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Abstract. In the manuscript, we are interested in using kinetic theory to bet-

ter understand the time evolution of wealth distribution and their large scale
behavior such as the evolution of inequality (e.g. Gini index). We investi-
gate three types of dynamics denoted unbiased, poor-biased and rich-biased
exchange models. At the individual level, one agent is picked randomly based
on its wealth and one of its dollars is redistributed among the population.
Proving the so-called propagation of chaos, we identify the limit of each dy-

namics as the number of individuals approaches infinity using both coupling
techniques [54] and a martingale-based approach [42]. Equipped with the limit
equation, we identify and prove the convergence to specific equilibrium for both
the unbiased and poor-biased dynamics. In the rich-biased dynamics however,
we observe a more complex behavior where a dispersive wave emerges. Al-
though the dispersive wave is vanishing in time, it also accumulates all the
wealth leading to a Gini approaching 1 (its maximum value). We characterize
numerically the behavior of dispersive wave but further analytic investigation
is needed to derive such dispersive wave directly from the dynamics.

1. Introduction. Econophysics is an emerging branch of statistical physics that3

applies concepts and techniques of traditional physics to economics and finance4

[23,31,51]. It has attracted considerable attention in recent years raising challenges5

on how various economical phenomena could be explained by universal laws in6

statistical physics, and we refer to [20, 21,36,47] for a general review.7

The primary motivation for studying models arising from econophysics is at least8

two-fold: from the perspective of a policy maker, it is important to deal with the rise9

of income inequality [27,28] in order to establish a more egalitarian society; From a10

mathematical point of view, we have to understand the fundamental mechanisms,11

such as money exchange resulting from individuals, which are usually agent-based12

models. Given an agent-based model, one is expected to identify the limit dynamics13
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as the number of individuals tends to infinity and then its corresponding equilibrium1

when you run the model for a sufficiently long time (if there is one). This guiding2

approach is carried out in numerous works across different fields among literatures3

of applied mathematics, see for instance [5, 17, 44].4

Although we will only consider three distinct binary exchange models in the5

present work, other exchange rules can also be imposed and studied, leading to dif-6

ferent models. To name a few, the so-called immediate exchange model introduced7

in [33] assumes that pairs of agents are randomly and uniformly picked at each ran-8

dom time, and each agent transfers a random fraction of their money to the other9

agent, where these fractions are independent and uniformly distributed on [0, 1].10

The so-called uniform reshuffling model investigated in [31] and [38] suggests that11

the total amount of money of two randomly and uniformly picked agents possessed12

before interaction is uniformly redistributed among the two agents after interac-13

tion. The so-called repeated averaging model studied for instance in [14] where two14

randomly selected agents share half of their wealth with each other. The binomial15

reshuffling model proposed in a recent work [12] is a variant of the uniform reshuf-16

fling mechanism in which the agents’ combined wealth is redistributed according17

to a binomial distribution. For models with saving propensity and with debts, we18

refer the readers to [16, 19,22,39].19

1.1. Unbiased/poor-biased/rich-biased dynamics. In this work, we consider20

several dynamics for money exchange in a closed economical system, meaning that21

there are a fixed number of agents, denoted by N , with an (fixed) average number22

of dollars µ. We denote by Si(t) the amount of dollars the agent i has at time t.23

Since it is a closed economical system, we have:24

S1(t) + · · ·+ SN (t) = Constant for all t ≥ 0. (1)

As a first example of money exchange, we review the model proposed in [31]: at25

random time (exponential law), an agent i is picked at random (uniformly) and if it26

has at least one dollar (i.e. Si ≥ 1) it will give one dollar to another agent j picked27

at random (uniformly). If i does not have one dollar (i.e. Si = 0), then nothing28

happens. From now on we will refer to this model as unbiased exchange model29

as all the agents are being picked with equal probability. We refer to this dynamics30

as follow:31

unbiased: (Si, Sj)
λ

(Si − 1, Sj + 1) (if Si ≥ 1). (2)

In other words, every agent with at least one dollar gives to all of the others agents32

at a fixed rate. Later on, we will adjust the rate λ (more exactly λ1[1,+∞)(Si)) by33

normalizing by N in order to have the correct asymptotics as N → +∞ (the rate34

of one agent giving a dollar per unit time is of order N otherwise).35

Another possible dynamics is to pick the giver agent, i.e. agent i, with higher36

probability if the agent is rich, i.e. Si large. Thus poor agents will have a lower37

frequency of being picked. From now on we will call this model poor-biased model38

and is illustrated as follows:39

poor-biased: (Si, Sj)
λSi

(Si − 1, Sj + 1). (3)

Notice that since the rate of giving is Si, an agent with no money, i.e. Si = 0, will40

never have to give. As for the unbiased dynamics (2), we will also adjust the rate,41

normalizing it by N .42



DERIVATION OF WEALTH DISTRIBUTIONS FROM BIASED EXCHANGE OF MONEY 3

Our third dynamics that we would like to explore is the rich-biased model:1

we reverse the bias compared to the previous dynamics, so that rich agents are less2

likely to give:3

rich-biased: (Si, Sj)
λ/Si

(Si − 1, Sj + 1) (if Si ≥ 1). (4)

As a consequence of this dynamics, rich agents will tend to become even richer4

compared to poor agents creating a feedback that could lead to a singular behavior.5

The adjustment of the rate for this dynamics is more delicate since the sum of the6

rates λ/Si is no longer constant. In particular, we will see that a normalization of7

the rates to have a constant rate of giving a dollar per agent will lead to finite time8

blow-up of the dynamics in the limit N → +∞.9

Remark 1. The only difference between “picking simultaneously a giver i and a10

receiver j ” and “picking a giver i first and then pick a receiver j” lies in whether11

i = j is allowed (i.e., whether an agent is allowed to give one dollar to himself/herself,12

in which case the state of the N -agent system remains unchanged). Actually in the13

pioneering work of Dragulescu and Yakovenko [31] it is not completely clear which14

rule is used in their numerical simulations. However, allowing i = j only changes15

the probability of picking the (ordered) pair (i, j) from 1
N(N−1) to 1

N2 and thus it16

does not affect the asymptotic results for N → ∞ nor the simulations when N is17

large.18
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Figure 1 Left: Illustration of the 3 dynamics: at random time,
one dollar is passed from a “giver” i to a “receiver” j. Right: The
rate of picking the “giver” i depends on the wealth Si.

We illustrate the dynamics in Figure 1-left. The key question of interest is the19

exploration of the limiting money distribution among the agents as the total number20

of agents and the number of time steps become large. We illustrate numerically21

(see Figure 2) the three previous dynamics using N = 500 agents. In the unbiased22

dynamics (pink), the wealth distribution is (approximately) exponential with the23

proportion of agent decaying as wealth increases. On the contrary, the poor-biased24

dynamics (blue) has the bulk of its distribution around $10 (the average capital per25

agent). For the rich-biased dynamics (green), most of the agents are left with no26

money leaving only a few with large amounts (more than $30). To visualize the27
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380

400

Figure 2 Left: Distribution of wealth for the three dynamics after
50, 000 steps. The distribution decays for the unbiased dynamics
(pink) i.e. poor agents are more frequent than rich agents, whereas
in the poor-biased dynamics, the distribution (blue) is centered at
the average $10. For the rich-biased dynamics, almost all agents
have zero dollars except a few with a large amount (more than $30).
Right: evolution of the Gini index (5) for the three dynamics. The
Gini index is lower for the poor-biased dynamics (less inequality)
whereas it is approaching 1 for the rich-biased dynamics.

temporal evolution of the three dynamics, we estimate the Gini index G after each1

iteration in Figure 1-right:2

G =
1

2N2µ

∑

1≤i,j≤N

|Si − Sj |, (5)

where µ is the average wealth (µ = 1
N

∑N
i=1 Si). The widely used inequality indica-3

tor Gini index G measures the inequality in the wealth distribution and ranges from4

0 (no inequality) to 1 (extreme inequality). Since all agents have the same amount5

of dollar initially (Si(t = 0) = µ), the Gini index starts at zero (i.e. G(t = 0) = 0).6

In the unbiased dynamics, the Gini index stabilizes around .5 (which corresponds to7

the Gini index of an exponential distribution). The Gini index is strongly reduced8

in the poor-biased dynamics (G ≈ .19). On the contrary, the Gini index keeps9

increasing in the rich-biased dynamics and seems to approach 1 (its maximum).10

We study in more details this phenomena in section 5.3. We emphasize that the11

“rich-get-richer” phenomenon, numerically observed in the rich-biased dynamics in12

the present work, has also been reported in other models from econophysics, and13

we refer interested readers to [7, 8] and references therein.14

1.2. Asymptotic dynamics: N → +∞ and t → +∞. One of the main diffi-15

culty in any rigorous mathematical treatment lies in the general fact that models in16

econophysics typically consist of a large number of interacting (coupled) economic17

agents. Fortunately the framework of kinetic theories allows simplifications of the18

mathematical analysis of certain such models under some appropriate limit pro-19

cesses. For the unbiased model (2) and the poor-biased model (3), instead of taking20

the large time limit and then the large population limit as in [37], we first take the21

large population limit to achieve a transition from the large stochastic system of22
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interacting agents to a deterministic system of ordinary differential equations by1

proving the so-called propagation of chaos [42, 43, 45, 54] through a well-designed2

coupling technique, see Figure 3 for a illustration of these strategies. After that,3

analysis of the deterministic description is then built on its (discrete) Fokker-Planck4

formulation and we investigate the convergence toward an equilibrium distribution5

by employing entropy methods [3, 34, 40]. For the rich-biased model, we prove the6

propagation of chaos by virtue of a novel martingale-based technique introduced7

in [42], and we report some interesting numerical behavior of the associated ODE8

system. We illustrate the various (limiting) ODE systems obtained in the present9

work in Figure 4.10

Stochastic processes

Wealth distribution

Deterministic distri.

Propagation

of chaos

Fokker-Planck

+ entropy

Stochastic processes

Wealth distribution

Equilibrium distri.

Figure 3 Schematic illustration of the strategy of proof: The ap-
proach of sending t → ∞ first and then taking N → ∞ is carried
out in [37]. Our strategy is to perform the limit N → ∞ before
investigating the time asymptotic t → ∞.

wealth ($)
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For the poor-biased model, we present an explicit rate of convergence of its1

associated system of ordinary differential equations toward its equilibrium thanks2

to a Poisson-Poincaré type inequality. Then, we resort to numerical simulation in3

the determination of the sharp rate of convergence and a heuristic argument is used4

in support of our numerical observation.5

This paper is organized as follows: in section 2, we briefly review different ap-6

proaches to tackle the propagation of chaos. Section 3 is devoted to the investigation7

of the unbiased exchange model, where the rigorous large population limit N → ∞8

is carried out via a coupling argument. We perform the analysis, for the poor-biased9

model in section 4 and for the rich-biased model in section 5, in a parallel fashion10

that resembles section 3. A subsection is dedicated in 5.3 to the emergence of a11

dispersive traveling wave in the rich-biased dynamics. Finally, a conclusion is drawn12

in section 6.13

2. Review propagation of chaos.14

2.1. Definition. We propose to review the method used to prove the so-called15

propagation of chaos. We consider a N−particle system denoted {Si}i=1..N where16

particles are indistinguishable. In other words, the particle system is invariant by17

permutation, i.e. for any test function φ and permutation σ ∈ SN :18

E[φ(S1, . . . , SN )] = E[φ(Sσ(1), . . . , Sσ(N))].

Denote by p(N)(s1, . . . , sN ) the density distribution of the N−process and let p
(N)
k19

be the marginal density, i.e. the law of the process (S1, ..., Sk) (for 1 ≤ k ≤ N):20

p
(N)
k (s1, . . . , sk) =

∫

sk+1,...,sN

p(N)(s1, . . . , sN ) dsk+1 . . . dsN .

Consider now a limit stochastic process (S1, . . . , Sk) where {Si}i=1,...,k are inde-21

pendent and identically distributed. Denote by p1 the law of a single process, thus22

by independence assumption the law of all the processes is given by:23

pk(s1, . . . , sk) =

k∏

i=1

p1(si).

Definition 2.1. We say that the stochastic process (S1, . . . , SN ) satisfies the prop-24

agation of chaos if for any fixed k:25

p
(N)
k

N→+∞
⇀ pk (6)

which is equivalent to have for any test function φ:26

E[φ(S1, . . . , Sk)]
N→+∞−→ E[φ(S1, . . . , Sk)]. (7)

2.2. Coupling method. The coupling method [54] consists in generating the two27

processes (S1, . . . , SN ) and (S1, . . . , Sk) simultaneously in such a way that:28

i) (S1, . . . , Sk) and (S1, . . . , Sk) satisfy their respective law,29

ii) Si and Si are closed for all 1 ≤ i ≤ k.30

The difficulty is that {Si}i=1..k are independent but {Si}i=1..N are not, thus the31

two processes cannot be too closed. In practice, we expect to find a bound of the32

form:33

E[|Si − Si|] ≤
C√
N

N→+∞−→ 0 , for all 1 ≤ i ≤ k. (8)
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Such result is sufficient1 to prove (7) and therefore one deduces propagation of1

chaos.2

In a more abstract point of view, the inequality (8) gives an upper bound for3

the Wasserstein distance between p
(N)
k and the limit density pk. Since convergence4

in Wasserstein distance is equivalent to weak-* convergence for measures, we can5

conclude about the propagation of chaos (6).6

2.3. Empirical distribution - tightness of measure. Another approach to7

prove propagation of chaos is to study the so-called empirical measure:8

p(N)
emp(s) =

1

N

N∑

i=1

δSi
(s) (9)

where δ is the Delta distribution. Notice that p
(N)
emp is a distribution of a single9

variable, thus the domain of p
(N)
emp remains the same as N increases which simplifies10

its study. However, p
(N)
emp is also a stochastic measure, i.e. p

(N)
emp is a random variable11

on the space of measures [6]. The link between propagation of chaos and empirical12

distribution relies on the following lemma.13

Lemma 1. The stochastic process (S1, . . . , SN ) satisfies the propagation of chaos14

(6) if and only if:15

p(N)
emp

N→+∞
⇀ p1, (10)

i.e. for any test function φ the random variable ⟨p(N)
emp, φ⟩ = 1

N

∑N
i=1 φ(Si) con-16

verges in law to the constant value E[φ(S1)].17

The proof can be found in [54] and we henceforth omit the detailed proof of this18

lemma.19

3. Unbiased exchange model.20

3.1. Definition and limit equation. We consider first the unbiased model that21

is briefly mentioned in the introduction above. For the three models investigated22

in this work, we consider a (closed) economic market consisting of N agents with23

µ dollars per agents for some (fixed) µ ∈ N+, i.e. there are a total of µN dollars.24

We denote by Si(t) the amount of dollars that agent i has (i.e. Si(t) ∈ {0, . . . , µN}25

and
∑N

i=1 Si(t) = µN for any t ≥ 0).26

Definition 3.1 (Unbiased Exchange Model). The dynamics consist in27

choosing with uniform probability a “giver” i and a “receiver” j. If the receiver i28

has at least one dollar (i.e. Si ≥ 1), then it gives one dollar to the receiver j. This29

exchange occurs according to a Poisson process with frequency λ/N > 0.30

The unbiased exchange model can be written as a stochastic differential equation31

[49, 52]. Introducing {N(i,j)
t }1≤i,j≤N independent Poisson processes with constant32

intensity λ
N , the evolution of each Si is given by:33

dSi(t) = −
N∑

j=1

1[1,∞)

(
Si(t−)

)
dN

(i,j)
t︸ ︷︷ ︸

“i gives to j”

+
N∑

j=1

1[1,∞)

(
Sj(t−)

)
dN

(j,i)
t︸ ︷︷ ︸

“j gives to i”

. (11)

1using as a test function φ(s1, . . . , sk) = φ1(s1) . . . φk(sk)
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To gain some insight of the dynamics, we focus on i = 1 and introduce some1

notations:2

N1
t =

N∑

j=1

N
(1,j)
t , M1

t =
N∑

j=1

N
(j,1)
t .

The two Poisson processes N1
t and M1

t are of intensity λ. The evolution of S1(t)3

can be written as:4

dS1(t) = −1[1,∞)

(
S1(t−)

)
dN1

t + Y (t−)dM1
t , (12)

with Y (t) Bernoulli distribution with parameter r(t) (i.e. Y (t) ∼ B(r(t))) repre-5

senting the proportion of “rich” people:6

r(t) =
1

N

N∑

j=1

1[1,∞)

(
Sj(t)

)
. (13)

Thus, the dynamics of S1 can be seen as a compound Poisson process.7

Motivated by (12), we give the following definition of the limiting dynamics of8

S1(t) as N → ∞ from the process point of view.9

Definition 3.2 (Asymptotic Unbiased Exchange Model). We define S1(t) to10

be the (nonlinear) compound Poisson process satisfying the following SDE:11

dS1(t) = −1[1,∞)

(
S1(t−)

)
dN1

t + Y (t−)dM1
t , (14)

in whichN1
t andM1

t are independent Poisson processes with intensity λ, and Y (t) ∼12

B(r(t)) independent Bernoulli variable with parameter13

r(t) := P
(
S1(t) > 0

)
= 1− P

(
S1(t) = 0

)
. (15)

We denote by p(t) =
(
p0(t), p1(t), . . .

)
the law of the process S1(t), i.e. pn(t) =14

P
(
S1(t) = n). Its time evolution is given by:15

d

dt
p(t) = λQunbias[p(t)] (16)

with:16

Qunbias[p]n :=

{
p1 − r p0 if n = 0
pn+1 + r pn−1 − (1 + r)pn for n ≥ 1

(17)

and r = 1− p0.17

Remark 2. The coupled system (14) and (15) may look cumbersome at first glance:18

it is mixing a SDE for the evolution of Si (14) with a Bernoulli random variable Ȳ19

which laws depends itself on the law of Si (through r̄ (15)). But this expresses the20

non-linear nature of the SDE: the law of the process Si has an influence on its own21

evolution. A classical example of such formulation is given in the seminal work by22

Alain-Sol Sznitman [54], and the following nonlinear SDE (of McKean-Vlasov type)23

appears as the limit equation of a certain interacting particle systems:24

dXt = dBt +

∫

y∈Rd

b(Xt, y)u(y, t)dy dt,

where (Bt)t≥0 denotes an R
d-valued Brownian motion and u(., t) is the law of Xt.25

In this SDE, the rate of change of Xt (i.e., dXt) depends on the law of itself, which26

introduces the non-linearity. This SDE is equivalent to the nonlinear PDE:27

∂tu+∇ · (G[u]u) =
1

2
∆u with G[u](x) =

∫

y∈Rd

b(x, y)u(y) dy.
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To prove such type of nonlinear SDEs has a unique solution, one can resort to a stan-1

dard fixed-point argument (see [54] for more details). Alternatively, well-posedness2

of the nonlinear SDE (14) follows from the well-posedness of the associated infinite3

system of ODEs (16). Indeed, the operator Qunbias (17) is bounded and locally4

Lipschitz in the Banach space ℓ1(N). See also the recent work [42].5

3.2. Coupling for the unbiased exchange model. We now provide the cou-6

pling strategy to link the N−particle system (S1, . . . , SN ) with the limit dynamics7

(S1, . . . , Sk). In [54], the core of the method is to use the same “noise” in both8

the N−particle system and the limit system. Unfortunately, it is not possible in9

our settings: the clocks N
(i,j)
t cannot be used “as is” since they would correlate the10

jump of Si with the jump of Sj which is not acceptable. Indeed, if Si(t) and Sj(t)11

are independent, they cannot jump at (exactly) the same time.12

For this reason, we have to introduce an intermediate dynamics, denoted by13

{Ŝi}i≥1, which employs exactly the same “clocks” as our original dynamics (11),14

but the property of being rich or poor is decoupled.15

Definition 3.3 (Intermediate model). We define for {Ŝi}1≤i≤N to be a collection16

of identically distributed (nonlinear) compound Poisson processes satisfying the17

following SDEs for each 1 ≤ i ≤ N :18

dŜi(t) = −
N∑

j=1,j ̸=i

1[1,∞)

(
Ŝi(t−)

)
dN

(i,j)
t +

N∑

j=1,j ̸=i

Y (t−)dN
(j,i)
t (18)

−1[1,∞)

(
Ŝi(t−)

)
dN

(i,i)
t + Y (t−)dM

(i,i)
t (19)

in which Y (t) ∼ B(r(t)), the Poisson clocks N
(i,j)
t (1 ≤ i ̸= j ≤ N) are the same as19

those used in (11), the two extra clocks N
(i,i)
t and M

(i,i)
t are independent with rate20

λ/N .21

We do not use the “self-giving” clocks N
(i,i)
t since we want to decouple the re-22

ceiving and giving dynamics.23

-1

+1

-1

(if..)

limit dynamicsunbiased model intermediate

Figure 5 Schematic illustration of the coupling strategy. We use

an intermediate process (Ŝ1, . . . , ŜN ) to decouple the “give” and
“receive” parts of the dynamics.



10 FEI CAO AND SEBASTIEN MOTSCH

A schematic illustration of the above coupling technique is shown in Fig 5. We1

first have to control the difference between the process (S1, . . . , SN ) and the in-2

termediate dynamics (Ŝ1, . . . , ŜN ). The key idea is based on the following simple3

yet effective lemma that allows to create optimal coupling between two flipping4

coins [29].5

Lemma 2. For any p, q ∈ (0, 1), there exist X ∼ B(p) and Y ∼ B(q) such that6

P(X ̸= Y ) = |p− q|.7

Proof. Let U ∼ U [0, 1] a uniform random variable. Define the Bernoulli random8

variables as X := 1[0,p)(U) and Y := 1[0,q)(U). It is straightforward to show that9

X ∼ B(p), Y ∼ B(q) and P(X ̸= Y ) = |p− q|.10

More generally, if Nt and Mt are two inhomogeneous Poisson processes with rate11

λ(t) and µ(t), respectively, then there exists a coupling such that12

dE[|Nt −Mt|] ≤ |λ(t)− µ(t)|dt.
This leads to the following proposition.13

Proposition 1. Let
(
S1, . . . , SN

)
and

(
Ŝ1, . . . , ŜN

)
be solution to (11) and (18)14

respectively, with the same initial condition. Then for any 1 ≤ i ≤ N , we have15

dE[|Si(t)− Ŝi(t)|] ≤ λE[|r(t)− r(t)|] dt + λ
2

N
dt, (20)

where r(t) = 1
N

∑N
j=1 1[1,∞)

(
Sj(t)

)
and r(t) given by (15).16

Proof. The processes Ŝi(t) and Si(t) “share” the same clocks N
(i,j)
t and N

(j,i)
t for17

j ̸= i. Denote the ’rich or not’ random Bernoulli random variables:18

Ri(t) = 1[1,∞)

(
Si(t)

)
and R̂i(t) = 1[1,∞)

(
Ŝi(t)

)
. (21)

Once a clock N
(i,j)
t rings, the processes become:19

(Si, Sj) (Si −Ri, Sj +Ri),

(Ŝi, Ŝj) (Ŝi − R̂i, Ŝj + Y ).
(22)

Notice that the difference |Si − Ŝi| can only decay after the jump from the clock20

N
(i,j)
t (the ’give’ dynamics reduce the difference). However, the ’receive’ dynamics21

from the clock N
(j,i)
t could increase the difference |Sj−Ŝj | if R̂i ̸= Y . More precisely,22

we find:23

dE[|Si(t)− Ŝi(t)|] ≤ 0 +
N∑

j=1,j ̸=i

E[|Rj(t−)− Y (t−)|] λ
N

dt +
2λ

N
dt (23)

where the extra 2λ
N dt is due to the extra clocks N

(i,i)
t and M

(i,i)
t in (19).24

Now we have to couple the Bernoulli process Y (t−) with Rj(t−) in a convenient25

way to make the difference as small as possible. Here is the strategy:26

• Step 1: generate a master Poisson clock Nt with intensity λN which gives a27

collection of jumping times.28

• Step 2: to select which clock N
(i,j)
t rings, calculate the proportions of “rich29

people” for the N−particle system and for the limit dynamics:30

r(t−) =
1

N

N∑

j=1

1[1,∞)

(
Sj(t−)

)
, r(t−) = 1− p0(t−). (24)
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• Step 3: let U ∼ U([0, 1]) a uniform random variable.1

– if U < r(t−), pick an index i uniformly among the rich people (i.e. i such2

that Si(t−) > 0), otherwise we pick i uniformly among the poor people3

(i.e. i such that Si(t−) = 0). Pick index j uniformly among {1, 2, . . . , N}.4

– if U < r(t−), let Y (t−) = 1, otherwise Y (t−) = 0 (i.e. Y (t−) =5

1[0,r(t−)](U)).6

• Step 4: if i ̸= j, update using (22)7

Thanks to our coupling, the ’receiving’ dynamics of Si and Ŝi will differ with prob-8

ability |r − r|:9

E[|Rj(t−)− Y (t−)|] = P
(
Rj(t−) ̸= Y (t−)

)
= E [|r − r|] . (25)

Plug in the expression in (23) concludes the proof.10

11

Remark 3. The update formula (22) for (Ŝi, Ŝj) highlights that the ’give’ and12

’receive’ dynamics are now independent in the auxiliary dynamics (i.e. R̂i and Y13

are independent). In contrast, we use the same process Ri to update Si and Sj .14

Now we turn our attention to the coupling between {Ŝi}i=1..N (auxiliary dynam-15

ics) and the limit dynamics {Si}i=1..k for a fixed k (while N → ∞). The idea is16

to remove the clocks N
(i,j)
t for 1 ≤ i, j ≤ k to decouple the time of the jump in Si17

and Sj as described in the Figure 6.18

1

2

k

N

1 2 k N

"giver"
i

"receiver" jgives to

same clocks for

and

same clocks for

and
for } clocks

with rate

clocks to modify

no effect on

and

Figure 6 The clocks N
(i,j)
t used to generate the unbiased dy-

namics (11) have to be modified to generate the limit dynamics
(S1(t), . . . , Sk(t)) (14). The processes Si(t) and Sj(t) have to be

independent, thus the clocks N
(i,j)
t for 1 ≤ i, j ≤ k cannot be used.

Proposition 2. Let
(
Ŝ1, . . . , ŜN

)
be the solution to (18) and {Si}1≤i≤k be inde-19

pendent processes solving (14). Then for any fixed k ∈ N+, there exists a coupling20

such that for all t ≥ 0:21

dE[|Ŝi(t)− Si(t)|] ≤ λ
4(k − 1)

N
dt , for 1 ≤ i ≤ k. (26)
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Proof. We assume i = 1 to simplify the writing. To couple the two processes Ŝ1 and1

S1, we use the same Bernoulli variable Y (t−) to generate both ’receive’ dynamics:2

{
dŜ1(t) = −1[1,∞)

(
Ŝ1(t−)

)
dN̂1

t + Y (t−)dM̂1
t ,

dS1(t) = −1[1,∞)

(
S1(t−)

)
dN1

t + Y (t−)dM1
t .

Meanwhile, the Poisson clocks N̂1
t , M̂

1
t are already determined in (18):3

N̂1
t = N

(1,1)
t +

N∑

j=2

N
(1,j)
t and M̂1

t = M
(1,1)
t +

N∑

j=2

N
(j,1)
t . (27)

Unfortunately, we cannot use the same definition for the clocks N1
t and M1

t as the4

clocks N̂i
t and M̂j

t are not independent (they both contain the clock N
(i,j)
t ). Thus,5

we need to remove those coupling clocks when defining N1 and M1. Fortunately,6

we only have to generate the dynamics for k process, thus we only have to replace7

the clocks N(1,i) and N(i,1) for i = 1..k (see Figure 6):8

N1
t =

k∑

j=1

N
(1,j)
t +

N∑

j=k+1

N
(1,j)
t and M̂1

t =

k∑

j=1

M
(1,j)
t +

N∑

j=k+1

N
(j,1)
t (28)

where N
(1,j)
t and M

(1,j)
t are independent Poisson clocks with rate λ

N .9

Using this coupling strategy, the difference |Ŝ1 − S1| could only increase (by 1)10

if the clocks N
(1,j)
t , M

(1,j)
t , N

(1,j)
t or N

(j,1)
t ring for 2 ≤ j ≤ k leading to (26).11

12

Remark 4. The explicit coupling constructed in this section is indeed the core13

of the manuscript. The intermediate dynamics for Ŝ is introduced to decouple the14

process of giving and receiving. In the original dynamics for S, the total wealth15

is always preserved (Si loses one dollar only if Sj receives one). This is no longer16

the case for the intermediate ’hat’ dynamics as the total wealth is not preserved17

(Ŝi could lose one dollar without Ŝj receiving one). Moreover the limiting ’bar’18

dynamics decouple further the intermediate ’hat’ dynamics so that components of19

S become independent (i.e. Si and Sj ‘jump’ independently from each other).20

Finally, combining propositions 1 and 2 gives rise to the following theorem.21

Theorem 3.4. Let
(
S1, . . . , SN

)
to be a solution to (11). Then for any fixed k ∈ N+22

and t ≥ 0, there exists a coupling between
(
S1, . . . , Sk

)
and

(
S1, . . . , Sk

)
(with the23

same initial conditions) such that:24

E[|Si(t)− Si(t)|] ≤
C(t)√
N

(eλt − 1)

λ
+ λ

4(k − 1)t

N
(29)

with C(t) =
(
1
4 + λ4t

)1/2
+ λ 2√

N
holding for each 1 ≤ i ≤ k.25

Proof. We assume without loss of generality that i = 1. First, we show that the26

processes S1 and Ŝ1 remain closed. We denote:27

Ri = 1[1,∞)

(
Si

)
, R̂i = 1[1,∞)

(
Ŝi

)
, Ri = 1[1,∞)

(
Si

)
.
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We have:1

E[|r − r|] = E

[∣∣∣∣∣
1

N

N∑

i=1

Ri − r

∣∣∣∣∣

]
= E

[∣∣∣∣∣
1

N

N∑

i=1

(Ri − R̂i) +
1

N

N∑

i=1

(R̂i − r)

∣∣∣∣∣

]

≤ 1

N

N∑

i=1

E[|Ri − R̂i|] +E
[∣∣∣∣∣

1

N

N∑

i=1

(R̂i − r)

∣∣∣∣∣

]

≤ E[|S1 − Ŝ1|] +E



(

1

N

N∑

i=1

(R̂i − r)

)2


1/2

,

where we use |Ri − R̂i| ≤ |Si − Ŝi|. To control the variance, we expand:2

E



(

1

N

N∑

i=1

(R̂i − r)

)2

 =

1

N
Var[R̂1] +

N(N − 1)

N2
Cov(R̂1, R̂2)

≤ 1

4N
+Cov(R̂1, R̂2),

since R̂1 is a Bernoulli variable its variance is bounded by 1/4. Notice that we3

have used E

[
R̂i

]
= r̄. Indeed, for a given i, the SDE satisfied by the intermediate4

dynamics Ŝi is exactly the same SDE satisfied by Si. Thus the law of Ŝi is the5

same as the law of Si which implies E

[
R̂i

]
= r̄. But as a system, (Ŝ1, . . . , ŜN )6

does not have the same law as (S1, . . . , SN ) because the processes Ŝi and Ŝj are7

not independent due to the clock N(i,j) (clocks that we get rid of in the following8

steps of the proof).9

Controlling the covariance of R̂1 and R̂2 is more delicate since the two processes10

are not independent due to the clocks N
(1,2)
t and N

(2,1)
t . Fortunately, these clocks11

have a rate of only λ/N and thus the covariance has to remain small for a given12

time interval. To prove it, let’s use the independent processes R1 and R2:13

Cov(R̂1, R̂2) = Cov(R̂1 −R1, R̂2 −R2) ≤
(
E[|R̂1 −R1|2] · E[|R̂2 −R2|2]

)1/2

using Cauchy–Schwarz. Since the two processes Ŝi and Si remain close, we deduce:14

E[|R̂1(t)−R1(t)|2] = E[|R̂1(t)−R1(t)|] ≤ E[|Ŝ1(t)− S1(t)|] ≤ λ
4t

N
,

using proposition 2 (with k = 2). We conclude that:15

E[|r(t)− r(t)|] ≤ E[|S1(t)− Ŝ1(t)|] +
(

1

4N
+ λ

4t

N

)1/2

.

Going back to proposition 1, we find:16

dE[|Si(t)− Ŝi(t)|] ≤ λE[|S1(t)− Ŝ1(t)|] dt+
(

1

4N
+ λ

4t

N

)1/2

dt + λ
2

N
dt

≤ λE[|S1(t)− Ŝ1(t)|] dt+
C(t)√
N

dt
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with C(t) =
(
1
4 + λ4t

)1/2
+ λ 2√

N
= O(1). Using Gronwall’s lemma, since |Si(0) −1

Ŝi(0)| = 0, we obtain:2

E[|Si(t)− Ŝi(t)|] ≤
C(t)√
N

(eλt − 1)

λ
+ λ

4(k − 1)t

N
. (30)

We finally conclude by using proposition 2 and triangular inequality.3

Remark 5. After we achieved the transition from the SDEs (3.1) to the determin-4

istic system of nonlinear ODEs (16), the natural follow-up step is to analyze (16)5

with the intention of proving convergence of the solution of (16) to its (unique)6

equilibrium solution, which turns out to be a geometric distribution defined by7

p∗n = p∗0(1− p∗0)
n, n ≥ 0, (31)

where p∗0 = 1
1+µ if we put initially that

∑∞
n=0 n pn(0) = µ for some µ ∈ N+.8

The main ingredient underlying the proof lies in the reformulation of (16) into9

a (discrete) Fokker-Planck type equation, combined with the standard entropy10

method [3, 34, 40]. We emphasize that the convergence of the solution of (16) to11

(31) has already been established in [15,32,42] so we refer the interested readers to12

the aforementioned references for further details and results on this model.13

4. Poor-biased exchange model. We now investigate our second model where14

the ’given’ dynamics is biased toward richer agent: the wealthier an agent becomes,15

the more likely it will give a dollar. As for the previous model, we first investigate16

the limit dynamics as the number of agents N goes to infinity, then we study the17

large time behavior and show rigorously the convergence of the wealth distribution18

to a Poisson distribution.19

4.1. Definition and limit equation. We use the same setting as the unbiased20

model: there are N agents with initially the same amount of money Si(0) = µ.21

Definition 4.1 (Poor-biased exchanged model). The dynamics consists in22

choosing a “giver” i with a probability proportional to its wealth (the wealthier23

an agent is, the more likely it will be a “giver”). Then it gives one dollar to a24

“receiver” j chosen uniformly at random.25

From another point of view, the dynamics consist in taking one dollar from26

the common pot (tax system) and re-distribute the dollar uniformly among the27

individuals [24]. Thus instead of ‘taxing the agents’ in the unbiased exchange model,28

the poor-biased model is ‘taxing the dollar’.29

The poor-biased model can be written in term of stochastic differential equations,30

the wealth Si of agent i evolves according to:31

dSi(t) = −
N∑

j=1

dN
(i,j)
t +

N∑

j=1

dN
(j,i)
t , (32)

with N
(i,j)
t Poisson process with intensity λi,j(t) =

λSi(t)
N .32

Since the clocks {Ni,j
t }1≤i,j≤N are now time dependent (in contrast to the unbi-33

ased model), the dynamics might appear more difficult to analyze. But it turns out34

to be simpler, since the rate of receiving a dollar is constant:35

N∑

j=1

λj,i(t) =

N∑

j=1

λSj(t)

N
= λµ,
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where µ is the (conserved) initial mean. In contrast, in the unbias dynamics, the rate1

of receiving a dollar is equal to the proportion of rich people r(t) which fluctuates2

in time. Let’s focus on i = 1 and sum up the clocks introducing:3

N1
t =

N∑

j=1

N
(1,j)
t , M1

t =

N∑

j=1

N
(j,1)
t , (33)

where the two Poisson processes N1
t and M1

t have intensity λS1 and λµ (respec-4

tively). Thus, the poor-biased model leads to the equation:5

dS1(t) = −dN1
t + dM1

t . (34)

Notice that S1(t) is not independent of Sj(t) as both processes can jump at the6

same time due to the two clocks N
(1,j)
t and N

(j,1)
t .7

Motivated by the equation above, we give the following definition of the limiting8

dynamics as N → ∞.9

Definition 4.2. (Asymptotic Poor-biased model) We define S1 to be the com-10

pound Poisson process satisfying the following SDE:11

dS1(t) = −dN1
t + dM1

t , (35)

in which N1
t and M1

t are independent Poisson processes with intensity λS1(t) and12

λm (respectively) where µ is the mean of S1(0) (i.e. µ = E[S1(0)]).13

If we denote by p(t) =
(
p0(t), p1(t), . . .

)
the law of the process S1(t), its time14

evolution is given by:15

d

dt
p(t) = λQpoor[p(t)] (36)

16

with Qpoor[p]n :=

{
p1 − µ p0 if n = 0
(n+ 1)pn+1 + µ pn−1 − (n+ µ) pn for n ≥ 1

(37)

and µ =
∑+∞

n=0 n pn(t) =
∑+∞

n=0 n pn(0).17

4.2. Proof of propagation of chaos. The aim of this subsection is to prove the18

propagation of chaos, i.e. that the process
(
S1, . . . , Sk

)
converges to

(
S1, . . . , Sk

)
19

as N goes to infinity. As for the unbiased exchange model, the key is to define20

the Poisson clocks for the limit dynamics N
i

t and M
i

t close to the clocks of the21

N−particle system Ni
t and Mi

t for 1 ≤ i ≤ k, but at the same time making the22

clocks independent. With this aim, we have to ’remove’ the clocks N
(i,j)
t and M

(i,j)
t23

for 1 ≤ i, j ≤ k.24

Theorem 4.3. Let
(
S1, . . . , SN

)
to be a solution to (32) and

(
S1, . . . , Sk

)
a solution25

to (35). Then for any fixed k ∈ N+, there exists a coupling between
(
S1, . . . , Sk

)
26

and
(
S1, . . . , Sk

)
(with the same initial conditions) such that:27

E[|Si(t)− Si(t)|] ≤
4kλµ

N
(eλt − 1), (38)

holding for each 1 ≤ i ≤ k.28

Proof. To simplify the writing, we suppose i = 1. We define for 1 ≤ i ≤ k the clocks29

for the limit dynamics as follow:30

N
1

t = G1 ·




N∑

j=k+1

N
(1,j)
t


+ N̂1

t , M
1

t =




N∑

j=k+1

N
(j,1)
t


+ M̂1

t . (39)
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Here, G1 is a Bernoulli random variable that prevents the clocks to ring for S1 if1

the rates of the clocks N
(1,j)
t from k+ 1 ≤ j ≤ N are too large compare to S1. The2

parameter of this Bernoulli random variable is given by:3

G1(t) ∼ B
(
1 ∧ NS1(t)

(N − k)S1(t)

)
, (40)

with a ∧ b = min{a, b} for any a, b ∈ R. On the contrary, the two processes N̂1
t4

and M̂1
t are used to compensate if the rates of the clocks N

(1,j)
t and N

(j,1)
t from5

k + 1 ≤ j ≤ N are not large enough. Both processes N̂1
t and M̂1

t are independent6

(inhomogeneous) Poisson processes with rates respectively:7

µ̂(t) = λ

(
S1(t)−

(N − k)S1(t)

N

)

+

and ν̂(t) = λ


µ−

N∑

j=k+1

Sj(t)

N


 (41)

where a+ = max{a, 0} for any a ∈ R. One can check that under the aforementioned8

setup (coupling of Poisson clocks), N
1

t and M
1

t are indeed independent counting9

processes with intensity λSi(t) and λµ, respectively.10

The difference |S1(t)− S1(t)| could increase due to 3 types of events:11

i) N
(1,j)
t and N

(j,1)
t ring for 1 ≤ j ≤ k,12

ii) N̂1
t and M̂1

t ring13

iii) N
(1,j)
t ring for j ≥ k + 1 and G1 = 0.14

Notice that the third type of event leads to:15

S1(t) = S1(t−)− 1 , S1(t) = S1(t−) (42)

i.e. only S1 gives. However, the event {G1 = 0} only occurs if S1(t−) > S1(t−).16

Therefore, the event iii) could only make |S1(t)− S1(t)| to decay.17

Therefore, we deduce:18

dE[|S1(t)− S1(t)|] ≤
k∑

j=1

λ

N
E[S1(t)]dt +

k∑

j=1

λ

N
E[Sj(t)]dt

+E[µ̂(t)]dt + E[ν̂(t)]dt

≤ 2kλµ

N
dt + E[µ̂(t)]dt + E[ν̂(t)]dt (43)

using E [Sj(t)] = µ for any j. Let’s bound the rates µ̂ and ν̂:19

E[µ̂] = E

[
λ
(
S1 −

(N − k)S1

N

)
+

]
≤ λE

[(
Si − Si

)
+
+
kS1

N

]

≤ λE
[
|S1 − S1|

]
+

λkµ

N

E[ν̂] = E


λ
(
µ−

N∑

j=k+1

Sj

N

)

 =

λkµ

N
.

We deduce from (43):20

dE[|S1(t)− S1(t)|] ≤ λE
[
|S1(t)− S1(t)|

]
dt+

4kλµ

N
dt. (44)

Applying the Gronwall’s lemma to (44) yields the result.21

22



DERIVATION OF WEALTH DISTRIBUTIONS FROM BIASED EXCHANGE OF MONEY 17

4.3. Large time behavior. After we achieved the transition from the interacting1

system of SDEs (32) to the deterministic system of linear ODEs (36), we now2

analyze the long time behavior of the distribution p(t) and its convergence to an3

equilibrium. The main tool behind the proof relies again on the reformulation of4

(36) into a (discrete) Fokker-Planck type equation, in conjunction with the standard5

entropy method [3, 34, 40].6

Let’s introduce a function space to study p(t):7

Vµ := {p ∈ ℓ2(N) |
∞∑

n=0

pn = 1, pn ≥ 0,
∞∑

n=0

n pn = µ}, (45)

D(Qpoor) := {p ∈ ℓ2(N) | Qpoor[p] ∈ ℓ2(N)}, (46)

where ℓ2 denote the vector space of square-summable sequences. In contrast to the8

unbias model with the dynamics (36), the operator Qpoor is an unbounded operator9

(i.e. D(Qpoor) ̸⊂ ℓ2(N)). For any p ∈ Vµ ∩ D(Qpoor), it is straightforward to show10

that:11

∞∑

n=0

Qpoor[p]n = 0 ,
∞∑

n=0

nQpoor[p]n = 0, (47)

which express that the total mass and the mean value is conserved. Moreover, there12

exists a unique equilibrium p∗ for Qpoor in Vµ given by a Poisson distribution:13

p∗n =
µn

n!
e−µ, n ≥ 0. (48)

To investigate the convergence of p(t) solution to (36) to the equilibrium p∗ (48),14

we introduce two function spaces.15

Definition 4.4. We define the sub-vector spaces of ℓ2:16

H0 = {p ∈ ℓ2(N) |
∞∑

n=0

p2n
p∗n

< +∞}, (49)

H1 = {p ∈ ℓ2(N) |
∞∑

n=0

p∗n

(
pn+1

p∗n+1

− pn
p∗n

)2

< +∞}, (50)

and define corresponding scalar products:17

⟨p,q⟩H0 :=

∞∑

n=0

pnqn
p∗n

, ⟨p,q⟩H1 :=
∞∑

n=0

p∗n

(
pn+1

p∗n+1

− pn
p∗n

)(
qn+1

p∗n+1

− qn
p∗n

)
. (51)

The advantage of using the scalar product ⟨., .⟩H0 is that the operator Qpoor18

becomes symmetric. To prove it, we rewrite the operator a la Fokker-Planck.19

Lemma 3. For any p ∈ H0, we have:20

Qpoor[p]n = µD−
(
p∗nD

+

(
pn
p∗n

))
(52)

with D+(pn) = pn+1 − pn, D
−(pn) = pn − pn−1 and the convention p−1 = p∗−1 = 0.21

Proof. Since p∗n/p
∗
n+1 = (n+ 1)/µ, we find22

1

µ
Qpoor[p]n =

p∗n
p∗n+1

pn+1 −
p∗n−1

p∗n
pn −

(
p∗n
p∗n

pn − p∗n−1

p∗n−1

pn−1

)

= µp∗nun+1 − p∗n−1un −
(
p∗nun − p∗n−1un−1

)
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with un = pn/p
∗
n. Using the notation D+ and D−, we write:1

1

µ
Qpoor[p]n = p∗nD

+un − p∗n−1D
+un−1 = D−(p∗nD

+un).

2

Remark 6. Equation (52) has a flavor of a Fokker-Planck equation of the form3

∂tρ = ∇ ·
(
ρ∞∇

(
ρ

ρ∞

))
, (53)

where ρ∞ is an equilibrium distribution to which ρ converges (and ρ∞ may also4

depend on ρ, making the equation nonlinear).5

As a consequence, we deduce that the operator Qpoor is symmetric on H0.6

Proposition 3. For any p,q ∈ H0, the operator Qpoor (37) satisfies:7

⟨Qpoor[p],q⟩H0 = ⟨p, Qpoor[q]⟩H0 for any p,q ∈ H0. (54)

Moreover,8

⟨Qpoor[p],p⟩H0 = −µ

∞∑

n=0

p∗n

(
D+

(
pn
p∗n

))2

= −µ∥p∥2H1 . (55)

Proof. We simply use integration by parts:

1

µ
⟨Qpoor[p],q⟩H0 =

∞∑

n=0

D−
(
p∗nD

+ pn
p∗n

)
qn
p∗n

= −
∞∑

n=0

p∗n

(
D+ pn

p∗n

)(
D+ qn

p∗n

)

=

∞∑

n=0

pn
p∗n

D−
(
p∗nD

+ qn
p∗n

)
=

1

µ
⟨p, Qpoor[q]⟩H0 .

9

Furthermore, the operator −Qpoor would have a so-called spectral gap if one10

can show that the norm ∥.∥H1 controls the norm ∥.∥H0 . To prove it, we establish11

a Poincaré inequality. We use for that the following Poisson-Poincaré inequality12

taken from the monograph [9].13

Proposition 4. Let f be a real-valued function defined on the set of non-negative14

integers. Suppose that X obeys a Poisson distribution with parameter µ, then15

Var (f(X)) ≤ µE

[(
f(X + 1)− f(X)

)2]
. (56)

For the sake of completeness, we give a proof of proposition 4 in Appendix A.16

The proof is based on the Efron-Stein inequality as well as the infinite divisibility17

of the Poisson distribution. The result of the previous proposition reads:18

+∞∑

n=0

(fn −m)2p∗n ≤ µ

+∞∑

n=0

(fn+1 − fn)
2p∗n (57)

with m =
∑+∞

n=0 fnp
∗
n. Thus, using fn = pn/p

∗
n with p = (p0, p1, . . .), we deduce19

the following Poincaré inequality:20

Corollary 1. For any p ∈ H1 satisfying
∑

n pn = 1, we have:21

∥p− p∗∥2H0 ≤ µ∥p∥2H1 (58)

where ∥.∥H0 and ∥.∥H1 are defined in (51) and p∗ is the equilibrium (48).22
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As a result of the corollary, the operator −Qpoor has a spectral gap of at least1

1/µ since:2

⟨−Qpoor[p−p∞] , p−p∞⟩H0 = ⟨−Qpoor[p] , p⟩H0 = ∥p∥2H1 ≥ 1

µ
∥p−p∗∥2H0 . (59)

We shall establish the existence of a unique global solution to the linear ODE3

system (36). The key ingredient in our proof relies heavily on standard theory of4

maximal monotone operators (see for instance Chapter 7 of [10]).5

Proposition 5. Given any p0 ∈ D(Qpoor), there exists a unique function6

p(t) ∈ C1
(
[0,∞);H0) ∩ C

(
[0,∞);D(Qpoor)

)

satisfying (36).7

Proof. We use the Hille-Yosida theorem and show that the (unbounded) linear8

operator −Qpoor on H0 is a maximal monotone operator. The monotonicity of9

−Qpoor follows from its symmetric property on H0:10

⟨−Qpoor[v],v⟩H0 = µ

∞∑

n=0

p∗n

(
D+

(
vn
p∗n

))2

≥ 0 for all v ∈ D(Qpoor).

To show the maximality of −Qpoor, it suffices to show R(I − Qpoor) = H0, i.e.,11

for each f ∈ H0, the equation p − Qpoor[p] = f admits at least one solution p ∈12

D(−Qpoor). To this end, the weak formulation of p−Qpoor[p] = f reads13

⟨p,q⟩H0 + ⟨−Qpoor[p],q⟩H0 = ⟨f ,q⟩H0 for all q ∈ H0, (60)

whence the Lax-Milgram theorem yields a unique p ∈ H1.14

15

We can now prove the convergence of p(t) solution of (36) to its equilibrium16

solution (48).17

Theorem 4.5. Let p(t) be the solution of (36) and p∗ the corresponding equilib-18

rium. Then:19

∥p(t)−p∗∥H0 ≤ ∥p0−p∗∥H0e−λt (61)

where p0 is the initial condition, i.e., p(t = 0) = p0.20

Proof. Taking the derivative of the square norm gives:21

1

2

d

dt
∥p(t)− p∗∥2H0 = ⟨p′(t) , p(t)− p∗⟩H0 = λ⟨Qpoor[p(t)] , p(t)− p∗⟩H0

= λ⟨p(t) , Qpoor[p(t)]⟩H0 = −λµ∥p(t)∥2H1 , (62)

using the symmetry of Qpoor and the relation (55). Using the Poincaré constant22

from corollary (1), we deduce:23

1

2

d

dt
∥p(t)− p∗∥2H0 ≤ −λ∥p(t)− p∗∥2H0 .

Applying the Gronwall’s lemma leads to the result.24

25
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4.4. Numerical illustration poor-biased model. We investigate numerically1

the convergence of p(t) solution to the poor-biased model (36) to the equilibrium2

distribution p∗ (48). We use µ = 5 (average money) and λ = 1 (rate of jumps)3

for the model. To discretize the model, we use 1, 001 components to describe the4

distribution p(t) (i.e. (p0(t), . . . , p1000(t))). As initial conditions, we use pµ(0) = 15

and pi(0) = 0 for i ̸= µ. The standard Runge-Kutta fourth-order method (e.g.6

RK4) is used to discretize the ODE system (36) with the time step ∆t = 0.01.7

We plot in Figure (7)-left the numerical solution p at t = 12 unit time and8

compare it to the equilibrium distribution p∗. The two distributions are indistin-9

guishable. Indeed, plotting the evolution of the difference ∥p(t) − p∗∥H0 (Figure10

(7)-right) shows that the difference is already below 10−10. Moreover, the decay is11

clearly exponential as we use semi-logarithmic scale.12

p
ro

b
a
b
il
it
y

equilibrium

wealth individual

12

time (t)

fitting

Figure 7 Left: comparison between the numerical solution p(t)
(36) of the poor-bias model and the equilibrium p∗ (48). The two
distributions are indistinguishable. Right: decay of the difference
∥p(t) − p∗∥H0 in semilog scale. The decay is exponential as pre-
dicted by the theorem 4.5.

Notice that the numerical simulation suggests that the optimal decay rate of13

∥p(t)−p∗∥H0 is 2λ, which is twice the analytical decay rate λ proved in proposition14

4. The reason for this discrepancy is that the solution of p(t) remains in the subspace15

Vµ ∩ D(Qpoor), i.e. the mean of p(t) is preserved. The analysis of the spectral gap16

of Qpoor in the proposition 4 does not take account this constraint.17

We numerically investigate the spectrum of −Qpoor denoted {αn}∞n=1. The first18

eigenvalue satisfies α1 = 0 due to the equilibrium p∗ (i.e. Qpoor[p
∗] = 0). The19

other eigenvalues are αn = n− 1 and in particular the spectral gap is α2 = 1. One20

can find explicitly a corresponding eigenfunction given by:21

p(2) = D−(p∗) = (p∗0, p
∗
1 − p∗0, . . . , p

∗
n − p∗n−1, . . .). (63)

Thus, for any p ∈ Vµ ∩ D(Qpoor), we find:22

⟨p , p(2)⟩H0 =

∞∑

n=0

pn(p
∗
n − p∗n−1)

1

p∗n
=

∞∑

n=0

pn(1− n/µ) = 1− µ/µ = 0.

This explains why the effective spectral gap for the dynamics is given by α3 and23

not α2: the solution p(t) (36) lives in Vµ ∩ D(Qpoor) and therefore it is orthogonal24

to p(2).25
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Remark 7. We can find explicitly the exact formulation of the eigenfunction p(k)
1

of −Qpoor for all k ∈ N+. We find by induction:2

p(k) =


p∗0, p

∗
1 − (k − 1)p∗0, · · · , p∗n +

n−1∑

j=0

(−1)n−j

∏n−j
ℓ=1 (k − ℓ)

(n− j)!
p∗j , · · ·


 (64)

leading to:3

p(k)n =

n∑

j=0

(
k − 1

j

)
(−1)j

µn−j

(n− j)!
e−µ, n ≥ 0, (65)

with
(
k
j

)
binomial coefficient (i.e.

(
k
j

)
= k!

(k−j)! j! ). Moreover, through an induction4

argument and some combinatorial identities, we can verify that ⟨p(m),p(k)⟩H0 = 05

for m ̸= k. We speculate that {p(k)}∞k=1 spans the entire space H0, but we do not6

have a proof for this conjecture.7

5. Rich-biased exchange model. In our third model, the selection of the ’giver’8

is biased toward the poor instead of the rich, i.e. the more money an individual has9

the less likely it will be chosen.10

5.1. Definition and limit equation. As before, the definition of the model is11

given first.12

Definition 5.1. (Rich-biased exchange model) A “giver” i is chosen with in-13

verse proportionality of its wealth. The “receiver” j is chosen uniformly.14

The rich-biased model leads to the following stochastic differential equation:15

dSi(t) = −
N∑

j=1

dN
(i,j)
t +

N∑

j=1

dN
(j,i)
t , (66)

with N
(i,j)
t Poisson process with intensity λij given by:16

λij =

{
0 if Si = 0

λ
N · 1

Si
if Si > 0

(67)

An agent i receives a dollar at rate λw where w is the inverse of the harmonic mean:17

w =
1

N

∑

Sk>0

1

Sk
. (68)

Definition 5.2. (Asymptotic Rich-biased model)18

dS1(t) = −dN1
t + dM1

t , (69)

in which N1
t and M1

t are independent Poisson processes with intensity λ/S1(t) (if19

S1(t) > 0) and λw(t) respectively. The inverse mean w(t) is given by:20

w[p(t)] :=
∞∑

n=1

pn(t)

n
(70)

where p(t) =
(
p0(t), p1(t), . . .

)
the law of the process S1(t). The time evolution of21

p(t) is given by:22

d

dt
p(t) = λQrich[p(t)] (71)
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with:1

Qrich[p]n :=

{
p1 − w p0 if n = 0
pn+1

n+1 + wpn−1 −
(
1
n + w

)
pn for n ≥ 1

(72)

We will also need the weak form of the operator: for any test function φ:2

⟨Qrich[p] , φ⟩ =
∑

n≥0

pn

(
wφ(n+ 1) +

1{n≥1}
n

φ(n− 1)−
(
w +

1{n≥1}
n

)
φ(n)

)

(73)

5.2. Propagation of chaos using empirical measure. We investigate the prop-3

agation of chaos for the rich-biased dynamics using the empirical measure (see sub-4

section 2.3). We consider {Si(t)}1≤i≤N the solution to (66) and use the empirical5

measure pemp(t) (9). The goal is to show that the stochastic measure pemp(t) con-6

verges to the deterministic density p(t) solution of (71). The main difficulty is that7

the empirical measure is a stochastic process on a Banach space ℓ1(N) and thus of8

infinite dimension. Fortunately, the space is a discreet (i.e. N) and therefore we9

do not have to consider stochastic partial differential equations which are famously10

difficult. Moreover, we only have to consider a finite number of possible jumps.11

When agent i gives a dollar to j (i.e. (Si, Sj) (Si − 1, Sj +1)), the empirical12

measure is transformed as13

pemp pemp +
1

N

(
δSi−1 + δSj+1 − δSi

− δSj

)
. (74)

To write down the evolution equation satisfied by pemp, we regroup the agents with14

the same number of dollars (i.e. we project the dynamics on a subspace).15

Proposition 6. The empirical measure pemp(t) (9) satisfies:16

dpemp(t) =
1

N

+∞∑

k=1,l=0

(
δk−1 + δl+1 − δk − δl

)
dN

(k,l)
t (75)

where N
(k,l)
t independent Poisson clock with intensity:17

λk,l = N · pemp,k · (N · pemp,l − 1{k=l}) ·
λ

k ·N (76)

where pemp,k is the k−th coordinate of pemp.18

Proof. Following the jump process given in (74), the empirical measure satisfies:19

dpemp(t) =
1

N

N∑

i,j=1,i ̸=j

(
δSi−1 + δSj+1 − δSi

− δSj

)
dN

(i,j)
t (77)

Introducing N
(k,l)
t the Poisson process regrouping all the clocks corresponding to a20

giver with k dollars giving to a receiver with l dollars:21

N
(k,l)
t =

∑

{i ̸=j |Si=k,Sj=l}
N

(i,j)
t , (78)

In this sum, each clock N
(i,j)
t has the same intensity λ/(Si·N) = λ/(k·N). Moreover,22

counting the number of clocks involved in the sum (78) leads to (76). The indicator23

1{k=l} is here to remove the self-giving clocks N
(i,i)
t : when an agent gives to itself,24

nothing happens.25
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Corollary 2. For any test function φ, the empirical measure pemp(t) (9) satisfies:1

dE[⟨pemp(t), φ⟩] = λE[⟨Qrich[pemp(t)], φ⟩]dt − λ

N
E[⟨R[pemp(t)], φ⟩]dt (79)

where Qrich is the operator defined in (72) and R defined by:2

R[p]n :=
pn+1

n+ 1
+

pn−1

n− 1
1{n≥2} −

2

n
pn1{n≥1}. (80)

Proof. From the proposition 6, we find:3

dE[⟨pemp(t), φ⟩] = E




+∞∑

k=1,l=0

(
φ(k − 1) + φ(l + 1)− φ(k)− φ(l)

)
pemp,k · pemp,l ·

λ

k


 dt

− 1

N
E

[
+∞∑

k=1

(
φ(k − 1) + φ(k + 1)− 2φ(k)

)
pemp,k · λ

k

]
dt

= λE

[
+∞∑

k=1

(
φ(k − 1)− φ(k)

)pemp,k

k

]
dt

+λE

[
+∞∑

l=0

(
φ(l + 1)− φ(l)

)
w[pemp] · pemp,l

]
dt

− λ

N
E

[
+∞∑

k=1

(
φ(k − 1) + φ(k + 1)− 2φ(k)

)
pemp,k · 1

k

]
dt

where w[pemp] is defined in (70). We recognize the weak formulation of Qrich (73)4

leading to (79).5

The operator R (80) corresponds to the bias in the evolution of the empirical6

measure pemp(t) compared to the evolution of p(t) solution to the limit equation7

(71). This bias vanishes as λ/N goes to zero when the number of agents N becomes8

large. The other source of discrepancy between pemp(t) and p(t) is the variance9

of pemp(t) (as it is a stochastic measure). Let’s review an elementary result on10

compensated Poisson process.11

Remark 8. Denote Z(t) a compound jump process and M(t) its compensated12

version:13

dZ(t) = Y (t) dNt , M(t) = Z(t)−
∫ t

0

µ(s)λ(s) ds (81)

where Y (t) denotes the (independent) jumps and Nt Poisson process with intensity14

λ(t) and µ(t) = E[Y (t)]. The Ito’s formula is given by:15

dE[φ(M(t))] = E

[
φ
(
M(t−)+Y (t−)

)
−φ(M(t−)

]
λ(t)dt − E[φ′(M(t))µ(t)λ(t)] dt.

In particular, for φ(x) = x2, we obtain:16

dE[M2(t)] = E[2M(t−)Y (t−) + Y 2(t−)]λ(t)dt− E[2M(t)µ(t)λ(t)] dt

= E[Y 2(t)]λ(t)dt. (82)

Here, we assume that the jump Y (t) is independent of the value Z(t). To generalize17

the formula, one has to replace µ(t) = E[Y (t)] by E[Y (t)|Z(t)].18

Motivated by this remark, we obtain the following result.19
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Proposition 7. Denote M(t) the compensated process of the empirical measure1

pemp(t):2

M(t) = pemp(t)−
(
pemp(0) + λ

∫ t

0

(
Qrich[pemp(s)] +

1

N
R[pemp(s)]

)
ds

)
(83)

then M(t) is a ℓ1-value martingale and satisfies:3

E[∥M(t)∥ℓ1 ] ≤
√

4λ

N
t. (84)

Proof. The key observation is that the jump (74) for the empirical measure are of4

order O(1/N). Indeed:5

E

[∥∥∥ 1

N
(δk−1 + δl+1 − δk − δl)

∥∥∥
2

ℓ1

]
≤ 4

N2
. (85)

Applying the formula (82) we obtain::6

dE[∥M(t)∥2ℓ1 ] ≤
+∞∑

k=1,l=0

E

[
4

N2
· Npemp,k ·Npemp,l

]
λ

k ·N dt ≤ 4λ

N
dt. (86)

Integrating in time gives (84).7

We are now ready to prove the propagation of chaos for the rich-biased dynamics8

by showing that the empirical measure pemp(t) converges to p(t) as N → +∞. The9

key observation is the following10

Lemma 4. The operator Qrich (72) is globally Lipschitz on ℓ1(N)∩P(N) and R is11

an bounded on ℓ1(N).12

∥Qrich[p]−Qrich[q]∥ℓ1 ≤ 4∥p− q∥ℓ1 for any p,q ∈ ℓ1(N) ∩ P(N) (87)

∥R[p]∥ℓ1 ≤ 4∥p∥ℓ1 for any p ∈ ℓ1(N) (88)

Proof. Since p ∈ ℓ1(N)∩P(N), the rate of receiving w[p] (68) satisfies 0 ≤ w[p] ≤ 1.13

Thus,14

|Qrich[p]n −Qrich[q]n| ≤ |pn+1 − qn+1|+ |pn−1 − qn−1|+ 2|pn − qn|.
Summing over n gives the result. We proceed similarly for the operator R.15

Theorem 5.3. Consider p(t) solution to the limit equation (71) and pemp(t) em-16

pirical measure (9). Then:17

E[∥pemp(t)− p(t)∥ℓ1 ] ≤ O
(
te4λt√
N

)
, (89)

in particular pemp(t)
N→+∞
⇀ p(t) for any t ≥ 0.18

Proof. First we write down the integral form of the equation satisfied by both p(t)19

and pemp(t):20

p(t) = p0 +

∫ t

0

Qrich[p(s)] ds

pemp(t) = p0 +

∫ t

0

Qrich[pemp(s)] ds+
1

N

∫ t

0

R[pemp(s)] ds+M(t)
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Combining the two equations give:1

∥pemp(t)− p(t)∥ℓ1 ≤ λ

∫ t

0

∥Qrich[pemp(s)]−Qrich[p(s)]∥ℓ1 ds

+
λ

N

∫ t

0

∥R[pemp(s)]∥ℓ1 ds+ ∥M(t)∥ℓ1

≤ 4λ

∫ t

0

∥pemp(s)− p(s)∥ℓ1 ds+
λ4t

N
+ ∥M(t)∥ℓ1

using lemma 4. Denoting ϕ(t) = E[∥pemp(t)− p(t)∥ℓ1 ], we deduce from the bound2

(84) of M(t):3

ϕ(t) ≤ 4λ

∫ t

0

ϕ(s) ds+
λ4t

N
+

√
4λ

N
t.

Applying Gronwall’s lemma gives rise to:4

ϕ(t) ≤
(
λ4t

N
+

√
4λ

N
t

)
e4λt

leading to the result.5

Remark 9. The martingale-based technique, developed in [42] and employed here6

for justifying the propagation of chaos, is remarkable since it does not require us7

to study the N -particle process (S1, . . . , SN ) but solely its generator. One draw-8

back is that this method might not work if the generator Q of the limit process9

is unbounded, which is the case for the generator Qpoor of the (limit) poor-biased10

dynamics (36).11

5.3. Dispersive wave leading to vanishing wealth. As illustrated in the in-12

troduction (Figure 2), the rich-biased dynamics tend to accentuate inequality, i.e.13

the Gini index G(t) was approaching 1 (its maximum value) for the agent-based14

model (4) (66). We would like to investigate numerically the behavior of the solu-15

tion to the rich-biased dynamics using the limit equation (71) and the distribution16

p(t) = (p0(t), p1(t), . . .).17

In Figure 8, we plot the evolution of the distribution p(t) starting from a Dirac18

distribution with mean µ = 5 (i.e. p5 = 1 and pi = 0 for i ̸= 5). We observe that19

the distribution spreads in two parts: the bulk of the distribution moves toward20

zero whereas a smaller proportion is moving to the right. One can identify the two21

pieces as the “poor” and the “rich”. Thus, the dynamics could be interpreted as the22

poor getting poorer and the rich getting richer. Notice that the proportion of poor23

is increasing (e.g. p0(t) is increasing) whereas the “rich” distribution resembles a24

dispersive traveling wave. Since both the total mass and the total amount of dollar25

are preserved (i.e.
∑

n n ·pn(t) = µ for any t), the dispersive traveling wave contains26

the bulk of the money but it is also vanishing in time.27

To investigate more carefully the dispersive wave, we try to fit numerically its28

profile. After numerically examination, we choose to approximate it by a Gauss-29

ian distribution. Meanwhile we approximate the “poor” distribution by a Dirac30

centered at zero δ0. Thus, we approximate the distribution p(t) by the following31

Ansatz:32

pn(t) ≈ (1− r(t)) · δ0 + r(t) · 1

σ(t)
ϕ

(
n− c(t)

σ(t)

)
, (90)
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Figure 8 Evolution of the wealth distribution p(t) for the rich-
biased dynamics (71). The distribution spreads in two parts: a
large proportion starts to concentrate at zero (“poor distribution”)
and while the other part forms a dispersive traveling wave. Param-
eters: ∆t = 5 · 10−3, p(t) ≈ (p0(t), p1(t), . . . , p1,000(t)). A standard
Runge-Kutta of order 4 has been used to discretize the system.
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Figure 9 Left: Estimation of the center c(t) and standard devia-
tion σ(t) of the dispersive wave along with their parametric (power-
law) estimation (91). Right: Comparison of the distribution p(t)
(see Figure 8) with the dispersive wave using the standard normal
distribution ϕ.

where ϕ is the standard normal distribution (i.e. ϕ(x) = e−x2/2/
√
2π), c(t) is the1

center of the profile, σ(t) its standard deviation and r(t) the proportion of rich. The2

speed of the wave c(t) and its standard deviation σ(t) are estimated numerically3

and plotted in Figure 9. Their growth is well-approximated by a power-law of the4

form:5

c(t) = 1.4748 · t.466, σ(t) = 0.9261 · t.399. (91)

Since the total amount of money is preserved, the proportion of rich r(t) can be6

easily deduced from c(t) since we must have µ = r(t) · c(t). Such approximation7

leads to the fitting in Figure 8-right (dotted-black curves). We notice that the8

proportion of rich in our Ansatz is vanishing:9

r(t) =
µ

c(t)

t→+∞−→ 0. (92)
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Thus, we make the conjecture that p(t) converges weakly toward δ0, i.e. all the1

money will asymptotically disappear.2

To further assess our conjecture, we measure the evolution of the Gini index for3

the distribution p(t):4

G[p] =
1

2µ

+∞∑

i=0

+∞∑

j=0

|i− j|pipj (93)

with µ the standard mean. Using the Ansatz (90), we can approximate the value5

of the Gini index given (see Appendix B):6

G(t) ≈ 1− µ

c(t)
+

µ · σ(t)√
π c2(t)

. (94)
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Figure 10 Left: Evolution of the corresponding Gini index (93)
along with the analytical approximation using the dispersive wave
profile (94). Right The Gini index converges to 1 due to the van-
ishing dispersive wave transporting all the wealth to infinity.

Remark 10. In the approximation (91), the coefficient c(t) grows faster than σ(t),7

thus the Gini index has no risk of exceeding one in the approximation (94). More8

generally, as long as c(t) is of the same order as σ(t), the approximated Gini index9

given by (94) will not become larger than one.10

We plot in Figure 10-left the evolution of the Gini index G(t) along with its approx-11

imation (94). We observe a good agreement between the two curves. To examine12

closely the long time behavior of the curves, we plot the evolution of 1 − G(t) in13

log-scales (Figure 10-right) over a longer time interval (up to t = 105). Both curves14

seem to converges similarly toward 0 (indicating that G(t)
t→+∞−→ 1) with a slight15

overshoot for the Ansatz. This overshoot might be due to our approximation that16

the “poor distribution” of p(t) is concentrated exactly at zero (i.e. (1 − r(t))δ0).17

This approximation amplifies the inequality between the “poor” and “rich” parts18

of the distribution and hence increases slightly the Gini index. But overall the as-19

ymptotic behavior of the Gini index for p(t) matches with the formula (94) and20

thus strengthens our assumption that p(t) will converge (weakly) to a Dirac δ0.21

However, further analytical studies are needed to derive the asymptotic behavior of22

p(t) directly from the rich-biased evolution equation (71).23
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6. Conclusion. In this manuscript, we have investigated three related models for1

money exchange originated from econophysics. For the unbiased and poor biased2

dynamics, we rigorously proved the so-called propagation of chaos by virtue of3

a coupling technique, and we found an explicit rate of convergence of the limit4

dynamics for the poor biased model thanks to the Bakry-Emery approach. We have5

also introduced a more challenging dynamics referred to as the rich biased model,6

and a propagation of chaos result was established via a powerful martingale-based7

argument presented in [42]. In contrast to the two other dynamics, the rich-biased8

dynamics do not converge (strongly) to an equilibrium. Instead, we have found9

numerical evidence of the emergence of a (vanishing) dispersive wave. Such wave10

of extreme wealthy individual increases the inequality in the wealth distribution11

making the corresponding Gini index converging to its maximum 1.12

Although we have shown numerically strong evidence of a dispersive wave, it is13

desirable to derive such emerging behavior directly from the evolution equation.14

One direction of future work would be to derive space continuous dynamics of15

evolution equations in order to investigate analytically the profile of traveling waves.16

However, space continuous description such as the uniform reshuffling model could17

lead to additional challenges. For instance, proving propagation of chaos using the18

martingale technique for the uniform reshuffling model was more involved [13].19

From a modeling perspective, one should explore how selecting the ”receiver”20

as well as the ”giver” could impact the dynamics. Indeed, in the three dynamics21

studied in the manuscript, the re-distribution process (how the one-dollar is re-22

distributed) is uniform among all the agent. It would be reasonable to have the23

redistribution of the dollar based on the individual wealth (e.g. poor individual24

being more likely to receive a dollar). The interplay between receiver and giver25

selection could lead to novel emerging behaviors.26

Appendix A. Poisson-Poincaré inequality.27

Proof Proposition 4. We use the notations provided in [9].28

Let Sn =
∑n

i=1 Yi, where {Yi}ni=1 are independent and identically distributed29

with Yi ∼ Bernoulli(µ/n), so that Sn → X in distribution (as n → ∞). Using E
(i)

30

the conditional expectation with respect to Y (i) = (Y1, . . . , Yi−1, Yi+1, . . . , Yn), we31

find:32

E
(i)[f(Sn)] =

(
1− µ

n

)
f(Sn − Yi) +

µ

n
f(Sn − Yi + 1).

Notice that Sn − Yi is independent of Yi. After computations, we deduce the fol-
lowing formula for the conditional variance:

Var(i) (f(Sn)) = E
(i)

[(
f(Sn)− E

(i)[f(Sn)]
)2]

=
(
1− µ

n

) µ

n
(f(Sn − Yi + 1)− f(Sn − Yi))

2
.

As {Yi}ni=1 are independent, the standard Efron-Stein inequality yields that

Var (f(Sn)) ≤
(
1− µ

n

) µ

n

n∑

i=1

E

[
(f(Sn−1 + 1)− f(Sn−1))

2
]

≤
(
1− µ

n

)
µE

[
(f(Sn−1 + 1)− f(Sn−1))

2
]

=
(
1− µ

n

)
µE

[
(Df(Sn−1))

2
]
,
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whence the advertised inequality (56) follows by sending n → ∞.1

Appendix B. Gini index dispersive wave. We estimate the Gini coefficient for2

a (continuous) distribution of the form:3

ρ(x) = (1− r) · δ0(x) + r · 1
σ
ϕ

(
x− c

σ

)
(95)

where ϕ is the standard normal distribution, r, c, σ some positive constant with4

r ∈ [0, 1]. The law ρ can be represented by a random variable:5

X = (1− Y ) · 0 + Y · (c+ σZ) (96)

with Y random Bernoulli variable with probability r (i.e. Y ∼ B(r)), Z a random6

variable with normal law (i.e. Z ∼ N (0, 1)), Y and Z being independent. To7

estimate the Gini index of ρ, we take two independent random variables X1 and X28

with such law and estimate the expectation of their difference:9

G =
1

2µ
E[|X1 −X2|] =

1

2µ
E[|Y1 · (c+ σZ1) − Y2 · (c+ σZ2)|]

=
1

2µ
E[|c(Y1 − Y2) + σ(Y1Z1 − Y2Z2)|] (97)

We then take the conditional expectation with respect to Y1 and Y2:10

2µG = 0 + E[|c+ σZ1|]P[Y1 = 1, Y2 = 0]

+E[| − c− σZ2|]P[Y1 = 0, Y2 = 1]

+E[|σ(Z1 − Z2)|]P[Y1 = 1, Y2 = 1]

= 2 · E[|c+ σZ1|]r(1− r) + E[|σ(Z1 − Z2)|]r2 (98)

For large c, we made the approximation E[|c + σZ1|] ≈ E[c + σZ1] = c. Moreover,11

the expectation of the difference between two standard Gaussian random variables12

is known explicitly: E[|Z1 − Z2|] = 2/
√
π. We deduce:13

2µG ≈ 2c · r(1− r) + σ
2√
π
r2. (99)

Furthermore, if r = µ/c, we obtain:14

G ≈ 1− µ

c
+

σµ√
πc2

. (100)
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