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ABSTRACT. In the manuscript, we are interested in using kinetic theory to bet-
ter understand the time evolution of wealth distribution and their large scale
behavior such as the evolution of inequality (e.g. Gini index). We investi-
gate three types of dynamics denoted unbiased, poor-biased and rich-biased
exchange models. At the individual level, one agent is picked randomly based
on its wealth and one of its dollars is redistributed among the population.
Proving the so-called propagation of chaos, we identify the limit of each dy-
namics as the number of individuals approaches infinity using both coupling
techniques [54] and a martingale-based approach [42]. Equipped with the limit
equation, we identify and prove the convergence to specific equilibrium for both
the unbiased and poor-biased dynamics. In the rich-biased dynamics however,
we observe a more complex behavior where a dispersive wave emerges. Al-
though the dispersive wave is vanishing in time, it also accumulates all the
wealth leading to a Gini approaching 1 (its maximum value). We characterize
numerically the behavior of dispersive wave but further analytic investigation
is needed to derive such dispersive wave directly from the dynamics.

1. Introduction. Econophysics is an emerging branch of statistical physics that
applies concepts and techniques of traditional physics to economics and finance
[23,31,51]. It has attracted considerable attention in recent years raising challenges
on how various economical phenomena could be explained by universal laws in
statistical physics, and we refer to [20,21,36,47] for a general review.

The primary motivation for studying models arising from econophysics is at least
two-fold: from the perspective of a policy maker, it is important to deal with the rise
of income inequality [27,28] in order to establish a more egalitarian society; From a
mathematical point of view, we have to understand the fundamental mechanisms,
such as money exchange resulting from individuals, which are usually agent-based
models. Given an agent-based model, one is expected to identify the limit dynamics
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2 FEI CAO AND SEBASTIEN MOTSCH

as the number of individuals tends to infinity and then its corresponding equilibrium
when you run the model for a sufficiently long time (if there is one). This guiding
approach is carried out in numerous works across different fields among literatures
of applied mathematics, see for instance [5,17,44].

Although we will only consider three distinct binary exchange models in the
present work, other exchange rules can also be imposed and studied, leading to dif-
ferent models. To name a few, the so-called immediate exchange model introduced
in [33] assumes that pairs of agents are randomly and uniformly picked at each ran-
dom time, and each agent transfers a random fraction of their money to the other
agent, where these fractions are independent and uniformly distributed on [0, 1].
The so-called uniform reshuffling model investigated in [31] and [38] suggests that
the total amount of money of two randomly and uniformly picked agents possessed
before interaction is uniformly redistributed among the two agents after interac-
tion. The so-called repeated averaging model studied for instance in [14] where two
randomly selected agents share half of their wealth with each other. The binomial
reshuffling model proposed in a recent work [12] is a variant of the uniform reshuf-
fling mechanism in which the agents’ combined wealth is redistributed according
to a binomial distribution. For models with saving propensity and with debts, we
refer the readers to [16,19,22,39].

1.1. Unbiased/poor-biased/rich-biased dynamics. In this work, we consider
several dynamics for money exchange in a closed economical system, meaning that
there are a fixed number of agents, denoted by N, with an (fixed) average number
of dollars p. We denote by S;(t) the amount of dollars the agent ¢ has at time ¢.
Since it is a closed economical system, we have:

S1(t) + -+ + Sn(t) = Constant for all ¢t > 0. (1)

As a first example of money exchange, we review the model proposed in [31]: at
random time (exponential law), an agent ¢ is picked at random (uniformly) and if it
has at least one dollar (i.e. S; > 1) it will give one dollar to another agent j picked
at random (uniformly). If ¢ does not have one dollar (i.e. S; = 0), then nothing
happens. From now on we will refer to this model as unbiased exchange model
as all the agents are being picked with equal probability. We refer to this dynamics
as follow:

unbiased: (S, ;) A5(Si — 1,8, +1) (fS; > 1). 2)

In other words, every agent with at least one dollar gives to all of the others agents
at a fixed rate. Later on, we will adjust the rate A (more exactly A1y 1o)(S:)) by
normalizing by N in order to have the correct asymptotics as N — 400 (the rate
of one agent giving a dollar per unit time is of order N otherwise).

Another possible dynamics is to pick the giver agent, i.e. agent ¢, with higher
probability if the agent is rich, i.e. S; large. Thus poor agents will have a lower
frequency of being picked. From now on we will call this model poor-biased model
and is illustrated as follows:

. AS;
poor-biased: (Si,Sj)~~(S; —1,5; +1). (3)
Notice that since the rate of giving is S;, an agent with no money, i.e. S; = 0, will
never have to give. As for the unbiased dynamics (2), we will also adjust the rate,
normalizing it by N.
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DERIVATION OF WEALTH DISTRIBUTIONS FROM BIASED EXCHANGE OF MONEY 3

Our third dynamics that we would like to explore is the rich-biased model:
we reverse the bias compared to the previous dynamics, so that rich agents are less
likely to give:

A/ S;

rich-biased: (Si,Sj) ~= (S; —1,5;+1) (if S, >1). (4)
As a consequence of this dynamics, rich agents will tend to become even richer
compared to poor agents creating a feedback that could lead to a singular behavior.
The adjustment of the rate for this dynamics is more delicate since the sum of the
rates A/S; is no longer constant. In particular, we will see that a normalization of
the rates to have a constant rate of giving a dollar per agent will lead to finite time
blow-up of the dynamics in the limit N — +o0.

Remark 1. The only difference between “picking simultaneously a giver i and a
receiver j 7 and “picking a giver 7 first and then pick a receiver j” lies in whether
1 = j is allowed (i.e., whether an agent is allowed to give one dollar to himself/herself,
in which case the state of the N-agent system remains unchanged). Actually in the
pioneering work of Dragulescu and Yakovenko [31] it is not completely clear which
rule is used in their numerical simulations. However, allowing ¢ = j only changes
the probability of picking the (ordered) pair (7,7) from m to % and thus it
does not affect the asymptotic results for N — oo nor the simulations when N is
large.

S
I [ Unbiased
' I Poor-biased
: =3 Rich-biased
Moot (O Sil
giver [ﬁiﬁs
i =
"receiver" © Sitl
J

Figure 1 Left: Illustration of the 3 dynamics: at random time,
one dollar is passed from a “giver” i to a “receiver” j. Right: The
rate of picking the “giver” i depends on the wealth S;.

We illustrate the dynamics in Figure 1-left. The key question of interest is the
exploration of the limiting money distribution among the agents as the total number
of agents and the number of time steps become large. We illustrate numerically
(see Figure 2) the three previous dynamics using N = 500 agents. In the unbiased
dynamics (pink), the wealth distribution is (approximately) exponential with the
proportion of agent decaying as wealth increases. On the contrary, the poor-biased
dynamics (blue) has the bulk of its distribution around $10 (the average capital per
agent). For the rich-biased dynamics (green), most of the agents are left with no
money leaving only a few with large amounts (more than $30). To visualize the
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Figure 2 Left: Distribution of wealth for the three dynamics after
50,000 steps. The distribution decays for the unbiased dynamics
(pink) i.e. poor agents are more frequent than rich agents, whereas
in the poor-biased dynamics, the distribution (blue) is centered at
the average $10. For the rich-biased dynamics, almost all agents
have zero dollars except a few with a large amount (more than $30).
Right: evolution of the Gini index (5) for the three dynamics. The
Gini index is lower for the poor-biased dynamics (less inequality)
whereas it is approaching 1 for the rich-biased dynamics.

temporal evolution of the three dynamics, we estimate the Gini index G after each
iteration in Figure 1-right:

1
G:m Z |S; = S;l, (5)

1<ij<N

where 4 is the average wealth (u = & Zf\;l Si). The widely used inequality indica-
tor Gini index G measures the inequality in the wealth distribution and ranges from
0 (no inequality) to 1 (extreme inequality). Since all agents have the same amount
of dollar initially (S;(t = 0) = p), the Gini index starts at zero (i.e. G(t =0) = 0).
In the unbiased dynamics, the Gini index stabilizes around .5 (which corresponds to
the Gini index of an exponential distribution). The Gini index is strongly reduced
in the poor-biased dynamics (G &~ .19). On the contrary, the Gini index keeps
increasing in the rich-biased dynamics and seems to approach 1 (its maximum).
We study in more details this phenomena in section 5.3. We emphasize that the
“rich-get-richer” phenomenon, numerically observed in the rich-biased dynamics in
the present work, has also been reported in other models from econophysics, and
we refer interested readers to [7,8] and references therein.

1.2. Asymptotic dynamics: N — 400 and t — +o00. One of the main diffi-
culty in any rigorous mathematical treatment lies in the general fact that models in
econophysics typically consist of a large number of interacting (coupled) economic
agents. Fortunately the framework of kinetic theories allows simplifications of the
mathematical analysis of certain such models under some appropriate limit pro-
cesses. For the unbiased model (2) and the poor-biased model (3), instead of taking
the large time limit and then the large population limit as in [37], we first take the
large population limit to achieve a transition from the large stochastic system of
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interacting agents to a deterministic system of ordinary differential equations by
proving the so-called propagation of chaos [42,43,45,54] through a well-designed
coupling technique, see Figure 3 for a illustration of these strategies. After that,
analysis of the deterministic description is then built on its (discrete) Fokker-Planck
formulation and we investigate the convergence toward an equilibrium distribution
by employing entropy methods [3,34,40]. For the rich-biased model, we prove the
propagation of chaos by virtue of a novel martingale-based technique introduced
in [42], and we report some interesting numerical behavior of the associated ODE
system. We illustrate the various (limiting) ODE systems obtained in the present
work in Figure 4.
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Figure 3 Schematic illustration of the strategy of proof: The ap-
proach of sending ¢ — oo first and then taking N — oo is carried
out in [37]. Our strategy is to perform the limit N — oo before
investigating the time asymptotic ¢t — oo.
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6 FEI CAO AND SEBASTIEN MOTSCH

For the poor-biased model, we present an explicit rate of convergence of its
associated system of ordinary differential equations toward its equilibrium thanks
to a Poisson-Poincaré type inequality. Then, we resort to numerical simulation in
the determination of the sharp rate of convergence and a heuristic argument is used
in support of our numerical observation.

This paper is organized as follows: in section 2, we briefly review different ap-
proaches to tackle the propagation of chaos. Section 3 is devoted to the investigation
of the unbiased exchange model, where the rigorous large population limit N — oo
is carried out via a coupling argument. We perform the analysis, for the poor-biased
model in section 4 and for the rich-biased model in section 5, in a parallel fashion
that resembles section 3. A subsection is dedicated in 5.3 to the emergence of a
dispersive traveling wave in the rich-biased dynamics. Finally, a conclusion is drawn
in section 6.

2. Review propagation of chaos.

2.1. Definition. We propose to review the method used to prove the so-called
propagation of chaos. We consider a N—particle system denoted {S;};=1..n where
particles are indistinguishable. In other words, the particle system is invariant by
permutation, i.e. for any test function ¢ and permutation o € Sy:

E[@(Sl, ey SN)] = E[@(Sg(l), ey SO’(N))]‘
(N)

Denote by pV)(s1,..., sn) the density distribution of the N —process and let P
be the marginal density, i.e. the law of the process (51, ..., Sk) (for 1 <k < N):

pl(gN)(Sla v ask) = / p(N)(Sla v 75N) dSk-‘rl .- -dSN-
Sk41se3SN

Consider now a limit stochastic process (Si,...,S)) where {S;}i—1, x are inde-

pendent and identically distributed. Denote by p; the law of a single process, thus
by independence assumption the law of all the processes is given by:

k
Pr(s1,.. ., 8K) = le(si)-
i=1

Definition 2.1. We say that the stochastic process (S, ..., Sy) satisfies the prop-
agation of chaos if for any fixed k:

pESN) N—too - (6)
which is equivalent to have for any test function ¢:
Elp(S1,. 5)] " =5 Elp(S, .. 5)] (7)

2.2. Coupling method. The coupling method [54] consists in generating the two
processes (S1,...,S5y) and (S1,...,Sk) simultaneously in such a way that:

i) (S1,...,Sk) and (S1,...,S}) satisfy their respective law,

i) S; and S; are closed for all 1 <4 < k.
The difficulty is that {S;}i—1. 1 are independent but {S;};—;. y are not, thus the

two processes cannot be too closed. In practice, we expect to find a bound of the

form:

c N—+o0
—

E[|S; — S;]] < 0 , foralll<i<k. (8)

B
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DERIVATION OF WEALTH DISTRIBUTIONS FROM BIASED EXCHANGE OF MONEY 7

Such result is sufficient! to prove (7) and therefore one deduces propagation of
chaos.

In a more abstract point of view, the inequality (8) gives an upper bound for
the Wasserstein distance between p](CN) and the limit density px. Since convergence
in Wasserstein distance is equivalent to weak-* convergence for measures, we can

conclude about the propagation of chaos (6).

2.3. Empirical distribution - tightness of measure. Another approach to
prove propagation of chaos is to study the so-called empirical measure:

(N) L ¢
pemp(s) = N ;651(5) (9)

where ¢ is the Delta distribution. Notice that pé%)p is a distribution of a single

variable, thus the domain of pé%)p remains the same as N increases which simplifies

its study. However, pgﬁ?p is also a stochastic measure, i.e. pgﬁ\% is a random variable
on the space of measures [6]. The link between propagation of chaos and empirical

distribution relies on the following lemma.

Lemma 1. The stochastic process (S1,...,Sn) satisfies the propagation of chaos
(6) if and only if:
N—+o00
A OF (10)

i.e. for any test function ¢ the random variable (p&%)p,g@ = %Zi\i1 ©(S;) con-
verges in law to the constant value E[p(S1)].

The proof can be found in [54] and we henceforth omit the detailed proof of this
lemma.

3. Unbiased exchange model.

3.1. Definition and limit equation. We consider first the unbiased model that
is briefly mentioned in the introduction above. For the three models investigated
in this work, we consider a (closed) economic market consisting of N agents with
w dollars per agents for some (fixed) ;1 € N4, i.e. there are a total of N dollars.
We denote by S;(t) the amount of dollars that agent ¢ has (i.e. S;(t) € {0,...,uN}
and Zf\il Si(t) = uN for any t > 0).

Definition 3.1 (Unbiased Exchange Model). The dynamics consist in
choosing with uniform probability a “giver” ¢ and a “receiver” j. If the receiver ¢
has at least one dollar (i.e. S; > 1), then it gives one dollar to the receiver j. This
exchange occurs according to a Poisson process with frequency A/N > 0.

The unbiased exchange model can be written as a stochastic differential equation
[49,52]. Introducing {Ngi’j )}19-,]-5 ~ independent Poisson processes with constant
intensity %, the evolution of each .S; is given by:

N N
dSi(t) = = > Tp1.00) (Si(t=))ANET + 3" 1y o) (S (4-)) NP (11)
j=1

Jj=1

“4 gives to j” “j gives to i”

Lusing as a test function ¢(s1,...,s,) = @1(s1) ... ox(sk)
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8 FEI CAO AND SEBASTIEN MOTSCH

To gain some insight of the dynamics, we focus on ¢ = 1 and introduce some
notations:
N; =S N M =YONP,
j=1 Jj=1

The two Poisson processes Ni and M} are of intensity A\. The evolution of S (t)
can be written as:

dS1(t) = —1{1,00) (S1(t—))dN; + Y (t—)dMy, (12)

with Y (¢) Bernoulli distribution with parameter r(t) (i.e. Y (¢t) ~ B(r(t))) repre-
senting the proportion of “rich” people:

() = 37 20 L) (S5(0) (13)

Thus, the dynamics of S; can be seen as a compound Poisson process.
Motivated by (12), we give the following definition of the limiting dynamics of
S1(t) as N — oo from the process point of view.

Definition 3.2 (Asymptotic Unbiased Exchange Model). We define S (t) to
be the (nonlinear) compound Poisson process satisfying the following SDE:

dS1(t) = —1j1,00) (S1(t—)) AN} + Y (t—)dM}, (14)
in which N} and M} are independent Poisson processes with intensity A, and Y (¢) ~
B(7(t)) independent Bernoulli variable with parameter

7(t) == P(5:1(t) >0) = 1-P(5:(t) =0). (15)

We denote by p(t) = (po(t),p1(t),...) the law of the process S (t), i.e. pp(t) =

P(S1(t) = n). Its time evolution is given by:

&p(t) =A Qunbias [p(t>] (16)
with:
P1 —TPo ifn=20
unbias n = _ _ 1
Qunbias [P] { Pt +7pn—1 — (L +7F)p,  forn>1 (17)
and 7 =1 — pg.

Remark 2. The coupled system (14) and (15) may look cumbersome at first glance:
it is mixing a SDE for the evolution of S; (14) with a Bernoulli random variable Y
which laws depends itself on the law of S; (through 7 (15)). But this expresses the
non-linear nature of the SDE: the law of the process S; has an influence on its own
evolution. A classical example of such formulation is given in the seminal work by
Alain-Sol Sznitman [54], and the following nonlinear SDE (of McKean-Vlasov type)
appears as the limit equation of a certain interacting particle systems:

dX, = dB; + / b(Xe,y) uy, t)dy dt,
yeRd

where (B;);>0 denotes an R%valued Brownian motion and u(.,t) is the law of X;.
In this SDE, the rate of change of X, (i.e., dX;) depends on the law of itself, which
introduces the non-linearity. This SDE is equivalent to the nonlinear PDE:

O+ V- (Glulu) = Au with Glul(e)= [ bay)uly)dy.

yER?



g oA W N e

© © ~N o

10
11
12
13
14
15

16
17
18

19

20
21

22
23

DERIVATION OF WEALTH DISTRIBUTIONS FROM BIASED EXCHANGE OF MONEY 9

To prove such type of nonlinear SDEs has a unique solution, one can resort to a stan-
dard fixed-point argument (see [54] for more details). Alternatively, well-posedness
of the nonlinear SDE (14) follows from the well-posedness of the associated infinite
system of ODEs (16). Indeed, the operator Qunpias (17) is bounded and locally
Lipschitz in the Banach space ¢*(N). See also the recent work [42].

3.2. Coupling for the unbiased exchange model. We now provide the cou-
pling strategy to link the N—particle system (S, ..., Sy) with the limit dynamics
(S1,...,8%). In [54], the core of the method is to use the same “noise” in both
the N—particle system and the limit system. Unfortunately, it is not possible in
our settings: the clocks NE”” ) cannot be used “as is” since they would correlate the
jump of S; with the jump of S; which is not acceptable. Indeed, if S;(¢) and S;(¢)
are independent, they cannot jump at (exactly) the same time.

For this reason, we have to introduce an intermediate dynamics, denoted by
{@}121, which employs exactly the same “clocks” as our original dynamics (11),
but the property of being rich or poor is decoupled.

Definition 3.3 (Intermediate model). We define for {§i}1§i§N to be a collection
of identically distributed (nonlinear) compound Poisson processes satisfying the
following SDEs for each 1 < i < N:

N N
dSit) = = Y Dpeo(Sit-))aNyd + 3T y(E-)dNg  (18)
J=1,j#i j=1,j#i
~ 11 00) (Si (=) AN 4 ¥ (1= )aM (19)

in which Y (¢) ~ B(#(t)), the Poisson clocks Nﬁi’j) (1 <i#j < N) are the same as
those used in (11), the two extra clocks N{"" and M{“" are independent with rate
A/N.

We do not use the “self-giving” clocks Ngi’i)
ceiving and giving dynamics.

since we want to decouple the re-

unbiased model intermediate limit dynamics

(S1,...,5N) (81,...,5N) (S1,...Sk)

/@ J(r} )\ (" Y1) @ Y1
..

&)

0
=

Figure 5 Schematic illustration of the coupling strategy. We use
an intermediate process (Si,...,5n) to decouple the “give” and
“receive” parts of the dynamics.
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10 FEI CAO AND SEBASTIEN MOTSCH

A schematic illustration of the above coupling technique is shown in Fig 5. We
first have to control the difference between the process (Si,...,Sn) and the in-
termediate dynamics (§1, ceey S ~). The key idea is based on the following simple
yet effective lemma that allows to create optimal coupling between two flipping
coins [29].

Lemma 2. For any p,q € (0,1), there exist X ~ B(p) and Y ~ B(q) such that
P(X#Y)=Ip—ql|

Proof. Let U ~ U[0,1] a uniform random variable. Define the Bernoulli random
variables as X := 1}y ,)(U) and Y := 1jg o(U). It is straightforward to show that
X ~B(p),Y ~B(q) and P(X #Y) = |p — . O

More generally, if N; and M; are two inhomogeneous Poisson processes with rate
A(t) and p(t), respectively, then there exists a coupling such that
dE[|N; — My[] < [A(t) — p(t)|dt.
This leads to the following proposition.
Proposition 1. Let (S1,...,Sy) and (§1, . .,gN) be solution to (11) and (18)
respectively, with the same initial condition. Then for any 1 <i < N, we have

dE[|S;(t) — Si(t)]] < AE[|r(t) — #(t)[]dt + )\% dt, (20)

where r(t) = & Z;V=1 1j1,00) (S;(t)) and 7(t) given by (15).

Proof. The processes §Z(t) and S;(t) “share” the same clocks Ngi’j) and Ngj’i) for
j # 1. Denote the ’rich or not’ random Bernoulli random variables:

Ri(t) = 1oy (Si(t))  and  Ri(t) = 1300 (Si(t)). (21)
Once a clock N,Ei’j) rings, the processes become:
(Si,85) ~—= (Si—R;,S; +Ry),

(SZ',SJ') 0% (§z — Ri7Sj + }7) (22)

Notice that the difference |S; — S;| can only decay after the jump from the clock
N§” ) (the ’give’ dynamics reduce the difference). However, the 'receive’ dynamics

from the clock N,Ej ) could increase the difference |S; f§j| if R; # Y. More precisely,
we find:

. N _ A 2\
dE[|Si(t) = Si()[] <0+ > E[|R;(t-) — V()5 dt + St (23)

=15
where the extra 2 dt is due to the extra clocks Nﬁ“’) and 1\7I§”) in (19).
Now we have to couple the Bernoulli process Y (t—) with R;(t—) in a convenient
way to make the difference as small as possible. Here is the strategy:
e Step 1: generate a master Poisson clock N; with intensity AN which gives a
collection of jumping times.
e Step 2: to select which clock Ngi’j ) rings, calculate the proportions of “rich
people” for the N —particle system and for the limit dynamics:

N
H-) = % Yo bneo (Si-) (=) = 1= po(t-) (24)



A W R

10
11

12

13
14

15

16

17
18

DERIVATION OF WEALTH DISTRIBUTIONS FROM BIASED EXCHANGE OF MONEY 11

e Step 3: let U ~ U([0, 1]) a uniform random variable.
— if U < r(t—), pick an index 4 uniformly among the rich people (i.e. ¢ such
that S;(t—) > 0), otherwise we pick i uniformly among the poor people
(i.e. i such that S;(t—) = 0). Pick index j uniformly among {1,2,..., N}.
—if U < #(t-), let Y(t—) = 1, otherwise Y(t—) = 0 (ie. Y(t—) =
Lio,7(¢—)] U))-
e Step 4: if ¢ # j, update using (22)
Thanks to our coupling, the 'receiving’ dynamics of S; and §z will differ with prob-
ability |r — 7:
E[|R;(t—) =Y (t-)l| =P(R;(t-) # Y (t-)) = E[lr — 7. (25)
Plug in the expression in (23) concludes the proof.
O

Remark 3. The update formula (22) for (§“§J) highlights that the ’give’ and

'receive’ dynamics are now independent in the auxiliary dynamics (i.e. ﬁl and Y
are independent). In contrast, we use the same process R, to update S; and S;.

Now we turn our attention to the coupling between {,/5’\1}1:1 ~ (auxiliary dynam-
ics) and the limit dynamics {S;};=1. for a fixed k (while N — o00). The idea is

to remove the clocks Ngi’j) for 1 < i,j < k to decouple the time of the jump in S;
and S; as described in the Figure 6.

n : n 5
i=1 gives to j=2 recelver ]

\ 1 2 - &k kt+l------ N-1 N

e \
2 éldcl;slt’o modif‘ﬁ fsame flOCkS for @j
vl {Sih<ick T 1{5'}199' """""
' anc
' v {Sihicick e 1 k
"giver" v clocks
. == es = [y 7
i B \ N{#)
i | same clocks for no effect on with rate
E {Sih<i<k ‘ 1{5"}199' A
NLl P Ghea S| " Sihaisk | gag N
bo | hes 8 4 )
N %

Figure 6 The clocks Nii’j) used to generate the unbiased dy-
namics (11) have to be modified to generate the limit dynamics
(S1(t),...,Sk(t)) (14). The processes S;(t) and S;(t) have to be
independent, thus the clocks N,E”]) for 1 < 4,5 < k cannot be used.

19 Proposition 2. Let (:9\17“.,§N) be the solution to (18) and {S;}1<i<k be inde-
20 pendent processes solving (14). Then for any fived k € N, there exists a coupling
21 such that for all t > 0:

S = Ak —1)
dE[Si(1) = Si(0)]] < A=

de for1<i<k. (26)
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Proof. We assume ¢ = 1 to simplify the writing. To couple the two processes §1 and
S1, we use the same Bernoulli variable Y (t—) to generate both ’receive’ dynamics:

ASi(t) = —Tp.00) (S1(t—))AN} + Y (t—)dM},
dgl(t) = —]1[1’00) (Sl(t—))dN% + Y(t—)le[%.

Meanwhile, the Poisson clocks 1/\\It1, 1/\\/1% are already determined in (18):

N N
RSNV SNG wa W SNV NOY )

j=2 j=2

Unfortunately, we cannot use the same definition for the clocks N} and M} as the
clocks N and M7 are not independent (they both contain the clock Nﬁ” )). Thus,
we need to remove those coupling clocks when defining N and M*!. Fortunately,

we only have to generate the dynamics for k process, thus we only have to replace
the clocks N(1) and NV for i = 1..k (see Figure 6):

k N k N
N =3 R0 4 30 N and M= M+ 3T NUD ()
j=1 j=k+1 j=1 j=k+1

where Nﬁl’j ) and MEW ) are independent Poisson clocks with rate %
Using this coupling strategy, the difference |§1 — 51| could only increase (by 1)
if the clocks Ngl’”, Mgl’j), NELJ) or Ngj’l) ring for 2 < j < k leading to (26).
O

Remark 4. The explicit coupling constructed in this section is indeed the core
of the manuscript. The intermediate dynamics for S is introduced to decouple the
process of giving and receiving. In the original dynamics for S, the total wealth
is always preserved (S; loses one dollar only if S; receives one). This is no longer
the case for the intermediate ’hat’ dynamics as the total wealth is not preserved
(5’\2 could lose one dollar without §j receiving one). Moreover the limiting ’bar’
dynamics decouple further the intermediate ’hat’ dynamics so that components of

S become independent (i.e. S; and §j ‘jump’ independently from each other).
Finally, combining propositions 1 and 2 gives rise to the following theorem.

Theorem 3.4. Let (S1,...,Sn) to be a solution to (11). Then for any fized k € N4
and t > 0, there exists a coupling between (Sl, .. .7Sk) and (3’1, .. .,Sk) (with the
same initial conditions) such that:

C(t) (M —1)  4(k—1)t
N X A

holding for each 1 < i < k.

E[]S;(t) - Si(t)]] < (29)

1/2

with C(t) = (3 +Mt) "~ + A

2
VN
Proof. We assume without loss of generality that ¢« = 1. First, we show that the
processes S7 and S7 remain closed. We denote:

Ri =131,00)(Si) R = 11,00) <§z) . Ri=1p100)(5:).
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|

We have:

Ellr 7] = E

IA

. 1N
< E[S: -S| +E (NZ(Ri—T)> ;

where we use |R; — §l| <|S; — §l| To control the variance, we expand:

N 2
1 ~ 1 ~ N(N —1) PN
E (N ;:1(& - 7’)) = Varli] + =55 Cov(R,, Ry)

1 o~ A
S E + COV(Rl, R2)7
since R is a Bernoulli variable its variance is bounded by 1/4. Notice that we

have used E [134 = 7. Indeed, for a given ¢, the SDE satisfied by the intermediate

dynamics :S'\Z is eractly the same SDE satisfied by S;. Thus the law of :S'\Z is the
same as the law of S; which implies E [ﬁl} = 7. But as a system, (§1, .. .,§N)

does not have the same law as (Si,...,Sy) because the processes §l and §j are
not independent due to the clock N(7) (clocks that we get rid of in the following
steps of the proof).

Controlling the covariance of ]§1 and Eg is more delicate since the two processes
are not independent due to the clocks N§1’2) and N?’l). Fortunately, these clocks

have a rate of only A/N and thus the covariance has to remain small for a given
time interval. To prove it, let’s use the independent processes R; and Rs:

~ o~ —~ . _ —~ _ N _ 1/2
Cov(Ri,Rs) = Cov(Ry —Ri,Rs—Ry) < <E[\R1 — Ry -E[|R, - R2|2])

using Cauchy—Schwarz. Since the two processes S; and S; remain close, we deduce:

E[|Ri(t) - Ra(t)]’] = E[Ri(t) - Ba()l) < E[ISi(t) — Sa()]] < /\%7
using proposition 2 (with k = 2). We conclude that:
. 1 4\ 2
Ellr) - 0] S EI$i0 - S0+ (5 + 35 ) -
Going back to proposition 1, we find:
~ - 1 a2 2
dE[S;(t) — Si()l] < AE[S:(t) — S (¢)[] dt + (4N +/\N> dt + A~ dt

< AE[|S1(t) = Sy(t)]] dt + ?/(tﬁ) dt
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14 FEI CAO AND SEBASTIEN MOTSCH

with C(t) = (5 + \dt) V2L = O(1). Using Gronwall’s lemma, since |S;(0) —
S;(0)| = 0, we obtain:

=

N C(t) (e —1) 4(k — 1)t
E[|S:(t) — S:(t)|] < A . 30
I15:0) = Sl € 2+ AT (30)
We finally conclude by using proposition 2 and triangular inequality. O

Remark 5. After we achieved the transition from the SDEs (3.1) to the determin-
istic system of nonlinear ODEs (16), the natural follow-up step is to analyze (16)
with the intention of proving convergence of the solution of (16) to its (unique)
equilibrium solution, which turns out to be a geometric distribution defined by

pn =051 —py)", n=>0, (31)
1

where pj = i if we put initially that Yoo onpn(0) = p for some p € Ny.
The main ingredient underlying the proof lies in the reformulation of (16) into
a (discrete) Fokker-Planck type equation, combined with the standard entropy
method [3,34,40]. We emphasize that the convergence of the solution of (16) to
(31) has already been established in [15,32,42] so we refer the interested readers to

the aforementioned references for further details and results on this model.

4. Poor-biased exchange model. We now investigate our second model where
the 'given’ dynamics is biased toward richer agent: the wealthier an agent becomes,
the more likely it will give a dollar. As for the previous model, we first investigate
the limit dynamics as the number of agents N goes to infinity, then we study the
large time behavior and show rigorously the convergence of the wealth distribution
to a Poisson distribution.

4.1. Definition and limit equation. We use the same setting as the unbiased
model: there are N agents with initially the same amount of money S;(0) = py.

Definition 4.1 (Poor-biased exchanged model). The dynamics consists in
choosing a “giver” ¢ with a probability proportional to its wealth (the wealthier
an agent is, the more likely it will be a “giver”). Then it gives one dollar to a
“receiver” j chosen uniformly at random.

From another point of view, the dynamics consist in taking one dollar from
the common pot (tax system) and re-distribute the dollar uniformly among the
individuals [24]. Thus instead of ‘taxing the agents’ in the unbiased exchange model,
the poor-biased model is ‘taxing the dollar’.

The poor-biased model can be written in term of stochastic differential equations,
the wealth S; of agent i evolves according to:

N N
dSi(t) = = S AN + 3" AN, (32)
j=1 j=1
; (1:0) Pps S : () — ASi(t)
with N/ Poisson process with intensity A; ;(t) = =57

Since the clocks {Ni’jhgi,jgN are now time dependent (in contrast to the unbi-
ased model), the dynamics might appear more difficult to analyze. But it turns out
to be simpler, since the rate of receiving a dollar is constant:

N N

AS; ()
Aji(t) = L2 = A,
uslt) = 3023 =

j=
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where g is the (conserved) initial mean. In contrast, in the unbias dynamics, the rate
of receiving a dollar is equal to the proportion of rich people r(¢) which fluctuates
in time. Let’s focus on ¢ = 1 and sum up the clocks introducing:
N% = ZNS’])’ M% = ZNELl)v (33)
j=1 j=1
where the two Poisson processes N} and M} have intensity AS; and Ay (respec-
tively). Thus, the poor-biased model leads to the equation:
dS;(t) = —dN; + dM;. (34)
Notice that S;(t) is not independent of S;(t) as both processes can jump at the
same time due to the two clocks Ngl’]) and N,E]’l).
Motivated by the equation above, we give the following definition of the limiting
dynamics as N — oc.

Definition 4.2. (Asymptotic Poor-biased model) We define S; to be the com-
pound Poisson process satisfying the following SDE:

dS;(t) = —dN} + dM;, (35)
in which N} and M} are independent Poisson processes with intensity AS;(¢) and

Am (respectively) where u is the mean of S1(0) (i.e. u = E[S1(0)]).

If we denote by p(t) = (po(t),p1(t),...) the law of the process S1(t), its time
evolution is given by:

d
ap(t) = onor [p(t)] (36)
: _ | pr—npo ifn=0
with - Qpoor [Pl = { (n+Dppy1 +ppn1—(+p)p,  forn>1 (37)

and p = Z:i% npn(t) = :ioo npn(0).

4.2. Proof of propagation of chaos. The aim of this subsection is to prove the
propagation of chaos, i.e. that the process (Sl, cee Sk) converges to (5’1, ey gk)
as N goes to infinity. As for the unbiased exchange model, the key is to define
the Poisson clocks for the limit dynamics Nz and Mz close to the clocks of the
N —particle system N% and Mf‘/ for 1 < i < k, but at the same time making the
clocks independent. With this aim, we have to 'remove’ the clocks Ngi’j) and Mi” )
for 1 <i,5 <k.

Theorem 4.3. Let (Sl, ey SN) to be a solution to (32) and (31, cee S’k) a solution
to (35). Then for any fixed k € Ny, there exists a coupling between (Sl, . .,S’k)
and (S1,...,Sk) (with the same initial conditions) such that:

E[|Si(t) - Si(t)]] <
holding for each 1 <1i <k.

- 1), (38)

Proof. To simplify the writing, we suppose i = 1. We define for 1 < i < k the clocks
for the limit dynamics as follow:

N N
Ny=C-[ SN +8 M= Y NPV eNL (39)
j=k+1 Jj=k+1
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Here, G, is a Bernoulli random variable that prevents the clocks to ring for Sy if

the rates of the clocks Ngl’j) from k+1 < j < N are too large compare to S;. The
parameter of this Bernoulli random variable is given by:

NSi(t) )

él(t)~3<1/\m

(40)
with a A b = min{a, b} for any a,b € R. On the contrary, the two processes 1/\\T}
and M} are used to compensate if the rates of the clocks NEI’J) and Ngj’l) from
k+1 < j < N are not large enough. Both processes N} and M} are independent
(inhomogeneous) Poisson processes with rates respectively:

N
() = A (Sl(t) - (N_kN)Sl(t)> and D) =A[p- > SJJ’\(;) (41)
+ j=k+1

where ay = max{a, 0} for any a € R. One can check that under the aforementioned
setup (coupling of Poisson clocks), Ni and M; are indeed independent counting
processes with intensity A S;(t) and A p, respectively.
The difference |S1(t) — S1(¢)| could increase due to 3 types of events:
i) Ngl’j) and Ngj’l) ring for 1 < j <k,

ii) N! and M} ring

iii) N ring for j > k + 1 and Gy = 0.
Notice that the third type of event leads to:

Si(t)=S1(t=)—1 , Si(t)=S1(t—) (42)

i.e. only S; gives. However, the event {G; = 0} only occurs if S;(t—) > Si(t—).
Therefore, the event iii) could only make |S1(t) — S1(t)| to decay.
Therefore, we deduce:

k k
_ A A
BSOSO < 3 FESO + 3 TR0k
+E[n(t))dt + E[p(t)]dt
< %dt + E[@(H)]dt + E[p(1)dt (43)
using E [S;(t)] = p for any j. Let’s bound the rates /i and v:
. [ /= (N —k)S; - kS,
= —_—— < s — . —
Ei] = E _)\(Sl - )+ < OB (- S8), +
— Ak
< AE[S - S]] + N
i s e
Bl = EA(k- X F)| =W
J=k+1

We deduce from (43):
dE[|S1(t) — S1(1)]] < AE [|S1(¢) — S1(¢)]] dt + %dt. (44)

Applying the Gronwall’s lemma to (44) yields the result.
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4.3. Large time behavior. After we achieved the transition from the interacting
system of SDEs (32) to the deterministic system of linear ODEs (36), we now
analyze the long time behavior of the distribution p(t) and its convergence to an
equilibrium. The main tool behind the proof relies again on the reformulation of
(36) into a (discrete) Fokker-Planck type equation, in conjunction with the standard
entropy method [3, 34, 40].

Let’s introduce a function space to study p(¢):

Vi = {p€lMN) D pa=1,p.20,> npy=p},  (45)
n=0 n=0
D(Qpoor) = {p € (N)|Qpoor[p] € A(N)}, (46)

where ¢? denote the vector space of square-summable sequences. In contrast to the
unbias model with the dynamics (36), the operator Q0 is an unbounded operator
(i.e. D(Qpoor) ¢ ¢*(N)). For any p € V,, N D(Qpoor), it is straightforward to show
that:

Z onor [p]n =0 3 Z n onor [p]n = 07 (47)
n=0 n=0

which express that the total mass and the mean value is conserved. Moreover, there
exists a unique equilibrium p* for Qpoor in V), given by a Poisson distribution:

= ﬂ—e*“, n > 0. (48)

To investigate the convergence of p(t) solution to (36) to the equilibrium p* (48),
we introduce two function spaces.

Definition 4.4. We define the sub-vector spaces of £2:

s 2

H = {pelm) | i—f < +oo}, (49)
n=0*+"
oo 2

W= pelm|Y g (p:f“—pf) < too. (50)
=0 Pnt1 Pn

and define corresponding scalar products:

e =3 P (o g =3 (Lo fo) (o &) 5y

* *
— Pn ne0 Pnt1 DPh Pnt1 Pn

The advantage of using the scalar product (.,.)yo is that the operator Qpoor
becomes symmetric. To prove it, we rewrite the operator a la Fokker-Planck.

Lemma 3. For any p € H°, we have:
— * p
onor[p]n =pD <an+ <p:>> (52)
with DT (pp) = pna1 — Pn, D™ (Pn) = Pn — Pn—1 and the convention p_1 = p* | = 0.
Proof. Since p},/py, 1 = (n+1)/u, we find

*

1 p p*, p* p*,
*onor[p]n %pn+1 - n* 1pn - (an - :71107171
1 pn+1 Y29 2 P

* * * *
D U1 — Py yUn — (Dhtn — Py Un_1)
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with u, = p,/p}. Using the notation DV and D™, we write:
1 % * — *
1 Qpoor(Pln = PrDun = p, 1 D w1 = D™ (p;, D" ).
O

Remark 6. Equation (52) has a flavor of a Fokker-Planck equation of the form

w5 (n5(2))

where poo is an equilibrium distribution to which p converges (and p., may also
depend on p, making the equation nonlinear).

As a consequence, we deduce that the operator Qpoor is symmetric on HO.

Proposition 3. For any p,q € H°, the operator Qpoor (37) satisfies:
<onm’ [p]a q>7‘l° = <p7 onor [qDHU fOT any p,q € HO- (54)

Moreover,

(@poorlP), P10 = —uzpn (D+( )) — bl (55)

n

Pmof. We simply use integration by parts:

(i) 5 () (o)
<Qp Z < vy ) v 27 i j2s

n=0

= Z pn (p;D_‘_ZZ) = %<p7 ono’r[q]>7~[0‘

77,0" n

O

Furthermore, the operator —Qp.or would have a so-called spectral gap if one
can show that the norm ||.||3: controls the norm |.||o. To prove it, we establish
a Poincaré inequality. We use for that the following Poisson-Poincaré inequality
taken from the monograph [9].

Proposition 4. Let f be a real-valued function defined on the set of non-negative
integers. Suppose that X obeys a Poisson distribution with parameter p, then

Var (f(X)) < wE [(F(X +1) - £(X))*]. (56)

For the sake of completeness, we give a proof of proposition 4 in Appendix A.
The proof is based on the Efron-Stein inequality as well as the infinite divisibility
of the Poisson distribution. The result of the previous proposition reads:

+o0o
Z(fn )’py, < UZ Foer = f2)?pr, (57)
n=0 n=0

with m = :ioo fapl. Thus, using f, = p,/pl with p = (po,p1,...), we deduce

the following Poincaré inequality:
Corollary 1. For any p € H' satisfying > nPn =1, we have:

Ip = p*I30 < nllpll3; (58)
where ||.||y0 and ||.|41 are defined in (51) and p* is the equilibrium (48).
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As a result of the corollary, the operator —Qpoor has a spectral gap of at least
1/p since:

1 *
<_onor[p_poo] y p_poo>7-[0 = <_onor[p} y p>’H0 = HpH%{l > ;HP—P H%o. (59)

We shall establish the existence of a unique global solution to the linear ODE
system (36). The key ingredient in our proof relies heavily on standard theory of
maximal monotone operators (see for instance Chapter 7 of [10]).

Proposition 5. Given any po € D(Qpoor), there exists a unique function
p(t) € C'([0,00); H°) N C([0,00); P(Qpoor))
satisfying (36).
Proof. We use the Hille-Yosida theorem and show that the (unbounded) linear

operator —Qpoor on HY is a maximal monotone operator. The monotonicity of
—Qpoor follows from its symmetric property on HO:

s} 2
Qa6 =030 (D7 (2)) 20 foral v € DQyeur)

n=0 n

To show the maximality of —Qpoor, it suffices to show R(I — Qpoor) = HO, ie.,
for each f € HY, the equation p — Qpoor[P] = f admits at least one solution p €
D(—Qpoor). To this end, the weak formulation of p — Qpoor[p] = f reads

(P, @) w0 + (—Qpoor[P|, A)20 = (£, q)p0  for all g € H, (60)

whence the Lax-Milgram theorem yields a unique p € H'.

O

We can now prove the convergence of p(t) solution of (36) to its equilibrium
solution (48).

Theorem 4.5. Let p(t) be the solution of (36) and p* the corresponding equilib-
rium. Then:
[p() =P [0 < [Po—P*[[30e™ (61)

where po s the initial condition, i.e., p(t = 0) = py.

Proof. Taking the derivative of the square norm gives:
1d N X *
Sz P®)—p o = @), P(t) =P )0 = MQpoor [P(1)], P() — P )30

= Mp(t), Qpoor[P()]) 30 = _)‘Nllp(t)HiLla (62)

using the symmetry of Qpoor and the relation (55). Using the Poincaré constant
from corollary (1), we deduce:

ld
2dt
Applying the Gronwall’s lemma leads to the result.

Ipt) =P 3 < —Alp®) - p*[30-
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4.4. Numerical illustration poor-biased model. We investigate numerically
the convergence of p(t) solution to the poor-biased model (36) to the equilibrium
distribution p* (48). We use p = 5 (average money) and A = 1 (rate of jumps)
for the model. To discretize the model, we use 1,001 components to describe the
distribution p(t) (i-e. (po(t),...,p1000(t))). As initial conditions, we use p,(0) = 1
and p;(0) = 0 for @ # p. The standard Runge-Kutta fourth-order method (e.g.
RK4) is used to discretize the ODE system (36) with the time step At = 0.01.

We plot in Figure (7)-left the numerical solution p at ¢ = 12 unit time and
compare it to the equilibrium distribution p*. The two distributions are indistin-
guishable. Indeed, plotting the evolution of the difference ||p(t) — p*||yo (Figure
(7)-right) shows that the difference is already below 1071°. Moreover, the decay is
clearly exponential as we use semi-logarithmic scale.

p(t) = "l

p(t - 12) - = fitting Ce—2

—— P equilibrium

probability Pn
[Ip(t) = P* I,

0.05

5 10 15 20 25 30

wealth individual time (t)

Figure 7 Left: comparison between the numerical solution p(t)
(36) of the poor-bias model and the equilibrium p* (48). The two
distributions are indistinguishable. Right: decay of the difference
lp(t) — p*||0 in semilog scale. The decay is exponential as pre-
dicted by the theorem 4.5.

Notice that the numerical simulation suggests that the optimal decay rate of
Ilp(t) —p*||30 is 2X, which is twice the analytical decay rate A proved in proposition
4. The reason for this discrepancy is that the solution of p(¢) remains in the subspace
V. N D(Qpoor), i-e. the mean of p(t) is preserved. The analysis of the spectral gap
of Qpoor in the proposition 4 does not take account this constraint.

We numerically investigate the spectrum of —Qpoor denoted {a,}02 . The first
eigenvalue satisfies a1 = 0 due to the equilibrium p* (i.e. Qpoor[P*] = 0). The
other eigenvalues are a,, = n — 1 and in particular the spectral gap is s = 1. One
can find explicitly a corresponding eigenfunction given by:

(63)

P = D7 (p") = (5. = Pos-- Py = Prers- )

Thus, for any p € V,, N D(Qpoor), we find:

=> pa(l=n/p)=1—p/pn=0.

oo
* * 1
(P, PP)p0 = pulp} — Pl 1)—
n=0 Pn n=0
This explains why the effective spectral gap for the dynamics is given by a3 and
not as: the solution p(t) (36) lives in V,, N D(Qpoor) and therefore it is orthogonal

to p?.
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Remark 7. We can find explicitly the exact formulation of the eigenfunction p(*)
of —Qpoor for all k € N. We find by induction:

* ok i k 14 *
p" = | pjpi — (k- lpo,---,pn+z anfj))pj,--- (64)
leading to:
n :
k-1 copnd
(k) — J L —H
Dn, . -1 —e *. n>0, 65
jz_:()( J >( "o (%5)
with ( ) binomial coefficient (i.e (’;) = ﬁ) Moreover, through an induction

argument and some combinatorial identities, we can verify that <p(m)7 p(k)>7{o =0
for m # k. We speculate that {p(k)}k"";1 spans the entire space H°, but we do not
have a proof for this conjecture.

5. Rich-biased exchange model. In our third model, the selection of the ’giver’
is biased toward the poor instead of the rich, i.e. the more money an individual has
the less likely it will be chosen.

5.1. Definition and limit equation. As before, the definition of the model is
given first.

Definition 5.1. (Rich-biased exchange model) A “giver” i is chosen with in-
verse proportionality of its wealth. The “receiver” j is chosen uniformly.

The rich-biased model leads to the following stochastic differential equation:

== > AN 4+ 3T AN, (66)
j=1 j=1

with N,(f’j ) Poisson process with intensity A;; given by:

0 if ;=0
Aij:{}v.gi if 5, > 0 (67)
An agent i receives a dollar at rate Aw where w is the inverse of the harmonic mean:

1 1
Sk >0

Definition 5.2. (Asymptotic Rich-biased model)

dS;(t) = —dN} + dM}, (69)

in which N} and M} are independent Poisson processes with intensity A/S1(t) (if
S1(t) > 0) and Aw(t) respectively. The inverse mean w(¢) is given by:

oo n t

n=1
where p(t) = (po(t),p1(t),...) the law of the process S;(t). The time evolution of
p(t) is given by:

(1) = A Quicalp(1)] ()
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with:
ifn=0

) pp—wpo
Qrwh[p]n = { Z;::ll + Wpp_1 — (% —‘r@) P for n > 1 (72)

We will also need the weak form of the operator: for any test function (:

Qo] ) = S (et + 1)+ 2 (- 1) = (w22 o))

n
n>0
(73)

5.2. Propagation of chaos using empirical measure. We investigate the prop-
agation of chaos for the rich-biased dynamics using the empirical measure (see sub-
section 2.3). We consider {S;(t)}1<i<n the solution to (66) and use the empirical
measure Pemp(t) (9). The goal is to show that the stochastic measure pem,(t) con-
verges to the deterministic density p(¢) solution of (71). The main difficulty is that
the empirical measure is a stochastic process on a Banach space £(N) and thus of
infinite dimension. Fortunately, the space is a discreet (i.e. N) and therefore we
do not have to consider stochastic partial differential equations which are famously
difficult. Moreover, we only have to consider a finite number of possible jumps.

When agent i gives a dollar to j (i.e. (S;,5;) ~~ (S; —1,5;+1)), the empirical
measure is transformed as

1
Pemp ~7 Pemp + N (5Si—1 + 5Sj+1 - 63,: - 5Sj)- (74)

To write down the evolution equation satisfied by pemp, We regroup the agents with
the same number of dollars (i.e. we project the dynamics on a subspace).

Proposition 6. The empirical measure Pemyp(t) (9) satisfies:

1

+o00
=N Z (5k—1 + 0141 — O — 5l)dN§k,l) 75)

k=1,l1=0

dpemyp(?)
where Ngk’l) independent Poisson clock with intensity:

A
)\k7l =N- Pemp,k * (N * Pemp,l — ]l{k:l}) : m (76)
where Pemp, i 5 the k—th coordinate of Pemp-

Proof. Following the jump process given in (74), the empirical measure satisfies:

N
1 iy
dpemp(t) = N Z <6Si—1 + 6Sj+1 - 6Si - 55’])ng 4) (77)
ij=1,i#j

Introducing N,gk’l) the Poisson process regrouping all the clocks corresponding to a
giver with £k dollars giving to a receiver with [ dollars:

k,l i
N =y N (78)
{i#7 | Si=k,S;=1}
In this sum, each clock Ngi’j) has the same intensity A\/(S;-N) = A/(k-N). Moreover,
counting the number of clocks involved in the sum (78) leads to (76). The indicator

Ix—y is here to remove the self-giving clocks NEM): when an agent gives to itself,
nothing happens. O
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Corollary 2. For any test function ¢, the empirical measure Pemp(t) (9) satisfies:

A
AE[(Pemyp (t), ¢)] = AE[Qrich[Pemp(t)], 0)]dt - — FE[(R[Pemy(t)], 0)ldt  (79)
where Qrich is the operator defined in (72) and R defined by:

Pn+1 Pn-1 2
R[p], = o 1 Ln2y = Cpelinzy- (80)
Proof. From the proposition 6, we find:
+oo
E(Pemp(t) )] = E| 3 (0l =1)+ 9 +1) = 9(k) = (1) )Pemp. - Pempat
k=1,1=0
1| A
X (i = 1) + ok + 1) = 26(k) ) Permpit - k] dt
= Pemp,k
= 2E|Y ((p(k 1) - ga(k))”;j] dt
k=1
+oo
AR > (sa(l +1) - @(l))@[pemp] ~pemp,l] dt
=0
AR 1
B |22 (k= 1) o+ 1) = 26(8) ) pemp k] dt

where W[pemp) is defined in (70). We recognize the weak formulation of Qe (73)
leading to (79). O

The operator R (80) corresponds to the bias in the evolution of the empirical
measure Pemyp(t) compared to the evolution of p(t) solution to the limit equation
(71). This bias vanishes as A/N goes to zero when the number of agents N becomes
large. The other source of discrepancy between pes,p(t) and p(t) is the variance
of Pemp(t) (as it is a stochastic measure). Let’s review an elementary result on
compensated Poisson process.

Remark 8. Denote Z(t) a compound jump process and M (t) its compensated
version:

dZ(t)=Y({#)dN, , M) = Z(t) —/0 wu(s)A(s)ds (81)
where Y () denotes the (independent) jumps and N; Poisson process with intensity
A(t) and p(t) = E[Y (t)]. The Ito’s formula is given by:

AEL(M(1))] = E[io(M(t=)+Y (t=)) = p(M(t=) | A@)dt — B[ (MO)u(O)AD] .

In particular, for ¢(z) = 22

AE[M2(t)] = E[2M(t—)Y(t—) + Y2(t—)] A(t)dt — E[2M (H)u(t)A(H)] dt
E[Y?(1)] A(t (82)

)dt
Here, we assume that the jump Y'(¢) is independent of the value Z(t). To generalize
the formula one has to replace u(t) = E[Y (¢)] by E[Y (¢)|Z(t)].

, we obtain:

Motivated by this remark, we obtain the following result.

| >

dt
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Proposition 7. Denote M(t) the compensated process of the empirical measure
Pemp(t):

M@=pmAw—Qm¢m+a[(@mmmam+;ﬂmmAmﬁQ (83)

then M(t) is a £*-value martingale and satisfies:

W
>

E[[M@®)[le] <4/t (84)

=

Proof. The key observation is that the jump (74) for the empirical measure are of
order O(1/N). Indeed:

1 2 4
—_ — 0 — < .
E U]N(akwam 5 — &) J < (85)
Applying the formula (82) we obtain::
+oo
4 A 4N
dE[|| M (t)||4] < E|— - Npempk - Npempii | —=dt < —=dt. 86
VOIS 3 B |y - Nrems - Npum| e < g 66)
Integrating in time gives (84). O

We are now ready to prove the propagation of chaos for the rich-biased dynamics
by showing that the empirical measure pemp(t) converges to p(t) as N — +oo. The
key observation is the following

Lemma 4. The operator Qi (72) is globally Lipschitz on ¢*(N)NP(N) and R is
an bounded on ¢*(N).

1QrichP) = Qricnldllls < 4llp—dlln  for any p,q € £'(N) NP(N) (87)
IRP]lle < 4lpla for any p € 11(N) (88)
Proof. Since p € /1(N)NP(N), the rate of receiving w[p] (68) satisfies 0 < w[p] < 1.
Thus,
|Qricn[Pln — Qricnld]n] < [Pn+1 — nt1] + [Pr—1 — gn—1| + 2[Pn — Gnl-
Summing over n gives the result. We proceed similarly for the operator R. O

Theorem 5.3. Consider p(t) solution to the limit equation (71) and Pemp(t) em-
pirical measure (9). Then:

e4)\ﬁ
Mwmﬂw—p@Mdso(Qﬁ), (89)

in particular Pemp(t) N2geo p(t) for any t > 0.

Proof. First we write down the integral form of the equation satisfied by both p(¢)
and Pemp():

p(t) = P0+/0 Qricn[p(s)]ds

pemp(t) = Ppo+ /() Qrich [pemp(s)] ds + % /0 R[pemp(s)] ds + M(t)
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Combining the two equations give:

||pemp(t> - p(t)Hfl < )‘/0 ||Qrich[Pemz)(5)] - Qm‘ch[P(S)]Hél ds

43 | IRy (9l ds+ 12100

¢ M\t
< 4 Hpemp(s) - p(‘s)Hfl ds+ — + HM(t)Hfl
0

N
using lemma 4. Denoting ¢(t) = E[||pemp(t) — P(t)]|e2], we deduce from the bound
(84) of M(t):
At 4\

t
o) < 4)\/0 o(s) ds + S + 1/ 5t

Applying Gronwall’s lemma gives rise to:

B(t) < <)}3t + \/§t> A

leading to the result. O

Remark 9. The martingale-based technique, developed in [42] and employed here
for justifying the propagation of chaos, is remarkable since it does not require us
to study the N-particle process (Si,...,Sn) but solely its generator. One draw-
back is that this method might not work if the generator @@ of the limit process
is unbounded, which is the case for the generator Qpoor of the (limit) poor-biased
dynamics (36).

5.3. Dispersive wave leading to vanishing wealth. As illustrated in the in-
troduction (Figure 2), the rich-biased dynamics tend to accentuate inequality, i.e.
the Gini index G(t) was approaching 1 (its maximum value) for the agent-based
model (4) (66). We would like to investigate numerically the behavior of the solu-
tion to the rich-biased dynamics using the limit equation (71) and the distribution
p(t) = (po(t), p1 (1))

In Figure 8, we plot the evolution of the distribution p(¢) starting from a Dirac
distribution with mean p =5 (i.e. ps = 1 and p; = 0 for ¢ # 5). We observe that
the distribution spreads in two parts: the bulk of the distribution moves toward
zero whereas a smaller proportion is moving to the right. One can identify the two
pieces as the “poor” and the “rich”. Thus, the dynamics could be interpreted as the
poor getting poorer and the rich getting richer. Notice that the proportion of poor
is increasing (e.g. po(t) is increasing) whereas the “rich” distribution resembles a
dispersive traveling wave. Since both the total mass and the total amount of dollar
are preserved (i.e. > n-p,(t) = p for any t), the dispersive traveling wave contains
the bulk of the money but it is also vanishing in time.

To investigate more carefully the dispersive wave, we try to fit numerically its
profile. After numerically examination, we choose to approximate it by a Gauss-
ian distribution. Meanwhile we approximate the “poor” distribution by a Dirac
centered at zero dg. Thus, we approximate the distribution p(t) by the following
Ansatz:

pal®) ~ @=r0) -0+ o) o ("), (90)
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probability Prn
probability Prn

o 2 4 6 8 10 12 14 16 18 0 10 20 30 40
wealth individual wealth individual

Figure 8 Evolution of the wealth distribution p(¢) for the rich-
biased dynamics (71). The distribution spreads in two parts: a
large proportion starts to concentrate at zero (“poor distribution”)
and while the other part forms a dispersive traveling wave. Param-
eters: At =5-1073, p(t) = (po(t), p1(t), ..., p1,000(t)). A standard
Runge-Kutta of order 4 has been used to discretize the system.
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Figure 9 Left: Estimation of the center ¢(¢) and standard devia-
tion o(t) of the dispersive wave along with their parametric (power-
law) estimation (91). Right: Comparison of the distribution p(t)
(see Figure 8) with the dispersive wave using the standard normal
distribution ¢.

where ¢ is the standard normal distribution (i.e. ¢(z) = e~ /2/\/27), c(t) is the
center of the profile, o(t) its standard deviation and r(¢) the proportion of rich. The
speed of the wave c¢(t) and its standard deviation o(t) are estimated numerically
and plotted in Figure 9. Their growth is well-approximated by a power-law of the
form:

c(t) = 1.4748 - 16 o (t) = 0.9261 - -39, (91)
Since the total amount of money is preserved, the proportion of rich r(¢) can be
easily deduced from c(t) since we must have p = r(t) - ¢(t). Such approximation
leads to the fitting in Figure 8-right (dotted-black curves). We notice that the
proportion of rich in our Ansatz is vanishing:

Mt t—=+oc0
r(t):@ 200, (92)
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Thus, we make the conjecture that p(t) converges weakly toward dp, i.e. all the
money will asymptotically disappear.
To further assess our conjecture, we measure the evolution of the Gini index for
the distribution p(?):
400 +oo

Glp] = i SOS i - dlpis (93)

i=0 j=0

with p the standard mean. Using the Ansatz (90), we can approximate the value
of the Gini index given (see Appendix B):

G(t)zl—cé‘ﬂ+%. (94)

I
-

0.8

=
o

Gini index

G(t) Gini index
—_— -G

=== fitting profile

=== fitting profile

"1 - Gini index"

1072
0 100 200 300 400 500 100 10t 10° 10° 10° 10°
time (t) time (t)

Figure 10 Left: Evolution of the corresponding Gini index (93)
along with the analytical approximation using the dispersive wave
profile (94). Right The Gini index converges to 1 due to the van-
ishing dispersive wave transporting all the wealth to infinity.

Remark 10. In the approximation (91), the coefficient ¢(t) grows faster than o(t),
thus the Gini index has no risk of exceeding one in the approximation (94). More
generally, as long as ¢(t) is of the same order as o(t), the approximated Gini index
given by (94) will not become larger than one.

We plot in Figure 10-left the evolution of the Gini index G(t) along with its approx-
imation (94). We observe a good agreement between the two curves. To examine
closely the long time behavior of the curves, we plot the evolution of 1 — G(t) in

log-scales (Figure 10-right) over a longer time interval (up to t = 10°). Both curves

seem to converges similarly toward 0 (indicating that G(t) fas 1) with a slight

overshoot for the Ansatz. This overshoot might be due to our approximation that
the “poor distribution” of p(t) is concentrated exactly at zero (i.e. (1 — r(t))do).
This approximation amplifies the inequality between the “poor” and “rich” parts
of the distribution and hence increases slightly the Gini index. But overall the as-
ymptotic behavior of the Gini index for p(¢) matches with the formula (94) and
thus strengthens our assumption that p(t) will converge (weakly) to a Dirac dy.
However, further analytical studies are needed to derive the asymptotic behavior of
p(t) directly from the rich-biased evolution equation (71).
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6. Conclusion. In this manuscript, we have investigated three related models for
money exchange originated from econophysics. For the unbiased and poor biased
dynamics, we rigorously proved the so-called propagation of chaos by virtue of
a coupling technique, and we found an explicit rate of convergence of the limit
dynamics for the poor biased model thanks to the Bakry-Emery approach. We have
also introduced a more challenging dynamics referred to as the rich biased model,
and a propagation of chaos result was established via a powerful martingale-based
argument presented in [42]. In contrast to the two other dynamics, the rich-biased
dynamics do not converge (strongly) to an equilibrium. Instead, we have found
numerical evidence of the emergence of a (vanishing) dispersive wave. Such wave
of extreme wealthy individual increases the inequality in the wealth distribution
making the corresponding Gini index converging to its maximum 1.

Although we have shown numerically strong evidence of a dispersive wave, it is
desirable to derive such emerging behavior directly from the evolution equation.
One direction of future work would be to derive space continuous dynamics of
evolution equations in order to investigate analytically the profile of traveling waves.
However, space continuous description such as the uniform reshuffling model could
lead to additional challenges. For instance, proving propagation of chaos using the
martingale technique for the uniform reshuffling model was more involved [13].

From a modeling perspective, one should explore how selecting the ”receiver”
as well as the ”giver” could impact the dynamics. Indeed, in the three dynamics
studied in the manuscript, the re-distribution process (how the one-dollar is re-
distributed) is uniform among all the agent. It would be reasonable to have the
redistribution of the dollar based on the individual wealth (e.g. poor individual
being more likely to receive a dollar). The interplay between receiver and giver
selection could lead to novel emerging behaviors.

Appendix A. Poisson-Poincaré inequality.

Proof Proposition 4. We use the notations provided in [9].

Let S, = Y., Y;, where {Y;}?, are independent and identically distributed
with Y; ~ Bernoulli(x/n), so that S,, — X in distribution (as n — 0o). Using E(?)
the conditional expectation with respect to Y = (Y1,...,Y;i_1,Yii1,...,Y,), we
find:

EDf(sw)] = (1= 2) £(8u =Yi) + Ep(su-vi+1).

Notice that S,, — Y; is independent of Y;. After computations, we deduce the fol-
lowing formula for the conditional variance:

Var® (f(S,)) = E® {(f(Sn) ~EO[f (Sn)]ﬂ
_ (1_H) B FSn =Y+ 1) = £(S, = Y2))?.

n’/n
As {Y;}_, are independent, the standard Efron-Stein inequality yields that

< (1 — %) uE [(f(5n_1 +1) - f(Sn—l))Q]
_ (1 . ﬁ) uE [(Df(Sn_l))Q} ,

n

Var (£(5,)) < (1-2) %En: E[(f(Su-1+1) = £(Su-1))%]
=1
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whence the advertised inequality (56) follows by sending n — oo. O

Appendix B. Gini index dispersive wave. We estimate the Gini coefficient for
a (continuous) distribution of the form:

plo) = (1= 1) o) 47 2 (£2F) (99)

g

where ¢ is the standard normal distribution, r,c,o some positive constant with
r € [0,1]. The law p can be represented by a random variable:

X=(1-Y)-0+Y(c+02) (96)

with Y random Bernoulli variable with probability r (i.e. ¥ ~ B(r)), Z a random
variable with normal law (ie. Z ~ N(0,1)), Y and Z being independent. To
estimate the Gini index of p, we take two independent random variables X; and Xo
with such law and estimate the expectation of their difference:

1
G = FEIXi - Xl = S E¥i- (c+0%) — Yo (c+02)]
= iEHc(Yl - Ys) +o(Y1Z1 — Y2 Zy)]] (97)

We then take the conditional expectation with respect to Y; and Ys:
2uG 0+E[lc+0Z:||P[Ys = 1,Y> = 0]
E[| - ¢ — 0 Zo[]P[Y = 0,Y; = 1]
+E[|o(Z1 — Z2)[[P[Y1 = 1,Y2 = 1]
= 2-Ellc+oZi|lr(1 =) +E[lo(Z1 — Z2)|]r? (98)

For large ¢, we made the approximation E[|c + 0Z1|] = E[c + 0Z;] = ¢. Moreover,
the expectation of the difference between two standard Gaussian random variables
is known explicitly: E[|Z; — Zs|] = 2/+/7. We deduce:

2
2uG = 2¢ - r(1 — ——r.
uG == 2¢-r( r)—i—aﬁr (99)

Furthermore, if r = u/c, we obtain:

po op

Gr1l-= . 100

c + Vre? (100)
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