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A B S T R A C T

We present NeRVI, a new deep-learning approach that compresses a large collection
of visualization images generated from time-varying data for communicating volume
visualization results. Based on an image-based implicit neural representation, our ap-
proach represents tens of thousands of high-resolution rendering images parametrized
by different parameters via a hybrid model of multilayer perceptrons and convolutional
neural networks. Our model predicts images and corresponding masks, and the masks
are utilized for loss computation and network training to capture fine structural details
and small components. In conjunction with model quantization and weight encoding,
NeRVI yields highly compact compressive neural representations while preserving the
image fidelity well. We demonstrate the effectiveness of NeRVI with isosurface render-
ing and direct volume rendering images generated from multiple data sets and compare
NeRVI with other state-of-the-art deep learning-based (InSituNet, SIREN, NeRF, and
NeRV) methods. Quantitative and qualitative results show that NeRVI provides an al-
ternative solution that augments domain scientists’ ability to manage, represent, and
communicate scientific visualization output.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction1

In many scientific applications, scientists generate time-2

varying data from large-scale simulations to study various phe-3

nomena and produce high-resolution, high-quality visualization4

images for post hoc analysis and communication. Sharing such5

visualization images instead of the original large-scale data to6

end users (such as peer scientists or the general public) is mean-7

ingful in different scenarios, for example, when scientists are8

hesitant to make their simulation data publicly available, when9

visualizations need to be carefully prepared by visualization10

professionals to maintain high quality, or when end users cannot11

easily produce such rendering results due to lack of knowledge12

skills or hardware support (e.g., memory or graphics).13

In practice, given a scalar field data set at a particular time14

step, many volume visualization images, such as isosurface ren-15

dering (IR) or direct volume rendering (DVR) images, could16

be generated. These images sample data parameters (e.g., a17

set of predetermined isovalues for IR), visual mapping param- 18

eters (e.g., color and opacity transfer function parameters for 19

DVR), and viewing parameters (e.g., viewpoints) to present a 20

comprehensive overview of the underlying data. For a time- 21

varying data set, the corresponding visualization images can 22

easily reach tens of thousands and occupy tens of gigabytes of 23

space, which could be even larger than the data itself. This 24

poses severe constraints, including disk storage, network band- 25

width, accessibility, and interactivity, for communicating the vi- 26

sualization output to end users. Hence, effectively compressing 27

and sharing such visualization images is highly desirable. 28

We study the problem of compressing a large collection of 29

visualization images generated from time-varying data to ef- 30

fectively communicate volume visualization results. Given a 31

time-varying data set, we produce a collection of visualization 32

images under data (e.g., isovalues), visual mapping (e.g., color 33

and opacity transfer function), and viewing (i.e., spherical an- 34
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gle coordinates θ and ϕ for sampling viewpoints) parameters.1

Instead of following a conventional image compression solu-2

tion, we aim to represent the generated visualization images via3

a novel deep learning approach inspired by the recent implicit4

neural representation (INR) work for video compression [1].5

With this technique, the trained neural network itself becomes6

the compressed representation of the images. The visualization7

images can be inferred by looping through the sampled param-8

eters used during training.9

Achieving high-quality compression of visualization images10

in the scenario mentioned above presents several unique chal-11

lenges. First, compressing visualization images is more chal-12

lenging than compressing video frames because more param-13

eters beyond the time step need to be considered. A signif-14

icant difference often exists between two “neighboring” ren-15

dering images sampled from a scalar field data set. However,16

video frames typically exhibit better frame-to-frame coherence17

within a given shot. Second, fitting visualization images gen-18

erated from different time steps of a time-varying data set un-19

der the same neural network brings additional obstacles because20

these images could encompass dramatically different temporal21

patterns over time. Furthermore, the stored time steps are of-22

ten sparse samples from the simulation iterations, exacerbating23

the concern of temporal coherence. Third, unlike video frames,24

rendering images always have foreground and background pix-25

els. As the foreground and background regions keep chang-26

ing when varying the parameter values, the ratio of foreground27

pixels to background pixels could vary a lot due to different28

time steps, isovalues, and viewing parameter settings. There-29

fore, this foreground-background issue must be considered for30

achieving effective, high-quality compression.31

To address these challenges, we present NeRVI, a new solu-32

tion for Neural Representation of Visualization Images. NeRVI33

advocates coarse-grained image-based input to efficiently learn34

a large collection of visualization images parameterized by dif-35

ferent parameters. The resulting hybrid multilayer perceptrons36

(MLP) + convolutional neural network (CNN) model yields a37

compressive neural representation that is highly compact while38

supporting explorable visualization of high-fidelity rendering39

results via an interactive visual interface.40

The inputs of NeRVI are the given parameters, and the out-41

puts are the rendering and corresponding mask images. We42

minimize the errors between the predicted and ground truth43

(GT) rendering images over only foreground pixels and the er-44

rors between the predicted and GT masks. Then, model quan-45

tization and weight encoding are leveraged during post-training46

to achieve further compression. Finally, the compressed im-47

ages could be extracted by feeding the parameters. The quan-48

tized model can also be utilized to interpolate visualization im-49

ages. We quantitatively and qualitatively evaluate NeRVI with50

IR and DVR images generated from multiple data sets. The re-51

sults show that NeRVI outperforms state-of-the-art deep learn-52

ing methods: InSituNet, SIREN, NeRF, and NeRV.53

The contributions of our work are as follows. First, we re-54

design a more powerful image-wise INR for compressive repre-55

sentation of visualization images featuring SIREN-based resid-56

ual block and mask loss, achieving a high compression rate (70557

to 1,263). Second, we show NeRVI performs better than four 58

deep learning-based methods with IR and DVR images on mul- 59

tiple data sets. Third, we conduct a parameter study to inves- 60

tigate the impact of critical parameters (initial channels, input 61

image resolution, and viewpoint sampling degree) on the per- 62

formance of NeRVI. 63

2. Related Work 64

Image-based approach for volume visualization. With a 65

similar goal for exploratory visualization, previous work has 66

explored an image-based approach for volume visualization. 67

Tikhonova et al. [2] presented the concept of explorable im- 68

age (EI), a compact representation that enables interactive ex- 69

ploration of volume data in the transfer function space. They 70

also extended EI for visualizing time-varying volume data [3] 71

and utilized proxy images for volume visualization, enabling 72

interactive exploration [4]. Frey et al. [5] proposed volumetric 73

depth images (VDIs) for view-dependent volume visualization. 74

Fernandes et al. [6] introduced space-time VDIs for in situ vi- 75

sualization of time-varying volumetric data. Ahrens et al. [7, 8] 76

developed Cinema, a new image-based approach for extreme- 77

scale in situ visualization and analysis. Biedert and Garth [9] 78

combined in situ topological contour tree analysis and compact 79

image-based data representation for explorative visualization 80

and analysis while preserving flexibility. He et al. [10] pro- 81

posed InSituNet, which infers visualization results from simu- 82

lation and visualization parameters via deep learning. Jiao et 83

al. [11] introduced an enhanced super-resolution generative ad- 84

versarial network (ESRGAN) and a reduction-restoration work- 85

flow to obtain visualization results from reduced data without 86

losing too many features. 87

INR for computer vision and graphics. Since 2019, the 88

computer vision and graphics community has studied the use of 89

INR for solving various problems [12]. Early work, including 90

DeepSDF [13], occupancy networks [14], and IM-NET [15], 91

first shows that INR outperforms point-, grid-, and mesh-based 92

representations in parameterizing geometry and enables learn- 93

ing priors over shapes seamlessly. Later, researchers demon- 94

strated the learning of signed distance field (SDF) from raw 95

data [16, 17] or unsigned distance field (UDF) from raw point 96

clouds [18] and proposed hybrid solutions incorporating voxel 97

grids and INR to handle large-scale 3D scenes [19, 20, 21]. 98

Pixel-wise or coordinate-based INR aims to model an input 99

signal as a continuous function that maps the domain of the in- 100

put signal (i.e., coordinate) to the value at that coordinate (e.g., 101

RGB color of an image). Sitzmann et al. [22] proposed scene 102

representation network (SRN), a 3D-structure-aware network 103

that trains with only posed 2D images to reconstruct objects, 104

encoding both geometry and appearance. Sitzmann et al. [23] 105

introduced sinusoidal representation network (SIREN) that em- 106

ploys periodic activation functions for continuous INR, fitting 107

complicated signals and their derivatives. They demonstrated 108

the application of SIREN in audio, image, and video represen- 109

tation, 3D shape reconstruction, and solving first- and second- 110

order differential equations. Mildenhall et al. [24] designed 111

neural radiance field (NeRF) that leverages a fully-connected 112

deep neural network to infer color and density values of novel 113
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Fig. 1. (a) The image-wise INR of NeRVI takes parameters (t; θ; ϕ) as input and outputs the whole rendering image and the corresponding mask image. (b)
Our SIREN-based residual block (SIREN RB). (c) The upscale block.

views given 3D spatial locations and viewing directions. This1

seminal NeRF work has inspired a myriad of subsequent works2

on neural rendering [25], defined as “deep image or video gen-3

eration approaches that enable explicit or implicit control of4

scene properties” [26]. Niemeyer et al. [27] presented differen-5

tiable volumetric rendering, a differentiable rendering pipeline6

that learns 3D representations from 2D RGB images. Sitz-7

mann et al. [28] developed MetaSDF, which incorporates meta-8

learning with INR to learn the 3D shape space. Chan et al. [29]9

proposed Pi-GAN, combining neural representation and neural10

volume rendering to synthesize 3D-aware images under differ-11

ent views. Guo et al. [30] presented object-centric neural scat-12

tering functions to compose photorealistic scenes from captured13

2D images.14

INR for scientific visualization. In scientific visualization,15

despite the impressive growth of DL4SciVis research [31], only16

a few works have leveraged INRs. Lu et al. [32] designed neur-17

comp, a SIREN-like MLP for neural representations of scalar18

volumetric data. They achieved an impressive compression rate19

(over 1, 000×) while preserving important volumetric features20

by quantizing network weights. Weiss et al. [33] presented fV-21

SRN, a fast version of SRN for DVR. fV-SRN leverages GPU22

tensor cores to integrate the reconstruction task into on-chip23

raytracing kernels and supports random access reconstruction at24

arbitrary granularity for temporal reconstruction tasks. Han and25

Wang [34] designed CoordNet, a single INR framework tack-26

ling different tasks for time-varying volumetric data, including27

spatial super-resolution, temporal super-resolution, view syn-28

thesis, and ambient occlusion prediction. Wu et al. [35] pro-29

posed an INR for volumetric data that can be trained instan-30

taneously and rendered interactively, achieved by utilizing a31

CUDA machine learning network, GPU tensor cores, and op-32

timized online training and rendering implementations. In flow33

visualization, a flow map is a mathematical object represent-34

ing how a particle is transported according to an unsteady flow,35

starting at a given space-time location and for a given duration.36

Han et al. [36] developed an MLP-based model for learning37

particle end locations given their start locations and file cycles.38

The trained model can predict new particle trajectories with a39

small memory cost and fast inference. Instead of directly pre-40

dicting flow maps, Sahoo et al. [37] learned a function-space41

representation of the flow field and explicitly imposed an inte-42

gration scheme to ensure a more stable and guided optimization43

process for neural flow map reconstruction. Wu et al. [38] pre-44

sented a distributed volumetric neural representation approach45

designed for in situ visualization and analysis.46

INR for image compression. Dupont et al. [39] designed 47

COIN to demonstrate the feasibility of using INR for image 48

compression tasks. Their key idea was to utilize MLPs that 49

map pixel locations to RGB values to fit images. They then 50

stored the weights of the neural network overfitted to the images 51

instead of keeping the RGB values for each pixel. Although 52

COIN achieves promising performance, it is not yet competi- 53

tive with state-of-the-art compression methods, and its encod- 54

ing and decoding speeds are rather slow. To overcome these 55

limitations, Chen et al. [1] proposed NeRV, a novel image-wise 56

implicit representation for video compression. Previous INR 57

methods (e.g., [39]) used MLPs to approximate the INRs, tak- 58

ing the spatial or spatiotemporal coordinate as the input and 59

outputting the signals (e.g., RGB value, volume density) at that 60

single coordinate. Instead, NeRV trains a deep neural network 61

composed of MLPs and convolution layers, ingesting the frame 62

index and directly producing all the RGB values of that frame. 63

Our proposed NeRVI leverages the idea of NeRV. To meet the 64

needs and answer the challenges of compressing tens of thou- 65

sands of visualization images, we modify the NeRV network 66

architecture accordingly and introduce a new mask loss to ad- 67

dress the foreground-background issue. 68

3. NeRVI 69

Most INR designs are coordinate-based [23, 24]. The model 70

accepts coordinates (i.e., pixel locations) as input and produces 71

RGB values at these coordinates. For each sample image, an 72

entire feedforward pass through the network must be computed 73

for all pixel coordinates. As such, pure MLP-based INR either 74

often demands excessively long training time or has to limit the 75

number of training samples (up to a few hundred images) for ef- 76

ficiency. To achieve a compressive representation of visualiza- 77

tion images, we seek an alternative network design for NeRVI 78

that can ingest a large collection of high-resolution rendering 79

images parameterized by different parameters, e.g., viewpoints 80

θ and ϕ, time steps t, isovalues v, etc. 81

Formally, given a set of data D = {D1,D2, · · · ,DT }, where T 82

is the total number of time steps, we perform visualization with 83

a predefined isovalue or transfer function and under different 84

viewpoints to generate a set of visualization images for data Dt, 85

where t ∈ [1,T ]. We represent each Dt as a set of viewpoints 86

and their corresponding visualization images It. Considering 87

the time step parameter, we represent D = {D1,D2, · · · ,DT } as 88

a set of parameters (i.e., (t; θ; ϕ)) and their corresponding visu- 89

alization images I. Our goal is to learn a mapping from the input 90
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parameters to visualization images, i.e., f (t; θ; ϕ) = I. The main1

idea is to fit the images into a neural network. The network’s2

input is a set of parameters, and its outputs are the whole image3

and its corresponding mask image (as shown in Figure 1 (a)).4

Once trained, we can directly extract the visualization image by5

evaluating the model given the parameters (t; θ; ϕ).6

(a) FC w/ ReLU (b) SIREN RB (c) GT

Fig. 2. Compressed DVR images using different MLP designs for the model.
Top and bottom: five jets and Tangaroa.

Overview. Our proposed method consists of three stages:7

image fitting, model compression, and image extraction. In8

the first stage, we design NeRVI, which includes an MLP en-9

coder and a CNN decoder, to fit all the visualization images.10

The trained NeRVI could represent the compressed images. In11

the second stage, we utilize model quantization and weight en-12

coding on the trained model to achieve further compression,13

following NeRV [1]. In the last stage, the compressed images14

could be extracted by feeding the parameters to the quantized15

model. Our method could also be utilized for interpolating vi-16

sualization images by supplying unseen parameters.17

(a) w/o mask loss (b) w/ mask loss (c) GT

Fig. 3. Compressed IR images using different loss functions. Top and bot-
tom: five jets and Tangaroa.

3.1. Network Architecture18

As shown in Figure 1, our NeRVI network consists of three19

main components, including input embedding, SIREN-based20

residual blocks (SIREN RBs), and upscale blocks.21

(a) PSNR vs. bit (b) MS-SSIM vs. bit (c) LPIPS vs. bit

Fig. 4. Model quantization using IR images with different bit lengths for
representing parameter values. Top and bottom: vortex and ionization.

Input embedding. Deep neural networks can be utilized as
universal function approximators [40]. However, directly train-
ing the network with input parameters (t; θ; ϕ) results in poor
performance, also observed in [24, 1]. Following [41, 24, 1], we
use positional encoding to map the input parameters to a higher
dimensional space using high-frequency functions, which en-
ables better fitting of data that have high-frequency variation.
Formally, the encoding function is defined as

E(x) =
(
sin(c0πx), cos(c0πx), · · · , sin(cL−1πx), cos(cL−1πx)

)
,

(1)
where x is an input parameter, c and L are constants. In our 22

experiments, we set c = 2 and L = 4, following the suggestion 23

of Mildenhall et al. [24]. E(.) is applied separately to the pa- 24

rameters of time step t (normalized to [−1, 1]) and each of the 25

two viewing parameters θ and ϕ (normalized to [−1, 1]). The 26

outputs of positional encoding are concatenated and fed to the 27

following network. 28

SIREN RB. In different from NeRV [1], which uses 29

ReLU [42] or GELU [43] as the activation function of the fully- 30

connected (FC) layer, we use SIREN [28] as the building block 31

of MLP. It is an FC layer followed by sin(ωx) as the activa- 32

tion function, where ω is a hyper-parameter, set as 30 in our 33

experiments, following Sitzmann et al. [28]. SIREN offers sev- 34

eral advantages compared with the FC layer with ReLU. First, 35

it stabilizes the training process. Second, it speeds up network 36

convergence because the gradient of sinusoidal activation exists 37

almost everywhere, while others will be close to zero in some 38

regions. Third, it fits complex signals better in both data and 39

gradient spaces. Our task is more challenging than video com- 40

pression due to more parameter input and dramatically differ- 41

ent temporal patterns. Therefore, we build SIREN RB (shown 42

in Figure 1 (b)) to increase network depth for performance im- 43

provement and introduce skip connections to SIREN RB to al- 44

leviate the issue of vanishing gradients. An example is shown 45

in Figure 2. 46

Upscale block. We stack the convolution layer, pixel shuffle 47

layer [44], and GELU activation layer [43] to form the upscale 48

block [1]. By stacking multiple upscale blocks, we upscale the 49

feature map to the original size of the image. 50

Architecture details. The architecture of NeRVI is shown 51

in Figure 1. It accepts parameters (t; θ; ϕ) as input and outputs 52

the whole rendering image and the corresponding mask image. 53

The architecture follows a hybrid of MLP encoder and CNN 54
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decoder structure. Given the input parameters, we first apply1

positional encoding to embed the input parameters in a higher-2

dimensional space. Then two SIREN RBs with skip connec-3

tion follow the embedding layer’s output to learn the input pa-4

rameters’ representations. After that, several upscale blocks are5

stacked to upscale the features to the original image dimensions.6

Finally, a header layer (i.e., convolution layer) is leveraged to7

output the whole rendering image and the corresponding mask8

image. Note that NeRVI can handle visualization images with9

an arbitrary size, and the number of upscale blocks depends on10

the size of the represented images. Table 1 gives the architec-11

ture details of the model that compress visualization images of12

1, 024 × 1, 024 resolution.13

Table 1. The NeRVI architecture parameter details for visualization images
of 1, 024 × 1, 024 resolution. We set the number of initial channels c1 and
c2 for MLP and CNN as 128 and 1, 024, respectively.

layer type upscale factor output size (C × H × W)
0 positional encoding — 12 × 1 × 1
1 SIREN RB — c1 × 1 × 1
2 SIREN RB & reshape — 4c1 × 2 × 2
3 upscale block ×4 c2 × 8 × 8
4 upscale block ×4 c2/2 × 32 × 32
5 upscale block ×2 c2/4 × 64 × 64
6 upscale block ×2 c2/8 × 128 × 128
7 upscale block ×2 c2/16 × 256 × 256
8 upscale block ×2 c2/32 × 512 × 512
9 upscale block ×2 c2/64 × 1, 024 × 1, 024
10 header layer — 4 × 1, 024 × 1, 024

Loss function. We consider the L1 and SSIM [45] losses in
the loss function design. To address the foreground-background
issue, we propose several key designs: (1) only calculating the
loss over foreground pixels between the predicted image and
the GT image; (2) designing the network to predict not only the
RGB image but also the corresponding mask image; (3) intro-
ducing a new mask loss, which measures the difference between
the predicted and GT masks. There are two clear advantages
to these proposed key designs. First, the model can capture
finer details because we only calculate the loss over foreground
pixels. This treatment allows us to delineate salient patterns.
Second, capturing small objects (e.g., small isosurface compo-
nents) is a common challenge for neural representation. We ad-
dress this by using mask images and computing the mask loss.
Figure 3 gives such a comparison result. The final loss function
is defined as

L =
1
N

N∑
i=1

α (||Mi ∗ ( f (t; θ; ϕ) − Ii)||1 + ||M(t; θ; ϕ) − Mi||1)

+ (1 − α) (1 − SSIM( f (t; θ; ϕ), Ii)) ,
(2)

where N is the total number of visualization images; f (t; θ; ϕ)14

and M(t; θ; ϕ) are, respectively, the predicted visualization im-15

age and mask image; Ii and Mi are, respectively, the GT visu-16

alization image and mask image; and α is a hyper-parameter17

that balances the weight for the loss terms. In this paper, we set18

α = 0.7, as suggested in NeRV [1]. The three terms in Equa-19

tion 2 are rendering image loss and mask image loss in L1 form20

and rendering image loss in SSIM form.21

Inference. The inference result (i.e., inferred image) is de- 22

fined as M(t; θ; ϕ) × f (t; θ; ϕ) + (1 − M(t; θ; ϕ)) × I, where I is 23

the identity matrix of size 3 × 1, 024 × 1, 024. 24

3.2. Model Quantization 25

Thus far, the trained neural network becomes the im-
ages’ compressed representation. Further compression can
be achieved through model quantization. Unlike other recent
works [46, 47, 48, 49] that apply quantization during training,
NeRVI utilizes model quantization after the training. The main
idea is to map each model parameter to a bit length value. For-
mally, given a parameter tensor µ of the model, we have

µi = round
(
µi − µmin

2bit

)
×
µmax − µmin

2bit + µmin, (3)

where µmax and µmin are the maximum and minimum values 26

of parameter tensor µ, “bit” is the bit length for the quantized 27

model, and “round” is the rounding value to the closest integer. 28

A key question is: what should the number of bits be to achieve 29

a good tradeoff between image quality and compression rate? 30

In Figure 4, we plot PSNR, MS-SSIM, and LPIPS curves for 31

different bit number settings using IR images of the vortex and 32

ionization data sets. We observe a good tradeoff when the bit 33

number is 9. Thus, we use this setting in our experiments. 34

3.3. Weight Encoding 35

We use entropy encoding to further compress the model [1]. 36

In particular, Huffman coding [50] is applied to the quantized 37

model for representing the data with a more efficient codec be- 38

cause it is lossless, which ensures a further decent compression 39

without any impact on the reconstruction quality. 40

Table 2. The resolution and total sampled images of each data set.
data set resolution (X × Y × Z × T ) sampled T # images

vortex [51] 128 × 128 × 128 × 90 30 24, 000
ionization [52] 992 × 992 × 992 × 100 50 40, 000
tornado [53] 128 × 128 × 128 × 48 48 38, 400

five jets 128 × 128 × 128 × 500 1 800
Tangaroa [54] 300 × 180 × 120 × 150 1 800
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Fig. 5. Loss curves on IR images (top) and DVR images (bottom) using
different data sets.
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Table 3. Average PSNR (dB), MS-SSIM, and LPIPS values, total encoding/training time (ET, hours) and decoding/inference time (DT, minutes), and
compression rate (CR). The best quality performances are highlighted in bold (same for the tables in the appendix).

IR images (1, 024 × 1, 024 resolution) DVR images (1, 024 × 1, 024 resolution)
data set method PSNR ↑ MS-SSIM ↑ LPIPS ↓ ET DT CR PSNR ↑ MS-SSIM ↑ LPIPS ↓ ET DT CR
vortex InSituNet 37.479 0.957 0.082 210 106 698.89 34.327 0.944 0.092 230 130 742.57

(24, 000 images) NeRV 38.457 0.966 0.075 192 98 716.84 33.929 0.930 0.118 219 119 774.19
NeRVI 40.423 0.984 0.055 264 133 705.88 35.503 0.979 0.044 304 162 750.00

ionization InSituNet 38.931 0.964 0.072 258 175 1,131.43 37.130 0.976 0.087 287 206 1,250.53
(40, 000 images) NeRV 38.554 0.971 0.082 235 160 1,142.86 37.381 0.981 0.074 261 193 1,231.27

NeRVI 41.573 0.990 0.045 323 220 1,142.86 38.805 0.988 0.045 342 234 1,263.16
tornado InSituNet 46.314 0.998 0.008 166 170 1,080.11 41.118 0.990 0.038 179 174 1,188.12

(38, 400 images) NeRV 45.781 0.997 0.009 156 156 1,081.08 42.886 0.992 0.030 163 165 1,230.77
NeRVI 49.238 0.999 0.007 213 210 1,090.91 45.663 0.996 0.017 230 229 1,200.00

Table 4. Average PSNR (dB), MS-SSIM, and LPIPS values, total ET (hours), and DT (seconds).
IR images (256 × 256 resolution) DVR images (256 × 256 resolution)

data set method PSNR ↑ MS-SSIM ↑ LPIPS ↓ ET DT PSNR ↑ MS-SSIM ↑ LPIPS ↓ ET DT
SIREN 36.903 0.978 0.1010 262.7 41 33.573 0.910 0.126 263.4 59

five jets NeRF 42.041 0.998 0.0097 264.6 58 37.120 0.993 0.033 267.0 66
(800 images) InSituNet 41.026 0.998 0.0091 6.5 25 36.750 0.994 0.017 7.0 30

NeRV 44.313 0.994 0.0260 6.0 23 38.308 0.994 0.012 7.2 46
NeRVI 50.369 0.999 0.0004 7.0 18 42.725 0.999 0.001 7.1 20
SIREN 35.358 0.967 0.1443 241.7 47 37.055 0.945 0.214 262.8 62

Tangaroa NeRF 41.334 0.998 0.0044 245.3 51 38.965 0.987 0.033 263.1 64
(800 images) InSituNet 38.662 0.999 0.0032 6.5 19 38.974 0.994 0.010 7.0 35

NeRV 42.919 0.999 0.0006 6.0 18 40.754 0.980 0.049 6.0 30
NeRVI 49.482 0.999 0.0003 6.5 16 45.888 0.999 0.003 7.0 20

4. Results and Discussion1

4.1. Data Sets and Network Training2

Data sets. We experimented with the data sets shown in Ta-3

ble 2, where T refers to the total number of time steps of the4

data set. To demonstrate the utility of NeRVI on large data sets,5

we apply CoordNet [34] to generate spatial super-resolution of6

the ionization data set with a scale factor of four, upscaling the7

resolution from 2483 to 9923. Except for the tornado data set,8

we uniformly sampled a subset of time steps to generate the vi-9

sualization images. For each data set, we sample every 9-degree10

for θ (whose range lies in [0,180]) and ϕ (whose range lies in11

[0,360]) and keep the camera’s zoom level unchanged. For each12

time step, we generate 800 visualization images, covering the13

full 360-degree view of the entire volume. The total number of14

images produced for NeRVI training is shown in Table 2.15

Network training. NeRVI was implemented using PyTorch.16

A single NVIDIA Tesla V100 graphics card with 32 GB of17

memory was used for training and inference. We initialized the18

parameters following Sitzmann et al. [23] and utilized the Adam19

optimizer [55] to update the parameters (β1 = 0.9, β2 = 0.999).20

The learning rate was set to 2 × 10−5 to train the model. The21

input parameters are scaled to [−1, 1] to match the value range22

of sin(.) activation function. We train the model with 400, 300,23

and 200 epochs for the vortex, ionization, and tornado data sets,24

respectively, and 3, 000 for the five jets and Tangaroa data sets25

to make the model converged (see Figure 5). All these hyper-26

parameters are empirically decided based on experiments.27

4.2. Baselines and Evaluation Metrics28

Baselines. We compare NeRVI with four state-of-the-art29

deep learning-based methods (additional comparison results30

with lossy compression methods, i.e., SZ3 and TTHRESH, are 31

presented in the appendix): 32

• InSituNet [10] uses a convolutional regression model to in- 33

fer visualization results from simulation and visualization 34

parameters. 35

• SIREN [23] is a coordinate-based INR that we use to fit 36

images. It inputs coordinates and employs sin as the acti- 37

vation function. 38

• NeRF [24] uses an MLP that predicts volume density and 39

view-dependent color from 3D coordinates (x; y; z) and 2D 40

viewpoints (θ; ϕ). It then employs an explicit rendering 41

process to generate novel images. 42

• NeRV [1] is an image-wise INR for video frame compres- 43

sion, and we adopt it for visualization image compression. 44

45

Note that our scenario could have tens of thousands of gen- 46

erated visualization images. We compare NeRVI with the 47

deep image synthesis model (InSituNet) and image-wise INR 48

(NeRV), with 1, 024 × 1, 024 image resolution. We modify In- 49

SituNet for fitting images with 1, 024 × 1, 024 resolution such 50

that it has a similar number of parameters as NeRVI. We do not 51

compare with GAN-VR [56] (GAN-based volume rendering) 52

as He et al. [10] showed that InSituNet outperforms GAN-VR. 53

The coordinate-based INR methods (SIREN and NeRF) de- 54

mand an excessively long training time to fit only a few hun- 55

dred images. Therefore, we only consider the low-resolution 56

images (i.e., 256× 256) generated from a single time step when 57

comparing NeRVI with SIREN and NeRF and do not report the 58

compression rates. 59

Following [1], we do not choose the 3D neural rendering ver- 60

sion of the original NeRF model, as we aim to effectively com- 61

press visualization images. Besides, such an explicit rendering 62
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6
20

48

255

(a) (b) (c) (d) (e) (f) (g)

Fig. 6. Comparison of compressed IR images under 1, 024 × 1, 024 image resolution. Left to right: vortex (a and b), ionization (c to e), and tornado (f
and g) under different sets of parameters. Top to bottom: InSituNet, NeRV, NeRVI, and GT. The parameter values (t; θ; ϕ) are (90; 90; 180), (3; 45; 81),
(100; 171; 351), (50; 81; 90), (2; 36; 54), (23; 126; 342), and (48; 117; 243), respectively, from (a) to (g).

process may defeat the purpose of our main application of vi-1

sualization result communication. We might render the volu-2

metric data directly if such a 3D rendering process is entailed.3

For SIREN and NeRF, we use a five-layer perceptron and con-4

tain the same number of parameters as NeRVI by changing the5

hidden dimension. The batch size is set as 32, 000 coordinates.6

We scale the values to [−1, 1] for SIREN and [0, 1] for NeRF to7

match the value range of their respective activation functions.8

Evaluation metrics. We evaluate the quality of compressed9

visualization images with three metrics: peak signal-to-noise10

ratio (PSNR), multi-scale structural similarity (MS-SSIM) [57],11

and learned perceptual image patch similarity (LPIPS) [58]. Pa-12

rameter studies of NeRVI, including initial channels, input im-13

age resolution, viewpoint sampling degree, and model pruning,14

are presented in the appendix.15

4.3. Results16

Quantitative results. In Table 3, we provide a quantitative17

comparison among InSituNet, NeRV, and NeRVI with IR and18

DVR images generated from the vortex, ionization, and tornado19

data sets. The compression rate ranges from 705 to 1,142 for20

IR images and from 750 to 1,263 for DVR images, proportional21

to the number of images compressed. For the same method22

(NeRV or NeRVI), the variation of compression rate across IR23

and DVR images is due to weight encoding. Under a similar24

compression rate, NeRVI yields the best performances on all25

three data sets with IR and DVR images in terms of PSNR,26

MS-SSIM, and LPIPS values. This shows the effectiveness of27

NeRVI in compressing a large collection of visualization im-28

ages. Regarding encoding and decoding time, NeRV has ad-29

vantages over InSituNet and NeRVI on IR and DVR images of 30

all data sets, except for InSituNet on the DVR images of the 31

five jets data set. NeRVI falls behind NeRV in encoding and 32

decoding speeds because predicting the mask and computing 33

the mask loss increases the cost for NeRVI. 34

Table 4 gives a quantitative comparison among SIREN, 35

NeRF, InSituNet, NeRV, and NeRVI with IR and DVR images 36

generated from the five jets and Tangaroa data sets. All five 37

models have the same number of network parameters (101 mil- 38

lion). NeRVI outperforms other methods over all three met- 39

rics on both data sets, either with IR or DVR images. This 40

demonstrates the advantages of NeRVI compared with the deep 41

image synthesis model (InSituNet) and coordinate-based INRs 42

(SIREN and NeRF). Like NeRV, NeRVI greatly strengthens en- 43

coding and decoding speeds over SIREN and NeRF. This is be- 44

cause NeRVI utilizes a hybrid MLP+CNN model to predict an 45

image, while SIREN and NeRF use a simple MLP to output the 46

RGB value of each pixel. 47

Qualitative results. In Figures 6 and 7, we show com- 48

pressed rendering images for the vortex, ionization, and tornado 49

data sets under selected (t; θ; ϕ) values. Background borders 50

are cropped for close-up comparison. To illustrate the differ- 51

ences, we compute the pixel-wise difference images (i.e., the 52

Euclidean distance in the CIELUV color space) between the 53

tested method (InSituNet, NeRV, or NeRVI) and GT, shown in 54

blue boxes alongside the compressed images. Noticeable dif- 55

ferences are mapped to purple, blue, green, yellow, and red, 56

showing low to high pixel-wise differences (refer to the top- 57

left image of Figures 6 for the colormap legend). Additionally, 58

we place red arrows in some difference images for highlight- 59
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(a) (b) (c) (d) (e) (f) (g)

Fig. 7. Comparison of compressed DVR images under 1, 024× 1, 024 image resolution. Left to right: vortex (a and b), ionization (c to e), and tornado (f and
g) under different sets of parameters. Top to bottom: InSituNet, NeRV, NeRVI, and GT. The parameter values (t; θ; ϕ) are (3; 27; 63), (90; 45; 45), (100; 0; 0),
(50; 171; 144), (2; 126; 162), (24; 90; 144), and (48; 0; 36), respectively, from (a) to (g).

ing where the variations are hard to see. From the difference1

images, we can see that NeRVI wins across all cases over InSi-2

tuNet and NeRV. For IR images, the differences are minor for3

the tornado data set having one large smooth surface, medium4

for the ionization data set having one large surface with fine de-5

tails, and significant for the vortex data set having many sepa-6

rate surface components. For the vortex example, InSituNet-7

and NeRV-compressed results miss multiple smaller compo-8

nents. NeRVI-compressed results preserve well these small-9

scale features. This indicates the strength of NeRVI over In-10

SituNet (designed for image synthesis) and NeRV (designed11

for video compression) when compressing images with separate12

components or small features. For DVR images, the differences13

in InSituNet, NeRV, and NeRVI are minor for the tornado data14

set. NeRVI preserves fine structural details for the ionization15

data set, while NeRV gives blurry results. This validates the ca-16

pability of NeRVI to handle data with complex structures (e.g.,17

fine details). The differences become more significant for the18

vortex data set. NeRVI produces good results on both images19

with different numbers of feature components. InSituNet and20

NeRV perform well with few components (see Figure 7 (a)) but21

lead to rather blurry results with significantly more components22

(see Figure 7 (b)). This indicates that NeRVI can deal with23

images containing varying numbers of feature components and24

addresses the foreground-background issue well.25

In Figure 8, we compare compressed rendering images for26

the five jets and Tangaroa data sets under selected (t; θ; ϕ) val-27

ues. NeRVI produces the best visual results for both IR and28

DVR images. From the difference images, we can see that 29

NeRVI generates almost identical results as the GT since the 30

difference images are almost white. NeRV is the second best, 31

with noticeable differences for IR images (five jets) and DVR 32

images (five jets and Tangaroa). SIREN generates the worst re- 33

sults. The compressed images are blurred and miss capturing 34

the object’s details. This is because SIREN does not apply the 35

positional encoding layer. NeRF and InSituNet produce accept- 36

able results; however, they miss the small components, and the 37

quality is subpar compared with NeRVI. 38

Visual interface. We provide a visual interface for users to 39

adjust viewpoint (θ; ϕ) and time step (t) parameters to explore 40

the NeRVI compressed visualization results. A screenshot of 41

our visual interface for exploring the image collection of the 42

ionization data set is illustrated in Figure 9. Users select the 43

data set, rendering mode (IR or DVR), and parameter values to 44

display a certain frame. They can also pick a parameter and 45

animate through the frames. The interface decodes the frames 46

on the fly with a speed of around 3 frames/second. With proper 47

prefetching and caching, it supports interactive exploration, as 48

demonstrated in the accompanying video. 49

4.4. Hyperparameter Study 50

We conduct a parameter study to investigate the performance 51

of NeRVI, including initial channels, input image resolution, 52

and viewpoint sampling degree. The appendix also includes a 53

study of model pruning. 54

Initial channels. For the number of initial channels (c1; c2) 55

of MLP and CNN (refer to Table 1 in the paper), we ex- 56
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 8. Comparison of compressed IR images (a to d) and DVR images (e to h) under 256 × 256 image resolution. Left to right: five jets and Tangaroa
under four parameter sets. Top to bottom: SIREN, NeRF, InSituNet, NeRV, NeRVI, and GT. The difference images are displayed on the corners. The
parameter values (t; θ; ϕ) are (1991; 171; 108), (1991; 72; 180), (196; 135; 162), (196; 90; 117), (1991; 171; 252), (1991; 90; 342), (196; 18; 162), and (196; 99; 0),
respectively, from (a) to (h).

Fig. 9. NeRVI visual interface for exploring the image collection shows the
predicted IR image of the ionization data set with (t; θ; ϕ) = (50; 162; 198).

periment with different settings, i.e., (32; 256), (64; 512), and1

(128; 1, 024), on the vortex data set with IR images. Ta-2

ble 5 shows that the model achieves the best performance over3

all three metrics when setting the number of initial channels4

(c1; c2) as (128; 1, 024). Figure 10 validates this as the com-5

pressed IR images generated by the model with (128; 1, 024)6

setting are closer to GT than the other settings do. Therefore, 7

we set the number of initial channels (c1; c2) of MLP and CNN 8

of the model as (128; 1, 024) for all the experiments. 9

Table 5. Average quantitative metrics values and model parameters (MP,
million) using different initial channels (c1; c2).

data set (c1; c2) PSNR ↑ MS-SSIM ↑ LPIPS ↓ MP

vortex
(32; 256) 37.573 0.960 0.082 6
(64; 512) 38.454 0.966 0.075 25
(128; 1, 024) 40.423 0.984 0.055 101

(a) (32, 256) (b) (64, 512) (c) (128, 1, 024) (d) GT

Fig. 10. Compressed IR images of the vortex data set using different num-
bers of initial channels.

Input image resolution. For the input image resolution, we 10

experiment with different settings (i.e., 256 × 256, 512 × 512, 11

and 1, 024 × 1, 024) on the five jets, Tangaroa, and ionization 12
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data sets with DVR images. In Table 6, we show that all three1

metrics drop when increasing the resolution of the input im-2

ages. The model performs the best with 256 × 256 resolution3

input images. However, in Figures 11, 12, and 13, we show4

that the compressed rendering images with high resolution are5

still much close to the GT. Therefore, we use input images with6

1, 024 × 1, 024 resolution to achieve high compression rates7

while maintaining good quantitative and visual results.8

Table 6. Average quantitative metrics values using different input image
resolutions.

data set resolution PSNR ↑ MS-SSIM ↑ LPIPS ↓

five jets
256 × 256 42.725 0.999 0.001
512 × 512 41.842 0.998 0.004
1, 024 × 1, 024 40.087 0.997 0.008

Tangaroa
256 × 256 45.888 0.999 0.003
512 × 512 43.627 0.998 0.004
1, 024 × 1, 024 41.173 0.997 0.006

ionization
256 × 256 40.820 0.993 0.028
512 × 512 39.541 0.990 0.039
1, 024 × 1, 024 38.805 0.988 0.045

(a) 256 × 256 (b) 512 × 512 (c) 1, 024 × 1, 024

(d) GT (e) GT (f) GT

Fig. 11. Compressed DVR images of the five jets data set using different
input image resolutions.

(a) 256 × 256 (b) 512 × 512 (c) 1, 024 × 1, 024

(d) GT (e) GT (f) GT

Fig. 12. Compressed DVR images of the Tangaroa data set using different
input image resolutions.

Viewpoint sampling degree. We experiment with differ-9

ent settings for the viewpoint sampling degree, i.e., 6, 9, and10

10, on the vortex data set with IR images. Table 7 shows11

that the performance drops when reducing the viewpoint sam-12

pling degree (this leads to more images to compress and an in-13

crease in the compression rate). In particular, the performance14

drops significantly when reducing the sampling degree from 915

(a) 256 × 256 (b) 512 × 512 (c) 1, 024 × 1, 024

(d) GT (e) GT (f) GT

Fig. 13. Compressed DVR images of the ionization data set using different
input image resolutions.

to 6. Figure 14 shows that sampling with 6-degree produces the 16

worst visual result, followed by 9-degree. Finally, sampling 10- 17

degree leads to the best visual result. Considering the trade-off 18

between quality performance and compression rate, we sample 19

with 9-degree on all the data sets for the experiments. 20

Table 7. Average quantitative metrics values and CR using different view-
point sampling degrees.

data set degree PSNR ↑ MS-SSIM ↑ LPIPS ↓ CR

vortex
6 39.021 0.952 0.085 1600.00
9 40.423 0.984 0.055 705.88
10 40.961 0.987 0.051 571.43

(a) 6 (b) 9 (c) 10

(d) GT (e) GT (f) GT

Fig. 14. Compressed IR images of the vortex data set using different view-
point sampling degrees.

4.5. Discussion 21

Visualization interpolation. As a side product, NeRVI can 22

be utilized for interpolating visualization images. Specifically, 23

we use the trained model to infer novel visualization images 24

given unseen input parameters (t; θ; ϕ). We give examples with 25

IR images of the vortex data set. We select every third time step 26
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(t; θ; ϕ) = (3; 0; 0) (t; θ; ϕ) = (4; 0; 0) (t; θ; ϕ) = (3; 1; 0)

(t; θ; ϕ) = (3; 4; 0) (t; θ; ϕ) = (3; 0; 1) (t; θ; ϕ) = (3; 0; 4)

(t; θ; ϕ) = (3; 1; 1) (t; θ; ϕ) = (3; 4; 4) (t; θ; ϕ) = (4; 4; 4)

Fig. 15. Inferred novel IR images with parameters (t; θ; ϕ) using the vortex
data set. Unseen parameter values are highlighted in bold.

from 90 samples (i.e., 3, 6, · · · , 90), and sample every 9-degree1

for θ and ϕ. In Figure 15, we compare the visual results of un-2

seen input parameters against the result of the seen parameter3

(3; 0; 0). We can see that NeRVI can give quite reasonable pre-4

dictions on the unseen parameters (i.e., (3; 1; 0), (3; 0; 1), and5

(3; 1; 1)) where their visual results have a small difference to6

the training image (i.e., (3; 0; 0)). The performance gets worse7

on the unseen parameters (i.e., (3; 4; 0) and (3; 0; 4)) when the8

viewing parameter θ or ϕ is somewhere in the middle of the9

seen samples 0 and 9. The worst cases happen on the unseen10

parameters (3; 4; 4), (4; 0; 0), and (4; 4; 4). In particular, NeRVI11

could not infer unseen time steps (either integer or fractional12

ones, such as 4 or 3.1) in good quality, even though θ and ϕ13

are seen. These results validate that our trained model is well14

overfitted. NeRVI essentially fulfills a compression task. The15

interpolation or inference task needs additional work for quality16

improvement.17

Limitations. While NeRVI outperforms coordinate-based18

INR methods (SIREN and NeRF), it has the following limi-19

tations. First, to achieve a comparable performance and com-20

pression rate, NeRVI needs a longer encoding time, albeit faster21

than coordinate-based INR methods. Nevertheless, this is still22

acceptable for one-time processing, as our goal is to share and23

communicate tens of thousands of high-resolution, high-quality24

visualization images produced from large-scale scientific simu-25

lations to peer scientists or the general public. Second, NeRVI26

has to change the bit values of model quantization to achieve27

different compression rates of the generated images. The com-28

pressed results remain identical when the bit values are set from29

12 to 32 (see Figure 4). Thus, it has to train the model with30

more parameters from scratch to produce images with lower31

(a) 25 million (b) 101 million (c) GT

(d) 101 million (e) 202 million (f) GT

Fig. 16. Comparison of compressed IR images using models with different
numbers of parameters. Top: vortex with (t; θ; ϕ) = (45; 9; 144). Bottom:
ionization with (t; θ; ϕ) = (62; 36; 0). The difference images are displayed
on the corners.

compression rates to improve the visual results. As shown in 32

Figure 16, the quality improves significantly when training the 33

model with more parameters (from 25 to 101 million). How- 34

ever, the quality only increases marginally if the model’s per- 35

formance is already good enough (from 101 to 202 million). 36

Third, the isovalue or transfer function parameters are not con- 37

sidered in our model, and we leave this as our future work. 38

5. Conclusions and Future Work 39

We have presented, NeRVI, a new deep-learning solution for 40

compressing a large collection of high-resolution, high-quality 41

visualization images. NeRVI includes three stages: image fit- 42

ting, model compression, and image extraction. Inspired by 43

the image-wise INR work, we redesign the model with SIREN- 44

based residual blocks for performance improvement and pre- 45

dict the mask images to capture fine structural details and 46

small components. Model quantization and weight encoding 47

are utilized for further model compression during post-training. 48

Compared with the state-of-the-art methods, NeRVI produces 49

higher-quality results on multiple data sets while maintaining 50

high compression rates (705 to 1,263). 51

The future work of NeRVI includes the following. First, 52

besides model quantization and weight encoding in the post- 53

training stage, we would like to explore model quantization 54

during training (e.g., [48]) to achieve an end-to-end framework. 55

Second, we would like to consider more parameters, for exam- 56

ple, data parameters (e.g., isovalues) for IR and visual mapping 57

parameters (e.g., color and opacity transfer function) for DVR. 58

This would increase the number of images from tens of thou- 59

sands to hundreds of thousands or millions, further boosting 60

the compression rate. We would explore using a GPU cluster to 61

train the even larger collection of images. Third, we would like 62

to expedite our method by minimizing redundant parameters in 63

the model, such as those in the last layer of the MLP and the 64

initial NeRV block. 65
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Appendix

In addition to the main results presented in the paper, we con-
duct experiments to explore the possibility of model pruning.
We also compare NeRVI with two lossy compression methods:
SZ3 and TTHRESH.

Model pruning. For model pruning, we experiment with
different pruning ratio settings (i.e., 0.2, 0.4, 0.6, and 0.8) for
global unstructured pruning on the vortex data set with IR im-
ages. As shown in Table 1, when increasing the pruning ra-
tio, the performance drops consistently, and the compressed IR
images become much worse (refer to Figure 1). Even with a
smaller pruning ratio (i.e., 0.2), the compressed IR image fails
to capture some large isosurface components’ structures and
misses smaller ones completely. Therefore, we do not leverage
model pruning to compress the model further.

Table 1. Average quantitative metrics values using different pruning ratios.
data set ratio PSNR ↑ MS-SSIM ↑ LPIPS ↓

vortex

0.0 40.423 0.984 0.055
0.2 38.226 0.952 0.138
0.4 36.707 0.921 0.207
0.6 34.629 0.909 0.279
0.8 32.389 0.894 0.346

(a) 0.0 (b) 0.2 (c) 0.4

(d) 0.6 (e) 0.8 (f) GT

Fig. 1. Compressed IR images of the vortex data set using different pruning
ratios for global unstructured pruning.

Comparison with lossy compression methods. Besides
comparing NeRVI with the deep learning-based methods (In-
SituNet and NeRV), we also compare it with two lossy com-
pression methods:

• SZ3 [1] is an error-bounded lossy compression method for
scientific data reduction.
• TTHRESH [2] is a tensor decomposition method for the

lossy compression of scientific data.

We consider two scenarios: (1) SZ3 and TTHRESH directly
compress the volumetric data at a similar compression rate as
NeRVI, denoted as SZ3-v and TTHRESH-v. We then render
the decompressed volumes (for DVR) and the isosurfaces ex-
tracted from the decompressed volumes (for IR). (2) SZ3 and

TTHRESH are leveraged to compress the volume visualization
images (i.e., IR and DVR images) at a similar compression rate
as NeRVI, denoted as SZ3-i and TTHRESH-i.

Table 3 provides quantitative results of SZ3-v, TTHRESH-
v, SZ3-i, and TTHRESH-i on IR and DVR images generated
from the vortex, ionization, and tornado data sets. Under a
similar compression rate, NeRVI (refer to Table 3 in the pa-
per) outperforms SZ3-v, TTHRESH-v, SZ3-i, and TTHRESH-i
on all three data sets across the evaluation metrics, except for
TTHRESH-v on the IR images of the ionization data set. Re-
garding encoding and decoding time, SZ3-i and TTHRESH-i
have great strength in encoding speed and a slight advantage
in decoding speed over NeRVI. Since SZ3-v and TTHRESH-v
only compress a small number of volumetric data and involve
the subsequent IR and DVR process, out of fairness, we do not
report their encoding and decoding times.

Figures 2 and 3 show rendering of compressed volumes
(SZ3-v and TTHRESH-v) and compressed rendering images
(SZ3-i and TTHRESH-i) for the vortex, ionization, and tornado
data sets under selected (t; θ; ϕ) values. For IR and DVR im-
ages, SZ3-v and TTHRESH-v results on the ionization data set
are closer to GT, while those on the vortex and tornado data sets
show blocky artifacts. Across all cases, SZ3-i and TTHRESH-i
results show noise and color shift.

Table 2. Comparison of different methods over encoding speed (ES), de-
coding speed (DS), compression rate (CR), and image quality (IQ).

method ES DS CR IQ
SZ3 fast medium high low/medium

TTHRESH fast medium high low/medium
InSituNet medium medium medium medium
SIREN very slow very slow low low/medium
NeRF very slow very slow low low/medium
NeRV medium medium medium medium
NeRVI medium medium medium high

Comparison. Table 2 compares all seven methods across
four metrics. SZ3 and TTHRESH have an excellent advantage
in encoding speed; however, the quality of the compressed im-
ages cannot be guaranteed, especially when the compression
rate is high. Due to the rather slow encoding and decoding
speed, coordinate-based INR methods (SIREN and NeRF) are
only suitable for compressing a few hundred low-resolution im-
ages. InSituNet, NeRV, and NeRVI are in the middle concern-
ing encoding and decoding speeds; however, they can compress
tens of thousands of high-resolution images while maintaining
good quality. InSituNet performs similarly to NeRV when han-
dling tens of thousands of images (vortex, ionization, and tor-
nado) and falls behind with only hundreds of images (five jets
and Tangaroa). Compared with NeRV, our NeRVI is more capa-
ble of compressing a large collection of high-resolution images
due to the added SIREN-based residual block and mask loss.
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Table 3. Average PSNR (dB), MS-SSIM, and LPIPS values, total ET (hours) and ET (minutes), and CR. Refer to Table 3 in the paper for results using
InSituNet, NeRV, and NeRVI.

IR images (1, 024 × 1, 024 resolution) DVR images (1, 024 × 1, 024 resolution)
data set method PSNR ↑ MS-SSIM ↑ LPIPS ↓ ET DT CR PSNR ↑ MS-SSIM ↑ LPIPS ↓ ET DT CR

SZ3-v 33.386 0.605 0.310 — — 705.98 32.644 0.774 0.203 — — 737.61
vortex TTHRESH-v 34.077 0.662 0.268 — — 710.30 33.957 0.890 0.139 — — 746.19

(24, 000 images) SZ3-i 36.098 0.942 0.145 4.64 127 715.41 33.489 0.921 0.142 5.24 153 725.35
TTHRESH-i 36.123 0.969 0.070 5.51 120 736.78 33.862 0.931 0.094 10.28 156 779.16

SZ3-v 40.144 0.988 0.066 — — 1131.49 35.726 0.930 0.089 — — 1288.26
ionization TTHRESH-v 44.343 0.998 0.009 — — 1192.71 36.780 0.947 0.077 — — 1248.00

(40, 000 images) SZ3-i 35.825 0.940 0.123 7.54 188 1,146.38 35.204 0.965 0.143 7.81 247 1,248.82
TTHRESH-i 36.324 0.952 0.096 8.41 192 1,096.43 35.123 0.966 0.134 9.89 224 1,229.49

SZ3-v 35.162 0.838 0.169 — — 1023.19 34.642 0.766 0.231 — — 1200.77
tornado TTHRESH-v 36.474 0.864 0.151 — — 1055.73 35.657 0.835 0.170 — — 1204.91

(38, 400 images) SZ3-i 38.113 0.959 0.126 6.99 178 1048.47 38.155 0.933 0.172 7.37 183 1212.61
TTHRESH-i 44.457 0.961 0.114 7.11 196 1,064.35 41.437 0.990 0.043 12.49 209 1,157.26

(a) (b) (c) (d) (e) (f) (g)

Fig. 2. Comparison of compressed IR images under 1, 024 × 1, 024 image resolution. Left to right: vortex (a and b), ionization (c to e), and tornado (f
and g) under different sets of parameters. Top to bottom: SZ3-v, TTHRESH-v, SZ3-i, and TTHRESH-i. The parameter values (t; θ; ϕ) are (90; 90; 180),
(3; 45; 81), (100; 171; 351), (50; 81; 90), (2; 36; 54), (23; 126; 342), and (48; 117; 243), respectively, from (a) to (g). Refer to Figure 6 in the paper for results
using InSituNet, NeRV, and NeRVI.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 3. Comparison of compressed DVR images under 1, 024 × 1, 024 image resolution. Left to right: vortex (a and b), ionization (c to e), and tornado
(f and g) under different sets of parameters. Top to bottom: SZ3-v, TTHRESH-v, SZ3-i, and TTHRESH-i. The parameter values (t; θ; ϕ) are (3; 27; 63),
(90; 45; 45), (100; 0; 0), (50; 171; 144), (2; 126; 162), (24; 90; 144), and (48; 0; 36), respectively, from (a) to (g). Refer to Figure 7 in the paper for results using
InSituNet, NeRV, and NeRVI.
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