
ICEBAR: Feedback-Driven Iterative Repair of
Alloy Specifications

Simón Gutiérrez Brida
University of Rio Cuarto and

CONICET
Argentina

Germán Regis
University of Rio Cuarto

Argentina

Guolong Zheng
University of Nebraska-Lincoln

USA

Hamid Bagheri
University of Nebraska-Lincoln

USA

ThanhVu Nguyen
George Mason University

USA

Nazareno Aguirre
University of Rio Cuarto and

CONICET
Argentina

Marcelo Frias
Buenos Aires Institute of Technology

and CONICET
Argentina

ABSTRACT
Automated program repair (APR) techniques have shown great suc-
cess in automatically finding fixes for programs in programming
languages such as C or Java. In this work, we focus on repairing for-
mal specifications, in particular for the Alloy specification language.
As opposed to most APR tools, our approach to repair Alloy speci-
fications, named ICEBAR, does not use test-based oracles for patch
assessment. Instead, ICEBAR relies on the use of property-based
oracles, commonly found in Alloy specifications as predicates and
assertions. These property-based oracles define stronger conditions
for patch assessment, thus reducing the notorious overfitting issue
caused by using test-based oracles, typically observed in APR con-
texts. Moreover, as assertions and predicates are inherent to Alloy,
whereas test cases are not, our tool is potentially more appealing
to Alloy users than test-based Alloy repair tools.

At a high level, ICEBAR is an iterative, counterexample-based
process, that generates and validates repair candidates. ICEBAR
receives a faulty Alloy specification with a failing property-based
oracle, and uses Alloy’s counterexamples to build tests and feed
ARepair, a test-based Alloy repair tool, in order to produce a repair
candidate. The candidate is then checked against the property oracle
for overfitting: if the candidate passes, a repair has been found;
if not, further counterexamples are generated to construct tests
and enhance the test suite, and the process is iterated. ICEBAR
includes different mechanisms, with different degrees of reliability,
to generate counterexamples from failing predicates and assertions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3556944

Our evaluation shows that ICEBAR significantly improves over
ARepair, in both reducing overfitting and improving the repair rate.
Moreover, ICEBAR shows that iterative refinement allows us to
significantly improve a state-of-the-art tool for automated repair
of Alloy specifications without any modifications to the tool.

CCS CONCEPTS
• Software and its engineering→ Formal software verifica-
tion; Software testing and debugging.

KEYWORDS
Formal Specification, Automated Repair, Alloy

ACM Reference Format:
Simón Gutiérrez Brida, Germán Regis, Guolong Zheng, Hamid Bagheri,
ThanhVu Nguyen, Nazareno Aguirre, and Marcelo Frias. 2022. ICEBAR:
Feedback-Driven Iterative Repair of Alloy Specifications. In 37th IEEE/ACM
International Conference on Automated Software Engineering (ASE ’22), Oc-
tober 10–14, 2022, Rochester, MI, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3551349.3556944

1 INTRODUCTION
In the last decade or so, many automated program repair (APR)
techniques have been introduced to fix non-trivial bugs [20, 26, 29,
30, 32, 34–36, 38, 39, 42, 45, 59, 60]. These techniques concentrate
in programs (e.g., C and Java), and to maintain automation, they
typically exploit common elements in program development. In
particular, APR techniques typically require a test suite, e.g., for
auxiliary tasks such as fault localization, but most importantly as
an acceptance criterion for candidate patches [32]. That is, a fix
candidate is usually considered a valid patch if it passes the test suite
accompanying the program. This “test suites as oracles” situation
makes the effectiveness of repair approaches strongly depend on
the quality of the test suites. Moreover, the inherent partiality of
tests as specifications make repair techniques subject to overfitting,
i.e., the problem of producing patches that pass the corresponding
test suite but do not fix the program in general [31, 44, 47, 53].

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3551349.3556944
https://doi.org/10.1145/3551349.3556944

ASE ’22, October 10–14, 2022, Rochester, MI, USA S. Gutiérrez Brida, G. Regis, G. Zheng, H. Bagheri, T. Nguyen, N. Aguirre, and M. Frias

While repair techniques have emphasized the automated fixing
of programs, other software artifacts such as software specifications
are also subject to hard-to-repair defects, and thus can profit from
automated repair. Software specifications are used for problem do-
main modeling and for software design. Unfortunately, correctly
capturing an informal problem description and devising sound
design ideas are challenging, error-prone, and arduous tasks. Of
course, defects in specifications can lead to incorrect implemen-
tations, and thus detecting, localizing, and fixing those errors are
highly relevant areas of research. For these reasons, borrowing
approaches for program repair and applying these for software
specification repair is worthwhile. This presents, simultaneously,
difficulties for the application of repair techniques, and opportuni-
ties to improve the effectiveness of these techniques. For instance,
in the context of formal specifications, it is usual to have property-
based specification “oracles”, in the form of properties that are
expected to hold from the specification assumptions. Oracles in the
form of test cases, that are commonly found for programs, are more
rarely seen accompanying specifications. Notice how the absence of
tests prevents the direct application of automated repair approaches,
and at the same time the existence of stronger property-based ora-
cles would provide an opportunity for reducing the overfitting of
program repair techniques, in the context of specifications.

Based on the above observations, we present ICEBAR (Itera-
tive CounterExample Based Alloy Repair), a technique and tool for
automatically repairing formal specifications written in the Alloy
language [21]. Alloy is an expressive formal specification language
with support for SAT-solving based property checking, that has
many applications in software development, including telecommu-
nication protocol design [61], security analysis in mobile applica-
tions [6, 8, 9], automated test generation [5, 24, 41], and bounded
program verification [14–16]. ICEBAR builds upon ARepair [55], an
automated repair tool for Alloy specifications that, in the spirit of
traditional APR, requires test cases, both for fault localization and
for patch acceptance checking. ARepair introduces the difficulty
of getting test cases for the specification to be repaired, which are
typically not part of Alloy specifications. It is also seriously affected
by overfitting, and does not exploit property-based oracles likely to
be present in specifications. ICEBAR, on the other hand, receives
an Alloy specification with a failing property-based oracle, and
uses Alloy’s counterexamples to automatically build tests and feed
ARepair, to search for a repair candidate. The produced candidate
is then checked against the property oracle for overfitting: if the
candidate satisfies the properties, a repair has been found; if not,
further counterexamples are generated to build tests that enhance
the test suite, disregarding the currently produced candidate, and
the process is iterated. Thus, our obtained repairs cannot be overfit-
ting with respect to the property-based oracles (which are in turn
stronger than the tests), but may still be overfitting in the sense
that they may not conform with the developer’s intention, beyond
what the property-based oracles express.

Alloy property checking comes, essentially, in two forms: as-
serting that a property is a consequence of the specification and
querying for the satisfiability of a property, in conjunction with the
specification. Thus, two kinds of failing properties can be found:
an expected property does not hold, and thus the solver produces
a counterexample, and a property expected to be consistent with
the specification is found inconsistent. In the former, a test case

can be produced from the counterexample, that we can reliably
incorporate into a test suite to run ARepair. In the latter, we may
produce model instances from which to build test cases by relaxing
the property or specification (with the sole purpose of producing
instances), but the produced test cases are unreliable, in the sense
that one does not know a priori if these represent behaviors that
the correct specification should allow for, or not. ICEBAR includes
mechanisms to produce both kinds of test cases, and processes these
differently according to their reliability, to automatically guide the
search for specification repairs.

Besides presenting our technique in detail, we perform an exper-
imental evaluation over two Alloy repair benchmarks (consisting
of faulty Alloy specifications used in evaluating previous Alloy re-
pair techniques), that show that the technique effectively improves
ARepair’s ability to repair Alloy specifications. More precisely, ICE-
BAR improves ARepair’s repair rate by 5.7𝑋 and 2.3𝑋 , respectively,
in the two benchmarks. Our approach is also able to repair spec-
ifications that are beyond what other tools for Alloy repair [11]
can handle. The tool and all the experimental data associated with
its evaluation are available as a replication package [3]. We also
provide a Github repository with ICEBAR’s implementation [4].

2 BACKGROUND AND MOTIVATION
We now introduce Alloy modeling, and discuss specification val-
idation, debugging and repair, as a motivation for our technique.

2.1 Alloy Modeling
Consider the problem of formally capturing linked lists, and the
notions involved in this data representation, such as the structural
description of the linear object organization, the constraints that
enforce (a)cyclicity, etc. A language that may be used to formally
specify linked lists is Alloy [21]. Alloy is a formal specification lan-
guage with numerous applications in the modeling and analysis of
software. The language has been designed taking into account spec-
ification readability, expressiveness and analyzability (among other
design dimensions). Regarding readability, specifications in Alloy
involve a few abstractions, with precise semantics, that are easy to
grasp for software developers. The style of specifications in Alloy
is model oriented, organized around the definition of data domains,
and relations between these domains. While the language is formal
and relational in nature, its specifications retain an intuitive reading,
and Alloy model descriptions resemble object-oriented modeling.
With respect to expressiveness, specification constraints are ex-
pressed in Alloy’s relational logic [21], essentially a first-order logic
complemented with relational operators (in particular reflexive-
transitive and transitive closures), that extend the expressiveness
of the language beyond that of predicate logic. Finally, regarding
analyzability, Alloy supports fully automated analysis, by reducing
bounded satisfiability and validity checking of Alloy specifications
to SAT solving. Alloy modeling is supported by the Alloy Analyzer,
the tool that allows one to write models and automatically analyze
them via the above mentioned SAT-based procedure.

Returning to the problem of specifying linked lists, a formal
attempt to capturing this concept in the Alloy language is shown
in Figure 1. This model (this is the way in which specifications are
referred to in the context of Alloy) is in fact taken verbatim from the

ICEBAR: Feedback-Driven Iterative Repair of Alloy Specifications ASE ’22, October 10–14, 2022, Rochester, MI, USA

case studies used as part of the evaluation in [55] (themodel is called
student5). The model mentions four data domains, which in Alloy
are captured via signatures (and formally introduce unary relations,
i.e., sets). Signatures List and Node define domains for lists and
nodes, respectively. The predefined Int signature (integers) is used
to represent elements stored in list’s nodes. Signatures can declare
typed fields, which give structure to the specification, and formally
declare relations from the signature where they are defined, to
the corresponding type. For instance, the two fields of signature
Node, namely link and elem, declare binary relations from the
Node set (the domain associated with this signature) to Node and
Int, respectively. The cardinality constraints in these fields simply
indicate that each node may be mapped to any number of nodes
and elements via the corresponding relations (set indicates “zero
or more”). Finally, signature Boolean declares a domain with two
atoms (constants) True and False, using abstract signatures (sets
with no proper elements), signature extension (relational inclusion,
which can model inheritance), and cardinality constraints on sig-
natures (a “one” signature has exactly one element, and different
signatures extending a given one must be disjoint).

Alloy specifications can also include facts, that represent as-
sumptions of the specification, and are captured using Alloy’s re-
lational logic. Fact CardinalityConstraints in the specification
constrains further the cardinalities of fields: every list has at most
one header (operator lone indicates the expression can have car-
dinality zero or one); every node can have at most one link; and
every node has exactly one element (operator one indicates the
expression must have cardinality one).

Alloy specifications typically involve the definition of predicates,
parameterized formulas that can be used to describe properties,
model operations, characterize families of scenarios, and even be
called from other predicates and facts. For instance, predicate Loop
describes a property of list structures: a list This satisfies Loop
iff: (i) all nodes are reachable from the header of This through
traversals of link (all is universal quantification, dot denotes rela-
tional composition, * is reflexive-transitive closure, and in denotes
relational inclusion); and (ii) either This has no header, or there
exists exactly one node reachable from This.header through link,
that can reach itself through link (quantifier one is “exists exactly
one”, and ^ denotes transitive closure).

Predicates can also be used to model operations. Predicate
Contains is an example of this usage, where some predicate param-
eters represent inputs (This and x) and some the outputs (result);
this predicate captures the contains operation, that checks whether
an element belong to a list or not.

Finally, Alloy models can include assertions to represent intended
properties of the specification, i.e., properties that should hold in
every scenario where the specification assumptions are satisfied.
Our sample model has no assertion; for the sake of presentation, we
will introduce one. An expected property of the model may be that,
under the assumption of the facts, if RepOk holds and Contains
returns True for some element, then the list cannot be empty:

ICEBAR: Feedback-Driven Iterative Repair of Alloy Specifications ASE ’22, October 10–14, 2022, Rochester, MI, USA

nodes, respectively. The predefined Int signature (integers) is used
to represent elements stored in list’s nodes. Signatures can declare
typed fields, which give structure to the specification, and formally
declare relations from the signature where they are defined, to
the corresponding type. For instance, the two fields of signature
Node, namely link and elem, declare binary relations from the
Node set (the domain associated with this signature) to Node and
Int, respectively. The cardinality constraints in these fields simply
indicate that each node may be mapped to any number of nodes
and elements via the corresponding relations (set indicates “zero
or more”). Finally, signature Boolean declares a domain with two
atoms (constants) True and False, using abstract signatures (sets
with no proper elements), signature extension (relational inclusion,
which can model inheritance), and cardinality constraints on sig-
natures (a “one” signature has exactly one element, and different
signatures extending a given one must be disjoint).

Alloy specifications can also include facts, that represent as-
sumptions of the specification, and are captured using Alloy’s re-
lational logic. Fact CardinalityConstraints in the specification
constrains further the cardinalities of fields: every list has at most
one header (operator lone indicates the expression can have car-
dinality zero or one); every node can have at most one link; and
every node has exactly one element (operator one indicates the
expression must have cardinality one).

Alloy specifications typically involve the definition of predicates,
parameterized formulas that can be used to describe properties,
model operations, characterize families of scenarios, and even be
called from other predicates and facts. For instance, predicate Loop
describes a property of list structures: a list This satisfies Loop
iff: (i) all nodes are reachable from the header of This through
traversals of link (all is universal quantification, dot denotes rela-
tional composition, * is reflexive-transitive closure, and in denotes
relational inclusion); and (ii) either This has no header, or there
exists exactly one node reachable from This.header through link,
that can reach itself through link (quantifier one is “exists exactly
one”, and ˆ denotes transitive closure).

Predicates can also be used to model operations. Predicate
Contains is an example of this usage, where some predicate param-
eters represent inputs (This and x) and some the outputs (result);
this predicate captures the contains operation, that checks whether
an element belong to a list or not.

Finally, Alloy models can include assertions to represent intended
properties of the specification, i.e., properties that should hold in
every scenario where the specification assumptions are satisfied.
Our sample model has no assertion; for the sake of presentation, we
will introduce one. An expected property of the model may be that,
under the assumption of the facts, if RepOk holds and Contains
returns True for some element, then the list cannot be empty:
assert ContainsTrueImpliesNonEmptyList {

all l: List | RepOk[l] and (some x: Int | Contains[l, x, True])
implies some l.header

}

Alloy models can be automatically analyzed in essentially two
ways, that are reduced to SAT solving. On one hand, given a predi-
cate and a so-called scope, defining a maximum number of elements
for each of the domains in the specification, Alloy Analyzer can
check for the satisfiability (or alternatively, the unsatisfiability) of

sig List {
header: set Node

}

sig Node {
link: set Node,
elem: set Int

}

// Correct
fact CardinalityConstraints {

all l: List | lone l.header
all n: Node | lone n.link
all n: Node | one n.elem

}

// Correct
pred Loop(This: List) {

all n: Node | n in This.header.*link
no This.header || one n: This.header.*link | n in n.^link

}

// Underconstraint. Should consider link = n1 -> n2 without loop.
pred Sorted(This: List) {

all n: This.header.*link | n.elem <= n.link.elem
}

pred RepOk(This: List) {
Loop[This]
Sorted[This]

}

// Correct
pred Count(This: List, x: Int, result: Int) {

RepOk[This]
result = #{n:This.header.*link | n.elem = x}

}

abstract sig Boolean {}
one sig True, False extends Boolean {}

// Correct
pred Contains (This: List, x: Int, result: Boolean) {

RepOk[This]
#{n: This.header.*link | x in n.elem} != 0 => result = True
#{n: This.header.*link | x in n.elem} = 0 => result = False

}

fact IGNORE {
one List
List.header.*link = Node

}

Figure 1: A faulty Alloy model of linked lists.

the predicate within the scope. This analysis basically answers the
question: does there exist an instance of the specification that does not
exceed the scope, and satisfies the facts and the predicate? Since the
scope makes the number of potential instances finite, the satisfiabil-
ity problem, for a given scope, becomes decidable. Alloy Analyzer
implements this bounded satisfiability check by reducing it to a
propositional satisfiability problem, that is in turn solved by an
off-the-shelf SAT solver. Similarly, given an assertion, and a scope,
Alloy Analyzer can check for its validity, within the scope. It then
answers the question: Does this assertion hold for all instances of
the specification that do not exceed the scope and satisfy the facts?
Of course, this can be turned into a satisfiability problem simply
negating the assertion, and Alloy Analyzer checks it that way, via

sig List {
header: set Node

}

sig Node {
link: set Node,
elem: set Int

}

// Correct
fact CardinalityConstraints {

all l: List | lone l.header
all n: Node | lone n.link
all n: Node | one n.elem

}

// Correct
pred Loop(This: List) {

all n: Node | n in This.header.*link
no This.header || one n: This.header.*link | n in n.^link

}

// Underconstraint. Should consider link = n1 -> n2 without loop.
pred Sorted(This: List) {

all n: This.header.*link | n.elem <= n.link.elem
}

pred RepOk(This: List) {
Loop[This]
Sorted[This]

}

// Correct
pred Count(This: List, x: Int, result: Int) {

RepOk[This]
result = #{n:This.header.*link | n.elem = x}

}

abstract sig Boolean {}
one sig True, False extends Boolean {}

// Correct
pred Contains (This: List, x: Int, result: Boolean) {

RepOk[This]
#{n: This.header.*link | x in n.elem} != 0 => result = True
#{n: This.header.*link | x in n.elem} = 0 => result = False

}

fact IGNORE {
one List
List.header.*link = Node

}

Figure 1: A faulty Alloy model of linked lists.

Alloy models can be automatically analyzed in essentially two
ways, that are reduced to SAT solving. On one hand, given a predi-
cate and a so-called scope, defining a maximum number of elements
for each of the domains in the specification, Alloy Analyzer can
check for the satisfiability (or alternatively, the unsatisfiability) of
the predicate within the scope. This analysis basically answers the
question: does there exist an instance of the specification that does not
exceed the scope, and satisfies the facts and the predicate? Since the
scope makes the number of potential instances finite, the satisfiabil-
ity problem, for a given scope, becomes decidable. Alloy Analyzer
implements this bounded satisfiability check by reducing it to a
propositional satisfiability problem, that is in turn solved by an
off-the-shelf SAT solver. Similarly, given an assertion, and a scope,
Alloy Analyzer can check for its validity, within the scope. It then
answers the question: Does this assertion hold for all instances of

ASE ’22, October 10–14, 2022, Rochester, MI, USA S. Gutiérrez Brida, G. Regis, G. Zheng, H. Bagheri, T. Nguyen, N. Aguirre, and M. Frias

the specification that do not exceed the scope and satisfy the facts?
Of course, this can be turned into a satisfiability problem simply
negating the assertion, and Alloy Analyzer checks it that way, via
a reduction to SAT solving. Two commands issuing these kinds of
checks for our sample model are the following:

ASE ’22, October 10–14, 2022, Rochester, MI, USA S. Gutiérrez Brida, G. Regis, G. Zheng, H. Bagheri, T. Nguyen, N. Aguirre, and M. Frias

a reduction to SAT solving. Two commands issuing these kinds of
checks for our sample model are the following:

run RepOk for 5 but exactly 1 List expect 1
check ContainsTrueImpliesNonEmptyList for 10 expect 0

Together with the scope, these commands indicate an expecta-
tion (a boolean represented with 1 for true and 0 for false), since
Alloy Analyzer allows one to indicate if a predicate is expected to
be satisfiable/unsatisfiable, and an assertion is expected to be valid
or invalid. Note that when, as a result of analyzing a command, an
analysis check is satisfiable (e.g., a predicate is found satisfiable, or
an assertion is found invalid), an instance witnessing this result is
produced. The developer can use it as an example of a satisfying
predicate, or as a violation of an intended assertion, to help confirm
his or her modeling decisions, and improve or debug the model,
when the result contradicts the expectation.

2.2 Alloy Test Cases
Aswe just described, specification instances or scenarios are present
during Alloy modeling, as a result of the analysis. Instances wit-
nessing the satisfiability of a predicate, or counterexamples to the
validity of an assertion, are generated and returned to the devel-
oper, as a result of performing automated SAT-based analysis. But
scenarios are typically not described within the same Alloy model,
in fact, Alloy instances are not even part of Alloy model’s syntax.
However, since the language is sufficiently expressive, a developer
can in fact specify concrete scenarios into an Alloy model. This is
used in many practical settings, in particular to make the constraint
solver “fill in” a partial scenario [54].

Concrete specification scenarios can also be useful as a vehicle
for validating formal specifications. The idea here is that, via the
definition of various concrete specification instances, and appropri-
ately indicating if these correspond to behaviors that are expected or
not from the specification, one would also be able to explicitly state
expectations on the specification. These will be scenario-specific,
as with unit tests in the context of programs. Since assessing a
concrete scenario, and deciding whether it represents a desirable
behavior or not, is easier than interpreting a formula, the addi-
tion of concrete scenarios, appropriately tagged as “desirable” or
“not desirable”, into the Alloy specification setting has the value of
more directly capturing some expected properties of the specifica-
tion, allowing developers to gain confidence in their specifications.
This observation has motivated the introduction of AUnit [51], a
language and tool that helps developers to write Alloy test cases.
AUnit exploits the expressive power of Alloy to provide a syntax
for instance-based properties, that is reducible to Alloy itself.

As a simple example, in our linked list specification, we would
expect the empty list to satisfy RepOk. This expectation can be
captured using AUnit:

val EmptyList {
no List.header
@cmd{ RepOk() }

}
@Test ValidEmptyList: run EmptyList

The val new section corresponds to the introduction of a parameter-
less Alloy predicate [51]. These represent valuations in the logical
sense (valuations of formulas). Notice how a valuation can include

a command, the formula evaluated in the defined instance (or family
of instances) and that should evaluate to true to consider that the
test passes. AUnit allows one to define and run these test cases,
it defines notions of coverage and mutation for Alloy, which the
tool can measure, and even provides mechanisms to automatically
generate tests based on coverage and mutation [52].

2.3 Specification Defects and Repair
Even in Alloy, where the language has been designed to give speci-
fications a clear intuitive reading, it is common to make mistakes
while attempting to capture a specification, often due to overlooked
restrictions, or wrongly imposing too restrictive constraints (mak-
ing a specification stronger, in a logical sense, than necessary), as
well as using the language incorrectly (e.g., misinterpreting the ac-
tual meaning of operators). Thus, specifications must be validated
and debugged as is the case with source code. In Alloy, predicates
capturing properties of a specification, as well as assertions, are
the typical instruments for a developer to validate his or her speci-
fications. The typical approach to validate specifications in Alloy
involves both automated tasks and manual ones. First, developers
use the Alloy Analyzer to check for the bounded validity of asser-
tions, as well as for the satisfiability of certain predicates. If one of
these checks fails, it indicates an analysis outcome contrary to the
expectations, and thus the presence of specification defects or bugs.
Moreover, developers can improve this scenario by considering
scenario-specific checks on predicates and assertions, via the use
of AUnit test cases as explained above.

In the above cases, we have an explicit specification oracle, given
in terms of predicates and assertions, unit test cases, or both. If any
of these fails during analysis, the corresponding specification can
be deemed incorrect, and the debugging and specification repair
phases are initiated. These latter steps are typically performed man-
ually, and are arduous and time consuming. Thus, having automated
support to aid developers in specification debugging and repair is
important. Fortunately, some techniques for automated Alloy spec-
ification repair have been recently proposed. ARepair [55] was the
first such technique; it borrows concepts from program repair, and
applies them to automatically repair Alloy specifications, provided
the specification has a test suite repair oracle. ARepair relies on
Alloy test cases for fault localization (using a spectrum-based tech-
nique [58]), for guiding the repair process, and for deciding whether
a patch has been found (patch acceptance criterion) [55]. The tech-
nique uses mutation and systematic expression generation [57]
for producing patch candidates, and is able to efficiently generate
repairs that involve complex syntactic changes in the faulty speci-
fication. An alternative approach is BeAFix [11]. BeAFix does not
necessarily require test cases: it can be applied with specification
oracles based on standard Alloy predicates and assertions, as well
as test cases, or their combination. BeAFix uses these oracles mainly
as a patch acceptance criterion. It performs a bounded-exhaustive
exploration of a space of mutation-based patches. Thus, it either
finds a fix or guarantees that no such fix exists within the explo-
ration bound. It also implies that the repairs that BeAFix finds are
syntactically close to the faulty specification, leading to simpler
patches, but at the same time preventing the technique from fixing
specifications that require more involved syntactic changes.

Together with the scope, these commands indicate an expecta-
tion (a boolean represented with 1 for true and 0 for false), since
Alloy Analyzer allows one to indicate if a predicate is expected to
be satisfiable/unsatisfiable, and an assertion is expected to be valid
or invalid. Note that when, as a result of analyzing a command, an
analysis check is satisfiable (e.g., a predicate is found satisfiable, or
an assertion is found invalid), an instance witnessing this result is
produced. The developer can use it as an example of a satisfying
predicate, or as a violation of an intended assertion, to help confirm
his or her modeling decisions, and improve or debug the model,
when the result contradicts the expectation.

2.2 Alloy Test Cases
Aswe just described, specification instances or scenarios are present
during Alloy modeling, as a result of the analysis. Instances wit-
nessing the satisfiability of a predicate, or counterexamples to the
validity of an assertion, are generated and returned to the devel-
oper, as a result of performing automated SAT-based analysis. But
scenarios are typically not described within the same Alloy model,
in fact, Alloy instances are not even part of Alloy model’s syntax.
However, since the language is sufficiently expressive, a developer
can in fact specify concrete scenarios into an Alloy model. This is
used in many practical settings, in particular to make the constraint
solver “fill in” a partial scenario [54].

Concrete specification scenarios can also be useful as a vehicle
for validating formal specifications. The idea here is that, via the
definition of various concrete specification instances, and appropri-
ately indicating if these correspond to behaviors that are expected or
not from the specification, one would also be able to explicitly state
expectations on the specification. These will be scenario-specific,
as with unit tests in the context of programs. Since assessing a
concrete scenario, and deciding whether it represents a desirable
behavior or not, is easier than interpreting a formula, the addi-
tion of concrete scenarios, appropriately tagged as “desirable” or
“not desirable”, into the Alloy specification setting has the value of
more directly capturing some expected properties of the specifica-
tion, allowing developers to gain confidence in their specifications.
This observation has motivated the introduction of AUnit [51], a
language and tool that helps developers to write Alloy test cases.
AUnit exploits the expressive power of Alloy to provide a syntax
for instance-based properties, that is reducible to Alloy itself.

As a simple example, in our linked list specification, we would
expect the empty list to satisfy RepOk. This expectation can be
captured using AUnit:

ASE ’22, October 10–14, 2022, Rochester, MI, USA S. Gutiérrez Brida, G. Regis, G. Zheng, H. Bagheri, T. Nguyen, N. Aguirre, and M. Frias

a reduction to SAT solving. Two commands issuing these kinds of
checks for our sample model are the following:

run RepOk for 5 but exactly 1 List expect 1
check ContainsTrueImpliesNonEmptyList for 10 expect 0

Together with the scope, these commands indicate an expecta-
tion (a boolean represented with 1 for true and 0 for false), since
Alloy Analyzer allows one to indicate if a predicate is expected to
be satisfiable/unsatisfiable, and an assertion is expected to be valid
or invalid. Note that when, as a result of analyzing a command, an
analysis check is satisfiable (e.g., a predicate is found satisfiable, or
an assertion is found invalid), an instance witnessing this result is
produced. The developer can use it as an example of a satisfying
predicate, or as a violation of an intended assertion, to help confirm
his or her modeling decisions, and improve or debug the model,
when the result contradicts the expectation.

2.2 Alloy Test Cases
Aswe just described, specification instances or scenarios are present
during Alloy modeling, as a result of the analysis. Instances wit-
nessing the satisfiability of a predicate, or counterexamples to the
validity of an assertion, are generated and returned to the devel-
oper, as a result of performing automated SAT-based analysis. But
scenarios are typically not described within the same Alloy model,
in fact, Alloy instances are not even part of Alloy model’s syntax.
However, since the language is sufficiently expressive, a developer
can in fact specify concrete scenarios into an Alloy model. This is
used in many practical settings, in particular to make the constraint
solver “fill in” a partial scenario [54].

Concrete specification scenarios can also be useful as a vehicle
for validating formal specifications. The idea here is that, via the
definition of various concrete specification instances, and appropri-
ately indicating if these correspond to behaviors that are expected or
not from the specification, one would also be able to explicitly state
expectations on the specification. These will be scenario-specific,
as with unit tests in the context of programs. Since assessing a
concrete scenario, and deciding whether it represents a desirable
behavior or not, is easier than interpreting a formula, the addi-
tion of concrete scenarios, appropriately tagged as “desirable” or
“not desirable”, into the Alloy specification setting has the value of
more directly capturing some expected properties of the specifica-
tion, allowing developers to gain confidence in their specifications.
This observation has motivated the introduction of AUnit [51], a
language and tool that helps developers to write Alloy test cases.
AUnit exploits the expressive power of Alloy to provide a syntax
for instance-based properties, that is reducible to Alloy itself.

As a simple example, in our linked list specification, we would
expect the empty list to satisfy RepOk. This expectation can be
captured using AUnit:

val EmptyList {
no List.header
@cmd{ RepOk() }

}
@Test ValidEmptyList: run EmptyList

The val new section corresponds to the introduction of a parameter-
less Alloy predicate [51]. These represent valuations in the logical
sense (valuations of formulas). Notice how a valuation can include

a command, the formula evaluated in the defined instance (or family
of instances) and that should evaluate to true to consider that the
test passes. AUnit allows one to define and run these test cases,
it defines notions of coverage and mutation for Alloy, which the
tool can measure, and even provides mechanisms to automatically
generate tests based on coverage and mutation [52].

2.3 Specification Defects and Repair
Even in Alloy, where the language has been designed to give speci-
fications a clear intuitive reading, it is common to make mistakes
while attempting to capture a specification, often due to overlooked
restrictions, or wrongly imposing too restrictive constraints (mak-
ing a specification stronger, in a logical sense, than necessary), as
well as using the language incorrectly (e.g., misinterpreting the ac-
tual meaning of operators). Thus, specifications must be validated
and debugged as is the case with source code. In Alloy, predicates
capturing properties of a specification, as well as assertions, are
the typical instruments for a developer to validate his or her speci-
fications. The typical approach to validate specifications in Alloy
involves both automated tasks and manual ones. First, developers
use the Alloy Analyzer to check for the bounded validity of asser-
tions, as well as for the satisfiability of certain predicates. If one of
these checks fails, it indicates an analysis outcome contrary to the
expectations, and thus the presence of specification defects or bugs.
Moreover, developers can improve this scenario by considering
scenario-specific checks on predicates and assertions, via the use
of AUnit test cases as explained above.

In the above cases, we have an explicit specification oracle, given
in terms of predicates and assertions, unit test cases, or both. If any
of these fails during analysis, the corresponding specification can
be deemed incorrect, and the debugging and specification repair
phases are initiated. These latter steps are typically performed man-
ually, and are arduous and time consuming. Thus, having automated
support to aid developers in specification debugging and repair is
important. Fortunately, some techniques for automated Alloy spec-
ification repair have been recently proposed. ARepair [55] was the
first such technique; it borrows concepts from program repair, and
applies them to automatically repair Alloy specifications, provided
the specification has a test suite repair oracle. ARepair relies on
Alloy test cases for fault localization (using a spectrum-based tech-
nique [58]), for guiding the repair process, and for deciding whether
a patch has been found (patch acceptance criterion) [55]. The tech-
nique uses mutation and systematic expression generation [57]
for producing patch candidates, and is able to efficiently generate
repairs that involve complex syntactic changes in the faulty speci-
fication. An alternative approach is BeAFix [11]. BeAFix does not
necessarily require test cases: it can be applied with specification
oracles based on standard Alloy predicates and assertions, as well
as test cases, or their combination. BeAFix uses these oracles mainly
as a patch acceptance criterion. It performs a bounded-exhaustive
exploration of a space of mutation-based patches. Thus, it either
finds a fix or guarantees that no such fix exists within the explo-
ration bound. It also implies that the repairs that BeAFix finds are
syntactically close to the faulty specification, leading to simpler
patches, but at the same time preventing the technique from fixing
specifications that require more involved syntactic changes.

The val new section corresponds to the introduction of a parameter-
less Alloy predicate [51]. These represent valuations in the logical
sense (valuations of formulas). Notice how a valuation can include
a command, the formula evaluated in the defined instance (or family
of instances) and that should evaluate to true to consider that the
test passes. AUnit allows one to define and run these test cases,
it defines notions of coverage and mutation for Alloy, which the
tool can measure, and even provides mechanisms to automatically
generate tests based on coverage and mutation [52].

2.3 Specification Defects and Repair
Even in Alloy, where the language has been designed to give speci-
fications a clear intuitive reading, it is common to make mistakes
while attempting to capture a specification, often due to overlooked
restrictions, or wrongly imposing too restrictive constraints (mak-
ing a specification stronger, in a logical sense, than necessary), as
well as using the language incorrectly (e.g., misinterpreting the ac-
tual meaning of operators). Thus, specifications must be validated
and debugged as is the case with source code. In Alloy, predicates
capturing properties of a specification, as well as assertions, are
the typical instruments for a developer to validate his or her speci-
fications. The typical approach to validate specifications in Alloy
involves both automated tasks and manual ones. First, developers
use the Alloy Analyzer to check for the bounded validity of asser-
tions, as well as for the satisfiability of certain predicates. If one of
these checks fails, it indicates an analysis outcome contrary to the
expectations, and thus the presence of specification defects or bugs.
Moreover, developers can improve this scenario by considering
scenario-specific checks on predicates and assertions, via the use
of AUnit test cases as explained above.

In the above cases, we have an explicit specification oracle, given
in terms of predicates and assertions, unit test cases, or both. If any
of these fails during analysis, the corresponding specification can
be deemed incorrect, and the debugging and specification repair
phases are initiated. These latter steps are typically performed man-
ually, and are arduous and time consuming. Thus, having automated
support to aid developers in specification debugging and repair is
important. Fortunately, some techniques for automated Alloy spec-
ification repair have been recently proposed. ARepair [55] was the
first such technique; it borrows concepts from program repair, and
applies them to automatically repair Alloy specifications, provided
the specification has a test suite repair oracle. ARepair relies on
Alloy test cases for fault localization (using a spectrum-based tech-
nique [58]), for guiding the repair process, and for deciding whether
a patch has been found (patch acceptance criterion) [55]. The tech-
nique uses mutation and systematic expression generation [57]
for producing patch candidates, and is able to efficiently generate
repairs that involve complex syntactic changes in the faulty speci-
fication. An alternative approach is BeAFix [11]. BeAFix does not
necessarily require test cases: it can be applied with specification
oracles based on standard Alloy predicates and assertions, as well
as test cases, or their combination. BeAFix uses these oracles mainly
as a patch acceptance criterion. It performs a bounded-exhaustive
exploration of a space of mutation-based patches. Thus, it either
finds a fix or guarantees that no such fix exists within the explo-
ration bound. It also implies that the repairs that BeAFix finds are

ICEBAR: Feedback-Driven Iterative Repair of Alloy Specifications ASE ’22, October 10–14, 2022, Rochester, MI, USA

syntactically close to the faulty specification, leading to simpler
patches, but at the same time preventing the technique from fixing
specifications that require more involved syntactic changes.

These repair techniques are complementary, and have advan-
tages and disadvantages. On one hand, being based on test cases,
ARepair can be greatly affected by overfitting, or put it in another
way, the quality of the patches greatly depends on the quality of
the test cases. Moreover, even when property-based oracles are
present in the specification, ARepair cannot profit from these, as it
only considers test-based oracles. BeAFix, on the other hand, being
bounded-exhaustive in nature, can suffer from scalability issues.
More precisely, when the required patches are relatively distant
(syntactically speaking) from the original faulty expression, it is
unlikely that BeAFix would be able to find such patches, as it ex-
plores mutation-based candidate patches in breadth-first, and these
grow exponentially with the depth of the search. As a concrete
example, consider again our linked list specification. As indicated
in the specification, it has a defect, in the definition of predicate
Sorted. In order to run ARepair, one needs to provide test cases.
Using AUnit, these test cases can be automatically generated (the
instances are automatically generated, but of course these still have
to be manually classified as “desirable” or “undesirable”). From such
automatically generated tests, ARepair is able to find a patch, but
an overfitting one: it passes the tests but it does not fix the issue. It
is only after the ARepair developers added some manually crafted
tests, that the tool fixes the specification. BeAFix, on the other hand,
does not need tests and can use the specification assertions, but
cannot produce a fix for this specification. Although the expres-
sion needed to repair it is in principle reproducible by BeAFix, the
mutation depth required to reach it, and the search space traversal
policy of the tool, make it infeasible for the tool to find this patch.

Our motivation is improving Alloy specification repair, by taking
advantage of ARepair’s efficiency and ability to generate complex
repairs, and at the same time dealing with overfitting in a better
way. Our approach works as follows. Given a faulty specification
with property-based oracles and test cases, first we attempt to repair
the specification using ARepair and the test cases. If a fix is found,
we contrast it against the property based oracles for confirmation.
If the fix passes the oracle, we are done. If on the other hand this fix
is spurious, we use the Alloy Analyzer to produce a new test, which
can be added to the suite disregarding the spurious fix. This process
is iterated. In this way, the test generation is driven by the repair
approach, and we reduce ARepair’s overfitting by taking advantage
of property based oracles.

3 THE ICEBAR APPROACH
3.1 Overview of the Technique
Test-based specification repair as realized in tools like ARepair
offers a number of advantages. On one hand, it ports successful
techniques applied in the context of program repair, to the context
of specifications. Approaches to fault localization, fix candidate
construction and incremental fix candidate checking, are all well
executed by ARepair, taking inspiration from similar techniques for
programs. Moreover, being based on a non-exhaustive approach for
patch generation, it constitutes a more efficient alternative to re-
pair, especially in contrast with BeAFix. However, as all techniques

based on tests, ARepair suffers from overfitting to a greater extent,
compared to techniques using stronger repair oracles. As usual
in the context of program repair, the test suite employed for fault
localization and repair is static, i.e., it does not change during the
repair process. This mechanism is graphically summarized as part
of Figure 2 (highlighted in green), where is clear what the inputs to
ARepair are, and how ARepair either fails to repair a specification,
or produces a patch that makes the input test suite pass. Notice how
ARepair views the faulty Alloy specification as a whole, without
discerning parts of it that actually represent property-based oracles,
such as predicates and assertions.

Our observation here is that, in the context of Alloy, it is typical
to have property-based oracles as part of the Alloy specification,
that may impose more general constraints on the expectations of
the specification, and that may be exploited to aid ARepair. Figure 2
shows an overview of our technique. It starts from a given faulty
specification, with a failing property-based oracle, and a (possibly
empty) test suite. It first runs ARepair with the test suite to attempt
to produce a patch. If a patch is found, we know that is passes the
test suite; we take this candidate and contrast it against the property-
based oracle in the specification. If, again, the specification meets
this oracle, we consider the patch a proper fix. If, on the other hand,
some property fails in the candidate patch, we use Alloy Analyzer to
produce instances, which are in turn translated into new unit tests,
to complement the original test suite and start over the ARepair
process. If a fix that passes both the corresponding test suite and
property-based oracle is eventually found, it is returned to the user.

TstALS

ARepair

Tst

Tst

Alloy

ALS

 0
�

ALS

 0
�

ALS

 0
�

TestGenTst

+

ARepair

ICEBAR

Start

Repaired

Not
Repaired

�

Figure 2: An overview of ICEBAR

The time factor is also important in the above described scenario.
Since ARepair can rather efficiently produce a fix (or an indication
that no fix is possible), it is possible to iterate the process after
validating a fix against a property-based oracle and strengthening
the test suite based on the resulting violations, while still being
efficient.

Our general description of the technique involves three main
stages: model repair, model validation, and test generation. We de-
scribe below how these stages are implemented. We also discuss

ASE ’22, October 10–14, 2022, Rochester, MI, USA S. Gutiérrez Brida, G. Regis, G. Zheng, H. Bagheri, T. Nguyen, N. Aguirre, and M. Frias

certain technical challenges, in relation to how instances are pro-
duced from violated properties in spurious patches, and whether
these can effectively guarantee the progress in the repair.

3.2 Model Repair
The model repair phase of our approach consists of a black-box
usage of the ARepair tool. Our ICEBAR approach makes iterations
on the execution of ARepair, each of which is fully independent,
i.e., no information other than the current faulty specification and
test suite is passed between subsequent runs of ARepair.

ICEBAR is parametric on the Alloy model repair technique. It
may use any repair technique that expects as inputs a specification
and a test suite for it. The current version of ICEBAR uses ARepair.
It is important to remark though that, since the technique performs
multiple iterative executions of the repair approach, its efficiency
strongly depends on that of the tool being iterated. More precisely,
while a variant of the technique may be devised for non-test based
repair tools like BeAFix, the cost of running each instance (itera-
tion) of this tool would make our approach inapplicable. Notice that
our technique collects the property-based oracles from the faulty
specification itself (these are defined as part of the specification).
As these will be used as a stronger check on candidate fixes, they
are assumed correct and are not subject to direct modifications
during the repair process. For instance, assume that the specifica-
tion includes an assertion, that we consider an oracle, stating the
following:

∀𝑥 · 𝑝 (𝑥) → 𝑞(𝑥)
where 𝑝 and 𝑞 are predicates in the specification. This formula is
assumed correct, and no syntactic modification is allowed on it.
However, predicates 𝑝 and 𝑞, being part of the specification, may
be deemed incorrect by ARepair, and thus trigger modifications,
indirectly changing the semantics of the assertion. This is perfectly
tolerated by our approach.

3.3 Model Validation
Alloy models are validated by writing properties stating expec-
tations on the specification, which are analyzed via commands.
We call these property-based oracles. The two traditional ones are
predicate satisfiability (stating a property that the developer ex-
pects to be satisfiable with the model assumptions) and assertion
checking (checking that a given assertion is a consequence of the
model assumptions). As described earlier, Alloy models can also be
validated against specific scenarios, in particular using AUnit test
cases. We call the latter test-based oracles. Our assumption regard-
ing model validation is that the to-be-repaired specifications have
failing property-based oracles. Property-based oracles are inherent
to Alloy specifications, and thus this assumption is easy to satisfy.

Notice that the use of predicates in Alloy specifications exceeds
the statement of intended properties, as these also serve the pur-
pose of organizing a specification in terms of auxiliary formulas,
as well as for describing model operations, etc. We may ask the
developer to manually distinguish the specification from the ora-
cle, as proposed in [11]. Or, as we proceed in this paper, consider
the property-based oracle to be the set of all predicates and asser-
tions which have corresponding analysis commands. Without loss
of generality, we assume that predicate commands always have

satisfiability expectations, and assertion commands have validity
expectations (note that in Alloy, one can also state that expects an
assertion to fail, or a predicate to be unsatisfiable).

3.4 Test generation
The aim of the test generation phase is to produce new tests, af-
ter a model repair has produced an “incorrect” patch, i.e., a patch
that passes the current test suite, but does not satisfy the model’s
property-based oracle. These new tests will be used so that a new
incremental execution of model repair can be triggered. When vali-
dating an Alloy model against a property-based oracle, there are
two possible situations indicating the model is incorrect: having
an instance that satisfies the model assumptions but violates an
expected assertion (a counterexample), and not having instances of
a predicate expected to be consistent with the model assumptions
(an unsatisfiable outcome in the Alloy analysis). Our test generation
phase must be able to produce new test cases, to iterate the specifi-
cation repair process, in both situations. Moreover, the generated
test cases should strive to guarantee that, once incorporated into
the test suite for repair, the previously produced incorrect patch
cannot be generated as a repair candidate.

These two forms of property-based oracle violation are clearly
asymmetric, as one produces an instance (a counterexample) that
can be straightforwardly turned into a test case, while the other
gives an unsatisfiability outcome, from which generating a test
case is less direct. We will describe below how tests are specifically
generated, in each of these cases.

3.4.1 Dealing with Violated Assertions. Let us discuss violations to
assertions first. The situation is as follows. We have an Alloy model
𝑀 , a property-based oracle that includes an assertion 𝐴 for𝑀 , and
a test suite𝑇 , that fails on𝑀 . Model repair has been executed using
𝑀 and 𝑇 , producing a repair candidate𝑀′. Although all tests in 𝑇
pass in𝑀′ (since this model is the result of the repair model phase),
𝑀′ does not satisfy the property-based oracle 𝐴. We have therefore
obtained an instance 𝐼 of 𝑀′, where all facts 𝐹𝑀 ′ of 𝑀′ hold, but
assertion 𝐴 fails.

The above-described erroneous situation captured by instance 𝐼
can be due to either having a bug in the model’s facts (e.g., these
being too weak and thus allowing some instances that should not
be allowed), or having a bug in the assertion 𝐴 (e.g., the assertion
captures a property stronger than intended). That is, intuitively
either the facts are too weak, or the assertion is too strong (or both).
We would like to turn 𝐼 into a new test imposing the requirement
that this erroneous situation should not be accepted in a patch of
the specification. We therefore build a new test case 𝑡 capturing the
following property:

𝐼 ∧ (¬𝐹𝑀 ′ ∨𝐴)
That is, instance 𝐼 will be either removed from feasible situations in
a patched version of the model (i.e., it will violate the model facts),
or it will satisfy the assertion. It is worth remarking here that 𝐹𝑀 ′

and 𝐴 are not necessarily rigid formulas (otherwise the above will
necessarily be always false): since both facts and assertions may
call predicates and refer to functions in the model, changes in these
predicates and functions during the repair process will change the
semantics of the facts and assertion, turning the above test case
into a “passing” test case. With the just created new test case 𝑡 , we

ICEBAR: Feedback-Driven Iterative Repair of Alloy Specifications ASE ’22, October 10–14, 2022, Rochester, MI, USA

can go back to the repair phase, and attempt to repair𝑀 again, now
with test suite 𝑇 ′ = 𝑇 ∪ {𝑡}.

Notice that the test cases we just described are reliable test cases:
if we trust the assertion from which the test case was generated
(notice that we only need to trust the assertion itself, but not nec-
essarily the predicates or facts indirectly involved in it), we are
certain that the generated counterexample described an undesired
behavior, and thus we state so in the construction of the test case.

Finally, let us now argue why the new test case 𝑡 will guaran-
tee that we can reattempt to repair model 𝑀 , and the previously
produced spurious patch𝑀′ cannot be produced again. First, recall
that𝑀 did not pass the test suite𝑇 ; since𝑇 ′ contains𝑇 , we are sure
that𝑀 does not pass 𝑇 ′ and therefore the repair phase is enabled.
Second, let𝑀′′ be a patch generated from𝑀 and test suite𝑇 ′. This
patch must necessarily pass all tests in 𝑇 ′, in particular 𝑡 ; thus it
cannot be𝑀′, since we know that 𝑡 fails in𝑀′.

3.4.2 Dealing with (Un)satisfiable Predicates. Let us now discuss
failing predicates. The situation is as follows. We have an Alloy
model𝑀 , a property-based oracle that includes a predicate 𝑃 for𝑀 ,
and a test suite 𝑇 , that fails on𝑀 . Model repair has been executed
using𝑀 and 𝑇 , producing a repair candidate𝑀′. Again, although
all tests in 𝑇 pass in 𝑀′, 𝑀′ does not satisfy the property-based
oracle 𝑃 . We have therefore a situation in which 𝑃 is inconsistent
with the facts 𝐹𝑀 ′ of 𝑀′, i.e., 𝐹𝑀 ′ ∧ 𝑃 is unsatisfiable (within the
employed analysis scope).

Since the unsatisfiability outcome does not produce an instance,
an obvious first approach to attempt to produce a new test case
is to find some alternative way of producing instances. First, if
besides the failing predicate we have a failing assertion, then we
are in the previously described situation: we can ignore the failing
predicate, deal with the failing assertion and reliably go back to the
repair phase. If, on the other hand, we have no failing assertion,
we may still be able to produce instances by resorting to non-
failing predicates. Assume 𝑃 ′ is another part of the property-based
oracle for 𝑀 , and 𝑃 ′ is non-failing, i.e., it is consistent with the
facts 𝐹𝑀 ′ . We can then produce an instance 𝐼 satisfying 𝐹𝑀 ′ ∧ 𝑃 ′,
and generate a test case from 𝐼 . However, although 𝐼 satisfies 𝑃 ′
(as expected), since 𝐼 is an instance of the faulty specification 𝑀′,
we have no way of knowing whether 𝐼 is a “desired” instance (a
behavior of the intended specification), or not. Figure 3 graphically
depicts the two possibilities for 𝐼 : it is either an instance satisfying
the predicate and the faulty specification which also satisfies the
intended specification (green box), or is an instance satisfying the
predicate and faulty specification outside the intended specification
(red box). This leads to the following two alternative test cases:

𝑡𝑝𝑜𝑠 : 𝐼 ∧ 𝐹𝑀 ′ ∧ 𝑃 ′

𝑡𝑛𝑒𝑔 : 𝐼 ∧ ¬(𝐹𝑀 ′ ∧ 𝑃 ′)
This is related to the oracle problem in software testing: in order
to classify the actual obtained outputs for given inputs as correct
or incorrect, one requires some reference. We do not have such a
reference in this case1. Instead, we consider the two possibilities.We
first hypothesize that the obtained satisfying instance is desirable
1One may argue that the developer can serve as an oracle in this situation, and decide,
for each generated test case, whether it represents a desired behavior or not. This
alternative would seriously undermine automation, an important characteristic of our
technique.

(a “positive” instance), add 𝑡𝑝𝑜𝑠 as a test, and proceed with the
search for a fix. If no fix is found, we backtrack, change the positive
instance into a negative one (replace 𝑡𝑝𝑜𝑠 by 𝑡𝑛𝑒𝑔), and continue
from there. These test cases are then “unreliable”, in the sense that
we cannot be sure that they represent behaviors we want to include,
or correspondingly exclude, in an eventual fix of the specification.
In any case, when ICEBAR returns a fix, the set of all test cases
considered for the corresponding repair (including the “unreliable”
ones) are provided as feedback to the developer, who can further
examine them as introduced hypotheses that led to the produced
repair. If an inconsistency is found between these hypothesized
scenarios and the intended behavior, the correction can be made,
turning the corresponding test into a “reliable” one.

Finally, when we have no failing assertion nor non-failing predi-
cate in the property-based oracle, we still need to produce instances
from the unsatisfiability outcome for 𝐹𝑀 ′ ∧𝑃 . To obtain an instance
in this case, we systematically relax 𝐹𝑀 ′ by incrementally removing
conjuncts from this formula until a satisfiable formula is obtained
or no more conjuncts are left to remove. Then, as with instances
from non-failing predicates, and since the instances were obtained
by relaxing the facts, it is reasonable to consider these instances as
unreliable. We deal with these instances in the same way as with
the instances generated from non-failing predicates.

It is worth noticing that unreliable tests may originate from non-
failing predicates, and thus these tests may not be related with the
defects in the specification. These can in fact lead to previously
considered repair candidates. Nevertheless, these additional tests
provide extra information that can guide ARepair towards fixes
that, without these tests, would not be considered by the tool.

negative
instance

Space of instances

Intended
specification

Faulty
Specification

Predicate
positive
instancefailing

test

Figure 3: A description of how satisfying instances relate
to the specification, the corresponding predicate, and the
behavior intended to be captured by the specification.

4 EVALUATION
We present an experimental evaluation of ICEBAR. We consider
three research questions.
RQ1 Does ICEBAR improve the repair effectiveness of ARepair?
RQ2 Are the tests produced by ICEBAR relevant to the repair

process?
RQ3 How does ICEBAR compare to other Alloy repair tools?

To approach these research questions we consider two different
benchmarks of faulty Alloy specifications: the Alloy4Fun project

ASE ’22, October 10–14, 2022, Rochester, MI, USA S. Gutiérrez Brida, G. Regis, G. Zheng, H. Bagheri, T. Nguyen, N. Aguirre, and M. Frias

[37], and the benchmark of faulty specifications originally used to
evaluate ARepair in [55]. Alloy4Fun consists of 6 different template
models, with a total of 1936 human-written faulty variants, based on
specific modeling assignments resolved by different students. The
ARepair benchmark, on the other hand, is composed of 38 different
faulty specifications drawn from various domains. For each of these
models, we consider a corresponding correct version as oracle. All
the experiments below were run on an AMD Ryzen Threadripper
64-Core Processor with 64GB RAM, under GNU/Linux.

Answering RQ1, i.e., evaluating whether ICEBAR can improve
ARepair’s repairability, aims at analyzing if our technique can re-
place the manual effort of designing test cases to improve repair
effectiveness. We therefore only consider automatically produced
test cases. More precisely, for the ARepair benchmark, whose test
suites are composed of automatically generated tests (generated us-
ing the AUnit tool [51]) as well as manually produced tests, we only
consider the automatically produced tests for ARepair (the objective
of ICEBAR is to automatically produce the manual ones). In the case
of the Alloy4Fun benchmark, where no tests are present, we run
ARepair with test cases automatically generated using AUnit (using
the corresponding correct specifications as oracles for these tests,
as these needs to be manually classified as expected or unexpected).
ICEBAR is run, for both benchmarks, starting with empty test suites
(i.e., all tests are produced by ICEBAR’s counterexample-driven ap-
proach). Each experimentwas runwith a 1 hour timeout. The results
of this experiment are shown in Table 1. For each benchmark we
report the total number of faulty specifications, the average number
of tests that each tool was run with across all the corresponding
benchmark’s case studies, the number of correct fixes, overfitted
repairs, cases for which the corresponding tools failed to produce
a fix, and the average time it took each technique to process a
case study in the corresponding benchmark. We also summarize
the improvement in repairability, and for ICEBAR, report the av-
erage number of calls to ARepair (i.e., number of iterations of the
counterexample-driven approach), and the average percentage of
the repair time that was spent in executing ARepair (the remainder
is the cost of generating tests, and validating repairs).

The objective of RQ2 is to determine whether there is substantial
merit in ICEBAR’s test generation approach, to improve ARepair’s
performance. More precisely, we want to analyze if the cases that
ICEBAR improves over ARepair (i.e., when ARepair does not pro-
duce a fix or produces an overfitting fix, but ICEBAR correctly
repairs the specification) are due to the tests that it produces, or
are simply due to having more tests (or different tests) compared to
ARepair. To answer RQ2, we performed the following experiment.
For each case study, we consider the 𝑘 number of tests that ICEBAR
generated, both when repairing the corresponding specification,
and when terminating due to timeout or without finding a repair.
For the corresponding case study, we generated multiple random
test suites of 𝑘 test cases each, and ran ARepair with each random
suite. Table 2 shows the results of these experiments, reporting
the average across ARepair runs with random test suites. In rela-
tion to the different approaches that ICEBAR uses to produce new
tests (see Section 3.4), it is worth remarking that, for the ARepair
benchmark, 71% of the successful fixes used unreliable tests and, on
average, 45% of the tests used in each of these cases were unreliable.
Alloy4Fun cases required no use of unreliable tests.

Figure 4: Overlappings in repaired cases

Let us now focus on RQ3. We compare the three tools we are
aware of for automatically repairing Alloy specifications: ARepair,
ICEBAR, and BeAFix [11]. The ARepair and ICEBAR runs are ex-
actly as for RQ1, since we wish to evaluate these tools in a fully
automated context. For BeAFix, we run each experiment with the
property oracles, since as indicated in [11], this tool does not require
test cases. Table 3 summarizes the results of these experiments. For
each benchmark, tool and configuration, we report the number of
correct fixes found, overfitted fixes and timeouts (TMO), and the
average time for those cases in which the corresponding tool was
able to produce a fix. Again, we use Alloy Analyzer to contrast
fix candidates against a correct specification to check if a candi-
date is a correct fix. To further understand how these techniques
complement each other, we depict in Figure 4, for each benchmark,
which percentage of cases were only repaired by one of the tools
but no the others, as well as the overlap between the techniques
(percentage of cases that were correctly fixed by more than one
tool). The fastest between ICEBAR and BeAFix is highlighted in
boldface, together with its corresponding speedup over the other
tool (notice that we do not consider speedup with respect to ARe-
pair, which is the fastest but produces a high number of overfitting
cases). We will further discuss these results later on.

4.1 Assessment
We first discuss the results of the experiments for RQ1. The ex-
periments on the ARepair benchmark show that ICEBAR’s tests
improve upon ARepair’s effectiveness, increasing the number of
correct fixes from 9 to 21. Clearly, the complexity of the specifica-
tions and faults require higher number of ARepair calls by ICEBAR,
with an average of around 38 total ARepair calls until a fix is found.
Still, the 21 correct fixes found by ICEBAR are below the 26 correct
fixes found by ARepair as reported in [55], although 17 out of the
26 required introducing manually designed tests (as opposed to
ICEBAR, which fully automatically fixes the 21 cases).

We now analyze the experiments on the Alloy4Fun benchmark,
consisting of 1936 faulty specifications. We see that more than
54% of these are correctly repaired by ICEBAR, with an average
of about 6 ARepair calls until a fix is found. This is a significant
improvement in repairability (or similarly, reduction in overfitting)
compared to ARepair on automatically generated test suites, which
can only repair about 10% of the cases in this benchmark. Regarding
the experiments on this benchmark, it is worth observing in more

ICEBAR: Feedback-Driven Iterative Repair of Alloy Specifications ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 1: Impact of ICEBAR in automatically adding scenarios to improve repairability

Benchmark ARepair (automatic tests) ICEBAR
Total AVG. # cases AVG. AVG. AVG. #cases AVG. AVG. (%)Name cases # tests correct overfit time (sec.) # tests ARepair calls correct time (sec.) ARepair time

Imp

Alloy4Fun 1936 37,5 185 1492 31,5 9,8 5,9 1051 915,1 62% 5,7X
ARepair 38 42,9 9 18 152,2 18,6 38,2 21 744,6 56% 2,3X

Table 2: ICEBAR generated tests vs. Random generated tests

Benchmark ICEBAR tests Random tests
Total AVG. AVG.Name cases # tests # cases correct # cases correct

Alloy4Fun 1936 9,8 1051 (54,2%) 11 (0,6%)
ARepair 38 18,6 21 (55,2%) 0,7 (1,8%)

detail the cases that are not repaired by ARepair (nor correctly
or overfitted). Out of the 359 cases that ARepair reports as not
being able to repair, 92 (4.75% of the 1936 total number of cases) are
due to grammar issues, i.e., Alloy operators present in the faulty
specification that are not supported by ARepair. These are of course
not repairable by ICEBAR either, since this tool is based on repeated
executions of ARepair.

Regarding RQ2, ARepair can only repair, in average, about 1
case out of 38 for ARepair’s benchmark when using random test
suites (compared to the 21 that ICEBAR repairs). In the Alloy4Fun
benchmark, ARepair can correctly fix 11 out of 1936 cases when
using random test suites (compared to the 1051 cases that ICEBAR
is able to repair from this benchmark). These results clearly show
that the size of the test suites involved in ICEBAR’s correct fixes
is not the reason for the technique’s effectiveness: “useful” tests,
that actually guide the repair process, are necessary, and ICEBAR’s
counterexample-driven approach provides them.

Moving to RQ3, when observing the ARepair benchmark results,
BeAFix and ICEBAR have similar fix rates, with BeAFix having a
margin over ICEBAR. Neither of the tools completely subsumes
the other in terms of repairability: 5 cases are repaired by ICEBAR
but not by BeAFix, and 8 cases are repaired by BeAFix but not
ICEBAR (notice that BeAFix repairs 4 cases that are not within the
26 repaired by ARepair with manually designed tests).

The results on the much larger Alloy4Fun benchmark allow us
to further explore these issues. Again, ICEBAR and BeAFix have
good fixing rates, 51% of the total are repaired by BeAFix, and 54%
of the total are repaired by ICEBAR. The overlap figure shows that,
again, none of these tools fully subsumes the other: they overlap in
773 cases (40%), 208 (11%) are repaired by BeAFix but not ICEBAR,
and 278 (14%) are repaired by ICEBAR but not BeAFix. Here we
should notice that 54 cases (2.8%) cannot be handled by ICEBAR
because they use Alloy operators that ARepair does not currently
support. Finally, if we compare the tools in terms of efficiency, in
both benchmarks and for most cases, ICEBAR improves the running
time and provides a significant speedup over BeAFix.

In order to qualitatively assess the kind of repairs that ICEBAR is
able to generate over BeAFix, we manually examined the specifica-
tions that were correctly repaired by ICEBAR, but for which BeAFix
was unable to produce a fix. Our analysis indicated that there are

two different reasons preventing BeAFix from finding patches in
these cases. On one hand, some patches require mutations to the
expressions that, according to [11], BeAFix does not currently sup-
port. As an example, consider the following faulty expression from
a specification in the Alloy4Fun benchmark:

ICEBAR: Feedback-Driven Iterative Repair of Alloy Specifications ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 1: Impact of ICEBAR in automatically adding scenarios to improve repairability

Benchmark ARepair (automatic tests) ICEBAR
Total AVG. # cases AVG. AVG. AVG. #cases AVG. AVG. (%)Name cases # tests correct overfit time (sec.) # tests ARepair calls correct time (sec.) ARepair time

Imp

Alloy4Fun 1936 37,5 185 1492 31,5 9,8 5,9 1051 915,1 62% 5,7X
ARepair 38 42,9 9 18 152,2 18,6 38,2 21 744,6 56% 2,3X

Table 2: ICEBAR generated tests vs. Random generated tests

Benchmark ICEBAR tests Random tests
Total AVG. AVG.Name cases # tests # cases correct # cases correct

Alloy4Fun 1936 9,8 1051 (54,2%) 11 (0,6%)
ARepair 38 18,6 21 (55,2%) 0,7 (1,8%)

specification that are not supported by ARepair. These are of course
not repairable by ICEBAR either, since this tool is based on repeated
executions of ARepair.

Regarding RQ2, ARepair can only repair, in average, about 1
case out of 38 for ARepair’s benchmark when using random test
suites (compared to the 21 that ICEBAR repairs). In the Alloy4Fun
benchmark, ARepair can correctly fix 11 out of 1936 cases when
using random test suites (compared to the 1051 cases that ICEBAR
is able to repair from this benchmark). These results clearly show
that the size of the test suites involved in ICEBAR’s correct fixes
is not the reason for the technique’s effectiveness: “useful” tests,
that actually guide the repair process, are necessary, and ICEBAR’s
counterexample-driven approach provides them.

Moving to RQ3, when observing the ARepair benchmark results,
BeAFix and ICEBAR have similar fix rates, with BeAFix having a
margin over ICEBAR. Neither of the tools completely subsumes
the other in terms of repairability: 5 cases are repaired by ICEBAR
but not by BeAFix, and 8 cases are repaired by BeAFix but not
ICEBAR (notice that BeAFix repairs 4 cases that are not within the
26 repaired by ARepair with manually designed tests).

The results on the much larger Alloy4Fun benchmark allow us
to further explore these issues. Again, ICEBAR and BeAFix have
good fixing rates, 51% of the total are repaired by BeAFix, and 54%
of the total are repaired by ICEBAR. The overlap figure shows that,
again, none of these tools fully subsumes the other: they overlap in
773 cases (40%), 208 (11%) are repaired by BeAFix but not ICEBAR,
and 278 (14%) are repaired by ICEBAR but not BeAFix. Here we
should notice that 54 cases (2.8%) cannot be handled by ICEBAR
because they use Alloy operators that ARepair does not currently
support. Finally, if we compare the tools in terms of efficiency, in
both benchmarks and for most cases, ICEBAR improves the running
time and provides a significant speedup over BeAFix.

In order to qualitatively assess the kind of repairs that ICEBAR is
able to generate over BeAFix, we manually examined the specifica-
tions that were correctly repaired by ICEBAR, but for which BeAFix
was unable to produce a fix. Our analysis indicated that there are
two different reasons preventing BeAFix from finding patches in
these cases. On one hand, some patches require mutations to the

expressions that, according to [11], BeAFix does not currently sup-
port. As an example, consider the following faulty expression from
a specification in the Alloy4Fun benchmark:
no ~adj.adj

The specification is faulty, and a manual fix for it is:
no (iden & adj)

BeAFix cannot produce this fix, as it does not support the kind of
expression mutations to arrive to it from the faulty specification.
Notice that this may be overcome extending the set of mutation
operators for the tool, which at the same time increases the search
space, a critical issue for bounded-exhaustive approaches as the
one BeAFix implements. For the above case, ICEBAR is able to find
the following equivalent fix:
no (~(~(iden & adj))).adj

which is also beyond what BeAFix can produce.
Other cases can in principle be repaired by BeAFix, but would

require multiple mutations to single faulty points. Since BeAFix
explores the space of candidate repairs in breadth-first, i.e., from the
syntactically closer to the faulty expression to more distant ones,
the patches would require BeAFix to reach search depths that are
infeasible for the tool. Consider for instance the following faulty
expression from a specification in the Alloy4Fun benchmark:
all u:User , w:Work, i:Institution |

w in u.profile && (w.source = u || w.source = i)

is repaired by ICEBAR with the following correct patch:
all u:User, w:Work, i:Source { ((w in (Source.(~source))) &&

(((u + (profile.w)) = u) || ((w.source) = ((w.source) - u))))}}

It is clear that the syntactic distance between this patch and the
original expression makes it infeasible to reach, within reasonable
time, for BeAFix. The manual fix for this faulty specification is:
all u:User, w:Work | w in u.profile implies

(u in w.source or some i:Institution | i in w.source

which cannot be produced by BeAFix either, since it requires ex-
pression mutations that the tool does not support.

All these experiments can be replicated as indicated in [3]. We
also provide a Github repository with ICEBAR’s implementation
[4].

4.2 Threats to Validity
To account for threats to validity, we have considered various issues
and made some design decisions in our experimental evaluation.
First, the subjects chosen for the experimental evaluation consti-
tute a chief threat to external validity, in particular due to a lack of
evidence that the results on these benchmarks will generalize to

The specification is faulty, and a manual fix for it is:

ICEBAR: Feedback-Driven Iterative Repair of Alloy Specifications ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 1: Impact of ICEBAR in automatically adding scenarios to improve repairability

Benchmark ARepair (automatic tests) ICEBAR
Total AVG. # cases AVG. AVG. AVG. #cases AVG. AVG. (%)Name cases # tests correct overfit time (sec.) # tests ARepair calls correct time (sec.) ARepair time

Imp

Alloy4Fun 1936 37,5 185 1492 31,5 9,8 5,9 1051 915,1 62% 5,7X
ARepair 38 42,9 9 18 152,2 18,6 38,2 21 744,6 56% 2,3X

Table 2: ICEBAR generated tests vs. Random generated tests

Benchmark ICEBAR tests Random tests
Total AVG. AVG.Name cases # tests # cases correct # cases correct

Alloy4Fun 1936 9,8 1051 (54,2%) 11 (0,6%)
ARepair 38 18,6 21 (55,2%) 0,7 (1,8%)

specification that are not supported by ARepair. These are of course
not repairable by ICEBAR either, since this tool is based on repeated
executions of ARepair.

Regarding RQ2, ARepair can only repair, in average, about 1
case out of 38 for ARepair’s benchmark when using random test
suites (compared to the 21 that ICEBAR repairs). In the Alloy4Fun
benchmark, ARepair can correctly fix 11 out of 1936 cases when
using random test suites (compared to the 1051 cases that ICEBAR
is able to repair from this benchmark). These results clearly show
that the size of the test suites involved in ICEBAR’s correct fixes
is not the reason for the technique’s effectiveness: “useful” tests,
that actually guide the repair process, are necessary, and ICEBAR’s
counterexample-driven approach provides them.

Moving to RQ3, when observing the ARepair benchmark results,
BeAFix and ICEBAR have similar fix rates, with BeAFix having a
margin over ICEBAR. Neither of the tools completely subsumes
the other in terms of repairability: 5 cases are repaired by ICEBAR
but not by BeAFix, and 8 cases are repaired by BeAFix but not
ICEBAR (notice that BeAFix repairs 4 cases that are not within the
26 repaired by ARepair with manually designed tests).

The results on the much larger Alloy4Fun benchmark allow us
to further explore these issues. Again, ICEBAR and BeAFix have
good fixing rates, 51% of the total are repaired by BeAFix, and 54%
of the total are repaired by ICEBAR. The overlap figure shows that,
again, none of these tools fully subsumes the other: they overlap in
773 cases (40%), 208 (11%) are repaired by BeAFix but not ICEBAR,
and 278 (14%) are repaired by ICEBAR but not BeAFix. Here we
should notice that 54 cases (2.8%) cannot be handled by ICEBAR
because they use Alloy operators that ARepair does not currently
support. Finally, if we compare the tools in terms of efficiency, in
both benchmarks and for most cases, ICEBAR improves the running
time and provides a significant speedup over BeAFix.

In order to qualitatively assess the kind of repairs that ICEBAR is
able to generate over BeAFix, we manually examined the specifica-
tions that were correctly repaired by ICEBAR, but for which BeAFix
was unable to produce a fix. Our analysis indicated that there are
two different reasons preventing BeAFix from finding patches in
these cases. On one hand, some patches require mutations to the

expressions that, according to [11], BeAFix does not currently sup-
port. As an example, consider the following faulty expression from
a specification in the Alloy4Fun benchmark:
no ~adj.adj

The specification is faulty, and a manual fix for it is:
no (iden & adj)

BeAFix cannot produce this fix, as it does not support the kind of
expression mutations to arrive to it from the faulty specification.
Notice that this may be overcome extending the set of mutation
operators for the tool, which at the same time increases the search
space, a critical issue for bounded-exhaustive approaches as the
one BeAFix implements. For the above case, ICEBAR is able to find
the following equivalent fix:
no (~(~(iden & adj))).adj

which is also beyond what BeAFix can produce.
Other cases can in principle be repaired by BeAFix, but would

require multiple mutations to single faulty points. Since BeAFix
explores the space of candidate repairs in breadth-first, i.e., from the
syntactically closer to the faulty expression to more distant ones,
the patches would require BeAFix to reach search depths that are
infeasible for the tool. Consider for instance the following faulty
expression from a specification in the Alloy4Fun benchmark:
all u:User , w:Work, i:Institution |

w in u.profile && (w.source = u || w.source = i)

is repaired by ICEBAR with the following correct patch:
all u:User, w:Work, i:Source { ((w in (Source.(~source))) &&

(((u + (profile.w)) = u) || ((w.source) = ((w.source) - u))))}}

It is clear that the syntactic distance between this patch and the
original expression makes it infeasible to reach, within reasonable
time, for BeAFix. The manual fix for this faulty specification is:
all u:User, w:Work | w in u.profile implies

(u in w.source or some i:Institution | i in w.source

which cannot be produced by BeAFix either, since it requires ex-
pression mutations that the tool does not support.

All these experiments can be replicated as indicated in [3]. We
also provide a Github repository with ICEBAR’s implementation
[4].

4.2 Threats to Validity
To account for threats to validity, we have considered various issues
and made some design decisions in our experimental evaluation.
First, the subjects chosen for the experimental evaluation consti-
tute a chief threat to external validity, in particular due to a lack of
evidence that the results on these benchmarks will generalize to

BeAFix cannot produce this fix, as it does not support the kind of
expression mutations to arrive to it from the faulty specification.
Notice that this may be overcome extending the set of mutation
operators for the tool, which at the same time increases the search
space, a critical issue for bounded-exhaustive approaches as the
one BeAFix implements. For the above case, ICEBAR is able to find
the following equivalent fix:

ICEBAR: Feedback-Driven Iterative Repair of Alloy Specifications ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 1: Impact of ICEBAR in automatically adding scenarios to improve repairability

Benchmark ARepair (automatic tests) ICEBAR
Total AVG. # cases AVG. AVG. AVG. #cases AVG. AVG. (%)Name cases # tests correct overfit time (sec.) # tests ARepair calls correct time (sec.) ARepair time

Imp

Alloy4Fun 1936 37,5 185 1492 31,5 9,8 5,9 1051 915,1 62% 5,7X
ARepair 38 42,9 9 18 152,2 18,6 38,2 21 744,6 56% 2,3X

Table 2: ICEBAR generated tests vs. Random generated tests

Benchmark ICEBAR tests Random tests
Total AVG. AVG.Name cases # tests # cases correct # cases correct

Alloy4Fun 1936 9,8 1051 (54,2%) 11 (0,6%)
ARepair 38 18,6 21 (55,2%) 0,7 (1,8%)

specification that are not supported by ARepair. These are of course
not repairable by ICEBAR either, since this tool is based on repeated
executions of ARepair.

Regarding RQ2, ARepair can only repair, in average, about 1
case out of 38 for ARepair’s benchmark when using random test
suites (compared to the 21 that ICEBAR repairs). In the Alloy4Fun
benchmark, ARepair can correctly fix 11 out of 1936 cases when
using random test suites (compared to the 1051 cases that ICEBAR
is able to repair from this benchmark). These results clearly show
that the size of the test suites involved in ICEBAR’s correct fixes
is not the reason for the technique’s effectiveness: “useful” tests,
that actually guide the repair process, are necessary, and ICEBAR’s
counterexample-driven approach provides them.

Moving to RQ3, when observing the ARepair benchmark results,
BeAFix and ICEBAR have similar fix rates, with BeAFix having a
margin over ICEBAR. Neither of the tools completely subsumes
the other in terms of repairability: 5 cases are repaired by ICEBAR
but not by BeAFix, and 8 cases are repaired by BeAFix but not
ICEBAR (notice that BeAFix repairs 4 cases that are not within the
26 repaired by ARepair with manually designed tests).

The results on the much larger Alloy4Fun benchmark allow us
to further explore these issues. Again, ICEBAR and BeAFix have
good fixing rates, 51% of the total are repaired by BeAFix, and 54%
of the total are repaired by ICEBAR. The overlap figure shows that,
again, none of these tools fully subsumes the other: they overlap in
773 cases (40%), 208 (11%) are repaired by BeAFix but not ICEBAR,
and 278 (14%) are repaired by ICEBAR but not BeAFix. Here we
should notice that 54 cases (2.8%) cannot be handled by ICEBAR
because they use Alloy operators that ARepair does not currently
support. Finally, if we compare the tools in terms of efficiency, in
both benchmarks and for most cases, ICEBAR improves the running
time and provides a significant speedup over BeAFix.

In order to qualitatively assess the kind of repairs that ICEBAR is
able to generate over BeAFix, we manually examined the specifica-
tions that were correctly repaired by ICEBAR, but for which BeAFix
was unable to produce a fix. Our analysis indicated that there are
two different reasons preventing BeAFix from finding patches in
these cases. On one hand, some patches require mutations to the

expressions that, according to [11], BeAFix does not currently sup-
port. As an example, consider the following faulty expression from
a specification in the Alloy4Fun benchmark:
no ~adj.adj

The specification is faulty, and a manual fix for it is:
no (iden & adj)

BeAFix cannot produce this fix, as it does not support the kind of
expression mutations to arrive to it from the faulty specification.
Notice that this may be overcome extending the set of mutation
operators for the tool, which at the same time increases the search
space, a critical issue for bounded-exhaustive approaches as the
one BeAFix implements. For the above case, ICEBAR is able to find
the following equivalent fix:
no (~(~(iden & adj))).adj

which is also beyond what BeAFix can produce.
Other cases can in principle be repaired by BeAFix, but would

require multiple mutations to single faulty points. Since BeAFix
explores the space of candidate repairs in breadth-first, i.e., from the
syntactically closer to the faulty expression to more distant ones,
the patches would require BeAFix to reach search depths that are
infeasible for the tool. Consider for instance the following faulty
expression from a specification in the Alloy4Fun benchmark:
all u:User , w:Work, i:Institution |

w in u.profile && (w.source = u || w.source = i)

is repaired by ICEBAR with the following correct patch:
all u:User, w:Work, i:Source { ((w in (Source.(~source))) &&

(((u + (profile.w)) = u) || ((w.source) = ((w.source) - u))))}}

It is clear that the syntactic distance between this patch and the
original expression makes it infeasible to reach, within reasonable
time, for BeAFix. The manual fix for this faulty specification is:
all u:User, w:Work | w in u.profile implies

(u in w.source or some i:Institution | i in w.source

which cannot be produced by BeAFix either, since it requires ex-
pression mutations that the tool does not support.

All these experiments can be replicated as indicated in [3]. We
also provide a Github repository with ICEBAR’s implementation
[4].

4.2 Threats to Validity
To account for threats to validity, we have considered various issues
and made some design decisions in our experimental evaluation.
First, the subjects chosen for the experimental evaluation consti-
tute a chief threat to external validity, in particular due to a lack of
evidence that the results on these benchmarks will generalize to

which is also beyond what BeAFix can produce.
Other cases can in principle be repaired by BeAFix, but would

require multiple mutations to single faulty points. Since BeAFix
explores the space of candidate repairs in breadth-first, i.e., from the
syntactically closer to the faulty expression to more distant ones,
the patches would require BeAFix to reach search depths that are
infeasible for the tool. Consider for instance the following faulty
expression from a specification in the Alloy4Fun benchmark:

ICEBAR: Feedback-Driven Iterative Repair of Alloy Specifications ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 1: Impact of ICEBAR in automatically adding scenarios to improve repairability

Benchmark ARepair (automatic tests) ICEBAR
Total AVG. # cases AVG. AVG. AVG. #cases AVG. AVG. (%)Name cases # tests correct overfit time (sec.) # tests ARepair calls correct time (sec.) ARepair time

Imp

Alloy4Fun 1936 37,5 185 1492 31,5 9,8 5,9 1051 915,1 62% 5,7X
ARepair 38 42,9 9 18 152,2 18,6 38,2 21 744,6 56% 2,3X

Table 2: ICEBAR generated tests vs. Random generated tests

Benchmark ICEBAR tests Random tests
Total AVG. AVG.Name cases # tests # cases correct # cases correct

Alloy4Fun 1936 9,8 1051 (54,2%) 11 (0,6%)
ARepair 38 18,6 21 (55,2%) 0,7 (1,8%)

specification that are not supported by ARepair. These are of course
not repairable by ICEBAR either, since this tool is based on repeated
executions of ARepair.

Regarding RQ2, ARepair can only repair, in average, about 1
case out of 38 for ARepair’s benchmark when using random test
suites (compared to the 21 that ICEBAR repairs). In the Alloy4Fun
benchmark, ARepair can correctly fix 11 out of 1936 cases when
using random test suites (compared to the 1051 cases that ICEBAR
is able to repair from this benchmark). These results clearly show
that the size of the test suites involved in ICEBAR’s correct fixes
is not the reason for the technique’s effectiveness: “useful” tests,
that actually guide the repair process, are necessary, and ICEBAR’s
counterexample-driven approach provides them.

Moving to RQ3, when observing the ARepair benchmark results,
BeAFix and ICEBAR have similar fix rates, with BeAFix having a
margin over ICEBAR. Neither of the tools completely subsumes
the other in terms of repairability: 5 cases are repaired by ICEBAR
but not by BeAFix, and 8 cases are repaired by BeAFix but not
ICEBAR (notice that BeAFix repairs 4 cases that are not within the
26 repaired by ARepair with manually designed tests).

The results on the much larger Alloy4Fun benchmark allow us
to further explore these issues. Again, ICEBAR and BeAFix have
good fixing rates, 51% of the total are repaired by BeAFix, and 54%
of the total are repaired by ICEBAR. The overlap figure shows that,
again, none of these tools fully subsumes the other: they overlap in
773 cases (40%), 208 (11%) are repaired by BeAFix but not ICEBAR,
and 278 (14%) are repaired by ICEBAR but not BeAFix. Here we
should notice that 54 cases (2.8%) cannot be handled by ICEBAR
because they use Alloy operators that ARepair does not currently
support. Finally, if we compare the tools in terms of efficiency, in
both benchmarks and for most cases, ICEBAR improves the running
time and provides a significant speedup over BeAFix.

In order to qualitatively assess the kind of repairs that ICEBAR is
able to generate over BeAFix, we manually examined the specifica-
tions that were correctly repaired by ICEBAR, but for which BeAFix
was unable to produce a fix. Our analysis indicated that there are
two different reasons preventing BeAFix from finding patches in
these cases. On one hand, some patches require mutations to the

expressions that, according to [11], BeAFix does not currently sup-
port. As an example, consider the following faulty expression from
a specification in the Alloy4Fun benchmark:
no ~adj.adj

The specification is faulty, and a manual fix for it is:
no (iden & adj)

BeAFix cannot produce this fix, as it does not support the kind of
expression mutations to arrive to it from the faulty specification.
Notice that this may be overcome extending the set of mutation
operators for the tool, which at the same time increases the search
space, a critical issue for bounded-exhaustive approaches as the
one BeAFix implements. For the above case, ICEBAR is able to find
the following equivalent fix:
no (~(~(iden & adj))).adj

which is also beyond what BeAFix can produce.
Other cases can in principle be repaired by BeAFix, but would

require multiple mutations to single faulty points. Since BeAFix
explores the space of candidate repairs in breadth-first, i.e., from the
syntactically closer to the faulty expression to more distant ones,
the patches would require BeAFix to reach search depths that are
infeasible for the tool. Consider for instance the following faulty
expression from a specification in the Alloy4Fun benchmark:
all u:User , w:Work, i:Institution |

w in u.profile && (w.source = u || w.source = i)

is repaired by ICEBAR with the following correct patch:
all u:User, w:Work, i:Source { ((w in (Source.(~source))) &&

(((u + (profile.w)) = u) || ((w.source) = ((w.source) - u))))}}

It is clear that the syntactic distance between this patch and the
original expression makes it infeasible to reach, within reasonable
time, for BeAFix. The manual fix for this faulty specification is:
all u:User, w:Work | w in u.profile implies

(u in w.source or some i:Institution | i in w.source

which cannot be produced by BeAFix either, since it requires ex-
pression mutations that the tool does not support.

All these experiments can be replicated as indicated in [3]. We
also provide a Github repository with ICEBAR’s implementation
[4].

4.2 Threats to Validity
To account for threats to validity, we have considered various issues
and made some design decisions in our experimental evaluation.
First, the subjects chosen for the experimental evaluation consti-
tute a chief threat to external validity, in particular due to a lack of
evidence that the results on these benchmarks will generalize to

is repaired by ICEBAR with the following correct patch:

ICEBAR: Feedback-Driven Iterative Repair of Alloy Specifications ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 1: Impact of ICEBAR in automatically adding scenarios to improve repairability

Benchmark ARepair (automatic tests) ICEBAR
Total AVG. # cases AVG. AVG. AVG. #cases AVG. AVG. (%)Name cases # tests correct overfit time (sec.) # tests ARepair calls correct time (sec.) ARepair time

Imp

Alloy4Fun 1936 37,5 185 1492 31,5 9,8 5,9 1051 915,1 62% 5,7X
ARepair 38 42,9 9 18 152,2 18,6 38,2 21 744,6 56% 2,3X

Table 2: ICEBAR generated tests vs. Random generated tests

Benchmark ICEBAR tests Random tests
Total AVG. AVG.Name cases # tests # cases correct # cases correct

Alloy4Fun 1936 9,8 1051 (54,2%) 11 (0,6%)
ARepair 38 18,6 21 (55,2%) 0,7 (1,8%)

specification that are not supported by ARepair. These are of course
not repairable by ICEBAR either, since this tool is based on repeated
executions of ARepair.

Regarding RQ2, ARepair can only repair, in average, about 1
case out of 38 for ARepair’s benchmark when using random test
suites (compared to the 21 that ICEBAR repairs). In the Alloy4Fun
benchmark, ARepair can correctly fix 11 out of 1936 cases when
using random test suites (compared to the 1051 cases that ICEBAR
is able to repair from this benchmark). These results clearly show
that the size of the test suites involved in ICEBAR’s correct fixes
is not the reason for the technique’s effectiveness: “useful” tests,
that actually guide the repair process, are necessary, and ICEBAR’s
counterexample-driven approach provides them.

Moving to RQ3, when observing the ARepair benchmark results,
BeAFix and ICEBAR have similar fix rates, with BeAFix having a
margin over ICEBAR. Neither of the tools completely subsumes
the other in terms of repairability: 5 cases are repaired by ICEBAR
but not by BeAFix, and 8 cases are repaired by BeAFix but not
ICEBAR (notice that BeAFix repairs 4 cases that are not within the
26 repaired by ARepair with manually designed tests).

The results on the much larger Alloy4Fun benchmark allow us
to further explore these issues. Again, ICEBAR and BeAFix have
good fixing rates, 51% of the total are repaired by BeAFix, and 54%
of the total are repaired by ICEBAR. The overlap figure shows that,
again, none of these tools fully subsumes the other: they overlap in
773 cases (40%), 208 (11%) are repaired by BeAFix but not ICEBAR,
and 278 (14%) are repaired by ICEBAR but not BeAFix. Here we
should notice that 54 cases (2.8%) cannot be handled by ICEBAR
because they use Alloy operators that ARepair does not currently
support. Finally, if we compare the tools in terms of efficiency, in
both benchmarks and for most cases, ICEBAR improves the running
time and provides a significant speedup over BeAFix.

In order to qualitatively assess the kind of repairs that ICEBAR is
able to generate over BeAFix, we manually examined the specifica-
tions that were correctly repaired by ICEBAR, but for which BeAFix
was unable to produce a fix. Our analysis indicated that there are
two different reasons preventing BeAFix from finding patches in
these cases. On one hand, some patches require mutations to the

expressions that, according to [11], BeAFix does not currently sup-
port. As an example, consider the following faulty expression from
a specification in the Alloy4Fun benchmark:
no ~adj.adj

The specification is faulty, and a manual fix for it is:
no (iden & adj)

BeAFix cannot produce this fix, as it does not support the kind of
expression mutations to arrive to it from the faulty specification.
Notice that this may be overcome extending the set of mutation
operators for the tool, which at the same time increases the search
space, a critical issue for bounded-exhaustive approaches as the
one BeAFix implements. For the above case, ICEBAR is able to find
the following equivalent fix:
no (~(~(iden & adj))).adj

which is also beyond what BeAFix can produce.
Other cases can in principle be repaired by BeAFix, but would

require multiple mutations to single faulty points. Since BeAFix
explores the space of candidate repairs in breadth-first, i.e., from the
syntactically closer to the faulty expression to more distant ones,
the patches would require BeAFix to reach search depths that are
infeasible for the tool. Consider for instance the following faulty
expression from a specification in the Alloy4Fun benchmark:
all u:User , w:Work, i:Institution |

w in u.profile && (w.source = u || w.source = i)

is repaired by ICEBAR with the following correct patch:
all u:User, w:Work, i:Source { ((w in (Source.(~source))) &&

(((u + (profile.w)) = u) || ((w.source) = ((w.source) - u))))}}

It is clear that the syntactic distance between this patch and the
original expression makes it infeasible to reach, within reasonable
time, for BeAFix. The manual fix for this faulty specification is:
all u:User, w:Work | w in u.profile implies

(u in w.source or some i:Institution | i in w.source

which cannot be produced by BeAFix either, since it requires ex-
pression mutations that the tool does not support.

All these experiments can be replicated as indicated in [3]. We
also provide a Github repository with ICEBAR’s implementation
[4].

4.2 Threats to Validity
To account for threats to validity, we have considered various issues
and made some design decisions in our experimental evaluation.
First, the subjects chosen for the experimental evaluation consti-
tute a chief threat to external validity, in particular due to a lack of
evidence that the results on these benchmarks will generalize to

It is clear that the syntactic distance between this patch and the
original expression makes it infeasible to reach, within reasonable
time, for BeAFix. The manual fix for this faulty specification is:

ICEBAR: Feedback-Driven Iterative Repair of Alloy Specifications ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 1: Impact of ICEBAR in automatically adding scenarios to improve repairability

Benchmark ARepair (automatic tests) ICEBAR
Total AVG. # cases AVG. AVG. AVG. #cases AVG. AVG. (%)Name cases # tests correct overfit time (sec.) # tests ARepair calls correct time (sec.) ARepair time

Imp

Alloy4Fun 1936 37,5 185 1492 31,5 9,8 5,9 1051 915,1 62% 5,7X
ARepair 38 42,9 9 18 152,2 18,6 38,2 21 744,6 56% 2,3X

Table 2: ICEBAR generated tests vs. Random generated tests

Benchmark ICEBAR tests Random tests
Total AVG. AVG.Name cases # tests # cases correct # cases correct

Alloy4Fun 1936 9,8 1051 (54,2%) 11 (0,6%)
ARepair 38 18,6 21 (55,2%) 0,7 (1,8%)

specification that are not supported by ARepair. These are of course
not repairable by ICEBAR either, since this tool is based on repeated
executions of ARepair.

Regarding RQ2, ARepair can only repair, in average, about 1
case out of 38 for ARepair’s benchmark when using random test
suites (compared to the 21 that ICEBAR repairs). In the Alloy4Fun
benchmark, ARepair can correctly fix 11 out of 1936 cases when
using random test suites (compared to the 1051 cases that ICEBAR
is able to repair from this benchmark). These results clearly show
that the size of the test suites involved in ICEBAR’s correct fixes
is not the reason for the technique’s effectiveness: “useful” tests,
that actually guide the repair process, are necessary, and ICEBAR’s
counterexample-driven approach provides them.

Moving to RQ3, when observing the ARepair benchmark results,
BeAFix and ICEBAR have similar fix rates, with BeAFix having a
margin over ICEBAR. Neither of the tools completely subsumes
the other in terms of repairability: 5 cases are repaired by ICEBAR
but not by BeAFix, and 8 cases are repaired by BeAFix but not
ICEBAR (notice that BeAFix repairs 4 cases that are not within the
26 repaired by ARepair with manually designed tests).

The results on the much larger Alloy4Fun benchmark allow us
to further explore these issues. Again, ICEBAR and BeAFix have
good fixing rates, 51% of the total are repaired by BeAFix, and 54%
of the total are repaired by ICEBAR. The overlap figure shows that,
again, none of these tools fully subsumes the other: they overlap in
773 cases (40%), 208 (11%) are repaired by BeAFix but not ICEBAR,
and 278 (14%) are repaired by ICEBAR but not BeAFix. Here we
should notice that 54 cases (2.8%) cannot be handled by ICEBAR
because they use Alloy operators that ARepair does not currently
support. Finally, if we compare the tools in terms of efficiency, in
both benchmarks and for most cases, ICEBAR improves the running
time and provides a significant speedup over BeAFix.

In order to qualitatively assess the kind of repairs that ICEBAR is
able to generate over BeAFix, we manually examined the specifica-
tions that were correctly repaired by ICEBAR, but for which BeAFix
was unable to produce a fix. Our analysis indicated that there are
two different reasons preventing BeAFix from finding patches in
these cases. On one hand, some patches require mutations to the

expressions that, according to [11], BeAFix does not currently sup-
port. As an example, consider the following faulty expression from
a specification in the Alloy4Fun benchmark:
no ~adj.adj

The specification is faulty, and a manual fix for it is:
no (iden & adj)

BeAFix cannot produce this fix, as it does not support the kind of
expression mutations to arrive to it from the faulty specification.
Notice that this may be overcome extending the set of mutation
operators for the tool, which at the same time increases the search
space, a critical issue for bounded-exhaustive approaches as the
one BeAFix implements. For the above case, ICEBAR is able to find
the following equivalent fix:
no (~(~(iden & adj))).adj

which is also beyond what BeAFix can produce.
Other cases can in principle be repaired by BeAFix, but would

require multiple mutations to single faulty points. Since BeAFix
explores the space of candidate repairs in breadth-first, i.e., from the
syntactically closer to the faulty expression to more distant ones,
the patches would require BeAFix to reach search depths that are
infeasible for the tool. Consider for instance the following faulty
expression from a specification in the Alloy4Fun benchmark:
all u:User , w:Work, i:Institution |

w in u.profile && (w.source = u || w.source = i)

is repaired by ICEBAR with the following correct patch:
all u:User, w:Work, i:Source { ((w in (Source.(~source))) &&

(((u + (profile.w)) = u) || ((w.source) = ((w.source) - u))))}}

It is clear that the syntactic distance between this patch and the
original expression makes it infeasible to reach, within reasonable
time, for BeAFix. The manual fix for this faulty specification is:
all u:User, w:Work | w in u.profile implies

(u in w.source or some i:Institution | i in w.source

which cannot be produced by BeAFix either, since it requires ex-
pression mutations that the tool does not support.

All these experiments can be replicated as indicated in [3]. We
also provide a Github repository with ICEBAR’s implementation
[4].

4.2 Threats to Validity
To account for threats to validity, we have considered various issues
and made some design decisions in our experimental evaluation.
First, the subjects chosen for the experimental evaluation consti-
tute a chief threat to external validity, in particular due to a lack of
evidence that the results on these benchmarks will generalize to

which cannot be produced by BeAFix either, since it requires ex-
pression mutations that the tool does not support.

All these experiments can be replicated as indicated in [3]. We
also provide a Github repository with ICEBAR’s implementation
[4].

4.2 Threats to Validity
To account for threats to validity, we have considered various issues
and made some design decisions in our experimental evaluation.

ASE ’22, October 10–14, 2022, Rochester, MI, USA S. Gutiérrez Brida, G. Regis, G. Zheng, H. Bagheri, T. Nguyen, N. Aguirre, and M. Frias

Table 3: Comparison of Alloy specification repair tools

Benchmark ARepair (automatic tests) ICEBAR BeAFix
Total # cases AVG. # cases AVG. # cases AVG.Model cases correct overfit TMO time (s) correct overfit TMO time (s) correct overfit TMO time (s)

graphs 283 19 243 0 1,4 237 0 0 15,6(43X) 232 0 51 673,1
lts 249 1 248 0 0,4 73 0 2 71,6(42X) 41 0 208 3013,0
cv 138 2 116 0 2,2 86 0 7 479,4(3X) 82 0 56 1472,0
production 61 27 32 0 2 36 0 0 71,7(4X) 56 0 5 311,4
trash 206 48 140 0 4,7 195 0 2 101,5(4X) 183 0 23 405,0A

llo
y4
Fu

n

classroom 999 88 713 0 59,2 424 0 352 1661,5(1X) 387 0 612 2221,7
Summary 1936 185 1492 0 31,5 1051 0 363 915,1 981 0 955 1788,3

addr 1 1 0 0 5,1 1 0 0 9,1 1 0 0 0,5(18X)
arr 2 2 0 0 4,7 2 0 0 47 2 0 0 2,4(19X)
balancedBST 3 1 1 0 268,6 2 0 1 1528,8(1X) 1 0 2 2400,1
bempl 1 0 0 0 3,3 1 0 0 28,8(124X) 0 0 1 3600,0
cd 2 0 2 0 2,2 2 0 0 5,8 2 0 0 0,7(8X)
ctree 1 1 0 0 3,9 0 0 0 8,6(418X) 0 0 1 3600,0
dll 4 0 3 0 20,2 3 0 1 1742,9 3 0 1 902(2X)
farmer 1 0 1 0 32,7 0 0 0 3600,0 0 0 1 3600,0
fsm 2 2 0 0 3,9 2 0 0 178,8(10X) 1 0 1 1800,2
grade 1 0 1 0 101,7 1 0 0 4,5(800X) 0 0 1 3600,0
other 1 0 0 0 2,9 0 0 0 31,1 1 0 0 3,1(10X)

A
Re

pa
ir

student 19 2 10 0 248,7 7 0 3 654,6(2X) 13 0 6 1185,6
Summary 38 9 18 0 152,2 21 0 5 744,6 24 0 14 1351,2

First, the subjects chosen for the experimental evaluation consti-
tute a chief threat to external validity, in particular due to a lack of
evidence that the results on these benchmarks will generalize to
arbitrary specifications. We chose the considered benchmarks be-
cause they have been previously used to evaluate other Alloy repair
techniques. Also, each specification has a correct version against
which we can automatically contrast to assess overfitting, and all
faulty specifications in these benchmarks are real human-written
defects (as opposed to synthetic defects, for which generalizability
is even harder to argue for). Note that we have considered the whole
benchmarks, composed of a large number of faulty specifications,
to avoid unintentional cherry-picking of specific subsets that may
inadvertently favor or disfavor some of the tools. The benchmarks
are admittedly composed of relatively small specifications, and
they may not capture many aspects of complexity present in larger
cases. They do, however, cover the entirety of the Alloy language,
and involve some complex kernels characteristic of larger realistic
Alloy specifications. We aim to promote comparative evaluation
and reproducibility of experimental results, which requires using
standard benchmarks and releasing implementations. The selected
benchmarks are the ones that the Alloy specification repair consid-
ers; and as indicated above, ICEBAR and all the experimental data
are available for experimental replication and validation.

ICEBAR depends on various external tools: Alloy Analyzer (as
the core for instance generation and specification checking), and
ARepair (for iteratively generating specification repairs from faulty
specifications and test suites). While these tools are not proved
correct, they have been used relatively extensively in the context of
Alloy specification, and are considered robust, providing us a good
degree of confidence on their soundness. We have taken official
releases of these tools, and used them without any modifications
(with the exception of a patch to a bug in ARepair that caused

the tool to crash2), to avoid accidentally affecting these tools (we
have inherited grammar limitations in ARepair, that we decided
not to resolve, to use externally developed tools and not affect our
experiments). Also, all these tools use SAT solvers as underlying
constraint engines, which can have some degree of nondetermin-
ism. We have run our experiments multiple times, and observed a
negligible effect of low level SAT solving nondeterminism in these
tools’ results.

A main threat to internal validity is the verification of overfitting
and correct patches. While these tasks may be performed manually,
doing so would increase the error proneness, and would be ineffec-
tive for the large Alloy4Fun benchmark. Having correct versions of
the to-be-repaired specifications allowed us to reduce this threat,
by using Alloy Analyzer to perform the checking.

5 RELATEDWORK
Alloy Repair. ICEBAR uses ARepair [55, 56] as an backend tool.

ARepair repairs faulty Alloy specifications based on a set of Al-
loy tests. It combines imperative program repair techniques, like
sketching [48] and mutation-based repairs [32]. ARepair can fix Al-
loy specifications with multiple bugs at different locations. It uses
AlloyFL [58] to localize faults, and in the experimental evaluations,
the test suites it requires to perform the repair have been automati-
cally produced using AUnit [51], from a correct version of the faulty
specification, to account for automated classification of generates
tests as desired or undesired. By using a non-exhaustive approach
for patch generation, ARepair effectively reduces its search space
and the number of repair candidates. However, ARepair is more
susceptible to produce overfitting repairs, due to its use of tests as
oracles.

2We will submit the patch to the official repository of the tool, as a pull request.

ICEBAR: Feedback-Driven Iterative Repair of Alloy Specifications ASE ’22, October 10–14, 2022, Rochester, MI, USA

ICEBAR mitigates overfitting by using property-based oracles,
which represent large families of intended behavior tests. The afore-
mentioned BeAFix tool [11] also repairs Alloy specifications using
property based oracles. Contrary to ARepair, BeAFix does not per-
form fault localization, and instead can use arbitrary external fault
localization tools, like AlloyFL [25, 58] or FLACK [63]. It also uses
Alloy counterexamples, but instead of doing so only to reduce over-
fitting (as we do with ICEBAR), they are also exploited to prune
certain partial fixes that can never lead to repairs. BeAFix finds
repairs by mutations. Unlike most mutation based approaches, such
as Gopinath et al. [17], Kim et al. [26] and Le Goues et al. [32],
which restrict the search space by limiting mutation operations,
BeAFix exhaustively searches for all possible candidates up to a
certain bound. ICEBAR is designed for a test-based repair tool.

Automatic Program Repair and Program Synthesis. Due to the
pressing demand for reliable software, automatic program repair
has steadily gained research interests and produced many novel re-
pair techniques. Constraint-based repair approaches, e.g., AFix [22],
Angelix [39], SemFix [42], FoRenSiC [10], StarFix [62], Gopinath et
al. [17], Jobstmann et al. [23], generate constraints and solve them
for patches that are correct by construction (i.e., guaranteed to
adhere to a specification or pass a test suite). In contrast, generate-
and-validate repair approaches, e.g., GenProg [32], Pachika [12],
PAR [26], Debroy and Wong [13], Prophet [36], find multiple repair
candidates (e.g., using stochastic search or invariant inferences) and
verify them against given specifications. Learning-based repair ap-
proaches, e.g., Fixminer [27], DLFix [33], DeepDelta [40], iFixR [28],
learns fixes from repair examples.

Some program synthesis and repair researches, e.g., [7, 30, 39,
42, 43, 49, 50], integrate existing tools, e.g., test-input generation
or symbolic execution, to synthesize desired programs. In general,
such integrations are common in modern synthesis works including
the multi-disciplinary ExCAPE project [1] and the SyGuS competi-
tion [2], and have produced many practical and useful tools such
as Sketch that generates low-level bit-stream programs [48], Au-
tograder that provides feedback on programming homework [46],
and FlashFill that constructs Excel macros [18, 19]. ICEBAR in-
herits these ideas and integrates a counterexample-driven repair
process with ARepair. Although our technique is in essence similar
to Sketch [48], the differences in context make our approach vary
from sketching, in particular on how counterexamples are exploited.
More precisely, the counterexamples that guide Sketch are always
reliable, i.e., Sketch does not need to deal with the “weak oracle”
problem inherent to our context, which leads us to assume that our
produced instances are valid/invalid, and results in branching in
the search for repairs.

6 CONCLUSION
We introduced ICEBAR, a technique that builds upon ARepair and
deals with the inherent overfitting arising from using test suites
as repair oracles. By using property-based oracles to validate fixes
and strengthen the test suite when a violation is found, ICEBAR is
effective in mitigating overfitting and generating complex patches.
Furthermore, using properties as oracles (rather than tests) makes

ICEBAR methodologically better suited for Alloy users, contribut-
ing to the Alloy model development process. ICEBAR is comple-
mentary to other state-of-the-art Alloy repair tools such as BeAFix:
both tools produce repairs that the other cannot; BeAFix leads to
shorter/clearer repairs, while ICEBAR is significantly more efficient.

This paper opens various lines for further work. Firstly, our
technique is mainly focused on dealing with overfitting, the most
pressing concern in automated repair. The readability of ICEBAR’s
patches is inherited from ARepair’s, and clearly calls for improve-
ment. Improving patch readability may be achieved either by im-
proving ARepair, or by post-processing ICEBAR’s output, e.g., ap-
plying some syntactic simplification techniques. We plan to explore
both options as future work. Secondly, the effectiveness of ICEBAR
may be affected by the “initial” test suite from which the repair is
launched. Although we have not studied this issue in this paper, we
plan to evaluate different strategies to generate initial test suites,
and how these impact ICEBAR’s repairability metrics.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful comments.
This work was supported in part by awards CCF-1755890, CCF-
1618132, CCF-2139845, and CCF-2124116 from the National Science
Foundation; by Argentina’s National Agency of Scientific and Tech-
nological Promotion (AN-PCyT) through projects PICT 2016-1384,
2017-1979 and 2017-2622; and by an Amazon Research Award.

REFERENCES
[1] 2020. ExCAPE project. https://excape.cis.upenn.edu/.
[2] 2020. SyGuS. https://sygus.org/.
[3] 2022. ICEBAR replication package. https://sites.google.com/view/icebar-

evaluation.
[4] 2022 (accessed August 31, 2022). ICEBAR’s Github Repository. https://github.

com/saiema/ICEBAR.
[5] Pablo Abad, Nazareno Aguirre, Valeria S. Bengolea, Daniel Ciolek, Marcelo F.

Frias, Juan P. Galeotti, Tom Maibaum, Mariano M. Moscato, Nicolás Rosner, and
Ignacio Vissani. 2013. Improving Test Generation under Rich Contracts by Tight
Bounds and Incremental SAT Solving. In Sixth IEEE International Conference on
Software Testing, Verification and Validation, ICST 2013, Luxembourg, Luxembourg,
March 18-22, 2013. IEEE Computer Society, 21–30. https://doi.org/10.1109/ICST.
2013.46

[6] Mohannad Alhanahnah, Clay Stevens, and Hamid Bagheri. 2020. Scalable analysis
of interaction threats in IoT systems. In ISSTA ’20: 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, Virtual Event, USA, July 18-22,
2020, Sarfraz Khurshid and Corina S. Pasareanu (Eds.). ACM, 272–285. https:
//doi.org/10.1145/3395363.3397347

[7] Paul Attie, Ali Cherri, Kinan Dak Al Bab, Mohamad Sakr, and Jad Saklawi. 2015.
Model and program repair via sat solving. In MEMOCODE. IEEE, 148–157.

[8] Hamid Bagheri, Eunsuk Kang, Sam Malek, and Daniel Jackson. 2018. A formal
approach for detection of security flaws in the android permission system. Formal
Asp. Comput. 30, 5 (2018), 525–544. https://doi.org/10.1007/s00165-017-0445-z

[9] Hamid Bagheri, Alireza Sadeghi, Reyhaneh Jabbarvand Behrouz, and Sam Malek.
2016. Practical, Formal Synthesis and Automatic Enforcement of Security Policies
for Android. In 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2016, Toulouse, France, June 28 - July 1, 2016. IEEE
Computer Society, 514–525. https://doi.org/10.1109/DSN.2016.53

[10] Roderick Bloem, Rolf Drechsler, Görschwin Fey, Alexander Finder, Georg Hof-
ferek, Robert Könighofer, Jaan Raik, Urmas Repinski, and André Sülflow. 2013.
FoREnSiC– An Automatic Debugging Environment for C Programs. In Hardware
and Software: Verification and Testing, Armin Biere, Amir Nahir, and Tanja Vos
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 260–265.

[11] Simón Gutiérrez Brida, Germán Regis, Guolong Zheng, Hamid Bagheri, ThanhVu
Nguyen, Nazareno Aguirre, and Marcelo F. Frias. 2021. Bounded Exhaustive
Search of Alloy Specification Repairs. In 43rd IEEE/ACM International Conference
on Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021. IEEE, 1135–
1147. https://doi.org/10.1109/ICSE43902.2021.00105

https://excape.cis.upenn.edu/
https://sygus.org/
https://sites.google.com/view/icebar-evaluation
https://sites.google.com/view/icebar-evaluation
https://github.com/saiema/ICEBAR
https://github.com/saiema/ICEBAR
https://doi.org/10.1109/ICST.2013.46
https://doi.org/10.1109/ICST.2013.46
https://doi.org/10.1145/3395363.3397347
https://doi.org/10.1145/3395363.3397347
https://doi.org/10.1007/s00165-017-0445-z
https://doi.org/10.1109/DSN.2016.53
https://doi.org/10.1109/ICSE43902.2021.00105

ASE ’22, October 10–14, 2022, Rochester, MI, USA S. Gutiérrez Brida, G. Regis, G. Zheng, H. Bagheri, T. Nguyen, N. Aguirre, and M. Frias

[12] Valentin Dallmeier, Andreas Zeller, and Bertrand Meyer. 2009. Generating Fixes
from Object Behavior Anomalies. In Proceedings of the 2009 IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE ’09). IEEE Computer
Society, USA, 550–554. https://doi.org/10.1109/ASE.2009.15

[13] Vidroha Debroy andW EricWong. 2010. Using mutation to automatically suggest
fixes for faulty programs. In Software Testing, Verification and Validation. IEEE,
65–74.

[14] Greg Dennis, Felix Sheng-Ho Chang, and Daniel Jackson. 2006. Modular
verification of code with SAT. In Proceedings of the ACM/SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, ISSTA 2006, Portland, Maine,
USA, July 17-20, 2006, Lori L. Pollock and Mauro Pezzè (Eds.). ACM, 109–120.
https://doi.org/10.1145/1146238.1146251

[15] Juan P. Galeotti, Nicolás Rosner, Carlos Gustavo López Pombo, and Marcelo F.
Frias. 2013. TACO: Efficient SAT-Based Bounded Verification Using Symmetry
Breaking and Tight Bounds. IEEE Trans. Software Eng. 39, 9 (2013), 1283–1307.
https://doi.org/10.1109/TSE.2013.15

[16] Juan P. Galeotti, Nicolás Rosner, Carlos López Pombo, and Marcelo F. Frias. 2010.
Analysis of invariants for efficient bounded verification. In Proceedings of the
Nineteenth International Symposium on Software Testing and Analysis, ISSTA 2010,
Trento, Italy, July 12-16, 2010, Paolo Tonella and Alessandro Orso (Eds.). ACM,
25–36. https://doi.org/10.1145/1831708.1831712

[17] Divya Gopinath, Muhammad Zubair Malik, and Sarfraz Khurshid. 2011.
Specification-Based Program Repair Using SAT. In Tools and Algorithms for the
Construction and Analysis of Systems - 17th International Conference, TACAS 2011,
Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011. Proceedings (Lecture
Notes in Computer Science, Vol. 6605), Parosh Aziz Abdulla and K. Rustan M. Leino
(Eds.). Springer, 173–188. https://doi.org/10.1007/978-3-642-19835-9_15

[18] Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using
Input-output Examples. In POPL (Austin, Texas, USA). ACM, 317–330.

[19] Sumit Gulwani, William R. Harris, and Rishabh Singh. 2012. Spreadsheet Data
Manipulation Using Examples. Commun. ACM 55, 8 (Aug. 2012), 97–105. https:
//doi.org/10.1145/2240236.2240260

[20] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. DeepFix:
Fixing Common C Language Errors by Deep Learning. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence (San Francisco, California,
USA) (AAAI’17). AAAI Press, 1345–1351.

[21] Daniel Jackson. 2006. Software Abstractions - Logic, Language, and Analysis. MIT
Press.

[22] Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit. 2011. Automated
Atomicity-Violation Fixing. SIGPLAN Not. 46, 6 (June 2011), 389–400. https:
//doi.org/10.1145/1993316.1993544

[23] Barbara Jobstmann, Andreas Griesmayer, and Roderick Bloem. 2005. Program
repair as a game. In Computer Aided Verification. 226–238.

[24] Shadi Abdul Khalek, Guowei Yang, Lingming Zhang, Darko Marinov, and Sarfraz
Khurshid. 2011. TestEra: A tool for testing Java programs using alloy spec-
ifications. In 26th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2011), Lawrence, KS, USA, November 6-10, 2011, Perry Alexan-
der, Corina S. Pasareanu, and John G. Hosking (Eds.). IEEE Computer Society,
608–611. https://doi.org/10.1109/ASE.2011.6100137

[25] Tanvir Ahmed Khan, Allison Sullivan, and Kaiyuan Wang. 2021. AlloyFL: A
Fault Localization Framework for Alloy. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (Athens, Greece) (ESEC/FSE 2021). Asso-
ciation for Computing Machinery, New York, NY, USA, 1535–1539. https:
//doi.org/10.1145/3468264.3473116

[26] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
patch generation learned from human-written patches. In 35th International
Conference on Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26,
2013, David Notkin, Betty H. C. Cheng, and Klaus Pohl (Eds.). IEEE Computer
Society, 802–811. https://doi.org/10.1109/ICSE.2013.6606626

[27] Anil Koyuncu, Kui Liu, Tegawendé F Bissyandé, Dongsun Kim, Jacques Klein,
Martin Monperrus, and Yves Le Traon. 2020. Fixminer: Mining relevant fix
patterns for automated program repair. Empirical Software Engineering (2020),
1–45.

[28] Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Martin Monper-
rus, Jacques Klein, and Yves Le Traon. 2019. IFixR: Bug Report Driven Program
Repair. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing (Tallinn, Estonia) (ESEC/FSE 2019). Association for Computing Machinery,
New York, NY, USA, 314–325. https://doi.org/10.1145/3338906.3338935

[29] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
2017. JFIX: Semantics-Based Repair of Java Programs via Symbolic PathFinder
(ISSTA 2017). Association for ComputingMachinery, New York, NY, USA, 376–379.
https://doi.org/10.1145/3092703.3098225

[30] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
2017. S3: Syntax- and Semantic-Guided Repair Synthesis via Programming
by Examples. In Proceedings of the 2017 11th Joint Meeting on Foundations of

Software Engineering (Paderborn, Germany) (ESEC/FSE 2017). Association for
Computing Machinery, New York, NY, USA, 593–604. https://doi.org/10.1145/
3106237.3106309

[31] Xuan-Bach D. Le, Ferdian Thung, David Lo, and Claire Le Goues. 2018. Over-
fitting in Semantics-Based Automated Program Repair. In Proceedings of the
40th International Conference on Software Engineering (Gothenburg, Sweden)
(ICSE ’18). Association for Computing Machinery, New York, NY, USA, 163.
https://doi.org/10.1145/3180155.3182536

[32] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A Generic Method for Automatic Software Repair. IEEE Trans. Software
Eng. 38, 1 (2012), 54–72. https://doi.org/10.1109/TSE.2011.104

[33] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2020. DLFix: Context-Based Code
Transformation Learning for Automated Program Repair. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South
Korea) (ICSE ’20). Association for Computing Machinery, New York, NY, USA,
602–614. https://doi.org/10.1145/3377811.3380345

[34] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019. TBar:
Revisiting Template-Based Automated Program Repair. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis (Beijing,
China) (ISSTA 2019). Association for Computing Machinery, New York, NY, USA,
31–42. https://doi.org/10.1145/3293882.3330577

[35] Fan Long and Martin Rinard. 2015. Staged Program Repair with Condition Syn-
thesis. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering (Bergamo, Italy) (ESEC/FSE 2015). Association for Computing Ma-
chinery, New York, NY, USA, 166–178. https://doi.org/10.1145/2786805.2786811

[36] Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learn-
ing Correct Code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (St. Petersburg, FL, USA)
(POPL ’16). Association for Computing Machinery, New York, NY, USA, 298–312.
https://doi.org/10.1145/2837614.2837617

[37] Nuno Macedo, Alcino Cunha, José Pereira, Renato Carvalho, Ricardo Silva, Ana
C. R. Paiva, Miguel Sozinho Ramalho, and Daniel Castro Silva. 2020. Experiences
on Teaching Alloy with an Automated Assessment Platform. In Rigorous State-
Based Methods - 7th International Conference, ABZ 2020, Ulm, Germany, May
27-29, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12071), Alexander
Raschke, Dominique Méry, and Frank Houdek (Eds.). Springer, 61–77. https:
//doi.org/10.1007/978-3-030-48077-6_5

[38] Sergey Mechtaev, J. Yi, and A. Roychoudhury. 2015. DirectFix: Looking for
Simple Program Repairs. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, Vol. 1. 448–458. https://doi.org/10.1109/ICSE.2015.63

[39] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable
Multiline Program Patch Synthesis via Symbolic Analysis. In Proceedings of the
38th International Conference on Software Engineering, ICSE 2016, Austin, TX, USA,
May 14-22, 2016, Laura K. Dillon, Willem Visser, and Laurie Williams (Eds.). ACM,
691–701. https://doi.org/10.1145/2884781.2884807

[40] Ali Mesbah, Andrew Rice, Emily Johnston, Nick Glorioso, and Edward Aftandil-
ian. 2019. DeepDelta: Learning to Repair Compilation Errors. In Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Tallinn, Estonia)
(ESEC/FSE 2019). Association for Computing Machinery, New York, NY, USA,
925–936. https://doi.org/10.1145/3338906.3340455

[41] Nariman Mirzaei, Joshua Garcia, Hamid Bagheri, Alireza Sadeghi, and SamMalek.
2016. Reducing combinatorics in GUI testing of android applications. In Pro-
ceedings of the 38th International Conference on Software Engineering, ICSE 2016,
Austin, TX, USA, May 14-22, 2016, Laura K. Dillon, Willem Visser, and Laurie A.
Williams (Eds.). ACM, 559–570. https://doi.org/10.1145/2884781.2884853

[42] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. 2013. SemFix: Program
repair via semantic analysis. In 2013 35th International Conference on Software
Engineering (ICSE). 772–781. https://doi.org/10.1109/ICSE.2013.6606623

[43] ThanhVu Nguyen, Westley Weimer, Deepak Kapur, and Stephanie Forrest. 2017.
Connecting program synthesis and reachability: Automatic program repair using
test-input generation. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 301–318.

[44] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An Analysis of
Patch Plausibility and Correctness for Generate-and-Validate Patch Generation
Systems. In Proceedings of the 2015 International Symposium on Software Testing
and Analysis (Baltimore, MD, USA) (ISSTA 2015). Association for Computing
Machinery, New York, NY, USA, 24–36. https://doi.org/10.1145/2771783.2771791

[45] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad. 2017. Elixir: Effective object-
oriented program repair. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). 648–659. https://doi.org/10.1109/ASE.
2017.8115675

[46] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013. Automated
feedback generation for introductory programming assignments. In PLDI. ACM,
15–26.

[47] Edward K. Smith, Earl T. Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the Cure
Worse than the Disease? Overfitting in Automated Program Repair. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering (Bergamo,

https://doi.org/10.1109/ASE.2009.15
https://doi.org/10.1145/1146238.1146251
https://doi.org/10.1109/TSE.2013.15
https://doi.org/10.1145/1831708.1831712
https://doi.org/10.1007/978-3-642-19835-9_15
https://doi.org/10.1145/2240236.2240260
https://doi.org/10.1145/2240236.2240260
https://doi.org/10.1145/1993316.1993544
https://doi.org/10.1145/1993316.1993544
https://doi.org/10.1109/ASE.2011.6100137
https://doi.org/10.1145/3468264.3473116
https://doi.org/10.1145/3468264.3473116
https://doi.org/10.1109/ICSE.2013.6606626
https://doi.org/10.1145/3338906.3338935
https://doi.org/10.1145/3092703.3098225
https://doi.org/10.1145/3106237.3106309
https://doi.org/10.1145/3106237.3106309
https://doi.org/10.1145/3180155.3182536
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1145/3377811.3380345
https://doi.org/10.1145/3293882.3330577
https://doi.org/10.1145/2786805.2786811
https://doi.org/10.1145/2837614.2837617
https://doi.org/10.1007/978-3-030-48077-6_5
https://doi.org/10.1007/978-3-030-48077-6_5
https://doi.org/10.1109/ICSE.2015.63
https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1145/3338906.3340455
https://doi.org/10.1145/2884781.2884853
https://doi.org/10.1109/ICSE.2013.6606623
https://doi.org/10.1145/2771783.2771791
https://doi.org/10.1109/ASE.2017.8115675
https://doi.org/10.1109/ASE.2017.8115675

ICEBAR: Feedback-Driven Iterative Repair of Alloy Specifications ASE ’22, October 10–14, 2022, Rochester, MI, USA

Italy) (ESEC/FSE 2015). Association for Computing Machinery, New York, NY,
USA, 532–543. https://doi.org/10.1145/2786805.2786825

[48] Armando Solar-Lezama. 2013. Program sketching. Int. J. Softw. Tools Technol.
Transf. 15, 5-6 (2013), 475–495. https://doi.org/10.1007/s10009-012-0249-7

[49] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. 2010. From program
verification to program synthesis. In POPL. ACM, 313–326.

[50] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S Foster. 2013. Template-based
program verification and program synthesis. Soft. Tools for Technol. Transfer 15,
5-6 (2013), 497–518.

[51] Allison Sullivan, Kaiyuan Wang, and Sarfraz Khurshid. 2018. AUnit: A Test
Automation Tool for Alloy. In 11th IEEE International Conference on Software
Testing, Verification and Validation, ICST 2018, Västerås, Sweden, April 9-13, 2018.
IEEE Computer Society, 398–403. https://doi.org/10.1109/ICST.2018.00047

[52] Allison Sullivan, Kaiyuan Wang, Razieh Nokhbeh Zaeem, and Sarfraz Khurshid.
2017. Automated Test Generation and Mutation Testing for Alloy. In 2017 IEEE
International Conference on Software Testing, Verification and Validation, ICST
2017, Tokyo, Japan, March 13-17, 2017. IEEE Computer Society, 264–275. https:
//doi.org/10.1109/ICST.2017.31

[53] Shin Hwei Tan, Hiroaki Yoshida, Mukul R. Prasad, and Abhik Roychoudhury. 2016.
Anti-Patterns in Search-Based Program Repair. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(Seattle, WA, USA) (FSE 2016). Association for Computing Machinery, New York,
NY, USA, 727–738. https://doi.org/10.1145/2950290.2950295

[54] Emina Torlak and Daniel Jackson. 2007. Kodkod: A Relational Model Finder. In
Tools and Algorithms for the Construction and Analysis of Systems, 13th Interna-
tional Conference, TACAS 2007, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2007 Braga, Portugal, March 24 - April 1,
2007, Proceedings (Lecture Notes in Computer Science, Vol. 4424), Orna Grumberg
and Michael Huth (Eds.). Springer, 632–647. https://doi.org/10.1007/978-3-540-
71209-1_49

[55] Kaiyuan Wang, Allison Sullivan, and Sarfraz Khurshid. 2018. Automated model
repair for Alloy. In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, ASE 2018, Montpellier, France, September 3-7,
2018, Marianne Huchard, Christian Kästner, and Gordon Fraser (Eds.). ACM,
577–588. https://doi.org/10.1145/3238147.3238162

[56] Kaiyuan Wang, Allison Sullivan, and Sarfraz Khurshid. 2019. ARepair: a repair
framework for alloy. In Proceedings of the 41st International Conference on Software
Engineering: Companion Proceedings, ICSE 2019, Montreal, QC, Canada, May 25-31,
2019, Joanne M. Atlee, Tevfik Bultan, and JonWhittle (Eds.). IEEE / ACM, 103–106.
https://doi.org/10.1109/ICSE-Companion.2019.00049

[57] Kaiyuan Wang, Allison Sullivan, Manos Koukoutos, Darko Marinov, and Sar-
fraz Khurshid. 2018. Systematic Generation of Non-equivalent Expressions
for Relational Algebra. In Abstract State Machines, Alloy, B, TLA, VDM, and
Z - 6th International Conference, ABZ 2018, Southampton, UK, June 5-8, 2018,
Proceedings (Lecture Notes in Computer Science, Vol. 10817), Michael J. Butler,
Alexander Raschke, Thai Son Hoang, and Klaus Reichl (Eds.). Springer, 105–120.
https://doi.org/10.1007/978-3-319-91271-4_8

[58] Kaiyuan Wang, Allison Sullivan, Darko Marinov, and Sarfraz Khurshid. 2020.
Fault Localization for Declarative Models in Alloy. In 31st IEEE International
Symposium on Software Reliability Engineering, ISSRE 2020, Coimbra, Portugal,
October 12-15, 2020, Marco Vieira, Henrique Madeira, Nuno Antunes, and Zheng
Zheng (Eds.). IEEE, 391–402. https://doi.org/10.1109/ISSRE5003.2020.00044

[59] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.
Context-Aware Patch Generation for Better Automated Program Repair. In Pro-
ceedings of the 40th International Conference on Software Engineering (Gothenburg,
Sweden) (ICSE ’18). Association for Computing Machinery, New York, NY, USA,
1–11. https://doi.org/10.1145/3180155.3180233

[60] J. Xuan, M. Martinez, F. DeMarco, M. Clément, S. L. Marcote, T. Durieux, D.
Le Berre, and M. Monperrus. 2017. Nopol: Automatic Repair of Conditional
Statement Bugs in Java Programs. IEEE Transactions on Software Engineering 43,
1 (2017), 34–55. https://doi.org/10.1109/TSE.2016.2560811

[61] P. Zave. 2017. Reasoning About Identifier Spaces: How to Make Chord Correct.
IEEE Transactions on Software Engineering 43, 12 (2017), 1144–1156.

[62] Guolong Zheng, Quang Loc Le, ThanhVu Nguyen, and Quoc-Sang Phan. 2019.
Automatic Data Structure Repair UsingSeparation Logic. SIGSOFT Softw. Eng.
Notes 43, 4 (Jan. 2019), 66. https://doi.org/10.1145/3282517.3282528

[63] Guolong Zheng, ThanhVu Nguyen, Simón Gutiérrez Brida, Germán Regis,
Marcelo F. Frias, Nazareno Aguirre, and Hamid Bagheri. 2021. FLACK:
Counterexample-Guided Fault Localization for Alloy Models. In 43rd IEEE/ACM
International Conference on Software Engineering, ICSE 2021, Madrid, Spain, 22-30
May 2021. IEEE, 637–648. https://doi.org/10.1109/ICSE43902.2021.00065

https://doi.org/10.1145/2786805.2786825
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1109/ICST.2018.00047
https://doi.org/10.1109/ICST.2017.31
https://doi.org/10.1109/ICST.2017.31
https://doi.org/10.1145/2950290.2950295
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1145/3238147.3238162
https://doi.org/10.1109/ICSE-Companion.2019.00049
https://doi.org/10.1007/978-3-319-91271-4_8
https://doi.org/10.1109/ISSRE5003.2020.00044
https://doi.org/10.1145/3180155.3180233
https://doi.org/10.1109/TSE.2016.2560811
https://doi.org/10.1145/3282517.3282528
https://doi.org/10.1109/ICSE43902.2021.00065

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Alloy Modeling
	2.2 Alloy Test Cases
	2.3 Specification Defects and Repair

	3 The ICEBAR Approach
	3.1 Overview of the Technique
	3.2 Model Repair
	3.3 Model Validation
	3.4 Test generation

	4 Evaluation
	4.1 Assessment
	4.2 Threats to Validity

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

