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When the reduced twisted C∗-algebra C∗
r (G, c) of a non-principal groupoid G admits

a Cartan subalgebra, Renault’s work on Cartan subalgebras implies the existence

of another groupoid description of C∗
r (G, c). In an earlier paper, joint with Reznikoff

and Wright, we identified situations where such a Cartan subalgebra arises from a

subgroupoid S of G. In this paper, we study the relationship between the original

groupoids S,G and the Weyl groupoid and twist associated to the Cartan pair. We

first identify the spectrum B of the Cartan subalgebra C∗
r (S, c). We then show that the

quotient groupoid G/S acts on B, and that the corresponding action groupoid is exactly

the Weyl groupoid of the Cartan pair. Lastly, we show that if the quotient map G → G/S

admits a continuous section, then the Weyl twist is also given by an explicit continuous

2-cocycle on G/S ⋉B.

1 Introduction

One of the earliest theorems about C∗-algebras, the Gelfand–Naimark Theorem, estab-

lishes that any commutative C∗-algebra is of the form C0(X) for a locally compact

Hausdorff space X. In addition to inspiring the “noncommutative topology” approach

Communicated by Prof. Dan-Virgil Voiculescu
Received October 13, 2020; Revised February 10, 2021; Accepted April 7, 2021

© The Author(s) 2021. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse,
distribution, and reproduction in any medium, provided the original work is properly cited.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
2
/2

0
/1

5
7
2
1
/6

3
1
4
4
4
9
 b

y
 T

h
e
 U

n
iv

e
rs

ity
 o

f M
o
n
ta

n
a
 u

s
e
r o

n
 0

1
 S

e
p
te

m
b
e
r 2

0
2
3



15722 A. Duwenig et al.

to C∗-algebras, the Gelfand–Naimark Theorem has also led researchers to search

for Abelian subalgebras inside noncommutative C∗-algebras, with the goal of using

topological tools to analyze the Abelian subalgebra and from there to obtain a better

understanding of its noncommutative host. This program has been particularly suc-

cessful when the subalgebra is Cartan (see Definition 2.1); it has enabled progress on

Elliott’s classification program for C∗-algebras [4, 15] as well as the theory of continu-

ous orbit equivalence of topological dynamical systems [2, 16]. Even beyond the setting

of Cartan subalgebras, many authors (cf. [2, 3, 12]) have successfully extended structural

information from more general Abelian subalgebras to the containing C∗-algebras.

In this paper, we focus our attention on certain Cartan subalgebras, which

appear in a rather unexpected context. Renault proved in [21], building on earlier work

of Kumjian [14], that if a C∗-algebra A admits a Cartan subalgebra, then A is isomorphic

to the reduced C∗-algebra C∗
r (G, �) of a twist � over a groupoid G, and the Cartan

subalgebra is realized as C0(G(0)). The groupoids G appearing in Renault’s analysis must

satisfy a number of structural contraints; for example, they are always topologically

principal. If G is not topologically principal, then C0(G(0)) is not a Cartan subalgebra

inside C∗
r (G, �) for any twist � over G. Nevertheless, there are many such groupoids

whose twisted C∗-algebras contain Cartan subalgebras. Examples include the rotation

algebras Aθ
∼= C∗

r (Z2, cθ ) and the C∗-algebras of directed graphs, which do not satisfy

Condition (L).

Together with Reznikoff and Wright, in [8, Theorem 3.1], we identified a large

family of twisted groupoid C∗-algebras, associated to non-principal groupoids G, which

contain Cartan subalgebras. Moreover, these Cartan subalgebras are evident at the level

of the groupoid G: they arise from a subgroupoid S of G. As mentioned above, the exis-

tence of a Cartan subalgebra in C∗
r (G, c) implies, by [21], the existence of a topologically

principal groupoid G, the so-called Weyl groupoid, and a twist � over G such that

C∗
r (G, c) ∼= C∗

r (G, �). If G is a discrete group and S ≤ G satisfies the hypotheses of [8,

Theorem 3.1], so that C∗
r (S, c) is a Cartan subalgebra of C∗

r (G, c), then [8, Theorem 5.2]

establishes that

G = (G/S) ⋉ Ŝ

as long as the action of G/S on Ŝ is topologically free. Moreover, [8, Theorem 5.8] shows

that in this case, the twist � arises from a 2-cocycle on G, which we described explicitly

in [8, Lemma 5.6].

The prepublication version of [12] came to our attention as we were finalizing [8],

and we were struck by the structural parallels between the two papers’ main results. In
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Weyl Construction 15723

[12, Theorem 3.3], the authors show that if a subgroupoid S of a (not necessarily étale)

groupoid G consists of a closed normal bundle of Abelian groups, then the groupoid

C∗-algebra C∗
r (G) can alternatively be computed from a twist � over the action groupoid

Ŝ ⋊ (G/S):

C∗
r (G) ∼= C∗

r (Ŝ ⋊ (G/S), �).

However, they only establish that C∗
r (S) is Cartan in C∗

r (G) if G/S is étale and topolog-

ically principal [12, Theorem 4.6], and they do not analyze the structure of twisted

groupoid C∗-algebras C∗
r (G, c). As nontrivial discrete groups are never topologically

principal, this excludes the setting of [8, Theorem 5.8]. Moreover, the formula given in

[12] for the twist is not explicit; in particular, it is unclear when, or whether, it can be

realized via a 2-cocycle on the groupoid Ŝ ⋊ (G/S).

In this paper, we bridge the gap between [8] and [12]. Our first main result,

Theorem 4.6, establishes that when a subgroupoid S of an étale groupoid G satisfies

the hypotheses of [8, Theorem 3.1], so that C∗
r (S, c) is Cartan in C∗

r (G, c), then the Weyl

groupoid associated to the Cartan pair
(
C∗

r (G, c), C∗
r (S, c)

)
is an action groupoid

(G/S) ⋉B,

where B denotes the spectrum of the commutative algebra C∗
r (S, c). When the 2-cocycle

c is trivial, B agrees with the space Ŝ of [12], and (translating our left action of G/S into

a right action) we see that our groupoid (G/S) ⋉ B agrees with the groupoid Ŝ ⋊ (G/S)

of [12] (see Remark 8). Theorem 4.6 is a substantial improvement over [8, Theorem 5.2].

Not only do we extend [8, Theorem 5.2] from groups to groupoids, we also show that the

hypothesis of topological freeness in the latter theorem is always satisfied.

Our second main result is Theorem 5.1: given a continuous section s : G/S → G

of the quotient map, we identify a continuous section ψ
s

: G(A,B) → �(A,B) of the Weyl

groupoid extension. From this section, we follow the standard procedure to construct

in Corollary 5.4 an explicit formula for a continuous 2-cocycle Cs on the Weyl groupoid

such that the Weyl twist is isomorphic to ((G/S) ⋉B) ×Cs T. Our precise description of

the twist represents both an extension of [8, Theorem 5.8] to a broader setting and an

improvement on [12, Theorem 3.3] in the étale case.

This paper is organized as follows. In Section 2, we recall the relevant defini-

tions of groupoids and Cartan subalgebras, and give a detailed analysis of the Weyl

construction. We expect that some of the technical results we have obtained will be
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15724 A. Duwenig et al.

of general interest. For example, Proposition 2.2 gives a description of the equivalence

relation underlying the Weyl groupoid, which, to our knowledge, has not appeared

before in the literature.

The first step in providing an explicit description of the Weyl groupoid associ-

ated to a Cartan pair (A, B) is identifying the topological space B̂; Section 3 is devoted

to describing B̂ in the case when B = C∗
r (S, c) arises from a bundle of discrete Abelian

groups and c is symmetric on S (see Corollary 3.7). This description may be known to

experts—indeed, it is similar to results such as [18, Corollary 3.4], [10, Proposition 5],

and [7, Remark 5.2]—but we were unable to locate a reference in the literature for the

precise result we needed.

In Section 4, we prove that if (A, B) = (C∗
r (G, c), C∗

r (S, c)) is one of the Cartan pairs

identified by [8, Theorem 3.1], then its Weyl groupoid is the action groupoid (G/S) ⋉B

alluded to above (Theorem 4.6). In Section 5, we prove that the associated Weyl twist

arises from a continuous 2-cocycle on the Weyl groupoid if there exists a continuous

section of the quotient map G → G/S (Theorem 5.1).

2 Preliminaries on Cartan Subalgebras and the Weyl Construction

Intuitively, a groupoid G is a generalization of a group in which multiplication is only

partially defined. More precisely, a groupoid is a set G, together with a subset G(2) ⊆

G × G; a multiplication map (γ , η) �→ γ η from G(2) to G; and an inversion map γ �→ γ −1

from G to G, which behave like multiplication and inversion do in groups wherever they

are defined. The unit space of G is G(0) = {γ γ −1 : γ ∈ G}. We then have range and source

maps r, s : G → G(0) given by

r(γ ) = γ γ −1, s(γ ) := γ −1γ ,

which satisfy r(γ )γ = γ = γ s(γ ) for all γ ∈ G. Given u ∈ G(0), we write Gu := {γ ∈ G :

s(γ ) = u} and Gu := {γ ∈ G : r(γ ) = u}. We can also describe G(2) using the range and

source maps:

G(2) = {(γ , η) ∈ G × G : s(γ ) = r(η)}.

In this paper, we will assume that G is equipped with a locally compact

Hausdorff topology with respect to which the multiplication and inversion maps are

continuous. The groupoids considered in this paper will also be étale – that is, r and s

will be local homeomorphisms. A subset V of G will be called a bisection if there is an
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Weyl Construction 15725

open set U containing V such that r : U → r(U) and s : U → s(U) are homeomorphisms

onto open subsets of G(0).

The link between groupoids and Cartan subalgebras was established in the

seminal papers [14, 21].

Definition 2.1 ([21, Definition 5.1]). Let A be a C∗-algebra. A C∗-subalgebra B of A is a

Cartan subalgebra if the following four conditions hold:

1. B is a maximal Abelian subalgebra of A.

2. There exists a faithful conditional expectation � : A → B.

3. B is regular; that is, the normalizer of B,

N(B) := {n ∈ A such that nbn∗, n∗bn ∈ B for all b ∈ B},

generates A as a C∗-algebra.

4. B contains an approximate identity for A.

For this section, we fix a Cartan subalgebra B of some separable C∗-algebra A.

Let us first recall how (A, B) gives rise to a topologically principal groupoid and twist

(cf. [14, 1.6] or [21, Proposition 4.7]), and then gather a few tools to study them. Let

B̂ be the spectrum of B, viewed as the space of one-dimensional representations of B

(a subspace of B∗, the space of linear functionals on B), and let � : C0(̂B) → B be the

Gelfand representation.

As B contains an approximate identity for A, if n ∈ N(B), then n∗n, nn∗ ∈ B. For

each n ∈ N(B), there exists a unique partial homeomorphism αn with domain

dom(n) :=
{
x ∈ B̂

∣∣∣�−1(n∗n)(x) = x(n∗n) > 0
}

and with codomain dom(n∗) that satisfies

n∗�(f )n = �(f ◦ αn) n∗n (1)

for all f ∈ C0(̂B). If n, m ∈ N(B), then αn ◦αm = αnm and αn∗ = α−1
n (cf. [14, Corollary 1.7]).

The Weyl groupoid G(A,B) is the quotient of

D :=
{
(αn(x), n, x) | n ∈ N(B), x ∈ dom(n)

}
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15726 A. Duwenig et al.

by the equivalence relation

(αn(x), n, x) ∼ (αm(y), m, y) ⇐⇒

x = y and αn|U = αm|U for an open neighborhood U ⊆ B̂ of x.

We will denote the equivalence class of (αn(x), n, x) by [αn(x), n, x]. The groupoid

structure on G(A,B) is defined by

[αn(αm(x)), n, αm(x)] · [αm(x), m, x], = [αnm(x), nm, x], and

[αm(x), m, x]−1 = [x, m∗, αm(x)].

To topologize G(A,B), we define a basic open set to be of the form {[αn(x), n, x] : αn(x) ∈ V,

x ∈ U}, where U, V ⊆ B̂ are open and n ∈ N(B) [21, Section 3]. It follows from the remark

at the bottom of page 971 in [14] that x ∈ dom(n) if and only if �−1(n∗n) does not vanish

at x.

Remark 1. For each x ∈ dom(n), we have αn(x)(nn∗) = x(n∗n). Indeed, if b ∈ B, then

x(n∗bn) = αn(x)(b) x(n∗n). In particular, for b = nn∗, the fact that each functional x ∈ B̂

is multiplicative implies that

x(n∗n) x(n∗n) = x(n∗(nn∗)n) = αn(x)(nn∗) · x(n∗n).

Since x ∈ dom(n), we can divide by x(n∗n) and get 0 �= x(n∗n) = αn(x)(nn∗) as claimed.

The Weyl twist �(A,B) is another groupoid associated to the Cartan pair (A, B).

Like the Weyl groupoid, the Weyl twist is also a quotient of D, but by the equivalence

relation

(αn(x), n, x) ≈ (αm(y), m, y) ⇐⇒

x = y and ∃ b, b′ ∈ B such that x(b), x(b′) > 0 and nb = mb′.

We write �αn(x), n, x� for the class of (αn(x), n, x) in �(A,B). We point out that equivalence

with respect to ≈ implies equivalence with respect to ∼.

As its name suggests, the Weyl twist is a T-groupoid, or twist, over G(A,B).

As such, one can construct the twisted groupoid C∗-algebra C∗
r

(
G(A,B), �(A,B)

)
(cf. [21,
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Weyl Construction 15727

Section 4]). The Weyl twist and groupoid are constructed exactly so that

(A, B) ∼=

(
C∗

r

(
G(A,B), �(A,B)

)
, C0

(
G

(0)
(A,B)

))
,

see [21, Theorem 5.9].

We recall the construction of a twisted groupoid C∗-algebra in the case when

the twist arises from a 2-cocycle, as this is the level of generality we will need in this

paper. Recall that a (T-valued) 2-cocycle on a groupoid G is a function c : G(2) → T, which

satisfies the cocycle condition

c(x, yz) c(y, z) = c(x, y) c(xy, z) for all (x, y), (y, z) ∈ G(2). (2)

Given a second countable, locally compact Hausdorff, étale groupoid G and a continuous

2-cocycle c : G(2) → T, we denote by Cc(G, c) the collection of continuous, compactly

supported C-valued functions on G, which we view as a ∗-algebra via the twisted

convolution multiplication

fg (γ ) :=
∑

ηρ=γ

f (η)g(ρ)c(η, ρ)

and the involution

f ∗(γ ) := f (γ −1)c(γ , γ −1).

For each u ∈ G(0), we represent Cc(G, c) on ℓ2(Gu) by left multiplication:

πu(f )ξ := f ξ =

⎛
⎝γ �→

∑

ηρ=γ

f (η)ξ(ρ)c(η, ρ)

⎞
⎠ .

Let ‖f ‖u denote the operator norm of πu(f ). The reduced twisted groupoid C∗-algebra

C∗
r (G, c) is then the completion of Cc(G, c) in the norm ‖ · ‖r := supu∈G(0) ‖ · ‖u.

Although the definition of the Weyl groupoid and Weyl twist seem quite

different, the following very helpful proposition describes the groupoid in terms more

similar to the twist. The result may be known to experts, but we were unable to locate

it in the literature.

Proposition 2.2. Suppose ni ∈ N(B) and x ∈ dom(n1) ∩ dom(n2). Then, [αn1
(x), n1, x] =

[αn2
(x), n2, x] if and only if there exist bi ∈ B so that x(bi) �= 0 and n1b1 = n2b2.
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15728 A. Duwenig et al.

For the proof, we require two lemmata.

Lemma 2.3. If n, m ∈ N(B), then

αn ≡ αm on dom(n) ∩ dom(m) ⇐⇒ nm∗ ∈ B. �

Proof. We know that nm∗ ∈ B if and only if αnm∗ = iddom(nm∗), since B is maximal

Abelian. Moreover, αnm∗ = αn ◦ αm∗ = αn ◦ α−1
m . Both things combined yield that nm∗ ∈ B

if and only if αn◦α−1
m is the identity on dom(nm∗). Since n∗n ∈ B, we can use the defining

property of αm∗ (Equation (1)) to rewrite

(mn∗nm∗)(x) = (n∗n ◦ αm∗)(x)mm∗(x),

so we have

dom(nm∗) =
{
x ∈ B̂ | x ∈ dom(m∗) and (n∗n ◦ αm∗)(x) �= 0

}

= dom(m∗) ∩ α−1
m∗

(
dom(n)

)
= αm

(
dom(m) ∩ dom(n)

)
.

Thus, nm∗ ∈ B if and only if αn ◦ α−1
m is the identity on αm

(
dom(m) ∩ dom(n)

)
if and only

if αn ≡ αm on dom(m) ∩ dom(n). �

We define the open support of k ∈ C0(̂B) by supp′(k) := {x ∈ B̂ | k(x) �= 0}.

Lemma 2.4 (Urysohn-type Lemma). Let f ∈ N(B) and suppose that k ∈ C0(̂B) has

supp′(k) ⊆ dom(f ∗). Then, the partial homeomorphism associated to f2 := �(k)f has

domain α−1
f (supp′(k)) = αf ∗(supp′(k)), and αf2

= αf |dom(f2).

Proof. First note that f2 is still a normalizer of B because f is and because �(k) ∈ B;

thus, it makes sense to speak of the corresponding partial homeomorphism αf2
and its

domain, dom(f2).

By definition of f2, we have f ∗
2 f2 = f ∗�(|k| 2)f . The defining property of αf

(Equation (1) for |k|2 ∈ C0(̂B)) yields

�−1(f ∗
2 f2) =

(
|k| 2 ◦ αf

)
· �−1(f ∗f ). (3)
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Weyl Construction 15729

By assumption, V := α−1
f (supp′(k)) is contained in dom(f ), so the above yields

dom(f2) =supp′
(
�−1(f ∗

2 f2)
)

= supp′(k ◦ αf ) ∩ supp′
(
�−1(f ∗f )

)
= V ∩ dom(f ) = V. (4)

By the defining property of αf2
, for any b ∈ B, we have

�−1(f ∗
2 bf2) = (�−1(b) ◦ αf2

) · �−1(f ∗
2 f2) = (�−1(b) ◦ αf2

) ·
(
|k| 2 ◦ αf

)
· �−1(f ∗f ), (5)

where the second equality is due to Equation (3). The definition of f2 implies that

f ∗
2 bf2 = f ∗(�(k)∗b�(k))f ,

so that the defining property of αf (Equation (1)) yields

�−1(f ∗
2 bf2) =

(
(k · �−1(b) · k) ◦ αf

)
· �−1(f ∗f ) = (�−1(b) ◦ αf ) · (|k| 2 ◦ αf ) · �−1(f ∗f ).

Combining this with Equation (5) reveals that, for any b ∈ B,

(�−1(b) ◦ αf2
) ·

(
|k| 2 ◦ αf

)
· �−1(f ∗f ) = (�−1(b) ◦ αf ) · (|k| 2 ◦ αf ) · �−1(f ∗f ).

We conclude that, on supp′(�−1(f ∗f ))∩supp′(|k|2 ◦αf ), we have αf2
= αf . By (4), it follows

that αf2
= αf on dom(f2) ⊆ dom(f ). �

Proof of Proposition 2.2. First, fix x ∈ dom(n1)∩dom(n2) and assume that n1b1 = n2b2

for some bi ∈ B such that x(bi) �= 0. In particular, there exists a neighborhood X of x in

dom(n1) ∩ dom(n2) such that, for all y ∈ X, we have y(bi) �= 0. If g is any element of

C0(̂B), then by the defining property of αni
(Equation (1)) and since B is commutative, we

have

(nibi)
∗ �(g) (nibi) = b∗

i (n∗
i �(g)ni) bi

= b∗
i �(g ◦ αni

)(n∗
i ni)bi = �(g ◦ αni

)(n∗
i ni)(b

∗
i bi),

so that the equality n1b1 = n2b2 implies that

�(g ◦ αn1
)(n∗

1n1)(b∗
1b1) = �(g ◦ αn2

)(n∗
2n2)(b∗

2b2).
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15730 A. Duwenig et al.

Evaluating both sides at y ∈ X yields

g
(
αn1

(y)
)

y(n∗
1n1)

∣∣y(b1)
∣∣ 2 = g

(
αn2

(y)
)

y(n∗
2n2)

∣∣y(b2)
∣∣ 2.

By our construction of X, we have y(bi) �= 0 and also X ⊆ dom(ni), so that y(n∗
i ni) > 0.

We have shown that, for any g ∈ C0(̂B), g
(
αn1

(y)
)

is a positive multiple of g
(
αn2

(y)
)
. Since

C0(̂B) separates points (as B̂ is Hausdorff), this implies αn1
(y) = αn2

(y) for all y ∈ X. As

X is an open neighborhood of x, we arrive at the claimed equality in the Weyl groupoid.

Conversely, assume that

[αn1
(x), n1, x] = [αn2

(x), n2, x].

We will construct b1, b2 ∈ B such that x(bi) �= 0 and n1b1 = n2b2.

By assumption, there exists a neighborhood X of x in dom(n1) ∩ dom(n2) on

which αn1
and αn2

agree. Let Y := αn1
(X) = αn2

(X) and note that αn∗
1
(Y) = αn∗

2
(Y) = X. As

X is an open neighborhood of x, Urysohn’s Lemma (see, for example, [9, 4.32]) implies

the existence of k ∈ C0(̂B) with k(x) = 1 and supp′(k) ⊆ X. By our choice of X,

y ∈ supp′(k) �⇒ αn1
(y) = αn2

(y), i.e., y = αn∗
1

(
αn2

(y)
)
. (6)

By Lemma 2.4, we know that

mi := �(k)n∗
i ∈ N(B)

has dom(mi) = αni
(supp′(k)) ⊆ Y ⊆ dom(n∗

i ) and that αmi
is extended by αn∗

i
. In

particular, it follows from Implication (6) that

dom(m1) = αn1
(supp′(k))

(6)
= αn2

(supp′(k)) = dom(m2) ⊆ Y.

This means that αm1
= αn∗

1
|dom(m1) = αn∗

2
|dom(m2) = αm2

on all of dom(m1) = dom(m2).

By Lemma 2.3, we conclude that

b1 := m1m∗
2 = �(k)n∗

1n2�(k) (7)
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Weyl Construction 15731

is an element of B. To see that x(b1) �= 0, use the defining property of αm∗
2

(Equation (1))

to write

x(b∗
1b1) = x(m2m∗

1m1m∗
2) = x(m2m∗

2) · αm∗
2
(x)(m∗

1m1).

Since supp′(k) ⊆ dom(ni) and αn∗
i

extends αmi
,

supp′(k) = αn∗
i
(αni

(supp′(k))) = αn∗
i
(dom(mi)) = αmi

(dom(mi)) = dom(m∗
i ).

Therefore, x ∈ supp′(k) = dom(m∗
2) implies x(m2m∗

2) > 0. Moreover, αm∗
2
(x) = αm∗

1
(x) ∈

dom(m1), so αm∗
2
(x)(m∗

1m1) > 0. Consequently, x(b∗
1b1) > 0, so x(b1) �= 0.

By the defining property of αn∗
1
, we have

n1b1 = n1(�(k)n∗
1m∗

2) = �(k ◦ αn∗
1
) (n1n∗

1) m∗
2 = �(k ◦ αn∗

1
)(n1n∗

1)n2�(k). (8)

Our goal is to rewrite the right-hand side of Equation (8) in the form n2b2 for some

b2 ∈ B such that x(b2) �= 0. Note that if

f := (k ◦ αn∗
1
) · �−1(n1n∗

1),

then f ∈ C0(̂B), Equation (8) becomes n1b1 = �(f )m∗
2, and f is supported in

αn1
(supp′(k)) = αn2

(supp′(k)) ⊆ Y.

As supp′(k) ⊆ X ⊆ dom(n2), and αn2
◦ αn∗

2
(y) = y for all y ∈ Y = αn2

(X), we have

n2�(f ◦ αn2
) = �(f )n2 by [8, Lemma 4.2]. Equation (8) can therefore be rewritten as

n1b1 = n2�(f ◦ αn2
)�(k).

Setting b2 = �((f ◦ αn2
)k), we have n1b1 = n2b2.

We now complete the proof by showing that x(b2) > 0. As k(x) = 1 by

construction, it suffices to show that f (αn2
(x)) > 0. Our construction of X ∋ x implies

that k(αn∗
1
(αn2

(x))) = k(x) = 1 and that

�−1(n1n∗
1)(αn2

(x)) = �−1(n1n∗
1)(αn1

(x)) = x(n∗
1n1) > 0,

where the last equality follows from Remark 1. Thus, f (αn2
(x)) = [(k ◦ αn∗

1
) · �−1(n1n∗

1)]

(αn2
(x)) > 0, as desired. �
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15732 A. Duwenig et al.

3 The Spectrum of a Twisted Bundle of Groups

Assume that S is a second countable, locally compact Hausdorff, étale groupoid and that

c : S(2) → T is a 2-cocycle on S. We will always assume that 2-cocycles are normalized,

i.e., c(r(a), a) = 1 = c(a, s(a)) for each a ∈ S. In order to construct the twisted groupoid

C∗-algebra C∗
r (S, c), we will need c to be continuous, so we will frequently impose this

assumption.

In this section, we will be interested in bundles of groups, so on top of our

topological assumptions above, assume that the range and source maps of S are equal,

called p : S → S(0). We write Su := p−1({u}) for u a unit. Moreover, assume that the

multiplication map S(2) → S is commutative and that the continuous 2-cocycle c is

symmetric on S, i.e., c(a, a′) = c(a′, a) for all a, a′ ∈ Su, so that its reduced twisted

C∗-algebra B := C∗
r (S, c) is commutative by [8, Lemma 3.5].

Remark 2. Since C∗
r (S, c) is nuclear (being commutative) and since S is locally compact

Hausdorff étale, it follows from [23, Theorem 5.4] that S is amenable. In particular, [1,

Corollary 4.3] implies that C∗(S, c) ∼= C∗
r (S, c).

Definition 3.1. Given u ∈ S(0) and a continuous 2-cocycle c on S, let Bu denote the

set of one-dimensional c-projective representations of the Abelian group Su. That is, Bu

consists of maps χ : Su → T such that

χ(a)χ(a′) = c(a, a′)χ(aa′). (9)

Write B =
⊔

u∈S(0) Bu and ρ : B → S(0) for the projection map.

Remark 3. It is well known (cf. [13, Lemma 7.2], [6, Corollary 3 to Proposition 18.4])

that for a countable discrete Abelian group Su, every symmetric 2-cocycle on Su is

cohomologous to a 2-coboundary. Consequently, Bu
∼= C∗

r (Su) ∼= Ŝu. However, in this

paper, our main focus is the topological space B =
⊔

u∈G(0) Bu. The proofs of the

identification Bu
∼= Ŝu that we have found in the literature are not sufficiently explicit

to analyze how the fibers piece together, and so we have chosen to use the explicit

description of Bu given above.

Remark 4. Observe that for χ ∈ Bu and a ∈ Su,

χ(a)c(a, a−1) = χ(a−1)χ
(
p(a)

)
= χ(a−1), (10)

where we used that χ(u) = 1 since c(a, u) = 1 = c(u, a).
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Weyl Construction 15733

Recall that the spectrum Ĉ of a commutative C∗-algebra C is the set of nonde-

generate one-dimensional representations of C, equipped with the weak-∗ topology. As

B = C∗
r (S, c) is commutative, the Gelfand–Naimark Theorem yields B ∼= C0(̂B). We will

show that B̂ ∼= B for a suitable topology on B.

Lemma 3.2. For χ ∈ B, let

φχ : Cc(S, c) → C, φχ (f ) :=
∑

a∈Sρ(χ)

χ(a)f (a). (11)

Then, φχ is a ∗-algebra homomorphism that extends to an element of B̂. Moreover, the

map φ : B → B̂, χ �→ φχ is a bijection.

Remark 5. It is unclear to the authors whether the formula for φχ in Lemma 3.2

extends to elements of B when thought of as C0-functions on S. In particular, if

b ∈ B ⊆ C0(S) with φχ (b) �= 0, does it then follow that supp′(b) ∩ Sρ(χ) �= ∅?

Proof. Observe that B is a C0(S(0))-algebra (cf. [7, Remark 5.1]). Then, [24, Proposition

C.5] implies that B̂ =
⊔

u∈S(0) B̂(u). When c is trivial, amenability of S (Remark 2) and [7,

Remark 5.2] imply that B(u) ∼= C∗
r (Su, c). In fact, a careful examination of the proof of [7,

Remark 5.2] reveals that, even if c is not trivial, the formulae used there will also give an

isomorphism between the fiber algebra B(u) and the twisted group C∗-algebra C∗
r (Su, c).

It is a classical fact (cf. [5, Theorem 3.3(2)]) that unitary projective represen-

tations of Su are in bijection with representations of the twisted group C∗-algebra

C∗(Su, c) ∼= C∗
r (Su, c) ∼= B(u). For a one-dimensional projective representation χ ∈ Bu, the

corresponding element of B̂(u) ⊆ B̂ is indeed given on Cc(Su, c) ⊆ B(u) by the formula

in Equation (11) (cf. [24, pp. 386–7]). In other words, for each u, φ|
Bu

is a bijection

Bu → B̂(u), and hence φ is also bijective as a map B → B̂. �

Proposition 3.3. If we equip B with the topology induced by φ from B̂, then a net (χi)i

converges to χ in B if and only if the following two conditions hold:

1. ρ(χi) → ρ(χ) in S(0);

2. whenever (ai)i is a net in S that satisfies p(ai) = ρ(χi), p(a) = ρ(χ), and

ai → a in S, then χi(ai) → χ(a) in T.
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15734 A. Duwenig et al.

Remark 6. Note that, with respect to this topology on B, ρ : B → S(0) is clearly

continuous. Note further that, when c is trivial, this result is well known; the description

of the topology on B should be compared with [18, Proposition 3.3].

The proof of Proposition 3.3 proceeds through a series of lemmata.

Lemma 3.4. Suppose (χi)i∈I and χ are elements of B satisfying Condition 1 of Propo-

sition 3.3, and suppose f ∈ Cc(S, c) is supported in a bisection. If supp′(f ) ∩ Sρ(χ) = ∅,

then φχi
(f ) → 0.

Proof. We will prove the contrapositive. Let ui := ρ(χi) and assume that φχi
(f ) �→ 0,

i.e., there exists ǫ > 0, so that for all i ∈ I, there exists g(i) ∈ I with g(i) ≥ i such that∣∣∣φχg(i)
(f )

∣∣∣ > ǫ. This implies that, for each j in J := {g(i) | i ∈ I}, there exists a unique

aj ∈ supp′(f ) ∩ Suj
such that ǫ <

∣∣∣φχj
(f )

∣∣∣ =

∣∣∣
∑

a∈Suj
χj(a)f (a)

∣∣∣ = |f (aj)|.

Note that J is a directed set when equipped with the preorder of I: if we take

j1, j2 ∈ J, then since I is directed, there exists i ∈ I with i ≥ j1, j2. Then, g(i) ≥ i, so g(i) is

an upper bound for j1 and j2 in J. First, this implies that (uj)j∈J is a subnet of (ui)i∈I (the

inclusion J →֒ I is monotone and final), so that Condition 1 of Proposition 3.3 implies

limj∈J uj = limi∈I ui = ρ(χ). Second, we conclude that (aj)j∈J is a net in supp′(f ). Since

supp(f ) is compact, there exists a subnet (aκ)κ∈K of (aj)j∈J which converges to some

a ∈ supp(f ). By continuity of f , we have

|f (a)| = lim
κ

∣∣f (aκ)
∣∣ ≥ ǫ,

i.e., a ∈ supp′(f ). Moreover, p(a) = limκ p(aκ) = limκ uκ = ρ(χ), i.e., a ∈ Sρ(χ), and so

supp′(f ) ∩ Sρ(χ) �= ∅. �

Lemma 3.5. Suppose (χi)i∈I and χ are elements of B satisfying Conditions 1 and 2 of

Proposition 3.3. Then, φχi
→ φχ in B̂.

Proof. We must show that, for all f ∈ Cc(S, c) and for all ǫ > 0, there exists i0 ∈ I such

that, if i ≥ i0, then |φχi
(f ) − φχ (f )| < ǫ.

We will begin by proving the claim for f ∈ Cc(S, c) such that supp(f ) is a

bisection. Let u := ρ(χ) and ui := ρ(χi). If supp′(f ) ∩ Su = ∅, then φχ (f ) = 0 and Lemma

3.4 yields φχi
(f ) → 0 = φχ (f ), as claimed. Otherwise, fix ǫ > 0 and let a ∈ supp′(f ) such

that p(a) = u. Since f (a) �= 0 and f is continuous, there exists an open neighborhood
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Weyl Construction 15735

V of a on which f is nonzero. In fact, V is a bisection around a because V ⊆ supp′(f ),

and p(V) is an open neighborhood of u because S is étale. As ui → u, by shrinking the

neighborhood V, we see that {ai ∈ V | p(ai) = ui} is a net in S converging to a. In this

case,

∣∣∣φχi
(f ) − φχ (f )

∣∣∣ =

∣∣∣∣∣∣∣

∑

a′
i
∈Sui

χi(a
′
i)f (a′

i) −
∑

a′∈Su

χ(a′)f (a′)

∣∣∣∣∣∣∣

=
∣∣χi(ai)f (ai) − χ(a)f (a)

∣∣ .

If we now use the fact that f ∈ Cc(S, c) is bounded in ‖·‖∞ and our hypothesis that

(χi)i and χ satisfy Condition 2 of Proposition 3.3, an easy ǫ/2-argument establishes that

|φχi
(f ) − φχ (f )| < ǫ for i ≥ i0 for some i0 ∈ I.

For more general functions, recall that since S is a second countable, locally

compact Hausdorff, étale groupoid, we have

Cc(S, c) = span{f ∈ Cc(S, c) | supp(f ) is a bisection},

see [22, Lemma 3.1.3]. An ǫ/k-argument now shows that, for any g ∈ Cc(S, c), there exists

i1 ∈ I so that i ≥ i1 implies |φχi
(g) − φχ (g)| < ǫ. �

Lemma 3.6. Let (χi)i∈I be some net in B such that φχi
→ φχ for some χ ∈ B. Then, (χi)i

and χ satisfy Conditions 1 and 2 of Proposition 3.3.

Proof. Recall that our assumption φχi
→ φχ means that, for every f ∈ Cc(S, c) and

ǫ > 0, there exists Nf ,ǫ ∈ I such that if i ≥ Nf ,ǫ , then |φχi
(f ) − φχ (f )| < ǫ.

We start by proving Condition 1 of Proposition 3.3. Let u := ρ(χ) and ui := ρ(χi).

Recall that the unit space in a Hausdorff étale groupoid is clopen [22, Lemmas 2.3.2

and 2.4.2], so that ui → u in S(0) if and only if ui → u in S. Let V ⊆ S(0) be an open

neighborhood of u. Since S is locally compact Hausdorff and V is an open neighborhood

of u in S, there exists by Urysohn’s Lemma a function f in Cc(S, c) with f (u) = 1 and

f|S\V ≡ 0. Since φχi
→ φχ , then for any fixed 1 > ǫ > 0, there exists an M ∈ I such that if

i ≥ M, then

|φχi
(f ) − φχ (f )| < ǫ < 1,
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15736 A. Duwenig et al.

which, by definition of φ, implies

∣∣∣∣∣∣
∑

a′∈Sui

χi(a
′)f (a′) −

∑

a′∈Su

χ(a′)f (a′)

∣∣∣∣∣∣
< 1.

As S(0) ⊇ V is a bisection containing supp′(f ), and ξ(v) = 1 for any ξ ∈ B and v ∈ S(0),

the above inequality becomes

∣∣χi(ui)f (ui) − χ(u)f (u)
∣∣ =

∣∣f (ui) − 1
∣∣ < 1,

for all i ≥ M. Therefore, if i ≥ M, then ui ∈ supp′(f ) ⊆ V. This concludes the proof

of Condition 1.

We proceed with proving Condition 2. Suppose (ai)i is a net in S such that

p(ai) = ui, p(a) = u, and ai → a. Fix ǫ > 0. We must show there exists M ∈ I such that if

i ≥ M, then |χi(ai) − χ(a)| < ǫ. By [22, Lemma 2.4.9], there exists an open bisection W in

S that contains a. Since S is locally compact Hausdorff, there exists, by [9, Proposition

4.31], a precompact open set U with a ∈ U ⊆ U ⊆ W. Since ai → a, there exists N ∈ I,

such that if i ≥ N, then ai ∈ U.

Again by Urysohn’s Lemma, there exists f ∈ Cc(S, c), which is equal to 1 on U

and 0 outside of W. So for all i in I, which are larger than both N and Nf ,ǫ , we know

ai ∈ U ⊆ supp(f ) and

∣∣∣∣∣∣
∑

a′∈Sui

χi(a
′)f (a′) −

∑

a′∈Su

χ(a′)f (a′)

∣∣∣∣∣∣
< ǫ.

Note that W is a bisection, and ai, a are elements of U ⊆ W with p(ai) = ui and p(a) = u.

All of these facts combined yield that ai is the unique element in Sui
∩ U and a is the

unique element in Su ∩ U. Since f is equal to 1 on U, the inequality becomes

|χi(ai) − χ(a)| < ǫ.

This completes the proof of the lemma and of Proposition 3.3. �

Corollary 3.7. The map φ : B → B̂ defined in Lemma 3.2 is a homeomorphism when B

has the topology induced by φ as described in Proposition 3.3. In particular, B is locally

compact Hausdorff and B is isomorphic to the C∗-algebra C0(B).
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4 Computing the Weyl Groupoid

Our standing assumptions for the remainder of this paper are the following:

1. G is a second countable, locally compact Hausdorff, étale groupoid;

2. c is a normalized, continuous T-valued 2-cocycle on G;

3. S ⊆ Iso(G) is an Abelian subgroupoid, containing G(0), on which c is

symmetric;

4. S is clopen and normal in G; and

5. S is chosen such that B := C∗
r (S, c) is maximal Abelian in A := C∗

r (G, c).

Note that Assumptions 1, 2, and 3 make sure that (S, c) falls into the scope of Section 3;

in particular, B is a commutative algebra, and B is its spectrum, which comes with the

map ρ : B → S(0) = G(0). As S is clopen in G, B is naturally a subalgebra of A, and the

map � : Cc(G, c) → Cc(S, c) defined by

�(f ) = f |S (12)

extends to a faithful conditional expectation A → B, which we will also denote by �,

see [8, Proposition 3.13]. Normality of S implies that B is regular in A. Furthermore, B

contains an approximate unit for A because G(0) ⊆ S. Thus, Assumptions 1–5 make B a

Cartan subalgebra of A.

Let us explain why our last assumption on S is reasonable. It was shown in [8,

Theorem 3.1] that, in order to get Assumption 5, a sufficient assumption on S is that (1)

S is maximal among the Abelian subgroupoids of Iso(G) on which c is symmetric, and

additionally (2) S is immediately centralizing [8, Definition 2]. A careful examination

of the proof of [8, Proposition 3.9] reveals that, instead of (2), we may assume that for

each η ∈ Iso(G) with u = r(η) = s(η), the set {aηa−1 | a ∈ Su} is either the singleton {η} or

infinite.

In the sections about to come, we will use the techniques we have developed

so far to compute the Weyl groupoid G(A,B) and the Weyl twist �(A,B) of the Cartan pair

(A, B). In particular, we will see in Theorems 4.6 and 5.1 that there is a strong connection

to a certain groupoid action of G/S on B. As such, it seems prudent to briefly state a

few facts about the quotient groupoid G/S.

Remark 7. We let q : G → G/S =: Q, γ �→ q(γ ) =: γ̇ , denote the quotient map. Since S

is a wide subgroupoid of G (i.e., S ⊆ Iso(G) is closed with S(0) = G(0)), openness of S and

étaleness of G imply that q is an open map. Since G is Hausdorff and S is closed in G,
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15738 A. Duwenig et al.

this implies that Q is Hausdorff also. Furthermore, it follows from [25, Corollary 2.13]

(taking G = S and X = G) that Q is locally compact and second countable because G is.

Lastly, we point out that, if one is interested in groupoids S ⊆ G with étale

quotient Q (as in [12, Theorem 4.6]), then one must ask for S to be open in G, as we have

done.

We will now construct a continuous left action α̃ of the locally compact

Hausdorff groupoid Q = G/S on the spectrum B of B = C∗
r (S, c), with the moment map

ρ : B → Q(0) given by ρ|
Bu

= u. In the following, we will write

Q ∗ρ B := {(γ̇ , χ) ∈ Q × B | sQ(γ̇ ) = ρ(χ)}.

Proposition 4.1. Let ρ : B → Q(0) be given by ρ|
Bu

= constu. For γ ∈ G, (γ̇ , χ) ∈ Q ∗ρ B,

and a ∈ Sr(γ ), define

α̃γ̇ (χ)(a) := c(γ , γ −1) c(γ −1, a) c(γ −1a, γ ) χ(γ −1aγ ).

Then

(1) α̃γ̇ (χ) only depends on γ̇ ∈ Q = G/S, not on γ ∈ G.

(2) α̃γ̇ (χ) ∈ Br(γ ) and α̃τ̇ γ̇ (χ) = α̃τ̇

(
α̃γ̇ (χ)

)
.

(3) If u ∈ Q(0), then α̃u(χ) = χ for all χ ∈ Bu.

(4) The map Q ∗ρ B → B, (γ̇ , χ) �→ α̃γ̇ (χ), is continuous.

In other words, α̃ is a continuous left action of Q on B with moment map ρ.

Before embarking on the proof, we point out that the formula for α̃ is not sur-

prising. Indeed, if χ were defined on all of G and satisfied Equation (9) of Definition 3.1

(and, by extension, Equation (10)), then we would have

α̃γ̇ (χ)(a) = c(γ , γ −1) c(γ −1, a) χ(γ −1a) χ(γ )

= c(γ , γ −1) χ(γ −1) χ(a) χ(γ ) = χ(a).

Proof. One readily verifies 1–3 using the cocycle identity (Equation (2)), the fact that c

is symmetric on the Abelian subgroupoid S, that c is normalized, and that c(γ −1, γ ) =

c(γ , γ −1) for any γ ∈ G by [8, Lemma 2.1].

For 4, suppose that (γ̇i, χi) → (γ̇ , χ) in Q ∗ρ B. We need to show [18, Proposition

3.3] that, if ai → a in S and s(ai) = r(γi) for all i, then α̃γ̇i
(χi)(ai) → α̃γ̇ (χ)(a). Since the
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Weyl Construction 15739

cocycle c and both multiplication and inversion on G are continuous, we have

c(γi, γ
−1
i )c(γ −1

i , ai)c(γ −1
i ai, γi) → c(γ , γ −1)c(γ −1, a)c(γ −1a, γ ).

Similarly, γ −1
i aiγi → γ −1aγ . Since the assumption χi → χ in B implies in particular

that χi(γ
−1
i aiγi) → χ(γ −1aγ ), it follows that α̃γ̇i

(χi)(ai) → α̃γ̇ (χ)(a). �

The action α̃ of Q on B allows us to endow the space Q ∗ρ B with the structure

of a topological groupoid. This so-called left action groupoid is denoted Q⋉B, and we

will show in Theorem 4.6 that it is isomorphic to the Weyl groupoid G(A,B).

Recall [11, p. 3] that the elements (τ̇ , χ1), (γ̇ , χ2) ∈ Q ⋉ B are composable if

χ1 = α̃γ̇ (χ2), and their product is given by

(τ̇ , χ1)(γ̇ , χ2) = (τ̇ γ̇ , χ2).

The inverse of an element (γ̇ , χ) is (γ̇ −1, α̃γ̇ (χ)). Therefore,

(Q⋉B)(0) = {(ρ(χ), χ)|χ ∈ B} .

Note that s(γ̇ , χ) = (s(γ̇ ), χ) and r(γ̇ , χ) = (r(γ̇ ), α̃γ̇ (χ)). The topology of Q ⋉ B is

inherited from Q × B; since Q and B are locally compact, so is Q ⋉ B, and the fact

that Q is étale and ρ is continuous implies that Q ⋉ B is étale. See [17, p. 5] for more

details.

Our next goal will be to describe the relationship between the partial home-

omorphisms αn used to construct the Weyl groupoid G(A,B) and the action α̃ (see

Proposition 4.4). We begin with a few preliminary results.

Lemma 4.2. The set

N :=
{
f ∈ Cc(G, c) | supp(f ) is a bisection

}
(13)

is a subset of the normalizer N(B) of B, and every element of the Weyl groupoid

associated to (A, B) can be represented by some (αn(x), n, x) where n ∈ N and x ∈ dom(n).

Proof. By [8, Lemma 3.11], N is contained in the normalizer of Cc(S, c), which implies

N ⊆ N(B) since B ⊆ A is closed. Since G is a second countable, locally compact
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15740 A. Duwenig et al.

Hausdorff, étale groupoid, it follows from [22, Lemma 3.1.3] that Cc(G, c) = span(N).

In particular, span(N) is dense in A. The claim then follows from [8, Proposition 4.1]. �

A more general variant of the following lemma was obtained in [3, Proposition

4.12]. For the convenience of the reader, we include both the precise statement of the

result we need and its proof.

Lemma 4.3. Suppose fi ∈ N and χ ∈ Bu. Let � : A → B denote the faithful conditional

expectation associated to the Cartan pair (A, B) = (C∗
r (G, c), C∗

r (S, c)).

1. If [αf1
(φχ ), f1, φχ ] = [αf2

(φχ ), f2, φχ ], then φχ (�(f ∗
2 f1)) �= 0.

2. If �αf1
(φχ ), f1, φχ � = �αf2

(φχ ), f2, φχ �, then φχ (�(f ∗
2 f1)) > 0.

Moreover, if γ̇i ∈ q(supp′(fi)) with s(γ̇1) = s(γ̇2) = u, then either of the above assumptions

implies γ̇1 = γ̇2.

Proof. We start by proving 2. By assumption, φχ ∈ dom(f1) ∩ dom(f2) and there exist

b1, b2 ∈ B with φχ (bi) > 0 and such that f1b1 = f2b2. In particular, since f2 ∈ N ⊆ N(B), it

follows that f ∗
2 f1b1 = f ∗

2 f2b2 is an element of B. Since φχ ∈ dom(f2), we conclude that

φχ (f ∗
2 f1b1) = φχ (f ∗

2 f2b2) = φχ (f ∗
2 f2) φχ (b2) > 0.

As the conditional expectation � fixes B and is B-linear, we get the equality in the

following:

φχ

(
�(f ∗

2 f1)
)
φχ (b1) = φχ (f ∗

2 f1b1) > 0.

It follows that φχ

(
�(f ∗

2 f1)
)

> 0, as claimed.

For 1, we use Proposition 2.2 to obtain bi ∈ B such that φχ (bi) �= 0 and

f1b1 = f2b2. The above proof now works mutatis mutandis, replacing each instance

of “> 0” by “ �= 0”.

Lastly, in either of the two cases, f ∗
2 f1 is an element of N ⊆ Cc(G, c). As �(g) = g|S

for g ∈ Cc(G, c) (cf. [8, Proposition 3.13]), �(f ∗
2 f1) ∈ Cc(S, c). Thus, the definition of φχ

yields

0 �= φχ

(
�(f ∗

2 f1)
)

=
∑

a∈Sρ(χ)

χ(a)�(f ∗
2 f1)(a) =

∑

a∈Sρ(χ)

χ(a)f ∗
2 f1(a),
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Weyl Construction 15741

and consequently

supp′(f ∗
2 f1) ∩ Sρ(χ) �= ∅.

If γ̇i ∈ q(supp′(fi)) satisfy s(γ̇1) = s(γ̇2) = u, let γi denote the representative of γ̇i in

supp′(fi). Since γ −1
2 γ1 is then the unique element in supp′(f ∗

2 f1) with source ρ(χ), it

follows that γ −1
2 γ1 ∈ Sρ(χ), i.e., γ̇1 = γ̇2. �

Proposition 4.4. Suppose f ∈ N and χ ∈ B.

(1) ρ(χ) ∈ s(supp′(f )) if and only if φχ ∈ dom(f ).

(2) If {γ } = supp′(f ) ∩ Gρ(χ), so that χ ∈ dom(α̃γ̇ ) and φχ ∈ dom(f ), then we have

αf (φχ ) = φα̃γ̇ (χ).

Proof. Since f is supported in a bisection, it follows from [8, Lemma 3.11] that f is a

normalizer of B, so αf exists and has domain dom(f ) ⊆ B̂. It then follows from (a twisted

variant of) [22, Lemma 3.1.4] that

f ∗f (η) =

⎧
⎨
⎩

|f (ζ )|2, η ∈ G(0) and supp′(f ) ∩ Gη = {ζ },

0, otherwise.

Using that χ(ρ(χ)) = 1 and that f ∗f ∈ Cc(S, c) ⊆ B, this implies

φχ (f ∗f ) =
∑

η∈Sρ(χ)

χ(η) (f ∗f )(η) =

⎧
⎨
⎩

|f (γ )|2 if supp′(f ) ∩ Gρ(χ) = {γ },

0 if supp′(f ) ∩ Gρ(χ) = ∅.
(14)

This proves 1.

For 2, note first that ρ(χ) = s(γ ), so χ ∈ Bρ(χ) is automatically an element of

dom(α̃γ̇ ) = Bs(γ ). It remains to prove that αf (φχ ) = φα̃γ̇ (χ). Recall that αf is uniquely

determined by satisfying

x(f ∗bf ) = αf (x)(b) x(f ∗f ) for all b ∈ C∗
r (S, c) and x ∈ B̂.
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15742 A. Duwenig et al.

Observe that for b ∈ Cc(S, c) and η ∈ S,

f ∗bf (η) =
∑

ξ∈Gs(η)

f (ξ−1η−1)c(ηξ , ξ−1η−1)b ∗ f (ξ−1)c(ηξ , ξ−1)

=
∑

ξ∈Gs(η)

∑

β∈Gs(ξ−1)

f (ξ−1η−1)c(ηξ , ξ−1η−1)b(ξ−1β)f (β−1)c(ηξ , ξ−1)c(ξ−1β, β−1)

=
∑

ξ ,β∈Gs(η)

f (ξ−1η−1)c(ηξ , ξ−1η−1)b(ξ−1β)f (β−1)c(ηξ , ξ−1)c(ξ−1β, β−1).

The factor b(ξ−1β) will only be nonzero if r(ξ−1β) = s(ξ−1β), i.e., r(ξ−1) = s(β).

In that case, since f is supported in a bisection and since r(β−1) = s(β) = r(ξ−1) =

r(ξ−1η−1), the only nonzero terms in the sum occur when β = ηξ , so that

f ∗bf (η) =
∑

β∈Gr(η)

|f (β−1)|2b(β−1ηβ)c(β, β−1)c(β, β−1η)c(β−1ηβ, β−1)

=
∑

ζ∈Gr(η)

|f (ζ )|2b(ζηζ−1)c(ζ−1, ζ )c(ζ−1, ζη)c(ζηζ−1, ζ ).

In particular, if η ∈ S
ρ(χ)

ρ(χ)
—so that r(η) = ρ(χ)—then the assumption supp′(f )∩Gρ(χ) = {γ }

shows that

f ∗bf (η) = |f (γ )|2b(γ ηγ −1)c(γ −1, γ )c(γ −1, γ η)c(γ ηγ −1, γ ).

Therefore, for x = φχ and b ∈ Cc(S, c) ⊆ B,

φχ (f ∗bf ) =
∑

η∈Sρ(χ)

χ(η) (f ∗bf )(η)

=|f (γ )|2
∑

η∈Sρ(χ)

χ(η) b(γ ηγ −1)c(γ −1, γ )c(γ −1, γ η)c(γ ηγ −1, γ ). (15)

By Equation (14) and by definition of αf , we have

αf (φχ )(b) |f (γ )| 2 = αf (φχ )(b) φχ (f ∗f ) = φχ (f ∗bf ),
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Weyl Construction 15743

and since f (γ ) �= 0 as γ ∈ supp′(f ), Equation (15) allows us to conclude that

αf (φχ )(b) =
∑

η∈Sρ(χ)

χ(η) b(γ ηγ −1)c(γ −1, γ )c(γ −1, γ η)c(γ ηγ −1, γ )

=
∑

a∈Sr(γ )

χ(γ −1aγ ) c(γ , γ −1)c(γ −1, aγ )c(a, γ )b(a)

=
∑

a∈Sr(γ )

χ(γ −1aγ ) c(γ , γ −1)c(γ −1a, γ )c(γ −1, a)b(a) = φα̃γ̇
(χ)(b).

To obtain the second equality, we invoked the fact that c(γ , γ −1) = c(γ −1, γ ) for any

γ ∈ G [8, Lemma 2.1]. It follows that, as desired, αf (φχ )(b) = φα̃γ̇ (χ)(b) for all b in the

dense subalgebra Cc(S) and thus on all of B. �

The fact that αf (φχ ) = φα̃γ̇ (χ) whenever {γ } = supp′(f ) ∩ Gρ(χ) for f ∈ N and χ ∈ B

shows that there is an intimate connection between the partial action α of N(B) on B

and the action α̃ of Q on B. In order to describe this connection, we first need to better

understand equality in the Weyl groupoid G(A,B).

Proposition 4.5. Suppose fi ∈ N and χ ∈ B. Let Xi denote supp′(fi) ⊆ G, and for

u ∈ G(0), let Xi
u denote the singleton-set Xi ∩ Gu. Recall that q : G → Q is the quotient

map. The following are equivalent:

1. There exists an open neighborhood U of ρ(χ) in s(X1)∩ s(X2) ⊆ G(0) such that

q(X1
u) = q(X2

u) for all u ∈ U.

2. q(X1
ρ(χ)

) = q(X2
ρ(χ)

).

3. φχ ∈ dom(f1) ∩ dom(f2) and [αf1
(φχ ), f1, φχ ] = [αf2

(φχ ), f2, φχ ].

Proof. Note that 3 �⇒ 2 is the second assertion of Lemma 4.31, so it suffices to

prove 2 �⇒ 1 �⇒ 3.

Assume that 2 holds. By [19, Proposition 2.2.4], (X1)−1 · X2 is an open bisection

in G. Setting {γi} = Xi
ρ(χ)

, our assumption translates to γ̇1 = γ̇2; in particular, γ −1
1 γ2 ∈

[(X1)−1 · X2] ∩ S. Since S is open and G is étale, the set U := s([(X1)−1 · X2] ∩ S) is an open

subset of G(0), which contains s(γ −1
1 γ2) = s(γ2) = ρ(χ). Furthermore, U is contained in

s(X1) ∩ s(X2): any u ∈ U can be written as u = s(γ −1
u τu) for γu ∈ X1 and τu ∈ X2 such that
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15744 A. Duwenig et al.

γ −1
u τu ∈ S. In particular,

s(τu) = s(γ −1
u τu) = u by assumption, and

s(γu) = r(γ −1
u τu)

(∗)
= s(γ −1

u τu) = u, where (∗) follows from S ⊆ Iso(G).

This shows that {γu} = X1
u, {τu} = X2

u, and U ⊆ s(X1) ∩ s(X2). Moreover, it follows from

γ −1
u τu ∈ S that q(X1

u) = q(X2
u). This proves 1.

Next, we will show 1 �⇒ 3. Pick any u ∈ U ⊆ s(X1) ∩ s(X2), and let γ i
u denote the

unique element in Xi
u = s−1(u)∩Xi. Note that, by our assumption on U, we have γ̇ 1

u = γ̇ 2
u .

Using Proposition 4.4(2) for (∗) in the following, we thus see that, for any ν ∈ Bu,

αf1
(φν)

(∗)
= φα̃

γ̇ 1
u

(ν) = φα̃
γ̇ 2
u

(ν)

(∗)
= αf2

(φν).

Since u was arbitrary, this shows that αf1
and αf2

coincide on all of φ(ρ−1(U)). This

set contains φχ by the assumption that ρ(χ) ∈ U and it is open in B̂ since φ is a

homeomorphism, ρ is continuous, and U is open in G(0). This proves 3. �

Theorem 4.6. There is an isomorphism ϕ of topological groupoids Q ⋉ B → G(A,B)

given by

ϕ(γ̇ , χ) := [φα̃γ̇ (χ), f , φχ ] = [αf (φχ ), f , φχ ], (16)

where f ∈ Cc(G, c) is any function supported on a bisection such that γ̇ ∈ q(supp′(f )).

We point out here that this result is a significant strengthening of [8, Theorem

5.2]. Not only is Theorem 4.6 true for étale groupoids (not just discrete groups), but we

also do not need to assume that α̃ is topologically free. Instead, as our theorem suggests,

this simply follows from G(A,B) being topologically principal. Moreover, Theorem 4.6

applies in the setting of [12, Section 3] if one assumes the groupoids involved to be

étale, as discussed in the following remark.

Remark 8. When the 2-cocycle c on the étale groupoid G is trivial, B is precisely the

dual bundle Ŝ used in [12, Section 3]. Moreover, the right action of G/S on Ŝ given at the

top of [12, page 23],

χ · γ̇ (a) = χ(γ aγ −1),
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Weyl Construction 15745

is precisely the left action α̃γ̇ −1(φχ ) of γ̇ −1 ∈ G/S on φχ in this case. In other words,

Theorem 4.6 establishes that the groupoid Ŝ ⋊Q of [12, Theorem 3.3] is indeed the Weyl

groupoid, if G is étale and C∗
r (S) is Cartan in C∗

r (G).

We will use the rest of this section to prove Theorem 4.6 through a series of

lemmata.

Lemma 4.7. The map ϕ : Q ⋉ B → G(A,B) defined in Equation (16) is a well-defined

groupoid homomorphism.

Proof. Let (γ̇ , χ) ∈ Q ⋉B and f ∈ N satisfy γ̇ ∈ q(supp′(f )). This assumption implies

ρ(χ) = s(γ ) ∈ s(supp′(f )), which guarantees that φχ ∈ dom(f ) by Proposition 4.4(1), so

that [φα̃γ̇ (χ), f , φχ ] is indeed an element of G(A,B). Moreover, this element is independent

of the choice of f by Proposition 4.5, 2 �⇒ 3. In other words, ϕ is well defined.

Next suppose
(
(τ̇ , χ ′), (γ̇ , χ)

)
is a composable pair in Q ⋉ B, i.e., χ ′ = α̃γ̇ (χ). It

follows that ϕ takes this composable pair to a composable pair:

s(ϕ(τ̇ , χ ′)) = φχ ′ = φα̃γ̇ (χ) = r(ϕ(γ̇ , χ)).

Moreover, if g, h ∈ N with τ̇ ∈ q(supp′(g)) and γ̇ ∈ q(supp′(h)), then

ϕ(τ̇ , χ ′)ϕ(γ̇ , χ) = [φα̃τ̇ (χ ′), g, φχ ′ ][φα̃γ̇ (χ), h, φχ ] = [φα̃τ̇ (α̃γ̇ (χ)), gh, φχ ],

which equals [φα̃τ̇ γ̇ (χ), gh, φχ ] since α̃ is an action. On the other hand,

ϕ
(
(τ̇ , χ ′)(γ̇ , χ)

)
= ϕ(q(τγ ), χ) = [φα̃q(τγ )(χ), f , φχ ],

where f ∈ N with q(τγ ) ∈ q(supp′(f )).

In order to show that [φα̃q(τγ )(χ), f , φχ ] = [φα̃τ̇ γ̇ (χ), gh, φχ ], it suffices to show that,

like f , gh is an element of N with q(τγ ) ∈ q(supp′(gh)).

Since g, h ∈ N, gh is supported on the bisection supp(g) · supp(h) (cf. [22, Lemma

3.1.4] in the untwisted case). Lastly, if τ ∈ supp′(g) and γ ∈ supp′(h) are representatives

of τ̇ and γ̇ , respectively, then

0 �= g(τ )h(γ )c(τ , γ ) = (gh)(τγ ),
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15746 A. Duwenig et al.

so q(τγ ) ∈ q(supp′(gh)). Therefore, the fact that ϕ is well defined implies that

[φα̃q(τγ )(χ), f , φχ ] = [φα̃τ̇ (α̃γ̇ (χ)), gh, φχ ]. �

Lemma 4.8. The groupoid homomorphism ϕ : Q⋉B → G(A,B) is a bijection.

Proof. By Lemma 4.2, we know that every element of G(A,B) is of the form [αf (x), f , x]

for f ∈ N and x ∈ dom(f ) ⊆ B̂. By Lemma 3.2, we may write x = φχ for a unique χ ∈ B.

Since φχ (f ∗f ) > 0 by assumption, Proposition 4.4(1) shows that ρ(χ) ∈ s(supp′(f )), i.e.,

supp′(f ) ∩ Gρ(χ) = {γ } for some γ . In particular, (γ̇ , χ) ∈ Q⋉B. Moreover, the fact that ϕ

is well defined means that

ϕ(γ̇ , χ) = [φα̃γ̇ (χ), f , φχ ].

Proposition 4.4(2) now implies that ϕ(γ̇ , χ) = [αf (x), f , x], so ϕ is surjective.

For injectivity, assume that ϕ(γ̇1, χ) = ϕ(γ̇2, χ ′), i.e.,

[αf1
(φχ ), f1, φχ ] = [αf2

(φχ ′), f2, φχ ′ ], where fi ∈ N have γ̇i ∈ supp′(fi).

This immediately forces χ = χ ′ by definition of the Weyl groupoid and injectivity of φ

(Lemma 3.2). In particular, s(γ̇1) = ρ(χ) = s(γ̇2).

Proposition 4.5, 3 �⇒ 2, tells us that if Xi := supp′(fi), then q(X1
ρ(χ)

) = q(X2
ρ(χ)

).

By choice of fi, Xi
ρ(χ)

= {γi}, so γ̇1 = γ̇2 and (γ̇1, χ) = (γ̇2, χ ′). �

Lemma 4.9. The bijective groupoid homomorphism ϕ : Q⋉B → G(A,B) is a homeomor-

phism.

Proof. To see continuity of ϕ, suppose the net (γ̇i, χi)i∈� converges to (γ̇ , χ) in Q⋉B. Let

ϕ(γ̇i, χi) = [φα̃γ̇i
(χi)

, fi, φχi
] and ϕ(γ̇ , χ) = [φα̃γ (χ), f , φχ ], where fi, f ∈ Cc(G, c) are supported

on bisections such that γ̇i ∈ q(supp′(fi)) and γ̇ ∈ q(supp′(f )).

Let U be an open neighborhood of φα̃γ̇ (χ) in B̂ and V be an open neighborhood of

φχ in B̂, so that

U(U, f , V) := {[αf (φν), f , φν ] ∈ G(A,B) | αf (φν) ∈ U, φν ∈ V} (17)

is a basic open neighborhood of [αf (φχ ), f , φχ ] [21, p. 36]. We must show that there exists

K ∈ � such that if i ≥ K, then [φα̃γ̇i
(χi)

, fi, φχi
] lies in U(U, f , V). Since q(supp′(f )) is an

open neighborhood of γ̇ and γ̇i converges to γ̇ , there exists K1 ∈ � such that if i ≥ K1,
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Weyl Construction 15747

then γ̇i ∈ q(supp′(f )). Since ϕ is well defined (Lemma 4.7), we may assume that fi = f

for i ≥ K1. Moreover, since χi converges to χ by assumption, Lemma 3.5 implies there

exists K2 ∈ � such that φχi
∈ V for all i ≥ K2. Lastly, since (γ̇i, χi) converges to (γ̇ , χ),

continuity of (τ̇ , ν) �→ α̃τ̇ (ν) (Proposition 4.1(4)) and of ν �→ φν (Lemma 3.5) imply that

there exists K3 ∈ � such that φα̃γ̇i
(χi)

∈ U for all i ≥ K3. Therefore, if i is greater than

each of K1, K2, K3, then [φα̃γ̇i
(χi)

, f , φχi
] = [φα̃γ̇i

(χi)
, fi, φχi

] lies in U(U, f , V).

To see that ϕ−1 is continuous, suppose (γ̇i, χi)i∈� is a net in Q ⋉ B such that

ϕ(γ̇i, χi) converges to some element Ŵ in G(A,B). If we write Ŵ = [αf (φχ ), f , φχ ] for some

f ∈ N with φχ ∈ dom(f ), then a basic open neighborhood around Ŵ is of the form

U (̂B, f , V) (Equation (17)), where V ⊆ dom(f ) is some open neighborhood of φχ . Since

ϕ(γ̇i, χi) → Ŵ, we know that for any fixed V, there exists K ∈ � such that if i ≥ K,

then ϕ(γ̇i, χi) lies in U (̂B, f , V). This means in particular that φχi
∈ V. Since V was

arbitrary, this proves that φχi
→ φχ . The fact that the map φ is open (Lemma 3.6) implies

that χi converges to χ . Since φχ , φχi
∈ dom(f ), it follows from Proposition 4.4(1) that

ρ(χ), ρ(χi) ∈ s(supp′(f )), i.e., there exist (unique) τ , τi ∈ supp′(f ) with s(τ ) = ρ(χ) and

s(τi) = ρ(χi). The definition of ϕ thus yields

ϕ(τ̇ , χ) = [αf (φχ ), f , φχ ] = Ŵ and ϕ(τ̇i, χi) = [αf (φχi
), f , φχi

].

On the other hand, since ϕ(γ̇i, χi) ∈ U (̂B, f , V), we also know that

ϕ(γ̇i, χi) = [αf (φχi
), f , φχi

].

Injectivity of ϕ now implies γ̇i = τ̇i. We will show that τi → τ , so that in particular

γ̇i = τ̇i → τ̇ .

Let U be any open neighborhood around τ contained in supp′(f ). Then, since G is

étale, s(U) is an open neighborhood around s(τ ) = ρ(χ). As χi → χ and ρ is continuous,

there exists i0 so that for all i ≥ i0, we have s(τi) = ρ(χi) ∈ s(U). Since τi ∈ supp′(f ) and

U = s−1(s(U))∩supp′(f ), this means τi ∈ U for i ≥ i0. As U was an arbitrary neighborhood

around τ , we conclude that τi converges to τ .

All in all, we have shown that (γ̇i, χi) converges to (τ̇ , χ), the preimage of Ŵ

under ϕ. This completes the proof of the lemma, and also of Theorem 4.6. �

5 When the Weyl Twist is a 2-Cocycle

The standing assumptions for this section can be found on page 14. In this section, we

identify when the Weyl twist �(A,B) can be described by a continuous 2-cocycle on the
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15748 A. Duwenig et al.

Weyl groupoid G(A,B). So let us first recall the classical construction of a twist G×σT from

a 2-cocycle σ on a groupoid G (cf. [20, Chapter I, Proposition 1.14] or [8]). As a set, we

have G×σ T = G×T; we set (G×σ T)(2) = {((g, λ), (h, μ)) : (g, h) ∈ G(2)}. The multiplication

is given by (g, λ)(h, μ) = (gh, σ(g, h)λμ). When σ is continuous, the product topology on

G ×σ T makes it a topological groupoid. Note that there is a continuous action of T on

G ×σ T, given by λ · (g, μ) = (g, λμ) and (G ×σ T)/T ∼= G. Similarly (cf. [14, Section 3]),

the Weyl twist �(A,B) always admits an action of T, given by λ · �αn(φχ ), n, φχ � =

�αn(φχ ), λn, φχ �, so that �(A,B)/T = G(A,B).

We show in Theorem 5.1 that, if s : Q → G is a continuous section, then we

obtain a continuous section ψ
s

: G(A,B) → �(A,B). Such a continuous section ψ
s

implies

that �(A,B) is given by a continuous 2-cocycle σ s on G(A,B) via the formula

σ s(y1, y2) = ψ
s
(y1)ψ

s
(y2)ψ

s
(y1y2)−1,

see [14, Fact 4.1], [20, Proposition I.1.14], [22, Remark 5.1.6]. In Corollary 5.4, we give an

explicit formula for the induced 2-cocycle Cs : (Q⋉B)(2) → T.

Theorem 5.1. Let s : Q → G be a section for q : G → Q and for each γ̇ ∈ Q, choose one

fγ̇ ∈ N such that fγ̇ (s(γ̇ )) > 0. Define ψ
s

: G(A,B) → �(A,B) for m ∈ N and φχ ∈ dom(m) by

ψ
s
([αm(φχ ), m, φχ ]) = �φ(α̃γ̇ (χ)), fγ̇ , φχ � = �αm(φχ ), fγ̇ , φχ �,

where (γ̇ , χ) = ϕ−1([αm(φχ ), m, φχ ]). If s is continuous, then ψ
s

is a continuous section of

the groupoid extension �(A,B).

Remark 9. By Lemma 4.2, every element of G(A,B) indeed has a representative of the

form [αm(φχ ), m, φχ ] with m ∈ N. Moreover, surjectivity of ϕ (see Theorem 4.6) implies

the existence of the specified (γ̇ , χ) ∈ Q⋉B, and Proposition 4.4(2) shows that αm(φχ ) =

φ(α̃γ̇ (χ)) = αfγ̇
(φχ ).

Proving continuity of ψ
s

requires a few preliminary results. The following

analogue of [8, Lemma 5.4] states that every element of the Weyl twist can be represented

by a function supported in a bisection and scaled by an explicitly computed factor.

Proposition 5.2. Let �αn(φχ ), n, φχ �, n ∈ N(B), be an arbitrary element of the Weyl

twist �(A,B), and let γ̇ ∈ Q be such that ϕ(γ̇ , χ) = [αn(φχ ), n, φχ ]. If f ∈ N satisfies
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Weyl Construction 15749

γ̇ ∈ q(supp′(f )), then

�αn(φχ ), n, φχ � = �αf (φχ ), λf , φχ � where λ =
φχ

(
�(f ∗ n)

)
∣∣∣φχ

(
�(f ∗ n)

)∣∣∣
∈ T. �

Proof. Write x := φχ ∈ dom(n). We have to find two elements b, b′ ∈ B such that

x(b), x(b′) > 0 and nb = (λf )b′. By assumption on f and definition of ϕ, we have

[αf (x), f , x] = ϕ(γ̇ , χ) = [αn(x), n, x].

Proposition 2.2 therefore tells us that there exist b1, b2 ∈ B such that fb1 = nb2 and

x(b1), x(b2) �= 0. In fact, the construction of b1, b2 in the proof of that proposition gives

x(b2) > 0. Thus, if we set

b′ =
|x(b1)|

x(b1)
b1, b = b2, λ =

x(b1)

|x(b1)|
,

then x(b), x(b′) > 0 and λfb′ = fb1 = nb2 as desired.

To see that λ can be equivalently written as in the statement of the proposition,

recall from Equation (7) that

b1 = �(k)f ∗n �(k),

where k ∈ C0(̂B) is supported on dom(f ) ∩ dom(n) and satisfies k(x) = 1. As the

conditional expectation � : A → B is B-linear, it follows that

x(b1) = φχ (�(b1)) = φχ (�(k)�(f ∗n)�(k)) = φχ (�(f ∗n)).

This yields the asserted expression for λ. �

As we will frequently need to explicitly compute the constant λ appearing in

Proposition 5.2, the following corollary will be helpful.

Corollary 5.3. In the setting of Proposition 5.2, suppose further that n ∈ N. If the

unique element γ of supp′(n) ∩ Gρ(χ) is also an element of supp′(f ), then

�αn(φχ ), n, φχ � = �αf (φχ ), λf , φχ � where λ =
f (γ )

|f (γ )|

n(γ )

|n(γ )|
. �
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15750 A. Duwenig et al.

Remark 10. The above corollary shows, in particular, that the definition of ψ
s

in

Theorem 5.1 does not depend on the choice of fγ̇ but only on s. If f is another element of

N with f (s(γ̇ )) > 0, then Corollary 5.3 applied to n := fγ̇ and γ := s(γ̇ ) yields

ψ
s
([αm(φχ ), m, φχ ]) = �αfγ̇

(φχ ), fγ̇ , φχ � = �αf (φχ ), f , φχ � since 1 =
f (γ )

|f (γ )|

fγ̇ (γ )∣∣∣fγ̇ (γ )

∣∣∣
. �

Proof of Corollary 5.3. Since f ∗n ∈ N, the definition of the conditional expectation

(Equation (12)) implies that �(f ∗n) is given by restriction to S. In particular, �(f ∗n) ∈

Cc(S, c). The definition of φχ therefore yields

φχ (�(f ∗n)) =
∑

a∈Sρ(χ)

χ(a)f ∗n(a) =
∑

a∈Sρ(χ)

χ(a)
∑

r(η)=ρ(χ)

f ∗(aη)n(η−1)c(aη, η−1).

Since f and n are supported in bisections, and both have the same element of Gρ(χ) in

their support, only the summand where η := γ −1 and a := ρ(χ) does not vanish, i.e., the

sum above simplifies to a single term:

φχ (�(f ∗n)) = χ(ρ(χ))f (γρ(χ)−1)c(γρ(χ)−1, ρ(χ)γ −1)n(γ )c(ρ(χ)γ −1, γ ).

As χ(ρ(χ)) = 1 and c(γ −1, γ ) = c(γ , γ −1), we conclude that φχ (�(f ∗n)) = f (γ )n(γ ). This

yields the desired formula for λ. �

We are now prepared to prove Theorem 5.1.

Proof of Theorem 5.1. The fact that ψ
s

is a section follows from Proposition 4.5, as

γ̇ ∈ q(supp′(m)) ∩ q(supp′(fγ̇ )) by construction and hence

[αm(φχ ), fγ̇ , φχ ] = [αm(φχ ), m, φχ ].

To see that ψ := ψ
s

is continuous when s is continuous, assume that (γ̇i, χi)i is a net in

Q ⋉ B that converges to (γ̇ , χ). Since ϕ is a homeomorphism, it now suffices to show

that ψ(yi) → ψ(y), where yi := ϕ(γ̇i, χi) and y := ϕ(γ̇ , χ). If f := fγ̇ , then a basic open set

around ψ(y) = �αf (φχ ), f , φχ � (according to [21, Lemma 4.16]) is of the form

U(U, V, f ) :=
{
�αf (φν), κf , φν� | φν ∈ U, κ ∈ V

}
, (18)
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Weyl Construction 15751

where U ⊆ B̂ is an open neighborhood around φχ and V ⊆ T an open neighborhood

around 1. We need to show that ψ(yi) ∈ U(U, V, f ) for large enough i. By definition of ψ ,

we have

ψ(yi) = �αfi
(φχi

), fi, φχi
�, where fi := fγ̇i

.

Let γi := s(γ̇i) and γ := s(γ̇ ). It follows from γ̇i → γ̇ and continuity of s that γi → γ . By

choice of f , we have that supp′(f ) is an open neighborhood of γ , so γi ∈ supp′(f ) for all i

larger than some i1. Since we also have fi(γi) > 0, Corollary 5.3 implies that for i ≥ i1,

ψ(yi) = �αf (φχi
), λif , φχi

�, where λi :=
f (γi)∣∣f (γi)

∣∣
fi(γi)∣∣fi(γi)

∣∣ =
f (γi)∣∣f (γi)

∣∣ .

To show that ψ(yi) is an element of U(U, V, f ) for all large enough i, we must show that

λi ∈ V and φχi
∈ U. For the latter, note that since χi → χ by hypothesis, and since the

map ν �→ φν is continuous by Lemma 3.5, we must have φχi
∈ U for all i larger than

some i2. For the former, note that since γi → γ and f is a continuous function with

f (γ ) = f (γ ) > 0,
f (γi)
|f (γi)|

= λi converges to 1. We conclude that λi is in the neighborhood V

of 1 for all large enough i. �

Corollary 5.4. If s : Q → G is a continuous section for q : G → Q, then the function

Cs : (Q⋉B)(2) → T defined by

Cs((τ̇ , α̃γ̇ (χ)), (γ̇ , χ)) = c(s(τ̇ ), s(γ̇ )) c(s(τ̇ γ̇ )−1, s(τ̇ )s(γ̇ )) c(s(τ̇ γ̇ )−1, s(τ̇ γ̇ )) χ(s(τ̇ γ̇ )−1
s(τ̇ )s(γ̇ ))

is a continuous 2-cocycle on Q⋉B, and the Weyl twist �(A,B) and the twist (Q⋉B)×Cs T

are isomorphic as topological groupoids.

Proof. If s is continuous, then ψ
s

: G(A,B) → �(A,B) is a continuous section by Theorem

5.1. Given this continuous section, it is well known (cf. [14, Fact 4.1], [20, Proposition

I.1.14], [22, Remark 5.1.6]) that the function σ s : G
(2)
(A,B)

→ T defined by

σ s(y1, y2) = ψ
s
(y1)ψ

s
(y2)ψ

s
(y1y2)−1 (19)

is a continuous 2-cocycle on G(A,B) and �(A,B)
∼= G(A,B) ×σ s T. Since G(A,B)

∼= Q ⋉ B by

Theorem 4.6, it remains to prove that the definition of σ s in Equation (19) induces the

asserted formula for Cs on (Q⋉B)(2).
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Suppose ((τ̇ , χ1), (γ̇ , χ2)) ∈ (Q ⋉B)(2). In particular, this means that χ1 = α̃γ̇ (χ2)

and that ϕ(τ̇ , χ1), ϕ(γ̇ , χ2) are composable elements of G(A,B). With fγ̇ ∈ N for γ̇ ∈ Q as

specified in Theorem 5.1, Equation (19) and the definition of ψ
s

(see Theorem 5.1) yield

σ s(ϕ(τ̇ , χ1), ϕ(γ̇ , χ2)) = ψ
s
(ϕ(τ̇ , χ1))ψ

s
(ϕ(γ̇ , χ2))ψ

s
(ϕ(τ̇ , χ1)ϕ(γ̇ , χ2))−1

= �φα̃τ̇ (χ1), fτ̇ , φχ1
��φα̃γ̇ (χ2), fγ̇ , φχ2

��φα̃τ̇ γ̇ (χ2), fτ̇ γ̇ , φχ2
�−1

= �φα̃τ̇ (α̃γ̇ (χ2)), fτ̇ fγ̇ , φχ2
��φχ2

, f ∗
τ̇ γ̇ , φα̃τ̇ γ̇ (χ2)�

= �φα̃τ̇ γ̇ (χ2), fτ̇ fγ̇ f ∗
τ̇ γ̇ , φα̃τ̇ γ̇ (χ2)�.

To interpret this as an element of T, recall [21, p. 47] that an element �x, b, x� =

�x, 1
|x(b)|

b, x� in �(A,B) with b ∈ B corresponds to
(
x, x(b)

|x(b)|

)
in B̂ × T. Denote fτ̇ fγ̇ f ∗

τ̇ γ̇ ∈ N

by n and denote s(τ̇ )s(γ̇ )s(τ̇ γ̇ )−1 ∈ S by a, the unique element in supp′(n) ∩ Gr(τ̇ ).

Let f ∈ Cc(S, c) be supported in a bisection and such that f (a) = 1. Then, since

r(τ̇ ) = ρ(α̃τ̇ γ̇ (χ2)) (Proposition 4.1(2)), it follows from Corollary 5.3 that

σ s(ϕ(τ̇ , χ1), ϕ(γ̇ , χ2)) = �φα̃τ̇ γ̇ (χ2), n, φα̃τ̇ γ̇ (χ2)� =

�
φα̃τ̇ γ̇ (χ2),

n(a)

|n(a)|
f , φα̃τ̇ γ̇ (χ2)

�
.

With x = φα̃τ̇ γ̇ (χ2) and b = n(a)
|n(a)|

f , the element of T that we are after is therefore

Cs((τ̇ , χ1), (γ̇ , χ2)) : =
x(b)

|x(b)|
= φα̃τ̇ γ̇ (χ2)

(
n(a)

|n(a)|
f

)

=
n(a)

|n(a)|

∑

a′∈Sr(τ̇ )

f (a′) α̃τ̇ γ̇ (χ2)(a′) =
n(a)

|n(a)|
α̃τ̇ γ̇ (χ2)(a).

If we write τ := s(τ̇ ), γ := s(γ̇ ), and ε := s(τ̇ γ̇ ), then

n(a) =
(
fτ̇ fγ̇ f ∗

τ̇ γ̇

) (
τγ ε−1

) (
fτ̇ fγ̇

)
(τγ ) f ∗

τ̇ γ̇

(
ε−1

)
c

(
τγ , ε−1

)

= fτ̇ (τ ) fγ̇ (γ ) c (τ , γ ) fτ̇ γ̇ (ε) c
(
ε−1, ε

)
c

(
τγ , ε−1

)

and, using the definition of α̃ (see Proposition 4.1) and of a,

α̃τ̇ γ̇ (χ2)(a) = c(ε, ε−1) c(ε−1, a) c(ε−1a, ε) χ2(ε−1aε)

= c(ε, ε−1) c(ε−1, τγ ε−1) c(ε−1τγ ε−1, ε) χ2(ε−1τγ ).
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Since fτ̇ (τ ) , fγ̇ (γ ) , and fτ̇ γ̇ (ε) are positive by assumption, we conclude

Cs((τ̇ , χ1), (γ̇ , χ2)) =
n(a)

|n(a)|
α̃τ̇ γ̇ (χ2)(a)

= c (τ , γ ) c
(
ε−1, ε

)
c(τγ , ε−1) c(ε, ε−1) c(ε−1, τγ ε−1) c(ε−1τγ ε−1, ε) χ2(ε−1τγ )

= c(τ , γ ) c(ε−1, ε) c(ε−1, τγ ) χ2(ε−1τγ ),

where the last equality follows from the fact that

c(τγ , ε−1) c(ε, ε−1)
(
c(ε−1, τγ ε−1) c(ε−1τγ ε−1, ε)

)

= c(τγ , ε−1) c(ε, ε−1)
(
c(ε−1, τγ ) c(τγ ε−1, ε)

)

=
(
c(τγ , ε−1) c(τγ ε−1, ε)

)
c(ε, ε−1) c(ε−1, τγ )

=
(
c(ε−1, ε)

)
c(ε, ε−1) c(ε−1, τγ ) = c(ε−1, τγ )

since c(g, g−1) = c(g−1, g) for any g ∈ G by [8, Lemma 2.1]. �

Remark 11. For each γ̇ ∈ Q, choose as before one fγ̇ ∈ N such that fγ̇ (s(γ̇ )) > 0. Then,

a straightforward computation yields an alternative formula for Cs :

Cs((τ̇ , α̃γ̇ (χ)), (γ̇ , χ)) =
φχ (�(f ∗

τ̇ γ̇ fτ̇ fγ̇ ))

|φχ (�(f ∗
τ̇ γ̇ fτ̇ fγ̇ ))|

, (20)

where φχ and � are defined in Equations (11) and (12), respectively.

Corollary 5.5. If s is continuous, then the Cartan pair (C∗
r (G, c), C∗

r (S, c)) is isomorphic

to the pair
(
C∗

r (Q⋉B, Cs), C0(B)
)
.

Proof. Since the Weyl groupoid is isomorphic, as a topological groupoid, to Q ⋉B by

Theorem 4.6, and the Weyl twist is also topologically isomorphic to (Q ⋉ B) ×Cs T by

Corollary 5.4, [21, Theorem 5.9] implies that C∗
r (G, c) is isomorphic to C∗

r (Q ⋉B, Cs) and

that isomorphism carries C∗
r (S, c) onto C0((Q⋉B)(0)) ∼= C0(B). �
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