v = 0.

2.2. The nonlinear dispersion relation

The next result shows that, under an appropriate nondegeneracy assumption,
wave trains come in one-parameter families, where the profile and the temporal
frequency w = w(k) depend smoothly on the wavenumber k.

PROPOSITION 2.1 (Families of wave trains and nonlinear group velocities). As-
sume that U (€) is a 2m-periodic solution of (2.2) for (k,w) = (k«,ws) with k., w, #
0. We also assume that the associated Evans function satisfies 0xE(0,0) # 0.

(i) There are then smooth functions us(&; k) that are 2m-periodic in £ and a
smooth function w(k) both defined for each k near k. with s (&; ky) = oo (§)
and w(k.) = wy so that (uso (3 k), w(k), k) satisfies (2.2) for each k near k..
We refer to the function w(k) as the nonlinear dispersion relation and call its
derivative cg ni(k) := w’(k) the nonlinear group velocity.

(i) The linear group velocity at A = v = 0 and the nonlinear group velocity
coincide so that

(2.8) Cs = Cgl|, o o= Cgm1(Ks),
and we refer to the common value cg as “the” group velocity of the wave train
in the laboratory frame.

(iii) Moreover, dyE(0,0) # 0 implies that the kernel of Leo(0) on L*(S*,CN) is
one-dimensional and the kernel of the L?-adjoint Lo (0)* on L2(S',CN) is
spanned by a single function uaq(§). We find

2k (Uaq, Dull)

<uad7 uf)o>
where (-,-) denotes the standard inner product in L*(S*,CV).

Cgm (k) = o' (ki) =

b

Proposition 2.1 is proved in §4.1.

2.3. Floquet spectra of wave trains in the laboratory frame

In §2.1, we computed the spectra of wave trains in the co-moving frame. Here,
we will demonstrate how we can compute the spectrum of the linearization in the
laboratory frame x. The linearization in the laboratory frame is the linear, non-
autonomous parabolic equation
(2.9) U = Dugy + f'(Uoo (kx — wi))u.

Stability information is encoded in the associated linear period map
T : L*(R,CY) — L*(R,CV)

that maps an initial function u(-,0) at ¢ = 0 to the solution u(-,27/w) of (2.9)
evaluated at t = 27 /w.
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DEFINITION 2.2 (Floquet spectrum). We define the Floquet spectrum of the
wave train as the set Ly of those A € C for which [Py — 62”‘/“] does not have a
bounded inverse on L?(R,CN).

The following Lemma 2.3 is proved in §4.2.

LEMMA 2.3 (Floquet spectrum vs spectrum in the co-moving frame). The Flo-
quet spectrum Xg of the linearization Wy in the laboratory frame can be computed
from the dispersion curves \.o(v) with v € iR of the linearization L., posed in the
co-moving frame (2.4) on L*(R,CY) by adding the speed of the co-moving frame to
the group velocity:

A€ spec Lo < X\ = Ao (V) for some v € iR,
(2.10) A€ specUy <= A= Ay (V) := Ao (V) — cv + 1wl for some v € iR, ¢ € Z.

The relation (2.10) implies in particular that the group velocity transforms
according to simple Galilean addition of velocities: —dAy/dv in the laboratory
frame is obtained from the group velocity —dA.,/dv in the co-moving frame by
adding the speed of the coordinate frame ¢ = w/k. We refer to the curves Ay (v)
as the dispersion curves in the laboratory frame. Typically, an element A of the
Floquet spectrum lies on precisely one dispersion curve.

REMARK 2.4 (Floquet periodicity). Note that the eigenvalue problem in the
laboratory frame is invariant under the transformation u — e%tu, v — v — ilk
and X\ — A+ iwl for any £ € 7, where we satisfy the requirement that u needs to be
2m-periodic. Hence, the Floquet spectrum is invariant under translations by integer
multiples of iw. This periodicity represents precisely the ambiguity in the definition
of the temporal Floquet exponent \g; as the logarithm of the Flogquet multiplier.

DEFINITION 2.5 (Spectrally stable wave trains). We say that a wave train is
spectrally stable if its Floquet spectrum is contained in Re A\ < 0 with the exception
of a simple dispersion curve at A = 0 (and, by Floquet periodicity, at A € wiZ).
Here, we say that a dispersion curve at A is simple if E(\+ cv,v) has precisely one
purely imaginary root v and O\E(\ + cv,v) # 0 where ¢ = w/k. Simple dispersion
curves are given as analytic curves A(v) parametrized by v € iR that we shall orient
with decreasing(!) Imv so that curves point upward in the complex plane at points
of positive group velocity.

REMARK 2.6 (Bloch waves). To each spectral value Ao(v) for a given v € iR,
there corresponds an almost-eigenfunction u(§) = e"f/kup(é; A\, v) of Leo, where the
Bloch-wave function up(-; A\, v) is 2m-periodic. An almost eigenfunction of Ast(v) in
the laboratory frame is obtained by substituting & = kx — wt such that

u(x,t) = e>‘°°te”(m_“t)/kup(kx — wt; Aco, V) = e’\“te”’”up(kzx — Wt; Aco, V).

REMARK 2.7 (Exponential weights). If we consider (2.3) or (2.9) in L?-spaces
with exponential weights

LAR,CY) = {u € L2 fulus < oo}, [ulls ::/|u(x)em|2dx,
i R

all the above results apply if we fix Rev = —n. In particular, consider a point Ag;(v)
on a dispersion curve with real group velocity cg1. The real part of the dispersion



2.4. RELATIVE MORSE INDICES AND SPATIAL EIGENVALUES 13

curve Agt(v;m) in the exponentially weighted space moves according to
OAst(V;m) _ OAst (v —m;0) _ O (v)

on on v
In particular, exponential weights with negative exponents stabilize elements in the

spectrum with positive group velocities. This is in accordance with the intuition that
transport towards x — oo is stabilized by a weight function €™ with n < 0.

= Cg,l-

Note that we used the Cauchy-Riemann equation in the above remark, since the
real exponential weight shifts the real part of the eigenvalue A\ with —dRe A/dRev,
while the group velocity is traditionally defined via the imaginary part d Im A\/d Im v.
Since the eigenvalue problems are analytic in A, both derivatives coincide.

2.4. Relative Morse indices and spatial eigenvalues

If we substitute the Floquet ansatz u(z,t) = eMa(r,wt) into (2.9), change
coordinates? by replacing the temporal time-variable t by ¢ = kx — wt, and write
u for @, we obtain the autonomous equation

Uy = —kOs;u +v
Uy = —kDyv — D™ HwOpu + f/(too(0))u — A,
which we also write as u, = A (A)u.

LEMMA 2.8 (Spectra from spatial dynamics in the steady frame). A complex
number A is in the Floguet spectrum if and only if the spectrum of Ao (\), considered
as a closed operator on Hz(S',CN) x L2(S',CN) with domain H2(S*,CN) x
HY(SY,CN), intersects the imaginary axis. Furthermore, the spectrum of Aso(N\)
is a countable set {v;(\)};cz of isolated eigenvalues v;(\) with finite multiplicity.
If ordered by increasing real part, the spatial eigenvalues v; satisfy Rev; — Fo00 as
j — too.

Lemma 2.8, which is proved in §4.2, therefore leads us to consider the spatial
eigenvalue problem

(2.11) vu = —kOyu + v
v = —kO,v — D wdpu + [ (oo (0))u — Au]

with 27-periodic boundary conditions for (u,v). As in the preceding lemma, we
denote the eigenvalues of Ao () by v;(\), repeat them by multiplicity, and order
them by increasing real part so that

... <Rev_(jy1) SRev_; <...<Rev_; <Reyg < Rervy; < ...
...<Revj_1 <Rey; <....

The spatial eigenvalues v; () are precisely the solutions of E(A+cv,v) = 0 for fixed
A. Since the v; = v;(\) are eigenvalues of an analytic family of operators, we can
follow each individual eigenvalue in the parameter A although the labelling might
jump for certain values of .

We will next normalize the labeling with respect to the relabeling transforma-
tion v; — v;11, j € Z. We therefore start with a value A = Ay, > 1 such that

2Notation: The variables ¢ and o are both equal to kx — wt. We will use & for the reaction-
diffusion operators and o for spatial-dynamics formulations.
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Im v
V_3 V2
4 °
Re A /‘ ) s
\\ L4 4 Rev

ce >0 ®

o R I V-1 |21 ‘1/

V_y4 -2 4

—J_3 —Jo —=J1 —=Jo —J1 —J2 —J3 —Ju

FIGURE 2.1. Schematic representation of spatial Floquet expo-
nents v; ordered by real part for a fixed A € C, with corresponding
(negative!) spectral gap intervals —J;. Eigenvalues move left (or
right) as A is varied depending on the sign of the group velocity.
The relative Morse index iy changes from iy = 1 in the picture
shown to im = 0 as Re\ 7 increases through zero and v_;())
follows the green arrow.

Lco — Ainy has a bounded inverse. We fix the labelling of the spatial eigenvalues
belonging to Ajy, by requiring that Rev_; < 0 < Revy, where we use that none of
the v; is purely imaginary since we are in the resolvent set.

Following the spatial eigenvalues v;() from this region in the complex A-plane
defines a unique labelling of the eigenvalues except at points where some of the
spatial eigenvalues have equal real part. In each of those cases, however, only a
finite number of spatial eigenvalues share the same fixed real part since Re v; — $o0
as j — £oo by Lemma 2.8. In other words, if two spatial eigenvalues have the
same real part for some value of A, then there are j € Z and m > 1 so that
Revj_1 < Rev; = Revjiy < Revjimqr for £ = 1,....m (we note that there
could be many possible real-part resonances occurring simultaneously for different
real parts: each of these real-part resonances involves only finitely many spatial
eigenvalues though). We can therefore continue labelling the spatial eigenvalues in
a consistent fashion through any such real-part resonance by changing the indices
of only those finitely many eigenvalues that are involved in a real-part resonance
at a specific real part, within the set of indices associated with these same finitely
many eigenvalues.

DEFINITION 2.9 (Relative Morse index). For each A that does not belong to the
Floquet spectrum of the wave trains, we define the relative Morse index iy (M) as
the negative index of the first spatial eigenvalue with positive real part. In other
words, in () is the unique index for which

S ReriM()\),l()\) <0< Rel/,iM()\)()\) <...

The following definition will allow us to relate spatial eigenvalues and exponen-
tial weights.

DEFINITION 2.10 (Spatial spectral gaps). For each £ € Z, we define Jy(\) :=
(—Rewe(N), — Revp—1(N)), assuming the ordering in Definition 2.9. Note that Jp(\)
will be empty if Reve(N) = Rever1(N). Also note that the intervals are defined
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with the negative signs of the Rev; such that for all £ € Z and all n € J; we
have Rev; +n > 0 for j > £ and Rev; +1 < 0 for j < € — 1. See Figure 2.1
for a schematic representation of Floquet exponents and spectral gap intervals and
Figure 12.5 for numerically computed spatial Flogquet exponents v;.

The next remark, which follows directly from our definitions, relates the relative
Morse index at A = 0 and the nonlinear group velocity.

REMARK 2.11 (Relative Morse indices and group velocities). Assume the wave
train is spectrally stable (see Definition 2.5), then we have iy (A) = 0 for all A > 0.
If, in addition, its nonlinear group wvelocity cs is positive, then a single spatial
eigenvalue v of As(\) crosses through the origin from left to right when A de-
creases through zero, and this spatial eigenvalue is therefore given by v_1(X\). In
particular, the unstable dimension increases by one as A decreases through zero,
and we therefore have ini(N) = +1 for X to the left of the critical dispersion curve
and Jo(0) = (—Rerp(0),0) C R™. Similarly, the relative Morse index to the left of
the critical spectral curve is —1 if the group velocity is negative.

2.5. Transverse stability of wave trains

We conclude this section by collecting some properties of wave trains in two
space dimensions. We consider (2.1) on R?,

Ut = D(a:cac + 8yy)u =+ f(u)7 (Jﬁ,y) € R27

and notice that wave trains appear as plane waves u(x, y,t) = U (kz —wt) that are
independent of y. We say that the plane wave admits a transverse instability if it is
stable with respect to perturbations that depend only on x but becomes unstable
when we allow perturbations to depend on x and y. The stability of a plane wave
with respect to two-dimensional perturbations in the co-moving frame £ = kx — wt
is determined by the linearized eigenvalue problem

D(E?0ee + Oy )t + wOeu + f(uso (€))u = Au,

and the Fourier-Bloch ansatz u(&,y) = e"+Yv(§) with v, € iR then leads to the
spectral problem

(2.12) L1 (i )v:i=D(k?0¢e + v v+ wev + f(uoo(€))v = v

with v € L?(S',CY). We focus on the long-wavelength stability v, ~ 0 of the
translational eigenfunction v = ul with v, = 0 and denote by u,q the generator
of the kernel of the L?-adjoint of £ (0) = L, (0) posed on L?(S',CV).

LEMMA 2.12 (Transverse long-wavelength stability). Assume that us is a wave
train whose eigenvalue at X = 0 is algebraically simple in the co-moving frame
so that O\E(0,0) # 0, then for each v, ~ O the operator L, (v)) has a unique
eigenvalue A1 (v close to zero, and we have the expansion A (v1) = d v? +0(v1)
where

<uad, Du{><>>L2(S1)
(Uad, UL ) L2(51)

(2.13) dy =

In particular, the wave trains are spectrally unstable with respect to long-wavelength
transverse perturbations if di <0 (note vy € iR).
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Lemma 2.12 is proved in §4.1. For later use, we remark that the eigenfunctions
u(§;vy) to
EJ_(I/J_)U = )\J_(]/J_)U
can be chosen to be differentiable with respect to | after a suitable normalization
and that the second derivative u,, ,, (§;0) satisfies the equation
(2.14) L0y, ,, = Leo(0)uy,, ,, =2(Duly, —diul)

independent of the normalization.



CHAPTER 3

Main Results

We present our main definitions and results. We define planar Archimedean
spiral waves formally in §3.1, characterize the spectra of their PDE linearization in
§3.2, provide asymptotic expansions and robustness results of planar spiral waves
in §3.3, establish far-field expansions of eigenfunctions in §3.4, discuss persistence
results for planar spiral waves to large bounded disks in §3.5, characterize the
spectra of spiral waves under restriction and truncation to bounded disks in §3.6
and §3.7, respectively, and describe scenarios in §3.8 for which the spectral mapping
theorem fails for planar spiral waves. The proofs of these results are provided in
subsequent sections.

3.1. Archimedean spiral waves

We are interested in Archimedean spiral waves of planar reaction-diffusion sys-
tems,

(3.1) uy = DAu+ f(u), r€R? weRY,

that we shall characterize as solutions with particular spatio-temporal behavior.
To do so, we view (3.1) in polar coordinates (r,¢p) € RT x (R/27Z) with =
r(cos ¢, sin ) € R? for which (3.1) becomes

(3.2) u = DA Ju+ f(u), u(r, p,t) € RY,
where
1 1
Ar,gp = 5‘M + ;& + rfgagw
is the Laplacian expressed in polar coordinates.

DEFINITION 3.1 (Spiral waves). A rigidly-rotating solution u(r, ¢, t) = u.(r, p—
wyt) of (3.2) with wy > 0 is said to be an (Archimedean) spiral wave if there exists
a smooth 2m-periodic non-constant function us (), a smooth function 6(r) with
0'(r) = 0 as r — 00, and a non-zero constant k. such that

U (7, - — Wit) = Uoo (K + O(r) + - — wit)| o1 (r/272) — 0 as 7 — 00,

where the profile us(-) is a wave-train solution of the one-dimensional reaction-
diffusion system (2.1). In other words, Archimedean spiral waves are asymptotic to
wave trains us, far from the center of rotation and therefore approximately constant
along arcs k.r + ¢ = w,t, that rotate rigidly in time around the origin.

In the corotating frame 1 = ¢ — w,t, rotating waves are equilibria and satisfy
(3.3) 0= DA, yu+ w.Opu + f(u), u=u(r,p) € RV,
Note that the condition 6'(r) — 0 as r — oo implies that 6(r)/r — 0 as r — oo.

17
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3.2. Fredholm properties of the linearization at spiral waves

Upon linearizing the reaction-diffusion system (3.3) in the corotating frame at
the spiral wave u,, we obtain a system of the form uw; = L,u. We will always
consider the resulting linear operator L, in Cartesian coordinates so that it is
given by

(3.4) L. = DA+ w0y + ' (us(r,v)),

where A is the Laplacian in Cartesian coordinates, dy is given in Cartesian coor-
dinates = (21, 2) by Oy = 105, — 204, , and we consider the profile u,(r,¢) =
uy(r(x),(x)) also in Cartesian coordinates x € R2. We are interested in spectral
properties of the operator £, on L?(R?,CV). Note that L, is closed and densely
defined on L2(R2,C¥) as a bounded perturbation of the commuting operators A
and 0y = 10y, — 220,,, and its domain contains the intersection of the domains
H2(R2,RY) and {u € L*(R%,RY) : 9yu € L?(R?,RY)} of these two operators.
Furthermore, £, generates a strongly continuous semigroup on L? since DA and
w40y generate commuting contraction semigroups on L?(R%,CN).

We say that a closed, densely defined, linear operator 7 defined on a Hilbert
space H is Fredholm if its range Rg(7) is closed in H and both its null space
ker(7) and the complement of its range Rg(7T) are finite-dimensional. The index
of a Fredholm operator is ind(T) := dimker(7") — codim Rg(7).

DEFINITION 3.2 (Spectrum). We call the set

¥, :={\€C: L, — ) does not have a bounded inverse on L*(R* CN)}

the spectrum of L.. We write ¥, = Yt U PN U Y20 where

o Point spectrum: Yo, = {\ € C: L, — X is Fredholm with index 0 and the
kernel of L. — X is nontrivial},

o Fredholm boundary: g = {X € C: L, — X is not Fredholm},

o Fredholm spectrum: ;20 = {A € C : L, — X is Fredholm with nonzero
index},

and call the set Yess := X, U Mizo the essential spectrum.

The following result characterizes the essential and Fredholm spectra of spiral
waves in terms of the spectra of their asymptotic wave trains.

THEOREM 3.3 (Fredholm properties of linearization). The linear operator L, —\
posed on L?(R? CN) is Fredholm if and only if X does not belong to the Floquet
spectrum Xg (see Definition 2.2) of the asymptotic wave train: in other words, we
have ¥g, = Ygt. Furthermore, if A does not belong to the Floquet spectrum of the
asymptotic wave train, then the Fredholm index of L. — X\ is given by

(3.5) ind(L, — \) = —in(N),

where iy (A) is the relative Morse index associated with the linearization at the
asymptotic wave train from Definition 2.9.

Theorem 3.3 is proved in §6. We illustrate this and the following results in
the schematic representation of spiral spectra in Figure 3.1. Note that Remark 2.4
implies the following result.
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COROLLARY 3.4 (Floquet periodicity of Fredholm properties). The operator
L. — X is Fredholm of index i if and only if L. — (A + iw,) is Fredholm of index i.
In other words, the property of being Fredholm and the Fredholm index are periodic
with period iw, in the complex plane.

Note that this periodicity demonstrates quite graphically that the lineariza-
tion at a spiral wave is not a sectorial operator: vertical periodicity precludes the
possibility that the spectrum is contained in a sector {\; |[ImA| < C; — CoRe A}
for some C1,Cs > 0. From a different perspective, although the Laplacian A is
sectorial, Oy, is neither sectorial nor bounded relative to A on L?(R?,C"), and L.
therefore need not be and is in fact not sectorial.

Recall that we oriented the dispersion curves Ag(v) of a wave train in the
laboratory frame so that curves point upward at points of positive group velocity
and downward at points of negative group velocity; see Definition 2.5.

COROLLARY 3.5. If A is a simple element of the Floquet spectrum of the as-
ymptotic wave train (see Definition 2.5) that lies on the dispersion curve Ag(v),
then the Fredholm index of L. — X increases by one upon crossing the dispersion
curve g (V) from left to right (left and right are, of course, relative to the curve’s
orientation).

DEFINITION 3.6 (Spiral waves as wave sources). We say that the spiral wave
ux(r, ) emits a spectrally stable wave train if the asymptotic wave train us, (i)
is spectrally stable according to Definition 2.5 and (ii) has positive group velocity,
that is, the group velocity is directed away from the origin in polar coordinates.

We discuss properties of spiral sinks, whose asymptotic wave trains have neg-
ative group velocity, briefly in Remark 7.3.

COROLLARY 3.7. Assume that a spiral wave emits a spectrally stable wave train,
then the linearization L, — X has Fredholm index —1 in the connected component
of the Fredholm region to the left of the dispersion curve that contains A = 0.

Corollaries 3.5 and 3.7 follow from Remark 2.11 and Theorem 3.3.
We may also consider the linearization £, on a space of functions equipped
with an exponential weight

Ly(R?,CN) = {u € Li,.; [ulrz < oo}, fufia ::/ lu(z)e!|? dz.
§ K zER?

For any n € R and 7 € Z, we define
(36)  F(L.):={XA€C; L, — \is Fredholm in L?(R? C") with index i}.
Recall the definition of the spatial eigenvalues v;(\) from §2.4.

PROPOSITION 3.8. For each fixed A € C, the operator L, — X is Fredholm with
index zero in the space L%(RQ,CN) for alln € Jo(A) = (—Rewvg(N),—Rev_1(N)).
Fiz any such rate n and consider the connected component S of F (L) that contains
A, then either the entire connected component S lies in the spectrum of L, posed
on L% or else S8 contains only isolated eigenvalues with finite algebraic multiplicity
of L, on Lf]. In either case, the spectrum, and in the latter case also the geometric
and algebraic multiplicities of eigenvalues, do not depend on the choice of the rate

n € Jo(A).
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FIGURE 3.1. Left panel: schematic diagram of essential spectra
of spiral waves showing periodicity of essential and absolute spec-
tra with period iw,. Branch points and triple junctions are the
generic singularities of absolute spectra [85]. Right panel: zoom
into spectra, showing shaded regions that correspond, from left to
right, to the Fredholm indices i = ind(L, — \) = —2,—1,0. Blue
curves indicate the Floquet spectra of wave trains (corresponding
to the Fredholm boundaries of spiral waves), green curves are the
Floquet spectra of wave trains in exponentially weighted spaces
with weight n < 0, and the red curve corresponds to part of the
absolute spectrum. Oval green insets show the spatial Floquet ex-
ponents of wave trains at the indicated locations A € C, illustrating
in particular the crossing of Floquet exponents on the imaginary
axis at Floquet spectra, the direction of crossing relating to the
Fredholm index, and the roots with equal real part at the abso-
lute spectrum. We refer to Figure 12.5 for numerically computed
spatial and temporal spectra.

Proposition 3.8 is proved in §6. As we shall see later, if A is an eigenvalue of L,
on the space Lfl for some 7 € Jy(A), then A is close to an eigenvalue of the spiral
wave considered on a large but finite disk. Thus, we are led to the following two
definitions which adapt the terminology from [91] to the infinite-dimensional setup.

DEFINITION 3.9 (Absolute spectrum). We call the set of A € C for which Jy(X\)
is empty, that is, where Revy(A) = Rev_1(A), the absolute spectrum X,ps of L.

DEeFINITION 3.10 (Extended point spectrum). We say that A € C is in the
extended point spectrum of L. if (i) X ¢ Xaps and (i) the kernel of L. — X is
nontrivial in L% for some n € Jo(X).

The next corollary provides estimates for eigenfunctions and adjoint eigenfunc-
tions associated with elements in the extended point spectrum. The result for
eigenfunctions follows directly from the definition of the extended point spectrum,
while the estimates for the adjoint eigenfunctions follow from the fact that the dual
of L%, computed with respect to the usual L? scalar product, is given by L%n.

COROLLARY 3.11 (Localization of eigenfunctions and adjoint eigenfunctions).
Suppose that X belongs to the extended point spectrum and let u be an associated
eigenfunction or generalized eigenfunction of L., and u,q be the associated eigen-
function, or generalized eigenfunction, of the adjoint operator L%, then for each
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n € Jo(A) there exists C(n) > 0 such that
[u(r, e smy + 1 (Vaw)(r, )z sy < Cln)e™
[waa(r, )z (sr) + 1(Vataa) (7, )51 (sy < Cn) e
2

forr > 1, where V,, is the gradient in Cartesian coordinates so that |(Vyu)(r,)|* =
[Oru(r, )? + |3 0pulr, )2

An application of Remark 2.11, Proposition 3.8, and Corollary 3.11 to A =
0, +iw, gives the following result.

COROLLARY 3.12 (Stabilization of spectrum and symmetries). Assume that a
spiral wave emits a spectrally stable wave train; then there is an n, < 0 such that
the essential spectrum of the linearization L, considered as a closed operator on L%
is strictly contained in the open left half-plane for all n. < n < 0. For these values
of n, the spectrum contains the eigenvalues {0, tiw, } with associated eigenfunctions
Opus and (Op 10y )uy, respectively. The adjoint eigenfunctions associated with the
eigenvalues {0, £iw,} are exponentially localized with rate 1.

In other words, A = 0, +iw, belong to the extended point spectrum, and the
adjoint eigenfunctions belonging to the elements A = 0, t+iw, of the extended point
spectrum are exponentially localized. We will give refined asymptotics rather than
upper bounds for eigenfunctions in §3.4 below.

In the next section, we shall consider robustness of spiral waves. We therefore
introduce the following characterization of spiral waves with “minimal kernel”.

DEFINITION 3.13 (Transverse spirals). We say that a spiral is transverse if (i)
it emits a spectrally stable wave train and (i) for all n < 0 sufficiently small the
eigenvalue A = 0 of L, considered as a closed operator on L% is algebraically stmple.

For the sake of simplicity, we shall state most of our results for transverse spiral
waves, although we can significantly relax the assumption of spectral stability of
wave trains.

3.3. Asymptotics and robustness of spiral waves

We have the following far-field expansion of Archimedean spiral waves that
emit stable wave trains.

PROPOSITION 3.14 (Far-field expansion). Assume that the reaction-diffusion
system (3.2) admits a transverse spiral wave as characterized in Definition 3.13.
For each K < 0o, we then have the following expansion:

K
a7, 18) = ok + 0 (r) 4 6) + 3w (ar + 0u(r) + ) + O (rKlH) 7

Jj=1

e L 1

g j=1
for v > 1, with coefficients 0; and smooth 2w-periodic functions u; that can be
calculated recursively, and with error terms that are bounded uniformly in . In
the expansions for 0, the factor ¢, denotes the group velocity (2.8) of the asymptotic
wave trains, and d, is the transverse diffusion coefficient of the wave trains defined
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in (2.13). The first term in the expansion for the spiral wave is given explicitly
through

d 1
uy (9) = ks <J'8kuoo(z9) — Zuy,,, (9 0)) ,
Cg 2
where Opuso denotes the derivative of the family of wave trains with respect to the
wavenumber k, and the transverse correction u, ,, s defined in (2.14).

When d; > 0, we have 0 < 0, ~ % for large 7, and the wavenumber therefore
decreases towards the asymptotic value at the wave train. This corresponds to
waves emitted by the spiral appearing to “decompress” as waves travel away from
the center; see Figure 12.3 for a numerical illustration of this phenomenon. For
spirals that emit spectrally stable wave trains that are transversely unstable in two
dimensions, so that d; < 0, we have 0, < 0; see Figure A.1 for a numerical example.

Note that Proposition 3.14 justifies the use of the term Archimedean for spiral
waves despite the logarithmic phase correction given by 6.(r). Indeed, the local
wavelength L(r), i.e. the distance between consecutive spiral arms, converges to a
constant as r — oo since (3.7) implies that

Uoo (ks + 04(1)) = oo (ku(r + L(r)) + 0. (r + L(r))) gives

L(r) = i—” (1 - k;j} + O(l/r2)> .

Transverse spiral waves are robust in that they persist upon changing parame-
ters in the nonlinearity. To make this more precise, we consider a reaction-diffusion
system

(3.8) up = DAu+ f(u; p)

whose kinetics f(u;p) depends smoothly on a parameter p and look for rotating
waves u(r, 1) as solutions to

(3.9) DA, yu+ wiypu + f(u;u) =0,
for a certain frequency w(p).

THEOREM 3.15 (Robustness of transverse spirals). If the steady-state equation
(8.9) with u = 0 admits a transverse spiral wave u,(r,1), then the spiral is robust.
More precisely, there exists a family of spiral waves u(r, ;) with frequencies w =
wy (1) and asymptotic phases 0, (r; u) so that u(r,v¥;0) = u.(r,v¥), w(0) = ws, and

fu(r, 5 1) — 1o (o ()7 + 0. (7 1) + s )l — 0 as 7 = ox.

Here, ux(&; 1) is the (unique) wave train for the problem (3.8) in one space di-
mension with frequency w.(u) and wavenumber k.(u). The frequency wy(u), the
wavenumber k.(u), and the phase 0,(r;u) depend smoothly on the parameter p,
and the derivative of the phase 0'(r;u) converges to zero uniformly in u. The as-
ymptotic wavenumber is selected according to the p-dependent nonlinear dispersion
relation w, (k) of the wave trains via wy (k«(1); 1) = wi(p). For each u, the far-field
expansion of Proposition 8.14 holds.

Proposition 3.14 and Theorem 3.15 are proved in §7.
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3.4. Far-field expansions of eigenfunctions

When spiral waves undergo bifurcations that involve isolated eigenvalues, the
shape of the associated eigenfunctions gives useful clues as to the spatial structure
of patterns that bifurcate from the spiral wave.

PROPOSITION 3.16 (Lower bounds on eigenfunction decay). Take an element
A of the extended point spectrum: by definition, there is then an ng € Jo(\) such
that the kernel of L, — X\ in L%o is nontrivial. Let u # 0 be a nontrivial element
of this kernel in L2 and assume that there is ny € J_1(X) (which is defined in
Definition 2.10) so that the kernel of L. — X in L2 is trivial. For eachn € J_1()),
there is then a C(n) > 0 such that

[u(r, )| E1sry = Cn)e™".
The next proposition gives an expansion of eigenfunctions in the far field.

PROPOSITION 3.17 (Far-field expansions of eigenfunctions). Assume that A lies
on a simple dispersion curve Ag(v) with v € iR that separates the set F9(L.)
defined in (3.6) from F°(Ly). In addition, assume that X lies in the extended point
spectrum and has geometric multiplicity one. Lastly, we assume that the kernel of
Li—Xin L% with n € J_1(\) is trivial. Denote by u(r,1; A) the eigenfunction. We
then have the expansion

u(r,h; A) = a(r) [uwt(k*r +0.(r)+¢)+0 (iﬂ ,

a(r) = roer {1 10 (i)] ,

_ (Uaq, [(2ksd 1 /cg)09 + 1] Dot + [ (Uws) [U1, Uwt])

Cg,l <uad; uwt>

b

where the scalar products are taken in L? (Sl, CN), Uyt and uyq are the eigenfunc-
tions of /:'CO(V) and /jﬁg(u), respectively, corresponding to the eigenvalue Ao =
Ast (V) + cav, and vy = (kiOy + V)uwt. The terms uy and 0.(r) appear in Proposi-
tion 3.14, and cg is the linear group velocity of As(v) given by

2<uad7 Dth>

Co] = —
& <uad7 uwt>

We will prove Propositions 3.16 and 3.17 in §8. We refer to Proposition 10.5 for
a generalization of Proposition 3.17 and remark that results analogous to Proposi-
tions 3.16 and 3.17 hold for the adjoint linearization.

3.5. Persistence of spiral waves on large disks

Assume that the reaction-diffusion system (3.2) admits a transverse planar
Archimedean spiral wave u,(r, 1) with temporal frequency w,. The issue discussed
here is whether this spiral wave persists on large disks. In other words, is there a
spiral wave to the equation

uy = DAu + f(u), lz| < R,

0
O:au—i—b—q_{,

=R
on ] ’
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for all large R > 1, where 7@ denotes the outer unit normal of the disk of radius
R centered at zero, and where a? + b*> = 1. We show that this is indeed true
under the following natural hypothesis. It will be clear from our analysis that the
results carry over to much more general types of boundary conditions, for instance

nonlinear Robin boundary conditions % = g(u).

HypOTHESIS 3.18 (Boundary sink). Given a spectrally stable wave train toso
with fized wavenumber k., frequency w, > 0, and positive group velocity cg > 0, we
say that the one-dimensional equation

(3.10) up = Dugy + f(u), x € (—00,0)
0 = au(0,t) + bu,(0,t)

has a boundary sink if (3.10) admits a time-periodic solution u(x,t) = ups(x, wyt)
with ups(z, 7) = ups(x, 7+ 27) for all (x,7) such that

[Ubs (2, +) — Uoo (ks — -)|c1(51) = 0 as x — —oo0.
We say that the boundary sink is non-degenerate if the linearized equation
(3.11) up = Dugy + f/(ups(z, wit))u, x € (—00,0)
0 = au(0,t) + bu,(0,1),

does not possess an exponentially localized, time-periodic solution, that is, for any
smooth solution u to (3.11) with u(x,t + i—”) = u(x,t), we have

27 [wa 0
[ e u? st o dedt = o
0 —o0
for any n > 0.

Similar to our assumptions on the existence of wave trains or spiral waves, Hy-
pothesis 3.18 is, in general, difficult to verify. However, we will prove in Lemma 9.1
that boundary sinks arise typically as one-parameter families that are parametrized
by the wavenumber k of the asymptotic wave train. Furthermore, their existence
near homogeneous oscillations with wavenumbers & close to zero was shown in [95,
§6.8 on p46].

The term boundary sink is intuitive as the group velocity of the wave train at
xr = —o0 is positive so that perturbations near x = —oo are transported towards the
boundary at x = 0, where they are annihilated by the boundary. Non-degeneracy
can be interpreted as absence of the Floquet exponent A = 0 in the extended point
spectrum. In fact, the discussion in §2.4 shows that Jo(A) D (—0,0) for some
0 > 0 since ¢g > 0. Choosing the exponential weight 7 > 0, we then conclude that
the linearization at the wave trains is hyperbolic with relative Morse index zero,
which implies that the linearization is Fredholm of index zero when the operator
is equipped with boundary conditions at = 0 [97]. The absence of a periodic
solution to the linearization then implies that the linearized operator does not have
a Floquet exponent A\ = 0. We emphasize that non-degeneracy is a meaningful
assumption since the “trivial” time-periodic solution O;ups to the linearization is
not exponentially localized as w, # 0.

We emphasize that the boundary sink connects the wave train at * = —oco with
the Neumann boundary conditions at * = 0. This feature will allow us to glue
together the spiral wave u,(r,%) and the shifted boundary sink ups(r — R,%) at
r = R—log R, where both patterns are close to the asymptotic wave train, to obtain
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a truncated spiral wave on the disk 0 < r < R that satisfies Neumann boundary
conditions at r = R; see Figure 1.3 for an illustration. The next theorem formalizes
this expectation.

THEOREM 3.19 (Gluing spirals with boundary sinks). Assume the existence
of (i) a transverse spiral wave u, (see Definition 3.13) and (i) a non-degenerate
boundary sink (see Definition 3.18) with the same asymptotic wave train u, fre-
quency wy, and wavenumber k.. Then there are positive numbers §, C, k and R,
with 0 < § < 1 so that the following is true. For each R > R, there are a unique
frequency w = w(R) with |w — w.| < § and a unique smooth function ugr(r,y) with

W(R) —w.| + sup lur(r,¢) — u.(r; ¥)]
0<r<R—kx~llog R
+ sup [ur(r,v) —ups(r — R, ¢)| <0

R—r~1log R<r<R
such that the pair (u,w) = (ur(r,v¥),w(R)) satisfies the system
0= DA, yu+ wuy + f(u), 0<r<R
0 = au + bu,, r = R.
Furthermore, we have the estimates
|w(R) — w,| < Ce™~F

(3.12)  Jugr(r,9) — us(r, )] < Riée_”(R_{llogR_r), 0<r<R-k'logR
jun(r, ) ~ua(r — R0)| < 2, R—n'logR<r <R

uniformly in R > R..

Theorem 3.19 is proved in §9.

3.6. Spectra of spiral waves restricted to large disks

In the previous section, we provided conceptual assumptions guaranteeing that
the existence of a spiral wave on x € R? implies the existence of spiral waves in
large disks. The results establish in particular the convergence of profiles as the
size of the disk increases. We now pair these results with analogous convergence
results for properties of the linearization.

It turns out that in addition to contributions from the spectrum of the spiral
wave, there is a contribution from the boundary condition that we shall specify
first. Consider therefore the linearization at the asymptotic wave train in the steady
frame, restricted to x < 0 and equipped with boundary conditions,

(3.13) U — M= Dugy + f'(uoo (kz — wit))u, z <0,
au + bu, =0, x=0.

DEFINITION 3.20 (Boundary spectrum). We define the boundary spectrum Xpqy
of wave trains as the set of A € Xaps for which there exists a 2w /w-periodic solution

to (3.13) with u(x,0) € L} for some n € Jo(A).

We shall need some mild non-degeneracy assumptions on the absolute spec-
trum, which we defined in Definition 3.9. The first non-degeneracy condition is
concerned with the dispersion relation, asserting roughly that the absolute spec-
trum consists of algebraically simple curves; compare for instance [85].
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DEFINITION 3.21 (Simple absolute spectrum). We say that the absolute spec-
trum is simple at a point A\, € C if (i) Jr1(N\) are non-trivial and (ii) the two
critical spatial eigenvalues with equal real part split non-trivially upon varying \,
that 1is,

Rev_a(As) < Rev_1(As) = Rerp(As) < Revi(Ay),

dVO dl/,l
v_1(As) #vo(As), and D Y

at X = \,.

Many results on the absolute spectrum can be extended without this simplicity
assumption [80] but we shall not attempt such a generalization in this context.

DEFINITION 3.22 (Resonances in the absolute spectrum — informal). We say
that a point . in the simple part of the absolute spectrum is resonant if each
nontrivial element u(r, ) of the kernel of L. — A« in L% with n € Ji(\) converges
to ug (1)) or u_y()e’-*P)" (but not to a linear combination of both) as
r — 00, where the functions ug or u_1 may vanish. We refer to Definitions 10.6
and 11.1 for a precise definition of resonance.

We define the linear operator

(3.14) L. ru = DAu+ w,0pu+ f'(us(r,y))u for |z] <R

au—&—b% =0 atl|z|=R
on
in Cartesian coordinates on L?({|z| < R}) with dense domain {u € H2({|z| <
R}) : (au + b%)\m:}% = 0}, where the domain is well defined due to standard
trace theorems. Note that £, p has compact resolvent as a relatively compact
perturbation of DA, and its spectrum on L?({|z| < R}) consists therefore entirely
of discrete point spectrum for each fixed R.

THEOREM 3.23 (Spectra of linearization restricted to disk). Assume the ex-
istence of a transverse spiral wave u.(r,v) (see Definition 3.13) with frequency
wyx > 0. Recall the Definitions 3.9 and 3.10 of the absolute spectrum Y,ps and
the extended point spectrum Yeyt, respectively, and Definition 3.20 of the boundary
spectrum Ypay. Assume that there exists a dense subset in the absolute spectrum
where the absolute spectrum is (i) simple (see Definition 3.21) and (ii) not reso-
nant (Definition 3.22) for both the spiral wave linearization L, and the boundary
linearization (3.13). Moreover, we assume that Yoy, and Xnay do not intersect. For
the spectrum of the operator L. g defined in (3.14), we then have

spec AC*,R — Zabs U Eex‘c U Ebdy

as R — oo in the Hausdorff distance on each fixed compact subset of C. Note that
Yabs consists of semi-algebraic curves whereas Lext UXpay 15 discrete. Convergence
to the discrete part preserves multiplicity and is exponential in R for Y and
algebraic in R for Ypqy. Convergence to the continuous part Xans is understood in
the sense that for each fized A € Taps the number of eigenvalues of L. g in U(N)
converges to infinity as R — oo for each fized neighborhood U(\.) of \..

Theorem 3.23 is proved in §10.
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REMARK 3.24 (Absolute spectra versus pseudo-spectra). We emphasize that
ergenvalues accumulate along curves that are not given by the Fredholm boundaries
or the essential spectrum and instead lie strictly to the left of the Fredholm bound-
aries. The limiting curves lie in the absolute spectrum and are, just as the Fredholm
boundaries, periodic in the compler plane with period iw, and determined solely by
the linear dispersion relation of the wave trains. It is possible to prove that the norm
of the resolvent of L. r grows exponentially in R in regions where the Fredholm in-
dex of the linearization is not zero; see [91] for a precise statement in a context of
travelling waves on the real line. Thus, the e-pseudo spectra of L, r, defined as the
set of \ so that the resolvent has norm 1/e, fill large regions between the absolute
spectrum and the Fredholm boundary for € > e(R) with e(R) — 0 as R — 0.

3.7. Spectra of truncated spiral waves

This section extends the results from §3.6 by including the corrections to the
nonlinear spiral wave profile considered in §9. The solutions constructed can be
thought of as spiral waves glued to a boundary sink that corrects for the influence
of the boundary conditions.

We therefore define the linear operator

(3.15) Ly ru = DAu+ w(R)Oypu + f'(ur(r,v))u for |z| < R,

au—&—b@ =0 atl|z|=R
on
in Cartesian coordinates on L?({|z| < R}) with dense domain {u € H?({|z| < R}) :
(au+ bg%)hl.‘:R = 0}, where ug and wg are profile and frequency of the truncated
spiral wave from Theorem 3.19. The spectrum of L, g consists of discrete point
spectrum for each fixed R.

We are interested in the convergence of the spectrum of £ r as R — oo. The
results are very similar to the results presented in §3.6. The main correction due to
the gluing procedure accounts for the boundary sink by replacing the boundary
spectrum Ypqy in the results of §3.6 with the extended point spectrum of the
boundary sink. To be precise, consider the linearization at the boundary sink
ups(z,t) in the Floquet form

U't_)\u:Duww+f/(ubs('Tat))u7 T < 07
(3.16) au + buy, =0, x =0,
u(z,t) = u(z,t + 27 /w), V(z,t) € R~ x RT.

Since boundary sinks converge to the asymptotic wave trains of the spiral waves,
we can again use the absolute spectrum X,,s of the asymptotic wave trains. We
can also define the space L%(R‘) of functions with exponentially weighted norms
given by
0
iy = [ luer s,
1 r=—00

where the rates n will be related to the exponential growth rates v;(\) that we
identified in Definition 2.10.

DEFINITION 3.25 (Extended point spectrum of boundary sinks). We define the
extended point spectrum Yexihs of the boundary sink as the set of A\ & Y,ps for
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which there exists a nontrivial solution u(x,t) to (3.16) with u(z,0) € Ly (R™) for
some n € Jo(A) (where Jo(N\) was defined in Definition 2.10).

The following main result closely mimics Theorem 3.23.

THEOREM 3.26 (Spectra of linearization at truncated spiral). Consider the lin-
earization Lq p at the truncated spiral (3.15). Assume that there exists a dense
subset in the absolute spectrum where the absolute spectrum is (i) simple (see Def-
inition 3.21) and (ii) not resonant (see Definition 3.22) for the linearizations L,
about the spiral wave and (3.16) about the boundary sink. Moreover, we assume
that the extended point spectra of spiral wave and boundary sink do not intersect.
We then have convergence

spec ‘C’S,R — Yabs U Lext U Lextbs

as R — oo in the Hausdorff distance uniformly on each fized compact subset of C.
Note that Xaps consists of semi-algebraic curves whereas Yexy U Yextbs 1S discrete.
Convergence to Yoyt is exponential and convergence 1o Yexips algebraic in R (and
both preserve multiplicity), while convergence to Y,ps is understood in the sense
that for each fized Ay € Yaps the number of eigenvalues of Ls g in U(N,) converges
to infinity as R — oo for each fixed neighborhood U(Ai) of A«.

Theorem 3.26 is proved in §11.

3.8. Transverse instability of spiral waves

We note that none of our results about spectra or Fredholm properties of the
linearization L, at a spiral wave requires assumptions on the transverse stability
of the asymptotic wave train belonging to the spiral wave. We show here that
transverse instabilities of the wave trains become important when considering decay
or growth properties of the C%-semigroup e“~* generated by £, on L2(R?, CV). In
particular, we will show that a transverse instability of the asymptotic wave train
implies linear instability of the planar spiral wave — we refer to this instability
mechanism as a transverse instability of a planar spiral wave.

LEMMA 3.27. Assume that u.(r,¢) is a transverse spiral wave and that its as-
ymptotic wave train us (kx—wt) is unstable with respect to transverse perturbations
so that there are constants v > 0 and A\, € C with Re A, > 0 as well as a nontrivial
2m-periodic function veo (&) with
(3.17) D(k?0ge — Yoo + wiOeVoo + [ (U0 (€)) Vo0 = Moo
Under these assumptions, we have

inf {a e R: IM, > 1: [[e’"

< Mae® vt >0} > Re A, >0,

where e®+t denotes the C°-semigroup generated by the linearization L, at the spiral
wave u, on L?(R% CN).

We will prove Lemma 3.27 in §8. We briefly discuss a few implications of the
preceding lemma.

Recall that spectrally stable wave trains can be unstable with respect to trans-
verse perturbations as our definition of spectral stability of wave train pertains only
to perturbations in the direction of propagation. Assume that wu, is a transverse
spiral wave whose extended point spectrum lies on or to the left of the imaginary
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axis. It then follows from the results in §3.2 that the entire spectrum of the lin-
earization L, at u, lies on or to the left of the imaginary axis. If the spectral
mapping theorem held for L., we could conclude that the semigroup generated by
L, could grow at most weakly exponentially. However, Lemma 3.27 shows that if
the asymptotic wave train is transversely unstable, then the spectral mapping the-
orem cannot hold for the linearization. The reason for the exponential growth of
the semigroup is the fact that the resolvent of £, in L?(R%,C") cannot be bounded
uniformly along the vertical line Re A = Re A, (we will prove this in §8).

On large bounded domains, Theorems 3.23 and 3.26 imply that the spectrum of
the linearization at the truncated spiral wave will, inside each fixed bounded region
in the complex plane, lie on or to the left of the imaginary axis for all sufficiently
large radii R. Hence, if the transverse instability of the asymptotic wave train
generates unstable eigenvalues in the spectrum of the truncated spiral wave that
are bounded away from the imaginary axis, then these eigenvalues A\ must diverge
with |ImA| — oo as R — oo. We note that we have not proved that transverse
instabilities of the asymptotic wave train create unstable point spectrum of the
truncated spiral wave, though we expect that they do.






CHAPTER 4

Wave Trains

We give the proofs of the results stated in §2. Specifically, we consider one-
parameter families of wave trains and transverse instabilities of wave trains in §4.1,
characterize the spectra in the laboratory frame in §4.2, and compare properties of
the PDE linearization and the spatial dynamical system in §4.3. In §4.4, we give
a different but equivalent definition of the relative Morse index of the wave trains
that will be useful later.

4.1. Proofs of Proposition 2.1 and Lemma 2.12

We begin with the proof of Proposition 2.1. We want to solve the equation
(4.1) F(u,k,w) = k*Duge + wue + f(u) =0

in H2(S1,RY) x R? near the solution (u, k,w) = (Uso, ks, ws). The linearization of

this equation at us, gives the linear operator L.,(0)
Leo(0) = k2D + wae + [ (uso(£))

in L2(S',CY). The condition 95F(0,0) # 0 of simplicity of the linear dispersion
relation, where the Evans function E was defined in (2.7), guarantees that the eigen-
value A = 0 of £, (0) has algebraic multiplicity one; see [40]. In particular, the ker-
nel of ﬁCO(O) is one-dimensional and spanned by u’_, the kernel of the adjoint opera-
tor £29(0) is spanned by a nonzero function w4, and the L2(S*, CN)-scalar product
(taa, ul.) # 0 of ul, and u,q does not vanish. We can now apply Lyapunov—Schmidt
reduction: First, we solve (4.1) projected spectrally onto the range Rg(Leo(0)) of
Leo(0) near (u, k,w) = (oo, ks, ws) for v =1u — uq € (Ru’ )t € H2(S',RN) using
the implicit function theorem. It remains to project (4.1), evaluated at the solu-
tion u = ueo +v(k,w) of the previous step, spectrally onto the one-dimensional null
space of L (0), which gives the equation h(k, w) := (tad, F (oo +0(k,w), k,w)) = 0,
where h(ky,w,) = 0 and O,h(ky,ws) = (Uad, us) # 0. We can therefore solve the
reduced equation for w as a function of k£ using the implicit function theorem.

The derivative w’(k) of the nonlinear dispersion relation can be computed as
follows. Evaluating (4.1) along the family u(; k) of periodic solutions that we found
in the preceding paragraph, taking the derivative with respect to k, and evaluating
at k =k, gives

A ou dw
(4.2) ,CCO(O)%(& k)= — Qk*Dagguoo + @(k*)aguoo ;

see [35, §4] for details. Projecting with u,q onto the kernel of £ (0) gives the
expression

dw 2k (uaq, Dug)

<uad7 u{>0>

Cg,nl = @(k*) =

31
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To see that the linear and nonlinear group velocity coincide, we take the derivative
of the eigenvalue problem

ﬁco(”)“(”) = )‘CO(V)U(V)v

with respect to v, evaluate at A = v = 0, and project onto the kernel of ﬁco(O)
using u,q. The resulting expression for [—dAq,/dr(0) +¢] coincides with (2.8). This
completes the proof of Proposition 2.1.

To prove Lemma 2.12, we solve the eigenvalue problem (2.12)

Ao = D(k*ge + 13 )v + wdev + [ (oo (€))v
near (v, \, v, ) = (u/,0,0) using Lyapunov—Schmidt reduction on L?(S, C¥). The
reduced equation on the kernel is
)‘<uad7 uf}o> = <uada Dugo>yi + O(Vi%

which proves the lemma.

4.2. Proofs of Lemmas 2.3 and 2.8

We consider the linear non-autonomous parabolic equation

(4.3) U = Dty + f'(Uoo (b — wi))u

27T\ w

and are interested in the set of \ for which ¥y — e does not have a bounded

inverse, where

T L*R,CN) — LR, CY), w(-,0) — u(-,271/w)
is the period map associated with (4.3). If we substitute the Floquet ansatz u(z, t) =
eMi(z,wt) into (4.3), and use 7 = wt, we can rewrite (4.3) as the differential
equation
(4.4) Uy =V

vy = =D —wdru + [ (uoo(kx — T))u — Auj,

where we replaced @ by u. Imposing 27-periodic boundary conditions in 7, we can
write this equation in the abstract form

(4.5) u, = A(z; Mu,
where A(z; ) is a closed operator on Y := Hz (S, CN) x L2(S!, CN) with domain
Yl =HY(SY,CN) x Hz2 (S, CN); see [93].
LEMMA 4.1 ([93, Theorems 2.6 and 2.8(i)]). The closed operator T,
- d _
7-)\: di_A(vA) : L2(R>Y) _>L2(R7Y)7
x

with domain L*(R, YY) N HY(R,Y) has a bounded inverse if and only if A does not
belong to the Floquet spectrum of Wy

The differential equation (4.4) is non-autonomous in the spatial evolution vari-
able z. However, if we change coordinates by replacing the time variable 7 by
o = kx — 7, we obtain the autonomous equation

(4.6) Uy = —kOyu+v
vy = —kOyv — D7 wdpu + (oo (0))u — Au,



4.2. PROOFS OF LEMMAS 2.3 AND 2.8 33

which we also write as
(4.7) u, = Ao (M,
where A ()) is a closed operator on Y with domain H?(S',CN) x H(S!,CN).

LEMMA 4.2. The operator Ty

T\ = % — Ao\ L*R,Y) — L*(R,Y)

with domain
D(Ty) = {(u,v) € L*(R,Y"); (85 + k9y)(u,v) € L*(R,Y)}
18 closed. It has a bounded inverse if and only Zf7~'>\ does.

PrOOF. We refer to [49, §2.2] for the proof that T, is closed on L(R,Y).
The statement about invertibility is obvious as both operators are conjugated by a
transformation of the independent variables. O

The key is now that it is far easier to check invertibility of 7\ as this involves
only the z-independent operator A.(\). Particular solutions to (4.6) with expo-
nential growth e”* can be readily constructed provided v is an eigenvalue of A (A).
Note that A (A) has compact resolvent so that its spectrum is discrete.

LEMMA 4.3. The operator Ty has a bounded inverse if and only if Ax(\) is
hyperbolic, i.e., if none of its eigenvalues is purely imaginary. In particular, \ is
in the Floguet spectrum if and only if Ax(\) has a purely imaginary eigenvalue v.

PROOF. If there is an eigenvalue v of Ay (\) with Rerv = 0, then we can
construct an almost eigenfunction as in [50, 90], and T does not have a bounded
inverse. On the other hand, suppose that all eigenvalues of A (\) have non-
zero real part. Transforming back to the 7 = kx — o variable, this excludes the
existence of bounded, purely imaginary Floquet exponents of (4.4) with Floquet
eigenfunctions (u,v)(x + 27 /k,7) = ¢ (u, v)(z, 7) for some v € R. Floquet theory
72, 93] for (4.4) shows that 7, is then invertible, and therefore 7 is invertible as
well on account of Lemma 4.2. (]

It remains to study the eigenvalue problem (2.11),
vu = —kdyu+ v
vo = —kO,v — D wdeu + [ (oo (0))u — Au]

with 27-periodic boundary conditions for (u,v). This is equivalent to the general-
ized eigenvalue problem

(4.8) D(kOy + v)?u + wlu + f'(too(0))u = Au

for v, again with 27-periodic boundary conditions for u and its derivative. Adding
the term crvu with ¢ = w/k on both sides, we find that « needs to be a 2m-periodic
solution of

(4.9) D(kDy + v)*u 4 c(kdy + v)u+ f'(too(0))u = (A + wrv/k)u.

Comparing (2.5) and (4.9), we have found a way to compute the spectrum in the
co-moving frame: for v € iR, we have

Ao = A+ cvEspecL <=  Ag = A= Ao — v € specUy.
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Note that (4.8) implies that A\g (v +ikl) = Mgt (v) —iwl for all £ € Z and v € C. This
completes the proof of Lemma 2.3 and of the first part of Lemma 2.8. The remaining
statements in Lemma 2.8 regarding the spatial eigenvalues v of the operator A ()
can be proved easily using Fourier series; see [93] for similar arguments.

4.3. Comparison of PDE and spatial-dynamics linearizations

We remark that elements of the null space of
Leo() = Aeo = D(kdy + 1) + w8y + ' (uso(0)) — A, Ao = A+ cv

and
B —(kdy +v) id
Ae(N) —v = ( —D ' wdy + f'(use(0)) = A —(kBy +v) )

are related. If u is an eigenfunction of ﬁco(u) associated with the temporal eigen-
value Aco, then u = (u, (kd, + v)u) is an eigenfunction of A (\) associated with
the spatial eigenvalue v, and vice versa. Furthermore, u,q is an eigenfunction of
the L2-adjoint

L£2Y() = D(—=kBy 4 v)? 4 ¢(—kDy + V) + [ (too(0))*

associated with the eigenvalue A, if and only if u.q = (D(—k0, + V)Uad, Duiag) 18
an eigenfunction of the formal adjoint

( kigo w8y — f’(uoggz))* +AD™! )

of Ax(A) to the eigenvalue v.

4.4. The relative Morse index

We give an equivalent definition of the relative Morse index iy (\) that we
defined in §2.4. Recall that A\ belongs to the Floquet spectrum of the wave trains if
and only if there exists a purely imaginary eigenvalue v € iR of the operator A, ()
defined in (4.7).

We define the reference operator

— k0, id
(4.10) Aref = < -D'wd, +1 —ko, >

onY = Hz x L? with domain H2 x H'. Using explicit Fourier-series calculations,
we see that the operator A,ef is invertible on Y and that there are bounded stable
and unstable projections P and Py = id —P:; on Y that commute with A, on

its domain such that Respec Aret|rg(p: ) < 0 and Respec Aret (A)[rg(pr,) > 0.

PROPOSITION 4.4. If X\ is not in the Floquet spectrum of the wave train ey,
then the following is true.

(i) There exist bounded stable and unstable projections P5. () and PL(\) =
id—P5.(A) onY that commute with Ax(\) on its domain such that

Respec A (A)|rg(pz,(n) <0 and  Respec A (A)|rg(pz, (1)) > 0
(i) The operator P

ref

—PY%(N):Y =Y is compact.
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(4ii) If;\ 1s also not in the Floquet spectrum of the wave train us., then the operators
(4.11) P,(3) : Rg(P2 (V) — Re(P ()
and
t(\, 5\) i Rg(Pu (M) x Rg(vavt(;\)) —Y, (u',u’)— u"+u’

are Fredholm operators with the same Fredholm index, which we denote by
ip,, (M),

(iv) Choose Ainy > 1 so large that [Ainy, 00) belongs to the resolvent set of W,
then in(A) = ip,, (A, Ainv), where iy (A) was defined in §2.4.

PRrOOF. Statement (i) and the claims for the operator in (4.11) were proved
in [97, Theorems 5.1 and 5.2]. Alternatively, these statements were proved in
[93] for (4.5), and since the evolution operators and projections of the exponen-
tial dichotomies of (4.5) and (4.7) are conjugated by the strongly continuous shift
generated by u, = —k0,u, the results also hold for (4.7).

Statement (i) was proved in [93, Remark 4.1]. Alternatively, we can use the
results in §5 below: Using the notation introduced there, the stable projections P;
of the operator A, defined in (5.22) and P8, of the right-hand side of (5.25) differ
only in the finite-dimensional space Rg(Q.,), and we conclude that the difference
of these projections is compact. Since the projections P of (5.25) converge in
norm to the stable projections P2 of the right-hand side of (5.24), we see that the
difference P35, — P;.; is also compact. Finally, we note that the operator on the
right-hand side of (5.24) corresponds to the operator As(A).

To prove the statement about the operator ¢(\, 5\), we note that the map (4.11)
and the operator

(AN s Rg(Pye(V) x Rg(Pye(V) — Y, (u,u’) — Py (Au" +u’
share the~ same Fredholm and Fredh(zhn index properties. The difference of ¢(\, 5\)
and (A, A) is given by Pg,(A) — Pi.(X), which is compact by (ii) (add and subtract
P".). This completes of the proof of (iii). Finally, statement (iv) can be proved

ref
using Fourier series as in [93] or [97, §5]. O






CHAPTER 5

Exponential Dichotomies

Throughout this section, we assume that u,(r, 1), s (¢), and 0(r) are smooth
functions, written in polar coordinates (r, ), such that for some non-zero number
Ky

|U*(’I“, ) - uoo(k:*r + G(T) + ')|C1(Sl) —0asr— o0,

and 0'(r) — 0 as r — co. Note that we do not assume that u, is an Archimedean
spiral wave or even a solution to the reaction-diffusion equation (3.2). We are
interested in the linear eigenvalue problem L,u = Au where

1 1
L.=D |0, + ;@ + ﬁaw +wi Oy + [ (us(r,v)).

We assume that w, is non-zero. We rewrite this eigenvalue problem as a first-order
differential equation

(5.1) Up =V

v, = ,%v - %awwu — D wi Oyu + f (us(r, ) )u — A

in the spatial “time”-variable r. The system (5.1) can be viewed as an abstract
linear ordinary differential equation

(5.2) u, = A(r; M)u, u = (u,v)

on the Banach space X := H'(S',CV)x L2(S!,CY). For each fixed r, the operator
A(r; \) is closed on X with domain X! := H?(S*,CN) x HY(S*,CY).

We say that a function u € CY(J, X) is a solution of (5.2) on an interval J € R
if for each 7 in the interior of J the function u(r) is continuous with values in X*
and differentiable in 7 as a function into X, and satisfies (5.2) in X.

In §5.1 and §5.2, we construct exponential dichotomies in the core region
0 < 7 < R and the far-field » > R, respectively. In §5.3, we describe different
ways in which the resulting projections can be compared to each other. Section 5.4
deals with exponential dichotomies for the adjoint differential equations. Finally,
we consider exponential dichotomies in weighted spaces in §5.5 and discuss expo-
nential trichotomies, where we allow for neutral center directions, in §5.6. For
background, we refer to [82] for basic results on exponential dichotomies in this
infinite-dimensional, ill-posed setting, in particular for a result on robustness of
dichotomies, and to [93] for a slightly different approach based on Galerkin approx-
imations.

37
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5.1. Exponential dichotomies in the core region

Upon introducing the logarithmic radial time s = logr as in [102], the eigen-
value problem (5.1) becomes

(5.3) us = e’v
Vs = —v — e “Opypu — e D Hw. Opu + f(us(e®,¥))u — Aul.
We introduce the new variable w = e®v so that (5.3) becomes
(5.4) Us =W
wy = — Oyt — > D w, Oyu + f/(ux(e®,v))u — \uj,
which corresponds to the PDE
(5.5) D(uss + upy) + € (wary + f/(us(e®,1))u — Au) = 0.

We consider (5.4) on the Hilbert space X = H'(S!,CV) x L2(S',CN) and write it
as the abstract differential equation

(5.6) us = Acore(s; ).

Our goal is to show that (5.6) has a dichotomy on (—o0, s.] for each fixed s, € R.
We begin with the limiting equation

(5.7) Us =W
Ws = —a¢¢u,
which is obtained by formally taking s = —oco in (5.4). Equation (5.7) can be

readily solved using Fourier series. The resulting solutions can be distinguished by
their growth or decay properties which give a decomposition of X into the following
spaces:

E¥__ = span {quiw (1£> ; L€ Z\A{0},up € (CN}

E"™_ = span {quiw (é) ; L€ Z\{0},up € (CN}

E°_ = span { (uo) i Ug, Wo € (CN} )
wo

Note that solutions to initial data in E%_ exist for s > 0 and decay exponentially
with rate 1, while solutions to initial data in E""_ exist for s < 0 and decay again
exponentially with rate 1. Solutions with initial data (u,v) € E¢_ = CN x CV are
given by (u+ sv,v). Associated with these subspaces are projections Pis(!ouu/ ¢ which
ss/uu/c
—0o0

project onto E , respectively, along the other spectral subspaces. For elements

(u,v) € B¢, we define the complementary projections P (s) = id — P () and
the asymptotic linear generator of the evolution via

()= () ()= () e (31)

We can extend these projections to X through P /8T (g) .= prer/eker(gype

The following proposition states that solutions to the full equation (5.4) behave in
the same fashion as those of the limiting equation (5.7).
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PROPOSITION 5.1. For any fized s« € R, the following is true. There exists a
constant C' > 0 and strongly continuous families P*(s), P*(s) and P°(s) of com-
plementary projections on X, all defined for —oco < s < s, as well as linear evolu-
tion operators ®=(s;0), @™ (03 s) and PC (s;0) on X which are strongly continuous
in (s,0) for —oo < 0 < s < s, and differentiable in (s,0) for —co < 0 < 8 < 84,
such that the following is true on X:

e Compatibility. We have ®%(o;0) = P¥(0), ®*(0;0) = P™(0), and
id = PS(s) + P (s) + P*(s)
for all s < s.. The projections are bounded in norm uniformly in s.
e Instability. For any ug € X, ®"(s,0)ug is a solution of (5.6) with

|DU (55 0)ug|x < Ce™l*=N ug|x,
where s < o < s,.
e Stability. For any ug € X, ®%(s,0)ug is a solution of (5.6) with
2% (s;0)up|x < Ce™ 7N |ug|x,

where o < s < s,.
e Neutral directions. We have dimRg(P°(s)) = 2N. For any uy € X,
D (s,0)ug is a solution of (5.6) with

|02 (s; 0)uo|x < C(1+[s = al) [uolx,

PE(s) = @ (s5), |P€(s) — PEOO|L(X) = O(e25)
where 0,5 < s.. We can decompose even further
PC(s) = PX"(s) + P& (s), 1PE ()| ) + P2 () |y < C(1+s))

with
DK (5;0) := B (5;0) PE () = P (5)D° (s;0)
T (5;0) == B° (s5;0) PE" (0) = PE*"(5)®° (s;0).
There exist bounded transformations T'(s) : EC ., — E°(s) C X with
IT(s) —id || = O(e*), ®° (s,0) =T(s)e* =T 1(q),
T~ (o) PE/5 (o) = PX/E (o) T~ (o).
In particular, for uxe = PX®"(0)uyer, the last identity implies that
B (5, 0)urer = T(5)eA =D T (0 upey = T(5)eA= =) PE ()T (0) ey
=T(8)T 1 (0)ter = (id +O0(e**) + O(e*”) ) uscer-
e Invariance. The solutions ®%(s; o)ug, P (s; 0)ug, and P (s;0)uy satisfy
D3(s;0)ug € Rg(P=(s)) for all o < s < s,
DM (s;0)ug € Rg(PY(s)) for all s <o < s,
D¢ (s;0)ug € Rg(P<(s))

c

for all s,0 < s..
PROOF. Since the perturbation
e D w.Opu + f/(u.(e®,9))u — M,

is bounded in X and converges to zero as s — —oo, we can apply the results in [82]
o (5.4). Note that the technical hypothesis [82, (H5)] is satisfied on account of [73,
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Theorem 2.5] which applies to (5.5). As a consequence, for any 0 < ¢ < 1, there
are projections P%(s), P*"(s) and P¢(s) as well as evolution operators ®%(s, o),
" (s,0) and P (s,0) of the full problem (5.4) such that

|®% (s, 0)|| + || D™ (0, 5)|| < Ce~ sl for all o < s < s,
[®° (o, 5)|| < Ce’ls—el for all 5,0 < s..

In fact, since the perturbation converges to zero exponentially as s — —oo, the
projection P¢ (s) converges with rate e?* to the orthogonal projection onto E€ _ as
s = —oo. The equation in the center subspace Rg(P° (s)) can therefore be projected
onto the fixed reference frame E°__, where it is an O(e?*)-perturbation of u/, =
A° __u.. As a consequence, following for instance [28, Chapter 3.8], the solutions are
foliated over this asymptotic equation in the form stated. Lastly, differentiability
with respect to the initial time o can be shown as in [93, Lemma 5.5]. O

We can now define the stable and unstable projections and dichotomies in the
core region that we will rely on in the remainder of this paper. We set

P53 (s) := P¥(s) + P& (5), P"(s) := P™(s) + PX"(s)
(5.8) D° (s,0) := D*(s,0) + @3(87J)P§ker(a)
D" (5,0) := B (s,0) + ® (s,0) P~ (0)

and refer to these operators from now on as the exponential dichotomies in the core
region.

5.2. Exponential dichotomies in the far field
Recall the eigenvalue problem (5.1)

Up =V
1 1 1 ’
Up = T—Q&Mbu — D7 wiOypu + f(us(r,¥))u — Aul,
which we write as the abstract system
u, = A(r; Mu

on the Banach space X = H!(S!,CN)x L?(S*,C"). Alternatively, we can consider
this equation in Archimedean coordinates ¥ = k,r+6(r) 4. In these coordinates,
(5.1) becomes

(5.9) tr = — (ks + 0 (r))0gu + v

1 1
v = —(ky + 0'(r))0gv — —v - T—Q&Mu
— DM w,Ogu + f(us(r, 0 — kur — 0(r)))u — A,
which we write as

(510) u, = Aarch(r; )\)ll,
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again on the Banach space X = H'(S',CV) x L2(S',C"). We equip X with the
r-dependent norm [102]

1
(5.11) lu(r)l%, = pllﬁnp +[uf? ) +lvlge

and write X, whenever the r-dependence of the norm needs to be emphasized.
Similarly, we equip the common domain X! = H?(S*, CVN)x H(S*,CV) of A(r, \)
and Aguren(r, A) with the r-dependent norm

(5.12) () ey = s + fl?  + ol
We are interested in comparing solutions to (5.9) with solutions to the asymptotic
equation
(5.13) Up =0
vy = =D 7w, Oyu + (oo (kur + 1) )u — A

for the wave trains. We therefore introduce the variable! ¥ = k,r 4 ¢, which
transforms (5.13) into

(5.14) Up = —k,Ogu + v

vy = —keOgv — D7 w Oy + f (too (9))u — M
posedon Y = H= (S1,CN) x L?(S',CY), where the right-hand side coincides with
the operator A (A) that we discussed in §2.4. Note that (5.14) coincides with

(2.11) which describes the eigenvalue problem of the wave train in the laboratory
frame. Before we proceed, we recall that our assumptions on w, imply that

(5.15) I (ue(ry ) — f(uco(kur +0(r) + 1)) as r — oo.
+ 1, (5.15) becomes
F (ue(r,d —ker —0(r)) — f(ux(¥)) as r — co.

In the Archimedean coordinates ¥ = k,r + 6(r)

Neither (5.9) nor (5.14) admits a semiflow in the variable r. Instead, we are inter-
ested in exponential dichotomies.

DEFINITION 5.2 ([82, §2.1]). We say that (5.9) has an exponential dichotomy
on a subinterval J C RT if there exist constants C and 1, strongly continuous
family of projections P3/" : J — L(X). P3(r) + P%(r) = id, and families of linear
operators ®5(r; p) and ®“(r; p) such that the following is true:

e Stability. For any p € J and ug € X, there exists a solution ®5(r; p)ugy
of (5.2) that is defined for r > p in J, is continuous in (r,p) forr > p
and differentiable in (r,p) for r > p, and we have ®%(p; p)ug = P*(p)ug
as well as

125 (r; p)ug|x, < Ce™ "l jug|x

for allr > p such that r,p € J.

INotation: We use the same letter ¢ for the spiral-wave coordinate @ = k.«r 4 6(r) + ¢ and
the wave-train coordinate ¥ = ks« + 1 as this makes it easier to compare the formulations (5.9)
and (5.14).
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e Instability. For any p € J and uy € X, there exists a solution ®"(r; p)ugy
of (5.2) that is defined for r < p in J, is continuous in (r,p) forr < p
and differentiable in (r,p) for r < p, and we have ®"(p; p)ug = P*(p)ug
as well as

|"(r; p)uo|x, < Ce™ "l fug|x,,
for all v < p such that r,p € J.
e Invariance. The solutions ®°(r; p)ug and ®(r; p)ug satisfy

O°(r; p)ug € Rg(P(r))  forall r > p withr,p e J,
Q" (r; p)ug € Rg(P (1))  forall v <pwithr,peJ

e Regularity. The solution operators give strong solutions, that is, ®%(r; p)ug
and ®"(p;r)ug are differentiable in v and p for all r > p and all initial
conditions ug in a dense subset of X.

REMARK 5.3 (Strong solutions). We note that our characterization of differen-
tiability in Definition 5.2 is slightly different from the one adopted in [82]. Differ-
entiability on a dense subset is sufficient to guarantee uniqueness of the continuous
evolution operators as a continuous extension of strong solutions and provides a
convenient way to guarantee uniqueness in the context of strongly continuous semi-
groups, where the dense subset is usually chosen as the domain of the generator.
Alternatively, one can require differentiability in r for v > p for all initial condi-
tions, which was the approach taken in [82]: we shall recover this property in our
situation as well.

Proposition 4.4 shows that the asymptotic equation (5.14) has an exponential
dichotomy on Y if and only if A is not in the Floquet spectrum of the wave trains.
Our goal is to prove that (5.9) has an exponential dichotomy on X, = H' x L?
for large r if the asymptotic equation (5.14) has an exponential dichotomy on
Y = H2 x L?. In addition, it will be useful to understand the relation between
the projections associated with these two dichotomies. The following lemma, which
follows immediately from Lemma 5.6 below, allows us to compare these projections.

LEMMA 5.4. There are constants C > 0 and R, > 0 so that the operators
Z.: X,—Y, (uv)r— (A;%A(r)%u,v)
with
Ag = =D w09 +1, Alr):= 7%87979 — D 'w, 0y +1
are isomorphisms with | L. |1, x, v) + HI;lHL(y’XT) < C forallr > R,.
We can now define the bounded projections
(5.16) P/ (r, \) = T P (NI € L(X,)

whenever the asymptotic equation (5.14) has an exponential dichotomy on Y with

projections P.;"(\). Note that, even though the projections PS (A\) on Y do not
depend on r, the resulting projections PS5 (r, A) on X, will depend on r since the
isomorphisms Z, : X, — Y depend on r. We can now state our main result.

PROPOSITION 5.5. Assume that the asymptotic equation (5.14) has an expo-
nential dichotomy on Y. There are positive constants C, 1, and R, such that
(5.9) has an exponential dichotomy on [R.,00). Furthermore, we have ||P%(r) —
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P (") |lux,y < Cr=3, where P5(r) and P (r) denote the projections associated
with (5.9) and (5.14), respectively, on X,..

The remainder of this section is devoted to the proof of Proposition 5.5. The
main idea is to use robustness of exponential dichotomies as established, for in-
stance, in [82]. There, we constructed exponential dichotomies to perturbed equa-
tions using a mild integral formulation and a fixed point argument in exponentially
weighted spaces. In our current case, perturbation terms are small and involve
terms of order O(%) In the proof, we will encounter two main difficulties.

First, comparing (5.9) and (5.14), we see that the perturbation term —-50yy
is not bounded (not even relative to the remaining principal part D~ 'w,d,). Thus,
the main technical point of the proof of Proposition 5.5 is to show that this un-
bounded term does not matter as far as exponential dichotomies are concerned.

An additional difficulty stems from the fact that the corotating frame, passing
from (5.13) to (5.14), changes regularity properties of the equation. In particular,
the equation in the corotating coordinates is not bisectorial, as one can readily verify
by calculating the spectrum of the leafing order operator, setting terms involving f’
to zero. On the other hand, the equation in the corotating frame still has smoothing
properties, as one can see either directly using spectral computations or by noticing
that solution of (5.13) transform back to solutions of (5.14) using the simple shear
transformation.

The following lemma will be crucial for addressing the unbounded perturbation

1
— 72 0yy-

LEMMA 5.6. There are constants c1,c2,C > 0 such that the following is true
for each r > 1:

(i) The operator Aéo : H2(SY) — L2(SY) is well defined and an isomorphism.
(ii) The operator A(r)z : H'(SY) — L2(S") is well defined, bounded uniformly in
r, and continuously differentiable in r with

| [or(a)®)] a3

(iii) The operator defined on X, — L2(S*) x L2(SY) through (u,v) — (A(r)zu,v)
s an isomorphism with

er (JA) Fuffa + vz ) < Ik, < o (140 Pulds + vf3)
for allu = (u,v) € X,.

C

L(L2) — r

PrOOF. Using Fourier series, it is straightforward to prove (i) and (iii) and to
see that A(r)% : H' — L? is well defined and bounded. Continuous differentiability

of A(r)% is also clear since the family of operators is analytic in r. We compute

the derivative

1
2

1 1 1 1 11 1
9r(A(r)?) = 0r {—ﬂ&w — D7 'w.dy + 1} = 5000 A(r)7% = {ﬂ&w] Ar)—2

and conclude that

H [0,4(r)*] A~ !

L(L2) T

1 _
73(91919/1(7") 1 <

¢
L2y T

for some constant C' > 0 that is independent of 7. (]
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Next, we introduce the notation T'(r) := — (k. + 6'(r))0y and
B:= D7 [f"(ux(9)) =N =1, S(r) := =D~ f (w(r,9—kur—0(r))) = [ (uos (V)]
so that (5.9) becomes
(5.17) ur =T(r)u+wv
v =T(r)v+ A(r)u + Bu — % + S(r)u.

Note that the last two terms in the second equation in (5.17) converge to zero in
norm as 7 — co. The operator T'(r) generates the shift in . The principal term in

(5.17) is the system
(0 1
W= 4y 0 )™

It is convenient to symmetrize the principal term by using the transformation
a(r) = A(r)zu(r).

Lemma 5.6(iii) shows that the | - |x, norm for (u,v) and the ordinary L?-norm for
(i1, v) are equivalent so that we can simply take (@,v) € L2(S*,CV) x L2(S,CN).
Equation (5.17) becomes

where we used that A(r)2T(r)A(r)~2 = T(r). If we now use that S(r) converges
to zero as r — o0, we get

(5.18) ay = T(r)a+ A(r)2v + o, (1)u
v =T (r)v+ A(r)%ﬁ + BA(T)_%fL +o.(D)a+ o, (1)v.

Proposition 5.9 states that we can safely neglect the o,(1) terms in (5.18) since we
are only interested in proving the existence of exponential dichotomies. We then
exploit the transformation w* = @ + v that diagonalizes the principal part and

leads to
wl = A(r)iwt + T(rwt + %BA(T)_%(uﬁ' +w™)
w, = —A(T)%uf +T(r)w™ — %BA(T)fé(ij +w™)
or
(5.19) w, = [A(r) + K(r)w,
where w = (wt,w™) € L*(S*,C*) for each r and
ion o Al +T(r) 0
A= (XS
1 BA(r)™z  BA(r)"z
Kr):= 2 ( —BA(T)_% —BA(r)—% ) :

Next, we carry out the analogous analysis for the asymptotic equation (5.14). Using
Lemma 5.6(i), we see that the isomorphism

(5.20) Y — L2 x L2, (u,v) — w= (Ao%ou + v, Aéou — )
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transforms (5.14) posed on Y into

(5.21) W, = [Aoo + Koo]W
posed on L? x L%, where
: 3
0 —AZ, — k., 0y
1{ BAZ: BAZ:
ICoo == 1 1 .
2\ —BAL? —-BA?

Since we assumed in Proposition 5.5 that A is chosen so that the asymptotic equa-
tion (5.14) has an exponential dichotomy with r-independent projections, we can
use the r-independent isomorphism (5.20) to construct an exponential dichotomy
of (5.21) on L? x L? with an r-independent stable projection denoted by PS.. We
have the following result.

LEMMA 5.7. There are positive constants Cy, 19, and R, so that the following
is true. For each R > R, equation (5.19) has an exponential dichotomy for r > R
with projections P5(r) that satisfy

_1
[PR(r) — Pxllurzxre) < CR™3
forr > R.
PROOF. We denote by @, the orthogonal projection onto the subspace of
L?(S',C?N) spanned by eTWw, for 0 < |[¢| < m and wy € §2N. We write w,, =
Qmw and w;k = (id —Q, )w for any w € L?. Note that both A, and A(r) commute

with @Q,,. Using this fact, it is not difficult to prove that there is a constant C' > 0
such that

-1 _1. c
45 (1d =Qm)lluw) + 1A 72 (4 =Qm)lley < =
uniformly in m > 1 and r > 1, which implies that

(5'23) ”Icoo (id _Qm) ||L(L2) + ” (id _Qm)lcoo ||L(L2)

. . c

+ 1K (r) (id =Qum)[L(z2) + 1(d =Qum)K(r) [l (z2) < T

uniformly in m > 1 and r > 1. Writing (5.21) in the components given by (w,,, w
we obtain the equation

)

(5.24)
< Wi ) _ ( Ase + QmKooQm QKoo (id —Qpn) > < W, )
Wi )\ (id—Qm)KecQm Ao + (id Q) Koo (id = Q) wl )

which, by assumption, has an exponential dichotomy on L? x L?. Note that differ-
entiability of solutions as stated in Definition 5.2 follows since derivatives in (7, ¢)
exist for sufficiently regular initial conditions ug and therefore so do the derivatives
in the corotating coordinates (r,¢). In a similar fashion, we see that the evolution
operators gain regularity, that is, they map X to X for each given @ > 0. For
small «, this follows as in [82], and we can bootstrap these arguments to larger
values of a using uniqueness of the Cauchy problem.
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Using (5.23) and robustness of dichotomies [82], we see that there are constants
C > 0 and m, > 1 so that the system

() (e ()

also has an exponential dichotomy for each m > m, and that the difference between
the dichotomies of (5.24) and (5.25) is bounded by C/y/m uniformly in m > m..
The existence of these perturbed dichotomy operators and decay estimates follow
from a contraction argument for the mild variation-of-constant formula in [82].
Differentiability is obtained by exploiting smoothing properties of the unperturbed
solution operators and the fact that the perturbation I preserves higher regularity
so that K(r) : X* — X* for a > 0 since the coefficients that appear in Ko, are
smooth. Thus, derivatives in (7, ¢) exist for > p or for smooth initial data ug for
r>p.
Our next goal is to show that

520 (XT )r:(jl(?")JngJC(r)Qm A(()f))(g;)

has an exponential dichotomy and that its projections are close to those of (5.25).
Since (5.25) and (5.26) are both diagonal, it suffices to analyze the range and kernel
of Q,, separately. On the kernel of Q,,, we can use that both Ao and A(r) commute
with @, and that T'(r) generates the unitary shift flow in ¢ that commutes with
the evolution of w, = A(r)%w to prove that each of the systems

(Wih)r = Aswi, (W), = A(r)wi;

m m? m m

have an exponential dichotomy on L? x L? with constant C' and rate larger than
v/m uniformly in m > 1 and that their stable projections coincide. On the range
of ),,, we see that there is a constant C' > 0 so that

C
HQM(’C(T) - ’COO)Qm”L(LZ) < ?

uniformly in m > m,. Similarly, an explicit Fourier-series computation shows that

- - 3/2

1@ (A = AN Quleiey < € (2 4+ 1)
uniformly in m > m, and r > 1. Thus, there are constants C' and R, > 1 so that
for each R > R, equation (5.26) with m := R3 has an exponential dichotomy with
projections whose difference to those of (5.25) can be bounded by CR™3 uniformly
in 7 > R. One also explicitly verifies that solutions are differentiable in r and the
initial radial time p for sufficiently smooth uy and that the evolution operators map
the space L2 x L? into H™ x HM for each M and each r # p.

Finally, using again (5.23), we can conclude as above that the system

(WM> _ ( A(r) + QK (r)Qm _ QmK(r)(id —Qm) ) (Wm>
WTJ); r (ld _QTYL)IC(T)QM -A(T) + (ld _Qm)’C(T) (ld _Qm) WrJr_v

with m = R3 also has an exponential dichotomy for » > R with constants and rates
that are independent of R and that the difference of its projections to those of (5.24)
is bounded by CR™3 uniformly in r > R, since 1/y/m = R~% when m = R3. The
existence of evolution operators for the perturbed equation is obtained from the
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mild variation-of-constant formula in [82], and differentiability on a dense subset
can be obtained using again the fact that the perturbation preserves smoothness.
This completes the proof of the lemma. O

The preceding lemma shows that there are constants C, 7, R, so that for each
R > R. equation (5.19) has an exponential dichotomy with constant C' and rate n
for r > R with projections P (r) that satisfy

(5.27) IPR(1) = PllLrexrey < CR™3, r > R.

Note that the ranges of P}, (r) and Py, (1) agree for all r > max{R;, Ra}. We can
therefore use (5.27) to conclude that for each r > R, we can write the kernel of
P (1) as the graph of an operator from the kernel of P;(r) into the range of Py(r)
and that the norm of this operator is bounded by C uniformly in r. Using [82,
(3.20)], we see that

[P, (2r) — Pr2r)|lLrexre) < Ce™™"

for » > R,. Hence, we obtain

S s S s s s —nr C é R*

PR, (2r) = Pl < PR, (2r) = PR2r)|| + [|PR(2r) = PLI < Ce™ + — < ( ;)
r3 (2r)3

for » > R, where |- || := || - [|L(z2x£2). This completes the proof of Proposition 5.5.

O

REMARK 5.8. We chose to construct the exponential dichotomies in the space
X = HY(SY,CN) x L3(SY,CN). In fact, the same construction works in the spaces
X = HiFo(S1 . CN) x HY(SY,CN) for any a > 0.

For later reference, we state here more formally a result on robustness of expo-
nential dichotomies that we used repeatedly in the proof.

PROPOSITION 5.9 ([82]). Exponential dichotomies are robust. More precisely, if
an abstract equation of the form (5.2) has an exponential dichotomy on an interval
J C RY with constants C' and n, then, for any choice of € > 0 and 1 with 0 < 7 <,
there are constants C' and & > 0 such that the perturbed system
(5.28) u, = A(r; \)u+ B(r)u
with R

1B(r)llLx,) <9
has an exponential dichotomy on J with constants C and 7}, and the projections of
(5.28) are e-close to the projections of (5.2). If, in fact,

1B(r)llLx,) = or(1),

then we can choose 11 = 1.

5.3. Comparing core and far-field dichotomies

We now discuss briefly the relation between the core and far-field coordinates
that we used to construct exponential dichotomies. We started with the system
(5.2)

u, = A(r; Mu, u = (u,v).
In the core region, we used the new coordinates (u, w) := (u,rv) with (u,w) € X =
HY(S',CN) x L?(S',CY) equipped with the usual H' x L? norm and proved in
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§5.1 the existence of exponential dichotomies with projections P"(s) with s = logr
for the core equation (5.6) on X. For r < 1, we have |(u, w)|x = r|(u,v)|x, since

) = lulfs + bl =l + froffs =12 ( Sphuff + ol ) =l o).
We define the linear isomorphism
(5.29) ir): X — X, (u,w) — (u,v) := (u, %)
which has norm 1/r. The projections
P%(r) 1= j(r) P2/ (log )j(r) ! € L(X,)

then provide exponential dichotomies of (5.2) on X, in the core region. Using the
isomorphism

(5.30) X, — L* x L2, (u,v) — (4,v) = (A(r)2u,v)

considered in Lemma 5.6(iii), we can also define projections P/ “(r) of (5.2) on
L? x L?. In the far-field region, we used the variables (u,v) € X, for (5.9) and the
variables (4, v) € L? x L? for the system (5.18) to construct exponential dichotomies
with projections P% (r) for (5.18) on L? x L? and exponential dichotomies with
projections P3 (r) for (5.9) on X,. Lemma 5.6(iii) shows that the constants and
rates of the exponential dichotomies on X, and L? x L? agree. To compare the
far-field projections of the spiral wave with those of the asymptotic wave trains, we
can use either of the following equivalent approaches:
(i) Relate the spiral-wave projections P% (r) with the r-independent wave-train
projections PS5, of (5.21) in the (4, v) variables on the space L? x L?.
(ii) Relate the spiral-wave projections P3 (1) with the r-dependent wave-train pro-
jections P35 (r) defined in (5.16) in the (u,v) variables on X..

5.4. Exponential dichotomies for the adjoint equation

In the preceding sections, we proved the existence of exponential dichotomies
for the linearizations (5.4) and (5.9) in the core and the far field, respectively. In this
section, we relate appropriate adjoint equations on the PDE and spatial dynamics
level.

We focus first on the adjoint systems in the far field. Using the notation

A(r) = —%2(91919—D_1w*&9—i—17 B(r) := =D (" (uu(r,9 — kur — 0(r))) — X) —1,

we can write the eigenvalue problem for the PDE linearization of the spiral wave
as

(5.31) Upr = (A(r) + B(r))u — %ur.

Written as spatial dynamical system in the Archimedean coordinates ¥ = k.r +
6(r) + 1, we obtain

N O P IR
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posed on X,.. Using again @ := Az (r)u and defining C(r) := [0, 4% (r)]A~2(r), we
arrive at the system

(5.33) (Zf)r = (A;(s(i)g(gxzé(r) Tff?l) (Z> ’

T

which is posed on L? x L2. Taking the L? x L? adjoint of (5.33), we obtain the
system

Z\ _ T(r)*+C(r)* A
s (3), - ( A3y T(r) - £

Wl
—
3
S~—
*
+
gl
[N
—
=3
S~—
*
ool
—~
3
S~—
*
v
N
I3
N~

posed also on L? x L?. Writing

-6

equation (5.34) becomes
(5.36) (w> :<T<r>c<r>*i A%<r>*+Aé<r>*B<r>*> ()

Next, we let 2 = A~2(r)*z and obtain

e (o) (R G)

posed on X/ so that w is a solution to the L?-adjoint

(5.38) wrr = (A(r)* + B(r) Y — %w

of the PDE linearization (5.31) of the spiral wave in the coordinates (r,).

We now summarize the conclusions we can draw from the computations carried
out above. First, we can apply the approach developed in §5.2 also to the adjoint
system (5.34) to conclude that (5.34) and (5.37) have exponential dichotomies on
L? x L? and X7, respectively. Alternatively, the arguments in the proof of [93,
Lemma 5.1] show that if ®7(r; p) with j = s, u denote the exponential dichotomies
of (5.33) on L? x L?, then the exponential dichotomies ®3 ;(r; p) of (5.34) on L x L?
are given by ®@;4;(r;p) = ®"(p;7)*. Second, it follows from the form of the right-
hand sides of (5.33) and (5.34) that

639 (GO RE)

for all r for any two solutions of (5.33) and (5.34).

LEMMA 5.10. Suppose that (5.33) posed on L* x L? has an exponential di-
chotomy on [R.., 00) with stable projection P*(r), then there is an R > R, such that
the following is true. If u(r) is a solution of (5.33) on [ry, 00) for some r. > R that
is uniformly bounded, then u(r) € Rg(P3(r)) for r > r.. In particular, not only do
solutions with initial data in the range Rg(P%(r.)) exist and are uniformly bounded
i r > 1., but any solution with these properties must lie in this range.
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PROOF. Step 1: We apply the results from §5.2 and the preceding arguments to
the asymptotic wave-train system and the associated adjoint system and denote the

resulting stable/unstable projections by ’Piéu and PZQ;OO, respectively. We claim
that
(5.40) Re(Piy; ) ® Rg(P) = L? x L2,

To prove this, take any two initial conditions ug € Rg(P5,) and wo € Rg(Psy; o)
and denote the corresponding solutions of the asymptotic systems belonging to
(5.33) and (5.34) by u(r) and w(r), respectively. Equation (5.39) then implies that

(ug, wo) = (u(r),w(r)) =0

for r > 0, since u(r) and w(r) both decay to zero as r — oco. We conclude
that Rg(Phqj ) L Rg(P5). We can apply the same argument to the unstable
projections and arrive at

Re(Padgj o) L Re(Pa)s Re(Pagj 00) L Re(Py)-
Since we have
Rg(Pigjoe)” @ Re(Phijoo)™ = L? x L?,  Rg(P5,) & Rg(PL) = L* x L?

we conclude that (5.40) is true as claimed.

Step 2: We turn to the r-dependent equations (5.33) and (5.34), We have shown
above that the adjoint system (5.34) associated with (5.33) has an exponential
dichotomy on [R,c0) with stable projection Praj (r). The results proved in §5.2
show that Py y;(r) — Phgj.eo and P*(r) — P5, as 1 — oo. In particular, we conclude
from (5.40) that Rg(Py;(r)) ® Rg(P3(r)) = L? x L? for all r > R, possibly after
making R larger. The same argument involving (5.39) as in the first step of our
proof then implies that Rg(7*(r)) = [Rg(P5g; (r))]* for all r > R.

Step 3: Suppose now that u(r) is a solution of (5.33) on [r.,occ) so that
SUP,>,., [u(r)|r2xr2 < M. We need to show that u(r.) € Rg(P*(r.)). For each
initial condition wq € Rg(P;4i(rs)), the associated solution w(r) of (5.34) exists

ad
and decays exponentially as r increases. Equation (5.39) therefore implies that

(u(rs), wo) = (u(r),w(r)) =0
for all wo € Rg(Ps

i (7)), and we conclude that u(r) L Rg(Psq;(r)) for all 7 > r,.
Step 2 implies u(r) € Rg(P*(r)) for r > r, as claimed. O

We state the following lemma, which is the analogue of Lemma 5.10 for the
core region.

LEMMA 5.11. Suppose that (5.4) posed on H' x L? has an exponential dichotomy
on (—oo,log R] with unstable projection P"(s). If u(s) is a solution of (5.4) on
(—o0,logr,] that is uniformly bounded, then u(s) € Rg(P"(s)) for s <logr,.

The proof of Lemma 5.11 follows from taking the adjoint of (5.4) with respect
to the L? x L? inner product and relating the resulting equation to L2-adjoint of
the PDE linearization about the spiral wave using (5.35) without the factor r. The
details are much simpler than those for the far-field region, and we therefore omit
them.
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5.5. Exponential dichotomies in exponentially weighted spaces

Next, we summarize the changes needed to obtain the existence of exponential
dichotomies of the wave-train and spiral-wave systems we investigated in §4 and
§5.1-5.4, respectively, in exponentially weighted spaces. We begin with the spatial
eigenvalue problem
(5.41) u; = A (M)u
of the wave train that we defined in (4.6) and (4.7). Using the rate n € Jo(\), we
introduce the new variable
(5.42) v:=¢e"u
and obtain the new system
(5.43) Ve = [Asc(A) +n)v =1 AL (A)v.

Since the spatial eigenvalues of AZ () are given by v;(A) + 7, it follows from
Definition 2.10 and n € Jy(A) that A% (\) is invertible and has relative Morse
index zero. Next, we consider the spatial dynamical-systems formulation (5.1)
(5.44) Up =V

1

vy =——v - %%wu — D™ Mw, yu + f (s (r, ) )u — A

associated with the operator £, — A\, which we write as before as
(5.45) u, = A(r; Mu.

Using the transformation (5.42), this system becomes

(5.46) vy = [A(r; A) +n]v =: AT(r; A)v.

We see that the asymptotic far-field system belonging to (5.46) is given by (5.43).
In the core region, we use again the logarithmic radial time s = logr and see that
(5.44) becomes

us = v+ ne‘u

Vs = —Opptt + ne’v — e** D™ w. Oyu + ' (us(e®,¥))u — Au]
which we write, using the notation from (5.6), as
(5.47) Vs = [Acore(s; A) + ne’lv =2 AT (85 A)v.

We observe that the formal limiting problem of (5.47) for s — —oo is given by the
same system (5.7) as for the case n = 0. We can now analyze the systems (5.43),
(5.46), and (5.47) in exactly the same way as the systems (5.41), (5.45), and (5.6).
In particular, the existence results for exponential dichotomies that we established
in §4 and §5.1-5.4 hold also for the new systems introduced here.

5.6. Exponential trichotomies

In this section, we discuss the spatial-dynamics formulation of the linearization
L, — X\ at a spiral wave when A is in the Floquet spectrum of the asymptotic wave
trains. We will show that the equation

0 0
(548) u, = Aarch(r; )\)ll + ( D—l[f’(u*(’/" c—kur — 9(7"))) - f/(uoo)] 0 ) "
=: [Asc(A) + C(r)]u
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posed on X, with

—k.0 1
Ass(A) = < — D w.dy “F,]:?/(uoo) Al k.0 )
B 0’ (r)o 0
C(r) =— ( %2319; L 40(r)0y ) '

has a decomposition into exponentially decaying and growing directions plus an ad-
ditional center direction caused by the Floquet spectrum. Throughout this section,
we will make extensive use of the relation between the operators Eco(V) — Aeo and
Ao (M) that we discussed in §4.3.

We assume that A is a simple element of the Floquet spectrum of the wave
trains that has non-zero group velocity cg,1. Thus, there is a simple, unique Floquet
exponent v € iR with A = Ag(v) and the associated spectral projection of Ao ()
is given by

PE(\) = <)
( ) <u§d7uc>< d >
c __ u
(5.49) u® = ((k*aﬁ N V)u>
o D(—k.0y + V)Uaq
ad — Duad ’

where [Leo(V) — Aeo(V)]u = 0, with Aeo(v) = Ast(V) + wyr/ky, and [£2d(v) —
Aeo(V)]tag = 0. We also define P (\) = id —PS (\). Note that the linear group
velocity cg1 of A (V) is given by

2(uaq, Dv)

5.50 Cg)] = ————
( ) g,l <Uad7 u>

as can be seen by differentiating (4.8) with respect to v and taking the L2-scalar
product with u,q, and the projection PS is therefore well defined since we assumed

that cg1 # 0.
Proceeding as in §5.2, we see that the limiting equation
(5.51) u, = Axx(Mu

has an exponential trichotomy on X, with three complementary projections P, (),
P2 (X)), and P (X) that project onto the stable, the unstable and the center part
of the spectrum of A (A). The center subspace is one-dimensional and can be
characterized as the space of initial conditions whose solutions grow at most expo-
nentially in forward and backward “time” r with an exponential rate n > 0 which
we can choose to be smaller than the decay rates in the stable and unstable sub-
spaces. Solving (5.48) using exponential weights and invoking Proposition 5.5, we
see that (5.48) also has an exponential trichotomy with projections that converge
to the projections of (5.51) as r — oo.

Next, we observe that the operators C(r)PS (A\) and PS5 (A)C(r) are bounded
with norm O(r~!). This is clear for the first operator, while the second operator
can be expressed as

1

P (NC(r)w = W

(Clr)ugq, wiu
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whenever w is in X!, which proves the claim. Hence, the equation
(5.52) u, = [As(A) + PLANC(r) P, (V) + PL(NC(r) P (A)]u
is a small perturbation of (5.48), and Proposition 5.9 shows that (5.52) has an

exponential trichotomy also with projections close to those of (5.51). Equation
(5.52) can be written as

vy = [Ax(A) + PLNC(r)v"

vy = [v+ PL(ANC(r)]ve,

r

where v € Rg(P2()\)) and v¢ € Rg(PS ()\)). Recall that v € iR is the Floquet
exponent associated with A. Since this system is decoupled and because the second
equation clearly corresponds to the center direction, we can conclude that the first
equation has an exponential dichotomy that accounts for the remaining strongly
stable and unstable directions. Thus, we have shown the following result.

LEMMA 5.12. The equation
Wi = [A(\) + PL(AC(M)Iw, W € Rg(PL(V)
has an exponential dichotomy on X, on the interval [R., 00).

For later reference, we remark that, when setting A = v =0 in (5.49), we have

u =u. = Oyloo w. = —k DOgaq
> k*aﬁﬁuoo ’ ad Duad ’

where L.,0pus = 0 and Eiguad =0.






CHAPTER 6

Fredholm Properties

In this section, we prove Theorem 3.3 and Proposition 3.8, which character-
ize the Fredholm boundaries and the regions of constant Fredholm index for the
linearization at a planar spiral wave. In §6.1, we relate the relative Morse indices
of the asymptotic wave trains to the Fredholm indices of maps that involve the
exponential-dichotomy projections in the core and far field. In §6.2, we show that
the existence of exponential dichotomies for the spatial eigenvalue problem implies
Fredholm properties of the linearization at a spiral wave, which will complete the
proof of Theorem 3.3. We then use these results in §6.3 to prove Proposition 3.8.

6.1. Fredholm and Morse indices revisited

In preparation of the proof of Theorem 3.3, we relate the relative Morse index
of the asymptotic wave train, which we defined in §2.4, to Fredholm properties
of the exponential dichotomies of the spiral wave. Assume that X\ is not in the
Floquet spectrum of the asymptotic wave trains. In Proposition 4.4, we showed
that the relative Morse index iy () is equal to the Fredholm indices of the Fredholm
operators

Pyi(Ainv) + Rg(Pyi(A) — Re(Py(Ainy))
and
vt Rg(P (V) x Rg(Phi(Ainy)) — X, (0", u°) — u" +u,

where Py, () is the projection of the exponential dichotomy associated with the
wave trains defined in Proposition 4.4. In Propositions 5.1 and 5.5, we established
the existence of exponential dichotomies P/ “(r; \) and Pi/ “(r; \) on X, in the core
and the far field, defined for » < R and r > R, respectively, of the linearization at
the spiral wave, where we used the notation introduced in §5.3.

PROPOSITION 6.1. If X\ is not in the Floquet spectrum of the asymptotic wave
train, then the maps

Lpiral(\) © Rg(PL(R; M) x Rg(PY(R; \) — Xg, (uS,u)— u’ +u"
Iopiral(V) © Rg(PY(R; M) x Rg(P2(R;\) — Xg, (ul,u)— ul +u’
are Fredholm, and their indices are given by
ind(sspira(A)) = — ind(Zspiral(A)) = —in(A).

Proor. We will use the following argument repeatedly for different pairs of
projections. Suppose that P; and @ are projections in L(X) with the associated
map ¢1 given by

L1t Rg(Pl) XRg(Q) —)X, (ul,u2)r—>u1+u2.
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Let P, be another projection in L(X) together with the map ¢o
t2: Rg(P2) xRg(Q) — X, (u1,ug) — uj +uy
and note that
ti(ug,uz) = Prug +up = Pug +up + (P — P)uy
= Pa|rg(pyur +uz + (P — Po)uy
= 130 (Pa|rg(py) X id) (w1, 1) + (P1 — P2)uy.

We can then conclude that if ¢ is Fredholm with index iy, the map P, : Rg(P;) —
Rg(P2) is Fredholm with index i12, and the difference P — P> : Rg(Py) — X is
compact (or so small that the map (uj,us) — v1(ug,u2) + (P2 — Py)uy is still
Fredholm with index 1), then ¢o is Fredholm with index is = i1 — i12.

We first focus on Fredholm properties of ispirai. We fix A and omit the depen-
dence of the projections on A. To relate the Morse index iy and the Fredholm
index of the pair (P} (R), ps (R)), we construct a sequence of pairs of projections
and account for the changes of the Fredholm index when switching from one pair to
the next. To make the notation less awkward, we give only the projections instead
of the associated maps ¢. Finally, to compare projections in the core and far field,
we use the coordinates and isomorphisms discussed in §5.3 that allow us to consider
the relevant projections on the common space L? x L? instead of on Xg.

We begin with the unstable projection of the reference equation

Dy + wOyptt = Aipyt
in the far field and the stable projection of the reference equation
Ugs + Uy = 0

in the core. Using explicit computations in angular Fourier space and pulling the
ranges of the resulting projections back to L? x L? using the isomorphisms from
Lemma 5.4 and §5.3, it is not difficult to see that the Fredholm index of the resulting
pair (Pi,ref,ﬁiref) is zero. Next, we consider the pair (PL,P* ). Since the
Fredholm index of

—,ref

,Pélo : Rg(Pgo) — Rg(Pi,ref)
is, by definition, equal to iy, and the difference of P3, and P} | ¢ is compact due to

Proposition 4.4(ii), we see that the Fredholm index of the pair (PL, ,\:ref) is equal
to ip. Closeness of projections proved in Proposition 5.5 shows that switching

to the pair (”Pi(R)7ﬁi7ref) does not change the Fredholm index. Our final step

consists of replacing ﬁi,ref by ps (R). To do so, we claim that the operators
(6.1) P2 (r) : Rg(P2 1ef) — Re(P2(r))

are Fredholm of index zero for all 0 < » < R. For 0 < r < 1, this claim follows from
the convergence of the stable core projections to the stable reference projection as
r — 0 that we established in §5.1. We can then apply Fourier projections as in [93,
§4] to show that the operator in (6.1) is a Fredholm operator of the same index
independently of r, which establishes the claim for all r, and that the difference
ps (r)y — 733_7ref is compact for all ». Hence, appealing to our general argument
that we outlined at the beginning of the proof, we can indeed replace the pair
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~

(PL(R),P? ) by (PL(R), P* (R)) without changing the index. This shows that

—,ref

the Fredholm index of
Re(P(R;\) x Rg(PE(Ri\) — X, (u',u) s u" +

is indeed equal to iy () as claimed.
The same considerations apply to the map tspiral, Where the Fredholm index is
now determined by the map

P Re(Py) — Re(PL ier)-

Since the stable subspace for the linearization at wave trains is simply obtained by
reversing spatial time, the relative Morse index changes sign and we find that the
Fredholm index is —iy. This concludes the proof for both tgpirar and Zspiral- O

6.2. Exponential dichotomies imply Fredholm properties

We prove Theorem 3.3. Note that it is a consequence of, for instance, [90,
Lemma 6.5] that £, — A is not Fredholm whenever A is in the Floquet spectrum
of the asymptotic wave trains. Thus, it suffices to show that £, — X\ is Fredholm
whenever A is not in the Floquet spectrum of the asymptotic wave trains. To prove
this, we follow the strategy of the proofs in [93, §5.2] with modifications in the
regime s — —oo.

Since A is not in the Floquet spectrum of the wave trains, there is an R > 1
so that the far-field equation (5.1)

(6.2) Up =V
1 1

Up = U= ﬁ8¢¢u — D7 weOpu + £/ (ui(r,v))u — A
has an exponential dichotomy for » > R with projections Pi/ “(r; \) defined on X,.

The equation in the core region (5.4)
(6.3) Us = W
Wy = —Oyyptt — e** D w, Oypu + f(ux(e®,9))u — \u]

with s = logr always has an exponential dichotomy and, following §5.3, we denote

the associated projections by Pi/u(s; A) on X and by ﬁi/u(r; A) on X,.. Combining

the spatial dynamics equations in the core and far field, and using the time variable
r =e® for r < R, we obtain an abstract ordinary differential equation

(64) u, = A)\(T)uv

which coincides with (6.2) for » > R and with (6.3) for s = logr < log R. We say
that (6.4) has an exponential dichotomy on R if (6.2) has an exponential dichotomy
on X, for r > R and if the unstable subspace Rg(P"(R;\)) of the exponential
dichotomy in the core region and the stable subspace Rg(P5 (R; \)) in the far field
span the space Xp at radial time R and have trivial intersection.

Assume that u = u(r, 1) belongs to the null space of L. — A, then the function
(u,u,) is a bounded solution to the spatial-dynamics formulation (6.4). Using
Lemmas 5.10 and 5.11, it follows that (u(R, 1), u,(R, 1)) belongs to Rg(P" (R; A))N
Rg(P%(R;\)). Since different bounded solutions cannot share the same initial data
(u(R, ), u,(R, 1)) by [73, Theorem 2.5], Proposition 6.1 implies that the null space
of L, — X is finite-dimensional. Applying the above arguments to the L2-adjoint
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of £, — X\ shows that the codimension of the closure of the range of £, — A is also
finite-dimensional.

To complete the proof of Theorem 3.3, we need to (i) show that the range of
L, — X is closed since the operator

L.—X= DA+ w0y + f(us(r,)) — A

is then Fredholm and (ii) verify the statement about its index. We claim that (ii)
follows from (i). Indeed, if £, — A is Fredholm, we replace the term f/(u.(r,%))u in
the above expression for £, — X with the Galerkin approximation Q. (f'(u.(r,v))u)
where @Q,,, denotes the orthogonal projection onto the first m vector-valued Fourier
modes. Considered as operators from their common domain into L2, the resulting
two operators are close for m sufficiently large. In particular, the operator

(6.5) u— DA+ w,0pu+ Qu, (f (us(r,¢))u) — Au

is also Fredholm and has the same index as £, — A. The spatial-dynamics formula-
tion for the Galerkin-approximated operator is upper triangular, and it is not diffi-
cult to see that the relative Morse index of the wave trains and the Fredholm index
of the operator (6.5) are as in (3.5) since the relevant system is finite-dimensional.
Thus, the statement about the Fredholm index in Theorem 3.3 follows once we
know that the range of £, — A is closed, and we focus now on proving closedness of
the range.

Suppose therefore that (L, — ANug = fo € L*(R?,CV) where f, — f in L? as
{ — o0o. We need to prove that, for a suitable choice of the wuy, the sequence wuy
converges to u in L? which, by closedness of L., would imply that (L. — \u =
[ € L?(R?) so that the range is closed. To prove convergence of the uy, we use the
spatial-dynamics formulation (6.4).

Recall the definitions (5.11) and (5.12) of the spaces X, X! and X,, X}, re-
spectively. We define the function spaces

X = {(u_,uy) € Lio((—00,log R], X) x Li([R, 00), X,); [ul|x < oo},

loc

||(u_,u+)||fy = ||esu—H%2((—oo,log Rr,x) T HT1/2U+||2L?([R,O<>),XT)
and

X i={(u_,uy) € (Lie((—o0,log B], X1) x Li.([R, 0), X)) N
(Hige((—00,log R], X)) x Hygo([R, 00), X)) ;
[ul[x1 < oo and j(R)u_(log R) = uy(R)}
||(u_,u+)||2X1 ::Hesu—||§{1((—oo,logR],X) + ||esu—||2L2((—oo,logR],Xl)

s ey ) + 10,00,
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where j(R) was introduced in (5.29). We then define the operator 7 : X' — X by
T(u-,uy) = (T-u_,Tiuy) where

4,
T_u_:= q ds' )
- + Oyytu— + e D w. Opu_ + f(uw(e®,¥))u_ — Au_]
d
T+U+ L= gu—i_ o 5

d 1 1 _
T ﬁawwu+ + D7 waBp g + [ (ua(r, ) us — Auy]

and uy = (ug,vy). It is not difficult to check that T is closed when considered
as an unbounded operator on X', since the operator is a bounded perturbation of
the Laplacian on the half cylinder (—oo,log R] x S* and of DA + w,dy on [R, +00)
when rewritten as spatial dynamical systems.

We return to the sequences uy — u and f; — f in L?(R?,C"V). We define

£+ = <fz(;), %ZJ))’ fr- = (eZsfe?es,ZD)>
u g = (8?2%‘2))7 te—= (6;221,5%)])'

We claim that f, € X and u, € X!. This claim can be easily checked by trans-
forming the L? and the H?-norm in the plane into polar coordinates (r,%). Indeed,
by Fubini’s theorem, the X-norm of the second component of u_ and uy is pre-
cisely the L2-norm in the plane written in polar coordinates. Similarly, bounds
on the norms of p,u, 77 10,pu, and 1~ 20yyu in L2(R?,CY) imply L?-bounds on
the norms of e*dssu_(s,v), e*Ospu—(s,v) and e *dyyu_(s,¢). The X'-norm of
the uy-component is equivalent to the norm induced by the domain of A 4 0y on
L?(R% CY). This proves our claim that f, € X and u, € X'. In particular, we
have Tuy, = f, for all £.

A possibly different solution to 71, = f; is given by the variation-of-constant

formula
S

fiy_(s) = B (s:log R)vi,_ + /1 @ (OB
og

(6.6) -/ 8 (5 0R(0)dC, s <logR

— 00

i (1) = @ (1 R)ves + /R &5 (r; (¢ dC

+ / S (OB, >R,

oo

where the elements vy 1 are defined by
vi+ = P{(R)us 1 (R), vy, = P*(log R)u,,_(log R)

and the evolution operators ®>" and ®%" that appear in (6.6) are the exponential
dichotomies in the core and far-field regions that we constructed in §5.1 and §5.2,
respectively. Using the properties of @i/ ®, we see that the integrals in (6.6) converge
absolutely since the lack of exponential decay in the dichotomies on (—oo,log R] is
compensated for by the exponential decay of the right-hand side f.
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We first prove that @, = wu, for all £. The difference @y 4(r) — up4(r) is
uniformly bounded for » > R and satisfies the homogeneous equation 7 u; = 0
for 7 > R with 6y 4 (R) — ug 4 (R) € ker(P3 (R)). Lemma 5.10 readily implies that
Uy 4(r) = ug4(r) for r > R. The same argument combined with Lemma 5.11
shows that G, _(s) = ug,_(s) for s <log R. Thus, we have @, = u, as claimed.

Since iy = uy, we know that u, satisfies (6.6). Setting s = log R and r = R in
(6.6), and using that j(R)ue,—(log R) = u, 4+ (R), we see that

R

log R
6.7) J(R)ve +i(R) / &° (log B O)f(C) dC = ver + / & (R O)f(C) d.

— 00 o0

Setting v, _ := —j(R)vy,— € Rg(P"(R)), we can write (6.7) as

log R R
Ve + 0 —i(R) / &° (log B O),(C) d¢ — / & (R Ofe(0) A

— 00 o0

or, equivalently, as
R

(68) Lspiral (VZ,Jrv Gf,*) = j(R) / (I)i (IOg Ra C)fZ(C) d( - / (I)i (Ra C)fZ(C) d(

— 00 o0

log R

where (ve 4,V ) € Rg(P}(R)) x Rg(P"(R)). Since the right-hand side of (6.8)
lies in Rg(tspirar) for all £ and converges in Xg as £ — oo, and the map tgpirar is
Fredholm by Proposition 6.1, we conclude that the sequence (vg 4+, Ve —) converges
in Rg(P5 (R)) x Rg(P"(R)) upon subtracting appropriate elements in the null space
of Lspiral -

Hence, we have shown that the right-hand side of (6.6) converges for ¢ — oo,
and we conclude that uy, = 1y converges to an element u in X. Restriction to the
first component u4 of uy shows that uy — u in L2(R?,CY). Inspecting the integral
equation (6.6) for the limit u, we see that u € H?. This proves that the range of
L, — X is closed and, together with the previous observations, completes the proof
of Theorem 3.3.

6.3. Proof of Proposition 3.8

To prove Proposition 3.8, we note that the operator £, — A posed on L% (R2,CM)
corresponds to the spatial dynamical systems (5.46) and (5.47) for which we con-
structed exponential dichotomies in §5.5. Applying the results established in the
previous sections to the weighted systems (5.43), (5.46), and (5.47) therefore com-
pletes the proof of Proposition 3.8.



CHAPTER 7

Robustness and Asymptotics of Spiral Waves

The goal of this section is to prove Proposition 3.14 and Theorem 3.15 about
robustness and far-field expansions of planar spiral waves. As in [92, 94, 102], our
strategy is to view spiral waves as heteroclinic orbits in the radial variable r, and
we now describe this idea in detail and illustrate it further in Figure 7.1. First, we
cast the steady-state equation (3.3)

1
(t1) 0=D (&T + ;ar + :2(“)1[,1[,) u+ wiypu + f(u;p), u = u(r,) € RY

for spiral waves as the dynamical system

(7.2) Up =V

1 1
Ur ==V~ ﬁawwu — D7 wdyu + f(u; )]

in the spatial variable r. We consider (7.2) in the phase space X = H!(S!,RY) x
L2(SY,RY) with norms defined in (5.11). Throughout this section, we assume that
(7.1) with 4 = 0 and w = w, # 0 admits a smooth Archimedean spiral wave w.(r, 1)
that emits a spectrally stable wave train u., with non-zero wavenumber k, # 0.
Most of the work in this section is concerned with constructing nonlinear analogues
of the stable and unstable subspaces for the linear dichotomies. These nonlinear
analogues are infinite-dimensional manifolds M" and M$’, which contain solutions
that are bounded as » — 0 and asymptotic to wave trains as r — oo, respectively.
The intersection of these two infinite-dimensional manifolds captures the spiral-
wave solutions we are interested in as heteroclinic orbits. A schematic of this
approach is illustrated in Figure 7.1.

First, we discuss the existence of solutions near u, for r < R and p close to
Zero.

PRrROPOSITION 7.1. For any fized choice of R with 0 < R < oo, there exists a
smooth manifold M™ (u,w) C X, which depends smoothly on p and w for u close
to zero and w close to wy, such that M™ (u,w) consists precisely of all boundary
data of smooth solutions to (3.9) in |z| < R that are close to the original spiral
wave (in particular, (u.(R,-),0rus(R,-)) € M™(0,w,)). More precisely, there is
an & > 0 such that any solution u(r,) € H*(|z| < R) of (3.9) with u(r,v) e-close
to u.(r,) in H*(|z| < R) satisfies (u(R,-),0.u(R,-)) € M"(u,w). Conversely,
for any (u(R,-),0ru(R,-)) € M (,w), there actually exists a solution u(r,v) of
(3.9) that is e-close to u,(r,v) in H*(|z| < R) and satisfies the given Dirichlet
and Neumann boundary values. These solutions depend continuously on p and the
boundary values. The tangent space of M™ (0,w.) in (u«(R, "), Oru(R,")) is given
by Rg(PY(R)) defined in (5.8).

61
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I.

b

1l a=1 a=0

r=20 r

FI1GURE 7.1. Illustration of the construction of robust spiral waves.
In the region 0 < r < 1, we use dynamics in 7 = logr to construct
the manifold M" of solutions that are bounded as r — 0. in the
region 1 > a = % > 0, we construct the manifold M of solutions
that are asymptotic to the wave train solutions at « = 0. The
robust intersection, as the parameter w, is varied, gives the spiral
wave solution. The schematic is shown in (24 1)-dimensional phase
space and should be thought as amended by infinitely many stable
and unstable (and equally many) directions in the (u, v)-direction.

PROOF. The manifold is the union of the strong unstable fibers of the subspace
{(u0,0); ug € RN} of constant functions in the center space E¢__ at s = —o0,
where s = log r is the rescaled logarithmic radial variable introduced in §5.1. Using
the exponential dichotomies in the core region, we can construct this manifold by
applying the uniform contraction mapping principle to the fixed-point equation

S

(u> (5) = 8" (s:log R) (uﬁi) + / @ (5: )G (u(0). € 1) A

w wg og R
+ / & (5:O)G(u(C), ¢, W) dC, s < log B,

where (ug,wy) € Rg(P*(log R)) and

. .2s 0
Glu,s,p) :=e (f(m(es,w s 1) — F (e, $),0) — F(ua(e®, ), o>u>
= 2 0(Juf? + |pl).

Smoothness of the strong unstable fibers and smooth dependence on the asymptotic
value and the parameter p follow from the uniform contraction mapping principle.
Smoothness in w can be shown similarly upon dividing (7.1) by w and rescaling r
so that (7.1) depends on w only through the nonlinearity. [
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The following result deals with solutions in the far field » > 1. Its proof is
considerably more complicated and will occupy the remainder of this section. The
main challenge is that spiral waves converge only algebraically with order 1/r in
Archimedean coordinates as 7 — oo. In contrast, the scaling s = logr for the core
region ensures that the coefficients of the core equation converge exponentially as
§ — —oo, which simplifies the analysis tremendously.

PROPOSITION 7.2. Choose an € > 0, then for all p sufficiently close to zero
and any R > 0 sufficiently large there exists a smooth manifold MS(p,w) C X
that depends smoothly on (u,w) and that contains precisely the boundary data of
smooth and bounded solutions to (3.9) in |x| > R that are e-close to the original
spiral wave. In particular, (u(R,-), Orus(R,-)) € MF(0,wy). More precisely, we
have the following.

o Let u(r,)) € H2(|z| > R) be a solution to (3.9) such that
(7.3)  |(u(r, ") — oo (ksr + 0(r) + -), Opuu(r, ) — Opttoo (kur + 0(r) + )| x, — 0

asr — oo for some phase function 0(r), where us, denotes the u-dependent
wave train with frequency w, and

|(U(R, ) - u*(R> ')7 8T’U(R, ) - 8Tu*(R7 ))|X <g,

then (u(R,-),0ru(R,-)) € M (1, w).

o Conwersely, for any (u(R,-),0u(R,-)) € MG (u,w), there exist a solution
u(r,¥) of (8.9) in r > R with the given Dirichlet and Neumann boundary
values and a smooth phase 0(r) that satisfies 6'(r) — 0 as 1 — oo such
that u(r, 1) is asymptotic to the profile us(kr + 0(r) + 1), where the
wavenumber k is determined implicitly through the nonlinear dispersion
relation w.(k) = w of the wave trains, and (7.3) holds. The solution
(u,0pu)(r) € X, and the phase 6(r) depend smoothly on (u,w) and the
boundary values in M (p,w).

e The tangent space of MF(0,w,) at (u.(R,-), Orus(R,-)) is given by by the
space Rg(P$*(R)) as defined in Proposition 5.5.

ProoF. Throughout the proof, we fix u, since smooth dependence of the man-
ifold and solutions on p will become clear from the proof. We have smooth depen-
dence of these objects on w since we may divide (7.1) by w and then rescale r so
that (7.1) depends on w only through the smooth nonlinearity.

Recall the steady-state equation

Up =V
1

1 B
v = =0 = Oy — D w.Oyu + f(u)]

Introducing the Archimedean coordinate ¢ = k.r + 6plogr + ¢ with 6y to be
determined, we obtain the equation

(7.4) Up = — (k + 97?) Opu +v
1 1
vy = — (k* + 90) Oyt — —U — —25191916 - D_l[w*aﬁu + f(uﬂ
r r r

for which we seek solutions u(r,d¥) = (u,v)(r, ).
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Formal expansion: Before we embark on a rigorous analysis of (7.4), we seek
formal solutions of the form

() = s () + %ul(ﬂ) +0 (;) .

In the following formal analysis, we shall neglect all terms that are formally of order
O(r~2). Thus, from the first equation in (7.4), we get

1 1
v =kl + ;(Ggufw + kyul) + 0 <742) ,

where u' = uy. Substituting this into the second equation in (7.4), we obtain, after
some calculations, the equation

(7.5) E2Dul, + weul, + fluse) =0
at order O(1) and the equation
(7.6) E2Duf 4+ wotdy + f (uoo)ur = —kD(200u’ + ul)

at order O(r~!). We can solve this equation for u; if and only if the right-hand
side is in the range of the operator ./jCO(O)7 the linearization of the one-dimensional
reaction-diffusion system at the wave train u.,. Thus, we need the compatibility
condition

(Uaq, 200 D + Dul_) = 0,

which gives

(7.7) 00— _ (uad, Duge)  kady
. 0 2<uad7Du/o/o> Cg ’

upon using (2.8) and (2.13). Substituting this expression into (7.6), and using
(2.14) and (4.2), we see that

K
(7.8) U = ajuly, + Up, U = 000kUoo — 5 s

where a; € R is arbitrary. Before we proceed, we remark that
(7.9) (Uad, 2k 00 Dull + ko Dull, + " (uoo)[ul,ur]) = 0,

for any a1 € R, where u; is given by (7.8). Indeed, taking the derivative of (7.6)
with respect to 19, we see that

Loout =~k D(200ulg + ul,) — [ (too) [, w],

so that the right-hand side is in the range of the operator L., which proves (7.9).
The same arguments show that

(7'10) <uad7 f//(uw)[ugo]2> =0,

upon taking two derivatives of (7.5) with respect to .
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Rigorous analysis: Now that we know the formal solution up to order O(r~2),
we begin with the rigorous analysis of (7.4)

0
ur—<k*+0)&9u+v
'S

1 1
vy = — (k;* + 60) Dyv — —v — — Oyt — D™ w.Ogu + f(u)].
r rooor
As in (7.7), we set 6y = k.d /cg, and seek solutions u(r,d) = (u,v)(r, ) of (7.4)
of the form
(7.11) u(r,v) = ux (V) + w(r,9),

where Uoo = (Uoo, kxtth,). Note that ue, = (uso (), kul,(9¥)) is an r-independent
solution to the asymptotic equation which is obtained formally by setting r = oo
in (7.4). We substitute the ansatz (7.11) into (7.4) and obtain

(7.12) W, = [As + C(r)]Ww + C(r)us + G(W),

where

- —k.dy 1 10y 0
Ao = ( —D w0y + f'(uoo)] —kiOy )’ Cr) = r ( 1099 1+ 6009 )

and

0
Glw) = Glunwz) = ( =D [f(utog - wn) = flutoe) — f (1 )] ) |

so that G(w) = O(|w|%).

Recall that, by assumption, the center eigenspace of A., is one-dimensional
and spanned by ul_. We use the center spectral projection P of A, see §4.3 and
§5.6, and write

(7.13) w(r) = a(r)ul, +w(r) + %ul,

U1
u = .
! k.ul + Goul

We require that w(r) € Rg(PL) where PL = id —PS. Substituting this ansatz
into (7.12), we obtain

where a(r) € R and

a;uly, +w, = [Ax +C(r)](auly, + W) + C(r)us
1 1
+ ;[Aoo +C(r)u; + it Glaul, +w+uy/r).

Using the definition of up, we see that

1 1 0 0
C(r)uoo + ;.Aoclll = 73621100; CQ = < *61919 0 ) s
which gives the system

1 1 1
a;ul +w, = [As+C(r)] (augo+W)+T—QCQuOO+;C(r)u1+T—2u1+g(au’oo+w+u1/r),
or

a,ul, +w, = [As + C(r)](auly, + W) + Ri(r) + G(au’, +w +uy/r),
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upon setting

(7.14) Ri(r) = %CQUOO + 1C(r)ul + izul =0 (12> .
r r r r

Next, we project onto the center and the hyperbolic part using the spectral projec-

tions PS and P and obtain

a,ul, = PS [C(r)auly + C(r)w + Ri(r) + G(aul, +w +uy/r)]
W, = [Ase + PLC(r)w + PL [C(r)aul, + R1(r) + G(au’, +w +uy /7)].
We rewrite the equation for a using the explicit form of the projection P from
§5.6 which gives
a, = (Waq,C(r)auly + C(r)w + Ri(r) + G(aul, +w +uy /7))
= a(Uaq, C(r)uly) + (C(r) "Uaa, W) + (Uaa, Ra(r))
+ (Uad, DGa(aul, +w +uy /1)).
We can write the second component of the nonlinearity as
1

= " (uso)auly + w1 /)% = g1(a, wi,m)wr — ga(a,7)|

Go(au/ +w+u;/r) = —D7! 5

where
(7.15)  gi(a,wi,r) = O(la] +[wi|+1/r),  ga(a,r) = O((la] +1/r)%).
Hence, we find
ar = a{uag, C(r)uly) + (C(r)*tag, W) + (Uaq, R1(7))
1

- §<uad, F (uoo)Jauly, + ul/r]2> + (Uad, 91(a, w1, r)wi + g2(a,r)).

Using the definition

110 Ralr) = (waacRa(r) = g (s S )ea®) = O (5 )
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and exploiting (7.10), we find

~{utaa, " (1o e, )
+{(C(r)* wad, W) + Ra(r) + (Uad, 91(a, w1, 7)w1 + go(a,r)).

a, = a{u,g,C(r)ul.) +

Writing out the first scalar product, and using the identity (7.9), we see that the
a/r terms actually vanish, so that we obtain the final equation

(7.17)
a *

a, = —772<uad, us,) 4 (C(r) ad, W) + Ra(r) + (taq, 91(a, w1, 7)wy + ga(a, 7))
(7.18)

W, = [As + PLC(r)w + P2 [C(r)auly, + Ri(r) + Glau', +w +uy/7)].
While we could proceed from here on and solve (7.17)-(7.18) directly using Ba-
nach’s fixed-point theorem applied to a corresponding integral equation, we will
first simplify the equation further using normal-form transformations as this will
help us obtain the higher-order expansions stated in (3.7). To do so, we note that

the definitions of the remainders R, and the nonlinearities g, and G imply that all
terms appearing in (7.17)-(7.18) admit a formal expansion in terms of (1/r, a, w).
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Possibly after modifying the remainder terms R ;, we can also assume that the non-
linearities go and G vanish at (a, w) = 0. We claim that we can perform a sequence
of subsequent transformations

a a+O(r—Ith), w = w4+ O(r~7)

for j =2,..., K + 1 so that the system (7.17)-(7.18) is transformed into a system
of the same form, but with remainders R, = O(r~(5+2)). To see this, we proceed
inductively and assume R, = R jr~7 + O(r~UFD). First, the substitution

poitl
(719) Upew = @ + Rg,jﬁ
preserves the general form of the equation for a, but eliminates terms of order
r~J in the inhomogeneous terms R,. In fact, in the first equation only the terms
a, = Ra(r) yield terms of order r=/ after the substitution (7.19), so that the
choice (7.19) for apew cancels those terms. We now substitute this new variable
Gnew into the equation for w,. and collect inhomogeneous terms (terms that vanish
for a = 0,w = 0) in the new remainder R;. Note that the terms C(r)au’, and
G(au’ u;/r) contribute a new term at order 7~/ but there are no inhomogeneous
terms of lower order. We next remove the term R, ;777 using the substitution

(720) Wpew — W + Agolpglo’le)jrij.

In the equation for w,., only A, w+ PR (r) yield terms of order r 7 after the sub-
stitution (7.20), and those contributions cancel due to the choice of transformation
in (7.20). Also note that the coefficients R, ; are smooth, a property that is pre-
served under the transformation (7.19-7.20). Repeating this change of coordinates
shows that we can assume from now on that R; = O(r~(5+2)) in (7.17)-(7.18) and
that nonlinear terms vanish for (a, w) = 0.

Our next goal is to derive an integral equation and solve the system with a fixed
point argument in appropriate function spaces. We therefore note that Lemma 5.12
implies that the principal part

(7.21) w, = [As + P2C(r)]w,  w € Rg(PL)

of (7.18) has an exponential dichotomy on X, which we denote by ®%(r,s) and
®"(r, s). The desired integral equation is given by

) = [ |- sl + (€ W)+ Ra)

— 0o

(7.22) +(uaqa, 91(a(s), wi(s), s)wi(s) + g2(a(s), s))] ds
w(r) = ®*(r, R)wy’ —|—/R D% (r, s)f(a(s), w(s),s)ds

+ [ #m G stals), wie).s) ds,
where we take r € [R,00), where w§® lies in the stable subspace Rg(P*(R)), and
where

f(a,w,r) = P2 [C(r)aul, + Ri(r) + G(aul, +w +uy/r)].
We regard (7.22) as a fixed-point equation

(7.23) (“) = (fl(a’w)), (a,w) € X.,

w Fola,w)
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with parameter w§’ on the space

X {<a,w> € C([R,00), R x X); [all := sup r"**a(r)| < oo,
r>R

[lw]| := S;l%TK+1+E‘W(T)|XT < oo}
T‘_

equipped with the norm ||a|| + ||w]|, where £ € (0,1). Using the norm on X, as well
as the estimates (7.14), (7.15) and (7.16), it is not difficult to check that there is
constant C' > 0 such that

1
IFi(aw)ll <€ |1+ gl + wh)
Ss C
|1 Faa, wl < K + 2 [1+ ol + [w]

Do Frla, W)l < -
where K denotes the constant of the exponential dichotomy of (7.21). Indeed, the
exponential decay estimates for the evolution operators ®%° and ®"" imply that the
integral operators appearing in Fy reproduce algebraic weights. Also, due to the
embedding H 3« LP for any p < oo, the nonlinearities g; and g define smooth
maps from X into itself provided f satisfies certain polynomial growth conditions
which hold after the standard cut-off close to w = 0. Alternatively, we may invoke
Remark 5.8 and consider the equation on a space H*t1/2 x H® for some o > 0 so
that u € CO.

The estimates for F show that the right-hand side of (7.23) is a uniform con-
traction, which maps the closed subset

Z ={(a,w) € X; |la| <2C, [|w| <4}

into itself for any w§® with |w§|x, < ¢/2 and for any R larger than some R, > 1
and any 6 > 0 sufficiently small. Therefore, for any such wg’, there exists a unique
fixed point (a, w) of (7.22) in Z that depends smoothly on w*. Exploiting the norm
in X, we see that a(r) decays with rate 1/r%+¢ while w(r) decays like 1/rf+1+¢
as r — oo.

The family of traces w(R), considered as a function of w{, describes a graph
over Rg(P*(R)). To describe the manifold M€ as a graph over Rg(P*(R)), we
replace the term u., (9) in our ansatz (7.11) by us (9+a) and treat the asymptotic
phase ao € R as a parameter (in addition to w{). The right-hand side of the fixed-
point equation (7.22) is then a contraction uniformly in (@, W§), and the resulting
fixed points depend smoothly on (a, w§®). This eventually proves the existence
and characterization of the manifold M$ as a graph over Rg(P*(R)) as desired.
As mentioned at the beginning of the proof, smooth dependence on the external
parameter 1 and on the frequency w follows in the same fashion. (I

OF PROPOSITION 3.14. During the proof of the preceding Proposition 7.2, we
actually derived the expansion for the solution u.. Reverting the normal form
transformations, we find an expansion for w and a up to any finite order and can
then use (7.13) and (7.11) to derive an expansion for u. Next, interpreting a(r) as

a phase correction, U + a(r)uly, = Uso(- +a(r)) + O(a(r)?), we find an expansion
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for u, as in (3.7). Finally, from the proof of Proposition 7.2, we also find the
leading-order expansion

U (1,) = Uoo (kur 4 04 (1) +1b) + %Ul(k*r +0:(r) +¢)+0 (rlz)

0.(r) = Fedy logr 4+ O <1)
.

Ce
dy 1
ur(9) = ki (cgﬁkuoo — 2uylu)
as claimed in Proposition 3.14. a

OF THEOREM 3.15. We assumed that the spiral wave u, is transverse (see Def-
inition 3.13) and therefore know that the generalized kernel of the linearization
L, about u, posed on the exponentially weighted space L% with n € Jy(0) =
(—Rep(0),0) € R~ is one-dimensional and spanned by dyu.(r,¢). We conclude
that the tangent spaces to M™ (0) and M$(0) intersect in a one-dimensional sub-
space spanned by 9y (u« (R, -), Oru. (R, -)). Using the results proved in §5.5, we know
that the complement of the sum of the tangent spaces is also one-dimensional and
spanned by ut € X, say. To prove persistence of the intersection, we have to com-
pute the derivative of the manifolds M$""(0) with respect to w and show that the
projection onto ut of the difference does not vanish. Indeed, this would prove that
the linearized equation is onto if we include the parameter w as an independent
variable. We argue by contradiction and assume that this difference is contained in
the sum of the tangent spaces. Using the adjoint evolution operators, which exist
due to the results in §5.4, we see that the function (0, D™10pu.(r,1))), the deriva-
tive of the difference of the two invariant manifolds with respect to w, is contained
in the range of the operator 7 from §6.2. Using regularity properties of solutions
to Tu = f for smooth right-hand sides f, we see that the first component u of u
is a classical solution to L,u = Oyu.. This contradicts the assumption that the
generalized kernel of £, considered in L2 with 7 € Jo(0) has dimension one. O

REMARK 7.3. In the proof of Theorem 3.15, we have seen that spirals that
emit spectrally stable wave trains actually select the frequency of rotation (and a
wavenumber via the inverse nonlinear dispersion relation). If we had assumed that
the group velocity of the spectrally stable wave trains in the far field is negative, we
would have found spiral waves for an open interval of frequencies which are selected
by the wavenumber of the wave trains that transport towards the core. These spiral
sinks have been found in the complex Ginzburg—Landau equation [{4].






CHAPTER 8

Shape of Eigenfunctions, and Transverse
Instabilities

In §8.1, we investigate the spatial shape of eigenfunctions wu, which satisfy
L.u = Au, and prove the far-field expansions of their profiles in terms of spatial
eigenvalues that we formulated in §3.4. We focus on the proof of Proposition 3.17
and note that Proposition 3.16 is an immediate consequence of the spatial-dynamics
formulation of the eigenvalue problem and the existence of exponential dichotomies
in the far field that we introduced in §5. In §8.2, we prove Lemma 3.27, which
states that transverse instabilities of the asymptotic wave train prevent the spectral
mapping theorem from holding.

8.1. Proof of Proposition 3.17

We expand the eigenvalue problem
up = — (ki + 0, (r))0pu + v

(8:1) vy = — (ks + 0,(r)) Dy — 1 _ %aw
= D7 D+ f oo 0 = A+ %f//(“oow))[“l (), u] + O(r )ul,

at r = oo, where 6,(r) is the asymptotic phase of the spiral wave relative to the
emitted wave trains and u; is the first-order correction of the profile of the spiral
wave; see Proposition 3.14. We rewrite this equation as an abstract equation

(8.2) u, = [As + C(1r)]u,
where
(8.3)
A — —k.0Oy 1
oo ( —Dil[w*aﬁ —|—f’(uoo) - )\} —k.Oy ) ’

) ‘(%ﬁﬂ i+ag<r>ag>‘vl~(01f”<%o>[31~]+0<1/’") 8)'

Denote by PS and P2 the complementary spectral projections onto the center and
the hyperbolic subspace, respectively, of the asymptotic equation

u, = Au,

which represents the eigenvalue problem of the wave trains. Let v € iR be the, by
assumption unique, Floquet exponent with A = A (v). By hypothesis, Rg(P%,) is

71
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one-dimensional. The results in §5.6 show that it is spanned by

i v (<k*c%u+ v)u)’

where [Leo(V) — Aco(¥)]u = 0 and Aeo(v) = At (V) + wav/ki. The results in §5.6
also show that the projection PS5 is given by

1
PoCo = 7><uad7'>uca Uad = (

D(—k*&g + l/)uad
<uad7uc ’

Duad

where [[ZES(V) — Aco(¥)]aq = 0. Thus, given the eigenfunction u of the spiral wave,
we write

u=Piu+Plu=a(r)ju’+w
so that (8.2) becomes
(8.4) a,u’ = a[v + PLC(r)|u® + P C(r)w
(8.5) W, = [As + P2LC(r)]w + aP2C(r)u’.
Since the second summand in the definition (8.3) of C(r) converges to zero in norm
as r — 0o, we can apply Proposition 5.9 and Lemma 5.12 which show that the
equation

W, = [As + P2LC(r)w

has an exponential dichotomy on [R,c0) for R > 1 sufficiently large. Thus, (8.5)
is equivalent to
(8.6)

w(r) = ®%(r, R)WBSJr/R a(s)P%(r, s)P;lOC(s)uC ds+/ a(s)®"(r, s) P2.C(s)uds.

T

To analyze the equation (8.4) for a(r), we first neglect the coupling term involving
w. The remaining equation is

a, = |v+ <uad,c(r)u > a
<uad7 uc>
This expression can be evaluated as in the proof of Proposition 7.2, and we obtain
1 (tad, [2000y + 1] Dv + [ (uco) [u1, u]) 1
8.7 r= v — = o= ,
(8.7) “ {V r 2(uaq, Dv) + 2 )¢

where 6y is given by 6y = k.d) /cg, see (7.7). Recall from (5.50) that the linear
group velocity of A (v) is given by

2<uad, DU>
<uad7 ’LL> ’

In particular, the denominator in (8.7) is non-zero. Integrating (8.7) gives

(8.8) a(r) = agre’” {1 +0 (i)] ,

for some ag € C where
_ {uaq, [(2k.d 1 /cg)09 + 1]Dv + " (uoo)[us, u])
N Cg 1 (Uad, u) '
We claim that ag # 0. Indeed, if ay were zero, the expansion of the eigenfunction

u(r, 1) of the spiral wave would only involve the solution w of the hyperbolic part.
As a consequence, due to (8.6), u(r,v) would decay exponentially as r — oo so

Cgl = —




8.1. PROOF OF PROPOSITION 3.17 73

that the null space of £, — A would be non-trivial in L% for any sufficiently small
1 > 0. This contradicts our hypotheses. Thus, ag # 0.

Using (8.8), we can therefore also integrate equation (8.4). Putting the resulting
equation and (8.6) together, we see that (8.4)-(8.5) is equivalent to

L' 1 * ad
89 alr) = agrte”+ [ e {O ( > als) + W o
w(r) = ®%(r, R)wg’ +/ a(s)®%(r, s) PLC(s)u" ds
R

+ [ al)e" ) Pt s,

oo

where the O(1/r?) term in the equation for a coincides with the corresponding term
in (8.7). Note that

(C(r)"uaq, W)
<uad7 uc>
for some constant C' > 0 that is independent of r.

We regard (8.9) as the fixed-point equation

(z') - (2%23) (a, ) € X.

X, = {(a,w) € CO([R,OO)JR x X); |la|| ;== sup r~%|a(r)| < oo,
r>R

Q

|w|x
b

(8.10) .

<C ‘P;‘OC(T)UC|X < —

r

on the space

il i= sup r=0~<Jw(r) x, < oo} ,
r>R

equipped with the norm ||af| + [[w||, where e € (0,1) is fixed. Using that

/ (C) e ds 51 as r— oo
1 S

for any @ € R (which follows from the fact that the integral on the left-hand side
satisfies the differential equation b, =1+ («a/r — 1)b), and exploiting the estimate
(8.10), it is not difficult to check that there is a constant C' > 0 such that

a w
17 (o)l < ool + € L L]

RE
Thus, there exists a unique solution of (8.10) provided we choose R >> 1 sufficiently
large. This solution is given by

a(r) = agroe’” {1 +0 (rll)] C w()=0 (Tlia) .

Now that we have obtained a solution in the weighted space, we can substitute
w(r) back into the integral equation for a, and we see that, in fact,

alr) = agroe”” [1 +0 (i)] .

This completes the proof of Proposition 3.17.

|Falas W) < C [|was|xR n “”} |
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8.2. Proof of Lemma 3.27

Decay estimates for strongly continuous semigroups are tied to uniform esti-
mates for the resolvent of their generator on vertical lines. It follows from [36,
Theorem I1.1.10(iii)] that it suffices to find \,, € C with Re A,, = Re A, and nonzero
elements u,, € L?(R%,C") such that

1
WKE* — An)’un‘LQ —0asn — o0

to prove the statement of the lemma. We first choose a smooth cutoff function x(x)

such that
=1 lz] <1
x(x) € [0,1] 1<zl <2
=0 |z > 2.
Next, we let

wn(r 1) = " Vs (kr + 0. (r) + ) (

Note that Re A\,, = Re A\, for all n as required and

2 2
n? =~ + O(1/n) whenever x (Wﬁ r ) #0

yr — n?

) , An i= Ay + iwen?.

n
uniformly in r > 0. Furthermore, the support of u,, lies in an annulus of diameter
2n/~ centered at r = n?/v. It follows that there is a constant Cy > 0 so that
3
|un|L2(R27CN) > Con2 |UOO|L2(317CN)
for all n > 1. Next, using (3.7), we find

(L2 = An)itn = [D (aw +20,+ :2%,) by + (1)) — )\n] (1)
— in*Y {D (kzv'o’ox +0(1/n) — :ivoox) + 1w Voo X + Wil X
+0(1/n) + f/(too (kr + 0.(r) + ) + O(1/n2))voc X
-+ iw*nQ)voox]
= 'Y [x (D(E*vl, — 7*vs0) + wivly
+F (oo (kT 4+ 04(1) + 1)) V00 — MiVoo) + O(1/n)]
= 0(1/n),
where we used (3.17) to obtain the last identity. Since (L. — Ay )u, has the same
support as u,, we see that there is a constant C; > 0 so that
(Le = M)t p2r2 o8y < C1n2 [vsg|r2(s1 vy,

for all n > 1. We conclude that

1 Cq
T B )\n n S ~
[t | 12 Ie Jun|r2 Con

which completes the proof of Lemma 3.27.



CHAPTER 9

Spiral Waves on Large Finite Disks

In this section, we prove Theorem 3.19, which states that planar spiral waves
persist under domain truncation to large bounded disks provided that the boundary
conditions can be accommodated via boundary sinks. First, we prepare the actual
proof by discussing in §9.1 the boundary sinks whose existence we assumed in
Theorem 3.19. In §9.2, we construct solutions to the spatial-dynamics formulation

up = —[k +6'(r)]0pu + v
v = —[k + 6 (1r)]0gv — %v - T%&wu — D7 wdgu + f(u)]

separately in the core region, the far-field region and the boundary-layer region.
These solutions are then matched in §9.3 in the transitions zones between core, far
field, and the boundary sink.

9.1. Boundary sinks

Recall that we assumed that there is a solution u(x,t) = ups(z,w.t) of the
reaction-diffusion equation

(91) up = Dugy + f(u)7 T e (_0070)7
(u,uz)(0,t) € Ep°, t>0,
where ups(z, 7) is 2m-periodic in 7 with
[Ubs (T, ) = Uoo (ks — -)|g1(s1) = 0 as = — —00

and E§° C R?N is an N-dimensional subspace. We denote by ®;(ug) the semiflow
associated with (9.1) on H'(R~,RY). Since we assumed that the asymptotic wave
trains are spectrally stable and have positive group velocity, we know that the
Fredholm index of the linearization Wy,s = D®sy /., (ubs(+,0)) is 41 in the region to
the left of the Floquet spectrum at A = 0. We also assumed that the linearization
of (9.1) about the boundary sink wups(x,w.t) does not have a solution that decays
to zero exponentially as x — —oo0.

Next, we interpret these hypotheses in terms of the spatial-dynamics formula-
tion
(9.2) Uy =V

vy = =D [—wdru + f(u)],

where u(z) = (u,v)(z) € Y = H=2(S') x L2(SY) for all z € (—00,0) with the
boundary condition
(9.3) u(0) € Ey° == {(u,v) € Y; (u(r),v(r)) € By Vr}.
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Note that ups := (ups, Ozups) is a solution to (9.2)-(9.3) for w = w,. Furthermore,
the assumptions on spectrum and group velocity of the asymptotic wave train imply
that the linearization

Uy =V
vy = =D [—w,0ru + f (uns)u]

of (9.2) at ups has an exponential dichotomy on Y with strong unstable projections
P (z) and center-unstable P (x) both defined for z < 0. In addition, the assump-
tion that the linearization of (9.1) about ups(x, w.t) does not have an exponentially
decaying solution implies the transversality conditions

(9-4) Rg(P!(0)) h Ey* = {O-ups},  Rg(P™(0)) h £y = {0}.

We show in the next lemma that these transversality properties imply that the
boundary sink, whose existence we assumed only for the fixed temporal frequency
Wy, 1s robust so that it persists when we change w from w, to nearby values.

LEMMA 9.1. Up to the time-shift symmetry, equations (9.2)-(9.8) have a locally
unique solution Uns(x;w) for each w close to w,. Furthermore, there is a k > 0 and
a constant C such that

[ups (2, ;s w) — Voo (b — W)y < Ce "l x <0,

the solutions ups(z;w) depend smoothly on w, and the linearization of (9.2) at each
Ups(x;w) has an exponential dichotomy on'Y that satisfies (9.4).

PROOF. The proof involves two steps. First, we compute the strong unstable
fibers of the asymptotic wave trains us(kz — w(k)t; k) (note that we can switch
forth and back between parametrizing solutions via k or w since the group velocity
w'(ky) is not zero). In the second step, we match the strong unstable fibers and the
boundary condition using the boundary-sink solution ups(x,7). The existence of
exponential dichotomies of the linearization about each of the boundary sinks and
the transversality property (9.4) follow from the robustness theorem for exponential
dichotomies.

After rescaling x — \/wzx, the original reaction-diffusion equation (9.2) reads

(9.5) B
vy = —D! {—aTu + if(u)] .

We write u(x, 7) = Uy (kx—7;w)+w(x, 7), then w(x) converges to zero as x — —oo
if and only if it satisfies the integral equation

x

(9.6 wlo) = "o —Rpwg+ [ (e 0(6 wi(e) de

[ e w)de
onY for z € (—oo, —R], where

1

1 0
Gz, w) =3 <—D—1[f(uoo(x;w) +w) = f(uoo(w;w)) f'(uoo<w;w>>wﬂ>
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and ®"" and & denote the w-dependent exponential dichotomies of the lineariza-
tion of (9.5) at the wave trains u.(-;w). We denote by  the exponential rate as-
sociated with this dichotomy. We can solve (9.6) on an appropriate function space
with exponential weight e*1*!, using a contraction mapping theorem and choosing
R > 1 sufficiently large. Since the exponential dichotomies [82] as well as the other
terms in (9.6) depend smoothly on w, so do the strong unstable fibers which are
the fixed points of (9.6).

The second step is carried out analogously by writing down an integral equation
on [—R, 0] and using the exponential dichotomies of the linearization of (9.5) at the
sink ups. The fact that the subspace E{}C and the range of the center-unstable
projection of the sink intersect transversely by (9.4) allows us to then solve the
resulting integral equation for all w close to w,. We omit the details. (]

Next, we transform the above solutions and statements into Archimedean co-
ordinates. Thus, we define a new function tps(x,d) by
Ups (2, 9) 1= ups(z, ke — ), ie. Ups (2, 7) = Gps(z, ke — 7),
so that
(9.7) [t (2, 05 w) — Uoo (W w)| < Ce™ "I

as ¥ — —o0o. The boundary conditions remain unchanged since u(0) € EY¢ means
that u(0,7) € Ep° pointwise in 7. Hence, dropping the hats and using p instead of
x, we see that ups(p;w) satisfies the system

(9.8) Optt = —k,Oyu + v

v = —kOgv — D™ wdgu + f(u)]
for w close to w., where p € (—00,0) and u(p) = (u,v)(p) € Y satisfies u(0) € Eb*.
Since the only difference between (9.2) and (9.8) is the appearance in (9.8) of
the generator of the shift in ¥, we still have transversality of EY¢ and the range

Rg(P(0)) of the exponential dichotomy of the linearization of (9.8) at ups (this
can be proved as in §4.2 using the detour via the corresponding operators 7).

9.2. Construction of core, far-field and boundary-layer solutions

We can now address the existence of solutions to the equation
(9.9) ur = —[k + 0 (r)]0su +v
1 1
vy = —[k +6'(r)]0gv — U= ﬁ&mu — D Mwdyu + f(u)],
where u(r) = (u,v)(r) € X, for r € (0, R) with the boundary condition
(9.10) u(R) = (u,v)(R) € E°.
Solutions to (9.9)-(9.10) correspond to rigidly-rotating spiral waves on the disk of
radius R.

To show the existence of these spirals, we will, for some fixed R, > 1, construct
solutions to (9.9)-(9.10) in the core region (0, R.), the far field (R., R—r~!log R),
and the boundary layer (R — x~'log R, R) for R > 1. These solutions are then
matched at » = R, and r = R — k' log R. The constant R, will be chosen as in

Proposition 7.2, while x > 0 is as in Lemma 9.1. A sketch of the construction in
phase space is shown in Figure 9.1.
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FIGURE 9.1. Gluing ingredients for the construction of spiral
waves in finite-size disks. Planar spiral (green) consisting of core
region and far-field region, constructed as a transverse heteroclinic
as w varies near w, to the wave train solution at r = oo, a = 0. In
«a = 0, the boundary sink is contained in the unstable manifold of
wave trains as a transverse intersection of the unstable manifold
of wave trains (2-dimensional in picture) with the boundary con-
dition EP° (0-dimensional in picture). A truncated spiral follows
the green and blue curve to intersect the extension of E® outside
ofocz()atoz:%>0.

Core region. We begin by discussing (9.9) in the core region (0, R.). Propo-
sition 7.1 shows that the relevant solutions to (9.9) on (0, R,) are those that have
initial data in the manifold M" (w). Since we can write M" (w) near u,(R.) as a

graph of a map from Rg(ﬁﬂ (R.)) into Rg(ﬁi (R.)), we can parametrize the ele-
ments of MY (w) as functions of w _ € Rg(P*(R,)) via
(9.11) Ucore(Ru; w, Wooyo) € MY (w),
uCOTG(R*;w7 Wgore) - u*(R*) - Wolclore € Rg(Pi (R*))
Far-field region. Next, we consider solutions to (9.9) in the far field for r €
(R«, R—r~tlog R). Proposition 7.2 shows that the center-stable manifold M (w)
of the asymptotic wave trains is smooth in w and can be parametrized as the graph

of a map from Rg(P{*(R.)) into Rg(P}"(R.)). We can then use a rotation of the
planar spiral wave u.(R.,-) by an angle « to parametrize the center direction in
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Rg(P{*(R.)) and use vectors wi € Rg(P¥(R.)) close to zero to parametrize the
remaining strong stable dlrectlons Thus, for R, <r < R—rx~!log R, we can write

(9.12) u(r) = ug(r;w,a, wg) + wg(r),
where ug(r;w, a, w§) denotes the solution of (9.9) on [R.,c0) with
(9.13) ug(R.;w,a,wi) € MF(w),
(R, 0,w§) = w(Rey - + ) — wi € Rg(PY(R.)),
for wi € Rg(P*(R.)). We see that u(r) is a solution to (9.9) if and only if wg(r)
satisfies
(9.14) w, = [A(r) + C(r)]w + G(r,w),
with

- —kdy 1
Alr) = ( —D7Hwdy + f'(ug(r))] —kdy )

019 ¢co)=-( "S5 1 g, )

0 _ 2
(D) 10— ) - ) = O
where ug(r) = ug(r; w, o, wif) is the solution discussed in (9.13). Note that w(r) =

0 is always a solution of (9.15) since it is the deviation from the actual solution
ug (). On account of Propositions 5.5 and 5.9, the linear equation

w, = [A(r) + C(r)]w

has an exponential dichotomy on [R.,c0) for some sufficiently large R, > 1 uni-
formly in (w, o, w§) close to zero (note that these dichotomies depend on (w, o, W),
but we will suppress this dependence in our notation). We have the estimates

G(r,w) =

(9.16) |F (7, 8)[IL(x,,x.) < cedlr=sl, T >8> Ry,
15 (r, 9)lLix,.x,) < Ce ™l s>r>R,

for some k > 0 and some arbitrarily small § > 0. Using the dichotomies, we can
convert (9.14) into the integral equation

w(r) = ®f(r, R — " log R)wg" +/ OF(r,5)G(s, w(s))ds

*

-

+ D (r, )G (s, w(s)) ds,
R—x—1llogR

where 7 € [R.,R — xk 'log R]. Using the estimates (9.16) for the exponential

dichotomies and the fact that the nonlinearity G defined in (9.15) vanishes with

order O(|w|?), it is not hard to see that the integral equation can be solved using

a contraction mapping theorem in the function space

Xg = {w e C%[R.,R—r "'log R, X);

[wl = sup R P w(r)|x, < oo
re[R.,R—r—1log R|
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uniformly in R and for any wg" sufficiently close to zero. The resulting solutions
are smooth in (w, o, w§, wi") near (w4, 0,0,0), and they satisfy

(9.17) [wi| = O(Jwi"]).

For later reference, we evaluate these solutions at the end points r = R, and at
r = R — k~'log R of their interval of existence:

wg(R.) = O (R., R — k' log R)wp"

R,
+ O (R., r)G(r, w(r)) dr
R—r~1llogR
(9.18) -0 (Re’”(R’R*) W,‘:}“\) ,

wg(R — k tlogR) = Py*(R — k' log R)wg"

R—rk"'logR
+ / OF (R — k 1log R, r)G(r,w(r))dr

*

(9.19) =Py (R — k™" log R)wi" + O (lwg'[?) -

Boundary-layer region. In the last step, we consider solutions to (9.9)-(9.10)
in the boundary-layer region where r € [R—rx~!log R, R]. It is convenient to use the
independent variable p = r — R instead of » = p + R. In this variable, (9.9)-(9.10)
become

(9.20)  u,=—[k+6(p+ R)]Ogu+v
[ _ &ggu .
p+R (p+R)?

vp =~k +0'(p+ R)|0pv — D™ Hwdgu + f(u)],

where p € (—x~1log R, 0), and

(9.21) (u,v)(0) € E"©.
We seek solutions to (9.20)—(9.21) using the ansatz
(9.22) u(p) = ups(p;w) + ws(p),

where ups(p;w) is the boundary-layer solution of (9.8). In particular, we see that
ups(p; w) satisfies (9.21) and also (9.20) if we formally set R = co. Substituting the
ansatz (9.22) into (9.9), we obtain

(9-23) W, = [Abs(p) + C(p)lw + Cp)uns(p) + G(p, W)
with p € (—x~!log R, 0), where

B —kdy 1
Ans(p) = ( —D7Hwdy + f'(uns(p))]  —kdy )

0'(p+ R)D 0
(9:24) Clp) =~ ( e 5191919 1 +0'(p+ R)dy ) ’
— 0 _ W 2
903 = (1) )~ )~ Fnnl) ~ O

and ups(p) = ups(p;w). Our strategy for solving (9.23) is the same as before: we
show that the linear equation

(9.25) w, = [Aps(p) + C(p)]w
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has an exponential dichotomy on X,; g, uniformly in w and R, then use the di-
chotomy to convert (9.23) to an integral equation, and lastly solve the integral
equation in a function space with appropriate weights. The existence of exponen-
tial dichotomies for (9.25) on [—x~!log R, 0] that satisfy the estimates

198 (no)| < Ce Tl g R <o < p<o,
(9.26) |83 (p, 0)|| < Cemlo=el, -k llogR< o <p<0,
|Bpe (p,0)|| < Ce~*lr=el —k"logR< p <0 <0,

for some k > 0 and some arbitrarily small § > 0 can be established following
the arguments in the proof of Proposition 5.5 upon freezing the p-dependent co-
efficients that appear in the definition (9.24) of Aps(p) and C(p) at their value at
p=—r"tlogR for p < —k~!log R. Equation (9.23) is then equivalent to

(9.27)  w(p) = %(p, —~ " log R)wiS,
+f (6.0) (C()un(o) + G0 w(o) do

—k~llog R
+ @i (p, 0)wis + /Op bs (0, 0) [C(o)ups(0) + G (o, w(0))] do,

where p € [~k 1log R,0]. If we consider (9.27) as a fixed-point equation on the
space

Xos = {W € C%([~r"1og R, 0], X); [|w] = sup (W(P)|x,in < OO}
p€[—r~1log R,0]

and fix € so that 1 > & > § > 0, then there is a constant K > 0 such that (9.27)
has a unique solution for every R sufficiently large in the ball ||w| < KR~'*¢ for
every w close to w, and every wis, and wi! of norm less than R~!7¢. This claim
follows upon exploiting the estimates (9.26) for the exponential dichotomies and
the fact that the nonlinearity G (9.24) vanishes with order O(|w|?). Furthermore,
the resulting solutions are smooth in (w, Wiy, wis), and they satisfy

(9.28) Iwll = O (Iwi| + lwha| + R~'7).
Evaluating the solution at p = —x~!log R and at p = 0 gives
(9.29) Wis(—k 1 log R) = P (—k ! log R)Wis, + @1 (—k~ ' log R, 0)wit
—kllogR
+ B (" log R p) [C(p) (o) + G, w(o))] dp
0
= Pi(—+""log R)wi,

uu

1 w s
+0 (s + L4 o Rl w2+ i)

R R
(9.30) W (0) = PLU(0) W + B55 (0, —n " log R)w,
0
+ / (0.0 [Clpunp) + Gl w(p)] dp
—k~llog

1 WSS <
= RO + 0 s + L w2
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This completes the construction of the solutions in the core, the far-field, and the
boundary-layer region.
9.3. Matching of core, far-field, and boundary-layer solutions

It remains to match the solutions obtained in the last section at r = R,
r=R—k"'logR, and r = R. Using the coordinate transformations established in
§5.3, we push the matching conditions to the space L? x L? and solve them in this
space as this allows us to compare the various projections with the r-independent
projections of the asymptotic wave train. Note that the estimates we established
above remain valid when we transform the equations to L? x L2.

Matching far-field and boundary-layer solutions. First, we match the
far-field solution at r = R — k~'log R and the boundary-layer solutions at p =
—k~1log R. From (9.12) and (9.22) we obtain the equation

ug(R -k 'log Ryw, a, wi) + wg(R — k 'log R)
= ups(—k ' log R;w) + wis(—r 1 log R).
Note that Proposition 7.2 implies that
1
Uff(R - Hil IOg R;wvaawfs:fs) = uoo(‘;w) + ugc(‘;w)oz + 0O (Oé2 + R) s
while (9.7) shows that

w4 Tog i) = (0)+ O ().

Using these facts together with (9.19) and (9.29), we arrive at the equation
(w4 PR (R -k log Rywp* — P (—k~ log R)WE,,

(9.31) =0 (

where

(Wi

s i+ R g ) s+ i

1
R1-96

wi' € Rg(P'(we)), Wi € Rg(P(ws)),
with |ws | < R, We will solve (9.31) below.

Matching boundary conditions. Next, we need to satisfy the boundary
conditions at » = R or, alternatively, at p = 0. Using the ansatz (9.22) and
exploiting the fact that up(0;w) € EPC satisfies the boundary condition, it remains
to solve wp,s(0) € EPC. Tt is convenient to introduce the projection PP¢ defined via

Rg(PP¢) = Rg(PLY(0; w,)), ker(PP¢) = EPe.

Note that PP¢ is well defined on account of the results in §9.1 and bounded uniformly
in R. Using this projection, we see that w(0) € EP if and only if PP°wy,(0) = 0
which becomes

1 WSS
(9.32) P {Pﬁ;‘(o)wﬁ‘s‘ +0 (RH . ! }gs| + [ log R [[wis|* + [wi 2])} =0

when we use (9.30). Here, we can choose wjt subject to

whe € Rg(Pha(0iwy)),  [wig| < BT
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Solving (9.31) and (9.32). Collecting the equations (9.31) and (9.32) we
derived so far, we obtain the system

0=u/_(;wa+P(R—r tlog AWy — P (—r ! log R)wi,

1 2 uu |2 ‘WE‘;| ss |2 uu |2
(9.33) +0 (R15 a4 [wg'|” + R |log R [[wig|” + [whal’]
0= pbc Puu(o)wuu +0 1 + |Wi~.ss‘ + |10 RI sts |2 + |Wuu 2]
- bs bs R1,5 R g bs bs ’

where
Wi € Rg(PR(w,),  wik € Rg(PR(w.)),  wil € Rg(PR(0:e.)),

and « need to be close to zero with |wis| < R™1%¢ and |[wi'| < R™'*¢. The
remainder terms, and their derivatives with respect to (W', Wi, Wi, Wi) and w,
are uniform in R, w and w. Note that the projections Pi2(0), PE(R— k' log R)
and P (—k~!log R) are smooth in w and that P'(r) and PpRl(—p) are close
to P2 (w,) for r and p sufficiently large and w close to w.. We also recall that
E" & Rg(PRe(0;ws)) = X. Using that 1 > ¢ > ¢ > 0, it is then not difficult to
solve (9.33) for (Wi, wpe, Wi, ) as a smooth function of w and wi. Furthermore,
for some constant C' > 0, we have

S C
(9.34) lo| + [wgg'| + [wis| + [Whg| < RIS
uniformly in w and w§. The above estimate is also true for derivatives with respect

SS
to w and wi.

Matching core and far-field solutions. Lastly, using (9.12), we see that
the matching condition of the core and the far-field solution at r = R, is given by

ucore(R*;w7Wgore) - uH(R*,w,Oé(w,WSﬁS-),WES) + WH(R*)7

where a(w, wif) denotes the function we obtained in the previous step. Using (9.18)
and (9.34), this equation becomes

(9.35) Ucore (Ra; w, Wi o) = ug(Ry;w, a(w, wg), wi) + O (R2_‘5e_“R) )

core

where we can choose wi,., € Rg(P"(R,)) and wif € Rg(PF(R.)) near zero as we
wish. The arguments given in [89, §4.2] for matching homoclinic orbits in finite
dimensions also apply to (9.35), and we obtain that (9.35) has a unique solution
(W, Wi, Wit) for each R > 1. Furthermore, [89, Lemma 4.2] shows that there is

a constant C' > 0 such that
(9.36) |w — we| + WO | + |WE| < CR?%e<E,

core
This completes the proof of the existence part of Theorem 3.19. The estimates
(3.12) follow from the representations (9.11), (9.12), and (9.22) together with the
estimates (9.17), (9.28), (9.34), and (9.36).






CHAPTER 10

Spectra of Spiral Waves Restricted to Large Finite
Disks

In this section, we prove Theorem 3.23, which characterizes the spectrum of
the linearization at a spiral waves restricted to a large bounded disk. We define

,CRU = DAu + W*awu + f,(u*(rv '(/}))'U/

on the disk 0 < r» < R with boundary conditions au + bu, = 0 at the boundary
r = R, where a,b are fixed constants. We denote by Xy the spectrum of the
operator Lz posed on L2. Our goal is to characterize the limit of X5 as R — oc.
It is convenient to define the set

Yace :={A € C|3IRy, — 00, A\, € Xp, so that Ay = A as k — oo}

of accumulation points of ¥z as R — oco. We claim that 3, is equal to the limiting
spectral set Yg 1= Yabs U Xext U Xpdy. To prove that Xace = Xy, it suflices to show
the following inclusions:

(1) Bace C Xgt, (ii) Lpay C Baces (iil) Xext € Lace, (iv) Labs C Bace-

We will establish (i) in §10.1, (ii) and (iii) in §10.2, and (iv) in §10.3. From the
proofs, it will be clear that the multiplicities are preserved in the limits (ii) and
(iii), while multiplicities tend to infinity in (iv).

10.1. Excluding eigenvalues outside of the limiting spectral set

We prove that ¥,.. C Y, thus excluding the case that eigenvalues of L can

accumulate in the complement of the limiting spectral set Y.

LEMMA 10.1 (Continuity of the resolvent under restriction). Suppose that M. ¢
Y. Then there exist 6 > 0 and R > 0 such that B;s(\.) belongs to the resolvent set
of Lr for all R > R. Moreover, R(\.) can be chosen uniformly in compact subsets
of the complement of Yg. In particular, we conclude that s & acc-

PROOF. Since Ay ¢ Yaps U Yexs, the spatial dynamical system belonging to
the system Lu = A, u associated with the linearization of the planar spiral wave
admits an exponential dichotomy in appropriate weighted spaces for r > 0; see §5.5.
Since A« ¢ Xpay, there exists an R so that the space EP° of boundary condition
in the spatial dynamics formulation is transverse to the unstable subspace of the
exponential dichotomy at r for each » > R. We can therefore find exponential
dichotomies that satisfy E5(R) = EP° that are uniform in R, which proves the
absence of point spectrum of L at A\.. These arguments can be extended, uniformly
in R, to all A near A\, by continuity of the dichotomies in . [

85
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10.2. Convergence of eigenvalues to the boundary and the extended
point spectrum

We first consider eigenvalues created by boundary conditions and prove that
Zbdy - Eaco

LeEMmMA 10.2 (Eigenvalues induced by boundary conditions). Suppose that \. €
Yhdy \ (Zabs UZext) belongs to the boundary spectrum but not to the absolute or the
extended point spectrum of the spiral wave. Let m be the algebraic multiplicity of A,
as an element of Ypay. Then there is a § > 0 such that for all R sufficiently large
the truncated linearization L has precisely m eigenvalues, counted with algebraic
multiplicity, in Bs(\s). Moreover, there exists a constant C' > 0 such that |[A—\,| <
CR 3w for any eigenvalue X\ in this §-neighborhood of ..

PROOF. As in the preceding lemma, since Ay & X,psUXcxt, the spatial dynami-
cal system belonging to the system Lu = Au associated with the linearization of the
planar spiral wave admits an exponential dichotomy in appropriate weighted spaces
for r > 0 for each A near \,. In addition, we proved in Proposition 5.5 that the un-
stable subspace E"(R) of the dichotomy is O(R~'/3)-close to the unstable subspace
of the linearization at the asymptotic wave trains. We find eigenvalues by looking
for nontrivial intersections of the unstable subspace E"(R) and the boundary sub-
space EP°, which yields a linear equation with parameter A that is O(R’l/ 3)-close
to the equation for elements of the boundary spectrum. Using Lyapunov—Schmidt
reduction, we obtain a characteristic equation for eigenvalues that is analytic in
X of the form A™ = O(R~'/3), which then gives roots as desired. Though we do
not provide details, it can be shown that the multiplicity of each root obtained in
this fashion is equal to the algebraic multiplicity of the corresponding eigenvalue of
LR. O

Next, we show that elements in the extended point spectrum Yeyy lie in Yacc.

LEMMA 10.3 (Eigenvalues induced by extended point spectrum). Assume that
Ai € Yext \ (Zabs U Xpay) belongs to the extended point spectrum but not to the
absolute or the boundary spectrum of the spiral wave. Let m be the algebraic multi-
plicity of Ay; then there is a § > 0 such that for all R sufficiently large the truncated
linearization L has precisely m eigenvalues, counted with algebraic multiplicity, in
Bs(\«). Moreover, there are constants C,n > 0 such |\ — \.| < Ce "2 for any
eigenvalue X in this d-neighborhood of \..

PROOF. Since A\, ¢ X1, the spatial dynamical system belonging to the system
Lu = A\u associated with the linearization of the planar spiral wave admits exponen-
tial dichotomies in appropriate fixed weighted spaces separately for 0 < r < R, and
for R, < r for each A near \,. We restrict the dichotomy for R, < r to the interval
R, <r < R and, using the assumption that A\, ¢ ¥yqy, modify the dichotomy by
selecting the new stable subspace Eﬁ_ (R) to satisfy Ej_ (R) = E®° for each \ near
Ax. The resulting dichotomy has rates and constants that are independent of R and
A near \,. Furthermore, the new stable eigenspace Ei(R*) at r = R, is exponen-
tially close in R to E5 (R.). A number A near A, is an eigenvalue of L if and only
if Ej_(R*) and E"(R,) have a nontrivial intersection. Using Lyapunov—Schmidt
reduction, this condition gives a reduced equation that is exponentially close in R
to the equation for eigenvalues in the extended point spectrum of the planar spiral
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wave. As a consequence, the eigenvalue A, of multiplicity m in the extended point
spectrum creates precisely m eigenvalues, counted with multiplicity, of L near A,
and the latter converge to A, exponentially in R as R — co. (]

10.3. Accumulation near the absolute spectrum

It remains to prove that Y, C Y.cc, which turns out to be more subtle than
the previous cases.

Take an element A, € Xaps so that Rev_1(\.) = Rery(As). After choosing a
new variable A via A = A, + A and using an exponential weight Re vo(As), we can
assume that A, = 0 with v_1(0) = —i/2 = —1(0). Note that simplicity of the
absolute spectrum implies that Rev; < 0 for j < —1, Rev; > 0 for j > 0, and
Wi 2 dv a6 X = A, = 0. Finally, using that 252(0) # 92(0), we can make
an invertible analytic change of coordinates of the A variable so that the absolute
spectrum near A = A, = 0 is given by Re A = 0.

First, we describe the asymptotics of solutions in the two-dimensional cen-
ter subspace associated with the spatial eigenvalues +i/2. We write the spatial-
dynamics formulation (8.1) associated with the eigenvalue problem Lpu = A\u as

(10.1) w, = Ax(r)w.

The associated asymptotic system, obtained by formally setting r = oo in (8.1)
or (10.1), admits a trichotomy belonging to the splitting of spatial eigenvalues v
into center, stable, and unstable sets with associated eigenspaces E3*". The next
lemma shows that similar trichotomies exist for (10.1).

PROPOSITION 10.4. For each A close to zero, the linearized equation (10.1) has
an exponential trichotomy for r > R, with subspaces E<*"(r). The center subspace
E<(r) has dimension two and is a graph over ES that can be chosen to be of class
CN in % for each fixed N < oco. The dynamics in E°(r) projected onto ES are
given by the linear equation
(10.2) wl = Ac(r; Nwe, w, € ES
and, in suitable coordinates in ES_,

N
_ g0 Jo—j —(K+1) o _ (V=1(}) 0
Aclr) = A + Y a4 0, = (T A

j=1

Furthermore, the subspace E°(r), and the reduced equation (10.2) are analytic in
A

PROOF. The proof is similar to the proof of Proposition 3.17. In the far field,
for r > R,, we can use the trichotomy for the asymptotic equation to decompose

W{] = Ah(r)wh + AhC(T)WC
(10.3) Wé = Ac(r)we + A (r) W,

where we wrote wy, = (Wg, wy), and where Ayc(r), Aecn(r) = O(2). Proceeding as
in Proposition 3.17, we can compute the expansion

N
wi = B(r)we + Wy, B(r) = ZBjr_j
j=1
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such that (10.3), written in the new variables (Wy, w), becomes

Ah (T)Wh —+ Ahc (’I")WC
AC(T)WC + Ach (T)Wha

!
(10.4) w

/!
C

where Ap.(r) = O(r~ +1D) and where A.(r) has an expansion in 7! up to order
N. We will now argue that (10.4) has an exponential trichotomy. Artificially
setting Ane = 0, we can construct an exponential trichotomy with E¢ = {wn =
0}. Quantitative robustness of exponential trichotomies then guarantees that the
equation with Ap.(r) = O(r~®¥+1) also admits an exponential trichotomy with
subspace E°(r) = O(r~(E+1). Diagonalizing the linear part within this subspace
implies the claim of the proposition. 0

The key step in our analysis of the far-field asymptotics of (10.2) is a change
of coordinates that allows us to diagonalize the system in E° uniformly in r and .
This result is presented in the following proposition.

ProrosiTION 10.5. For each fized natural number M, there exists a linear,
(r, \)-dependent change of coordinates in ES, that is CM*! in X\ and has an expan-
sion up to order M in v~ such that the reduced equation (10.2) is of the form

Wi = Aclr, \)we, AC@,T«):(”“Q’” o)

Vi) = v ( -‘rZVZ O(r~(M+1)y,

where vI_(\) are the eigenvalues v_1(\) and vo(\) from Proposition 10.4.

PRrROOF. To prove the statement, we need to continue the asymptotic eigenvec-
tors that belong to the asymptotic matrix at » = oo on the center space associated
with the eigenvalues v! and »? to finite values of r. The proof is divided into several
steps.

Step 1. We perform a sequence of near-identity transformation of the form
id+r79B;()\) so that A.(r,)\) is diagonal up to terms of order r~(¥+1. This can
be readily accomplished since diagonalizing at order r—7 introduces error terms
only of order r—(+1),

Step 2. We introduce projective coordinates z = w!/w?, thus reducing the
linear two-dimensional equation to an equation on the complex Grassmannian C ~
S2. Setting o := r~!, we arrive at the equation

2 =W\ r) — UQ()\,T))z—I—O(aMH)+z20(aM+1)
v ) = (A1) = 14 (13(0) = v3(0)A + O(X?) + O(a).

Since the analytic coordinate transformation for A we discussed at the beginning
of this section ensures that the absolute spectrum through A, = 0 is given by the
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line Re A = 0, the equation for z becomes

M
2 =iz+ A2+ Zajajz 4+ O(aMThy 4 220(aM*1)
j=1

!
« :—a2

N =0.
Note that we included the equations for o and A for later use.

Step 3. Next, using the corotating frame z = el1TImNrz and setting A, :=

Re A, we find, after dropping the tildes, that z satisfies the system

M
2=z + Z ajalz + O™ty + 20(aMt1) + 220(aM*)
j=1
(10.5) o = —a?
N =0,

where the remainder terms now depend on ¢/, hence inducing negative powers
of a when we differentiate these terms in a. Choosing M sufficiently large, we
conclude that the resulting system can still be differentiated arbitrarily often in «
up to a = 0.

Step 4. The dynamics of (10.5) is degenerate near the origin as the leading-
order terms in the vector field are quadratic in (z,a, A). In order to understand
the dynamics of this system, we desingularize using geometric desingularization
techniques. We describe the dynamics in the neighborhood of the origin using polar
coordinates, which leads to a dynamical system on RT x S, where z is treated as
real two-dimensional variable and the parameter Im A is hidden in the higher-order
terms. As we will see later, it suffices to describe the dynamics near the equator
{z = 0}, which can be described by the following two directional coordinate charts.

1-chart: We define the coordinates (21, A1) via

z=az1, A =a\

and note that these parametrize our system near the a-pole of the sphere. After

introducing the independent variable s with a% = % and then using again ' to

denote %, equation (10.5) becomes

M
21 =Mz + (14+a1)z + Zajaj_lzl
=2

+0(aM*) + 2,0(™) + 220(aM 1)
(10.6) o =—a
=M1

2% -chart (A, > 0): To characterize the dynamics near the z-pole for A, > 0,
we introduce the coordinates

z=AZ2, Q= AQs.
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FIGURE 10.1. Left two panels: We illustrate the dynamics near
the origin in the 1-chart, with the sphere shaded in blue, depend-
ing on the sign of (1 4+ Reay). Also included in the left panel is a
schematics of the Shilnikov sections used to track the stable man-
ifold past the singular equilibrium as described in Steps 6 and 7.
Right two panels: Shown is the dynamics near the origin in the
2-charts, including the center manifold and the lines of equilibria.

After introducing s with )\r% = Cf—s and then denoting % again by /, equation

(10.5) becomes

M
/ i \i—2 M+1_ M
29 = 2o + @129 + A E ajab N 2ze + O\ e
Jj=2
ah = —a3
A, = 0.

27 -chart (for A, < 0): Similarly, we use the variables
z=—MN\29, a=—M\ay

to parametrize the region near the z-pole A\, < 0. After introducing s with —)\r% =

% and then denoting % again by /, equation (10.5) becomes
M
2y = =23 + arazzy + A Z a;o N 220 + O(NMH1aQT)
j=2
oy = —a
AL =0.

We glue these coordinate charts together near {as = 1}, which corresponds to
{\; = £1} for the 2*-chart, respectively. Using this information and the definitions
of the charts, we see that these coordinates are related via

21 = 2o, a = ||

In the next step, we analyze the dynamics in the 1- and 2-chart: we refer to
Figures 10.1 and 10.2 for illustrations of the overall dynamics.

Step 5. In the 1-chart, the set {« = 0} corresponds to the origin in the
original equation. This set is invariant and carries non-trivial dynamics due to the
singular rescaling of time by «. In this chart, the origin is an equilibrium that is
stable in the direction of «, perpendicular to the sphere, with eigenvalue —1. The
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eigenvalues within the sphere are +1 and (1 + a1), which depends on the leading-
order correction in the expansion. The z-equator {z; = 0} inside the sphere is
invariant, and solutions in this set converge to the origin in backwards time in the
1-chart due to the eigenvalue +1; see Figure 10.1.

In each 2-chart, there is a line of equilibria as = 2o = 0 that correspond to the
asymptotic eigenspaces parametrized by A;. The linearization at the equilibrium
g = 29 = |A;| = 0 inside the singular sphere has an eigenvalue zero associated
with this line of equilibria, and an additional eigenvalue zero associated with the
dynamics in the as-direction. In addition, there is an eigenvalue +1 associated
with the zo-direction in the 2*-chart, respectively. The ap-axis is invariant with
solutions converging to ag = 0 in forward time. Recall that ), is real and that Im A
appears only as a hidden parameter in the higher-order terms of the equation for
z9. We will omit the hidden variable Im A from our dimension counts below.

As illustrated in Figure 10.2, two heteroclinic orbits connect the origin in the
1-chart and the origins in the 2*-charts along the z-equator z; = 0 and 2z, = 0,
respectively. Eigenfunctions in the 2%*-chart correspond to trajectories that con-
verge to the manifold of equilibria ay = 29 = 0 as time goes to infinity. Our goal
is to construct a smooth curve in the section Yo, = {& = 0} in the 1-chart that is
parametrized by A, near zero so that the corresponding solutions converge to the
manifold of equilibria at time goes to infinity in the 2*-chart depending on the sign
of \.. We accomplish this by tracking solutions in the center-stable manifolds of
these equilibria back towards ¥, and establishing smoothness in A, in this section.
In the 27 -chart, all solutions converge to the manifold of equilibria as time goes to
infinity. We therefore focus first on the 27-chart. In this chart, we are interested
in the two-dimensional center manifold of these equilibria. The tangent space to
this manifold at A\, = 0 is simply the two-dimensional center eigenspace zo = 0.
Inside this two-dimensional center manifold, the dynamics is given by o = —a3
and A, = 0, and trajectories indeed correspond to the stable manifolds of the as-
ymptotic equilibria. We are interested in tracking this manifold backward in time
to and past the origin in the 1-chart to a finite value of a. Note that the Taylor jet
of this center manifold is of arbitrarily high order O(|az)|™) due to the fact that
we diagonalized eigenspaces up to order M.

Step 6. In order to track the center manifold near the set {z2 = 0} past the 1-
chart origin, we need to analyze the passage map near the origin in the 1-chart. This
is a somewhat standard Shilnikov-type problem, and we outline the results of this
analysis here. The center manifold that we track is given as a graph z; = h(«), with
h = O(a™), in a cross section ¥ = {\; = §} of the flow. We wish to transport
this manifold backwards past the equilibrium to a section X" = {a = §}. We
add superscripts to the variables in the cross section and, due to the fact that A is
constant and does not evolve, find that

AP = AU oM hence AU = ™.
We determine 29" from the equation for 2| by integrating for a time T with e=7 =
o™ /4. Using only the linearization for illustration, we expect to arrive at
in

a+1
o .
Z?ut _ ( 5 ) 0 (|a1n‘M) =0 (|)\c1>ut|M+a+1) .
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FIGURE 10.2. Shown is the singular sphere with the 1- and 2-
charts, singular equilibria, connecting orbits, and Shilnikov passage
constructions indicated.

In the next step, we show how this linear calculation can be turned into a nonlinear
estimate.

Step 7. We observe that we can write the first equation in (10.6) in the 1-chart
as

2 =1 +alo, 1))z + ™ 1Rz, a, \p),

where the functions a(a, A1) and R(z1, @, \1) are smooth. We artificially augment
the system (10.6) by introducing the additional variable & := o ~! to arrive at

21 = (14 a(a,\))z1 + aR(z1, 0, A1)
o =—a
1=\
a'=—(M-1)a.
For M large enough, the dynamics in & is strongly contracting, and the system is

therefore fibered in a neighborhood of the origin over the invariant subspace & = 0.
A smooth coordinate transformation

(2175‘75\1) = (Zvaa)\l) + O_[\I/(Zlaaa )\1;0_‘)
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will straighten out these fibers such that, after this transformation, the dynamics
in (21, &, A1) are independent of &, hence given through the equation at @ = 0,

2= (1+al@ M)
& =—a
M=\

t t

We can now solve explicitly for z°"* and recover the desired estimates Zg"

O(|Ag"t|M), where M can be chosen large provided M is large, with equivalent
estimates for the derivatives due to the linearity in z;.

In the original coordinates, z{"" is therefore a smooth function of A"* up to
A$U = 0, which completes the analysis of the 2*-chart. Next, we extend this
function smoothly into the region A$"* < 0. Reversing the analysis presented above
in time, we can track this manifold through the 1-chart to the 2~ -chart, where all
trajectories limit on the family of stable equilibria.

Step 8. The preceding analysis provides z.(A, ) for each a with 0 < a <
a, = 6 and shows that this expression is smooth in A near A = 0. The change of
coordinates z — z — 2z, (A, @) =: Z gives, upon omitting the tilde, the new equation

2= (A +a(a))z + 0(a)2?,
which, in particular, leaves z = 0 invariant. Inverting £ := 1/z, we find
£ = —(A+a(X )+ 0(M).

We can now repeat the construction outlined above for this new equation, which
results in a function &, (A, «) with analogous properties to those of z,. Subtracting
this expression, we obtain an equation for £, or z, that is linear. Linear equations
on the Grassmannian correspond to linear systems whose matrix is diagonal as
claimed. This completes the proof of the proposition. O

In the coordinates provided by Proposition 10.5, we can solve the equation in-
side the center eigenspace explicitly by separation of variables. In particular, there
exist unique solutions that converge with asymptotics associated with the eigen-
values v_j o(\), respectively. Since the ordering of these two eigenvalues by real
part is exchanged upon crossing the absolute spectrum, solutions with asymptotics
given by () give rise to eigenfunctions to one side of the absolute spectrum,
while solutions with asymptotics associated with v_; () give rise to eigenfunctions
on the opposite side. With this background, we can now formulate the concept of
a resonance in the absolute spectrum (see Definition 3.22) more precisely.

Recall that the system (8.1) associated with the eigenvalue problem Lru = Au
is given by

(10.7) w, = A\ (r)w.

This equation admits exponential dichotomies on 0 < r < R,, and the corre-
sponding center-unstable subspace E'(R.) contains all initial conditions whose
associated solutions correspond to bounded solutions of Lru = Au on r < R,.

DEFINITION 10.6 (Resonances in the absolute spectrum). Fiz A. in the simple
part of the absolute spectrum.
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(i) Resonances caused by the spiral wave: We say that there is a resonance
in the absolute spectrum at A\, caused by the spiral wave if there exists
a solution w(r) of (10.7) defined for r > R, with w(R.) € E(R,) N
E(R,) so that, in the coordinates of Proposition 10.5, at least one of its
two center components in E°(r) vanishes for one, and hence all, values of
r.

(i) Resonances caused by the boundary conditions: We say that there is a
resonance in the absolute spectrum at A, caused by the boundary conditions
if EP° N (ES, ® EY) contains a vector whose component in ES, lies in
R(1,0)” or R(0,1)7.

We will exclude points in the absolute spectrum that exhibit a resonance as
these points are more challenging to handle. In the context of travelling waves,
the extension of the Evans function into the absolute spectrum vanishes at these
points, and it is then possible that discrete eigenvalues or resonance poles emerge at
these points upon adding small bounded perturbation to the underlying operator.
This phenomenon was first observed in [104] in the context of multi-dimensional
Schrodinger operators and later found for one-dimensional travelling waves and
degenerate shock waves in [41, 52, 55].

PROPOSITION 10.7 (Accumulation of eigenvalues near the absolute spectrum).
Suppose that A, is a point in the simple absolute spectrum with no resonances
caused by the planar spiral wave or the boundary conditions. For each fixed number
m there are constants C, Ry such that the linearization at the spiral wave with Robin
boundary conditions imposed at |x| = R, R > Ry, possesses m distinct eigenvalues

Aj (with 1 < j <m) with |A\; — A\ < C/R.

PROOF. Since we assume that 3,54 is simple at A,, the configuration of Morse

indices of the spatial dynamical system (10.7) at A, implies that E"(R,) NE$(R.)
has dimension at least one. We claim that the assumption that there are no reso-
nances caused by the spiral wave implies that
(10.8) dim(E™(R,) N E¢(R,)) =1, E(R,) N ES (R.) = {0}.
Indeed, the second identity follows immediately as any nontrivial element in the
intersection would yield a solution that decays exponentially as r — oo, thus causing
a resonance as the dichotomy projection on the center space vanishes identically.
The first identity follows similarly upon observing that if there are two linearly
independent solutions with initial conditions in the intersection, then these solutions
either span Ef (), leading to a resonance, or one of them lies in E% (r), yielding a
contradiction to the second identity that we already proved.

Since ES (R,) is two-dimensional, it follows from (10.8) that there is a one-
dimensional subspace V C ES(R.) so that

(B (R.) N ES(R.)) @ ES(R.) &V = E¥(R,).
We now define
ES(R,) == E(R) @V,  E}(R.):=E}(R.)
and note that Eiu(R*) @ Ei (R.) = X. We can use these two subspaces to define
an exponential dichotomy on [R., R] with rates and constants that are uniform in

R. In particular, we have that Ej_“(R) and Ei(R) are O(e~(F=F+)) close to B
and Ef_, respectively.
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Proceeding in the same way at » = R, and using our assumption that there are
no resonances at A\, caused by the boundary conditions, we see that
dim(E"* N ES(R)) = 1, EPNEY(R) = {0}.
We conclude that there is a one-dimensional subspace V C E< (R) so that
(E® N ESY(R)) ® EX(R) &V = EX(R).
This allows us to define the complementary spaces
E®(R):=E*a®V,  EY(R):=FE%(R)
and use them to define an exponential dichotomy on [R., R] with rates and con-
stants that are uniform in R. The resulting subspaces E’S:(R*) and Ei(R*) are
O(e~(B=EI) close to ES(R,) and EY(R,), respectively.
It follows that ES.(r) := EN’i“ (r)yn E$(r) is two-dimensional with
dim(Eo (R) NEM(R,)) =1,  dim(ES,(R) N EP) =1.
We conclude that there is a solution w(r) of (10.7) with w(R,) € E°“(R,) and
w(R) € EP¢if and only if w(R,) € E*(R,)NES,, (R.) and w(R) € E’°NES,, (R).
To find such intersections, we now turn to the diagonal coordinates in the

center subspace constructed in Proposition 10.5. Each intersection corresponds to
a solution z(r) of the boundary-value problem

(10.9) 2= A+ ha(r))z, z2(Ry) = zo(N), z(R) = z+(N),

in projective space, where 0 < |zp+(A)| < oo due to the absence of resonances.
Defining 7 :=log z and 19 + () := log 2o 4+ (\), we find that

R
n=A+hy(r) = n+:n0+/\(R—R*)+/ ha(s)ds,

which we write in the form

_ 1 R
A= /h,\(s)ds.

R-R. R-R.
Exploiting the nonuniqueness of the logarithm, we set 14 (X) = n%(\) + 27ij (with
0 <j<mand j€Z) and write ((A\) =7 (\) — no()) to arrive at the equation

omij C(N) 1 /R
10.10 A= — h ds.
(10.10) R-R  R-R R-R [, M
1

Since h has an expansion in r~*, we conclude that the last term and its derivative
with respect to A are bounded by %. In particular, the right-hand side of
(10.10) defines a contraction in A for all sufficiently large R, and we find eigenvalues

) within a ball of radius R~! for each 0 < j < m, which proves the proposition. 0O






CHAPTER 11

Spectra of Truncated Spiral Waves

This section extends the results from §10 to include corrections to the nonlinear
spiral wave profile, constructed in §9. The solutions constructed can be thought
of as spiral waves glued to a boundary sink that corrects for the influence of the
boundary conditions. In comparison with the situation in §10, the additional diffi-
culty due to this gluing procedure is to account for the boundary sink, effectively
replacing the boundary spectrum Xy,4y in the results of §10 with the extended point
spectrum of the boundary sink.

Many of the proofs are analogous to the proofs in §10 and we will mainly point
out the key differences. We start in §11.1 by collecting some geometric information
on the linearization at the boundary sink, depending on the eigenvalues \. In §11.2,
we characterize the resolvent set and point eigenvalues away from the absolute spec-
trum, before we consider accumulation of eigenvalues onto the absolute spectrum
in §11.3.

11.1. Geometry of the linearization at boundary sinks

The eigenvalue problem near a boundary sink can be written in spatial dynam-
ics on z < 0,

Uy =V
vy = =D —wdru + f (ups)u — \uj
with boundary subspace as in (9.3),
u(0) € EY = {(u,v) € Y; (u(r),v(r)) € EZ° Vr}.
More conveniently, we consider the equation in the corotating coordinates
(11.1) Uy = —k.Osu + v
Vp = =k 0y — D™ w0 u + f(ups)u — Aul,
where the coefficients ups(z,0) — U (o) converge to an z-independent limit. We

collect geometric information on this equation that results from our spectral as-
sumptions.

The case A\, ¢ X.ps. In this case, we can conjugate the equation with an
exponential weight n € Jy(\,), considering (@, 0) = €™ (u,v), and find an exponen-
tial dichotomy on x < 0 with projections P%/"(x). Moreover, the P¥" converge
exponentially to the corresponding projections vavéu of the asymptotic wave train.
If in addition A\, does not belong to the extended point spectrum, we may choose
RgP3(0) = Eb©.

97
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The case A\, € Y,s. In this case, we again conjugate with an exponential
weight 7 = — Re vg(\4) and we can then define a trichotomy for the shifted equation
with projections P*/¢/%(z), dim Rg(P°) = 2. Moreover, each solutions in Rg(P°)
satisfies

v-1(A)| s

u,v)(xr) — apgepe L —_1€_1€
[(u, v) () vor)

at an exponential rate for some ag,a_; € C.

DEFINITION 11.1 (Boundary resonance in absolute spectrum). For a point
Ax € Xaps where the absolute spectrum is simple, we say that the linearization
at the boundary sink possesses a resonance if there exists an solution to (11.1) with
(u,v)(x,0) € L%fg, for some € > 0, arbitrarily small, such that the component in
RgP° satisfies ag =0 or a_y = 0.

Continuity in w. Non-degenerate boundary sinks come in one-parameter fam-
ilies parametrized by w; see Lemma 9.1. In corotating coordinates o, the bound-
ary sinks depend smoothly on w as functions in L*>°. We may then consider the
spectral properties described above for nearby values of w. Continuity of expo-
nential dichotomies with respect to the parameter w, through explicit dependence
and implicit dependence in k and the profile, gives continuity of the exponential
dichotomies in w and thereby continuity of absolute and extended point spectra
of the boundary sink. Similarly, absence of resonances is robust with respect to
changes in w.

11.2. Eigenvalues and resolvent outside of the absolute spectrum

We exclude eigenvalues in the complement of the limiting spectrum, that is, for
Asx in the complement of extended point spectra of spiral wave and boundary sink,
and not in the absolute spectrum.

LEMMA 11.2 (Resolvent continuity under truncation). Suppose that A. does
not belong to the absolute spectrum, the extended point spectrum, or the boundary
spectrum; then there exists § > 0 and R > 0 such that Bs(\.) belongs to the
resolvent set of Lsr for all R > R. Moreover, R(\.) can be chosen uniformly in
compact subsets of the complement of absolute, extended, and boundary spectrum.

PRrROOF. Convergence estimates in the construction of the boundary sink give
us that the truncated spiral is uniformly close to the profile of a boundary sink on
r > R — k~!log r with nearby frequency and uniformly close to the spiral wave on
r < R— k" tlogr. Since stable and unstable subspaces of spiral waves converge to
the stable and unstable subspaces of the wave trains for r — oo, and stable and
unstable subspaces of the boundary sink similarly similarly converge for x — —oo,
we find can conclude transversality of the unstable subspace for the spiral wave and
the stable subspace for the boundary sink at the gluing point r = R — k=1 log R,
which implies existence of an exponential dichotomy near the glued profile and
absence of spectrum for all R sufficiently large and nearby values of the parameter
A O

Establishing persistence of eigenvalues in the extended point spectrum of the
spiral wave or the boundary sink is equivalent to the constructions in §10.2 since
the equation near the boundary sink possesses exponential dichotomies.
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11.3. Accumulation of eigenvalues onto the absolute spectrum

We now show how to adapt the techniques from §10.3 to establish accumulation
of eigenvalues near simple points of the absolute spectrum, assuming absence of
resonances. We consider the linearized equation

W/ = ARV)\(’I’)W
with parameters A and R on R, < r < R with boundary conditions
weFEYatr=R, and weEXatr=R.

We choose A ~ A, with A, in the simple absolute spectrum, not a resonance for
boundary sink or spiral wave.

Step 1: Relaxing the boundary conditions. The linearization at the
boundary sink possesses an exponential trichotomy with subspaces Ey. " (r), r < R,
where we shifted the boundary sink profile and the associated linearized equa-
tion as in the construction in §9 such that the boundary condition is situated at

r = R. Absence of resonances implies that EP¢ N Eg‘sl,oo(R) and we can choose a
one-dimensional complement Vi,s C Ef,  (R) such that EP® Vi DB, o(R) = X.
We can then assume that EfS (R) = Ep¢ ® Vis.

Similarly, the linearization about the primary spiral wave has an exponential
trichotomy with subspaces E>%Y (r) for » > R,. The intersection E* N ES _ is

Sp,00 sp,00
one-dimensional and we can choose a one-dimensional complement Vg, C Eg, . (Rx)
such that E" @V, @ E3, ., = X. We can now assume that ES) (R.) = E* @ V.

Step 2: Robustness and transversality. The dichotomies constructed in
the first step are robust and yield exponential trichotomies with subspaces Esspchs
on R, <7 < Ry and on Ry < r < R, where Ry = R — k™ !log(R). In particular,
exponential dichotomies converge to the corresponding trichotomy of the wave train.

As a consequence, at r = Ry, we have transversality
CS cu __ CS cu __., C
Ens® Eg, = X, ErsNEg =: ER

with
ERNEg ={0},  ERNE,={0}.

We can now continue this two-dimensional intersection EY, along r to find Eg(r),
R, < r < R. By construction, E¢(r) and the flow in these subspaces converge
exponentially to the flow on ES (r).

Step 3: Un-relaxing the boundary conditions. Eigenfunctions for finite
R are in one-to-one correspondence to solutions of the ODE in the subspace E¥%(r)
that also satisfy the boundary condition, that is, whose component in Vi,4 and Vg,
vanish at » = R and r = R,, respectively.

Step 4: Scattering and reduction to the pure spiral. The resulting
equation on E%(r) can be identified with an equation on ES, as a convenient trivi-
alization of the two-dimensional bundle. Exponential convergence implies that this
equation is, in suitable coordinates, of the form given in Proposition 10.5, with an
exponentially decaying correction

we = (Ac(r,\) + B R A) we,  [B(r; R,\)| < Ce™ )



100 11. SPECTRA OF TRUNCATED SPIRAL WAVES

for some constants C,d > 0 that are independent of R,r, A\. Exponential decay
gives a continuous foliation over the asymptotic equation, that is, we have

we(r) = W(r; R, \)we(r)

where w2° satisfies
(Wgo)l = AC(’I“, /\)Wgov
and U(r; R, \) is continuous in r, satisfies |¥(r; R, \)| < Ce=®=") and has the
limits
U(r; R,\) = U(r;00,\) as R — oo, U(r;00,A) = 0 as r — oo.

In summary, we reduced our eigenvalue problem to an boundary-value problem
for the linearized equation for the primary spiral with boundary conditions pulled
back from the foliation W. Absence of resonances, as used in §10.3, follows from
the assumptions on absence of resonances for boundary sink and spiral.

Step 5: Conclusion. As a consequence, we reduced the problem to precisely
the problem studied in §10.3. We reduced to an equation of the form given in
Proposition 10.5 with boundary conditions at » = R and at r = R,. Proceeding as
in Proposition 10.7 now establishes accumulation of eigenvalues for the truncated
problem near A\, as R — oo and concludes the proof of Theorem 3.26.



CHAPTER 12

Applications to Spiral-Wave Dynamics and
Discussion

The theory developed here can illuminate many experimental and numerical
observations of spiral-wave dynamics. In order to illustrate the role of our results
in the prediction and understanding of observations, we return to the phenomena
alluded to in the introduction. In §12.1, we discuss the viewpoint that spiral waves
are robust coherent structures that can be continued in parameter space, both
analytically and numerically, on large but bounded domains. We then discuss
possible instabilities and how they relate to the fine structure of spectra developed
here in §12.2. We conclude with a discussion of selected open problems in §12.3.
We focus here on the phenomena and relegate details of numerical algorithms, their
implementation, and the PDE models used for our computations to the appendix.

12.1. Rigid rotation, truncation, and continuation.

Existence, continuation, and logarithmic phase. Existence of spiral waves
has been proved only in the special case of the complex Ginzburg—Landau equation
and, extending from there by perturbative arguments, in the vicinity of a Hopf bi-
furcation in the reaction-diffusion kinetics [102]. In excitable media, good matched
asymptotic approximations are available [17, 58, 69, 106]. From the point of view
taken in this paper, spiral waves will exist in open classes of reaction diffusion sys-
tems, possibly containing a connected region that included both oscillatory and
excitable media. We used numerical continuation to follow a spiral wave from the
excitable to the oscillatory regime in Barkley’s variant of the FitzHugh—Nagumo
system; see Figure 12.1. Note that one typically thinks of excitable media as orga-
nized around excitation pulses and their periodic concatenation, so-called trigger
waves, whereas periodic media are organized around spatially homogeneous oscil-
lations and their spatial modulation, so-called phase waves. At the transition from
oscillatory to excitable media, excitation pulses terminate in a saddle-node bifurca-
tion [15, 26], while homogeneous oscillations end in homoclinic or Hopf bifurcations.
Phase waves can however be continued to trigger waves [15, 25], and we show in
Figure 12.1 that spiral waves emitting those phase and trigger waves, respectively,
are connected in parameter space. Spiral waves eventually terminate at a point
where the temporal frequency w, approaches zero (w. N\ 0) in the regime of weak
excitability. In this regime, the wavelength of wave trains selected by the spiral
diverge. It is worth noticing however that during the crossover from excitable into
oscillatory regimes, the spiral-wave profile changes very little.

Our main robustness result relies on the construction of a center manifold

¢, which continues wave-train solutions to finite radii r. Solutions in this cen-
ter manifold can be expanded in the radius r and the leading-order correction

101
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FIGURE 12.1. Panels (1)-(3) show snapshots of spiral waves in the
Barkley model in the oscillatory, excitable, and weakly excitable
regimes with L = 100. Panels (4) and (6) show snapshots of spi-
ral waves in the oscillatory (b = —0.05) and excitable (b = 0.05)
regimes, which were computed using a continuation algorithm, to-
gether with their temporal frequencies and spatial wavenumbers as
functions of the system parameter b.

contains the effect of curvature on the speed and wavenumber of wave trains. Fig-
ure 12.2 confirms the predicted logarithmic phase shift and corresponding algebraic
%—convergence of the wavenumber.

Group velocities and transport. A crucial property of spiral waves we
assumed throughout this paper is that the group velocities of the asymptotic wave
trains are directed outward in the far field. This basic property underlies the
selection of wavenumber and frequency by the spiral core and determines growth
and decay properties of eigenfunctions and adjoint eigenfunctions on the imaginary
axis. Figure 12.3 illustrates that positive group velocities imply outward transport
via direct simulation in Barkley’s model and in the Rossler system. Shown are
temporal dynamics along a line section through the center of rotation, which clearly
exhibit outward transport (diffusive decay and spreading) of perturbations. We
emphasize that this transport is independent of the apparent phase velocity of
wave trains, which indeed is directed towards the core of the spiral in the Rossler
system.

Spectra at linearization and shape of eigenfunctions. Without using
any information about the specific model, our results predict a number of struc-
tural and qualitative properties of the spectra® of the linearization about a spiral
wave. Figure 12.4 illustrates many of those basic properties in the Karma model.

LThe different spectra we refer to in this paragraph are defined in §3.2
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FIGURE 12.2. Panel (1) shows a rigidly-rotating spiral wave in the
Barkley model. Panel (2) shows the spiral wave evaluated at radii
7, along the horizontal ray starting at the center of the spiral: for
each r, we denote by r + L(r) the second-next value of the radius
at which the spiral wave attains the same value. Panel (3) shows
the graph of the function L(r,) together with a curve fit of the
quotient of two linear functions: the fit shows that the asymptotic
period is L(co) = 11.22. In panel (4), we plot log |L(o0) — L(ry,)]
against log(ry,): a fit with a linear function gives a slope of —0.87,
which is close to the expected value of —1.

We computed Fredholm boundaries, Fredholm boundaries in weighted spaces, and
absolute spectra based on the wave train linearization using continuation [85]. We
compared those with spectra computed in a finite-size disk. As predicted, spectra
stabilize when exponential weights are introduced that allow exponential growth of
functions. Absolute spectra are stable and eigenvalues in finite-size disks cluster
along the absolute spectrum. We also see an unstable isolated eigenvalue in the
extended point spectrum. As predicted, the eigenfunction belonging to this un-
stable eigenvalue exhibits exponential growth in the radial variable and therefore
contributes to the kernel only in the exponentially weighted space.

We note here that the location of the unstable eigenvalue near the edge of
the absolute spectrum is not purely incidental (see Figure 12.6 for another clearer
example). In [96], we showed using formal asymptotics that eigenvalues in the
extended point spectrum can accumulate on the edge of the absolute spectrum (or,
conversely, that eigenvalues in the extended point spectrum can emerge from branch
points of the absolute spectrum) and predicted the asymptotic locations for these
eigenvalue clusters. Since these eigenvalues belong to the extended point spectrum,
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FIGURE 12.3. To illustrate transport properties of spiral waves,
we added a localized perturbation near the spiral core for spiral
waves with positive group velocity, evaluate the difference of the
original and the perturbed solution along a line through the spiral
core, and plot the result overlaid with the original spiral waves as
a space-time plot for spiral waves in the Barkley model (positive
phase velocity) in panel (1) and the Rossler system (negative phase
velocity) in (2). These computations indicate that, in both cases,
perturbations are transported away from the core

they converge exponentially in the radius R of the domain, as opposed to the
weak set-wise, algebraic convergence near the absolute spectrum. Their presence
can be roughly attributed as follows to curvature corrections to the wave train
linearization. Curvature effects can be thought of as slowly varying in space. In an
adiabatic approximation, one can then consider the linearization at a curved wave
train to predict possible eigenvalues. If, for instance, the curved wave train is more
unstable than the planar wave train, this would then predict existence of eigenvalues
to the right of the spectrum of the wave train. Though it appears to be difficult
to analytically predict the rightmost of these eigenvalues, which would give rise to
the first instability, complex conjugation A — A and Floquet-covering symmetry
A = X\ + iw, generally predict the robust presence of near-resonant eigenvalues at
+ilw, or £i(£+ %)w* with £ € Z, a fact that contributes to the rich phenomenology
of spiral instabilities that we shall discuss briefly below.

We use the Rossler model to illustrate our predictions for eigenvalue clusters
near the absolute spectra and their relation to spatial spectra in more detail; see
Figure 12.5. We observe, in particular, the predicted iw.-periodicity of eigenvalue
clusters, algebraic %—convergence of eigenvalue clusters to the absolute spectrum
together with increased density of clusters, and typical singularities of absolute
spectra as triple junctions and branch-point termination. We also computed the
spatial Floquet exponents v; and demonstrate how crossing of real parts on the
imaginary axis induces essential spectrum and crossing real parts of separate eigen-
values corresponds to absolute spectra. We note that it was shown in [33] that the
discrete eigenvalue near iw,/2 arises as an eigenvalue of the boundary sink that
accommodates Neumann boundary conditions.

Figure 12.6 contains a refined numerical analysis near absolute spectra in the
Bér-Eiswirth model, which shows the very rapid convergence of (extended) point
spectrum versus algebraic convergence of clusters on the absolute spectrum and
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FIGURE 12.4. Panel (1) shows the spectrum Yg;q (blue disks) of
an unstable spiral wave in the Karma model posed on a bounded
disk with Neumann boundary conditions together with the sta-
ble absolute spectrum X,ps (solid red) and the unstable Fredholm
boundary X, (dotted green). As shown in panel (2), the Fred-
holm boundaries stabilize in exponentially weighted spaces (we
used 7 = —1 to obtain Yyeigns (dashed orange)) and point spec-
trum may emerge as the spectral boundaries move. The instability
is caused by a discrete point eigenvalue that belongs to the ex-
tended point spectrum: as indicated in panel (3), the associated
eigenfunction grows exponentially as r increases.

also demonstrated the emergence of point eigenvalues from the edge of the absolute
spectrum.

Position and response. Our results on spectral properties include charac-
terizations of adjoint eigenfunctions. In particular, we proved that the adjoint
eigenfunctions associated with the rotation eigenvalue A\ = 0 and the translation
eigenvalues A = +iw, are exponentially localized as originally conjectured in [21].
Assuming that no other eigenvalues in the extended point spectrum are located on
or to the right of iR, these three eigenvalues span the tangent space of a center
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FIGURE 12.5. For spiral waves in the Rossler model, panel (1) con-
tains the discrete spectrum (blue disks) of the spiral on a bounded
disk of radius R = 125 together with the absolute spectra (solid
red) and Fredholm boundaries (dotted green). Panel (2) illustrates
the predicted convergence towards the absolute spectrum, while
panels (3) and (4) zoom in on the rightmost regions along Re A = 0
and Re A = w/2, respectively, and also include Fredholm bound-
aries (dashed blue) computed in an exponentially weighted norm
with negative rate 7 < 0. Panel (5) contains the spatial spectra
for A =0.1,-0.05,—0.1 (from left to right)
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FIGURE 12.6. Shown are the spectra of the spiral wave in the
Béar—Eiswirth model for radii R = 40,80,160,320. Panel (2)
demonstrates convergence to the absolute spectrum. Panels (3)
and (4) illustrate how eigenvalues in the extended point spectrum
can emerge from the edge of the absolute spectrum.

manifold to a spiral wave in any large finite disk, consisting of rotated and trans-
lated spirals. Perturbations of the centered spiral will rapidly relax to this center
manifold, with position on the center manifold computed to leading-order approx-
imation by the spectral projection onto the center eigenspace. As a consequence,
the effect of a spatially localized perturbation on a spiral wave is to leading or-
der a phase shift in the rotation and a translation. The magnitude of the effect
can be computed by evaluating the scalar product in L? of the perturbation and
the adjoint eigenfunctions. As a consequence, the effect of perturbations decreases
exponentially with distance from the center of rotation, making spiral waves ex-
tremely robust also against perturbations of initial conditions as long as those are
centered away from the core. Adjoint eigenfunction were computed, for instance,
in [22-24, 67]. We provide additional computations of adjoint eigenfunctions in
Figure 12.7, where we also compare the spatial exponential decay rates with the
rates predicted by the spatial spectra.
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FIGURE 12.7. Separately for the Rossler (top row), Karma (mid-
dle row), and Barkley (bottom row) models, we show snapshots
of spiral waves (left column), the associated eigenfunctions w(r) of
the adjoint linearization belonging to the rotation eigenvalue A = 0
(center column), and a log plot of max, |w(r,¢)| (right column),
which indicates that the adjoint eigenfunctions w(r) decay expo-
nentially as 7 increases. The expected decay rates predicted by the
associated spatial spectra are —0.42 for Rossler, —9.47 for Karma,
and —3.55 for Barkley, thus indicating good agreement between
theory and numerical computations. Note that the spiral wave for
the Barkley model is in the oscillatory regime.
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12.2. Instabilities of spiral waves

The structural description of essential, absolute, and point spectra allows us to
classify instabilities of spiral waves. In the following we list common instabilities
and explain the implications of our spectral analysis on the phenomenology. An
overview is shown in Figure 12.8.

Transition to meandering and drifting spiral waves. The possibly most
prominent spiral-wave instability, described in the introduction, is the transition
from rigidly rotating to meandering and drifting spiral waves. Tracking the lo-
cation of the spiral tip, defined for instance through the location z(t) € R? where
u(x(t),t) = u for some fixed u € R?, one notices that, past a distinct threshold
of a system parameter, the motion occurs on epicycloids rather than circles. In
other words, small periodic circle motions are superimposed on the primary circu-
lar rotation. These superimposed rotations can occur with the same or the opposite
orientation as the primary rotation, leading to outward and inward petals in the
epicycloids, respectively; see Figure 12.8(4-6). At the codimension-one transition
from outward to inward petals, the spiral wave moves along a straight line. An ex-
planation of this striking motion was found by Barkley [10], noticing the coupling
of Hopf instability modes to the inherent neutral modes induced by translation and
rotation. More formalized treatments, both in terms of center-manifold reductions
and reduced dynamics followed in [37, 42, 90, 101]. We remark here that all of
those rely on a spectral gap which, for the Archimedean spirals considered here,
is not present. In Figure 12.9, we illustrate the Hopf instability in the Barkley
model by computing eigenvalues during the transition and showing that the insta-
bility is caused by point spectrum with frequency wy > w, for outward meander
and wy < w, for inward meander. Since the Floquet spectrum of the wave trains
touches the imaginary axis at iw,, eigenfunctions grow linearly in 7 at resonance
wH = ws, and are localized only with small exponential rate for near-resonant Hopf
bifurcations. Using the results on shape of eigenfunctions presented here, we were
able to predict in [94] striking superspiral patterns in the far field of meander-
ing spirals. Meandering transitions and the associated super-spiral patterns were
observed in [54, 74, 81, 84, 105]

Core and far-field breakup. Instabilities caused by essential rather than
point spectrum exhibit a more complex phenomenology. Often, the associated in-
stabilities of wave trains are subcritical, leading to breakup of wave trains and
spatio-temporal chaos. We investigated such instabilities from the point of view
presented here in [92]; see Figure 12.8, panels (7) and (8) for phenomenologies. De-
pending on parameter values, the absolute spectrum induces eigenfunctions corre-
sponding to exponential growth or exponential decay in r. The resulting instability
then is strongly localized in the far field or near the core, respectively. In the for-
mer case, the instability is convective at onset, with perturbations growing as they
travel outwards, but decaying pointwise: the essential spectrum is unstable but the
absolute spectrum is still stable. Only when the absolute spectrum destabilizes do
perturbations grow pointwise and perturbations invariably lead to breakup of the
primary spiral. The onset of convective and absolute instability matches well the
prediction from computations of spectra of wave trains. In the regime of convective
instability, the subcritical nature of the instability implies that basins of attraction
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FIGURE 12.8. We illustrate instabilities of spiral waves. Pan-
els (1)-(3) show outwardly meandering, drifting, and inwardly me-
andering spiral waves in the Barkley model; the curves traced out
by the spiral tips are shown in panels (4)-(6). Panels (7)-(8) show
core and far-field instabilities in the Bar—Eiswirth model. Panel (9)
shows a transversely unstable spiral wave in the FitzHugh—Nagumo
model, and panels (10)-(11) show period-doubling instabilities in
the Rossler system and the Karma model, respectively.
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FIGURE 12.9. Shown are the rotation and translation eigenvalues
together with the Hopf eigenvalues that cause the transition to
(1) inward and (2) outward meander in the Barkley model as the
parameter a is varied.

of the spiral are exponentially small in the size of the domain. In the case of ab-
solute spectrum with exponential decay, instabilities grow in the core region and
the transition immediately leads to breakup and turbulence with small correlation
length scales. Barkley and Wheeler [107] confirmed the predictions made in [92]
using numerical computation of spectra of spirals in bounded domains. In addition
to the eigenvalue clusters along absolute spectra with the predicted exponential ra-
dial decay, they found an eigenvalue in the extended point spectrum near the edge
of the absolute spectrum, thus showing that the core instability is in fact caused by
subcritical Hopf bifurcation due to extended point spectrum. The location of the
leading Hopf eigenvalue near the edge of the absolute spectrum can be attributed
to curvature effects as analyzed in [96].

Period-doubling bifurcations and alternans. As mentioned above, Flo-
quet and complex conjugation symmetries of essential and absolute spectra can
lead to robust resonances. One of those resonances is the robust period-doubling

of a spiral wave, intrinsically linked to a period-doubling of a periodic orbit in
the kinetics; see [33, 99] and references therein. The three-variable Réssler ODE
exhibits periodic orbits that undergo a period-doubling cascade. When adding dif-
fusion to all three components, the resulting system supports spiral waves that
emit phase waves, which, in turn, can undergo a period-doubling instability. In
the linearization of the spiral wave, this period-doubling instability corresponds to
marginally stable spectrum at iw,/2 (half the spiral frequency). The instability
causes the emergence of line defects in the far field which appear almost station-
ary; see Figure 12.8(10-11). In any finite-size domain, this resonant instability can
be caused by resonant absolute spectrum, near-resonant extended point spectrum
near the edge of the absolute spectrum, or by period-doubling instabilities through
extended point spectrum of the boundary sink; see again [33, 99]. We emphasize
that this robust period-doubling instability really can only be understood through
an analysis of the far field and the limit of unbounded domains since a spiral, in
any finite domain, is simply an equilibrium in a corotating frame, rendering the
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possibility of a period-doubling impossible. In particular, since time evolution of
the spiral is simply given by rotation, the center manifold along the periodic orbit is
a trivial bundle induced by symmetry rather than the non-orientable Mobius strip
typical in period-doubling instabilities.

12.3. Open problems

We conclude with a discussion of open problems and possible extensions.

Nonlinear perturbations: stability. The presence of essential spectra on
the imaginary axis for the linearization at a spiral wave, induced by the wave trains
in the far field, is essential to much of the implications of our results described
above. In this regard, essential spectra, while inherently complicated, give us ad-
ditional insight, while of course presenting many technical challenges. Our results
exploit the linear theory to show robustness under parameter changes and domain
truncation to large disks. In any finite-size, sufficiently large disk, our results give
a rigidly rotating wave with a simple zero eigenvalue induced by the rotational
symmetry. Standard semigroup methods [50] then yield nonlinear asymptotic sta-
bility of the spiral wave profile in any such large domain. A significant drawback
of this argument is the fact that the size of the basin of attraction established in
such stability proofs depends on the norm of the resolvent, used to construct the
spectral projections and the exponential decay estimates in the complement of the
center subspace. Our results show that the norm of the resolvent grows exponen-
tially in R, leading to exponentially small estimates in R for the basin of attraction.
The discussion of the dynamics in the case of far-field breakup show that such a
conclusion is in fact optimal when only information from the bounded domain is
used.

To strengthen the result, one would need to incorporate the effect of the essen-
tial spectrum, tracking in particular how perturbations are transported away from
the spiral core and decay diffusively. While such results have been established in
one spatial dimension [14], the two-dimensional radial geometry is likely to intro-
duce difficulties due to the azimuthal stretching that prevents diffusive decay; see
[88] for a related analysis.

Nonlinear perturbations: boundaries and interaction. Due to the ex-
ponential localization of the adjoint, one expects more robust persistence results
for truncation to bounded domains in the form of a slow manifold parametrized by
translations and rotations of the spiral wave, with dynamics induced by the bound-
ary, exponentially slow in the distance between core and boundary. In a similar way,
one would expect to be able to describe the nonlinear interaction of multiple spirals
on a reduced slow manifold parametrized by their respective position and rotational
phase, with dynamics that are exponentially slow in the separation distance of the
spiral cores. Approximate profiles for such multi-spiral solutions would be obtained
by inserting sinks similar to the boundary sinks considered here in between the
spiral domains. Similar to the boundary sinks we used in the domain truncation,
we would not expect these domain boundaries to contribute neutral eigenvalues to
the linearization, that is, their dynamics would be determined by phase matching
of waves emanating from the spiral core; see [95] for the one-dimensional analogue.
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Bifurcations: nonlinear aspects. Further extending the nonlinear analysis,
beyond asymptotic stability and interaction dynamics, one would want to comple-
ment the linear predictions for spiral wave instabilities with nonlinear analysis. A
simple example would be an existence proof for meandering spirals past a super-
critical Hopf bifurcation. Again, one could resort to analysis in a large bounded
disk. Assuming that the critical extended point spectrum consists of a simple pair
of imaginary eigenvalues crossing the imaginary axis in addition to the neutral
eigenvalues induced by translation and rotation, one finds a 5-dimensional center
manifold in any bounded domain. We conjecture that the Taylor jet of the vector
field on this manifold converges exponentially as the size of the disk radius R in-
creases and that the limiting equation is given by the skew-product equations from
[10].

Again, this analysis is somewhat unsatisfactory since it only captures exponen-
tially small neighborhoods of the primary spiral wave profile. Also, the interesting
resonant case with a drifting spiral is not accessible by this approach, as generally
the truncation to a bounded domain destroys the underlying Euclidean symme-
try. Lastly, the approach fails to clearly describe nonlinear effects such as possible
frequency locking on super patterns in the far field.

More ambitious reductions would, especially in the case of bifurcations involving
instabilities of wave trains, derive in a rigorous fashion equations that couple the
localized core dynamics to far-field modulation equations such as the viscous eikonal
equation or, in the case of instabilities, the Kuramoto—Sivashinsky equation for
breakup or even coupled mode equations in period-doubling instabilities.

Other instabilities and bifurcations. Some instability mechanisms do not
fit well into the formalism developed here. One prominent example are instabilities
of wave trains against perturbations perpendicular to their direction of propagation;
see Figure 12.8(9). In the simplest case, such instabilities arise when d; becomes
negative. Inspecting our results, one readily notices that the two-dimensional sta-
bility of wave trains simply does not affect the spectra of spiral waves. In fact, as
shown in the proof of Lemma 3.27, the temporal frequency of transverse perturba-
tions of a wave train in the corotating frame of a spiral wave converges to infinity as
their distance from the spiral core grows. These effects are relevant when trying to
establish even linear stability from the spectral-stability assumptions made in the
present paper. In general, spectral stability for generators of strongly continuous
semigroups may not imply exponential growth bounds without further assump-
tions on resolvent bounds; see, for instance, [36] for such additional assumptions.
We have shown that the semigroup associated with the linearization at a spectrally
stable spiral waves whose asymptotic wave trains are transversely unstable exhibits
exponentially growth with a strictly positive exponential rate. Note that this ob-
servation does not lead to contradictions as our results on convergence of spectra
under truncation to finite disks hold only in compact subsets of the complex plane
and therefore do not exclude unstable eigenvalues created near +ioco.

The scenario where the temporal frequency w, of the spiral tends to zero (so
that w, N\, 0) is not within the scope of the analysis presented here since the loss
of the rotational term w,dp changes the spatial dynamics at r = oo at leading
order, rendering the equation completely degenerate. In this case of the so-called
retracting-wave bifurcation, the spiral core grows and the branch of spiral waves
in parameter space terminates on an asymptotically straight spiral arm that, while
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propagating in the normal direction, also retracts in the tangential direction. Sym-
metry considerations [5] predict the growth of the spiral core as w, \, 0 and a
drifting wave at w, = 0; they also predict that the branch of spirals continues into
the regime w, < 0, a phenomenon that has not been observed in experiments or
simulations.

Beyond spirals. We suspect that our results can also serve as a basis for
the study of a variety of related and more complex phenomena in excitable and
oscillatory media. Changing the winding number ¢ in the far field, we find target
patterns ¢ = 0 and multi-armed spirals ¢ > 1. It appears that, in most simple
models, neither structure exists as a stable periodic solution, although many of our
analytical tools would apply to those structures with minor modifications.

In three-dimensional physical space, one can “stack” spirals along filaments
while possibly rotating the spiral. Straight filaments yield scroll waves and twisted
scroll waves, circular filaments yield scroll waves; see [109]. It seems that scroll
waves and twisted scroll waves would be amenable to an analysis similar to the
one presented here. More interestingly, the analysis here predicts that the filament
dynamics as generalizations of tip dynamics should be described by a PDE for
the three independent variables of local normal displacement of the filament and
phase, as function of the arc length along the filament. Continuing the extended
point spectrum of the spiral in a Fourier variable along the filament would then
yield bending and torsion stiffness of the filament.



APPENDIX A

Numerical Computation of Spiral Waves in Model
Systems

In §A.1, we outline the models we used to produce the computations and simu-
lations summarized in §12 and provide a brief summary of the numerical algorithms
used for these computations in §A.2.

A.1. Model systems
Barkley model. The model

1
ut:Au—l—gu(l—u) (u—v+b>

a
vy =0Av+u—v

was introduced in [9] as a system that exhibits meander and drift of spiral waves.
In [8], spectral computations were used to demonstrate that these instabilities arise
due to Hopf instabilities. This model also exhibits retracting spiral waves in the
weakly excitable regime (see [51] and references therein). In all computations, we
set 6 = 0.01 and € = 0.02. We used the following parameter values:

Description Figure a b

rigid (excitable) 12.1(2,6), 12.2, 12.3(1) 08 005
rigid (oscillatory) 12.1(1,4), 12.7 (bottom row) 0.8 -0.05
retracting (weakly excitable) 12.1(3) 0.44 0.05
outward meander 12.8(1,4) 0.67 0.05
drift 12.8(2,5) 0.63 0.05
inward meander 12.8(3,6) 0.59 0.05

In Figure 12.9, b = 0.05 is fixed and a varies.
Bar—Eiswirth model. The model

1
ut:Au—gu(u—l) (u—vl—b>

vy =0Av+g(u) —v

with
0 0<u<1/3
g(u) =< 1—6.75u(u—1)? 1/3<u<l1
1 1<u

was introduced in [6]. As shown in [6], it exhibits core and far-field instabilities of
spiral waves. These instabilities were further studied using absolute and convective
instabilities [7], absolute spectra [92, 96], and spectral computations [107]. Fig-
ure 12.6 uses the parameter values a = 0.84, b = —0.045, 6 = 0.1, and € = 0.0751.
We used a = 0.75, b = 0.0006, § = 0.01, and 1/e = 13.15 for core break-up in
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Figure 12.8(7) and a = 0.84, b = —0.045, 6 = 0.01, and 1/e = 13.1 for far-field
break-up in Figure 12.8(8).

FitzHugh—Nagumo model. Transverse instabilities of spiral waves in the
FitzHugh—Nagumo model

(A1) ut:Au+1(u(u—0,5)(1_u)_v+b>

a
vy =0Av+u—v

were observed in [47, Figure 9] (the model in [47] is written in a different form,
which can be transformed into (A.1) using a linear change of the dependent and
independent variables). For Figure 12.8(9), we set a = 8, b = —0.45, e = 1/57,
and 6 = 1.215. Figure A.1, which uses the same values for (a,b,¢), provides nu-
merical evidence that the instability visible in Figure 12.8(9) is indeed caused by a
transverse instability of the asymptotic wave train.

Karma model. The Karma model

2
uy = 1.1 Au + 400 (u + (1.5414 — v*) (1 — tanh(u — 3)) )

w
2
P u—1
Ut:O.lAU+4(]u—U)

with ¥(u) = (1 + tanh(4u))/2 admits spiral waves that undergo period-doubling
bifurcations to alternans. We refer to [56, 57] for the model and direct simula-
tions, to [66] for spectral computations, and to [33] for recent computations and
further references. For our computations, we used the parameter value Re = 1.2 in
Figures 12.4 and 12.7 (middle row) and Re = 0.95 in Figure 12.8(11).

Rossler model. The Réssler model
up =04 Au—v—w
vy =04Av+u+0.2v
wy = 0.4 Aw + uw — cw + 0.2

admits spiral waves with positive group velocity and negative phase velocity. Spiral
waves exhibit spatio-temporal period-doubling bifurcations as ¢ is increased. We
refer to [31, 33, 43, 99] and the references therein for detailed studies of spiral waves
in this model. In our computations, we used ¢ = 2 in Figures 12.5 and 12.7 (top
row), ¢ = 3 in Figure 12.3(2), and ¢ = 4.2 in Figure 12.8(10).

A.2. Methods

Since our codes and data are publicly available [34, 100], we discuss our nu-
merical algorithms and the computational parameters only briefly.

Direct numerical simulations. We used the package EZ-SPIRAL written by
Dwight Barkley [11] for the direct numerical simulations shown in Figures 12.1(1)-
(3), 12.2, 12.3, 12.8, and A.1(5)-(6). In each case, we used a square domain of
length L with Neumann boundary conditions. The package EZ-SPIRAL uses a finite-
difference scheme in space and provides both explicit and implicit Euler schemes
for time integration. Details about the choices for L, grid sizes, and time steps are
given in the repository [100].
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FIGURE A.l. For the FitzHugh-Nagumo system (A.1), we show
the transverse instability coefficient d, (k) and the nonlinear dis-
persion relation w(k) in panels (1) and (2), respectively, as func-
tions of the wavenumber k of the wave trains for different values
of §; also shown are the curves (k.,d | )(d) and (K., w,)(d), respec-
tively, evaluated along the spiral wave of (A.1). Recall that d; <0
corresponds to a transverse instability. Panels (3)-(4) contain the
Floquet and transverse spectra of the wave train with wavenum-
ber k = 0.29 and frequency w = 0.41 selected by the spiral wave at
d = 1.16. Panels (5)-(6) contain the spiral wave and the graph of
successive wavelengths L(r) at 6 = 1.16, showing that wave trains
are now compressed as r increases (see Figure 12.2 for additional
details for the case d; > 0).
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Continuation and computations of spectra. To continue spiral waves in
parameters and to compute their spectra, we used the MATLAB scripts developed in
[33, 34]. The one-dimensional wave trains and two-dimensional spiral waves shown
or used in Figures 12.1(4)-(6), 12.4-12.7, 12.9, and A.1 were computed using (2.2)
posed on a circle and (3.3) posed on bounded disks with Neumann boundary con-
ditions, respectively. These equations were discretized in polar coordinates using a
spectral Fourier scheme in the angular variable and finite differences in the radial di-
rection, and the resulting systems were then solved using MATLAB’S FSOLVE routine.
The point spectra of the linearization (3.4) about spiral waves on bounded disks in
Figures 12.4-12.6 and 12.9 were computed using MATLAB’s EIG and EIGS routines
applied to the discretization of (3.4). We also used these routines to compute the
adjoint eigenfunctions shown in Figure 12.7. We computed the absolute and es-
sential spectra (including transverse spectra) shown in Figures 12.4-12.6 and A.1
using the algorithms developed in [85], which were implemented in MATLAB. The
spatial spectra used in Figure 12.7 (right column) to predict the exponential decay
rates of adjoint eigenfunctions and shown in Figure 12.5(5) to illustrate absolute
and essential spectra were computed using MATLAB’s EIG routine applied to the
discretization of (2.11).
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far field, 41
trichotomies, 52
wave train, 34
Exponential weights
exponential dichotomies, 51
spiral wave, 19
wave train, 12

Floquet periodicity, 19
Floquet spectrum, 12
Fredholm operators, 18

Group velocity, 11
exponential weight, 13
linear, 10, 11
nonlinear, 11

relative Morse index, 15
sources, 19

Instabilities
alternans, 3, 111
core breakup, 3, 109
drift, 109
far-field breakup, 3, 109
meander, 3, 109
period doubling, 3, 111
retracting, 113
transverse, 28, 113

Linearization

spiral wave
cartesian, 18
co-rotating, 18
restricted to disk, 26
truncated spiral, 28

wave train
co-moving, 10
laboratory, 11

Models
Bar-Eiswirth, 115
Barkley, 115
FitzHugh-Nagumo, 116
Karma, 116
Rossler, 116

Relative Morse index, 14, 34

Spatial dynamics

linear
boundary sink, 76
spiral core, 38
spiral far-field, 40
spiral wave, 37
wave train, 13, 34, 41

nonlinear
boundary sink, 75, 80
spiral core, 62
spiral far-field, 63
spiral wave, 61
spiral wave (disk), 77
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Spatial eigenvalues, 13
Spectrum
boundary sink
extended point spectrum, 27
spiral wave, 18
absolute spectrum, 20
essential spectrum, 18
extended point spectrum, 20
Fredholm boundary, 18
Fredholm spectrum, 18
point spectrum, 18
wave train
boundary spectrum, 25
co-moving, 10
laboratory, 12
Spiral wave
Archimedean, 17
bounded disk, 25
emitting wave train, 19
source, 19
transverse, 21

Temporal frequency
spiral wave, 17
wave train, 9

Transverse instability
spiral wave, 28
wave train, 15

Wave train, 9
asymptotic, 17
spectrally stable, 12
transverse instability, 15
Wavenumber
spiral wave, 17
wave train, 9



