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Abstract—Indoor navigation is necessary for users to explore
large unfamiliar indoor environments such as airports, shopping
malls, and hospital complex, which relies on the capability
of continuously tracking a user’s location. A typical indoor
navigation system is built on top of a suitable Indoor Positioning
System (IPS) and requires the user to periodically submit location
queries to learn their whereabouts whereby to provide update-
to-date navigation information. Received signal strength (RSS)-
based IPSes are considered as one of the most classical IPSes,
which locates a user by comparing the user’s RSS measurement
with the fingerprints collected at different locations in advance.
Despite its significant advantages, existing RSS-IPSes suffer from
two key challenges, the ambiguity of RSS fingerprints and device
diversity, that may greatly reduce its positioning accuracy. In
this paper, we introduce the design and evaluation of CITS,
a novel RSS-based continuous indoor tracking system that can
effectively cope with fingerprint ambiguity and device diversity
via differential RSS fingerprint matching. Detailed experiment
studies confirm the significant advantages of CITS over prior
RSS-based solutions.

I. INTRODUCTION

Indoor navigation is necessary for users to locate themselves

and reach their destinations in large unfamiliar venues such

as airports, shopping malls, and hospital complex, where

GPS signals are either absent or unavailable. According to

a recent report [1], the global market of indoor positioning

and navigation service is expected to reach 256.59 billion in

2028.

The capability of continuously tracking a user’s locations

is key to any indoor navigation system, which is required

for computing and updating the optimal route from the user’s

current location to intended destinations and providing the user

with visual or audio turn-by-turn instructions. As a result, a

typical indoor navigation system involves an Indoor Position-

ing System (IPS) module and requires the user to periodically

submit location queries to learn their whereabouts. Existing

indoor navigation systems mainly differ in the technology

behind their IPS modules, which include Computer Vision

[2]–[4], RFID [5]–[7], Wi-Fi [8] [9], visible light [10]–[12],

Bluetooth [13]–[15], acoustic sound [16] [17] and so on.

WiFi Received Signal Strength-based IPS (RSS-IPS) [8]

[9] is considered as one of the most classical IPSes, which

exploit distinguishable RSSes at different locations as their

fingerprints and locates a user by comparing the user’s RSS

measurement with the RSS fingerprints collected at different

locations in advance. In comparison with other types of

IPSes, RSS-based IPSes explore ubiquitous smartphones and

WiFi infrastructure widely available in target venues and do

not require costly infrastructure updates. A typical RSS-IPS

works in two phases. In the offline training phase, the IPS

operator collects RSS fingerprints at different indoor reference

locations. In the online positioning phase, on receiving an RSS

measurement from a user, the IPS server returns the reference

location of which the RSS fingerprint is the closest to the

user’s measurement.

RSS-IPSes face two critical challenges that limit their posi-

tioning accuracy in practice, the ambiguity of RSS fingerprints

and device diversity. First, prior studies such as [18] [19]

have shown that multiple locations could have the same RSS

fingerprint. As a result, it is difficult for the IPS server to

distinguish these locations solely based on the user’s RSS

measurement. Second, it is also well known that different

mobile devices may detect different Received Signal Strengths

at the same location and time [20]–[23]. In particular, the

device used by the IPS operator to collect the RSS fingerprints

may be different from the mobile devices used by the users

during the online navigation phase, which means that the RSS

measurement collected by the user may be different from

the RSS fingerprint at the location. Both factors could result

in larger differences between the RSS fingerprint and the

user’s RSS measurement at the same location and reduce the

positioning accuracy achieved by RSS-IPSes.

Fortunately, we find that periodic location queries from

the user during indoor navigation offers new opportunities to

tackle WiFi fingerprint ambiguity and device heterogeneity.

Specifically, instead of matching a user’s RSS measurement

with the fingerprint, we find that matching the difference be-

tween adjacent RSS measurements with the difference between

RSS fingerprints at adjacent locations offers great resilience to

device diversity. Moreover, the ambiguity of WiFi fingerprints

can be effectively tackled by matching a sequence of RSS

measurements from user to a movement path. Based on

these observations, we introduce the design and evaluation of

CITS, a novel continuous RSS-based indoor tracking system

that can achieve high positioning accuracy in the presence

of WiFi fingerprint ambiguity and device heterogeneity. Our

contributions in this paper are summarized as follows.

• We are the first to study continous indoor tracking in the
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presence of fingerprint ambiguity and device diversity.

• We introduce CITS, a novel RSS-based IPS based on

differential fingerprinting and path matching that can

achieve much improved positioning accuracy.

• Experiment studies based on a prototype confirm the

advantages of CITS over prior RSS-based IPSes. For

example, our experiment results show that CITS achieves

a mean distance error at 0.8 m in contrast to the 1.68

m reported in [8] when the user travels more than 25

seconds in the indoor environment.

The rest of this paper is structured as follows. Section II

discusses the related work. Section III presents the design of

CITS. Section IV reports our experiment results. This paper

is finally concluded in Section V.

II. RELATED WORK

In this section, we review some of the prior works that are

most germane to our work.

A conventional technique for indoor tracking is the pedes-

trian dead reckoning (PDR) [24]. A PDR system records the

Inertial Measurement Unit sensor readings when the user is

moving and calculates the user’s displacements to determine

his current location. Since the displacement error accumulates

with the user’s moving, several types of indoor signals have

been explored to augment the PDR. Fang et al. [25] enhanced

the PDR system with wireless telemetry. Carrera et al. [26]

fused RSS, PDR, and building information to track the user’s

movement. In [27], Samuel et al. corrected the error of PDR

systems in a smart building environment. They equipped

the user with a RFID tag reader to read the RFID tags

which are placed throughout the smart building then correct

the cumulative error by reading the tags. Recently, hybrid

algorithms have been proposed in [28]–[30] to highly improve

the positioning accuracy via combining PDR approach with

WiFi fingerprinting approach. Shen et al. [31] pointed out that

user’s heading error is the key factor of the error in PDR, and

used WiFi-RSS to minimize the heading error resulting in a

higher position accuracy in PDR. In [32], Ho et al. removed

the interference signals for interior sensor reading with a fast

Fourier transform-based smoother on the collected data then

further improved the PDR accuracy. In addition, exploring

the magnetic field information is another promising way to

minimize the accumulating error in PDR [33]–[35]. Apart from

the above papers, there still exist plenty of works that involve

PDR. However, none of them consider the heterogeneous

device problem. In other words, the heterogeneous device

problem impacts the process of correcting the accumulating

error.

Apart from PDR, researchers also try to track the user with

WiFi signals. Yang et al. [36] analyzed the localization errors

of the RSS-based fingerprinting localization methods. Hoang

et al. [37] inputted a series of WiFI RSS into hidden Markov

chain (HMM) to predict the user’s movement. In [38], Anthea

et al. proposed a novel RSS indoor tracking system by using

a Compressive Sensing-based positioning scheme. Channel

station information has been used to infer the user’s movement

and activity in [39], [40]. Kleisouris et al. [41] utlized multiple

antennas to improve localization results, while Zheng et al.

[42] combined multiple frequencies and powers to reduce the

localization errors. A RSS gradient fingerprint database was

constructed in [43] to track user’s movement with improved

accuracy via comparing the RSS gradient between each two

locations. Liu et al. [44] combined acoustic ranging and RSS-

based localization to reduce the large errors of smartphone

tracking. In [45], Yang et al. proposed a improved lateration

based method for mitigating multipath effects. Hernndez et

al. [46] used a topological RSS radio-map then tracked the

user’s location through Bayes filter. Chandrasekaran et al. [47]

compared the performance of several widely used RSS based

localization algorithms under a laboratory setting. Recently,

Mai et al. [48] utilized convolutional neural network (CNN)

and Tiwary et al. [49] trained a deep neural network based on

RSS difference to track the users in the indoor environment.

There are some research efforts dedicated to robust indoor

localization, such as robust localization in the presence of

signal strength and access point attacks in [50]–[52]. However,

the above works do not consider the heterogeneous problem or

solve this problem under a very strict condition with a strong

assumption.

Besides WiFi signals, there are also several other types

of IPSes based on other different technologies. For example,

image-based IPSes have been proposed in [2]–[4] to locate

users with high positioning accuracy through recognizing land-

marks in the photos. Apart from image-based IPSes, acoustic

signal-based IPSes [16], [17] utilized acoustic signals as fin-

gerprints for localization. In addition, visible light [10]–[12],

Radio Frequency Identification (RFID) [5]–[7], and Bluetooth

signals [13]–[15] could also been used for user positioning.

However, the above works can only repetitively infer the user’s

location in a tracking system instead of considering user’s prior

locations.

III. CITS DESIGN

In this section, we first give an overview and then detail

CITS’s design.

A. Overview

We design CITS based on two key ideas.

First, we observe that matching the difference between two

adjacent RSS measurements from the user to the difference

between two RSS fingerprints can effectively mitigate the

impact of device diversity. Specifically, several prior studies

[20]–[23] have shown that for any two different devices, say

A and B, there is a linear relationship between their RSS

measurements from the same AP at the same location and

time. In particular, let rssA and rssB be the RSS measurements

of devices A and B, respectively. We have

rssA = θ · rssB + δAB , (1)

where θ and δAB are two device-dependent constants. More-

over, it has also been shown in [23] that the parameter θ is

close to one in most cases, which is also used in recent work
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Fig. 1. An example of the graph with 12 vertexes, i.e., reference locations.

[53]. This allows us to ignore parameter θ hereafter and rewrite

Eq. (1) as

rssA = rssB + δAB , (2)

Further let rss′A and rss
′
B denote the RSS measurements of the

two devices at a different location. We get

rss
′
A = rss

′
B + δAB . (3)

Subtracting Eq. (3) from Eq. (2), we have

rssA − rss
′
A = rssB − rss

′
B , (4)

which indicates that the difference of device A measurements

at the two locations is the same as that of device B even if

they are of different device models.

Second, we find that the ambiguity of RSS fingerprints

can be addressed by path matching that takes a user’s prior

estimated locations into accounts. In particular, assume that the

time is divided into intervals of same length and that a user

submits one RSS measurement collected by a mobile device

of an unknown type at each time interval t = 1, 2, . . . . If we

know that the user is at reference location x at time t and

that the maximum distance a user can travel within one time

interval is d, then the user must be at one of the reference

locations within a distance of d from reference location x,

including reference location x itself if the user has not moved.

While it is possible for multiple reference locations share the

same RSS fingerprint, by limiting the search space for user’s

location at time t + 1 can greatly reduce the chance of such

ambiguity.

In what follows, we detail the design of CITS, which

consists of differential RSS fingerprint database construction

and continuous tracking via path matching.

B. Differential RSS Fingerprint Database Construction

We first divide the whole indoor venue into n cells of

equal size, e.g., 0.5×0.5 m2, and select the center of each

cell as one reference location. We then construct a directed

graph G = (V,E), where V is the set of n vertexes with

each corresponding to one reference location, and E is the

set of edges. Two vertexes x and y are connected by a pair

of antiparallel edges edge e(x, y) and e(y, x) if the minimal

distance between cell x to cell y is no more than d, where d

is a system parameter denoting the maximum distance a user

can travel between two consecutive RSS measurements. In

addition, every vertex x ∈ V has a self-loop, i.e., an edge that

originates from and terminates at x, to account for the cases

that the user remain in the same cell between two consecutive

RSS measurements. Fig. 1 shows an example of the graph

with 12 vertexes, where two vertexes are neighboring vertexes

if there is at most one cell between them.

Assume that there are m WiFi APs in the indoor venue.

The CITS operator collects one RSS fingerprint rssx =
(rss1x, . . . , rss

m
x ) at each reference location x ∈ V , where rss

j
x

is the RSS of AP j for all 1 ≤ j ≤ m.

Next, for every edge e(x, y) ∈ E, we calculate the RSS

difference between vertexes x and y as

�rssx,y = (�rss
1

x,y, . . . ,�rss
m
x,y) . (5)

where

�rss
j
x,y = rss

j
y − rss

j
x ,

is the difference between the AP j’s RSS fingerprints at

reference locations x and y for all 1 ≤ j ≤ m.

Finally, we store the constructed RSS differential fingerprint

database as {rssx|x ∈ V }
⋃
{�rssx,y|e(x, y) ∈ E}.

C. Continuous Tracking via Path Matching

With the differential WiFi fingerprint database in place,

we now illustrate how to continuously track a user via path

matching. Denote by rsst = (rss1t , . . . , rss
m
t ) the user’s RSS

measurement at time t = 1, 2, . . . , where rss
j
t is the RSS

measurement for AP j for all 1 ≤ j ≤ m. Consider two

adjacent RSS measurements rsst−1 and rsst. We define the

RSS difference for AP j from time t− 1 to time t as

�rsst = (�rss
1

t , . . . ,�rss
m
t ) ,

where �rss
j
t = rss

j
t − rss

j
t−1

for all 1 ≤ j ≤ m.

Now consider an edge e(x, y) ∈ E with RSS difference

�rss(x, y). Intuitively, if �rsst ≈ �rss(x, y), then it is likely

that the user has moved from reference location x to y between

time t− 1 and t. Based on this observation, we further define

the overall RSS difference with respect to time t and edge

e(x, y) as

φ(t, e(x, y)) =

m∑

j=1

|�rss
j
t −�rss

j
x,y| .

Similarly, for any path p = 〈x1 → x2 → · · · → xt〉 consisting

of a sequence of t vertexes, we define the overall path RSS

difference as

φp =
t∑

i=2

φ(i, e(xi−1, xi)) .

The smaller φp, the more likely the user traverses path p from

time 1 to t.

The CITS server always maintains the s most likely paths

the user traverses that have the smallest overall path RSS
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difference, where s ≥ 1 is a system parameter. Upon re-

ceiving a new RSS measurement rsst from the user at time

t, the CITS server recomputes the s most likely paths. Let

pϕ = 〈xϕ
1
→ · · · → x

ϕ
t−1

〉 denote the ϕth most likely path

at time t − 1 for all 1 ≤ ϕ ≤ s. Also denote by N(x)
the set of neighboring cells of cell x. Then the set of all

possible new paths are P = {〈xϕ
1
→ · · · → x

ϕ
t−1

→ x〉|x ∈
N(xϕ

l )
⋃
{xϕ

l }, 1 ≤ ϕ ≤ s}. The CITS server then finds the s

paths with the smallest overall path RSS difference and returns

the last reference location of the most likely path as the user’s

current location.

In what follows, we detail the procedure of estimating the

user’s location at each time t = 1, 2, . . . .
1) At Time t = 1: Since the user has submitted only one

RSS measurement rss1 at time t = 1 which is insufficient for

path matching, we estimate the user’s location l1 according to

the classical RSS-IPS Radar [8] and record the s most likely

reference locations for later path matching.

Specifically, on receiving the user’s RSS measurement

rss1 = (rss1
1
, . . . , rssm

1
), we estimate the user’s location at time

1 as

l1 = argmin
x∈V

m∑

j=1

(rssjx − rss
j
1
)2 , (6)

which is the reference location with the closest RSS fingerprint

to rss1 measured by the Euclidean distance. In addition,

we also record the set of s reference locations whose RSS

fingerprints are closest to rss1, denoted by P1.

2) At Time t = 2: On receiving the user’s RSS measure-

ment rss2 at time t = 2, we estimate the user’s location l2 via

path matching.

First, we generate a set of candidate paths from the set of

most likely reference locations S1 and graph G. Specifically,

for each reference location x ∈ P1, we generate a set of

candidate path as Cx = {〈x → y〉|y ∈ N(x)
⋃
{x}}. The

set of all candidate paths is then C =
⋃

x∈P1
Cx.

Second, we find the candidate path with the smallest overall

path difference whereby to determine the user’s current loca-

tion lt. Specifically, for every candidate path p = 〈x → y〉 ∈
P , we computes its overall path difference as

φ〈x→y〉 = φ(2, e(x, y))

=
m∑

j=1

|�rss
j
t −�rss

j
x,y| .

(7)

The most likely path is then given by

〈x∗, y∗〉 = argmin
〈x→y〉∈C

φ〈x→y〉 ,

and the user’s current location is estimated as l2 = y∗.

Moreover, we also record the set of s most likely paths denoted

by P2.

3) At Time t > 2: On receiving the user’s RSS measure-

ment rsst at time t > 2, we estimate the user’s location lt in

a similar fashion.

First, we generate a set of candidate paths from the set of

most likely paths Pt−1 and graph G. Specifically, for each

Fig. 2. The floor plan of the office space

path p = 〈x1 → · · · → xt−1〉 ∈ Pt−1, we generate a set

of candidate path as Cp = {〈x1 → · · · → xt−1 → y)|y ∈
N(xt−1)

⋃
{xt−1}}. The set of all candidate paths is then C =⋃

p∈Pt−1
Cp.

Second, we find the candidate path with the smallest overall

path difference whereby to determine the user’s current loca-

tion lt. Specifically, for every candidate path p = 〈x1 → · · · →
xt−1 → y〉 ∈ C, we computes its overall path difference as

φp = φ〈x1→···→xt−1→y〉

=
t−1∑

i=1

φ(i, e(xi−1, xi)) + φ(t, e(xt−1, y)) .

The most likely path is then given by

〈x∗
1
→ · · · → x∗

t 〉 = argmin
p∈C

φp ,

and the user’s current location is estimated as lt = x∗
t .

Moreover, we also record the set of s most likely paths denoted

by Pt.

We summarize the whole procedure in Algorithm 1.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of CITS via

detailed experimental studies based on real prototype.

A. Prototype Implementation and Data Collection

We implement a prototype of CITS in Android studio/Java

and deploy it on a square zone of 23.8 × 23.8 m2 inside an

office building with the floor plan shown in Fig. 2. We chose

n = 368 reference locations in the indoor venue and detected

m = 41 WiFi APs based on unique SSIDs.

We use three models of smartphones for our data collection,

including a Huawei Honor 8 (HH8), a Motorala One (MO),

and a Google Pixel 6 (GP6). Table. II summarizes the configu-

ration of each smartphone model. For each reference location,
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Algorithm 1: Location Estimation

input : Graph G = (V,E), RSS measurement rsst at

time t = 1, 2, . . . , parameter s

output: User’s location lt at each time t

1 if t = 1 then

2 l1 ← argminx∈V

∑m
j=1

(rssjx − rss
j
1
)2;

3 Record the set of s most likely reference locations as

P1;

4 end

5 if t = 2 then

6 foreach x ∈ P1 do

7 Cx ← {〈x → y〉|y ∈ N(x)
⋃
{x}};

8 end

9 C ←
⋃

x∈P1
Cx;

10 foreach 〈x → y〉 ∈ C do

11 φ〈x→y〉 ←
∑m

j=1
|�rss

j
t −�rss

j
x,y|;

12 end

13 〈x∗, y∗〉 ← argmin〈x→y〉∈C φ〈x→y〉;

14 l2 ← y∗;

15 Record the set of s most likely candidate paths as P2;

16 end

17 if t > 2 then

18 foreach p = 〈x1 → · · · → xt−1〉 ∈ Pt−1 do

19 Cp ← {〈x1 → · · · → xt−1 → y)|y ∈
N(xt−1)

⋃
{xt−1}};

20 end

21 C ←
⋃

p∈Pt−1
Cp;

22 foreach p = 〈x1 → · · · → xt−1 → y) ∈ C do

23 φp ←
∑t−1

i=1
φ(i, e(xi−1, xi)) + φ(t, e(xt−1, y));

24 end

25 〈x∗
1
→ · · · → x∗

t 〉 ← argminp∈C φp;

26 lt ← x∗
t ;

27 Record the set of s most likely candidate paths as Pt;

28 end

29 return lt;

we record its coordinate and collect RSS measurement using

all three smartphones at the same time. We then create

three differential RSS fingerprint databases with one for each

smartphone.

We then use each of three smartphones to collect 60

movement traces. For each trace, we have one user carrying the

smartphone walk in the indoor venue randomly for a duration

of 28 seconds. The user stops every 1 second to record a

test location and collects the corresponding RSS measurement.

Note that the test locations may not be the same as any

reference location.

Since CITS is mostly related to RADAR [54], the classical

RSS-IPS that matches a user’s RSS measurement to the refer-

ence location with the closest RSS fingerprint, we compare it

with RADAR, i.e., the server estimates the user’s location via

RADAR on receiving the user’s RSS measurement. Moreover,

we use error distance as our performance metric, which is

defined as the user’s true location and the estimated reference

location.

TABLE I
DEFAULT EXPERIMENT SETTINGS

Para. Value Description

n 368 # of reference locations
m 41 # of APs

1.1 m The size of each cell
1 m User’s maximum travel distance

d 2.2 m Maximum distance between two vertexes
connected by an edge

s 15 # of candidate paths recorded

B. Experiment Results

We now report our experiment results.

1) Validation of Device Diversity: Since CITS relies on

the assumption that there is a linear relationship between two

devices’ RSS measurements from the same AP at the same

location and time and that the slope of the linear relationship

is close to one, we first validate this assumption using the

RSS measurements collected by different devices at the same

location and time.

Figs. 3(a) to 3(c) plot the relationships between the RSS

measurements collected by GP6 and MO, those collected

by HH8 and MO, and those collected by GP6 and HH8,

respectively. As we can see from all three figures, the RSS

measurements collected by difference devices at the same

locations and times exhibit a linear relationship, which is

expected.

We further perform linear regression on RSS measurements

collected by each pair of devices according to both Eq. (1)

and Eq. (2). Tables III and IV show the parameters obtained

from the two types of linear regression, respectively. As we

can see from Table III, the slope of the linear equation under

Eq. (1) ranges from 0.78 to 1.26 and the Mean Square Error

(MSE) ranges from 0.74 to 0.94 for the six pairs of devices.

In addition, Table IV shows that the MSE ranges from 1.19 to

1.94 if we set the slope to one according to Eq. (2). While the

MSE achieved under Eq. (2) is larger than that under Eq. (1),

these results do indicate that it is reasonable to assume that

the slope is one. As we will see shortly, CITS works well in

practice under this assumption.

2) Error Distance Over Time: Figs. 4(a) to 4(c) compare

the average error distances of CITS and RADAR at each time

with the user’s RSS measurements collected by HH8, MO,

and GP6, respectively, where the differential RSS fingerprint

TABLE II
SMARTPHONE CONFIGURATIONS

Brand Model CPU RAM

Huawei Honor 8 2.3GHz Octa-core 4G
Motorala One 2GHz ARM Cortex-A53 4G
Google Pixel 6 2.8GHz Octa-core 8G
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(a) GP6 vs. MO (b) HH8 vs. GP6 (c) HH8 vs. MO

Fig. 3. Relationship between RSS measurements collected by different pairs of devices

(a) Error distance vs. t (HH8) (b) Error distance vs. t (MO) (c) Error distance vs. t (GP6)

Fig. 4. Error distance with different user devices and differential RSS fingerprint database constructed from RSS measurements collected by HH8

(a) Error distance vs. t (HH8) (b) Error distance vs. t (MO) (c) Error distance vs. t (GP6)

Fig. 5. Error distance with different user devices and differential RSS fingerprint database constructed from RSS measurements collected by MO

(a) Error distance vs. t (HH8) (b) Error distance vs. t (MO) (c) Error distance vs. t (GP6)

Fig. 6. Error distance with different user devices and differential RSS fingerprint database constructed from RSS measurements collected by GP6
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(a) Error distance vs. s (b) Error distance vs. t

Fig. 7. The average distance error of CITS over time under different s.

Fig. 8. The average distance error of CITS over
time under different d.

TABLE III
LINEAR REGRESSION UNDER EQ. (1)

Device A Device B θ δAB MSE

GP6 MO 1.11 7.29 0.89
HH8 GP6 1.12 8.34 0.86
HH8 MO 1.26 17.21 0.94
GP6 HH8 0.87 -8.37 0.76
MO HH8 0.78 -14.44 0.74
MO GP6 0.88 -7.42 0.80

TABLE IV
LINEAR REGRESSION UNDER EQ. (2)

Device A Device B θ δAB MSE

GP6 MO 1 -1.48 1.21
HH8 GP6 1 -1.50 1.19
HH8 MO 1 -2.99 1.94
GP6 HH8 1 1.50 1.19
MO HH8 1 2.99 1.94
MO GP6 1 1.48 1.21

database is constructed from the RSS measurements collected

by HH8 and every bar represents the 70% confidence interval.

We can see from Figs. 4(a) to 4(c) that the average error dis-

tance under RADAR is relatively stable across different times.

This is expected, as RADAR treats every RSS measurement

from the user as an independent location query and does not

consider the user’s past location. In addition, the average error

distance under RADAR is 1.49 m, 1.88 m, and 1.75 m for

HH8, MO, and GP6, respectively. Among them, the average

error distance for HH8 is the lowest, which is anticipated

because the differential RSS fingerprint database is constructed

from the measurements collected by the same device. These

results further confirm the negative impact of device diversity

on positioning accuracy. In contrast, we can see from all

three figures that the error distance of CITS matches that of

RADAR at time t = 1 initially and decreases over time for all

three different user devices. This is also anticipated, because

CITS estimates the user’s location at time t = 1 according

to RADAR and thus has the same error distance as RADAR.

In addition, CITS locates the user through differential RSS

fingerprint matching and path matching at time t ≥ 2 that can

effectively mitigate the impact of device diversity and achieve

higher positioning accuracy over time. For example, we can

see from Fig. 4(b) that the average error distance decreases

from 1.49 m at time t = 1 to 0.53 m at time t = 28.

Figs. 5 and 6 show the average error distances of CITS

and RADAR at each time with the user’s RSS measurements

collected by HH8, MO, and GP6, respectively, where the

differential RSS fingerprint database is constructed from the

RSS measurements collected by MO and GP6, respectively.

Similar to what we have seen from Fig. 4, the average error

distance under RADAR is relatively stable across different

times for all cases. Moreover, the average error distance is

the lowest when the user’s device is the same as the device

used for collect RSS fingerprints. Last but not the least, the

average error distance of CITS decreases over time. These

results clearly demonstrate the advantages of CITS over Radar.

3) The Impact of Parameter s: Fig. 7 shows the average

error distance of CITS at different times and under different s,

i.e., the number of most likely candidate paths that the server

records at every time. Specifically, Fig. 7 shows the average

error distance of CITS at time t = 5, 10, 15, 20, and 25 as

s increases from 1 to 20. We can see from Fig. 7(a) that

the average error distance of CITS first decreases quickly as

s increases from 1 to 5, then decreases relatively slowly as

s further increases from increases from 5 to 15, and finally

remains relatively stable or slightly fluctuates as s further

increases from increases from 15 to 20. Consider t = 25 as

an example. The average error distance decreases from 2.6

m to 0.80 m as s increases from 1 to 15, and then slightly

increases to 0.99 m as s further increases to 20. The reason for

the initial decrease in the average distance error is the more

most likely candidate paths that the server stores, the higher

possibility that the user’s true path is among them. Therefore,

the average error distance decreases initially. Moreover, having

the server records too many most likely candidate paths at

each time t could negatively affect positioning accuracy. The

reason is there is non-negligible probability that a candidate

paths ranked lowly earlier may become a top ranked path at

some point due to the fluctuation of RSS and thus mislead the

server into choosing an incorrect path. Therefore, parameter s

needs to be carefully chosen. Our experiment results show that

CITS achieves the best positioning accuracy when s = 15.

Fig. 7(b) shows the average error distance of CITS over
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time for s = 1, 5, 10, 15, and 20. We can see that the average

error distance of CITS increases over time when s = 1.

This is expected, as the true path may not be the most likely

path determined via path matching. Once an incorrect path is

selected by the CITS server, subsequent location estimations

will be affected by previous positioning error, which would

result in increased error distance over time. Moreover, we can

also see that the error distance of CITS decreases over time

if s is larger than 5. This is expected and also confirms the

effectiveness of the path matching.

4) The Impact of Parameter d: Recall that the differential

RSS fingerprint database requires us to construct a graph G =
(V,E), in which any two vertexes are connected by an edge if

the minimal distance between the two cells they represent is

smaller than d. Ideally, parameter d should be set sufficiently

large so that it is impossible for a user to travel from one cell

to another cell that are not connected by any edge between

two consecutive RSS measurements.

Fig. 8 shows the the average error distance of CITS over

time with d varying from 0.5 m to 2 m where the true

maximum travel distance of the user is 1 m. We can see that

when d = 0.5 m that is smaller than the true true maximum

travel distance of the user, the average error distance of CITS

increases from 1.77 m at t = 1 to 3.08 m at time t = 28. This

is expected because if d is set too small, the graph G does

not contain the user’s true path. As a result, CITS is unable to

find the user’s path and correctly estimate the user’s location.

Moreover, we can also see that when average error distance

of CITS decreases over time for d = 1 m, 1.5 m, and 2 m.

This is because d is sufficiently large and the user’s true path

can be captured and identified by CITS in these cases. Last

but not the least, we can see that the average error distance of

CITS at time t > 25 when d = 2 m is slightly larger than that

when d = 1 m. This is also expected, because the larger d,

the more candidate paths needs to be examined at each time,

the higher the probability that an incorrect path is chosen by

the CITS server, which would result in slightly higher error

distance.

C. Summary

We summarize the experiment result as follows.

• Devices of different models could collect different RSS

measurements at the same time and location, but there

is a linear relationship between the RSS measurements

collected by different devices. It is also reasonable to

assume that the RSS measurements collected by different

devices differ by a device-specific constant.

• CITS achieves higher positioning accuracy than RADAR

in the presence of device diversity and the average error

distance of CITS decreases over time.

• CITS achieves higher positioning accuracy when the

user’s smartphone is of the same model as the one used

for collecting RSS fingerprints.

• Parameters s and d both need to set sufficiently large to

ensure that the user’s true path is always included in the

candidate path set at each time.

• Setting parameters s and d too large have a negative

impact on the positioning accuracy of CITS due to the

introduction of too many candidate paths.

V. CONCLUSION

In this paper, we have introduced the design and evaluation

of CITS, a novel continuous indoor tracking system. CITS

achieves high positioning accuracy in the presence of RSS

fingerprint ambiguity and device diversity through differential

RSS fingerprinting and path matching. Detailed experiment

studies based on real prototype implementation have confirmed

the significant advantages of CITS over prior alternative so-

lutions. As our future work, we plan to investigate extending

CITS by removing the assumption of θ = 1 by gradually

estimating θ as more RSS measurements are received.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers

for their constructive comments and helpful advice. This work

was supported in part by the US National Science Foundation

under grants CNS-1651954 (CAREER) and CNS-1933047.

REFERENCES

[1] “Global indoor positioning and navigation system market
industry trends and forecast to 2028,” 2021. [Online]. Avail-
able: https://www.databridgemarketresearch.com/reports/global-indoor-
positioning-and-navigation-system-market

[2] G. Ruipeng, T. Yang, Y. Fan, L. Guojie, B. Kaigui, W. Yizhou, W. Tao,
and L. Xiaoming, “Sextant: Towards ubiquitous indoor localization
service by photo-taking of the environment,” IEEE Transactions on

Mobile Computing, vol. 15, no. 2, pp. 460–474, 2016.

[3] M. Liu, J. Du, Q. Zhou, Z. Cao, and Y. Liu, “Eyeloc: Smartphone vision-
enabled plug-n-play indoor localization in large shopping malls,” IEEE

Internet of Things Journal, vol. 8, no. 7, pp. 5585–5598, 2021.

[4] Y. Li, R. H. Kambhamettu, Y. Hu, and R. Zhang, “Impos: An image-
based indoor positioning system,” in IEEE CCNC, 2022, pp. 144–150.

[5] J. Guangyao, L. Xiaoyi, and P. MyongSoon, “An indoor localization
mechanism using active RFID tag,” in IEEE SUTC’06, vol. 1, 2006, pp.
4 pp.–.

[6] S. S. Saab and Z. S. Nakad, “A standalone rfid indoor positioning system
using passive tags,” IEEE Transactions on Industrial Electronics, vol. 58,
no. 5, pp. 1961–1970, 2011.

[7] F. Seco and A. R. Jimnez, “Smartphone-based cooperative indoor
localization with rfid technology,” Sensors, vol. 18, no. 1, 2018.

[8] P. Bahl and V. N. Padmanabhan, “Radar: an in-building rf-based user
location and tracking system,” in IEEE INFOCOM, vol. 2, Tel Aviv,
Israel, March 2000, pp. 775–784.

[9] M. Youssef and A. Agrawala, “The horus wlan location determination
system,” in ACM MobiSys, Seattle, WA, June 2005, pp. 205–218.

[10] T. Q. Wang, Y. A. Sekercioglu, A. Neild, and J. Armstrong, “Position
accuracy of time-of-arrival based ranging using visible light with appli-
cation in indoor localization systems,” Journal of Lightwave Technology,
vol. 31, no. 20, pp. 3302–3308, 2013.

[11] X. Guo, S. Shao, N. Ansari, and A. Khreishah, “Indoor localization
using visible light via fusion of multiple classifiers,” IEEE Photonics

Journal, vol. 9, no. 6, pp. 1–16, 2017.

[12] S. Zhu and X. Zhang, “Enabling high-precision visible light localization
in today’s buildings,” in ACM MobiSys’17, Niagara Falls, NY, 2017, p.
96108.

[13] G. Fischer, B. Dietrich, and F. Winkler, “Bluetooth indoor localization
system,” 01 2004.

[14] Y. Wang, Q. Ye, J. Cheng, and L. Wang, “Rssi-based bluetooth indoor
localization,” in IEEE MSN, 2015, pp. 165–171.

[15] L. Kanaris, A. Kokkinis, A. Liotta, and S. Stavrou, “Fusing bluetooth
beacon data with wi-fi radiomaps for improved indoor localization,”
Sensors, vol. 17, 2017.

474

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on August 04,2023 at 14:27:36 UTC from IEEE Xplore.  Restrictions apply. 



[16] S. P. Tarzia, P. A. Dinda, R. P. Dick, and G. Memik, “Indoor localization
without infrastructure using the acoustic background spectrum,” in
Proceedings of MobiSys’11, 2011, p. 155168.

[17] W. Huang, Y. Xiong, X.-Y. Li, H. Lin, X. Mao, P. Yang, Y. Liu, and
X. Wang, “Swadloon: Direction finding and indoor localization using
acoustic signal by shaking smartphones,” IEEE Transactions on Mobile

Computing, vol. 14, no. 10, pp. 2145–2157, 2015.
[18] H. Liu, Y. Gan, J. Yang, S. Sidhom, Y. Wang, Y. Chen, and F. Ye, “Push

the limit of wifi based localization for smartphones,” in Proceedings of

Mobicom’12, 2012, pp. 305316.
[19] L. Yuan, Y. Hu, Y. Li, R. Zhang, Y. Zhang, and T. Hedgpeth, “Secure

rss-fingerprint-based indoor positioning: Attacks and countermeasures,”
in IEEE CNS’18, Beijing, May 2018, pp. 1–9.

[20] S. Yang, P. Dessai, M. Verma, and M. Gerla, “FreeLoc: Calibration-free
crowdsourced indoor localization,” in IEEE INFOCOM’13, April 2013,
pp. 2481–2489.

[21] F. Dong, Y. Chen, J. Liu, Q. Ning, and S. Piao, “A calibration-free
localization solution for handling signal strength variance,” Mobile

Entity Localization and Tracking in GPS-less Environnments, vol. 5801,
pp. 79–90, 2009.

[22] A. Goswami, L. E. Ortiz, and S. R. Das, “WiGEM: a learning-based
approach for indoor localization,” in ACM CoNEXT ’11, Tokyo, Japan,
2011, pp. 3:1–3:12.

[23] J. geun Park, D. Curtis, S. Teller, and J. Ledlie, “Implications of device
diversity for organic localization,” in IEEE INFOCOM’11, April 2011,
pp. 3182–3190.

[24] “Dead reckoning,” 2021. [Online]. Available: http-
s://en.wikipedia.org/wiki/Deadreckoning

[25] F. Lei, P. Antsaklis, L. Montestruque, M. McMickell, M. Lemmon,
S. Yashan, F. Hui, I. Koutroulis, M. Haenggi, X. Min, and X. Xiaojuan,
“Design of a wireless assisted pedestrian dead reckoning system -
the navmote experience,” IEEE Transactions on Instrumentation and

Measurement, vol. 54, no. 6, pp. 2342–2358, 2005.
[26] C. Fischer, K. Muthukrishnan, M. Hazas, and H. Gellersen, “Ultrasound-

aided pedestrian dead reckoning for indoor navigation,” in ACM Mobi-

Com’08, San Francisco, CA, Sept. 2008.
[27] S. House, S. Connell, I. Milligan, D. Austin, T. L. Hayes, and P. Chiang,

“Indoor localization using pedestrian dead reckoning updated with rfid-
based fiducials,” in 2011 Annual International Conference of the IEEE

Engineering in Medicine and Biology Society, 2011, pp. 7598–7601.
[28] V. Radu and M. K. Marina, “Himloc: Indoor smartphone localization via

activity aware pedestrian dead reckoning with selective crowdsourced
wifi fingerprinting,” in International Conference on Indoor Positioning

and Indoor Navigation, 2013, pp. 1–10.
[29] P. Alexey, G. Andrey, and S. Alexey, “Indoor positioning using wi-fi

fingerprinting pedestrian dead reckoning and aided ins,” in International

Symposium on Inertial Sensors and Systems (ISISS’14), 2014, pp. 1–2.
[30] G. Lu, Y. Yan, L. Ren, P. Saponaro, N. Sebe, and C. Kambhamettu,

“Where am i in the dark:exploring active transfer learning on the use
of indoor localization based on thermal imaging,” Neurocomputing, vol.
173, no. P1, p. 8392, jan 2016.

[31] L. Lin Shen and W. Wong Shung Hui, “Improved pedestrian dead-
reckoning-based indoor positioning by rssi-based heading correction,”
IEEE Sensors Journal, vol. 16, no. 21, pp. 7762–7773, 2016.

[32] N.-H. Ho, P. H. Truong, and G.-M. Jeong, “Step-detection and adaptive
step-length estimation for pedestrian dead-reckoning at various walking
speeds using a smartphone,” Sensors, vol. 16, no. 9, 2016.

[33] R. Ban, K. Kaji, K. Hiroi, and N. Kawaguchi, “Indoor positioning
method integrating pedestrian dead reckoning with magnetic field and
wifi fingerprints,” in Eighth International Conference on Mobile Com-

puting and Ubiquitous Networking (ICMU)’15, 2015, pp. 167–172.
[34] L. You, Z. Yuan, L. Haiyu, Z. Qifan, N. Xiaoji, and E.-S. Naser, “A

hybrid wifi/magnetic matching/pdr approach for indoor navigation with
smartphone sensors,” IEEE Communications Letters, vol. 20, 2016.

[35] J. Kuang, X. Niu, P. Zhang, and X. Chen, “Indoor positioning based
on pedestrian dead reckoning and magnetic field matching for smart-
phones,” Sensors, vol. 18, no. 12, 2018.

[36] J. Yang and Y. Chen, “A theoretical analysis of wireless localization
using rf-based fingerprint matching,” in 2008 IEEE International Sym-

posium on Parallel and Distributed Processing, 2008, pp. 1–6.

[37] M. Hoang, J. Schmalenstroeer, C. Drueke, D. Tran Vu, and R. Haeb-
Umbach, “A hidden markov model for indoor user tracking based on wifi
fingerprinting and step detection,” in 21st European Signal Processing

Conference (EUSIPCO 2013), 2013, pp. 1–5.

[38] A. W. S. Au, C. Feng, S. Valaee, S. Reyes, S. Sorour, S. N. Markowitz,
D. Gold, K. Gordon, and M. Eizenman, “Indoor tracking and navigation
using received signal strength and compressive sensing on a mobile
device,” IEEE Transactions on Mobile Computing, vol. 12, no. 10, pp.
2050–2062, Oct 2013.

[39] H. Liu, N. Xia, D. Guo, and P. Qing, “Csi-based indoor tracking with
positioning-assisted,” in Ubiquitous Positioning, Indoor Navigation and

Location-Based Services (UPINLBS)’18, 2018, pp. 1–8.
[40] Y. Wang, J. Liu, Y. Chen, M. Gruteser, J. Yang, and H. Liu, “E-

eyes: Device-free location-oriented activity identification using fine-
grained wifi signatures,” in Proceedings of the 20th Annual International

Conference on Mobile Computing and Networking, ser. MobiCom ’14.
New York, NY, USA: Association for Computing Machinery, 2014, p.
617628.

[41] K. Kleisouris, Y. Chen, J. Yang, and R. P. Martin, “The impact of
using multiple antennas on wireless localization,” in 2008 5th Annual

IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc

Communications and Networks, 2008, pp. 55–63.
[42] X. Zheng, H. Liu, J. Yang, Y. Chen, R. P. Martin, and X. Li, “A study

of localization accuracy using multiple frequencies and powers,” IEEE

Transactions on Parallel and Distributed Systems, vol. 25, no. 8, pp.
1955–1965, 2014.

[43] Y. Shu, Y. Huang, J. Zhang, P. Cou, P. Cheng, J. Chen, and K. G. Shin,
“Gradient-based fingerprinting for indoor localization and tracking,”
IEEE Transactions on Industrial Electronics, vol. 63, no. 4, pp. 2424–
2433, 2016.

[44] H. Liu, J. Yang, S. Sidhom, Y. Wang, Y. Chen, and F. Ye, “Accurate
wifi based localization for smartphones using peer assistance,” IEEE

Transactions on Mobile Computing, vol. 13, no. 10, pp. 2199–2214,
2014.

[45] J. Yang and Y. Chen, “Indoor localization using improved rss-based
lateration methods,” in GLOBECOM 2009 - 2009 IEEE Global Telecom-

munications Conference, 2009, pp. 1–6.
[46] N. Hernndez, M. Ocaa, J. M. Alonso, and E. Kim, “Wifi-based indoor

localization and tracking of a moving device,” in 2014 Ubiquitous

Positioning Indoor Navigation and Location Based Service (UPINLBS),
2014, pp. 281–289.

[47] G. Chandrasekaran, M. A. Ergin, J. Yang, S. Liu, Y. Chen, M. Gruteser,
and R. P. Martin, “Empirical evaluation of the limits on localization
using signal strength,” in 2009 6th Annual IEEE Communications

Society Conference on Sensor, Mesh and Ad Hoc Communications and

Networks, 2009, pp. 1–9.
[48] I. Mai, T. Marwan, and E. Mustafa, “Cnn based indoor localization using

rss time-series,” in IEEE Symposium on Computers and Communications

(ISCC’18), 2018.
[49] P. Tiwary, A. Pandey, S. Kumar, and M. Youssef, “Novel differential

r-vectors for localization in iot networks,” IEEE Sensors Letters, vol. 5,
no. 6, pp. 1–4, 2021.

[50] J. Yang, Y. Chen, V. B. Lawrence, and V. Swaminathan, “Robust
wireless localization to attacks on access points,” in 2009 IEEE Sarnoff

Symposium, 2009, pp. 1–5.
[51] X. Li, Y. Chen, J. Yang, and X. Zheng, “Designing localization al-

gorithms robust to signal strength attacks,” in 2011 Proceedings IEEE

INFOCOM, 2011, pp. 341–345.
[52] Y. Li, Y. Hu, R. Zhang, Y. Zhang, and T. Hedgpeth, “Secure indoor

positioning against signal strength attacks via optimized multi-voting,”
in 2019 IEEE/ACM 27th International Symposium on Quality of Service

(IWQoS), 2019, pp. 1–10.
[53] L. Li, G. Shen, C. Zhao, T. Moscibroda, J.-H. Lin, and F. Zhao, “Ex-

periencing and handling the diversity in data density and environmental
locality in an indoor positioning service,” in MobiCom’14, Maui, Hawaii,
USA, 2014, pp. 459–470.

[54] P. Bahl, V. N. Padmanabhan, and A. Balachandran, “Enhancements to
the radar user location and tracking system,” Microsoft Research, vol. 2,
no. MSR-TR-2000-12, pp. 775–784, Feb. 2000.

475

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on August 04,2023 at 14:27:36 UTC from IEEE Xplore.  Restrictions apply. 


