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Abstract: The long-term variability of lacustrine dynamics is influenced by hydro-climatological
factors that affect the depth and spatial extent of water bodies. The primary objective of this study is
to delineate lake area extent, utilizing a machine learning approach, and to examine the impact of
these hydro-climatological factors on lake dynamics. In situ and remote sensing observations were
employed to identify the predominant explanatory pathways for assessing the fluctuations in lake
area. The Great Salt Lake (GSL) and Lake Chad (LC) were chosen as study sites due to their semi-arid
regional settings, enabling the testing of the proposed approach. The random forest (RF) supervised
classification algorithm was applied to estimate the lake area extent using Landsat imagery that
was acquired between 1999 and 2021. The long-term lake dynamics were evaluated using remotely
sensed evapotranspiration data that were derived from MODIS, precipitation data that were sourced
from CHIRPS, and in situ water level measurements. The findings revealed a marked decline in the
GSL area extent, exceeding 50% between 1999 and 2021, whereas LC exhibited greater fluctuations
with a comparatively lower decrease in its area extent, which was approximately 30% during the
same period. The framework that is presented in this study demonstrates the reliability of remote
sensing data and machine learning methodologies for monitoring lacustrine dynamics. Furthermore,
it provides valuable insights for decision makers and water resource managers in assessing the
temporal variability of lake dynamics.
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1. Introduction

Water is an essential component of hydrological and ecological cycles and is a vital
resource for environmental sustainability [1,2]. Approximately 5.6 million km? of Earth’s
surface is covered by inland surface water bodies, including rivers and lakes, representing
1.1% of the Earth’s surface area [3]. Although these inland surface water bodies hold
only 0.013 percent of the Earth’s total water, they play an important role in global and
regional water cycles [4]. Thus, mapping inland water bodies is essential for understanding
the hydrological cycle [5,6]. In view of the intensification of the hydrological cycle, it is
imperative to provide better estimates of evaporation, lake water levels, and river stages.
By using these estimates, it is possible to better assess flood and drought damage, develop
a state-of-the-art flood resilience planning tool, and implement more efficient reservoir
management and operation strategies.

On aregional and global scale, inland water bodies play an essential role in supporting
human life. Consequently, monitoring their spatio-temporal variability is imperative for
improving water management practices. The lake plays a vital role as a source of water
for domestic and industrial uses [7], as well as an integral part of the riparian zone [8],
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which, together, supports the ecosystem around it. A number of factors have contributed
to the large variations in the surface areas of water bodies, including climate change and
variability, as well as anthropogenic impacts. As a result, inland surface water mapping can
provide valuable information that can contribute to the understanding of lake dynamics
on a variety of spatial and temporal scales. Due to the vast extent of inland water bodies,
remote-sensing-based observations could be an effective means for mapping this extent.
Previous studies have shown the efficiency of remote sensing data for water-resources-
related studies. These include assessments of inland water bodies, soil moisture, and
groundwater on the watershed, continental, and global scales [9-11].

The surface water extent within lake basins plays a crucial role in shaping the physical
and ecological processes in these areas. To achieve the proper management of the water
resources in a lake basin, it is crucial to estimate and predict the lake dynamics, based on
hydro-meteorological variations and anthropogenic disturbances. This task is particularly
challenging in arid and semi-arid regions, where water scarcity poses a significant threat to
human life. The extent of the lake and its water levels are mainly influenced by the complex
interactions between the components of the hydrological cycle, such as precipitation,
evaporation, and groundwater fluxes [12-15]. In contrast, the short-term variations in
water levels are significantly impacted by meteorological factors, such as wind speed and
pressure fluctuations over the lake surface [16,17].

Hydro-climatological factors play a crucial role in determining water volume and
predictability metrics. For instance, Lake Mead, which was formed upstream of the Hoover
Dam, shows a net evaporation and precipitation variability that correlates with lake wa-
ter volume change [15]. Similarly, Lake Hulun in China is facing significant threats to
its longevity, due to both human and natural factors [13]. Haramaya Lake in Ethiopia
has experienced notable changes in its surface area, primarily due to the expansion of
agriculture, unregulated human settlements, and vegetation removal [12]. Meanwhile,
the Jianghan Plain and the Dongting Lake regions in China have undergone significant
size and number changes over thousands of years, influenced by both natural causes and
human activities [18]. The study revealed that the decline in these lake areas appears
to coincide with periods of rapid land reclamation in the middle reaches of the Yangtze
River. Furthermore, these uncontrolled land reclamation activities negatively impacted
the sediment depositions in the lakes, leading to further reductions in their size [19]. A
recent study investigated the evaporation volume of 1.42 million global lakes between 1985
and 2018, on a global scale, using Landsat imagery [20]. The study estimated the surface
areas of both natural lakes and artificial reservoirs. Meteorological data were employed to
calculate the evaporation rates and volumes, demonstrating the importance of evaporation
volume for evaluating the impacts of climate change on a lake’s ecosystem.

These factors that affect surface water resources are expected to exacerbate water
challenges. Thus, this makes it increasingly difficult to meet water demands, resulting in
an insufficient water supply for people and the environment. Therefore, evaluating the
temporal evolution of the changes in a lake’s surface area is imperative. To understand the
sustainability of lakes for supply and demand, as well as to preserve one of the most funda-
mental features of the hydrological landscape, it is vital to quantify the historical changes in
lake dynamics. A lack of efficient lake measurement techniques has created a gap in quan-
tifying these lake changes over time. Thus, this hampers the United Nations Sustainable
Development Goals (UNSDG) on water scarcity and environmental sustainability [21].

Lake dynamics refers to the changes that occur within a lake over time, including
physical, chemical, and biological features, as well as their interactions with one another.
Several factors can influence these lake dynamics, such as climatic conditions, the presence
of nutrients and other substances, water inputs and outputs, and the activities of living
organisms. Understanding lake dynamics is crucial for several purposes, including the
management of water resources, the conservation of aquatic ecosystems, and the prediction
of the future conditions of a lake. The assessment of the lake area can be regarded as a
critical aspect of lake dynamics. Alterations in the lake area can result from various factors,
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such as changes in the temperature and precipitation, the water table’s fluctuations, and the
presence of natural or artificial structures that modify the water flow into or out of the lake.
Several studies have found that lakes have experienced significant changes in area and
volume over the past few decades, largely due to changes in precipitation, temperature,
and landscape [22-25].

A succinct overview of lake area delineation methods includes visual interpretations,
thresholding, supervised and unsupervised classifications, object-based image analyses,
edge detection and active contours, water indices, fusions of multi-source data, and in situ
measurements. These approaches encompass manual interpretation, machine learning tech-
niques, and field surveys, with their applicability being dependent on factors such as data
availability, spatial and temporal resolution requirements, and lake and landscape char-
acteristics. The selection of an appropriate method is crucial for accurately characterizing
and monitoring the lacustrine dynamics in hydrological studies.

Previous related studies have shown the efficiency of supervised and unsupervised
classification methods, combined with satellite imagers, in providing an accurate delin-
eation of a lake area when high-quality training data are available. In a study on the surface
water resources in Nepal, six machine learning algorithms were evaluated for extracting this
surface water information [26]. Except for naive Bayes, recursive partitioning, and regres-
sion trees, all the algorithms (neural networks, support vector machines, random forests,
and gradient boosted machines) demonstrated a good performance, with the random forest
showing the highest accuracy. The authors recommended separating the study areas by
elevation and snow cover before applying the machine learning algorithms to the Landsat
data, or the data that were supplemented with slope or NDWI information for optimal
results. Dirscherl et al. (2020), suggested an automated machine-learning-based approach
for the mapping of Antarctic supraglacial lakes [27]. The study aimed at understanding the
impact of supraglacial lakes on the ice sheet mass balance and global sea level rise, and a
machine learning algorithm was employed using Sentinel-2 and TanDEM-X topographic
data for the automated mapping of these Antarctic supraglacial lakes. A random forest
classifier was trained on 14 training regions and tested on 8 spatially independent regions
across Antarctica. The accuracy assessment demonstrated an average kappa coefficient
of 0.86. The study highlighted the potential of the random forest classifier for the auto-
mated mapping of supraglacial lakes, using Sentinel-2 data across all the Antarctic regions.
Various studies have shown promising results in estimating Earth’s surface features, in-
cluding its water area [28-30]. However, there are still several research gaps that need to be
addressed to enhance the accuracy, reliability, and generalizability of ML-based methods
for the monitoring of lake dynamics. Thus, the integration of various data sources, such
as remote sensing observations and ground data, can improve the lake area estimation.
However, fusing multi-source data is a challenge that requires further investigation.

This study addresses whether the integration of climate variables from in situ and
remote sensing sources will facilitate the assessment of long-term lake area fluctuations,
using different cases from two continents with a semi-arid, dominant climate pattern.
An approach that is based on machine learning is presented in the study, in which the
fluctuations of lake areas are quantified through remote sensing imagery. This enables
us to detect the changes in lake areas. In addition, the study assesses the long-term
variability of this lake area change by incorporating hydro-climatological components,
namely precipitation and evapotranspiration.

2. Materials and Methods
2.1. Study Area

The study area that is shown in Figure 1 includes (1) the Great Salt Lake (GSL), which
lies in the northern part of the United States, in the state of Utah, with geographic bounds
covering (40° to 42° N) and (111° to 113° W); and (2) Lake Chad (LC) in Africa, which is
located in the Sahelian zone of west-central Africa, around (12° to 14° N) and (13° to 15° E).
The GSL is the largest saltwater lake in the Western Hemisphere and the eighth-largest
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terminal lake, with significant influences from turbidity, snow, and evaporation [31]. Al-
though both the GSL and LC are endorheic lakes, the GSL is a remnant of Lake Bonneville,
a prehistoric body of water that covered much of western Utah, millions of years ago [32].
GSL's fluctuations over the years have been separately linked to the West Desert Pumping
Project (WDPP), which was established in the past to mitigate flooding by pumping water
from the GSL into the nearby desert. The nature of this water extraction from the GSL has
caused major concern, due to its implications for the local climate; hence, the new move to
restore and maintain the lake by the government is in place. Understanding the lake area’s
fluctuations, the climate variables, and the lake’s physical parameters is crucial to making
future predictions for lake areas.

Great Salt-Lake SubBasin Lake Chad Watershed

N
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Figure 1. Geographical location of the study areas. The left insert represents the Great Salt Lake
Sub-basin and the satellite image of GSL at its current state. The right insert map shows the digitized
boundary of the Lake Chad watershed and the satellite image of Lake Chad in its current state.

On the other hand, Lake Chad spans Cameroun, Chad, Nigeria, Niger, and the Central
African Republic, serving as a source of natural resources for over 35 million people in the
region [33]. Lake Chad is situated in an interior basin that was formerly occupied by a
much larger ancient sea, which was known as Mega-Chad [34]. Historically, Lake Chad
is ranked among the largest lakes in Africa, regardless of its seasonal and annual surface
area fluctuations [34,35]. Lake Chad is an important regional asset that is known for its
archaeological discoveries and its role in trans-Saharan trade. Lake Chad is estimated to
have lost more than 90% of its water mass, shrinking from an estimated 30,000 km? to
2500 km? between 1963 and 2013 [33,36].

2.2. Datasets
2.2.1. Landsat Imagery

In total, three Landsat products, the Thematic Mapper (ITM), the Enhanced Thematic
Mapper (ETM+), and the Operational Land Imager (OLI), were harmonized in this study
to cover the study period of 1999 to 2021. This is because the TM was operational between
1984 to 2013 and the ETM+ between 1999 and 2022, which possessed scan line issues that
were resolved in OLI (2013 to present). The harmonized image collection was used for the
training and classification of features for LC and the GSL. Landsat-5 Thematic Mapper
Collection 1 Tier 1 calibrated the top-of-atmosphere (TOA) reflectance that covered the
period from 1984 to 2013; however, there were missing Landsat scenes from 1984 to 1998,
lacking a complete annual coverage of the Lake Chad Basin. This Landsat data gap over
the Sahelian African region was the major reason that the study period started in 1999. The
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second reason was to focus on recent lake area dynamics. Landsat 7 Collection 1 Tier 1 and
Real-Time data calibrated the TOA reflectance that was used in this study and covered the
period from 1999 to date; however, the products were characterized by a scan line corrector
(SLC) failure between 2003 and 2011 [37]. We avoided the SLC characteristic periods and
used the SLC year of 2012 to bridge Landsat-5 and Landsat-8, which started in 2013 and
covered the study period up to 2021. The Landsat 8 Collection 2 Tier 1 calibrated the TOA
and was used to ensure consistency with the earlier Landsat products that were used in
the study.

For the annual image processing, we collected all the images that intersected our
study area and created an image from a combination of temporal composite and spatial
mosaic from the image footprint. The annual composited images were derived for the
classification algorithm to proceed. These filter methods in the Google Earth Engine (GEE)
include filtering the image collection by the study watersheds, by date range, and setting
a percentage cloud cover of 50% to ensure that only cloud-free images up to 50% were
used for the analyses. A total of 4955 images over the GSL were used after the filter
operation was applied, while Lake Chad recorded over 4211 images that covered the period
of 1 January 1999 to 31 December 2021. The average number of images that were used for
the yearly composite was 216 for the GSL and 184 for LC. From these numbers, the study
used over 9000 images for the two lakes and covered 1999 to 2021. The filtering procedure
and the creation of the image composite are summarized in Figure 2.
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techniques for estimating lake extent fluctuations. Non-values in this case are the missing values.

2.2.2. Precipitation Data

The precipitation datasets for this study were obtained from the Climate Hazards
Group InfraRed Precipitation with Station data (CHIRPS), covering over 30 years of tem-
poral scope and starting in 1981. CHIRPS incorporates 0.05° x 0.05° resolution satellite
imagery with in situ station data to create a gridded rainfall time series for trend analyses
and seasonal drought monitoring [38]. The CHIRPS station processing stream incorporates
data from five public data streams and several private archives. More details about these
public data streams and private archives are presented in [38]. The CHIRPS precipitation
dataset that was provided by the Google Earth Engine can be extracted monthly, quarterly,
or yearly. This study used the yearly intervals of the CHIRPS datasets for its analysis. The
annual estimated precipitation over the watershed from the CHIRPS dataset was used to
find the relationship between the lake area dynamics and the precipitation for the years
under consideration. A preliminary evaluation of the CHIRPS dataset was performed
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using the NLDAS hourly precipitation from the Rapid Forcing Retrieval (RFR) web tool
and the Global Precipitation Measurement (GPM-IMERG), which has a 0.1° resolution and
global coverage [39].

2.2.3. Evapotranspiration Data

The evapotranspiration (ET) data source that was used in this study was obtained
from the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) MOD16A2
version 6. The MOD16A2 version 6 evapotranspiration/latent heat flux product is an 8-day
composite product that was produced at 500 m pixel resolution. The algorithm that was
used for the MOD16 data product collection was based on the concept of the Penman-—
Monteith equation, which takes inputs of daily meteorological reanalysis data along with
MODIS remotely sensed data products, such as land cover, albedo, and vegetation property
dynamics. The MODIS ET dataset provides global coverage, making it an acceptable option
for driving global and continental research such as this current study. The pixel values for
the ET layer that was used in this study were collected every 8 days within the composite
period. The last 8-day period of each year was a 5- or 6-day composite period, depending on
the year [40]. The annual means of the ET over the entire study watersheds were estimated
for the period between 1 January 1999 to 12 December 2021, and were used for determining
the impact of ET on the lake area fluctuations, and for using those relationships to make
future predictions. ET datasets were also provided by the Rapid Forcing Retrieval (RFR)
web tool [39].

2.2.4. Lake Depth Data

The lake water depth data that were measured from the reference height that was
used in this study were provided by the European Theia Project (ETP). These ETP data use
Jason-1 and Jason-2 altimetry datasets and are made available with global coverage. These
datasets have been available at 10-day intervals since 1993 [41]. The dataset is available at
https:/ /hydroweb.theia-land.fr/ (accessed on 7 November 2022) and requires an account
sign-up for access. We compared the ETP data using complementary data from the Global
Reservoir and Lake Monitor (GRLM), which were provided by the joint project of the
U.S. Department of Agriculture (USDA), Foreign Agricultural Service (FAS), National
Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), and
the University of Maryland (UMD). The GRLM records variations in surface water height
for approximately 70 lakes and reservoirs worldwide, using a combination of satellite
radar altimetry datasets. However, the data were only made available starting in 2003,
providing a temporal limitation for studies of earlier dates [42]. The ETP was, however,
validated using GRLM to boost the research confidence. For clarity and comparison, Table 1
summarizes the properties of the datasets that were used in this study.
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Table 1. Summary of the remote sensing products used in the study. TOA stands for top of atmo-
spheric reflectance, SR—surface reflectance, TM—Thematic Mapper, ETM+—Enhanced Thematic

Mapper, OLI—Operational Land Imager, and NA—not applicable.

Properties Landsat CHIRPS MODIS ETP
Landsat-5 (TM), . Jason-1 and
Product 7 (ETM+), and 8 (OLI) CHIRPS Daily MOD16A2 Jason-2 altimetry
Spectral resolution 1 to 9 bands 1 band 36 bands 2 bands
Pixel size 30m 5566 m 250, 500 or 1000 m NA
Scene width 185 km 0.05° 2330 km 1324 km
Temporal resolution 16 days Day, month, pentad, Twice daily 10 days
and year
Reflectance TOA Satellite + station data SR Satellite + stations
Time span 1984 to present 1981 to present 1999 to present 1993 to present
Target Earth features (e.g., Precipitation Evapotranspiration and  Lake depth, area,

water bodies) temperature, etc. and volume

2.3. Classification Algorithm and Evaluation Metrics
2.3.1. Supervised Classification

The machine learning algorithm that was used in this study was the supervised
classification technique (SCT) type. SCT identifies a new category of observations based
on training datasets. The algorithm learns from the dataset and then classifies these new
observations into several classes that are defined by a Boolean (true or false, yes or no,
and negative or positive). These new classes can then be used as the targets/labels or
categories [43]. In summary, SCT works by recognizing specific entities within the dataset
and trying to conclude how those entities should be defined. Some SCT algorithms include
support vector machines (SVM), linear classifiers, decision trees, k-nearest neighbors, and
random forests [43-50].

To reduce the variance and create more accurate data predictions, this study adopted
the random forest, a non-linear supervised machine learning algorithm, which applies to
both classification and regression purposes. RF builds decision trees on different samples
and proceeds by taking their majority votes for classification and regression [45]. RF earns
its reputation by having the capability to handle datasets with continuous variables (e.g.,
for regression), and performs best when dealing with categorical variables (e.g., for classifi-
cation). RF is most useful because it takes less training time, predicts outputs with a higher
accuracy, and maintains this accuracy when a large proportion of data is missing [46]. In
addition to the benefits of RF, two assumptions must be adhered to: the availability of the
actual values in the feature variable, for the dataset to avoid guessing, and the predictions
from the individual tree needing to have low correlations [42]. The steps for using the RF
algorithm in this study included selecting a random K data point from the training set,
building the decision trees that were associated with the selected data points, choosing the
study number of N for the decision trees, repeating the process, and finally, for each data
point, finding the predictions of each decision tree and assigning the new data points to the
group that won the most votes [42].

A preliminary assessment has shown that decision trees run the risk of overfitting,
as they try to fit all the samples within the training data. However, since the RF consists
of multiple decision trees, its classifier will not overfit the model, because the averaging
of the uncorrelated trees lowers the overall variance and prediction error. The study’s
analyses were conducted using the Google Earth Engine (GEE), which has standard API
that uses only four classifier packages for handling traditional ML algorithms. At the
moment, the GEE classifier ML algorithms include CART, RF, naive Bayes, and SVM. An
initial assessment showed that the RF algorithm is currently the best amongst the four
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available GEE classifiers, as it has the capability to handle larger datasets (the collection of
Landsat datasets that cover the study period).

The hyperparameters of the RF algorithm that was built in the GEE consisted of the
number of trees, the variables per split, the minimum leaf per population, the bag fraction,
the maximum nodes, and the seed, which were all built internally and accessed by using
the GEE APIL The number of trees variable determined the number of decision trees that
had to be created. A total of 350 trees were used within the GEE processing capability.
The initial hyperparameter tuning indicated that the more trees the better, so we tried
different trees, keeping in mind the processing capability and time-out within the GEE. The
350 trees that were used were the optimal number that was obtained from hypertuning
the parameters. The variables per split used the square root of the number of variables.
The minimum leaf population variable was set to default as 1; this created nodes whose
training set contained at least these many points. The bag fraction was the fraction of the
input to the bag per tree, which was set to default as 0.5. The maximum nodes, which was
the maximum number of the leaf nodes in each tree, was left as default (null), allowing for
the algorithm to derive its nodes from the set of input features. The randomization seed
was set to default as 0. The full script for implementing the GEE RF algorithm for our target
watershed is presented in the data section, while the workflow is presented in Figure 2.

2.3.2. Model Performance Evaluation

In total, four accuracy indices and one statistical metric were used to evaluate the
performance of the machine learning (ML) algorithm for this study. The accuracy indices
included the overall accuracy, kappa coefficient, producer accuracy, and user accuracy,
while the statistical metric that was used was the correlation coefficient metric. The producer
accuracy, which measured the error of omission, showed the probability that a reference
sample was correctly classified. The user accuracy measured the error of commission by
representing the probability that a randomly selected sample from the satellite imagery
was consistent with the observations from the reference data. The overall accuracy (OA)
provided the probability that a randomly selected sample from the satellite imagery was
classified accurately. The OA can be expressed mathematically as:

_ NIP+NIN

OA GTP

100 @)
where NTP is the number of true positives from the pixel samples, NTN is the number of
true negatives, and GTP is the ground truth pixels.

The GEE RF algorithm provides the tools for collecting features (land cover identifiable
features), which are served as inputs and used for both training and validation. The
reference image here is the samples that were collected for the seven classes of features that
were used in the study (water, urban, forest, grassland, bare earth, cropland, and shadow).
In total, 5313 samples were collected between 1999 and 2021 on the GSL watershed (for
example), and from which, 70% served as reference images for the validation, while the
target image was the classified image.

The kappa coefficient (k) measures the percentage of the agreement between the
classified water body pixels and the ground truth. k is expressed mathematically as:

Po — Pe

k= 1- P,

@)
where Pg is the overall accuracy of the model, and Pe is the measure of the agreement
between the model predictions and the actual class values, as if happening by chance [11].

The study adopted the Pearson’s correlation coefficient (cc) metric to investigate the de-
gree of the shared external variabilities and relationships between the hydro-climatological
variables (precipitation, ET, and lake height from reference point) and the estimated lake
area. The internal variability between the lake area dynamics over the years was also
measured. The mathematical expression in Equation (3) was used where the correlation
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coefficient between the lake depth and lake area was estimated for the study periods (t).
The cc was unitless and ranged from —1 to 1, with a higher estimate nearing 1 suggesting a
positive strong correlation, while values nearing —1 suggested a strong negative correlation.

o LalP-P)(Ac-
VEeer (P~ P)? /T (Ac - A)?

where P are the study’s adopted parameters (precipitation, evapotranspiration, or in situ
lake depth), A is the estimated lake area, and t is the i-th year category.

C

®)

2.4. Data Processing Tools and Workflow

Over the 21 years of the Lake Utah (LU) surface dynamics that were studied, 4995 im-
ages were used in total, while 4211 images were used to analyze the Lake Chad (LC) surface
area change for the same period. The analyses of these large datasets were performed
remotely on the cloud using the Google Earth Engine (GEE), and would have proven
computationally intensive and expensive if performed locally. However, the GEE cloud-
based platform takes away the burden, by providing an intrinsically parallel way with
a high performance and consistency of its multi-petabyte remote sensed data, which are
preprocessed to be ready-to-use and efficiently accessed [46—48].

A summary of the study’s methodology and workflow is shown in Figure 2, and
includes the dataset preparation, training of the class, random forest classification, model
accuracy assessment, lake area estimation, extraction of predictors, model, and results from
the evaluations. The dataset preparation stage included importing the Landsat datasets
into the GEE environment and filtering them by date, basin area geometry, and cloud cover
percentage. Further clouded pixels were masked by using the GEE’s simple composite
algorithms. The class training stage included the sample collection, assigning values to
each class (e.g., water = 0, bare earth = 1, forest = 2, grassland = 3, cropland = 4, urban =5,
and shadow =6), setting the training function, training the class, and merging class. The
next stage was the RF classification, which included the filtering out of missing values,
setting the classification property, training the classifier, and finally, classifying an image.
At the model assessment stage, the study split the trained samples into training and testing
sets (70% and 30% for a start), inspected the results, and adjusted them to different split
ratios, applying the RF confusion matrix and evaluating the accuracies (training, testing,
and kappa accuracies). The final stage of the lake area estimation included vectorizing the
lake polygons and filtering the specific lake polygons using the lake seed, lake pixel count,
and pixel area conversion for the lake area estimation. Additional scripts for estimating the
precipitation, ET, and lake depth using altimetry were developed.

3. Results and Discussion
3.1. Assessment of the Machine Learning Method Accuracy

The study used 4955 images over two decades, between 1999 to 2021, to perform
the image classification task for the GSL, and 4211 images for LC during the same period
(Tables 2 and 3). Satellite imagery was available in greater numbers over the GSL watershed.
The study did account for the number of images per year for the study period in each
watershed. For instance, over the GSL, the year 2009 had the highest number of images
(351 filtered images), while 2021 recorded the least (139 filtered images) (Table 2). Unlike
the GSL, LC recorded fewer numbers of images, with the highest in 2016 (313 filtered
images), and the least in 2021 (10 images) (Table 2). Data scarcity was the main factor that
influenced the number of images that were used in the study, particularly over the LC
watershed. The discrepancies in the number of images that were used for the classification
tended to impact the overall feature classification, as more images produced a better mosaic
representation of reality and a realistic classification scheme [15].
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Table 2. Random forest classification accuracy over the Great Salt Lake Basin. Where OA is overall
accuracy, KOA is the kappa overall accuracy, TA is the training accuracy, KTA is kappa training
accuracy, VA is the validation accuracy, and KVA is kappa validation accuracy.

Total

Year OA KOA TA KTA VA KVA Images Samples Train Test
1999 0.991 0.989 0.945 0.935 0.97 0.964 159 231 70 30
2000 0.987 0.984 0.95 0.942 0.956 0.948 147 231 70 30
2001 0.982 0.979 0.921 0.908 0.923 0.909 203 231 70 30
2002 0.995 0.994 0.97 0.965 1 1 187 231 70 30
2003 0.991 0.989 0.961 0.955 0.972 0.968 256 231 70 30
2004 0.991 0.989 0.94 0.929 0.953 0.944 229 231 70 30
2005 0.995 0.994 0.974 0.97 0.958 0.949 188 231 70 30
2006 0.978 0.974 0.94 0.93 0.92 0.905 165 231 70 30
2007 0.987 0.984 0.943 0.933 0.986 0.983 338 231 70 30
2008 1 1 0.941 0.931 0.855 0.83 305 231 70 30
2009 0.991 0.989 0.948 0.94 0.909 0.891 351 231 70 30
2010 0.987 0.984 0.941 0.93 0.95 0.941 229 231 70 30
2011 0.991 0.989 0.942 0.932 0.946 0.937 210 231 70 30
2012 0.995 0.994 0.947 0.938 0.901 0.883 207 231 70 30
2013 0.987 0.984 0.961 0.955 0.945 0.936 224 231 70 30
2014 0.991 0.989 0.96 0.953 0.937 0.926 167 231 70 30
2015 0.995 0.994 0.963 0.957 0.97 0.964 174 231 70 30
2016 0.995 0.994 0.993 0.992 0.973 0.968 244 231 70 30
2017 0.991 0.989 0.963 0.957 0.97 0.964 269 231 70 30
2018 0.991 0.989 0.94 0.93 0.953 0.944 144 231 70 30
2019 0.991 0.989 0.945 0.935 0.97 0.964 231 231 70 30
2020 0.978 0.974 0.963 0.957 0.953 0.945 189 231 70 30
2021 0.995 0.994 0.954 0.946 0.982 0.978 139 231 70 30
0.990 0.988 0.952 0.944 0.95 0.941 4955 5313 3719 1594

The study collected 5313 samples over the GSL watershed and 4876 samples over
LC for the image classification (Tables 2 and 3). These feature samples included water,
urban, forest, grassland, bare earth, cropland, and shadow. While the water was the target
feature, it was essential to correctly classify the remaining features, in order to accurately
distinguish the water bodies, especially lakes, from the non-water features, particularly
shadows, which could cause a waterbody miss-classification. These many samples added
confidence to the classification algorithms by ensuring that we had many reserved testing
samples. In these cases, we reserved over 1600 and 1500 test samples for the GSL and
LC, respectively. The training and testing columns in Tables 2 and 3, respectively, are the
percentage of the total collected samples that were reserved for the training and validation
in the RF algorithm. Including the class “shadow” helped to eliminate the chances of miss
classifying a shadow as water. An equal number of samples (759 samples) were collected
for the individual classes for the period of 1999 to 2021. The more samples that were in the
sets (split into training and validation) for each year, the better the outcome. There was no
fixed number of samples that was generally agreed upon, and we generally collected as
many as possible where the feature was well-defined to avoid mixed classification, such as
classifying a swamp as grassland or a water body.
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Table 3. Random forest classification accuracy over Lake Chad watershed. Where OA is overall
accuracy, KOA is the kappa overall accuracy, TA is the test sample accuracy, KTA is kappa test
accuracy, VA is the validation sample accuracy, and KVA is kappa validation accuracy.

Total

Year OA KOA TA KTA VA (%) KVA Images Samples Train Test
1999 0.97 0.96 0.903 0.886 0.789 0.753 10 212 70 30
2000 0.981 0.977 0.9 0.882 0.951 0.943 88 212 70 30
2001 0.981 0.977 0.952 0.944 0.939 0.929 83 212 70 30
2002 0.976 0.972 0.925 0.912 0.942 0.931 102 212 70 30
2003 0.985 0.983 0.931 0.919 091 0.894 93 212 70 30
2004 0.971 0.966 0.916 0.901 0.877 0.854 159 212 70 30
2005 0.962 0.955 0.91 0.895 0.924 091 134 212 70 30
2006 0.981 0.977 0.893 0.875 0.915 0.9 159 212 70 30
2007 0.99 0.988 0.895 0.877 0.898 0.88 143 212 70 30
2008 0.976 0.972 0.931 0.919 0.903 0.886 149 212 70 30
2009 0.966 0.961 0.915 0.9 0.949 0.939 126 212 70 30
2010 0.966 0.961 0.925 0.913 0.89 0.868 110 212 70 30
2011 0.99 0.988 0.904 0.888 0.927 0.914 90 212 70 30
2012 0.976 0.972 0.894 0.876 0.901 0.884 129 212 70 30
2013 0.99 0.988 0.937 0.927 0.97 0.965 196 212 70 30
2014 0.99 0.988 0.936 0.925 0.943 0.933 292 212 70 30
2015 1 1 0.949 0.94 0.932 0.92 305 212 70 30
2016 0.99 0.988 0.902 0.886 0.896 0.878 313 212 70 30
2017 0.981 0.977 0.92 0.907 0.885 0.864 312 212 70 30
2018 0.981 0.977 0.941 0.931 0.948 0.938 308 212 70 30
2019 0.985 0.983 0.963 0.957 0.959 0.952 301 212 70 30
2020 1 1 0.947 0.938 0.932 0.92 300 212 70 30
2021 0.971 0.966 0.933 0.922 0.852 0.826 309 212 70 30
0.981 0.977 0.923 0.910 0.914 0.899 4211 4876 3413 1463

The average accuracy assessment over the GSL watershed shows that both the training
accuracy and kappa training accuracy were 0.952 and 0.944, the validation accuracy and
kappa validation accuracy were 0.950 and 0.941, respectively, while the overall accuracy and
kappa overall accuracy were 0.99 and 0.988, respectively (Table 2). Over the LC watershed,
the training accuracy and kappa training accuracy were 0.923 and 0.910, respectively, the
validation accuracy and kappa validation accuracy were 0.914 and 0.899, and the overall
accuracy and kappa overall accuracy were 0.981 and 0.977, respectively (Table 3). Although
the overall accuracy suggests that the machine learning technique that was employed in
the study performed well, the measurement of the GSL was better than that from the LC.
The slight variation in the accuracy between the two lakes could be due to many factors;
one of these factors happens to be the differences in the number of sampled images that
were used in the classification scheme. This study, therefore, showed that the random
forest classification algorithm could be a vital tool for supervised image classification and
valuable for lake water extent delineation over time.

3.2. Spatial-Temporal Evolution of Lake Area

Figures 3 and 4 show the mean annual lake area changes over time. The main lake of
interest (in red) represents this study’s focus and shows significant fluctuations over the
years. Figure 5 shows the numerical fluctuations in the lake area over the two decades,
which Figures 3 and 4 attempt to depict. The study shows that the GSL lake extent declined
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between 1999 and 2021, with a few years of fluctuations. The years of these intermittent
fluctuations included 2005, 2011, 2014, 2017, and 2020, and will be discussed. The study
found the GSL to have declined from almost 7000 km? in 1999 to less than 3500 km? in 2021,
losing nearly half of its size within two decades (Figure 5).

Classification Legend
W water
Bare Earth
I Forest
Grassland
Cropland
Urban
W shadow
M Vectorized Lake

2017
il )V

Figure 3. The Great Salt Lake surface water extent change through time. Vectorized lake of interest is
in red, while the rest of unconnected pockets of water bodies are in blue. The rest of the features are
represented with different colors in the image.
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Figure 4. The Lake Chad surface water extent change through time. Vectorized lake of interest is in
red, while the rest of unconnected pockets of water bodies are in blue. The rest of the features are
represented with different colors in the image.
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Figure 5. A comparative plot of lake surface area changes of GSL (top) and LC (bottom) between
1999 and 2021.

The study assessment of LC showed otherwise, as we mainly observed fluctuation.
However, the study showed that LC had an estimated area coverage of nearly 900 km?
in 1999, which declined to less than 800 km? in 2021. This LC decline in its area is not
significant compared to the GSL; however, LC recorded major fluctuations in between
those years of interest. Although both the GSL and LC are in arid regions, the study further
explored the potential causes of these declines and fluctuations in the two lakes, which
have proven to be of economic value to their local communities.

The obtained results showed that the GSL is on the decline, and that quick action is
required to salvage the GSL to ensure that the lake keeps serving its purpose. Additionally,
despite popular opinion that LC has been shrinking lately, our study has shown that LC is
not shrinking, but somewhat fluctuating, with years of highs and lows. In the following
sub-section, we try to understand what climatic predictors and physical parameters can
explain the decline and fluctuations in the GSL and LC during these two decades.

3.3. Influence of Climate Variability

It is well established that changes in precipitation, inter-basin flow, evaporation,
drinking water supply, and irrigation water usage may drive significant changes in lake
extent, leading to ecological degradation, economic losses in the lake environment, and
sometimes, irreversible changes in nature [16]. To this end, the current study investigated
the temporal evolution of precipitation, evaporation, and water depth over the regions
of interest, using historical records from between 1999 and 2021. Thus, one of the main
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objectives of this study was to reveal whether hydro-climatological factors could explain
the changes in lake extent over time.

To examine the impact of precipitation variations on the lake extent changes in the
study areas, the inter-annual changes in the annual precipitation are analyzed. The precipi-
tation records for the GSL and LC are shown in Figure 6. It is noteworthy that, although
there are significant fluctuations in these annual precipitation changes, the extent of the
lake does not follow the same patterns as the variations in precipitation. For example,
high precipitation records were observed for the GSL in 2005, 2010, 2016, and 2019. These
precipitation records did not correspond to an increase in the lake’s extent during these
years. Nevertheless, it should be noted that the lake’s surface area increased in the years
that followed an increase in the annual precipitation. As seen from the graphs below,
this was primarily observed for the years of 2006, 2011, 2017, and 2020, when the lakes
maintained their surface areas or showed a significant increase in their surface area. The
results that were obtained are also valid for the LC case, where the area of the lake increased
significantly a year after the significant increase in precipitation. For instance, a peak in
the annual precipitation occurred in 2019, followed by the highest annual lake extent in
2020. Therefore, the obtained results show that annual precipitation can be employed as a
predictor for estimating the lake extent for the following year. It is also imperative to note
that precipitation change should not be considered as the primary factor that is responsible
for an increase or decrease in the lake surface area.
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Figure 6. Temporal variation of the annual lake area and precipitation in GSL (top) and LC (bottom).

We assessed the annual variations of the water surface area of the GSL and LC, and
we compared these lake surface dynamics with the rainfall temporal evolution. The results
indicated that the lake’s water surface area changed based on the rainfall availability. A
significant decrease in the area extent occurred as a succession of dry years. Additionally, it
was observed that the lake surface coverage exhibited a similar trend with the precipitation.
The obtained results may be explained by the significant positive effects that precipitation
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had on the lake area. Because precipitation is the primary source of water for lakes, it has a
positive effect on lake area. However, the large LC and GSL lake areas did not necessarily
coincide with the precipitation peaks, suggesting a hysteresis in the precipitation effects.
For instance, the highest annual precipitation that was recorded for the GSL (year 2019)
and LC (year 2019) contributed to the significantly larger lake areas in the two regions in
2020. It was also found that precipitation played an important role in the recovery of the
lake area.

The interannual variations of the ET were examined to understand the patterns and
changes in the lake surface area in relation to the atmospheric pressure, humidity, temperature,
wind speed, and lake environment. It is important to note that the ET was estimated from
a stable land area encompassing the maximum lake extent during the study period. In this
study, the watershed that encompassed the lakes of interest and other water bodies was
considered for the ET calculation. While the ET observations were obtained from a stationary
area, the extent of the water bodies varied during the study period (Figures 3 and 4).

Figure 7 illustrates the temporal variation of the ET over the GSL and LC watershed
areas. There was negative feedback between the ET and the lake area based on the corre-
lation between the two variables. Therefore, an increase (decrease) in the ET results in a
decrease (increase) in the lake’s surface area. A decrease in the annual mean ET can be
observed in the years 2001, 2007, 2011, 2012, and 2020, when an increase in the GSL extent
was observed. The extent of the GSL decreased between 2006 and 2019 due to increased
evaporation. A similar decrease in the extent of the LC area was caused by the largest
increase in the ET over the LC Basin in 2010. Conversely, a significant decrease in the ET for
the year 2005 resulted in a major expansion of the lake. Overall, the temporal variations of
the ET and lake area exhibit the same patterns, with an emphasis on the negative feedback
between the two variables. The obtained findings are valid for both the GSL and LC.
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Figure 7. Temporal variation of annual lake area and evapotranspiration variation in GSL basin (top)
and LC basin (bottom).



Hydrology 2023, 10, 78

16 of 21

It is important to highlight that, in certain instances, a substantial increase (decrease)
in the evapotranspiration did not correspond with a significant decrease (increase) in the
lake area. This discrepancy can be attributed to the influence of the preceding year’s pre-
cipitation on the lake’s extent. For example, the Great Salt Lake exhibited an elevated mean
ET in 2006, yet the lake’s extent remained relatively stable. The substantial precipitation
that was recorded in the region could account for this phenomenon. In the case of Lake
Chad, the high precipitation levels in 2012 suggested that the lake would expand in 2013.
Contrary to this expectation, there was a decrease in the LC area. This observation can be
rationalized by considering the impact of the mean ET during the year 2013.

The relationship between the lake surface area and the water depth was also examined
and is reported in Figure 8. In this study, a correlation between the variations in the surface
area of the lake and the variations in its water depth was computed. The GSL showed a
high correlation coefficient, while LC showed a low correlation coefficient. In the case of
the GSL, the water depth records show variations that closely resemble the variations in
the surface area. A significant relationship between the lake area and water depth did not
emerge, however, it did from the variation of the lake area and the water depth time series
that corresponded to LC. For instance, a significant decrease in the lake area extent was
associated with the increased water depth in 2010. In contrast, LC experienced its largest
surface area extent in the year 2020 for a similar depth. According to the results that were
obtained, there is a site-specific relationship between the extent of lakes and their depths.
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Figure 8. Temporal variation of annual lake area and water depth in GSL (top left) and LC (top right),
and linear regression results between the lake area and water depth of GSL (bottom left) and
LC (bottom right).

A weak correlation between the lake area and water depth, as observed in the case
of LC, can be ascribed to multiple factors, encompassing morphological complexity, local
geological and geomorphological influences, human interventions, seasonal and inter-
annual variability, data quality and resolution, and the presence of aquatic vegetation and
sedimentation. Lakes exhibit substantial variations in their shape, size, and depth profiles,
which stem from their geological history, catchment characteristics, and surrounding topog-
raphy. This morphological diversity generates disparate relationships between the lake area
and depth, rendering the establishment of a consistent correlation challenging. Moreover,
sedimentation and erosion patterns contribute to the variability in the relationship between
the lake area and depth. For instance, sedimentation can diminish the water depth without
significantly affecting the lake area. Furthermore, aquatic vegetation, such as floating or



Hydrology 2023, 10, 78

17 of 21

submerged plants, can distort the lake area estimation, resulting in an overestimation of
the true surface area.

It is also worth noting that the accuracy and resolution of the data that were employed
to estimate the lake area and depth can considerably impact the observed correlations
between these variables. Coarse spatial resolution or measurement errors can introduce
uncertainty and mask the true relationship between the lake area and depth. This issue
predominantly arises in under-observed regions, such as LC. Another factor to consider
is the seasonal and inter-annual variability of regional hydrological processes, including
precipitation, evaporation, and runoff, which can induce fluctuations in both the lake area
and depth over time. Nevertheless, these changes might not consistently be proportional
or linear, thereby weakening the correlation between the lake area and depth. These factors
contribute to the tenuous relationship between the lake area and depth by introducing
spatial and temporal heterogeneities, modifying the lake morphology, and affecting the
data accuracy. A comprehensive understanding of these factors is indispensable for the
precise assessment and monitoring of lake dynamics in hydrological studies.

According to the findings of this study, lake dynamics are influenced by a variety of
factors. However, precipitation dominated the dynamics of both lakes, with a notable lag
in the changes in the lake surface area. The hysteresis of the precipitation effects could also
be attributed to the anthropogenic factors that contribute to lake shrinkage. These factors
include agricultural irrigation, water extraction from groundwater, and flow diversion from
the rivers and streams that feed the lake. According to [33], the water resources in the LC
region were negatively impacted by agropastoral activities. The study indicated that deep
aquifer groundwater is primarily exploited in northern Nigeria and eastern Niger. The
influence of these anthropogenic factors should therefore be considered when assessing the
LC area variations.

As for the GSL, human intervention began in the late 1800s with mining activities
that contributed significantly to a sediment accumulation in the GSL. Furthermore, as the
population of the region increased, the water feeding the lake (from rivers and streams)
was diverted for use as a water supply [18,19]. Therefore, the decrease in the lake area is
indicative of the impact of anthropogenic activities. Thus, both natural and anthropogenic
factors have significantly affected the dynamics of the GSL and LC.

Based on the findings of this study, it was determined that the rapid expansion of lake
surface area was consistent with high annual precipitation and a significant decrease in
ET. Thus, the infiltration of precipitation compensates, to a certain extent, for groundwater
extraction or freshwater diversion. According to the results of the study, the assessment
of the water resources in the lake environment should also take into account additional
factors such as recharge from nearby rivers. At this point in the analysis, the findings are
in agreement with findings from previous studies regarding the control of anthropogenic
factors, such as the extraction of groundwater and the diversion of river flows. In spite
of this, it is less evident how the seasonal variation of regional hydrological processes,
particularly precipitation, affect the lake dynamics across the domain, and should be the
subject of future research.

Our study examined the inter-annual dynamics of lakes, but the intra-annual varia-
tions of lakes could also be profound in semi-arid regions, which is something that we did
not consider in this study. It was evident from this study that knowledge of seasonal lake
variations is critical for understanding the dynamics of lakes, especially in regions that are
sensitive to climate change. It is fortunate that Sentinel-2 was launched in 2015, allowing
for a greater frequency of Earth observations at a medium spatial resolution, making it
possible to monitor intra-annual lake variations in upcoming studies.

4. Conclusions

This study demonstrates the capability of machine learning techniques for estimating
two surface lake dynamics between 1999 and 2021. The random forest supervised classifi-
cation algorithm is the ML technique that was used for the optimized feature classification,
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focusing on the lakes of interest within the watersheds. The study collected seven features
(water, urban, forest, grassland, bare earth, cropland, and shadow) from the mean annual
Landsat Image between 1999 and 2021, using GEE tool kits over the two watersheds. The
target of the classification algorithm was to delineate the dynamics of the GSL and LC
between 1999 and 2021, with less focus on other non-water features. The study used over
9200 images that met the image quality characteristics for the classification purpose of the
study period. A total of 10,189 remotely collected feature samples were incorporated into
the GEE to perform the classification, and divided into training sets (70%) and testing sets
(30%). The many feature samples ensured a high confidence in the classification algorithm.

The study’s average accuracy assessment showed a high confidence in the ML feature
classification algorithm that was used in the study for both watersheds. For the GSL, an
overall accuracy of 0.99 and a kappa overall accuracy of 0.977 revealed a high confidence in
the classification scheme. Compared to the accuracy assessment from the GSL classification
algorithm, LC estimated a lower overall accuracy of 0.981 and a kappa overall accuracy of
0.977. This low accuracy for LC compared to the GSL was attributed to the difference in the
number of images that were used for the classifications and the difference in the number
of feature samples that were collected for the RF classification schemes. For instance, a
data scarcity in the Lake Chad region led to a reduced number of available Landsat images
and feature samples, with 744 fewer images and 437 fewer samples compared to the Great
Salt Lake, where data scarcity was not a significant issue. This data limitation may have
contributed to the lower accuracy that was observed in the LC classification results.

The assessment that was performed in this study showed that the GSL has been
constantly declining in recent years, from nearly 9000 km? in 1999 to less than 3500 km?
in 2021, losing almost half of its area extent. On the other hand, this paper has floored
the uninvestigated assumptions that LC is shrinking at an alarming rate. The study has
shown that LC is somewhat fluctuating more, with a slight decline in recent years, with
an estimated 900 km? in 1999 and nearly 800 km? in 2021. The continual decline in the
area extent of the GSL and the significant fluctuations in LC call for concern, as actions
are required to salvage these lakes and conserve their environments, in order to meet
the United Nations Sustainable Development Goal on water use efficiency and climate
change mitigation.

The obtained results revealed that the dynamics of the lake systems in semi-arid
regions can be attributed to an intense relationship between humans and the hydro-
climatological conditions. In both study areas, the results of the study revealed significant
impacts of climatological variability on the water surface area. The correlation of the lake
area with the evapotranspiration and precipitation provided meaningful information re-
garding the predictability of the changes in the water surface area. The variation in the
quantified lake extent can be explained by the temporal evolution of precipitation and
evapotranspiration. According to the obtained results, remote sensing data, combined with
machine learning models, can be employed to implement water regulation policies and
make managerial decisions to understand temporal variability, not only for the GSL and
LC, but also for other semi-arid lakes.

The findings of this study underscore the importance of accounting for morphologi-
cal complexity, local geological and geomorphological influences, human interventions,
seasonal and inter-annual variability, data quality and resolution, and the presence of
aquatic vegetation and sedimentation when assessing lake dynamics. It is possible to gain
a more comprehensive understanding of the relationship between the lake area and depth
by incorporating these factors and utilizing high-quality data, in conjunction with other
pertinent variables. Thus, lake dynamics can be more accurately evaluated. Moreover, it is
imperative to further examine the seasonal variability of lake dynamics, keeping in mind
that the temporal variation of hydrological processes, such as precipitation, evaporation,
and runoff, can influence the lake depth and area.

By incorporating additional remote sensing observations from future environmental
satellite missions, such as the Surface Water and Ocean Topography (SWOT) mission, this
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study will serve as the foundation for future studies that incorporate additional remote
sensing data, in order to estimate the changes in lake area and water volume in relation
to river flow. Future research will attempt an implementation using a finer precipitation
input from the Global Precipitation Measurement (GPM-IMERG).
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