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We present NeRVI, a new deep-learning approach that compresses a large collection
of visualization images generated from time-varying data for communicating volume
visualization results. Based on an image-based implicit neural representation, our ap-
proach represents tens of thousands of high-resolution rendering images parametrized
by different parameters via a hybrid model of multilayer perceptrons and convolutional
neural networks. Our model predicts images and corresponding masks, and the masks
are utilized for loss computation and network training to capture fine structural details
and small components. In conjunction with model quantization and weight encoding,
NeRVI yields highly compact compressive neural representations while preserving the
image fidelity well. We demonstrate the effectiveness of NeRVI with isosurface render-
ing and direct volume rendering images generated from multiple data sets and compare
NeRVI with other state-of-the-art deep learning-based (InSituNet, SIREN, NeRF, and
NeRV) methods. Quantitative and qualitative results show that NeRVI provides an al-
ternative solution that augments domain scientists’ ability to manage, represent, and
communicate scientific visualization output.
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1. Introduction

In many scientific applications, scientists generate time-
varying data from large-scale simulations to study various phe-
nomena and produce high-resolution, high-quality visualization
images for post hoc analysis and communication. Sharing such
visualization images instead of the original large-scale data to
end users (such as peer scientists or the general public) is mean-
ingful in different scenarios, for example, when scientists are
hesitant to make their simulation data publicly available, when
visualizations need to be carefully prepared by visualization
professionals to maintain high quality, or when end users cannot
easily produce such rendering results due to lack of knowledge
skills or hardware support (e.g., memory or graphics).

In practice, given a scalar field data set at a particular time
step, many volume visualization images, such as isosurface ren-
dering (IR) or direct volume rendering (DVR) images, could
be generated. These images sample data parameters (e.g., a

set of predetermined isovalues for IR), visual mapping param-
eters (e.g., color and opacity transfer function parameters for
DVR), and viewing parameters (e.g., viewpoints) to present a
comprehensive overview of the underlying data. For a time-
varying data set, the corresponding visualization images can
easily reach tens of thousands and occupy tens of gigabytes of
space, which could be even larger than the data itself. This
poses severe constraints, including disk storage, network band-
width, accessibility, and interactivity, for communicating the vi-
sualization output to end users. Hence, effectively compressing
and sharing such visualization images is highly desirable.

We study the problem of compressing a large collection of
visualization images generated from time-varying data to ef-
fectively communicate volume visualization results. Given a
time-varying data set, we produce a collection of visualization
images under data (e.g., isovalues), visual mapping (e.g., color
and opacity transfer function), and viewing (i.e., spherical an-
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gle coordinates 6 and ¢ for sampling viewpoints) parameters.
Instead of following a conventional image compression solu-
tion, we aim to represent the generated visualization images via
a novel deep learning approach inspired by the recent implicit
neural representation (INR) work for video compression [1].
With this technique, the trained neural network itself becomes
the compressed representation of the images. The visualization
images can be inferred by looping through the sampled param-
eters used during training.

Achieving high-quality compression of visualization images
in the scenario mentioned above presents several unique chal-
lenges. First, compressing visualization images is more chal-
lenging than compressing video frames because more param-
eters beyond the time step need to be considered. A signif-
icant difference often exists between two “neighboring” ren-
dering images sampled from a scalar field data set. However,
video frames typically exhibit better frame-to-frame coherence
within a given shot. Second, fitting visualization images gen-
erated from different time steps of a time-varying data set un-
der the same neural network brings additional obstacles because
these images could encompass dramatically different temporal
patterns over time. Furthermore, the stored time steps are of-
ten sparse samples from the simulation iterations, exacerbating
the concern of temporal coherence. Third, unlike video frames,
rendering images always have foreground and background pix-
els. As the foreground and background regions keep chang-
ing when varying the parameter values, the ratio of foreground
pixels to background pixels could vary a lot due to different
time steps, isovalues, and viewing parameter settings. There-
fore, this foreground-background issue must be considered for
achieving effective, high-quality compression.

To address these challenges, we present NeRVI, a new solu-
tion for Neural Representation of Visualization Images. NeRVI
advocates coarse-grained image-based input to efficiently learn
a large collection of visualization images parameterized by dif-
ferent parameters. The resulting hybrid multilayer perceptrons
(MLP) + convolutional neural network (CNN) model yields a
compressive neural representation that is highly compact while
supporting explorable visualization of high-fidelity rendering
results via an interactive visual interface.

The inputs of NeRVI are the given parameters, and the out-
puts are the rendering and corresponding mask images. We
minimize the errors between the predicted and ground truth
(GT) rendering images over only foreground pixels and the er-
rors between the predicted and GT masks. Then, model quan-
tization and weight encoding are leveraged during post-training
to achieve further compression. Finally, the compressed im-
ages could be extracted by feeding the parameters. The quan-
tized model can also be utilized to interpolate visualization im-
ages. We quantitatively and qualitatively evaluate NeRVI with
IR and DVR images generated from multiple data sets. The re-
sults show that NeRVTI outperforms state-of-the-art deep learn-
ing methods: InSituNet, SIREN, NeRF, and NeRV.

The contributions of our work are as follows. First, we re-
design a more powerful image-wise INR for compressive repre-
sentation of visualization images featuring SIREN-based resid-
ual block and mask loss, achieving a high compression rate (705

to 1,263). Second, we show NeRVI performs better than four
deep learning-based methods with IR and DVR images on mul-
tiple data sets. Third, we conduct a parameter study to inves-
tigate the impact of critical parameters (initial channels, input
image resolution, and viewpoint sampling degree) on the per-
formance of NeRVI.

2. Related Work

Image-based approach for volume visualization. With a
similar goal for exploratory visualization, previous work has
explored an image-based approach for volume visualization.
Tikhonova et al. [2] presented the concept of explorable im-
age (EI), a compact representation that enables interactive ex-
ploration of volume data in the transfer function space. They
also extended EI for visualizing time-varying volume data [3]
and utilized proxy images for volume visualization, enabling
interactive exploration [4]. Frey et al. [S] proposed volumetric
depth images (VDIs) for view-dependent volume visualization.
Fernandes et al. [6] introduced space-time VDIs for in situ vi-
sualization of time-varying volumetric data. Ahrens et al. [7, 8]
developed Cinema, a new image-based approach for extreme-
scale in situ visualization and analysis. Biedert and Garth [9]
combined in situ topological contour tree analysis and compact
image-based data representation for explorative visualization
and analysis while preserving flexibility. He et al. [10] pro-
posed InSituNet, which infers visualization results from simu-
lation and visualization parameters via deep learning. Jiao et
al. [11] introduced an enhanced super-resolution generative ad-
versarial network (ESRGAN) and a reduction-restoration work-
flow to obtain visualization results from reduced data without
losing too many features.

INR for computer vision and graphics. Since 2019, the
computer vision and graphics community has studied the use of
INR for solving various problems [12]. Early work, including
DeepSDF [13], occupancy networks [14], and IM-NET [15],
first shows that INR outperforms point-, grid-, and mesh-based
representations in parameterizing geometry and enables learn-
ing priors over shapes seamlessly. Later, researchers demon-
strated the learning of signed distance field (SDF) from raw
data [16, 17] or unsigned distance field (UDF) from raw point
clouds [18] and proposed hybrid solutions incorporating voxel
grids and INR to handle large-scale 3D scenes [19, 20, 21].

Pixel-wise or coordinate-based INR aims to model an input
signal as a continuous function that maps the domain of the in-
put signal (i.e., coordinate) to the value at that coordinate (e.g.,
RGB color of an image). Sitzmann et al. [22] proposed scene
representation network (SRN), a 3D-structure-aware network
that trains with only posed 2D images to reconstruct objects,
encoding both geometry and appearance. Sitzmann et al. [23]
introduced sinusoidal representation network (SIREN) that em-
ploys periodic activation functions for continuous INR, fitting
complicated signals and their derivatives. They demonstrated
the application of SIREN in audio, image, and video represen-
tation, 3D shape reconstruction, and solving first- and second-
order differential equations. Mildenhall et al. [24] designed
neural radiance field (NeRF) that leverages a fully-connected
deep neural network to infer color and density values of novel
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Fig. 1. (a) The image-wise INR of NeRVI takes parameters (7; 6; ¢) as input and outputs the whole rendering image and the corresponding mask image. (b)

Our SIREN-based residual block (SIREN RB). (¢) The upscale block.

views given 3D spatial locations and viewing directions. This
seminal NeRF work has inspired a myriad of subsequent works
on neural rendering [25], defined as “deep image or video gen-
eration approaches that enable explicit or implicit control of
scene properties” [26]. Niemeyer et al. [27] presented differen-
tiable volumetric rendering, a differentiable rendering pipeline
that learns 3D representations from 2D RGB images. Sitz-
mann et al. [28] developed MetaSDF, which incorporates meta-
learning with INR to learn the 3D shape space. Chan et al. [29]
proposed Pi-GAN, combining neural representation and neural
volume rendering to synthesize 3D-aware images under differ-
ent views. Guo et al. [30] presented object-centric neural scat-
tering functions to compose photorealistic scenes from captured
2D images.

INR for scientific visualization. In scientific visualization,
despite the impressive growth of DL4SciVis research [31], only
a few works have leveraged INRs. Lu et al. [32] designed neur-
comp, a SIREN-like MLP for neural representations of scalar
volumetric data. They achieved an impressive compression rate
(over 1,000x) while preserving important volumetric features
by quantizing network weights. Weiss et al. [33] presented fV-
SRN, a fast version of SRN for DVR. fV-SRN leverages GPU
tensor cores to integrate the reconstruction task into on-chip
raytracing kernels and supports random access reconstruction at
arbitrary granularity for temporal reconstruction tasks. Han and
Wang [34] designed CoordNet, a single INR framework tack-
ling different tasks for time-varying volumetric data, including
spatial super-resolution, temporal super-resolution, view syn-
thesis, and ambient occlusion prediction. Wu et al. [35] pro-
posed an INR for volumetric data that can be trained instan-
taneously and rendered interactively, achieved by utilizing a
CUDA machine learning network, GPU tensor cores, and op-
timized online training and rendering implementations. In flow
visualization, a flow map is a mathematical object represent-
ing how a particle is transported according to an unsteady flow,
starting at a given space-time location and for a given duration.
Han et al. [36] developed an MLP-based model for learning
particle end locations given their start locations and file cycles.
The trained model can predict new particle trajectories with a
small memory cost and fast inference. Instead of directly pre-
dicting flow maps, Sahoo et al. [37] learned a function-space
representation of the flow field and explicitly imposed an inte-
gration scheme to ensure a more stable and guided optimization
process for neural flow map reconstruction. Wu et al. [38] pre-
sented a distributed volumetric neural representation approach
designed for in situ visualization and analysis.

INR for image compression. Dupont et al. [39] designed
COIN to demonstrate the feasibility of using INR for image
compression tasks. Their key idea was to utilize MLPs that
map pixel locations to RGB values to fit images. They then
stored the weights of the neural network overfitted to the images
instead of keeping the RGB values for each pixel. Although
COIN achieves promising performance, it is not yet competi-
tive with state-of-the-art compression methods, and its encod-
ing and decoding speeds are rather slow. To overcome these
limitations, Chen et al. [1] proposed NeRYV, a novel image-wise
implicit representation for video compression. Previous INR
methods (e.g., [39]) used MLPs to approximate the INRs, tak-
ing the spatial or spatiotemporal coordinate as the input and
outputting the signals (e.g., RGB value, volume density) at that
single coordinate. Instead, NeRV trains a deep neural network
composed of MLPs and convolution layers, ingesting the frame
index and directly producing all the RGB values of that frame.
Our proposed NeRVI leverages the idea of NeRV. To meet the
needs and answer the challenges of compressing tens of thou-
sands of visualization images, we modify the NeRV network
architecture accordingly and introduce a new mask loss to ad-
dress the foreground-background issue.

3. NeRVI

Most INR designs are coordinate-based [23, 24]. The model
accepts coordinates (i.e., pixel locations) as input and produces
RGB values at these coordinates. For each sample image, an
entire feedforward pass through the network must be computed
for all pixel coordinates. As such, pure MLP-based INR either
often demands excessively long training time or has to limit the
number of training samples (up to a few hundred images) for ef-
ficiency. To achieve a compressive representation of visualiza-
tion images, we seek an alternative network design for NeRVI
that can ingest a large collection of high-resolution rendering
images parameterized by different parameters, e.g., viewpoints
0 and ¢, time steps ¢, isovalues v, etc.

Formally, given a set of data D = {D,D»,--- ,Dr}, where T
is the total number of time steps, we perform visualization with
a predefined isovalue or transfer function and under different
viewpoints to generate a set of visualization images for data Dy,
where ¢ € [1,T]. We represent each D, as a set of viewpoints
and their corresponding visualization images I,. Considering
the time step parameter, we represent D = {D,D,,--- ,D7} as
a set of parameters (i.e., (¢; 6; ¢)) and their corresponding visu-
alization images I. Our goal is to learn a mapping from the input
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parameters to visualization images, i.e., f(#; 6; ¢) = I. The main
idea is to fit the images into a neural network. The network’s
input is a set of parameters, and its outputs are the whole image
and its corresponding mask image (as shown in Figure 1 (a)).
Once trained, we can directly extract the visualization image by
evaluating the model given the parameters (t; 6; ¢).

(a) FC w/ReLU  (b) SIREN RB () GT

Fig. 2. Compressed DVR images using different MLP designs for the model.
Top and bottom: five jets and Tangaroa.

Overview. Our proposed method consists of three stages:
image fitting, model compression, and image extraction. In
the first stage, we design NeRVI, which includes an MLP en-
coder and a CNN decoder, to fit all the visualization images.
The trained NeRVI could represent the compressed images. In
the second stage, we utilize model quantization and weight en-
coding on the trained model to achieve further compression,
following NeRV [1]. In the last stage, the compressed images
could be extracted by feeding the parameters to the quantized
model. Our method could also be utilized for interpolating vi-
sualization images by supplying unseen parameters.

(a) w/o mask loss

(b) w/ mask loss (c) GT

Fig. 3. Compressed IR images using different loss functions. Top and bot-
tom: five jets and Tangaroa.

3.1. Network Architecture

As shown in Figure 1, our NeRVI network consists of three
main components, including input embedding, SIREN-based
residual blocks (SIREN RBs), and upscale blocks.

(a) PSNR vs. bit (b) MS-SSIM vs. bit (c) LPIPS vs. bit

Fig. 4. Model quantization using IR images with different bit lengths for
representing parameter values. Top and bottom: vortex and ionization.

Input embedding. Deep neural networks can be utilized as
universal function approximators [40]. However, directly train-
ing the network with input parameters (¢; 6; ¢) results in poor
performance, also observed in [24, 1]. Following [41, 24, 1], we
use positional encoding to map the input parameters to a higher
dimensional space using high-frequency functions, which en-
ables better fitting of data that have high-frequency variation.
Formally, the encoding function is defined as

E(x) = (sin(coﬂx), cos(c’zx), - -+, sin(c" ' 7x), cos(cL_lﬂx)),

ey
where x is an input parameter, ¢ and L are constants. In our
experiments, we set ¢ = 2 and L = 4, following the suggestion
of Mildenhall et al. [24]. E(.) is applied separately to the pa-
rameters of time step ¢ (normalized to [—1, 1]) and each of the
two viewing parameters 6 and ¢ (normalized to [—1, 1]). The
outputs of positional encoding are concatenated and fed to the
following network.

SIREN RB. In different from NeRV [1], which uses
ReLU [42] or GELU [43] as the activation function of the fully-
connected (FC) layer, we use SIREN [28] as the building block
of MLP. It is an FC layer followed by sin(wx) as the activa-
tion function, where w is a hyper-parameter, set as 30 in our
experiments, following Sitzmann et al. [28]. SIREN offers sev-
eral advantages compared with the FC layer with ReLU. First,
it stabilizes the training process. Second, it speeds up network
convergence because the gradient of sinusoidal activation exists
almost everywhere, while others will be close to zero in some
regions. Third, it fits complex signals better in both data and
gradient spaces. Our task is more challenging than video com-
pression due to more parameter input and dramatically differ-
ent temporal patterns. Therefore, we build SIREN RB (shown
in Figure 1 (b)) to increase network depth for performance im-
provement and introduce skip connections to SIREN RB to al-
leviate the issue of vanishing gradients. An example is shown
in Figure 2.

Upscale block. We stack the convolution layer, pixel shuffle
layer [44], and GELU activation layer [43] to form the upscale
block [1]. By stacking multiple upscale blocks, we upscale the
feature map to the original size of the image.

Architecture details. The architecture of NeRVI is shown
in Figure 1. It accepts parameters (f; 8; ¢) as input and outputs
the whole rendering image and the corresponding mask image.
The architecture follows a hybrid of MLP encoder and CNN
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decoder structure. Given the input parameters, we first apply
positional encoding to embed the input parameters in a higher-
dimensional space. Then two SIREN RBs with skip connec-
tion follow the embedding layer’s output to learn the input pa-
rameters’ representations. After that, several upscale blocks are
stacked to upscale the features to the original image dimensions.
Finally, a header layer (i.e., convolution layer) is leveraged to
output the whole rendering image and the corresponding mask
image. Note that NeRVI can handle visualization images with
an arbitrary size, and the number of upscale blocks depends on
the size of the represented images. Table 1 gives the architec-
ture details of the model that compress visualization images of
1,024 x 1, 024 resolution.

Table 1. The NeRVI architecture parameter details for visualization images
of 1,024 x 1,024 resolution. We set the number of initial channels ¢; and
¢, for MLP and CNN as 128 and 1, 024, respectively.

layer type upscale factor  output size (C X H X W)
0 positional encoding ~ — 12x1x1

1 SIREN RB — cpx1x1

2 SIREN RB & reshape — dep X2%x2

3 upscale block x4 )X 8% 8

4 upscale block x4 /2% 32%x32

5 upscale block X2 /4 X 64 %64

6 upscale block X2 /8 x 128 x 128

7 upscale block x2 /16 X 256 x 256

8 upscale block x2 /32 %512 %512

9 upscale block x2 /64 x 1,024 x 1,024
10 header layer — 4x1,024 x 1,024

Loss function. We consider the L1 and SSIM [45] losses in
the loss function design. To address the foreground-background
issue, we propose several key designs: (1) only calculating the
loss over foreground pixels between the predicted image and
the GT image; (2) designing the network to predict not only the
RGB image but also the corresponding mask image; (3) intro-
ducing a new mask loss, which measures the difference between
the predicted and GT masks. There are two clear advantages
to these proposed key designs. First, the model can capture
finer details because we only calculate the loss over foreground
pixels. This treatment allows us to delineate salient patterns.
Second, capturing small objects (e.g., small isosurface compo-
nents) is a common challenge for neural representation. We ad-
dress this by using mask images and computing the mask loss.
Figure 3 gives such a comparison result. The final loss function
is defined as

1 N
L= v ;O(IIM,- # (f(t:6;0) = DIl + 1M(2; 6, ¢) — Mill1)

+ (1 —a) (1 - SSIM(f(1;6; 9), 1)) ,
2

where N is the total number of visualization images; f(¢;8; ¢)
and M(t; 0; ¢) are, respectively, the predicted visualization im-
age and mask image; I; and M; are, respectively, the GT visu-
alization image and mask image; and « is a hyper-parameter
that balances the weight for the loss terms. In this paper, we set
a = 0.7, as suggested in NeRV [1]. The three terms in Equa-
tion 2 are rendering image loss and mask image loss in L1 form
and rendering image loss in SSIM form.

Inference. The inference result (i.e., inferred image) is de-
fined as M(t;60; ¢) X f(t;0;¢) + (1 — M(t;6; ¢)) x I, where 1 is
the identity matrix of size 3 x 1,024 x 1,024.

3.2. Model Quantization

Thus far, the trained neural network becomes the im-
ages’ compressed representation. Further compression can
be achieved through model quantization. Unlike other recent
works [46, 47, 48, 49] that apply quantization during training,
NeRVI utilizes model quantization after the training. The main
idea is to map each model parameter to a bit length value. For-
mally, given a parameter tensor y of the model, we have

HMmax — Mmin (3)

Mi — Hmin ) 2bit + Humins

Ui = round( i

where pmax and i, are the maximum and minimum values
of parameter tensor y, “bit” is the bit length for the quantized
model, and “round” is the rounding value to the closest integer.
A key question is: what should the number of bits be to achieve
a good tradeoff between image quality and compression rate?
In Figure 4, we plot PSNR, MS-SSIM, and LPIPS curves for
different bit number settings using IR images of the vortex and
ionization data sets. We observe a good tradeoff when the bit
number is 9. Thus, we use this setting in our experiments.

3.3. Weight Encoding

We use entropy encoding to further compress the model [1].
In particular, Huffman coding [50] is applied to the quantized
model for representing the data with a more efficient codec be-
cause it is lossless, which ensures a further decent compression
without any impact on the reconstruction quality.

Table 2. The resolution and total sampled images of each data set.

data set resolution (X X Y X Z x T) sampled 7 # images
vortex [51] 128 x 128 x 128 x 90 30 24,000
ionization [52] 992 x 992 x 992 x 100 50 40,000
tornado [53] 128 x 128 x 128 x 48 48 38,400
five jets 128 x 128 x 128 x 500 1 800
Tangaroa [54] 300 x 180 x 120 x 150 1 800

0 S0 100 150 200 250 300 350 400 0 500

1000 1500 2000 2500 3000
Epochs Epochs

0 50 100 150 200 250 300 350 400 [ 500 1000 1500 2000 2500 3000
Epochs

Fig. 5. Loss curves on IR images (top) and DVR images (bottom) using
different data sets.
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compression rate (CR). The best quality performances are highlighted in bold (same for the tables in the appendix).

IR images (1,024 x 1,024 resolution) DVR images (1,024 x 1,024 resolution)
data set method | PSNRT MS-SSIMT LPIPS| ET DT CR PSNRT MS-SSIMT LPIPS| ET DT CR
vortex InSituNet | 37.479  0.957 0.082 210 106 698.89 34327  0.944 0.092 230 130 742.57
(24,000 images) NeRV 38.457  0.966 0.075 192 98 716.84 33.929  0.930 0.118 219 119 774.19
NeRVI 40.423  0.984 0.055 264 133  705.88 35503 0.979 0.044 304 162 750.00
ionization InSituNet | 38.931 0.964 0.072 258 175 1,131.43 | 37.130  0.976 0.087 287 206 1,250.53
(40, 000 images) NeRV 38.554 0971 0.082 235 160 1,142.86 | 37.381 0.981 0.074 261 193 1,231.27
NeRVI 41.573  0.990 0.045 323 220 1,142.86 | 38.805  0.988 0.045 342 234 1,263.16
tornado InSituNet | 46.314  0.998 0.008 166 170 1,080.11 | 41.118 0.990 0.038 179 174 1,188.12
(38,400 images) NeRV 45.781 0.997 0.009 156 156 1,081.08 | 42.886  0.992 0.030 163 165 1,230.77
NeRVI 49.238  0.999 0.007 213 210 1,09091 | 45.663  0.996 0.017 230 229 1,200.00
Table 4. Average PSNR (dB), MS-SSIM, and LPIPS values, total ET (hours), and DT (seconds).
IR images (256 X 256 resolution) DVR images (256 x 256 resolution)
data set method | PSNRT MS-SSIMT LPIPS| ET DT | PSNRT MS-SSIMT LPIPS| ET DT
SIREN 36.903 0.978 0.1010 262.7 41 | 33.573 0.910 0.126 2634 59
five jets NeRF 42.041 0.998 0.0097 264.6 58 | 37.120 0.993 0.033 267.0 66
(800 images) InSituNet | 41.026  0.998 0.0091 6.5 25 | 36.750  0.994 0.017 7.0 30
NeRV 44313 0.994 0.0260 6.0 23 | 38.308 0.994 0.012 7.2 46
NeRVI 50.369  0.999 0.0004 7.0 18 | 42.725  0.999 0.001 7.1 20
SIREN 35.358 0.967 0.1443 241.7 47 | 37.055 0.945 0.214 262.8 62
Tangaroa NeRF 41.334  0.998 0.0044 2453 51 | 38.965 0.987 0.033 263.1 64
(800 images) InSituNet | 38.662  0.999 0.0032 6.5 19 | 38.974  0.994 0.010 7.0 35
NeRV 42919  0.999 0.0006 6.0 18 | 40.754  0.980 0.049 6.0 30
NeRVI 49482  0.999 0.0003 6.5 16 | 45.888  0.999 0.003 7.0 20

4. Results and Discussion

4.1. Data Sets and Network Training

Data sets. We experimented with the data sets shown in Ta-
ble 2, where T refers to the total number of time steps of the
data set. To demonstrate the utility of NeRVI on large data sets,
we apply CoordNet [34] to generate spatial super-resolution of
the ionization data set with a scale factor of four, upscaling the
resolution from 2483 to 9923, Except for the tornado data set,
we uniformly sampled a subset of time steps to generate the vi-
sualization images. For each data set, we sample every 9-degree
for 6 (whose range lies in [0,180]) and ¢ (whose range lies in
[0,360]) and keep the camera’s zoom level unchanged. For each
time step, we generate 800 visualization images, covering the
full 360-degree view of the entire volume. The total number of
images produced for NeRVI training is shown in Table 2.

Network training. NeRVI was implemented using PyTorch.
A single NVIDIA Tesla V100 graphics card with 32 GB of
memory was used for training and inference. We initialized the
parameters following Sitzmann et al. [23] and utilized the Adam
optimizer [55] to update the parameters (5; = 0.9, 8, = 0.999).
The learning rate was set to 2 x 107> to train the model. The
input parameters are scaled to [—1, 1] to match the value range
of sin(.) activation function. We train the model with 400, 300,
and 200 epochs for the vortex, ionization, and tornado data sets,
respectively, and 3,000 for the five jets and Tangaroa data sets
to make the model converged (see Figure 5). All these hyper-
parameters are empirically decided based on experiments.

4.2. Baselines and Evaluation Metrics

Baselines. We compare NeRVI with four state-of-the-art
deep learning-based methods (additional comparison results

with lossy compression methods, i.e., SZ3 and TTHRESH, are
presented in the appendix):

e InSituNet [10] uses a convolutional regression model to in-
fer visualization results from simulation and visualization
parameters.

e SIREN [23] is a coordinate-based INR that we use to fit
images. It inputs coordinates and employs sin as the acti-
vation function.

e NeRF [24] uses an MLP that predicts volume density and
view-dependent color from 3D coordinates (x; y; z) and 2D
viewpoints (6; ¢). It then employs an explicit rendering
process to generate novel images.

e NeRV [1] is an image-wise INR for video frame compres-
sion, and we adopt it for visualization image compression.

Note that our scenario could have tens of thousands of gen-
erated visualization images. We compare NeRVI with the
deep image synthesis model (InSituNet) and image-wise INR
(NeRV), with 1,024 x 1,024 image resolution. We modify In-
SituNet for fitting images with 1,024 x 1,024 resolution such
that it has a similar number of parameters as NeRVI. We do not
compare with GAN-VR [56] (GAN-based volume rendering)
as He et al. [10] showed that InSituNet outperforms GAN-VR.

The coordinate-based INR methods (SIREN and NeRF) de-
mand an excessively long training time to fit only a few hun-
dred images. Therefore, we only consider the low-resolution
images (i.e., 256 X 256) generated from a single time step when
comparing NeRVI with SIREN and NeRF and do not report the
compression rates.

Following [1], we do not choose the 3D neural rendering ver-
sion of the original NeRF model, as we aim to effectively com-
press visualization images. Besides, such an explicit rendering
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Fig. 6. Comparison of compressed IR images under 1,024 x 1,024 image resolution. Left to right: vortex (a and b), ionization (c to e), and tornado (f
and g) under different sets of parameters. Top to bottom: InSituNet, NeRV, NeRVI, and GT. The parameter values (z; 6; ¢) are (90;90; 180), (3;45;81),
(1005 171;351), (50; 81;90), (2; 36; 54), (23; 126; 342), and (48; 117;243), respectively, from (a) to (g).

process may defeat the purpose of our main application of vi-
sualization result communication. We might render the volu-
metric data directly if such a 3D rendering process is entailed.
For SIREN and NeRF, we use a five-layer perceptron and con-
tain the same number of parameters as NeRVI by changing the
hidden dimension. The batch size is set as 32, 000 coordinates.
We scale the values to [—1, 1] for SIREN and [0, 1] for NeRF to
match the value range of their respective activation functions.

Evaluation metrics. We evaluate the quality of compressed
visualization images with three metrics: peak signal-to-noise
ratio (PSNR), multi-scale structural similarity (MS-SSIM) [57],
and learned perceptual image patch similarity (LPIPS) [58]. Pa-
rameter studies of NeRVI, including initial channels, input im-
age resolution, viewpoint sampling degree, and model pruning,
are presented in the appendix.

4.3. Results

Quantitative results. In Table 3, we provide a quantitative
comparison among InSituNet, NeRV, and NeRVI with IR and
DVR images generated from the vortex, ionization, and tornado
data sets. The compression rate ranges from 705 to 1,142 for
IR images and from 750 to 1,263 for DVR images, proportional
to the number of images compressed. For the same method
(NeRV or NeRVI), the variation of compression rate across IR
and DVR images is due to weight encoding. Under a similar
compression rate, NeRVI yields the best performances on all
three data sets with IR and DVR images in terms of PSNR,
MS-SSIM, and LPIPS values. This shows the effectiveness of
NeRVI in compressing a large collection of visualization im-
ages. Regarding encoding and decoding time, NeRV has ad-

vantages over InSituNet and NeRVI on IR and DVR images of
all data sets, except for InSituNet on the DVR images of the
five jets data set. NeRVI falls behind NeRV in encoding and
decoding speeds because predicting the mask and computing
the mask loss increases the cost for NeRVI.

Table 4 gives a quantitative comparison among SIREN,
NeRF, InSituNet, NeRV, and NeRVI with IR and DVR images
generated from the five jets and Tangaroa data sets. All five
models have the same number of network parameters (101 mil-
lion). NeRVI outperforms other methods over all three met-
rics on both data sets, either with IR or DVR images. This
demonstrates the advantages of NeRVI compared with the deep
image synthesis model (InSituNet) and coordinate-based INRs
(SIREN and NeRF). Like NeRV, NeRVI greatly strengthens en-
coding and decoding speeds over SIREN and NeRF. This is be-
cause NeRVI utilizes a hybrid MLP+CNN model to predict an
image, while SIREN and NeRF use a simple MLP to output the
RGB value of each pixel.

Qualitative results. In Figures 6 and 7, we show com-
pressed rendering images for the vortex, ionization, and tornado
data sets under selected (#;6; ¢) values. Background borders
are cropped for close-up comparison. To illustrate the differ-
ences, we compute the pixel-wise difference images (i.e., the
Euclidean distance in the CIELUV color space) between the
tested method (InSituNet, NeRV, or NeRVI) and GT, shown in
blue boxes alongside the compressed images. Noticeable dif-
ferences are mapped to purple, blue, green, yellow, and red,
showing low to high pixel-wise differences (refer to the top-
left image of Figures 6 for the colormap legend). Additionally,
we place red arrows in some difference images for highlight-
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() (&

Fig. 7. Comparison of compressed DVR images under 1,024 x 1,024 image resolution. Left to right: vortex (a and b), ionization (c to e), and tornado (f and
g) under different sets of parameters. Top to bottom: InSituNet, NeRV, NeRVI, and GT. The parameter values (; 6; ¢) are (3; 27; 63), (90; 45; 45), (100; 0; 0),
(50; 171; 144), (2; 126; 162), (24, 90; 144), and (48; 0; 36), respectively, from (a) to (g).

ing where the variations are hard to see. From the difference
images, we can see that NeRVI wins across all cases over InSi-
tuNet and NeRV. For IR images, the differences are minor for
the tornado data set having one large smooth surface, medium
for the ionization data set having one large surface with fine de-
tails, and significant for the vortex data set having many sepa-
rate surface components. For the vortex example, InSituNet-
and NeRV-compressed results miss multiple smaller compo-
nents. NeRVI-compressed results preserve well these small-
scale features. This indicates the strength of NeRVI over In-
SituNet (designed for image synthesis) and NeRV (designed
for video compression) when compressing images with separate
components or small features. For DVR images, the differences
in InSitulNet, NeRV, and NeRVI are minor for the tornado data
set. NeRVI preserves fine structural details for the ionization
data set, while NeRV gives blurry results. This validates the ca-
pability of NeRVI to handle data with complex structures (e.g.,
fine details). The differences become more significant for the
vortex data set. NeRVI produces good results on both images
with different numbers of feature components. InSituNet and
NeRYV perform well with few components (see Figure 7 (a)) but
lead to rather blurry results with significantly more components
(see Figure 7 (b)). This indicates that NeRVI can deal with
images containing varying numbers of feature components and
addresses the foreground-background issue well.

In Figure 8, we compare compressed rendering images for
the five jets and Tangaroa data sets under selected (; 6; ¢) val-
ues. NeRVI produces the best visual results for both IR and

DVR images. From the difference images, we can see that
NeRVI generates almost identical results as the GT since the
difference images are almost white. NeRV is the second best,
with noticeable differences for IR images (five jets) and DVR
images (five jets and Tangaroa). SIREN generates the worst re-
sults. The compressed images are blurred and miss capturing
the object’s details. This is because SIREN does not apply the
positional encoding layer. NeRF and InSituNet produce accept-
able results; however, they miss the small components, and the
quality is subpar compared with NeRVI.

Visual interface. We provide a visual interface for users to
adjust viewpoint (6; ¢) and time step (¢) parameters to explore
the NeRVI compressed visualization results. A screenshot of
our visual interface for exploring the image collection of the
ionization data set is illustrated in Figure 9. Users select the
data set, rendering mode (IR or DVR), and parameter values to
display a certain frame. They can also pick a parameter and
animate through the frames. The interface decodes the frames
on the fly with a speed of around 3 frames/second. With proper
prefetching and caching, it supports interactive exploration, as
demonstrated in the accompanying video.

4.4. Hyperparameter Study

We conduct a parameter study to investigate the performance
of NeRVI, including initial channels, input image resolution,
and viewpoint sampling degree. The appendix also includes a
study of model pruning.

Initial channels. For the number of initial channels (c;;¢)
of MLP and CNN (refer to Table 1 in the paper), we ex-
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(a) (b) (©) (d) ©)

® (® (h)

Fig. 8. Comparison of compressed IR images (a to d) and DVR images (e to h) under 256 x 256 image resolution. Left to right: five jets and Tangaroa
under four parameter sets. Top to bottom: SIREN, NeRF, InSituNet, NeRV, NeRVI, and GT. The difference images are displayed on the corners. The
parameter values (7; 6; ¢) are (1991;171; 108), (1991; 72; 180), (196; 135; 162), (196;90; 117), (1991; 171;252), (1991; 90; 342), (196; 18; 162), and (196; 99;0),

respectively, from (a) to (h).

NeRVI: Compressive Neural Representation of Visualization Images [i )

Data Set

lonization -

Rendering Mode

-

Time Step: 50

2 EEm—— 100
Theta: 162

[ _— m
Phi: 198

o —_— 351
Animation

Phi =
Play

Reset

Fig. 9. NeRVI visual interface for exploring the image collection shows the
predicted IR image of the ionization data set with (¢; 0; ¢) = (50; 162; 198).

periment with different settings, i.e., (32;256), (64;512), and
(128;1,024), on the vortex data set with IR images. Ta-
ble 5 shows that the model achieves the best performance over
all three metrics when setting the number of initial channels
(c13¢2) as (128;1,024). Figure 10 validates this as the com-
pressed IR images generated by the model with (128;1,024)

setting are closer to GT than the other settings do. Therefore,
we set the number of initial channels (c;; ¢;) of MLP and CNN
of the model as (128; 1, 024) for all the experiments.

Table 5. Average quantitative metrics values and model parameters (MP,
million) using different initial channels (ci; ¢2).

dataset  (c1;c2) PSNRT MS-SSIMT LPIPS| MP
(32;256) 37.573 0.960 0.082 6
vortex (64;512) 38.454 0.966 0.075 25
(128;1,024) 40.423 0.984 0.055 101
r¥ka \ ¢ N2, 2 N, 4
P2 e 1 D Wl
EA w L™ STy %
{ $\ K \ ~ “‘\\/V‘ ¥ “‘ﬁ\/\‘ )
-‘,\ ) r‘& ‘x\\\ ’ 4\\\ ’
(a) (32,256) (b) (64,512) (c)(128,1,024)  (d) GT

Fig. 10. Compressed IR images of the vortex data set using different num-
bers of initial channels.

Input image resolution. For the input image resolution, we
experiment with different settings (i.e., 256 x 256, 512 x 512,
and 1,024 x 1,024) on the five jets, Tangaroa, and ionization
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data sets with DVR images. In Table 6, we show that all three
metrics drop when increasing the resolution of the input im-
ages. The model performs the best with 256 X 256 resolution
input images. However, in Figures 11, 12, and 13, we show
that the compressed rendering images with high resolution are
still much close to the GT. Therefore, we use input images with
1,024 x 1,024 resolution to achieve high compression rates
while maintaining good quantitative and visual results.

Table 6. Average quantitative metrics values using different input image

resolutions.

data set resolution PSNR T MS-SSIM 1T LPIPS |

256 x 256 42.725 0.999 0.001

five jets 512x 512 41.842 0.998 0.004

1,024 x 1,024 40.087 0.997 0.008

256 x 256 45.888 0.999 0.003

Tangaroa 512 x 512 43.627 0.998 0.004

1,024 x 1,024  41.173 0.997 0.006

256 x 256 40.820 0.993 0.028

ionization 512 %512 39.541 0.990 0.039

1,024 x 1,024  38.805 0.988 0.045

(d) GT () GT (f) GT

Fig. 11. Compressed DVR images of the five jets data set using different
input image resolutions.

| 4
2
X3
.

(c) 1,024 x 1,024

(d) GT

(e) GT (f) GT

Fig. 12. Compressed DVR images of the Tangaroa data set using different
input image resolutions.

Viewpoint sampling degree. We experiment with differ-
ent settings for the viewpoint sampling degree, i.e., 6, 9, and
10, on the vortex data set with IR images. Table 7 shows
that the performance drops when reducing the viewpoint sam-
pling degree (this leads to more images to compress and an in-
crease in the compression rate). In particular, the performance
drops significantly when reducing the sampling degree from 9

(a) 256 x 256
g

by

(©) 1,024 x 1,024
7 k-‘

l"‘
i

4

(d) GT (e) GT (H GT

Fig. 13. Compressed DVR images of the ionization data set using different
input image resolutions.

to 6. Figure 14 shows that sampling with 6-degree produces the
worst visual result, followed by 9-degree. Finally, sampling 10-
degree leads to the best visual result. Considering the trade-off
between quality performance and compression rate, we sample
with 9-degree on all the data sets for the experiments.

Table 7. Average quantitative metrics values and CR using different view-
point sampling degrees.

data set degree PSNR T MS-SSIM 7 LPIPS | CR
6 39.021 0.952 0.085 1600.00
vortex 9 40.423 0.984 0.055 705.88
10 40.961 0.987 0.051 571.43

N N/
4 b  J
(@) 6 ®9 (c) 10

(d) GT (e) GT

Fig. 14. Compressed IR images of the vortex data set using different view-
point sampling degrees.

) GT

4.5. Discussion

Visualization interpolation. As a side product, NeRVI can
be utilized for interpolating visualization images. Specifically,
we use the trained model to infer novel visualization images
given unseen input parameters (z; 6; ¢). We give examples with
IR images of the vortex data set. We select every third time step
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Fig. 15. Inferred novel IR images with parameters (7; 6; ¢) using the vortex
data set. Unseen parameter values are highlighted in bold.

from 90 samples (i.e., 3,6, - - - ,90), and sample every 9-degree
for 6 and ¢. In Figure 15, we compare the visual results of un-
seen input parameters against the result of the seen parameter
(3;0;0). We can see that NeRVI can give quite reasonable pre-
dictions on the unseen parameters (i.e., (3;1;0), (3;0; 1), and
(3;1; 1)) where their visual results have a small difference to
the training image (i.e., (3; 0; 0)). The performance gets worse
on the unseen parameters (i.e., (3;4;0) and (3;0;4)) when the
viewing parameter 6 or ¢ is somewhere in the middle of the
seen samples 0 and 9. The worst cases happen on the unseen
parameters (3;4;4), (4;0;0), and (4;4; 4). In particular, NeRVI
could not infer unseen time steps (either integer or fractional
ones, such as 4 or 3.1) in good quality, even though 8 and ¢
are seen. These results validate that our trained model is well
overfitted. NeRVI essentially fulfills a compression task. The
interpolation or inference task needs additional work for quality
improvement.

Limitations. While NeRVI outperforms coordinate-based
INR methods (SIREN and NeRF), it has the following limi-
tations. First, to achieve a comparable performance and com-
pression rate, NeRVI needs a longer encoding time, albeit faster
than coordinate-based INR methods. Nevertheless, this is still
acceptable for one-time processing, as our goal is to share and
communicate tens of thousands of high-resolution, high-quality
visualization images produced from large-scale scientific simu-
lations to peer scientists or the general public. Second, NeRVI
has to change the bit values of model quantization to achieve
different compression rates of the generated images. The com-
pressed results remain identical when the bit values are set from
12 to 32 (see Figure 4). Thus, it has to train the model with
more parameters from scratch to produce images with lower

LY

/ / ,‘/jl " /
’ v Y &~ b
% g ) \
° 6 7/ NS %/ ¢
W ¥ [ £ ) » N ) ‘\\%
X ’ 4 J '\ { - AN

(a) 25 million
4 A A

N N N

(b) 101 million

(d) 101 million (e) 202 million ) GT

Fig. 16. Comparison of compressed IR images using models with different
numbers of parameters. Top: vortex with (7, 0;¢) = (45;9; 144). Bottom:
ionization with (7;0; ¢) = (62;36;0). The difference images are displayed
on the corners.

compression rates to improve the visual results. As shown in
Figure 16, the quality improves significantly when training the
model with more parameters (from 25 to 101 million). How-
ever, the quality only increases marginally if the model’s per-
formance is already good enough (from 101 to 202 million).
Third, the isovalue or transfer function parameters are not con-
sidered in our model, and we leave this as our future work.

5. Conclusions and Future Work

We have presented, NeRVI, a new deep-learning solution for
compressing a large collection of high-resolution, high-quality
visualization images. NeRVI includes three stages: image fit-
ting, model compression, and image extraction. Inspired by
the image-wise INR work, we redesign the model with SIREN-
based residual blocks for performance improvement and pre-
dict the mask images to capture fine structural details and
small components. Model quantization and weight encoding
are utilized for further model compression during post-training.
Compared with the state-of-the-art methods, NeRVI produces
higher-quality results on multiple data sets while maintaining
high compression rates (705 to 1,263).

The future work of NeRVI includes the following. First,
besides model quantization and weight encoding in the post-
training stage, we would like to explore model quantization
during training (e.g., [48]) to achieve an end-to-end framework.
Second, we would like to consider more parameters, for exam-
ple, data parameters (e.g., isovalues) for IR and visual mapping
parameters (e.g., color and opacity transfer function) for DVR.
This would increase the number of images from tens of thou-
sands to hundreds of thousands or millions, further boosting
the compression rate. We would explore using a GPU cluster to
train the even larger collection of images. Third, we would like
to expedite our method by minimizing redundant parameters in
the model, such as those in the last layer of the MLP and the
initial NeRV block.
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Appendix

In addition to the main results presented in the paper, we con-
duct experiments to explore the possibility of model pruning.
We also compare NeRVI with two lossy compression methods:
SZ3 and TTHRESH.

Model pruning. For model pruning, we experiment with
different pruning ratio settings (i.e., 0.2, 0.4, 0.6, and 0.8) for
global unstructured pruning on the vortex data set with IR im-
ages. As shown in Table 1, when increasing the pruning ra-
tio, the performance drops consistently, and the compressed IR
images become much worse (refer to Figure 1). Even with a
smaller pruning ratio (i.e., 0.2), the compressed IR image fails
to capture some large isosurface components’ structures and
misses smaller ones completely. Therefore, we do not leverage
model pruning to compress the model further.

Table 1. Average quantitative metrics values using different pruning ratios.

data set ratio PSNR T MS-SSIM T LPIPS |
0.0 40.423 0.984 0.055
0.2 38.226 0.952 0.138
vortex 0.4 36.707 0.921 0.207
0.6 34.629 0.909 0.279
0.8 32.389 0.894 0.346
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Fig. 1. Compressed IR images of the vortex data set using different pruning
ratios for global unstructured pruning.

Comparison with lossy compression methods. Besides
comparing NeRVI with the deep learning-based methods (In-
SituNet and NeRV), we also compare it with two lossy com-
pression methods:

e SZ3[1]is an error-bounded lossy compression method for
scientific data reduction.

e TTHRESH [2] is a tensor decomposition method for the
lossy compression of scientific data.

We consider two scenarios: (1) SZ3 and TTHRESH directly
compress the volumetric data at a similar compression rate as
NeRVI, denoted as SZ3-v and TTHRESH-v. We then render
the decompressed volumes (for DVR) and the isosurfaces ex-
tracted from the decompressed volumes (for IR). (2) SZ3 and

TTHRESH are leveraged to compress the volume visualization
images (i.e., IR and DVR images) at a similar compression rate
as NeRVI, denoted as SZ3-i and TTHRESH-i1.

Table 3 provides quantitative results of SZ3-v, TTHRESH-
v, SZ3-i, and TTHRESH-i on IR and DVR images generated
from the vortex, ionization, and tornado data sets. Under a
similar compression rate, NeRVI (refer to Table 3 in the pa-
per) outperforms SZ3-v, TTHRESH-v, SZ3-i, and TTHRESH-i
on all three data sets across the evaluation metrics, except for
TTHRESH-v on the IR images of the ionization data set. Re-
garding encoding and decoding time, SZ3-i and TTHRESH-i
have great strength in encoding speed and a slight advantage
in decoding speed over NeRVI. Since SZ3-v and TTHRESH-v
only compress a small number of volumetric data and involve
the subsequent IR and DVR process, out of fairness, we do not
report their encoding and decoding times.

Figures 2 and 3 show rendering of compressed volumes
(§Z3-v and TTHRESH-v) and compressed rendering images
(8Z3-i and TTHRESH-i) for the vortex, ionization, and tornado
data sets under selected (z; 6; ¢) values. For IR and DVR im-
ages, SZ3-v and TTHRESH-v results on the ionization data set
are closer to GT, while those on the vortex and tornado data sets
show blocky artifacts. Across all cases, SZ3-i and TTHRESH-i
results show noise and color shift.

Table 2. Comparison of different methods over encoding speed (ES), de-
coding speed (DS), compression rate (CR), and image quality (I1Q).

method ES DS CR 1Q
S73 fast medium high low/medium

TTHRESH fast medium high low/medium
InSituNet medium medium medium medium

SIREN very slow  very slow low low/medium

NeRF very slow  very slow low low/medium

NeRV medium medium medium medium

NeRVI medium medium medium high

Comparison. Table 2 compares all seven methods across
four metrics. SZ3 and TTHRESH have an excellent advantage
in encoding speed; however, the quality of the compressed im-
ages cannot be guaranteed, especially when the compression
rate is high. Due to the rather slow encoding and decoding
speed, coordinate-based INR methods (SIREN and NeRF) are
only suitable for compressing a few hundred low-resolution im-
ages. InSituNet, NeRV, and NeRVI are in the middle concern-
ing encoding and decoding speeds; however, they can compress
tens of thousands of high-resolution images while maintaining
good quality. InSituNet performs similarly to NeRV when han-
dling tens of thousands of images (vortex, ionization, and tor-
nado) and falls behind with only hundreds of images (five jets
and Tangaroa). Compared with NeRV, our NeRVI is more capa-
ble of compressing a large collection of high-resolution images
due to the added SIREN-based residual block and mask loss.
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Table 3. Average PSNR (dB), MS-SSIM, and LPIPS values, total ET (hours) and ET (minutes), and CR. Refer to Table 3 in the paper for results using
InSituNet, NeRYV, and NeRVI.

IR images (1,024 x 1,024 resolution) DVR images (1,024 x 1,024 resolution)
data set method PSNRT MS-SSIMT LPIPS| ET DT CR PSNRT MS-SSIMT LPIPS| ET DT CR
SZ3-v 33.386  0.605 0.310 — — 705.98 32.644  0.774 0.203 — —  737.61
vortex TTHRESH-v | 34.077  0.662 0.268 — — 710.30 33.957  0.890 0.139 — — 746.19
(24,000 images) SZ3-i 36.098  0.942 0.145 4.64 127 71541 33.489  0.921 0.142 5.24 153 725.35
TTHRESH-i | 36.123  0.969 0.070 551 120 736.78 33.862 0931 0.094 10.28 156 779.16
SZ3-v 40.144  0.988 0.066 — — 113149 | 35726  0.930 0.089 — — 1288.26
ionization TTHRESH-v | 44.343  0.998 0.009 — — 119271 | 36.780  0.947 0.077 — — 1248.00
(40,000 images) SZ3-i 35.825  0.940 0.123 7.54 188 1,146.38 | 35204  0.965 0.143 7.81 247 1,248.82
TTHRESH-i | 36.324  0.952 0.096 8.41 192 1,096.43 | 35.123  0.966 0.134 9.89 224 1,229.49
SZ3-v 35.162  0.838 0.169 — — 1023.19 | 34.642  0.766 0.231 — — 1200.77
tornado TTHRESH-v | 36.474  0.864 0.151 — — 1055.73 | 35.657  0.835 0.170 — — 1204.91
(38,400 images) SZ3-i 38.113  0.959 0.126 6.99 178 104847 | 38.155 0.933 0.172 7.37 183  1212.61
TTHRESH-i | 44.457  0.961 0.114 7.11 196 1,064.35 | 41437  0.990 0.043 12.49 209 1,157.26
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Fig. 2. Comparison of compressed IR images under 1,024 x 1,024 image resolution. Left to right: vortex (a and b), ionization (c to e), and tornado (f
and g) under different sets of parameters. Top to bottom: SZ3-v, TTHRESH-v, SZ3-i, and TTHRESH-i. The parameter values (7; 6; ¢) are (90; 90; 180),
(3;45;81), (1005 171;351), (50; 81;90), (2;36;54), (23; 126;342), and (48; 117;243), respectively, from (a) to (g). Refer to Figure 6 in the paper for results
using InSituNet, NeRYV, and NeRVIL.
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Fig. 3. Comparison of compressed DVR images under 1,024 x 1,024 image resolution. Left to right: vortex (a and b), ionization (c to e), and tornado
(f and g) under different sets of parameters. Top to bottom: SZ3-v, TTHRESH-v, SZ3-i, and TTHRESH-i. The parameter values (; 9; ¢) are (3;27;63),

(90, 45; 45), (100; 0; 0), (50; 171; 144), (2; 126; 162), (24;90; 144), and (48; 0; 36), respectively, from (a) to (g). Refer to Figure 7 in the paper for results using
InSituNet, NeRYV, and NeRVI.
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