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When the reduced twisted C*-algebra C;(G,c) of a non-principal groupoid G admits
a Cartan subalgebra, Renault’'s work on Cartan subalgebras implies the existence
of another groupoid description of C;(G,c). In an earlier paper, joint with Reznikoff
and Wright, we identified situations where such a Cartan subalgebra arises from a
subgroupoid § of G. In this paper, we study the relationship between the original
groupoids S§,G and the Weyl groupoid and twist associated to the Cartan pair. We
first identify the spectrum B of the Cartan subalgebra C}(S, c). We then show that the
quotient groupoid G/S acts on B, and that the corresponding action groupoid is exactly
the Weyl groupoid of the Cartan pair. Lastly, we show that if the quotient map G — G/S
admits a continuous section, then the Weyl twist is also given by an explicit continuous
2-cocycle on G/S x ‘B.

1 Introduction

One of the earliest theorems about C*-algebras, the Gelfand—Naimark Theorem, estab-
lishes that any commutative C*-algebra is of the form Cy(X) for a locally compact
Hausdorff space X. In addition to inspiring the “noncommutative topology” approach
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to C*-algebras, the Gelfand-Naimark Theorem has also led researchers to search
for Abelian subalgebras inside noncommutative C*-algebras, with the goal of using
topological tools to analyze the Abelian subalgebra and from there to obtain a better
understanding of its noncommutative host. This program has been particularly suc-
cessful when the subalgebra is Cartan (see Definition 2.1); it has enabled progress on
Elliott’s classification program for C*-algebras [4, 15] as well as the theory of continu-
ous orbit equivalence of topological dynamical systems [2, 16]. Even beyond the setting
of Cartan subalgebras, many authors (cf. [2, 3, 12]) have successfully extended structural
information from more general Abelian subalgebras to the containing C*-algebras.

In this paper, we focus our attention on certain Cartan subalgebras, which
appear in a rather unexpected context. Renault proved in [21], building on earlier work
of Kumjian [14], that if a C*-algebra A admits a Cartan subalgebra, then A is isomorphic
to the reduced C*-algebra C;(G, %) of a twist ¥ over a groupoid G, and the Cartan
subalgebra is realized as C,(G'?). The groupoids G appearing in Renault's analysis must
satisfy a number of structural contraints; for example, they are always topologically
principal. If G is not topologically principal, then Cy(G®) is not a Cartan subalgebra
inside C; (G, X) for any twist X over G. Nevertheless, there are many such groupoids
whose twisted C*-algebras contain Cartan subalgebras. Examples include the rotation
algebras A, = C#(Z?, c,) and the C*-algebras of directed graphs, which do not satisfy
Condition (L).

Together with Reznikoff and Wright, in [8, Theorem 3.1], we identified a large
family of twisted groupoid C*-algebras, associated to non-principal groupoids G, which
contain Cartan subalgebras. Moreover, these Cartan subalgebras are evident at the level
of the groupoid G: they arise from a subgroupoid S of G. As mentioned above, the exis-
tence of a Cartan subalgebra in C;j (G, ¢) implies, by [21], the existence of a topologically
principal groupoid G, the so-called Weyl groupoid, and a twist ¥ over G such that
Ci(G.c) = Ci(G,X). If G is a discrete group and S < G satisfies the hypotheses of [8,
Theorem 3.1], so that C}(S,¢) is a Cartan subalgebra of C; (G, c), then [8, Theorem 5.2]
establishes that

G=(G/S)xS

as long as the action of G/S on Sis topologically free. Moreover, [8, Theorem 5.8] shows
that in this case, the twist X arises from a 2-cocycle on G, which we described explicitly
in [8, Lemma 5.6].

The prepublication version of [12] came to our attention as we were finalizing [8],

and we were struck by the structural parallels between the two papers’ main results. In
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[12, Theorem 3.3], the authors show that if a subgroupoid S of a (not necessarily étale)
groupoid G consists of a closed normal bundle of Abelian groups, then the groupoid
C*-algebra C;(G) can alternatively be computed from a twist X over the action groupoid
S % (G/S):

CH(G) = CHS % (G/S), ).

However, they only establish that C;(S) is Cartan in C}(G) if G/S is étale and topolog-
ically principal [12, Theorem 4.6], and they do not analyze the structure of twisted
groupoid C*-algebras C;(G,c). As nontrivial discrete groups are never topologically
principal, this excludes the setting of [8, Theorem 5.8]. Moreover, the formula given in
[12] for the twist is not explicit; in particular, it is unclear when, or whether, it can be
realized via a 2-cocycle on the groupoid S x G/S).

In this paper, we bridge the gap between [8] and [12]. Our first main result,
Theorem 4.6, establishes that when a subgroupoid S of an étale groupoid G satisfies
the hypotheses of [8, Theorem 3.1], so that C;(S,c) is Cartan in C} (G, c), then the Weyl

groupoid associated to the Cartan pair (Ci(g, c), Ci(S, C)) is an action groupoid
(G/S) x B,

where ‘B denotes the spectrum of the commutative algebra C;(S, c). When the 2-cocycle
c is trivial, B agrees with the space S of [12], and (translating our left action of G/S into
a right action) we see that our groupoid (G/S) x B agrees with the groupoid 8 x (G/S)
of [12] (see Remark 8). Theorem 4.6 is a substantial improvement over [8, Theorem 5.2].
Not only do we extend [8, Theorem 5.2] from groups to groupoids, we also show that the
hypothesis of topological freeness in the latter theorem is always satisfied.

Our second main result is Theorem 5.1: given a continuous section s: G/S — G
of the quotient map, we identify a continuous section ¥,: G, p) — X4 p) of the Weyl
groupoid extension. From this section, we follow the standard procedure to construct
in Corollary 5.4 an explicit formula for a continuous 2-cocycle C* on the Weyl groupoid
such that the Weyl twist is isomorphic to ((G/S) x B) xs T. Our precise description of
the twist represents both an extension of [8, Theorem 5.8] to a broader setting and an
improvement on [12, Theorem 3.3] in the étale case.

This paper is organized as follows. In Section 2, we recall the relevant defini-
tions of groupoids and Cartan subalgebras, and give a detailed analysis of the Weyl

construction. We expect that some of the technical results we have obtained will be
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of general interest. For example, Proposition 2.2 gives a description of the equivalence
relation underlying the Weyl groupoid, which, to our knowledge, has not appeared
before in the literature.

The first step in providing an explicit description of the Weyl groupoid associ-
ated to a Cartan pair (4, B) is identifying the topological space B; Section 3 is devoted
to describing B in the case when B = C:(S, c) arises from a bundle of discrete Abelian
groups and c is symmetric on S (see Corollary 3.7). This description may be known to
experts—indeed, it is similar to results such as [18, Corollary 3.4], [10, Proposition 5],
and [7, Remark 5.2]—but we were unable to locate a reference in the literature for the
precise result we needed.

In Section 4, we prove that if (4, B) = (C;(G, ¢), Ci(S, ¢)) is one of the Cartan pairs
identified by [8, Theorem 3.1], then its Weyl groupoid is the action groupoid (G/S) x B
alluded to above (Theorem 4.6). In Section 5, we prove that the associated Weyl twist
arises from a continuous 2-cocycle on the Weyl groupoid if there exists a continuous

section of the quotient map G — G/S (Theorem 5.1).

2 Preliminaries on Cartan Subalgebras and the Weyl Construction

Intuitively, a groupoid G is a generalization of a group in which multiplication is only
partially defined. More precisely, a groupoid is a set G, together with a subset G C
G x G; a multiplication map (y,n) — yn from G@® to G; and an inversion map y + y~!
from G to G, which behave like multiplication and inversion do in groups wherever they

1

are defined. The unit space of G is G© = {yy~! : y € G}. We then have range and source

maps r,s: G — G© given by
ry)=yy L s i=yly,
which satisfy r(y)y = y = ys(y) for all y € G. Given u € G©, we write G, := {y € G :

s(y) = u} and G := {y € G : r(y) = u}. We can also describe G'® using the range and

source maps:
GP =((y,n) eGxG:sy)=rm).

In this paper, we will assume that G is equipped with a locally compact
Hausdorff topology with respect to which the multiplication and inversion maps are
continuous. The groupoids considered in this paper will also be étale — that is, r and s

will be local homeomorphisms. A subset V of G will be called a bisection if there is an
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open set U containing V such that r: U — r(U) and s: U — s(U) are homeomorphisms
onto open subsets of G,
The link between groupoids and Cartan subalgebras was established in the

seminal papers [14, 21].

Definition 2.1 ([21, Definition 5.1]). Let A be a C*-algebra. A C*-subalgebra B of A is a
Cartan subalgebra if the following four conditions hold:
1. Bis a maximal Abelian subalgebra of A.
There exists a faithful conditional expectation ®: A — B.

3. Bis regular; that is, the normalizer of B,
N(B) := {n € A such that nbn*,n*bn € B for all b € B},

generates A as a C*-algebra.

4. B contains an approximate identity for A.

For this section, we fix a Cartan subalgebra B of some separable C*-algebra A.
Let us first recall how (4, B) gives rise to a topologically principal groupoid and twist
(cf. [14, 1.6] or [21, Proposition 4.7]), and then gather a few tools to study them. Let
B be the spectrum of B, viewed as the space of one-dimensional representations of B
(a subspace of B*, the space of linear functionals on B), and let Q: Co(ﬁ) — B be the
Gelfand representation.

As B contains an approximate identity for A, if n € N(B), then n*n,nn* € B. For

each n € N(B), there exists a unique partial homeomorphism «,, with domain
dom(n) := {x c ﬁ‘ Q l(n*n)(x) = x(n*n) > 0}
and with codomain dom(n*) that satisfies
n*Q(f)n=Q(f oa,)n*n (1)

for all f € C,(B). If n,m € N(B), then «,, o«t,,, = @, and a,,» = ;! (cf. [14, Corollary 1.7]).
The Weyl groupoid G, p, is the quotient of

D = {(a,(x),n,x) | n € N(B),x € dom(n)}
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by the equivalence relation

(a,(x),n,x) ~ (0, (y), m,y) <

x =y and a,|y = a,,|y for an open neighborhood U C B of x.

We will denote the equivalence class of («,(x),n,x) by le,(x),n,x]. The groupoid

structure on G, ) is defined by

lory, (0, (X)), 1, 0, (O] - ety (%), M, X, = oty (%), nM, X], and

[a,,(x), m, x]7! =[x, m*, a,, (x)].

To topologize Q(A'B), we define a basic open set to be of the form {le,(x), n,x] : o, (x) € V,
x € U}, where U,V C B are open and n € N(B) [21, Section 3]. It follows from the remark
at the bottom of page 971 in [14] that x € dom(n) if and only if Q7! (n*n) does not vanish

at x.

Remark 1. For each x € dom(n), we have «,(x)(nn*) = x(n*n). Indeed, if b € B, then
x(n*bn) = a,(x)(b) x(n*n). In particular, for b = nn*, the fact that each functional x € B

is multiplicative implies that
x(n*n) x(n*n) = x(n*(nn*)n) = a, (x)(nn*) - x(n*n).

Since x € dom(n), we can divide by x(n*n) and get 0 # x(n*n) = «,,(x)(nn*) as claimed.

The Weyl twist ¥, p, is another groupoid associated to the Cartan pair (4, B).
Like the Weyl groupoid, the Weyl twist is also a quotient of D, but by the equivalence

relation

(@, (X), 1, %) % (ap, (), M, y) =

x=yand 3 b,b’ € Bsuch that x(b),x(b') > 0 and nb = mb'.

We write [«, (x), n, x] for the class of («,,(x),n,x) in a8 We point out that equivalence
with respect to ~ implies equivalence with respect to ~.
As its name suggests, the Weyl twist is a T-groupoid, or twist, over G p.

As such, one can construct the twisted groupoid C*-algebra C; (G4 ) Z(a ) (cf. [21,
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Section 4]). The Weyl twist and groupoid are constructed exactly so that

4,B) = (C: (G5 Zap)  Co (g((?l),B))) '

see [21, Theorem 5.9].

We recall the construction of a twisted groupoid C*-algebra in the case when
the twist arises from a 2-cocycle, as this is the level of generality we will need in this
paper. Recall that a (T-valued) 2-cocycle on a groupoid G is a function c: G» — T, which

satisfies the cocycle condition
c(x,yz) c(y, z) = c(x,y) c(xy, z) for all (x,y), (y,2) € G?. 2)

Given a second countable, locally compact Hausdorff, étale groupoid G and a continuous
2-cocycle c: G@ — T, we denote by C.(G,c) the collection of continuous, compactly
supported C-valued functions on G, which we view as a *-algebra via the twisted

convolution multiplication

fg ) =D f(mglp)cm, p)

ne=y

and the involution

) =fy=Hey,y=H.

For each u € G9, we represent C.(G, ¢) on ¢2(G,) by left multiplication:

7, (DE =FE =y D FE()C, p)

ne=y

Let ||f]l, denote the operator norm of 7,(f). The reduced twisted groupoid C*-algebra
C;(G, ¢) is then the completion of C,(G, ¢) in the norm | - ||, := sup,cgo | - ll-

Although the definition of the Weyl groupoid and Weyl twist seem quite
different, the following very helpful proposition describes the groupoid in terms more
similar to the twist. The result may be known to experts, but we were unable to locate

it in the literature.

Proposition 2.2. Suppose n; € N(B) and x € dom(n,) N dom(n,). Then, (o, (x),n;,x] =

loy, (%), 19, x] if and only if there exist b; € B so that x(b;) # 0 and n,b, = n,b,.
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For the proof, we require two lemmata.

Lemma 2.3. If n,m € N(B), then
o, = a,, on dom(n) Ndom(m) <= nm* € B. O

Proof. We know that nm* e B if and only if &« = idgomnm+), Since B is maximal
Abelian. MOTeOVer, o, = &, 0 &+ = &, o &;l. Both things combined yield that nm* € B
if and only if «,, oa,,! is the identity on dom(nm*). Since n*n € B, we can use the defining

property of «,,. (Equation (1)) to rewrite
(mn*nm*)(x) = (n*n o a,,:) (x)mm*(x),
so we have

dom(nm*) ={x € B|x € dom(m*) and (n*n o a,,)(x) # 0}

= dom(m*) Na,,} (dom(n)) = a,, (dom(m) N dom(n)).

Thus, nm* € B if and only if &, o &)} is the identity on «,, (dom(m) N dom(n)) if and only

if o, = «,, on dom(m) N dom(n). |
We define the open support of k Co(ﬁ) by supp’(k) := {x € §| k(x) # 0}.

Lemma 2.4 (Urysohn-type Lemma). Let f € N(B) and suppose that k € Co(ﬁ) has
supp’(k) € dom(f*). Then, the partial homeomorphism associated to f, := Q(k)f has
domain oz]ZI(supp’(k)) = af*(supp’(k)), and af, = ldom(fy)-

Proof. First note that f, is still a normalizer of B because f is and because Q(k) € B;
thus, it makes sense to speak of the corresponding partial homeomorphism o, and its
domain, dom(f5).

By definition of f,, we have fjf, = f*Q(kl?f. The defining property of af
(Equation (1) for |k|? € Cy(B)) yields

Q (f3fy) = (k1% o) - Q7H(FS). (3)
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By assumption, V := afl(supp/(k)) is contained in dom(f), so the above yields

dom(f,) =supp’ (2" (f3f;)) = supp’ (ko a) N supp’ (' (f*f)) = VNdom(f) =V. (4)
By the defining property of af,, for any b € B, we have

Qb)) = QD) oag) - Q) = QT B oag) - (KlPoas) QTN (6)
where the second equality is due to Equation (3). The definition of f, implies that
f30f; = ff( Q)" bQ(k)f,

so that the defining property of o (Equation (1)) yields

QN (f5bfy) =((k-Q71B) k) oap) - Q) = QD) o ap) - (K2 0 ap) - QTS
Combining this with Equation (5) reveals that, for any b € B,

QB oag) - (IkI?oap) - Q7 () = ( Q7 (B) oap) - (kI ? 0 ap) - Q7 (FN).

We conclude that, on supp’ (™1 (f*f)) Nsupp’ (|k|? oay), we have o, = af. By (4), it follows
that a, = o on dom(f,) € dom(f). |

Proof of Proposition 2.2.  First, fix x € dom(n;)Ndom(n,) and assume that n,b; = n,b,
for some b; € B such that x(b;) # 0. In particular, there exists a neighborhood X of x in
dom(n;) N dom(n,) such that, for all y € X, we have y(b;) # 0. If g is any element of
Co (B), then by the defining property of «,,, (Equation (1)) and since B is commutative, we

have

(nibi)* Q(g) (nibi) = b? (n?Q (g9n;) bi

=b;Q(go ani)(nfni)bi =Q(go ani)(nfni)(bfbi),
so that the equality n,;b; = n,b, implies that

Q(g ooy, )(nn)(b1by) = Q(g o ay,)(n51,)(b3by).
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Evaluating both sides at y € X yields

9oy, @) y(miny) [y ? = g(a,, (1) v(niny) |yby)] 2.

By our construction of X, we have y(b;) # 0 and also X € dom(n;), so that y(njn;) > 0.
We have shown that, for any g € C, ®), g (ozn1 () is a positive multiple of g (anz (v)). Since
Co(ﬁ) separates points (as B is Hausdorff), this implies a, (y) = a,,(y) forall y € X. As
X is an open neighborhood of x, we arrive at the claimed equality in the Weyl groupoid.

Conversely, assume that
[a,, X), 1y, x] = [, (%), ny, x].

We will construct b;, b, € B such that x(b;) # 0 and n,b; = n,b,.
By assumption, there exists a neighborhood X of x in dom(n;) N dom(n,) on

which o, and «y,, agree. Let Y := ay, (X) = ap,(X) and note that a,- (Y) = a,:(¥) = X. As

X is an open neighborhood of x, Urysohn’s Lemma (see, for example, [9, 4.32]) implies
the existence of k € Co(ﬁ) with k(x) = 1 and supp’(k) € X. By our choice of X,

y €supp’(k) = a,, (y) =a,,(y), e, y= Ol (0, (). (6)
By Lemma 2.4, we know that
m; = Q(k)n] € N(B)

has dom(m;) = ani(supp’(k)) C Y C dom(n}) and that Uy, is extended by «,:. In

particular, it follows from Implication (6) that
6
dom(m,) = a,,, (supp' (k) < a,,, (supp'(k)) = dom(m,) V.

This means that o, = Ut ldom(my) = % ldom(my) = ¥m, O all of dom(m;) = dom(m,).

By Lemma 2.3, we conclude that

b, :=mm} = Qk)nin,Q k) (7)
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is an element of B. To see that x(b;) # 0, use the defining property of U (Equation (1))
to write

x(bb;) = x(mymim,;m3) = x(m,m3) ~am§(x)(m’{m1).
Since supp’(k) € dom(n;) and O extends ol—
supp’(k) = oy (ozni(supp/(k))) = an;(dom(mi)) = ap, (dom(m;)) = dom(my).
Therefore, x € supp’(k) = dom(m}) implies x(m,m3) > 0. Moreover, Uy x) = s x) e

dom(m,), so U (x)(mim,) > 0. Consequently, x(b7b;) > 0, so x(b;) # 0.

By the defining property of Uz, WE have
niby =ny(Qknim;) = Qkoay:) (nn]) mz = Q(ko oznf)(nln*[)nZQ(E). (8)

Our goal is to rewrite the right-hand side of Equation (8) in the form n,b, for some
b, € B such that x(b,) # 0. Note that if

fri=(koay)-Q  (nyny),

then f € CO(E), Equation (8) becomes n;b;, = Q(f)ymj, and f is supported in
oy, (supp’(k)) = a,,, (supp’(k)) C Y.

As supp’(k) € X € dom(n,), and Oy, © Ol (y)=yforallyeY = oy, (X), we have
ny,Q2(f oay,,) = Q(f)n, by [8, Lemma 4.2]. Equation (8) can therefore be rewritten as

n1b; = nyQ(f o o, )Q(K).
Setting b, = Q((f o anz)E), we have n;b; = n,b,.
We now complete the proof by showing that x(b,) > 0. As k(x) = 1 by
construction, it suffices to show that f(«,,(x)) > 0. Our construction of X > x implies
that k(anyf (ay, (%)) = k(x) = 1 and that

Q7 (mn))(ay,, (%) = Q7 (n (e, (x) = x(njn;) > 0,

where the last equality follows from Remark 1. Thus, f(a,,(x)) = [(ko O‘n’f) . Q*I(nln’{)]

(0, (%)) > 0, as desired. |

€20 Joquieldag 10 Uo Josn BUBJUO JO AUSISAIUN BUL AQ 6111 LE9/LZ.G1L/0Z/2202/a10m e /Uil Woo dno olwapee/:sdiy Woly pepeojumod



15732 A. Duwenig et al.
3 The Spectrum of a Twisted Bundle of Groups

Assume that S is a second countable, locally compact Hausdorff, étale groupoid and that
c: S® — Tis a 2-cocycle on S. We will always assume that 2-cocycles are normalized,
i.e., c(r(a),a) = 1 = c(a, s(a)) for each a € S. In order to construct the twisted groupoid
C*-algebra C}(S, c), we will need c to be continuous, so we will frequently impose this
assumption.

In this section, we will be interested in bundles of groups, so on top of our
topological assumptions above, assume that the range and source maps of S are equal,
called p: S — S©. We write S, := p~!({u}) for u a unit. Moreover, assume that the
multiplication map S® — S is commutative and that the continuous 2-cocycle c is
symmetric on S, i.e., c(a,a’) = c(a’,a) for all a,a’ € S,, so that its reduced twisted

C*-algebra B := C; (S, ¢) is commutative by [8, Lemma 3.5].

Remark 2. Since C; (S, ¢) is nuclear (being commutative) and since S is locally compact
Hausdorff étale, it follows from [23, Theorem 5.4] that S is amenable. In particular, [1,
Corollary 4.3] implies that C*(S, ¢) = Ci(S, ¢).

Definition 3.1. Given u € S and a continuous 2-cocycle ¢ on S, let B, denote the
set of one-dimensional c-projective representations of the Abelian group S,,. That is, B,

consists of maps x: S, — T such that
x(@x () = c(a,a’)x(aa). (9)

Write B = | |,cs0 B, and p: B — S© for the projection map.

Remark 3. It is well known (cf. [13, Lemma 7.2], [6, Corollary 3 to Proposition 18.4])
that for a countable discrete Abelian group S, every symmetric 2-cocycle on S, is
cohomologous to a 2-coboundary. Consequently, B, = Ci(S,) = S‘\u However, in this
paper, our main focus is the topological space B = [ |, g0 B,. The proofs of the
identification B, = 3; that we have found in the literature are not sufficiently explicit
to analyze how the fibers piece together, and so we have chosen to use the explicit

description of B, given above.

Remark 4. Observe that for x € B, anda € S,

x(@c(a,a™l) = x(@Hx(pa) = x(@h), (10)

where we used that x(u) = 1 since c(a,u) =1 = c(u, a).
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Recall that the spectrum C of a commutative C*-algebra C is the set of nonde-
generate one-dimensional representations of C, equipped with the weak-* topology. As
B = C}(S,c) is commutative, the Gelfand-Naimark Theorem yields B = Co(ﬁ). We will
show that B = B for a suitable topology on B.

Lemma 3.2. For x € B, let

¢,:C(S,0) > C, ¢, (N = D x@f(a. (11)

aeSyy)

Then, ¢, is a *-algebra homomorphism that extends to an element of B. Moreover, the

map ¢: B — B, x — ¢, is a bijection.

Remark 5. It is unclear to the authors whether the formula for ¢, in Lemma 3.2
extends to elements of B when thought of as C,-functions on S. In particular, if
b € B C Cy(S) with ¢, (b) # 0, does it then follow that supp’(b) N Sp(x) £ 07

Proof. Observe that B is a Cy(S@)-algebra (cf. [7, Remark 5.1]). Then, [24, Proposition
C.5] implies that B = | |, B(w). When c is trivial, amenability of S (Remark 2) and [7,
Remark 5.2] imply that B(u) = Cj(S,, ¢). In fact, a careful examination of the proof of [7,
Remark 5.2] reveals that, even if ¢ is not trivial, the formulae used there will also give an
isomorphism between the fiber algebra B(u) and the twisted group C*-algebra C;(S,, ¢).

It is a classical fact (cf. [5, Theorem 3.3(2)]) that unitary projective represen-
tations of S, are in bijection with representations of the twisted group C*-algebra
C*(S,,¢) = Ci(Sy, ) = B(u). For a one-dimensional projective representation y € B, the
corresponding element of B/(;) C B is indeed given on C,(S,,c) € B(u) by the formula
in Equation (11) (cf. [24, pp. 386-7]). In other words, for each u, ¢|y, is a bijection

B, — B/(E), and hence ¢ is also bijective as a map %6 — B. |

Proposition 3.3. If we equip B with the topology induced by ¢ from B, then a net ( Xi)i
converges to x in ‘B if and only if the following two conditions hold:

1. p(x) = p(x) in S©;

2. whenever (a;); is a net in § that satisfies p(a;) = p(x;), p(@) = p(x), and

a; - ain S, then y;(a;) = x(a)in T.
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Remark 6. Note that, with respect to this topology on B, p: B — S© is clearly
continuous. Note further that, when c is trivial, this result is well known; the description

of the topology on B should be compared with [18, Proposition 3.3].
The proof of Proposition 3.3 proceeds through a series of lemmata.

Lemma 3.4. Suppose (x;);c; and x are elements of 9B satisfying Condition 1 of Propo-
sition 3.3, and suppose f € C.(S,c) is supported in a bisection. If supp’(f) N S,,, = 9,

p(x
then ¢Xi(f) — 0.

Proof. We will prove the contrapositive. Let u; := p(x;) and assume that ¢>Xi(f) 4 0,
i.e., there exists € > 0, so that for all i € I, there exists g(i) € I with g(i) > i such that
‘qug(i) (f)‘ > €. This implies that, for each j in J := {g(i) |i € I}, there exists a unique
aj € supp () N S, such that ¢ < |¢,, ()| = |Tqes, 1(@F (@] = @l

Note that J is a directed set when equipped with the preorder of I: if we take
J1.J2 € J, then since I is directed, there exists i € I with i > j;,j,. Then, g(i) > i, so g(i) is
an upper bound for j; and j, in J. First, this implies that (u;);c; is a subnet of (u;);; (the
inclusion J < I is monotone and final), so that Condition 1 of Proposition 3.3 implies
lim;; u; = lim;; u; = p(x). Second, we conclude that (a;);c; is a net in supp’(f). Since
supp(f) is compact, there exists a subnet (a,),cx of (a;);c; Which converges to some

a € supp(f). By continuity of f, we have

f@|=lim|f(@)]| =z e,

i.e., a € supp’(f). Moreover, p(a) = lim,_p(a,) = lim, u, = p(x), ie., a € S and so

pGO"
supp’(f) NS, ) # 9. [ |

Lemma 3.5. Suppose (x;);c; and x are elements of B satisfying Conditions 1 and 2 of

Proposition 3.3. Then, by, — by in B.

Proof. We must show that, for all f € C.(S,c) and for all € > 0, there exists i; € I such
that, if i > iy, then |¢, . (f) — ¢, ()] <e.

We will begin by proving the claim for f € C,(S,c) such that supp(f) is a
bisection. Let u := p(x) and u; := p(x;). If supp’(f) NS, = @, then b, (f) = 0 and Lemma
3.4yields ¢, (f) > 0= ¢, (f), as claimed. Otherwise, fix e > 0 and let a € supp’(f) such

that p(a) = u. Since f(a) # 0 and f is continuous, there exists an open neighborhood
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V of a on which f is nonzero. In fact, V is a bisection around a because V C supp’(f),
and p(V) is an open neighborhood of u because S is étale. As u; — u, by shrinking the
neighborhood V, we see that {a; € V|p(a;) = u;} is a net in S converging to a. In this

case,

b, -0, =| X n@f@)- > x@y@)

ageSui a'eSy

lxi(@apfay) — x(@f ().

If we now use the fact that f € C,(S,c) is bounded in |||, and our hypothesis that
(x;); and x satisfy Condition 2 of Proposition 3.3, an easy ¢/2-argument establishes that
|¢Xi(f) — ¢X(f)| < e fori> i, for someij; €.

For more general functions, recall that since § is a second countable, locally

compact Hausdorff, étale groupoid, we have
C.(S,c) = span{f € C,(S,c) | supp(f) is a bisection},

see [22, Lemma 3.1.3]. An €/k-argument now shows that, for any g € C.(S, ¢), there exists

i) € Iso thati > i, implies |, (9) — ¢, (9)| < e. u

Lemma 3.6. Let (x;);c; be some net in B such that ¢, — ¢, for some x € B. Then, (x;);
and x satisfy Conditions 1 and 2 of Proposition 3.3.

Proof. Recall that our assumption ¢, — ¢, means that, for every f € C.(S,c) and
€ > 0, there exists Ne el such that if i > N¢ ., then |¢Xi(f) -9, )| <e.

We start by proving Condition 1 of Proposition 3.3. Let u := p(x) and u; := p(x;).
Recall that the unit space in a Hausdorff étale groupoid is clopen [22, Lemmas 2.3.2
and 2.4.2], so that u; — u in S© if and only if u; — u in S. Let V € S© be an open
neighborhood of u. Since S is locally compact Hausdorff and V is an open neighborhood
of u in S, there exists by Urysohn's Lemma a function f in C.(S,c) with f(u) = 1 and
ﬁS\V = 0. Since ¢Xi — q)x, then for any fixed 1 > € > 0, there exists an M € I such that if
1> M, then

b, () — b, () <€ <1,
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which, by definition of ¢, implies

> x@)f@)— D x@)f@)| <1.

a’eSui a'eSy,

As S© > ¥ is a bisection containing supp’(f), and £&(v) = 1 for any & € B and v € S©,

the above inequality becomes

Ixuf ) — xf| = [fw) —1| <1,

for all i > M. Therefore, if i > M, then u; € supp’(f) € V. This concludes the proof
of Condition 1.

We proceed with proving Condition 2. Suppose (a;); is a net in S such that
p(a;) = u;, p(a) = u, and a; — a. Fix ¢ > 0. We must show there exists M € I such that if
i > M, then |x;(a;) — x(a)| < €. By [22, Lemma 2.4.9], there exists an open bisection W in
S that contains a. Since § is locally compact Hausdorff, there exists, by [9, Proposition
4.31], a precompact open set U witha € U C U C W. Since a; — a, there exists N € I,
such that if i > IV, then a; € U.

Again by Urysohn’s Lemma, there exists f € C.(S,c), which is equal to 1 on U
and 0 outside of W. So for all i in I, which are larger than both N and Ng ., we know
a; € U C supp(f) and

> x@)f@)— D x@)f@)| <e.
a’eSui a'eSy

Note that W is a bisection, and a;, a are elements of U € W with p(a;) = u; and p(a) = u.
All of these facts combined yield that a; is the unique element in S, N U and a is the

unique element in S, N U. Since f is equal to 1 on U, the inequality becomes

Ix;(a;) — x(@)] <e.
This completes the proof of the lemma and of Proposition 3.3. |
Corollary 3.7. The map ¢: B — B defined in Lemma 3.2 is a homeomorphism when B

has the topology induced by ¢ as described in Proposition 3.3. In particular, B is locally
compact Hausdorff and B is isomorphic to the C*-algebra Cy(B).
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4 Computing the Weyl Groupoid

Our standing assumptions for the remainder of this paper are the following:

1. G is a second countable, locally compact Hausdorff, étale groupoid;
c is a normalized, continuous T-valued 2-cocycle on G;
S C Iso(G) is an Abelian subgroupoid, containing G(®, on which c is
symmetric;
S is clopen and normal in G; and
5. S is chosen such that B := C}(S, ¢) is maximal Abelian in A := C} (G, ¢).

Note that Assumptions 1, 2, and 3 make sure that (S, ¢) falls into the scope of Section 3;
in particular, B is a commutative algebra, and ‘B is its spectrum, which comes with the
map p: B — S@ = GO As Sis clopen in G, B is naturally a subalgebra of 4, and the
map &: C,(G,c) — C,(S,c) defined by

(f) =fls (12)

extends to a faithful conditional expectation A — B, which we will also denote by ®,
see [8, Proposition 3.13]. Normality of S implies that B is regular in A. Furthermore, B
contains an approximate unit for A because ¢©® c S. Thus, Assumptions 1-5 make B a
Cartan subalgebra of A.

Let us explain why our last assumption on S is reasonable. It was shown in [8,
Theorem 3.1] that, in order to get Assumption 5, a sufficient assumption on S is that (1)
S is maximal among the Abelian subgroupoids of Iso(G) on which c is symmetric, and
additionally (2) S is immediately centralizing [8, Definition 2]. A careful examination
of the proof of [8, Proposition 3.9] reveals that, instead of (2), we may assume that for
each 7 € Iso(G) with u = r(n) = s(), the set {ana™! |a € S,} is either the singleton {5} or
infinite.

In the sections about to come, we will use the techniques we have developed
so far to compute the Weyl groupoid G, ) and the Weyl twist ¥4 p, of the Cartan pair
(A, B). In particular, we will see in Theorems 4.6 and 5.1 that there is a strong connection
to a certain groupoid action of G/S on B. As such, it seems prudent to briefly state a

few facts about the quotient groupoid G/S.

Remark 7. Weletq: G —> G/S =: Q,y — q(y) =: y, denote the quotient map. Since S
is a wide subgroupoid of G (i.e., S C Iso(G) is closed with S© = G©), openness of S and

étaleness of G imply that g is an open map. Since G is Hausdorff and S is closed in G,
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this implies that O is Hausdorff also. Furthermore, it follows from [25, Corollary 2.13]

(taking G = S and X = §G) that Q is locally compact and second countable because G is.
Lastly, we point out that, if one is interested in groupoids & C G with étale

quotient Q (as in [12, Theorem 4.6]), then one must ask for S to be open in G, as we have

done.

We will now construct a continuous left action & of the locally compact
Hausdorff groupoid Q = G/S on the spectrum B of B = C} (S, ¢), with the moment map
p:B — QO given by p|y, = u. In the following, we will write

Qx,B:={(y,x) € QxBlsgy) = p(0}

Proposition 4.1. Let p: B — Q© be given by p|, = const,. Fory € G, (¥, x) € Qx, B,

andaeS define

r(y)’
&, ()@ =cly,y Hey L ayelyta,y) x(v lay).

Then
(1) a;(x) only dependsony € Q=G/S, notony € 4.
(2) 55);()() € %r(y) and &-[-}}(X) =a; (&)}(X))-
(3) Ifue QO, then &,(x) = x forall x € B,,.
(4) The map Q * B — B, (Y, x)— &y(x), is continuous.

In other words, @ is a continuous left action of @ on % with moment map p.

Before embarking on the proof, we point out that the formula for & is not sur-
prising. Indeed, if x were defined on all of G and satisfied Equation (9) of Definition 3.1

(and, by extension, Equation (10)), then we would have

&, (0@ =cly,y Hey ™ a) x(ya) x(v)

=cly,y Hx(r Hx@ xy) = x@.

Proof. One readily verifies 1-3 using the cocycle identity (Equation (2)), the fact that c
is symmetric on the Abelian subgroupoid S, that c is normalized, and that C()/_l, y) =
c(y,y~!) for any y € G by [8, Lemma 2.1].

For 4, suppose that (y;, x;,) = (v, x) in Q *, 5. We need to show [18, Proposition
3.3] that, if a; — a in S and s(a;) = r(y,) for all i, then &},i(xi)(ai) — &};(X)(a). Since the
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cocycle ¢ and both multiplication and inversion on G are continuous, we have

1 1

ey v Helyapely  ag v) — ey, y Hely L aey a, y).

Similarly, yi_laiyi — y7!

that x; (v, 'a;y) — x(y

ay. Since the assumption x; — x in B implies in particular

ay), it follows that ay, (xp(a) — a;(x)(@). |

The action @ of Q on B allows us to endow the space Q * 0 B with the structure
of a topological groupoid. This so-called left action groupoid is denoted Q x 95, and we
will show in Theorem 4.6 that it is isomorphic to the Weyl groupoid G, p).

Recall [11, p. 3] that the elements (7, x;), (¥, xy) € Q x B are composable if
X1 = @;(Xp), and their product is given by

T X)W x2) = (@Y, x2)-

-1

The inverse of an element (y, x) is (y ,d),(x)). Therefore,

QxB)Y = {(p(x), X)Ix € B}.

Note that s(y,x) = (s(¥),x) and r(y,x) = (r()}),&}-,(x)). The topology of Q x B is
inherited from Q x 9B; since Q and 9B are locally compact, so is Q x B, and the fact
that Q is étale and p is continuous implies that Q x 95 is étale. See [17, p. 5] for more
details.

Our next goal will be to describe the relationship between the partial home-
omorphisms «, used to construct the Weyl groupoid G, p and the action & (see

Proposition 4.4). We begin with a few preliminary results.

Lemma 4.2. The set
N :={f € C,(G,c) | supp(f) is a bisection} (13)

is a subset of the normalizer N(B) of B, and every element of the Weyl groupoid

associated to (4, B) can be represented by some («,,(x), n, x) where n € N and x € dom(n).

Proof. By [8, Lemma 3.11], N is contained in the normalizer of C,(S, ¢), which implies

N C N(B) since B C A is closed. Since G is a second countable, locally compact
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Hausdorff, étale groupoid, it follows from [22, Lemma 3.1.3] that C.(G,c) = span(iV).

In particular, span(lV) is dense in A. The claim then follows from [8, Proposition 4.1]. B

A more general variant of the following lemma was obtained in [3, Proposition
4.12]. For the convenience of the reader, we include both the precise statement of the

result we need and its proof.

Lemma 4.3. Suppose f; € N and x € 98,. Let ®: A — B denote the faithful conditional
expectation associated to the Cartan pair (4,B) = (C;(G, ¢), Ci(S, ©)).

1. If o, (6,).f1, 6] = log, (8,). fo, ¢,], then ¢ (D (F5f) # 0.
2. If [og, (D)), 1, ¢ ) = [og, (0,), f2, ¢, ], then ¢, (D(f5f7)) > 0.
Moreover, if y; € q(supp’(f;)) with s(y;) = s(y,) = u, then either of the above assumptions

implies y; = y,.

Proof. We start by proving 2. By assumption, ¢, € dom(f}) N dom(f;) and there exist
by, b, € Bwith ¢, (b;) > 0 and such that f;b, = f,b,. In particular, since f, € N € N(B), it
follows that fyf,b; = f5yf,b; is an element of B. Since ¢, € dom(f,), we conclude that

¢, (F2f1b1) = ¢, (f2f2by) = ¢, (f2£2) ¢, (by) > 0.

As the conditional expectation ® fixes B and is B-linear, we get the equality in the

following:

¢X(q)(fz* 1)) ¢X(b1) =¢X 2* 1b1) > 0.

It follows that ¢, (@(f5f1) > 0, as claimed.

For 1, we use Proposition 2.2 to obtain b; € B such that ¢,(b;) # 0 and
fib, = f,b,. The above proof now works mutatis mutandis, replacing each instance
of “> 0" by “# 0".

Lastly, in either of the two cases, f5f] is an element of N C C.(G,¢). As ®(g9) = gls
for g € C.(G,c) (cf. [8, Proposition 3.13]), ®(f;f}) € C.(S,c). Thus, the definition of é,
yields

0£¢, (@)= D x@eFEH@= > x@fifi@),

a€Sy ) a€Sy(y)
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and consequently

supp'(f21) NS,y # 9

If y; € q(supp/(f;)) satisfy s(y;) = s(y,) = u, let y; denote the representative of y; in
supp’(f;). Since yzflyl is then the unique element in supp’(f;f;) with source p(x), it

follows that y, 'y, € Spiyr 184 V1 = Vo .

Proposition 4.4. Suppose f € N and x € 8.
(1) p(x) € s(supp’(f)) if and only if ¢, € dom(f).
(2) If {y} = supp’(f) N Gy(y)r 8O that x € dom(a,) and ¢, € dom(f), then we have
ar(by) = ba;(x)-

Proof. Since f is supported in a bisection, it follows from [8, Lemma 3.11] that f is a
normalizer of B, so af exists and has domain dom(f) C B. It then follows from (a twisted
variant of) [22, Lemma 3.1.4] that

F@I?, neg® andsupp’(f)NG, = (¢},

o, otherwise.

ffm) =

Using that x(p(x)) = 1 and that f*f € C.(S,c) C B, this implies

(MI?  ifsupp’(HNG,,, ={r}
¢, = D xFH) = v © PP D NGoi =1y
n€Sp(x) 0 if Supp/(f) N gP(X) = .

(14)

This proves 1.

For 2, note first that p(x) = s(y), so x € B,,, is automatically an element of

1304
dom(dy) = By,,- It remains to prove that ap(p,) = ¢&y(x)' Recall that af is uniquely

determined by satisfying

x(f*bf) = ap(x)(b) x(f*f) forall b € Ci(S,c) and x € B.
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Observe that for b € C,(S,c) and n € S,

Fofm = > fE T DemE e I Db fE Hems 7Y
EeGsm

= > D fE I HemE e HbE T BF (B emE, E e B, BT
£€GStD gegs—h

= > fE T HemE e HbE T BF (B HemE E e B, 8.
g,ﬂegsm)

The factor b(¢ ~!8) will only be nonzero if r(¢~!18) = s(E71p), i.e.,, r(¢~1) = s(B).
In that case, since f is supported in a bisection and since r(8~!) = s(8) = r(¢™ 1) =

r(€~'n~1), the only nonzero terms in the sum occur when g = &, so that

Fofay = D (B HIPbB " up)eB, BN, B~ mec(B™ 0B, 1)
Begrm

= > F@Pbens e, 0e™, emeens ™, ).
¢€Grap

; : ()
In particular, if n € S /]

shows that

—so that r(n) = p(x)—then the assumption supp’(f)NG,,, = {v}

F*of ) = [F)12byny Hey =1 yyety ™ ymetyny =, p).

Therefore, for x = b, and b € C,(S,c) CB,

o, (F*bf) = D x(m) (F*bf)(n)

n€Sp00
=FP D xmbyny ey ey ymeyny ™ y). (15)

n€Sp(0

By Equation (14) and by definition of oy, we have

ap(¢,)B) fF ()12 = ap(@,)(b) ¢, (f*f) = ¢, (F*bf),
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and since f(y) # 0 as y € supp’(f), Equation (15) allows us to conclude that

1

Z xmbyny Hey =L yicy " ymetyny ™ y)

n€Sp(x)

> xylay)ely,y Hely ' ay)ca, y)b@a)

aeSrgy)

ap(9,)(b)

> xlanely,y Hetya,victy T ab@) = ¢, (O b).

aeSrgy)

To obtain the second equality, we invoked the fact that c(y,y~!) = c(y~!,y) for any
y € G [8, Lemma 2.1]. It follows that, as desired, af(qﬁx)(b) = ¢~y(x)(b) for all b in the

o

dense subalgebra C,(S) and thus on all of B. |

o

The fact that ap(¢,) = ¢”y'(x) whenever {y} = supp’(f) N 9oi0) forf e Nand x € B
shows that there is an intimate connection between the partial action « of N(B) on B
and the action & of Q on 8. In order to describe this connection, we first need to better

understand equality in the Weyl groupoid G, p)-

Proposition 4.5. Suppose f; € N and x € 8. Let X’ denote supp/(f;) € G, and for
u € G0, let X!, denote the singleton-set X' N G,. Recall that q: G — Q is the quotient

map. The following are equivalent:

1. There exists an open neighborhood U of p(x) in s(X') Ns(X?) € G© such that
qX)) = qX?) forallu € U.

2. q(X5,) = X} ,)-

3. ¢, € dom(fy) Ndom(fy) and lag, (¢,), 1, 6,1 = lag,(9,). f2, ¢, 1.

Proof. Note that3 == 2 is the second assertion of Lemma 4.31, so it suffices to
prove 2 =—> 1 = 3.

Assume that 2 holds. By [19, Proposition 2.2.4], (X')~! - X? is an open bisection
in G. Setting {y;} = Xf)
[(XH~1.X2]NS. Since S is open and G is étale, the set U := s([(X1)~! - X?]NS) is an open

subset of G(©, which contains s(y; 'y,) = s(y,) = p(x). Furthermore, U is contained in

(x)r Our assumption translates to y; = y,; in particular, y; 1)/2 €

s(X')Ns(X?): any u € U can be written as u = s(y, '1,) for y, € X! and 7, € X? such that
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va 't € S. In particular,

s(t,) =s(yg'ty) = u by assumption, and

S(yy) = r(yu_lru) @ s(yu_lru) =u, where (%) follows from S C Iso(G).

This shows that {y,} = X}, {r,} = X2, and U C s(X') N s(X?). Moreover, it follows from
va ', € S that q(X}) = q(X?). This proves 1.

Next, we will show 1 = 3. Pick any u € U C s(X!) N's(X?), and let 3. denote the
unique element in X} = s~!(u) NX". Note that, by our assumption on U, we have y,} = y2.
Using Proposition 4.4(2) for (x) in the following, we thus see that, for any v € B,

() ()
= e, 0) = Pan0) = A (0)
Yu Yu

afl (¢U)
Since u was arbitrary, this shows that af, and af, coincide on all of ¢(p~1(U)). This
set contains ¢, by the assumption that p(x) € U and it is open in B since ¢ is a

homeomorphism, p is continuous, and U is open in G(?. This proves 3. [

Theorem 4.6. There is an isomorphism ¢ of topological groupoids Q x B — G, p,

given by
0. x) =g, fr10,] =lop(@,).f ¢,1, (16)
where f € C,(G, ¢) is any function supported on a bisection such that y € g(supp’(f)).

We point out here that this result is a significant strengthening of [8, Theorem
5.2]. Not only is Theorem 4.6 true for étale groupoids (not just discrete groups), but we
also do not need to assume that & is topologically free. Instead, as our theorem suggests,
this simply follows from G, p, being topologically principal. Moreover, Theorem 4.6
applies in the setting of [12, Section 3] if one assumes the groupoids involved to be

étale, as discussed in the following remark.

Remark 8. When the 2-cocycle ¢ on the étale groupoid G is trivial, 8 is precisely the
dual bundle S used in [12, Section 3]. Moreover, the right action of G/S on §given at the
top of [12, page 23],

x-v@ = x(yay™,

€20 Joquieldag 10 Uo Josn BUBJUO JO AUSISAIUN BUL AQ 6111 LE9/LZ.G1L/0Z/2202/a10m e /Uil Woo dno olwapee/:sdiy Woly pepeojumod



Weyl Construction 15745

is precisely the left action &;-1(¢,) of y!

Theorem 4.6 establishes that the groupoid 8 x Q of [12, Theorem 3.3] is indeed the Weyl
groupoid, if G is étale and C}:(S) is Cartan in C;(G).

€ G/S on ¢X in this case. In other words,

We will use the rest of this section to prove Theorem 4.6 through a series of

lemmata.

Lemma 4.7. The map ¢: Q x B — G, p) defined in Equation (16) is a well-defined

groupoid homomorphism.

Proof. Let (y,x) € Qx B and f € N satisfy y € g(supp’(f)). This assumption implies
o(x) = s(y) € s(supp’(f)), which guarantees that ¢, € dom(f) by Proposition 4.4(1), so
that [¢&)7(X)’ f, ¢>X] is indeed an element of Q( 4,p)- Moreover, this element is independent
of the choice of f by Proposition 4.5, 2 =— 3. In other words, ¢ is well defined.

Next suppose ((¢, x'), (¥, x)) is a composable pair in Q x B, i.e., x' = &, (x). It

follows that ¢ takes this composable pair to a composable pair:
s, X)) =y =z, =T@F, X))
Moreover, if g, h € N with ¢ € g(supp’(g)) and y € q(supp’(h)), then
o, XN, x) = [Da: 0y 9 @3 ) B, ) P @] = (95, a5 (00 P D 1

which equals [¢

&f}}(x),gh,rﬁx] since @ is an action. On the other hand,

% ((i'rX/)()}rX)) =¢@q(ty), x) = [¢&q(ry)(x)'f'¢)(]'

where f € N with q(ty) € g(supp’(f)).

In order to show that [¢&q<w>(x)'f' ¢>X] = [‘P&w(x)'gh'qsx]' it suffices to show that,
like f, gh is an element of N with q(ty) € q(supp’(gh)).

Since g, h € N, gh is supported on the bisection supp(g) - supp(h) (cf. [22, Lemma
3.1.4] in the untwisted case). Lastly, if t € supp’(g) and y € supp’(h) are representatives

of ¢ and y, respectively, then

0 # g(m)h(y)c(r,y) = (gh)(ty),
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so q(ty) € q(supp’(gh)). Therefore, the fact that ¢ is well defined implies that
[¢&Q(TV)(X)'f' ¢X] = [¢dr(5{y(x))lghr ¢X] [

Lemma 4.8. The groupoid homomorphism ¢: Q x B — G4 p) is a bijection.

Proof. By Lemma 4.2, we know that every element of Q(A,B) is of the form [af(x),f, x|
for f € N and x € dom(f) € B. By Lemma 3.2, we may write x = ¢, for a unique x € ‘B.
Since ¢, (f*f) > 0 by assumption, Proposition 4.4(1) shows that p(x) € s(supp’(f)), i.e.,
supp’(f) N G,(,) = {r} for some y. In particular, (y, x) € Q x B. Moreover, the fact that ¢

is well defined means that

oy, x) = [¢567(X)’f’¢x]‘

Proposition 4.4(2) now implies that ¢(y, x) = [af(x),f,x], S0 ¢ is surjective.

For injectivity, assume that ¢(y;, x) = ¢(yy, x), i.e.,

lap (00,11, 0,1 = lag,(9,),f2, 9,1, where f; € N have y; € supp'(f)).

This immediately forces x = x’ by definition of the Weyl groupoid and injectivity of ¢
(Lemma 3.2). In particular, s(y;) = p(x) = s(yy).

Proposition 4.5, 3 = 2, tells us that if X? := supp’(f;), then q(X;(X)) = q(X[f(X)).
By choice of f;, X;(x) ={y;},s0p; =y, and (¥, x) = (¥, x)). |

Lemma 4.9. The bijective groupoid homomorphism ¢: Q x B — G, p) is a homeomor-

phism.

Proof. To see continuity of ¢, suppose the net (y;, x;);c, converges to (y, x) in Qx‘B. Let
Wi X)) = [¢dpi(Xi)'ﬁ'¢Xi] and ¢(v, x) = [¢g,().f: ®,1, where f;, f € C.(G, c) are supported
on bisections such that y; € g(supp/(f;)) and y € g(supp’(f)).

Let U be an open neighborhood of Pa; (x) in B and V be an open neighborhood of
b, in B, so that

U(U,f, V) = {[af(¢v)lfl ¢U] € g(A'B) | af(¢v) eU, ¢V € V} (17)

is a basic open neighborhood of le(¢,). f, ¢,1[21, p. 36]. We must show that there exists
K € A such that if i > K, then [¢>&V_(Xi),fi,¢>xl,] lies in U(U,f, V). Since g(supp’(f)) is an

open neighborhood of y and y; converges to y, there exists K; € A such that if i > K,
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then y; € g(supp’(f)). Since ¢ is well defined (Lemma 4.7), we may assume that f; = f
for i > K,. Moreover, since x; converges to x by assumption, Lemma 3.5 implies there
exists K, € A such that ¢, €V for all i > K,. Lastly, since (y;, x;) converges to (v, x),
continuity of (¢,v) + &;(v) (Proposition 4.1(4)) and of v — ¢, (Lemma 3.5) imply that
there exists K3 € A such that d’&y-i(xl-) € U for all i > K;. Therefore, if i is greater than
each of K, K,,Kj;, then [¢5ty',-(Xi)’f’ ¢Xi] = [¢5‘)}i()(i)’fi’¢Xi] liesin U(U,f, V).

To see that ¢!

is continuous, suppose (¥;, x;)ica 15 @ net in Q x B such that
@(¥;, x;) converges to some element I' in G, ). If we write I' = [af(qu),f, ¢, 1 for some
f € N with ¢, € dom(f), then a basic open neighborhood around T is of the form
U(B,f,V) (Equation (17)), where V € dom(f) is some open neighborhood of b, Since
oy, x;) — I', we know that for any fixed V, there exists K € A such that if i > K,
then ¢(y;, x;) lies in U(ﬁ,f, V). This means in particular that ¢, € V. Since V was
arbitrary, this proves that ¢, — ¢, . The fact that the map ¢ is open (Lemma 3.6) implies
that x; converges to x. Since by by, € dom(f), it follows from Proposition 4.4(1) that
p(x), p(x;) € s(supp’(f)), i.e., there exist (unique) 7, 7; € supp’(f) with s(r) = p(x) and
s(t;) = p(x;). The definition of ¢ thus yields

§0(T: X) = [af(¢x)lfl ¢X] =T and (ﬂ(i’i, Xi) = [af(¢xi)rfr ¢Xi]'

On the other hand, since ¢(y;, x;) € Ll(ﬁ,f, V), we also know that

§0(V11 XL) = [af(d)xi)’f' ¢Xi]'

Injectivity of ¢ now implies y; = 7;. We will show that r; — 7, so that in particular
i =1 — T.

Let U be any open neighborhood around z contained in supp’(f). Then, since G is
étale, s(U) is an open neighborhood around s(r) = p(x). As x; — x and p is continuous,
there exists i so that for all i > i,, we have s(t;) = p(x;) € s(U). Since t; € supp’(f) and
U = s~ !(s(U))Nsupp'(f), this means 7; € U fori > i,. As U was an arbitrary neighborhood
around 7, we conclude that r; converges to t.

All in all, we have shown that (y;, x;) converges to (¢, x), the preimage of T

under ¢. This completes the proof of the lemma, and also of Theorem 4.6. |

5 When the Weyl Twist is a 2-Cocycle

The standing assumptions for this section can be found on page 14. In this section, we

identify when the Weyl twist ¥, 5 can be described by a continuous 2-cocycle on the
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Weyl groupoid G4 p)- So let us first recall the classical construction of a twist Gx, T from
a 2-cocycle o on a groupoid G (cf. [20, Chapter I, Proposition 1.14] or [8]). As a set, we
have G x, T = G x T; we set (G x, T)® = {((g, ), (h, ) : (g, h) € G®}. The multiplication
is given by (g, 1)(h, n) = (gh,o(g, h)An). When o is continuous, the product topology on
G x, T makes it a topological groupoid. Note that there is a continuous action of T on
G x, T, given by 1 - (g, 1) = (g, An) and (G x, T)/T = G. Similarly (cf. [14, Section 3]),
the Weyl twist ¥, p always admits an action of T, given by 1 - [o,(¢,),n,¢,] =
[[an(¢x),kn,¢x]], so that ¥, /T = G4 p)-

We show in Theorem 5.1 that, if s : @ — G is a continuous section, then we
obtain a continuous section y; : G, 5y = E(4 p)- Such a continuous section ., implies

that ¥, p) is given by a continuous 2-cocycle o° on G4 p) via the formula

V1, V) = Ve WDV V) Vs (V172)

see [14, Fact 4.1], [20, Proposition I.1.14], [22, Remark 5.1.6]. In Corollary 5.4, we give an
explicit formula for the induced 2-cocycle C3: (Q x B)? — T.

Theorem 5.1. Lets: @ — G be a section for g: G — Q and for each y € Q, choose one
fy € N such thatf), (s(y)) > 0. Define ¥ : G4 ) — X4 for m € N and ¢, € dom(m) by

l/fs([am(¢x), m, ¢X]) = [[(p(&y(X))rfr(px]] = [[am(¢x)!f'r¢x]]'

where (y, x) = (pfl([am(qﬁx), m, ¢, 1). If s is continuous, then 1, is a continuous section of

the groupoid extension X, p).

Remark 9. By Lemma 4.2, every element of G4 p, indeed has a representative of the
form [a,,(¢,), m, ¢,] with m € N. Moreover, surjectivity of ¢ (see Theorem 4.6) implies

the existence of the specified (y, x) € Q x B, and Proposition 4.4(2) shows that Uy (P,) =
¢y (x)) = o, (@y).

Proving continuity of v, requires a few preliminary results. The following
analogue of [8, Lemma 5.4] states that every element of the Weyl twist can be represented

by a function supported in a bisection and scaled by an explicitly computed factor.

Proposition 5.2. Let [[an(¢x),n,qu]}, n € N(B), be an arbitrary element of the Weyl
twist X, p), and let y € Q be such that ¢(y, x) = lo,(¢,). n, ¢, If f € N satisfies

€20 Joquieldag 10 Uo Josn BUBJUO JO AUSISAIUN BUL AQ 6111 LE9/LZ.G1L/0Z/2202/a10m e /Uil Woo dno olwapee/:sdiy Woly pepeojumod



Weyl Construction 15749
y € q(supp’(f)), then

¢, (®(F* )

e, (@)1, ¢, ] = [or(d,), Af, ¢,] where A= eT. O
X X A X ‘¢X(®(f*n))‘

Proof. Write x = ¢, € dom(n). We have to find two elements b,b’ € B such that
x(b),x(b") > 0 and nb = (Af)b’. By assumption on f and definition of ¢, we have

[O[f(X),f,X] = (,0()/, X) = [Oln(X), an]-

Proposition 2.2 therefore tells us that there exist b;,b, € B such that fb, = nb, and
x(b;),x(by) # 0. In fact, the construction of b;, b, in the proof of that proposition gives
x(b,) > 0. Thus, if we set

o _ X0yl

X(b1)
——==b,, b=hb,, A= ————
X(bl) 1 2

~xb)I’

then x(b), x(b’) > 0 and Afb' = fb; = nb, as desired.
To see that A can be equivalently written as in the statement of the proposition,

recall from Equation (7) that
b, = Qk)f'nQk),

where k € Co(ﬁ) is supported on dom(f) N dom(n) and satisfies k(x) = 1. As the

conditional expectation ® : A — B is B-linear, it follows that
x(by) = ¢, (®(by)) = ¢, QR (F k) = ¢, (@(f*n)).
This yields the asserted expression for A. |

As we will frequently need to explicitly compute the constant A appearing in

Proposition 5.2, the following corollary will be helpful.

Corollary 5.3. In the setting of Proposition 5.2, suppose further that n € N. If the

unique element y of supp’(n) NG, ,, is also an element of supp’(f), then

L _ ) nw)

lon@m. 0, ] =lop@0. 4f 8] where A =1z 700
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Remark 10. The above corollary shows, in particular, that the definition of ¥, in
Theorem 5.1 does not depend on the choice of f;; but only on s. If f is another element of

N with f(s(y)) > 0, then Corollary 5.3 applied to n :=f;, and y := s(y) yields

_ fTJ/) f;}(V) '
f ()l ‘f?(y)‘

Vol (@), m b, ) = lag, (0,).f5, 6,1 = ley(6,).f,6,] since 1

Proof of Corollary 5.3. Since f*n € N, the definition of the conditional expectation
(Equation (12)) implies that ®(f*n) is given by restriction to S. In particular, ®(f*n) €
C.(S,c). The definition of b, therefore yields

¢, (@)= D x@fn@= D x@ >,  fiapnn He@nn™h.

aeSy(y) aeSy ) r(m=p(x)

Since f and n are supported in bisections, and both have the same element of G, in
their support, only the summand where 5 := y~! and a := p(x) does not vanish, i.e., the

sum above simplifies to a single term:

¢, (1)) = x (GO (e ()~ DeypO)~L pOOY D)o Oy~ ¥).

As x(p(x)) = Land c(y !, y) = c(y,y "), we conclude that ¢ (®(f*n)) = f(y)n(y). This
yields the desired formula for A. [ |

We are now prepared to prove Theorem 5.1.

Proof of Theorem 5.1. The fact that ¢, is a section follows from Proposition 4.5, as

y € q(supp’(m)) N q(supp’(f);)) by construction and hence

(e (D). f ) = Loty (@), 7, 6,1

To see that y := v, is continuous when s is continuous, assume that (y;, x;); is a net in
Q x B that converges to (y, x). Since ¢ is a homeomorphism, it now suffices to show
that ¥ (y;) — ¥ (y), where y; := ¢(y;, x;) and y := ¢(y, x). If f := f,, then a basic open set
around ¥ (y) = [[af(qsx),f, q)x]} (according to [21, Lemma 4.16]) is of the form

4w, V. f) = {lap@,).xf. 6,116, € U,k €V}, (18)
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where U C B is an open neighborhood around ¢, and V € T an open neighborhood
around 1. We need to show that ¢ (y;) € (U, V, f) for large enough i. By definition of ¢,

we have

l/f(Yl) = [[aﬁ(¢xi)rﬁl ¢Xiﬂ' Wherefi zfyl

Let y; := s(y;) and y := s(y). It follows from y; — y and continuity of s that y; — y. By
choice of f, we have that supp’(f) is an open neighborhood of y, so y; € supp/(f) for all i

larger than some i,. Since we also have f;(y;) > 0, Corollary 5.3 implies that for i > i;,

_ f) fiw) _ JTVL)
|f()’i)| |ﬁ(Vi)| |f()/i)‘

V() = [ap@,) Af ¢,,],  where A, :

To show that ¥ (y;) is an element of (U, V, f) for all large enough i, we must show that
A; € Vand ¢, € U. For the latter, note that since x; — x by hypothesis, and since the
map v — ¢, is continuous by Lemma 3.5, we must have ¢, €U for all i larger than
some I,. For the former, note that since y; — y and f is a continuous function with
f)=f) >0, % = A; converges to 1. We conclude that 1, is in the neighborhood V
of 1 for all large enough i. n

Corollary 5.4. If s: Q — G is a continuous section for g: G — Q, then the function
C%: (Q x B)? — T defined by

C*((2,a, 00, (7, X)) = c(s(2),5() c(s(iy) ", s(2)s(¥)) c(s(7) 71, 5(1)) x (5(27)'s()s(7))

is a continuous 2-cocycle on Q x B, and the Weyl twist E(A,B) and the twist (@ xB) x;s T

are isomorphic as topological groupoids.

Proof. If s is continuous, then ¥ : G, ) — X4 p) is a continuous section by Theorem
5.1. Given this continuous section, it is well known (cf. [14, Fact 4.1], [20, Proposition
1.1.14], [22, Remark 5.1.6]) that the function o : Gz 5 — T defined by

o (Y1, ¥2) = VWDV (7)Y (7172) (19)
is a continuous 2-cocycle on G, 5 and T4 5 = Gap) X,s T Since Gu 5 = Q x B by
Theorem 4.6, it remains to prove that the definition of ¢° in Equation (19) induces the

asserted formula for C° on (Q x B)@.

€20 Joquieldag 10 Uo Josn BUBJUO JO AUSISAIUN BUL AQ 6111 LE9/LZ.G1L/0Z/2202/a10m e /Uil Woo dno olwapee/:sdiy Woly pepeojumod



15752 A. Duwenig et al.

Suppose (%, x1), (¥, x2)) € (Q x B)@. In particular, this means that x; = @, (xg)
and that ¢(7, x;), ¢(¥, x) are composable elements of G4 5. With f, € N for y € Q as
specified in Theorem 5.1, Equation (19) and the definition of ¢, (see Theorem 5.1) yield

o (@(E, X)) 91 x2) = Vs (@E V@G, X))V (@(E, X))@ X2)) ™!
= (86, 600 S22, 118, ) F0 S0 Gy Fi e B ]
= [%a: @, Gy JeS5 0 D110, FE5 1 Bz )]
= [Ba:; ) ST 55551 Baes (-

To interpret this as an element of T, recall [21, p. 47] that an element [x,b,x] =

[x( Ty
by n and denote s(7)s(y)s(iy)~! € S by a, the unique element in supp’(n) N Grt)-

[x, m(lﬂb,x]] in Zap with b € B corresponds to (X, X—(%) in B x T. Denote fffl} ¥ €N

Let f € C,(S,c) be supported in a bisection and such that f(a) = 1. Then, since
r(t) = P(&r‘;}(Xz)) (Proposition 4.1(2)), it follows from Corollary 5.3 that

. . na
o (@@ x1) 0 x2) = [y a0 0 Py ()] = |[ iy (27 |nEa;|f ¢0‘w(X2)ﬂ

With x = ¢dfy-(xz) and b = X4 f, the element of T that we are after is therefore

n(a)l

b
C (G o xg)) =~ . ( n(a) f)

Ix(b)| In(a)|
_ @) @
= @) 3 %ﬁ f(a)Otry(Xz)( a)= |n(a)| ry(xz)(a)

If we write 7 := s(¢),y :=s(y), and ¢ := s5(7y), then

n@ = (Ffifiy) (rve ™) (1) @0 £33 (1) e eve7)
=@ f; ) c@y) Ty @ c(ee) c(ry.e7!)

and, using the definition of @ (see Proposition 4.1) and of a,

@;5(x2)(@) = c(e, 1) ce ta)ce a, &) xy (e ae)

=c(e,e Ve L rye Hee trye™e) Xz(s_lry).
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Since f; (v) . f; (v), and f;, (¢) are positive by assumption, we conclude
C*((t, 1), 071 x2) = i (x2)(@)
/Xl ’ )’:Xz - |n(a)| Ty X2

=c(r,y) c(eLe)cry,e e, e e rye e rye™e) xale ry)

=c(t,y)ce L e)ce™ L, ty) x2(e L1y),

where the last equality follows from the fact that

c(ty, 8_1) c(e, e 1) (C(é‘_l , tys_l) C(s_lrys_l, 8))
=c(ty, e Ve, e ) (C(sil,fy) C(rysil,e))
= (C(ry,s‘l)C(fJ/E‘l,e)) cle,e Ve, Ty)

= (0(8‘1,8)) ce,e e ty) =ce™, ty)
since c(g,g~!) = c(g~!,g) for any g € G by [8, Lemma 2.1]. [ |

Remark 11. For each y € Q, choose as before one f)} € N such that f)} (s(y)) > 0. Then,

a straightforward computation yields an alternative formula for C* :

6, (O(FELif3)

, 20
TRCIGRAD)] 20

C*((%,a; (X)), (¥, X)) =
where ¢, and ¢ are defined in Equations (11) and (12), respectively.

Corollary 5.5. If s is continuous, then the Cartan pair (C; (G, ¢), C:(S, ¢)) is isomorphic
to the pair (C}(Q x B, C%), Cy(B)).

Proof. Since the Weyl groupoid is isomorphic, as a topological groupoid, to Q x 8 by
Theorem 4.6, and the Weyl twist is also topologically isomorphic to (Q x B) x.s T by
Corollary 5.4, [21, Theorem 5.9] implies that C}(G, ¢) is isomorphic to C;(Q x B, C*) and
that isomorphism carries C(S, ¢) onto Cy((Q x B)©) = Cy(B). [ |
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