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Abstract—Indoor navigation is necessary for users to explore
large unfamiliar indoor environments such as airports, shopping
malls, and hospital complex, which relies on the capability
of continuously tracking a user’s location. A typical indoor
navigation system is built on top of a suitable Indoor Positioning
System (IPS) and requires the user to periodically submit location
queries to learn their whereabouts whereby to provide update-
to-date navigation information. Received signal strength (RSS)-
based IPSes are considered as one of the most classical IPSes,
which locates a user by comparing the user’s RSS measurement
with the fingerprints collected at different locations in advance.
Despite its significant advantages, existing RSS-IPSes suffer from
two key challenges, the ambiguity of RSS fingerprints and device
diversity, that may greatly reduce its positioning accuracy. In
this paper, we introduce the design and evaluation of CITS,
a novel RSS-based continuous indoor tracking system that can
effectively cope with fingerprint ambiguity and device diversity
via differential RSS fingerprint matching. Detailed experiment
studies confirm the significant advantages of CITS over prior
RSS-based solutions.

I. INTRODUCTION

Indoor navigation is necessary for users to locate themselves
and reach their destinations in large unfamiliar venues such
as airports, shopping malls, and hospital complex, where
GPS signals are either absent or unavailable. According to
a recent report [1], the global market of indoor positioning
and navigation service is expected to reach 256.59 billion in
2028.

The capability of continuously tracking a user’s locations
is key to any indoor navigation system, which is required
for computing and updating the optimal route from the user’s
current location to intended destinations and providing the user
with visual or audio turn-by-turn instructions. As a result, a
typical indoor navigation system involves an Indoor Position-
ing System (IPS) module and requires the user to periodically
submit location queries to learn their whereabouts. Existing
indoor navigation systems mainly differ in the technology
behind their IPS modules, which include Computer Vision
[2]-[4], RFID [5]-[7], Wi-Fi [8] [9], visible light [10]-[12],
Bluetooth [13]-[15], acoustic sound [16] [17] and so on.

WiFi Received Signal Strength-based IPS (RSS-IPS) [8]
[9] is considered as one of the most classical IPSes, which
exploit distinguishable RSSes at different locations as their
fingerprints and locates a user by comparing the user’s RSS
measurement with the RSS fingerprints collected at different

locations in advance. In comparison with other types of
IPSes, RSS-based IPSes explore ubiquitous smartphones and
WiFi infrastructure widely available in target venues and do
not require costly infrastructure updates. A typical RSS-IPS
works in two phases. In the offline training phase, the IPS
operator collects RSS fingerprints at different indoor reference
locations. In the online positioning phase, on receiving an RSS
measurement from a user, the IPS server returns the reference
location of which the RSS fingerprint is the closest to the
user’s measurement.

RSS-IPSes face two critical challenges that limit their posi-
tioning accuracy in practice, the ambiguity of RSS fingerprints
and device diversity. First, prior studies such as [18] [19]
have shown that multiple locations could have the same RSS
fingerprint. As a result, it is difficult for the IPS server to
distinguish these locations solely based on the user’s RSS
measurement. Second, it is also well known that different
mobile devices may detect different Received Signal Strengths
at the same location and time [20]-[23]. In particular, the
device used by the IPS operator to collect the RSS fingerprints
may be different from the mobile devices used by the users
during the online navigation phase, which means that the RSS
measurement collected by the user may be different from
the RSS fingerprint at the location. Both factors could result
in larger differences between the RSS fingerprint and the
user’s RSS measurement at the same location and reduce the
positioning accuracy achieved by RSS-IPSes.

Fortunately, we find that periodic location queries from
the user during indoor navigation offers new opportunities to
tackle WiFi fingerprint ambiguity and device heterogeneity.
Specifically, instead of matching a user’s RSS measurement
with the fingerprint, we find that matching the difference be-
tween adjacent RSS measurements with the difference between
RSS fingerprints at adjacent locations offers great resilience to
device diversity. Moreover, the ambiguity of WiFi fingerprints
can be effectively tackled by matching a sequence of RSS
measurements from user to a movement path. Based on
these observations, we introduce the design and evaluation of
CITS, a novel continuous RSS-based indoor tracking system
that can achieve high positioning accuracy in the presence
of WiFi fingerprint ambiguity and device heterogeneity. Our
contributions in this paper are summarized as follows.

o We are the first to study continous indoor tracking in the
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presence of fingerprint ambiguity and device diversity.
We introduce CITS, a novel RSS-based IPS based on
differential fingerprinting and path matching that can
achieve much improved positioning accuracy.
Experiment studies based on a prototype confirm the
advantages of CITS over prior RSS-based IPSes. For
example, our experiment results show that CITS achieves
a mean distance error at 0.8 m in contrast to the 1.68
m reported in [8] when the user travels more than 25
seconds in the indoor environment.

The rest of this paper is structured as follows. Section II
discusses the related work. Section III presents the design of
CITS. Section IV reports our experiment results. This paper
is finally concluded in Section V.

II. RELATED WORK

In this section, we review some of the prior works that are
most germane to our work.

A conventional technique for indoor tracking is the pedes-
trian dead reckoning (PDR) [24]. A PDR system records the
Inertial Measurement Unit sensor readings when the user is
moving and calculates the user’s displacements to determine
his current location. Since the displacement error accumulates
with the user’s moving, several types of indoor signals have
been explored to augment the PDR. Fang ef al. [25] enhanced
the PDR system with wireless telemetry. Carrera et al. [26]
fused RSS, PDR, and building information to track the user’s
movement. In [27], Samuel ef al. corrected the error of PDR
systems in a smart building environment. They equipped
the user with a RFID tag reader to read the RFID tags
which are placed throughout the smart building then correct
the cumulative error by reading the tags. Recently, hybrid
algorithms have been proposed in [28]-[30] to highly improve
the positioning accuracy via combining PDR approach with
WiFi fingerprinting approach. Shen et al. [31] pointed out that
user’s heading error is the key factor of the error in PDR, and
used WiFi-RSS to minimize the heading error resulting in a
higher position accuracy in PDR. In [32], Ho et al. removed
the interference signals for interior sensor reading with a fast
Fourier transform-based smoother on the collected data then
further improved the PDR accuracy. In addition, exploring
the magnetic field information is another promising way to
minimize the accumulating error in PDR [33]-[35]. Apart from
the above papers, there still exist plenty of works that involve
PDR. However, none of them consider the heterogeneous
device problem. In other words, the heterogeneous device
problem impacts the process of correcting the accumulating
error.

Apart from PDR, researchers also try to track the user with
WiFi signals. Yang et al. [36] analyzed the localization errors
of the RSS-based fingerprinting localization methods. Hoang
et al. [37] inputted a series of WiFI RSS into hidden Markov
chain (HMM) to predict the user’s movement. In [38], Anthea
et al. proposed a novel RSS indoor tracking system by using
a Compressive Sensing-based positioning scheme. Channel
station information has been used to infer the user’s movement
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and activity in [39], [40]. Kleisouris ef al. [41] utlized multiple
antennas to improve localization results, while Zheng et al.
[42] combined multiple frequencies and powers to reduce the
localization errors. A RSS gradient fingerprint database was
constructed in [43] to track user’s movement with improved
accuracy via comparing the RSS gradient between each two
locations. Liu et al. [44] combined acoustic ranging and RSS-
based localization to reduce the large errors of smartphone
tracking. In [45], Yang et al. proposed a improved lateration
based method for mitigating multipath effects. Hernndez et
al. [46] used a topological RSS radio-map then tracked the
user’s location through Bayes filter. Chandrasekaran et al. [47]
compared the performance of several widely used RSS based
localization algorithms under a laboratory setting. Recently,
Mai et al. [48] utilized convolutional neural network (CNN)
and Tiwary et al. [49] trained a deep neural network based on
RSS difference to track the users in the indoor environment.
There are some research efforts dedicated to robust indoor
localization, such as robust localization in the presence of
signal strength and access point attacks in [S0]-[52]. However,
the above works do not consider the heterogeneous problem or
solve this problem under a very strict condition with a strong
assumption.

Besides WiFi signals, there are also several other types
of IPSes based on other different technologies. For example,
image-based IPSes have been proposed in [2]-[4] to locate
users with high positioning accuracy through recognizing land-
marks in the photos. Apart from image-based IPSes, acoustic
signal-based IPSes [16], [17] utilized acoustic signals as fin-
gerprints for localization. In addition, visible light [10]-[12],
Radio Frequency Identification (RFID) [5]-[7], and Bluetooth
signals [13]-[15] could also been used for user positioning.
However, the above works can only repetitively infer the user’s
location in a tracking system instead of considering user’s prior
locations.

III. CITS DESIGN

In this section, we first give an overview and then detail
CITS’s design.

A. Overview

We design CITS based on two key ideas.

First, we observe that matching the difference between two
adjacent RSS measurements from the user to the difference
between two RSS fingerprints can effectively mitigate the
impact of device diversity. Specifically, several prior studies
[20]-[23] have shown that for any two different devices, say
A and B, there is a linear relationship between their RSS
measurements from the same AP at the same location and
time. In particular, let rss 4 and rssp be the RSS measurements
of devices A and B, respectively. We have

(1

where 6 and J4p are two device-dependent constants. More-
over, it has also been shown in [23] that the parameter 6 is
close to one in most cases, which is also used in recent work

rssg =0 -rssg +daB,
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example.png

Fig. 1. An example of the graph with 12 vertexes, i.e., reference locations.

[53]. This allows us to ignore parameter 6 hereafter and rewrite
Eq. (1) as
(@)

Further let rss:4 and rssgg denote the RSS measurements of the
two devices at a different location. We get

rssq = rssg +0ap ,

rss’y = rssiy +0ap - 3)
Subtracting Eq. (3) from Eq. (2), we have
rssa — rssy = rssp — rssp 4)

which indicates that the difference of device A measurements
at the two locations is the same as that of device B even if
they are of different device models.

Second, we find that the ambiguity of RSS fingerprints
can be addressed by path matching that takes a user’s prior
estimated locations into accounts. In particular, assume that the
time is divided into intervals of same length and that a user
submits one RSS measurement collected by a mobile device
of an unknown type at each time interval t = 1,2,.... If we
know that the user is at reference location x at time ¢ and
that the maximum distance a user can travel within one time
interval is d, then the user must be at one of the reference
locations within a distance of d from reference location z,
including reference location x itself if the user has not moved.
While it is possible for multiple reference locations share the
same RSS fingerprint, by limiting the search space for user’s
location at time ¢ + 1 can greatly reduce the chance of such
ambiguity.

In what follows, we detail the design of CITS, which
consists of differential RSS fingerprint database construction
and continuous tracking via path matching.

B. Differential RSS Fingerprint Database Construction

We first divide the whole indoor venue into n cells of
equal size, e.g., 0.5x0.5 m2, and select the center of each
cell as one reference location. We then construct a directed
graph G = (V, E), where V is the set of n vertexes with
each corresponding to one reference location, and E is the
set of edges. Two vertexes « and y are connected by a pair
of antiparallel edges edge e(x,y) and e(y,x) if the minimal
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distance between cell = to cell y is no more than d, where d
is a system parameter denoting the maximum distance a user
can travel between two consecutive RSS measurements. In
addition, every vertex x € V has a self-loop, i.e., an edge that
originates from and terminates at x, to account for the cases
that the user remain in the same cell between two consecutive
RSS measurements. Fig. 1 shows an example of the graph
with 12 vertexes, where two vertexes are neighboring vertexes
if there is at most one cell between them.

Assume that there are m WiFi APs in the indoor venue.
The CITS operator collects one RSS fingerprint rss,
(rssl,...,rss™) at each reference location = € V, where rss?,
is the RSS of AP j forall 1 < j <m.

Next, for every edge e(x,y) € E, we calculate the RSS
difference between vertexes x and y as

m
T,y

) - ®)

Arssy = (Arss;’y, ooy Arss

where
J — recd _ pecd
Arssm,y = rss), —rss;, ,

is the difference between the AP j’s RSS fingerprints at
reference locations x and y for all 1 < j < m.

Finally, we store the constructed RSS differential fingerprint
database as {rss;y|z € V}{J{Arss, yle(z,y) € E}.

C. Continuous Tracking via Path Matching

With the differential WiFi fingerprint database in place,
we now illustrate how to continuously track a user via path
matching. Denote by rss; = (rss;,...,rss;") the user’s RSS
measurement at time ¢ = 1,2,..., where rss; is the RSS
measurement for AP j for all 1 < 57 < m. Consider two
adjacent RSS measurements rss,_; and rss;. We define the
RSS difference for AP j from time ¢ — 1 to time ¢ as

Arssy = (Arsst, ..., Arss™)

where Arss! = rss! —rss]_| forall 1 < j < m.

Now consider an edge e(z,y) € F with RSS difference
Arss(z,y). Intuitively, if Arss; & Arss(x, y), then it is likely
that the user has moved from reference location x to y between
time ¢ — 1 and ¢. Based on this observation, we further define
the overall RSS difference with respect to time ¢ and edge
e(z,y) as

Arss! | .

¢(t76($7y)) = Z|Ar55{ - T,y

j=1
Similarly, for any path p = (1 — 29 — - -+ — ;) consisting
of a sequence of ¢ vertexes, we define the overall path RSS
difference as

Op = Z¢(i>€(l’i717$i)) .
i=2

The smaller ¢,,, the more likely the user traverses path p from
time 1 to ¢.

The CITS server always maintains the s most likely paths
the user traverses that have the smallest overall path RSS
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difference, where s > 1 is a system parameter. Upon re-
ceiving a new RSS measurement rss; from the user at time
t, the CITS server recomputes the s most likely paths. Let
pp = (xf — .-+ — xf_) denote the opth most likely path
at time ¢t — 1 for all 1 < ¢ < s. Also denote by N(x)
the set of neighboring cells of cell z. Then the set of all
possible new paths are P = {{(z{ — - = zf | = 2)|z €
N(zf)U{z]},1 < ¢ < s}. The CITS server then finds the s
paths with the smallest overall path RSS difference and returns
the last reference location of the most likely path as the user’s
current location.

In what follows, we detail the procedure of estimating the
user’s location at each time ¢t =1,2,....

1) At Time t = 1: Since the user has submitted only one
RSS measurement rss; at time ¢ = 1 which is insufficient for
path matching, we estimate the user’s location /; according to
the classical RSS-IPS Radar [8] and record the s most likely
reference locations for later path matching.

Specifically, on receiving the user’s RSS measurement
rss; = (rssi,...,rss7"), we estimate the user’s location at time
1 as m
J )2

; (©6)

[y = arg min

(rss). — rss
zeV 1

=
which is the reference location with the closest RSS fingerprint
to rss; measured by the Euclidean distance. In addition,
we also record the set of s reference locations whose RSS
fingerprints are closest to rss;, denoted by P;.

2) At Time t = 2: On receiving the user’s RSS measure-
ment rsso at time ¢ = 2, we estimate the user’s location [y via
path matching.

First, we generate a set of candidate paths from the set of
most likely reference locations S; and graph G. Specifically,
for each reference location x € Pj;, we generate a set of
candidate path as C;, = {{(z — y)ly € N(z)|J{z}}. The
set of all candidate paths is then C' =, p, C-

Second, we find the candidate path with the smallest overall
path difference whereby to determine the user’s current loca-
tion l;. Specifically, for every candidate path p = (z — y) €
P, we computes its overall path difference as

¢<x~>y) = ¢(27 6(.73, y))

m
= Z | Arss] — Arss), | . )

j=1

The most likely path is then given by
<l’*, y*> = argmin (b(ac%y) )
(z—y)eC

and the user’s current location is estimated as lo = y*.
Moreover, we also record the set of s most likely paths denoted

by Pg.

3) At Time t > 2: On receiving the user’s RSS measure-
ment rss; at time ¢ > 2, we estimate the user’s location [; in
a similar fashion.

First, we generate a set of candidate paths from the set of
most likely paths P._; and graph G. Specifically, for each
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Fig. 2. The floor plan of the office space

path p = (x; — -+ — x;_1) € P,_1, we generate a set
of candidate path as C), = {(z1 — -+ = x4_1 = yY)|ly €
N(zi—1) U{zi=1}}. The set of all candidate paths is then C =

PEP 1 Cp'

Second, we find the candidate path with the smallest overall
path difference whereby to determine the user’s current loca-
tion /;. Specifically, for every candidate pathp = (1 — -+ —
x4—1 — y) € C, we computes its overall path difference as

¢p = ¢(z1~>-~—>act,14>y)
t—1

= Z¢(i7€($i717l‘i)) + ot e(rs-1,9)) -
i=1

The most likely path is then given by
(x] = -+ — x}) = argmin ¢, ,
peC

and the user’s current location is estimated as [y zy.
Moreover, we also record the set of s most likely paths denoted
by P, 1.

We summarize the whole procedure in Algorithm 1.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of CITS via
detailed experimental studies based on real prototype.

A. Prototype Implementation and Data Collection

We implement a prototype of CITS in Android studio/Java
and deploy it on a square zone of 23.8 x 23.8 m? inside an
office building with the floor plan shown in Fig. 2. We chose
n = 368 reference locations in the indoor venue and detected
m = 41 WiFi APs based on unique SSIDs.

We use three models of smartphones for our data collection,
including a Huawei Honor 8 (HHS8), a Motorala One (MO),
and a Google Pixel 6 (GP6). Table. II summarizes the configu-
ration of each smartphone model. For each reference location,
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Algorithm 1: Location Estimation

input : Graph G = (V, E), RSS measurement rss; at

time t = 1,2,..., parameter s

output: User’s location [; at each time ¢
1 if t =1 then
2 | L+ argminggy Y070 (rss] — rss])?;
3 Record the set of s most likely reference locations as

Py,
4 end
5 if ¢ = 2 then
6 foreach x € P; do
7 | Co = {{z = y)ly € Nz) U{a}}:
8 end
9 C <+ Uep, Cus
10 foreach (x — y) € C do
11 ‘ Dlasyy & Djey |Arsst — Arss), [
12 end
13 (x*,y") « argming_, vec Doy
14 lo +— y*;
15 Record the set of s most likely candidate paths as Ps;
16 end
17 if t > 2 then
18 foreach p = (x1 — -+ = 24—1) € P;_; do
19 Cp+{{z1 == x_1 =Yy €
N(ze—1) Ufeeo1}):

20 end
21 C Upept_1 Cps
2 foreach p = (z; — -+ > 241 — y) € C do
B || by X6l e(wion,3)) + ¢t e(zi1,1));
24 end
25 (x] — - = xy) « argminyc o ¢p;
26 Iy a7
27 Record the set of s most likely candidate paths as P;;
28 end
29 return [;;

we record its coordinate and collect RSS measurement using
all three smartphones at the same time. We then create
three differential RSS fingerprint databases with one for each
smartphone.

We then use each of three smartphones to collect 60
movement traces. For each trace, we have one user carrying the
smartphone walk in the indoor venue randomly for a duration
of 28 seconds. The user stops every 1 second to record a
test location and collects the corresponding RSS measurement.
Note that the test locations may not be the same as any
reference location.

Since CITS is mostly related to RADAR [54], the classical
RSS-IPS that matches a user’s RSS measurement to the refer-
ence location with the closest RSS fingerprint, we compare it
with RADAR, i.e., the server estimates the user’s location via
RADAR on receiving the user’s RSS measurement. Moreover,
we use error distance as our performance metric, which is
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defined as the user’s true location and the estimated reference
location.

TABLE I
DEFAULT EXPERIMENT SETTINGS
Para. | Value | Description
n 368 # of reference locations
m 41 # of APs
1.1 m | The size of each cell
1 m User’s maximum travel distance
d 2.2 m | Maximum distance between two vertexes
connected by an edge
s 15 # of candidate paths recorded

B. Experiment Results

We now report our experiment results.

1) Validation of Device Diversity: Since CITS relies on
the assumption that there is a linear relationship between two
devices’ RSS measurements from the same AP at the same
location and time and that the slope of the linear relationship
is close to one, we first validate this assumption using the
RSS measurements collected by different devices at the same
location and time.

Figs. 3(a) to 3(c) plot the relationships between the RSS
measurements collected by GP6 and MO, those collected
by HH8 and MO, and those collected by GP6 and HHS,
respectively. As we can see from all three figures, the RSS
measurements collected by difference devices at the same
locations and times exhibit a linear relationship, which is
expected.

We further perform linear regression on RSS measurements
collected by each pair of devices according to both Eq. (1)
and Eq. (2). Tables III and IV show the parameters obtained
from the two types of linear regression, respectively. As we
can see from Table III, the slope of the linear equation under
Eq. (1) ranges from 0.78 to 1.26 and the Mean Square Error
(MSE) ranges from 0.74 to 0.94 for the six pairs of devices.
In addition, Table IV shows that the MSE ranges from 1.19 to
1.94 if we set the slope to one according to Eq. (2). While the
MSE achieved under Eq. (2) is larger than that under Eq. (1),
these results do indicate that it is reasonable to assume that
the slope is one. As we will see shortly, CITS works well in
practice under this assumption.

2) Error Distance Over Time: Figs. 4(a) to 4(c) compare
the average error distances of CITS and RADAR at each time
with the user’s RSS measurements collected by HHS, MO,
and GP6, respectively, where the differential RSS fingerprint

TABLE 11
SMARTPHONE CONFIGURATIONS
Brand Model CPU RAM
Huawei Honor 8 2.3GHz Octa-core 4G
Motorala One 2GHz ARM Cortex-A53 4G
Google Pixel 6 2.8GHz Octa-core 8G
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TABLE III
LINEAR REGRESSION UNDER EQ. (1)

Device A Device B 0 0AB MSE
GP6 MO 1.11 7.29 0.89
HH8 GP6 1.12 8.34 0.86
HHS MO 1.26 17.21 0.94
GP6 HH8 087  -8.37 0.76
MO HHS8 0.78 -14.44 0.74
MO GP6 088  -7.42 0.80

TABLE IV
LINEAR REGRESSION UNDER EQ. (2)
Device A Device B 60 dap MSE
GP6 MO 1 -148 121
HHS8 GP6 1 -1.50 1.19
HH8 MO 1 -299 194
GP6 HHS8 1 1.50 1.19
MO HH8 1 299 1.94
MO GP6 1 1.48 1.21

database is constructed from the RSS measurements collected
by HH8 and every bar represents the 70% confidence interval.

We can see from Figs. 4(a) to 4(c) that the average error dis-
tance under RADAR is relatively stable across different times.
This is expected, as RADAR treats every RSS measurement
from the user as an independent location query and does not
consider the user’s past location. In addition, the average error
distance under RADAR is 1.49 m, 1.88 m, and 1.75 m for
HHS8, MO, and GP6, respectively. Among them, the average
error distance for HH8 is the lowest, which is anticipated
because the differential RSS fingerprint database is constructed
from the measurements collected by the same device. These
results further confirm the negative impact of device diversity
on positioning accuracy. In contrast, we can see from all
three figures that the error distance of CITS matches that of
RADAR at time ¢ = 1 initially and decreases over time for all
three different user devices. This is also anticipated, because
CITS estimates the user’s location at time ¢ = 1 according
to RADAR and thus has the same error distance as RADAR.
In addition, CITS locates the user through differential RSS
fingerprint matching and path matching at time ¢ > 2 that can
effectively mitigate the impact of device diversity and achieve
higher positioning accuracy over time. For example, we can
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(b) Error distance vs. t

Fig. 8. The average distance error of CITS over
time under different d.

see from Fig. 4(b) that the average error distance decreases
from 1.49 m at time ¢ = 1 to 0.53 m at time ¢ = 28.

Figs. 5 and 6 show the average error distances of CITS
and RADAR at each time with the user’s RSS measurements
collected by HH8, MO, and GP6, respectively, where the
differential RSS fingerprint database is constructed from the
RSS measurements collected by MO and GP6, respectively.
Similar to what we have seen from Fig. 4, the average error
distance under RADAR is relatively stable across different
times for all cases. Moreover, the average error distance is
the lowest when the user’s device is the same as the device
used for collect RSS fingerprints. Last but not the least, the
average error distance of CITS decreases over time. These
results clearly demonstrate the advantages of CITS over Radar.

3) The Impact of Parameter s: Fig. 7 shows the average
error distance of CITS at different times and under different s,
i.e., the number of most likely candidate paths that the server
records at every time. Specifically, Fig. 7 shows the average
error distance of CITS at time ¢ = 5,10, 15,20, and 25 as
s increases from 1 to 20. We can see from Fig. 7(a) that
the average error distance of CITS first decreases quickly as
s increases from 1 to 5, then decreases relatively slowly as
s further increases from increases from 5 to 15, and finally
remains relatively stable or slightly fluctuates as s further
increases from increases from 15 to 20. Consider ¢ = 25 as
an example. The average error distance decreases from 2.6
m to 0.80 m as s increases from 1 to 15, and then slightly
increases to 0.99 m as s further increases to 20. The reason for
the initial decrease in the average distance error is the more
most likely candidate paths that the server stores, the higher
possibility that the user’s true path is among them. Therefore,
the average error distance decreases initially. Moreover, having
the server records too many most likely candidate paths at
each time ¢ could negatively affect positioning accuracy. The
reason is there is non-negligible probability that a candidate
paths ranked lowly earlier may become a top ranked path at
some point due to the fluctuation of RSS and thus mislead the
server into choosing an incorrect path. Therefore, parameter s
needs to be carefully chosen. Our experiment results show that
CITS achieves the best positioning accuracy when s = 15.

Fig. 7(b) shows the average error distance of CITS over
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time for s = 1,5, 10, 15, and 20. We can see that the average
error distance of CITS increases over time when s 1.
This is expected, as the true path may not be the most likely
path determined via path matching. Once an incorrect path is
selected by the CITS server, subsequent location estimations
will be affected by previous positioning error, which would
result in increased error distance over time. Moreover, we can
also see that the error distance of CITS decreases over time
if s is larger than 5. This is expected and also confirms the
effectiveness of the path matching.

4) The Impact of Parameter d: Recall that the differential
RSS fingerprint database requires us to construct a graph G =
(V, E)), in which any two vertexes are connected by an edge if
the minimal distance between the two cells they represent is
smaller than d. Ideally, parameter d should be set sufficiently
large so that it is impossible for a user to travel from one cell
to another cell that are not connected by any edge between
two consecutive RSS measurements.

Fig. 8 shows the the average error distance of CITS over
time with d varying from 0.5 m to 2 m where the true
maximum travel distance of the user is 1 m. We can see that
when d = 0.5 m that is smaller than the true true maximum
travel distance of the user, the average error distance of CITS
increases from 1.77 m at £ = 1 to 3.08 m at time ¢ = 28. This
is expected because if d is set too small, the graph G does
not contain the user’s true path. As a result, CITS is unable to
find the user’s path and correctly estimate the user’s location.
Moreover, we can also see that when average error distance
of CITS decreases over time for d = 1 m, 1.5 m, and 2 m.
This is because d is sufficiently large and the user’s true path
can be captured and identified by CITS in these cases. Last
but not the least, we can see that the average error distance of
CITS at time ¢ > 25 when d = 2 m is slightly larger than that
when d = 1 m. This is also expected, because the larger d,
the more candidate paths needs to be examined at each time,
the higher the probability that an incorrect path is chosen by
the CITS server, which would result in slightly higher error
distance.

C. Summary

We summarize the experiment result as follows.

o Devices of different models could collect different RSS
measurements at the same time and location, but there
is a linear relationship between the RSS measurements
collected by different devices. It is also reasonable to
assume that the RSS measurements collected by different
devices differ by a device-specific constant.

CITS achieves higher positioning accuracy than RADAR
in the presence of device diversity and the average error
distance of CITS decreases over time.

CITS achieves higher positioning accuracy when the
user’s smartphone is of the same model as the one used
for collecting RSS fingerprints.

Parameters s and d both need to set sufficiently large to
ensure that the user’s true path is always included in the
candidate path set at each time.
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o Setting parameters s and d too large have a negative
impact on the positioning accuracy of CITS due to the
introduction of too many candidate paths.

V. CONCLUSION

In this paper, we have introduced the design and evaluation
of CITS, a novel continuous indoor tracking system. CITS
achieves high positioning accuracy in the presence of RSS
fingerprint ambiguity and device diversity through differential
RSS fingerprinting and path matching. Detailed experiment
studies based on real prototype implementation have confirmed
the significant advantages of CITS over prior alternative so-
lutions. As our future work, we plan to investigate extending
CITS by removing the assumption of § = 1 by gradually
estimating # as more RSS measurements are received.
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