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Entropy-Stable Gauss Collocation Methods for Ideal Magneto-Hydrodynamics

Andrés M. Rueda-Ramírez,Florian J. Hindenlang,Jesse Chan,Gregor J. Gassner

• We propose a novel entropy-stable discontinuous Galerkin (DG) method on Gauss nodes for the GLM-MHD

equations.

• The entropy-stable Gauss DG discretization shows better accuracy than the Gauss-Lobatto (LGL) discretization

• We reformulate the existing LGL discretization of the GLM-MHD system to fit a general framework that includes

the Gauss and LGL methods.
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A B S T R A C T

In this paper, we present an entropy-stable Gauss collocation discontinuous Galerkin (DG) method

on 3D curvilinear meshes for the GLM-MHD equations: the single-fluid magneto-hydrodynamics

(MHD) equations with a generalized Lagrange multiplier (GLM) divergence cleaning mecha-

nism. For the continuous entropy analysis to hold and to ensure Galilean invariance in the diver-

gence cleaning technique, the GLM-MHD system requires the use of non-conservative terms.

Traditionally, entropy-stable DG discretizations have used a collocated nodal variant of the

DG method, also known as the discontinuous Galerkin spectral element method (DGSEM) on

Legendre-Gauss-Lobatto (LGL) points. Recently, Chan et al. [1, "Efficient Entropy Stable Gauss

Collocation Methods". SIAM (2019)] presented an entropy-stable DGSEM scheme that uses

Legendre-Gauss points (instead of LGL points) for conservation laws. Our main contribution is

to extend the discretization technique of Chan et al. to the non-conservative GLM-MHD system.

We provide a numerical verification of the entropy behavior and convergence properties of

our novel scheme on 3D curvilinear meshes. Moreover, we test the robustness and accuracy of

our scheme with a magneto-hydrodynamic Kelvin-Helmholtz instability problem. The numer-

ical experiments suggest that the entropy-stable DGSEM on Gauss points for the GLM-MHD

system is more accurate than the LGL counterpart.

1. Introduction

The ideal magnetohydrodynamics (MHD) equations are a set of partial differential equations (PDEs) that describe

the behavior of electrically conducting compressible fluids (plasmas), which find applications in numerous fields, e.g.,

space physics, plasma physics, astrophysics, and geophysics, among others. The ideal MHD system is a combination

of the compressible Euler equations of fluid dynamics with Maxwell’s equations of electromagnetism. There are

two relevant physical constraints to the ideal MHD equations that are not explicitly built into the partial differential

equations:

1. The divergence-free condition on the magnetic field, ∇⃗ ⋅ B⃗ = 0, which rules out the existence of magnetic

monopoles.

2. The second law of thermodynamics, which states that the thermodynamic entropy of a closed system can only

increase or remain constant in time.

Since these constraints are not explicitly built into the MHD equations, numerical discretizations of the MHD

system must take additional considerations to guarantee their fulfillment.

There is an extensive collection of techniques in the literature to deal with the divergence-free constraint in numer-

ical discretizations of the ideal MHD system. In this work, we employ the divergence cleaning method proposed by

Munz et al. [2] and Dedner et al. [3], which expands the MHD system with a generalized Lagrange multiplier (GLM),

which is advected and damped to minimize the divergence error. The expanded system of partial differential equations

is known as the GLM-MHD system. Since the GLM technique minimizes (but does not remove completely) the di-

vergence error, the GLM-MHD system includes non-conservative terms, which arise from Maxwell’s equations when
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∇⃗ ⋅ B⃗ ≠ 0. These non-conservative terms symmetrize the system of PDEs and are necessary to fulfill the second law

of thermodynamics with non-vanishing divergence errors [4, 5].

Discontinuous Galerkin (DG) methods offer a straightforward way to discretize PDEs with arbitrarily high-order

accuracy. We are interested in high-order DG methods because they are robust for advection-dominated problems,

readily parallelizable because of their compact stencils [6], flexible for complex 3D unstructured grids [7, 8], and well

suited to perform ℎ∕p adaptation [9, 10, 11, 12].

Following the work of Gassner [13], Fisher et al. [14] and Carpenter et al. [15], split-form DG methods that fulfill

the second law of thermodynamics have been proposed, e.g., for the shallow water equations [16], the incompressible

Navier-Stokes equations [17], the compressible Navier-Stokes equations [18], multi-phase fluid equations [19, 20],

the GLM-MHD system [21], among others. These entropy-stable methods rely on a nodal (collocated) variant of the

DG method that fulfills the summation by parts (SBP) property, also known as the discontinuous Galerkin spectral

element method (DGSEM) on Legendre-Gauss-Lobatto (LGL) points and a so-called flux-differencing representation

of the fluxes and non-conservative terms. With a careful selection of the numerical fluxes, the LGL-DGSEM scheme

becomes provably entropy stable, i.e. consistent with the second law of thermodynamics, which provides additional

nonlinear stability.

Recently, entropy-stable and kinetic-energy-preserving collocation DG schemes have also been constructed on

Gauss (instead of LGL) quadrature points [1, 22, 23, 24]. The difference is that Gauss-based operators are not classic

SBP operators, but satisfy a generalized SBP property [25, 26]. The main motivation to do so is that the Gauss

quadrature provides better accuracy and robustness than the LGL quadrature. Of particular interest is the work of

Chan et al. [1], as it introduces an efficient entropy-stable DGSEM scheme that does not need an "all-to-all" coupling

of the degrees of freedom for the evaluation of the numerical fluxes.

In this paper, we extend the entropy-stable Gauss collocation method of Chan et al. [1] to the GLM-MHD non-

conservative system. The main contributions of this paper are: (i) we rewrite the entropy-stable Gauss-DGSEM method

of Chan et al. [1] in an element-local form, which facilitates its implementation, and recreate the entropy conserva-

tion/stability proof deriving the exact entropy production terms; (ii) we develop a novel provably entropy conserva-

tive/stable Gauss-DGSEM discretization of the GLM-MHD equations that retains high-order accuracy and obtains

more accurate results than its LGL counterpart; (iii) we reformulate the entropy-stable LGL-DGSEM discretization

of the GLM-MHD equations proposed by Bohm et al. [21] using a single volume numerical non-conservative term;

and (iv) we provide a numerical verification of the methods and apply them in an under-resolved MHD turbulence

simulation.

The paper is organized as follows. In Section 2, we briefly describe the notation and introduce the GLM-MHD

system. In Section 3, we provide a brief literature review on existing entropy-stable discontinuous Galerkin discretiza-

tions on LGL points for conservation laws and for the non-conservative GLM-MHD system. Next, in Section 4, we

discuss the novel entropy-stable Gauss-DGSEM discretizations. First, rewrite the entropy-stable Gauss-DGSEM of

Chan et al. [1] in an element-local form. Next, we introduce the entropy-stable Gauss-DGSEM of the non-conservative

GLM-MHD system, and show its extension to three-dimensional unstructured and non-conforming curvilinear meshes.

Finally, the numerical verification and validation of the methods is presented in Section 5 and the conclusions are pre-

sented in Section 6.

2. Notation and Governing Equations

2.1. Notation
We adopt the notation of [21, 18, 27, 28] to work with vectors of different nature. Spatial vectors are noted with an

arrow (e.g. x⃗ = (x, y, z) ∈ ℝ
3), state vectors are noted in bold (e.g. u = (�, �v⃗, �E, B⃗,  )T ), and block vectors, which

contain a state vector in every spatial direction, are noted as

↔

f =

⎡⎢⎢⎣

f1
f2
f3

⎤⎥⎥⎦
. (1)

The gradient of a state vector is a block vector,

∇⃗q =

⎡
⎢⎢⎣

)xq
)yq
)zq

⎤
⎥⎥⎦
, (2)
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and the gradient of a spatial vector is defined as the transpose of the outer product with the nabla operator,

∇⃗v⃗ ∶=
(
∇⃗⊗ v⃗

)T
=
(
∇⃗v⃗T

)T
= L =

⎡
⎢⎢⎢⎣

)v1
)x

)v1
)y

)v1
)z

)v2
)x

)v2
)y

)v2
)z

)v3
)x

)v3
)y

)v3
)z

⎤
⎥⎥⎥⎦
, (3)

where we remark that we note general matrices with an underline.

We define the notation for the jump operator, arithmetic and logarithmic means between a left and right state, aL
and aR, as

JaK(L,R) ∶= aR − aL, {{a}}(L,R) ∶=
1

2
(aL + aR), aln

(L,R)
∶= JaK(L,R) ∕ Jln(a)K(L,R) . (4)

A numerically stable procedure to evaluate the logarithmic mean is given in [29].

2.2. The Ideal GLM-MHD Equations
2.2.1. The System of Equations

In this work, we use the variant of the ideal GLM-MHD equations that is consistent with the continuous entropy

analysis of Derigs et al. [4]. The system of equations reads

)tu + ∇⃗ ⋅
↔

fa(u) + �(u, ∇⃗u) = 0, (5)

with the state vector u = (�, �v⃗, �E, B⃗,  )T , the advective flux
↔

fa, and the non-conservative term �. Here, � is the

density, v⃗ = (v1, v2, v3)
T is the velocity, E is the specific total energy, B⃗ = (B1, B2, B3)

T is the magnetic field, and

 is the so-called divergence-correcting field, a generalized Lagrange multiplier (GLM) that is added to the original

MHD system to minimize the magnetic field divergence. While these equations do not enforce the divergence-free

condition exactly, ∇⃗ ⋅ B⃗ = 0, they evolve towards a divergence-free state [2, 3, 4].

The advective flux contains Euler, ideal MHD and GLM contributions,

↔

fa(u) =
↔

fa,Euler +
↔

fa,MHD +
↔

fa,GLM =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

�v⃗

�(v⃗ v⃗ T ) + pI

v⃗
(
1

2
� ‖‖v⃗‖‖2 + 
p


−1

)

0

0⃗

⎞⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0⃗

1

2�0
‖B⃗‖2I −

1

�0
B⃗B⃗T

1

�0

(
v⃗ ‖B⃗‖2 − B⃗

(
v⃗ ⋅ B⃗

))

v⃗ B⃗T − B⃗ v⃗ T

0⃗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0⃗

0

cℎ
�0
 B⃗

cℎ I

cℎB⃗

⎞⎟⎟⎟⎟⎟⎟⎟⎠

, (6)

where p is the gas pressure, I is the 3×3 identity matrix, �0 is the permeability of the medium, and cℎ is the hyperbolic

divergence cleaning speed.

We close the system with the (GLM) calorically perfect gas assumption [4],

p = (
 − 1)

(
�E −

1

2
� ‖‖v⃗‖‖2 − 1

2�0
‖B⃗‖2 − 1

2�0
 2

)
, (7)

where 
 denotes the heat capacity ratio.

The non-conservative term has two main components, � = �MHD + �GLM, with

�MHD = (∇⃗ ⋅ B⃗)�MHD =
(
∇⃗ ⋅ B⃗

)(
0 , �−1

0
B⃗ , �−1

0
v⃗ ⋅ B⃗ , v⃗ , 0

)T
, (8)

�GLM =
↔

�GLM ⋅ ∇⃗ = �GLM
1

) 

)x
+ �GLM

2

) 

)y
+ �GLM

3

) 

)z
, (9)

where
↔

�GLM is a block vector with

�GLM
l = �−1

0

(
0 , 0 , 0 , 0 , vl , 0 , 0 , 0 , vl

)T
, l = 1, 2, 3. (10)
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The first non-conservative term, �MHD, is the well-known Powell term [30], and the second non-conservative term,

�GLM, results from Galilean invariance of the full GLM-MHD system [31].

We note that for a magnetic field with vanishing divergence, ∇⃗ ⋅ B⃗ = 0, equation (5) reduces to the conservative

ideal MHD equations, which describe the conservation of mass, momentum, energy, and magnetic flux.

2.2.2. Thermodynamic Properties of the System

Assuming positive density and pressure, �, p > 0, we obtain a strictly convex mathematical entropy function for

the ideal GLM-MHD equations,

S(u) = −
�s


 − 1
, (11)

where s = ln (p�−
 ) is the thermodynamic entropy. From the entropy function, we define the entropy variables,

v =
)S

)u
=

(

 − s


 − 1
− � ‖‖v⃗‖‖2 , 2�v1, 2�v2, 2�v3, − 2�, 2�B1, 2�B2, 2�B3, 2� 

)T

, (12)

with � =
�

2p
, a quantity that is proportional to the inverse temperature.

Derigs et al. [31] showed that if we contract (5) with the entropy variables, we obtain an entropy conservation law,

)S

)t
+ ∇⃗ ⋅ f⃗ S = 0, (13)

if the solution is smooth, and an entropy inequality,

)S

)t
+ ∇⃗ ⋅ f⃗ S ≤ 0, (14)

if the solution contains discontinuities. Here, f⃗ S = v⃗S is the so-called entropy flux.

Finally, we define the entropy flux potential to be

Ψ⃗ ∶= vT
↔

fa − f⃗S + �B⃗, (15)

where � is the contraction of �MHD from the Powell term (8) into entropy space,

� = vT�MHD = 2�(v⃗ ⋅ B⃗). (16)

2.2.3. One-Dimensional MHD System

To simplify the analysis of the GLM-MHD system, we write a one-dimensional version of (5),

)u

)t
+
)fa

)x
+ �1 = 0, (17)

where the state variable is u = (�, �v⃗, �E, B⃗,  )T , as before, and the advective flux in x is

fa(u) ∶= f
a,Euler
1

+ f
a,MHD

1
+ f

a,GLM
1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�v1

�v2
1
+ p

�v1v2

�v1v3

v1

(
1

2
�‖v⃗‖2 + 
p


−1

)

0

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

�0

(
1

2
‖B⃗‖2 − B1B1

)

−B1B2∕�0

−B1B3∕�0
1

�0

(
v1‖B⃗‖2 − B1

(
v⃗ ⋅ B⃗

))

0

v1B2 − v2B1

v1B3 − v3B1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0
cℎ
�0
 B1

cℎ 

0

0

cℎB1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (18)
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In (18), we dropped the sub-index in the conservative fluxes to simplify the notation and improve the readability,

f ← f1, as this change does not produce ambiguity between the 1D and 3D notations. The non-conservative term,

�1 = �MHD
1

+ �GLM
1

, consists of the following two terms

�MHD
1

=
)B1

)x
�MHD =

)B1

)x

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

�−1
0
B1

�−1
0
B2

�−1
0
B3

�−1
0
v⃗ ⋅ B⃗
v1
v2
v3
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, �GLM
1

=
) 

)x
�GLM
1

=
) 

)x

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

�−1
0
v1 
0

0

0

�−1
0
v1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (19)

Finally, the entropy flux potential in 1D is defined as

Ψ ∶= vT fa − fS + �B1. (20)

3. Entropy-Stable LGL-DGSEM Discretizations

In this section, we present a brief literature review of entropy-stable nodal DG discretizations on LGL nodes

for general conservation laws and the GLM-MHD equations. For compactness and readability, we present the one-

dimensional forms of these methods. The three-dimensional form of the discretizations for curvilinear meshes can be

found in the references listed in the following sections.

3.1. Entropy-Stable LGL-DGSEM for Conservation Laws
To obtain an entropy-stable LGL-DGSEM discretization of a conservation law,

)u

)t
+
)fa

)x
= 0, (21)

the simulation domain is tessellated into elements and all variables are approximated within each element by piece-

wise Lagrange interpolating polynomials of degree N on Legendre-Gauss-Lobatto (LGL) nodes. These polynomials

are continuous in each element and may be discontinuous at the element interfaces. Furthermore, (21) is multiplied

by an arbitrary polynomial (test function) of degree N and numerically integrated by parts inside each element of the

mesh with an LGL quadrature rule of N + 1 points on a reference element, � ∈ [−1, 1], to obtain [14, 15, 32]

J!j u̇j + 2

N∑
k=0

Qjkf
∗
(j,k)

+ �j0

(
fa
0
− f̂a

(0,L)

)
− �jN

(
faN − f̂a

(N,R)

)
= 0 (22)

for each degree of freedom j of each element. In (22), !j is the reference-space quadrature weight, J is the ge-

ometry mapping Jacobian from reference space to physical space, which is constant within each element in the 1D

discretization, Qjk = !jDjk = !jl
′
k
(�j) is the SBP derivative matrix, defined in terms of the Lagrange interpolating

polynomials, {lk}
N
k=0

, f∗
(j,k)

= f∗(uj ,uk) is the volume numerical two-point flux, and f̂a
(i,j)

= f̂a(ui,uj) is the surface

numerical flux, which accounts for the jumps of the solution across the cell interfaces. The sub-indices (0, L) and

(N,R) indicate that the numerical flux is computed between a boundary node and an outer state (left or right).

For compactness and ease of implementation, (22) can be rewritten as

J!j u̇j +
N∑
k=0

Sjkf
∗
(j,k)

− �0N f̂a
(0,L)

+ �jN f̂a
(N,R)

= 0, (23)

where S is a skew-symmetric matrix defined as

S = 2Q − B, (24)
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and

B ∶= diag(−1, 0,… , 0, 1). (25)

Lemma 1. The semi-discrete entropy balance of the LGL-DGSEM discretization of conservation laws, (23), integrat-

ing over an entire element, reads

N∑
j=0

!jJṠj = f̂S
(0,L)

− f̂S
(N,R)

+
1

2

(
r̂(L,0) + r̂(N,R)

)
+

N∑
j,k=0

Qjkr(j,k), (26)

where the numerical entropy flux is defined as

f̂S
(j,k)

= {{v}}T
(j,k) f̂

a
(j,k)

− {{Ψ}}(j,k) , (27)

the surface and volumetric entropy production terms are defined respectively as

r̂(j,k) = JvKT
(j,k) f̂

a
(j,k)

− JΨK(j,k) , (28)

r(j,k) = JvKT
(j,k) f

∗
(j,k)

− JΨK(j,k) . (29)

Proof. The proof of entropy conservation/stability for the LGL-DGSEM discretization of conservation laws was orig-

inally presented by Gassner [13], Fisher and Carpenter [33] and Carpenter et al. [15]. Moreover, a proof in a very

similar notation to the one used in this paper can be found in [34].

Due to Lemma 1, it is possible to control the entropy behavior of the DGSEM discretization by selecting the volume

and surface numerical fluxes. If an entropy conservative flux is used for both the volume and surface numerical fluxes,

the scheme is provably entropy conservative in its advective terms. Furthermore, if an entropy conservative flux is

used for the volume numerical fluxes and an entropy-stable flux is used for the surface numerical fluxes, the resulting

scheme is provably entropy stable.

Remark 1. The volume numerical flux of (23) is consistent with the surface numerical flux because, when evaluated

on a single point, both fluxes converge to the physical flux,

f̂a(uj ,uj) = f∗(uj ,uj) = fa(uj). (30)

Moreover, the volume numerical flux of (23) is interchangeable with the surface numerical flux in the entropy conser-

vative scheme. Any combination of entropy conservative fluxes can be selected for the volume and surface numerical

fluxes, and the resulting scheme is entropy conservative. As a matter of fact, a common practice to obtain a prov-

ably entropy-stable scheme is to use the same entropy conservative flux in the volume and the surface, and to add a

dissipation term in the surface flux.

3.2. Entropy-Stable LGL-DGSEM for the Non-Conservative GLM-MHD System
Bohm et al. [21] proposed an entropy-stable LGL-DGSEM discretization of the resistive GLM-MHD equations

that reads as

J!j u̇j + 2

N∑
k=0

Qjkf
∗
(j,k)

+ �j0

(
fa
0
− f̂a

(0,L)

)
− �jN

(
faN − f̂a

(N,R)

)

+

N∑
k=0

Qjk�
∗
(j,k) + �j0

(
�0 −�

◊
(0,L)

)
− �jN

(
�N −�

◊
(N,R)

)
= 0, (31)

where � is a non-derivative version of the non-conservative terms,

� ∶= �MHDB1 + �GLM
1

 , (32)
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�∗
(j,k) is the so-called volume numerical non-conservative term, and �

◊
i,j is the so-called surface numerical non-

conservative term. The surface numerical non-conservative term is defined as [4, 21]

�
◊
(j,j+1)

=
(
�MHDB1

)◊
(j,j+1)

+
(
�GLM
1

 
)◊
(j,j+1)

=
{{
B1

}}
(j,j+1)

�MHD
j + {{ }}(j,j+1) �

GLM
1,j

. (33)

and the volume numerical non-conservative term is defined as [21]

�∗
(j,k) = �∗MHD

(j,k) + �∗GLM
(j,k)

= �MHD
j B1,k + �GLM

1,j
 k. (34)

Remark 2. The volume numerical non-conservative term of (31) is consistent with the surface numerical non-conservative

term because, when evaluated on a single point, both are identical,

�◊(uj ,uj) = �∗(uj ,uj) = �(uj). (35)

However, these two terms are not interchangeable as they have a very dissimilar algebraic form.

Lemma 2. The semi-discrete entropy balance of the LGL-DGSEM discretization of the non-conservative GLM-MHD

system, (31), integrating over an entire element, reads

N∑
j=0

!jJṠj = f̂S
(0,L)

− f̂S
(N,R)

+
1

2

(
r̂(L,0) + r̂(N,R)

)
+

N∑
j,k=0

Qjkr(j,k). (36)

where the numerical entropy flux and the entropy production on the surface and volume are defined respectively as

f̂S
(j,k)

= {{v}}T
(j,k) f̂

a
(j,k)

+
1

2
vTj �

◊
(j,k)

+
1

2
vTk�

◊
(k,j)

− {{Ψ}}(j,k) , (37)

r̂(j,k) = JvKT
(j,k) f̂

a
(j,k)

+ vTk�
◊
(k,j)

− vTj �
◊
(j,k)

− JΨK(j,k) . (38)

r(j,k) = JvKT
(j,k) f

∗
(j,k)

+ vTk�
◊
(k,j)

− vTj �
◊
(j,k)

− JΨK(j,k) . (39)

Proof. The proof of entropy conservation/stability for the LGL-DGSEM was originally presented by Bohm et al. [21],

and can also be found in [28], where the exact same notation of this paper is used.

4. Novel Entropy-Stable Gauss-DGSEM Discretizations

In this section, we present entropy-stable Gauss-DGSEM discretizations. In the first part, we rewrite the scheme

for conservation laws proposed by Chan et al. [1] in an element-local form in one spatial dimension. In the second

part, we present the novel Gauss-DGSEM scheme for the non-conservative GLM-MHD system in one dimension and

show its extension to 3D and curvilinear meshes.

4.1. Entropy-Stable Gauss-DGSEM for Conservation Laws
We focus on the entropy-stable Gauss-DGSEM discretization of conservation laws proposed by Chan et al. [1],

which is based on the generalized summation by parts property,

Q +QT = B̂, (40)

where the generalized boundary matrix is defined as

B̂ = VTfB
0Vf , (41)

Vf is a matrix that interpolates polynomials at Gauss nodes to values at the element boundaries, and B0 is a 2 × 2

boundary matrix:

Vf =

[
l0(−1) l1(−1) ⋯ lN (−1)

l0(+1) l1(+1) ⋯ lN (+1)

]
, B0 =

[
−1 0

0 1

]
. (42)
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As a result, the components of matrix B̂ can be written explicitly as

B̂jk = lj(+1)lk(+1) − lj(−1)lk(−1). (43)

Matrices Q and B̂ have the following generalized SBP properties:

N∑
k=0

Qjk = 0,
N∑
k=0

B̂jk = lj(+1) − lj(−1),
N∑
k=0

B̂jkuk = lj(+1)uR − lj(−1)uL, ∀j, (44)

for any polynomial u ∈ ℙ
N with nodal values uk and boundary values uL and uR.

The entropy-stable Gauss-DGSEM discretization of Chan et al. [1] can be written in an element-local fashion as

J!j u̇j +
N∑
k=0

Ŝjkf
∗
(j,k)

−lj(−1)

[
f∗

(
uj , ũL

)
−

N∑
k=0

lk(−1) f
∗
(
ũL,uk

)
+ f̂a

(
ũL, ũ

+
L

)]

+lj(+1)

[
f∗

(
uj , ũR

)
−

N∑
k=0

lk(+1) f
∗
(
ũR,uk

)
+ f̂a

(
ũR, ũ

+
R

)]
= 0, (45)

where Ŝ is a skew-symmetric matrix defined as

Ŝ = 2Q − B̂, (46)

ũL and ũR denote the so-called entropy-projected solution at the element boundaries,

ũL ∶= u

(
N∑
i=0

li(−1)v(ui)

)
, ũR ∶= u

(
N∑
i=0

li(+1)v(ui)

)
, (47)

where the operator u(⋅) computes the state variables from a set of entropy variables, and the operator v(⋅) computes

the entropy variables from a set of state variables, and ũ+
L

and ũ+
R

denote the external states at the element boundaries,

which can be defined by a boundary condition or a neighbor element’s entropy-projected solution.

Note that (40) is valid for both Gauss and LGL discretizations. Hence, (45) can be easily shown to be equivalent

to (23) when LGL nodes are used.

Lemma 3. The semi-discrete entropy balance of the Gauss-DGSEM discretization of conservation laws, (45), inte-

grating over an entire element, reads

N∑
j=0

!jJṠj = f̂S
(
ũL, ũ

+
L

)
− f̂S

(
ũR, ũ

+
R

)
+

1

2

[
r̂
(
ũL, ũ

+
L

)
+ r̂

(
ũR, ũ

+
R

)]

+
1

2

N∑
j,k=0

Ŝjkr(j,k) +
N∑
j=0

(
lj(+1)r̃(j,R) − lj(−1)r̃(j,L)

)
, (48)

where the last two sums denote the contribution of volumetric entropy production terms (29), and we use the short-

hand notation r̃(j,L) and r̃(j,R) for the volumetric entropy production terms between the solution at node j and the

entropy-projected solution at the left and right boundaries, respectively, i.e.,

r̃(j,L) ∶= r(uj , ũL), r̃(j,R) ∶= r(uj , ũR). (49)

The surface entropy production term is defined in (28) and the numerical entropy flux defined in (27). Recall that (27)

is a symmetric term, which implies entropy conservation when the volume and surface entropy production vanishes.
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Proof. The proof of entropy conservation/stability of (45) was originally presented in [1] using so-called block hy-

bridized matrix operators. However, we recreate the one-dimensional proof in our own notation for completeness,

where we explicitly derive the different surface and volume entropy production terms.

The semi-discrete entropy balance is obtained by contracting (45) with the entropy variables and integrating over

an element,

N∑
j=0

!jJṠj = −

N∑
j=0

vTj

[
N∑
k=0

Ŝjkf
∗
(j,k)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(a)∶= volume term

+

N∑
j=0

vTj lj(−1)

[
f∗

(
uj , ũL

)
−

N∑
k=0

lk(−1) f
∗
(
ũL,uk

)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(b)∶= new terms (left)

+

N∑
j=0

vTj lj(−1)f̂
a
(
ũL, ũ

+
L

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(c)∶= boundary term (left)

−

N∑
j=0

vTj lj(+1)

[
f∗

(
uj , ũR

)
−

N∑
k=0

lk(+1) f
∗
(
ũR,uk

)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(d)∶= new terms (right)

−

N∑
j=0

vTj lj(+1)f̂
a
(
ũR, ũ

+
R

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(e)∶= boundary term (right)

. (50)

Let us first manipulate the volume terms:

(a) =
N∑
j=0

vTj

N∑
k=0

Ŝjkf
∗
(j,k)

(skew-symmetry of Ŝ) =
1

2

N∑
j,k=0

vTj (Ŝjk − Ŝkj)f
∗
(j,k)

(re-index and symmetry of f∗) =
1

2

N∑
j,k=0

Ŝjk(v
T
j − vTk )

T f∗
(j,k)

(definition of r, (29)) =
1

2

N∑
j,k=0

Ŝjk(Ψj − Ψk − r(j,k))

(re-index and skew-symmetry of Ŝ) =

N∑
j,k=0

Ŝjk

(
Ψj −

1

2
r(j,k))

)

(def. of Ŝ and SBP properties, (44)) =

N∑
j=0

Ψj

N∑
k=0

2Qjk

⏟⏞⏟⏞⏟
=0

−

N∑
j=0

Ψj

N∑
k=0

B̂jk

⏟⏟⏟
=lj (+1)−lj (−1)

−
1

2

N∑
j,k=0

Ŝjkr(j,k)

=ΨL − ΨR −
1

2

N∑
j,k=0

Ŝjkr(j,k),

where ΨL and ΨR denote the interpolation of the entropy potential to the left and right boundaries of the element,

respectively.

Next, we analyze the new terms that connect all degrees of freedom with the left boundary:

(b) =
N∑
j=0

vTj lj(−1)

[
f∗

(
uj , ũL

)
−

N∑
k=0

lk(−1) f
∗
(
ũL,uk

)]
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(eval. v on the boundary) =

N∑
j=0

vTj lj(−1)f
∗
(
uj , ũL

)
−

N∑
k=0

ṽTLlk(−1) f
∗
(
ũL,uk

)

(re-index and symmetry of f∗) =

N∑
j=0

lj(−1)(vj − ṽL)
T f∗

(
uj , ũL

)

(definition of r̃, (49),(29)) =

N∑
j=0

lj(−1)(Ψj − Ψ̃L − r̃(j,L))

=ΨL − Ψ̃L −

N∑
j=0

lj(−1)r̃(j,L)

where ṽL is the simple interpolation of the entropy variables to the left boundary, but we write it with a tilde since it

also corresponds to the entropy-projected quantity, and we introduce the entropy-projected entropy potential,

Ψ̃L ∶= Ψ

(
N∑
i=0

li(−1)v(ui)

)
. (51)

The entropy balance of the left boundary term reads

(c) =
N∑
j=0

vTj lj(−1)f̂
a
(
ũL, ũ

+
L

)
= ṽTL f̂

a
(
ũL, ũ

+
L

)
. (52)

Terms (d) and (e) at the right boundary are analyzed in the same form as terms (b) and (c). Gathering all contributions

we obtain

N∑
j=0

!jJṠj = −(a) + (b) + (c) − (d) − (e)

= ṽTL f̂
a
(
ũL, ũ

+
L

)
− Ψ̃L − ṽTR f̂

a
(
ũR, ũ

+
R

)
+ Ψ̃R +

1

2

N∑
j,k=0

Ŝjkr(j,k) +
N∑
j=0

(
lj(+1)r̃(j,R) − lj(−1)r̃(j,L)

)
.

(53)

Finally, we sum and subtract the following outer terms,

N∑
j=0

!jJṠj =ṽ
T
L f̂

a
(
ũL, ũ

+
L

)
− Ψ̃L − ṽTR f̂

a
(
ũR, ũ

+
R

)
+ Ψ̃R +

1

2

N∑
j,k=0

Ŝjkr(j,k) +
N∑
j=0

(
lj(+1)r̃(j,R) − lj(−1)r̃(j,L)

)

+
1

2

(
(ṽ+
L
)T f̂a

(
ũL, ũ

+
L

)
− Ψ̃+

L
− (ṽ+

R
)T f̂a

(
ũR, ũ

+
R

)
+ Ψ̃+

R

)

−
1

2

(
(ṽ+
L
)T f̂a

(
ũL, ũ

+
L

)
− Ψ̃+

L
− (ṽ+

R
)T f̂a

(
ũR, ũ

+
R

)
+ Ψ̃+

R

)
, (54)

where ṽ+
L

, ṽ+
R

, Ψ̃+
L

and Ψ̃+
R

are the outer entropy variables and potentials. Simplifying using the definitions of the

numerical entropy flux, (27), and the surface entropy production (28), we obtain

N∑
j=0

!jJṠj = f̂S
(
ũL, ũ

+
L

)
− f̂S

(
ũR, ũ

+
R

)
+

1

2

[
r̂
(
ũL, ũ

+
L

)
+ r̂

(
ũR, ũ

+
R

)]

+
1

2

N∑
j,k=0

Ŝjkr(j,k) +
N∑
j=0

(
lj(+1)r̃(j,R) − lj(−1)r̃(j,L)

)
, (55)

The proof of EC/ES for the three-dimensional curvilinear discretization can also be found in [1].
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4.2. Entropy-Stable Gauss-DGSEM for the Non-Conservative GLM-MHD System
Unfortunately, it is not trivial to carry over the LGL-DGSEM discretization of the non-conservative GLM-MHD

system (31) to Gauss points. The direct way to carry over (31) to Gauss is to simply add the surface and volume
numerical non-conservative terms to (45). However, the resulting discretization is not entropy consistent, as we show
in Appendix A. Instead, in this paper we propose the following novel Gauss-DGSEM discretization of the GLM-MHD
equations:

J!j u̇j +
N∑
k=0

Ŝjk

(
f∗
(j,k)

+�
◊

(j,k)

)

−lj(−1)

[
f∗

(
uj , ũL

)
+�◊ (

uj , ũL
)
−

N∑
k=0

lk(−1)
(
f∗

(
ũL,uk

)
+�◊ (

ũL,uk
))

+ f̂a
(
ũL, ũ

+
L

)
+�◊ (

ũL, ũ
+
L

)]

+lj(+1)

[
f∗

(
uj , ũR

)
+�◊ (

uj , ũR
)
−

N∑
k=0

lk(+1)
(
f∗

(
ũR,uk

)
+�◊ (

ũR,uk
))

+ f̂a
(
ũR, ũ

+
R

)
+�◊ (

ũR, ũ
+
R

)]
= 0. (56)

Remark 3. Using (56), it is possible to reformulate the LGL discretization of the GLM-MHD system, (31), as

J!j u̇j+
N∑
k=0

Sjk

(
f∗
(j,k)

+�
◊
(j,k)

)
− �j0

(
f̂a
(0,L)

+�
◊
(0,L)

)
+ �jN

(
f̂a
(N,R)

+�
◊
(N,R)

)
= 0, (57)

where the volume and surface numerical non-conservative terms are now consistent and interchangeable, because

they are the same term, and there is no need for Bohm et al.’s [21] volume numerical non-conservative term, �∗
(j,k).

It can be shown that (57) is algebraically equivalent to (31) using the identity

�∗
(j,k) = 2�

◊
(j,k)

−�j , (58)

which is obtained by combining (33) and (34). The new volume non-conservative term then reads

N∑
k=0

Sjk�
◊
(j,k)

=

N∑
k=0

(
2Qjk − Bjk

)
�

◊
(j,k)

=

N∑
k=0

(
Qjk(�

∗
(j,k) +�j) − Bjk�

◊
(j,k)

)

=

N∑
k=0

(
Qjk�

∗
(j,k) − Bjk�

◊
(j,k)

)

(LGL boundary matrix, (25)) =

N∑
k=0

Qjk�
∗
(j,k) − �jN�N + �j0�0,

which is equivalent to the non-conservative terms in (31).

Lemma 4. The semi-discrete entropy balance of the Gauss-DGSEM discretization of the non-conservative GLM-MHD

system, (56), integrating over an entire element, reads

N∑
j=0

!jJṠj = f̂S
(
ũL, ũ

+
L

)
− f̂S

(
ũR, ũ

+
R

)
+

1

2

[
r̂
(
ũL, ũ

+
L

)
+ r̂

(
ũR, ũ

+
R

)]

+
1

2

N∑
j,k=0

Ŝjkr(j,k) +
N∑
j=0

(
lj(+1)r̃(j,R) − lj(−1)r̃(j,L)

)
, (59)

where the last two sums denote the contribution of the volumetric entropy production terms (39), r̃(j,L) and r̃(j,R) are

again the volumetric entropy production terms between the solution at node j and the entropy-projected solution at the

left boundary and right boundary, respectively (49), and the surface numerical entropy flux and entropy production

are defined as in (37) and (38).
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Proof. The proof follows from the proof of Lemma 3. We first manipulate the volume terms to obtain

(a) =
N∑
j=0

vTj

N∑
k=0

Ŝjk

(
f∗
(j,k)

+�
◊
(j,k)

)

(skew-sym. of Ŝ, sym. of f∗ & re-index) =
1

2

N∑
j,k=0

Ŝjk

(
(vTj − vTk )

T f∗
(j,k)

+ vTj �
◊
(j,k)

− vTk�
◊
(k,j)

)

(definition of r, (39)) =
1

2

N∑
j,k=0

Ŝjk(Ψj − Ψk − r(j,k))

(re-index, def. of Ŝ and SBP properties, (44)) =ΨL − ΨR −
1

2

N∑
j,k=0

Ŝjkr(j,k),

where we again use the interpolation of the entropy potential at the boundaries, ΨL and ΨR.

Next, analyzing the new terms that connect all degrees of freedom with the left boundary we find

(b) =
N∑
j=0

vTj lj(−1)

[
f∗

(
uj , ũL

)
+�◊ (

uj , ũL
)
−

N∑
k=0

lk(−1)
(
f∗

(
ũL,uk

)
+�◊ (

ũL,uj
))]

(eval. ṽ & re-index) =

N∑
j=0

lj(−1)
(
(vj − ṽL)

T f∗
(
uj , ũL

)
+ vTj �

◊ (
uj , ũL

)
− ṽTL�

◊ (
ũL,uj

))

(def. of r̃, (49),(39)) =ΨL − Ψ̃L −

N∑
j=0

lj(−1)r̃(j,L),

where ṽL is again the interpolation of the entropy variables to the left boundary, and we use the entropy-projected

entropy potential, (51).

The entropy balance of the left boundary term reads

(c) =
N∑
j=0

vTj lj(−1)
[
f̂a

(
ũL, ũ

+
L

)
+�◊ (

ũL, ũ
+
L

)]
= ṽTL

[
f̂a

(
ũL, ũ

+
L

)
+�◊ (

ũL, ũ
+
L

)]
. (60)

As in the previous proof, terms (d) and (e) are analyzed in the same form as terms (b) and (c). Gathering all contribu-

tions we obtain

N∑
j=0

!jJṠj = − (a) + (b) + (c) − (d) − (e)

=ṽTL

[
f̂a

(
ũL, ũ

+
L

)
+�◊ (

ũL, ũ
+
L

)]
− Ψ̃L − ṽTR

[
f̂a

(
ũR, ũ

+
R

)
+�◊ (

ũR, ũ
+
R

)]
+ Ψ̃R

+
1

2

N∑
j,k=0

Ŝjkr(j,k) +
N∑
j=0

(
lj(+1)r̃(j,R) − lj(−1)r̃(j,L)

)
. (61)

Finally, summing and subtracting the outer terms, as in (54), and simplifying we obtain

N∑
j=0

!jJṠj = f̂S
(
ũL, ũ

+
L

)
− f̂S

(
ũR, ũ

+
R

)
+

1

2

[
r̂
(
ũL, ũ

+
L

)
+ r̂

(
ũR, ũ

+
R

)]

+
1

2

N∑
j,k=0

Ŝjkr(j,k) +
N∑
j=0

(
lj(+1)r̃(j,R) − lj(−1)r̃(j,L)

)
. (62)
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4.2.1. Extension to 3D Curvilinear Meshes

In one dimension, it was trivial to use the surface numerical non-conservative term, �◊, in the volume integral and

in the terms that connect all nodes with the surface. However, in three-dimensional curvilinear meshes, we require the

volume numerical fluxes (and non-conservative terms) to perform metric dealiasing [32]. For the conservative two-

point fluxes, the metric dealiasing is achieved with the simple average of the metric terms, but the metric dealiasing is

not as trivial with the numerical non-conservative terms.

Fortunately, the generalized "surface" numerical non-conservative term, introduced by Rueda-Ramírez et al. [28,

Appendix C.1] as an auxiliary variable for the proofs, provides a consistent way to do the metric dealiasing, which also

guarantees entropy consistency, as we show below.

We obtain the three-dimensional Gauss-DGSEM discretization of the GLM-MHD system on curvilinear meshes by

extending the one-dimensional variant using tensor-product basis expansions. For brevity, we use the same polynomial

degree in all three spatial directions, although different polynomial degrees can be used for different directions, as in

[12, 11]. The extended version of (56) reads

Jijk!ijku̇ijk + !jk

⎧
⎪⎨⎪⎩

N∑
m=0

Ŝim�̃
1
(i,m)jk

+

[
li(�b)

(
�̃1

(
uijk, ũb

)
−

N∑
m=0

lm(�b)�̃
1
(
ũb,umjk

)
+ �̂1

(
ũb, ũ

+
b

) )]�b=+1, b↦Rjk

�b=−1, b↦Ljk

⎫
⎪⎬⎪⎭

+ !ik

⎧
⎪⎨⎪⎩

N∑
m=0

Ŝjm�̃
2
i(j,m)k

+

[
lj(�b)

(
�̃2

(
uijk, ũb

)
−

N∑
m=0

lm(�b)�̃
2
(
ũb,uimk

)
+ �̂2

(
ũb, ũ

+
b

) )]�b=+1, b↦iRk

�b=−1, b↦iLk

⎫
⎪⎬⎪⎭

+ !ij

⎧
⎪⎨⎪⎩

N∑
m=0

Ŝkm�̃
3
ij(k,m)

+

[
lk(�b)

(
�̃3

(
uijk, ũb

)
−

N∑
m=0

lm(�b)�̃
3
(
ũb,uijm

)
+ �̂3

(
ũb, ũ

+
b

) )]�b=+1, b↦ijR

�b=−1, b↦ijL

⎫
⎪⎬⎪⎭
= 0. (63)

The mapping Jacobians, Jijk, which may now be different at each degree of freedom of the element, and the

contravariant basis vectors, a⃗m
ijk

= ∇⃗�m, define the mapping from reference space to physical space, (�1, �2, �3) ∈

[−1, 1]3 → (x, y, z) ∈ Ω [35, 36].

Moreover, the following new conventions are used:

• The two- and three-dimensional quadrature weights are defined from the one-dimensional weights as

!ij ∶= !i!j , !ijk ∶= !i!j!k. (64)

• The newly introduced transformed two-point terms in the volume are defined as

�̃1
(i,m)jk

∶= �̃1
(
uijk,umjk

)
∶= f̃1∗

(i,m)jk
+ �̃

1◊
(i,m)jk

. (65)

• The volume numerical two-point fluxes are defined as

f̃1∗
(i,m)jk

∶=
↔

f∗(uijk,umjk) ⋅
{{
J a⃗1

}}
(i,m)jk

, f̃2∗
i(j,m)k

∶=
↔

f∗(uijk,uimk) ⋅
{{
J a⃗2

}}
i(j,m)k

,

f̃3∗
ij(k,m)

∶=
↔

f∗(uijk,uijm) ⋅
{{
J a⃗3

}}
ij(k,m)

, (66)

where
↔

f∗ is a symmetric and consistent two-point averaging flux function, which can be selected to provide

entropy conservation [32, 18, 37].

• The generalized "surface" numerical non-conservative term between two nodes that are aligned in the �-direction

reads [28, Appendix C.1]

�̃
1◊
(i,m)jk

∶=
1

2

[
(B⃗ ⋅ J a⃗1)ijk + B⃗mjk ⋅

{{
J a⃗1

}}
(i,m)jk

]
�MHD
ijk +

↔

�GLM
ijk ⋅ J a⃗1ijk {{ }}(i,m)jk , (67)
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and the other directions are constructed in an analogous way. We write the term in a box since it is the most

important ingredient for the three-dimensional entropy-stable Gauss-DGSEM discretization of the GLM-MHD

equations on curvilinear meshes.

• On an element boundary, again an entropy-projected solution is used, such as

ũLjk ∶= u

(
N∑
i=0

li(−1)v(uijk)

)
, ũRjk ∶= u

(
N∑
i=0

li(+1)v(uijk)

)
. (68)

• The new two-point term at the element interface is defined as

�̂1
(
ũb, ũ

+
b

)
∶= f̂1a

(
ũb, ũ

+
b

)
+ �̂1◊ (

ũb, ũ
+
b

)
, (69)

and depends on the surface numerical flux and non-conservative surface term, which both include the trans-

formation with the surface metric. The solution from the neighbor element is marked by a +. Note that on a

conforming mesh, the normal surface metric is unique at the element interface, and thus the numerical non-

conservative term from (67) evaluated at the right element interface (�b = +1) reduces to

�̂1◊
(
ũRjk, ũ

+
Rjk

)
= J a⃗1Rjk ⋅

[{{
B⃗
}}

(R,R+)jk
�MHD
Rjk +

↔

�GLM
Rjk {{ }}(R,R+)jk

]
, (70)

where J a⃗1
Rjk

is the non-normalized surface normal and {{⋅}}(R,R+)jk denotes the average operator across the

element interface. The non-conservative surface term is then equivalent the one given in [21].

Remark 4. If LGL nodes are used, the novel three-dimensional discretization, (63), is equivalent to the three-dimensional

LGL-DGSEM for the GLM-MHD system of Bohm et al. [21],

Jijk!ijku̇
DG
ijk =!jk

(
−2

N∑
m=0

Qim f̃
1∗
(i,m)jk

−

N∑
m=0

Qim�̃
1∗
(i,m)jk − �i0

[
(
↔

f +
↔

�) ⋅ J a⃗1
]
0jk

+ �iN

[
(
↔

f +
↔

�) ⋅ J a⃗1
]
Njk

)

+!ik

(
−2

N∑
m=0

Qjm f̃
2∗
i(j,m)k

−

N∑
m=0

Qjm�̃
2∗
i(j,m)k − �j0

[
(
↔

f +
↔

�) ⋅ J a⃗2
]
i0k

+ �jN

[
(
↔

f +
↔

�) ⋅ J a⃗2
]
iNk

)

+!ij

(
−2

N∑
m=0

Qkm f̃
3∗
ij(k,m)

−

N∑
m=0

Qkm�̃
3∗
ij(k,m) − �k0

[
(
↔

f +
↔

�) ⋅ J a⃗3
]
ij0

+ �kN

[
(
↔

f +
↔

�) ⋅ J a⃗3
]
ijN

)

+!jk

(
�i0

[
f̂1a
(0,L)jk

+ �̂
1◊
(0,L)jk

]
− �iN

[
f̂1a
(N,R)jk

+ �̂
1◊
(N,R)jk

])

+!ik

(
�j0

[
f̂2a
i(0,L)k

+ �̂
2◊
i(0,L)k

]
− �jN

[
f̂2a
i(N,R)k

+ �̂
2◊
i(N,R)k

])

+!ij

(
�k0

[
f̂3a
ij(0,L)

+ �̂
3◊
ij(0,L)

]
− �kN

[
f̂3a
ij(N,R)

+ �̂
3◊
ij(N,R)

])
. (71)

It is straight-forward to reproduce the findings of Remark 3, since the non-conservative terms identity holds in 3D,

�̃1∗
(i,m)jk = 2�̃

1◊
(i,m)jk

−
↔

�ijk ⋅ J a⃗
1
ijk, (72)

where

↔

� ∶= �MHDB⃗ +
↔

�GLM . (73)

Lemma 5. The semi-discrete entropy balance of the Gauss-DGSEM discretization of the three-dimensional non-

conservative GLM-MHD system, (63), integrating over an entire curvilinear element, reads

N∑
i,j,k=0

!ijkJijkṠijk = +

N∑
j,k=0

!jk

[
f̂ 1S

(
ũLjk, ũ

+
Ljk

)
− f̂ 1S

(
ũRjk, ũ

+
Rjk

)
+

1

2

(
r̂1
(
ũLjk, ũ

+
Ljk

)
+ r̂1

(
ũRjk, ũ

+
Rjk

))]
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+

N∑
i,k=0

!ik

[
f̂ 2S

(
ũiLk, ũ

+
iLk

)
− f̂ 2S

(
ũiRk, ũ

+
iRk

)
+

1

2

(
r̂2
(
ũiLk, ũ

+
iLk

)
+ r̂2

(
ũiRk, ũ

+
iRk

))]

+

N∑
i,j=0

!ij

[
f̂ 3S

(
ũijL, ũ

+
ijL

)
− f̂ 3S

(
ũijR, ũ

+
ijR

)
+

1

2

(
r̂3
(
ũijL, ũ

+
ijL

)
+ r̂3

(
ũijR, ũ

+
ijR

))]

+
1

2

N∑
i,j,k,m=0

!ijk

(
Ŝimr

1
(i,m)jk

+ Ŝjmr
2
i(j,m)k

+ Ŝkmr
3
ij(k,m)

)

+

N∑
i,j,k=0

!jk

(
li(+1)r̃

1
(i,R)jk

− li(−1)r̃
1
(i,L)jk

)

+

N∑
i,j,k=0

!ik

(
lj(+1)r̃

2
i(j,R)k

− lj(−1)r̃
2
i(j,L)k

)

+

N∑
i,j,k=0

!ij

(
lk(+1)r̃

3
ij(k,R)

− lk(−1)r̃
3
ij(k,L)

)
. (74)

where the first three lines denote the entropy flux and production across boundaries of the element, the fourth line is the

entropy production from the volume integral, and the last three lines denote the volumetric entropy production between

each node and the entropy-projected solution at the boundaries along lines of the element. Moreover, the numerical

entropy flux and production terms on the surface and volume are defined respectively as

f̂ 1S
(R,R+)jk

= {{v}}T
(R,R+)jk

f̂1a
(R,R+)jk

+
1

2
vTRjk�̂

1◊
(R,R+)jk

+
1

2
vT
R+jk

�̂
1◊
(R+,R)jk

− J a⃗1Rjk ⋅
{{

Ψ⃗
}}

(R,R+)jk
, (75)

r̂1
(R,R+)jk

= JvKT
(R,R+)jk f̂

1a
(R,R+)jk

+ vT
R+jk

�̂
1◊
(R+,R)jk

− vTRjk�̂
1◊
(R,R+)jk

− J a⃗1Rjk ⋅
r
Ψ⃗

z
(R,R+)jk

, (76)

r1
(i,m)jk

= JvKT
(i,m)jk f

1∗
(i,m)jk

+ vTmjk�̃
1◊
(m,i)jk

− vTijk�̃
1◊
(i,m)jk

−
{{
J a⃗1

}}
(i,m)jk

⋅
r
Ψ⃗

z
(i,m)jk

, (77)

for two nodes aligned in the � direction in the volume and the right boundary. The other directions and the left boundary

are defined analogously.

Proof. Following the same strategy as in previous proofs, we first contract the volume terms in the � direction with the

entropy variables, and compute the integral along the � direction. We scale with the quantity 1∕!jk for convenience

to obtain

(a)�
jk

!jk
=

N∑
i=0

vTijk

N∑
m=0

Ŝim�̃
1
(i,m)jk

(definition of �̃1, (65)) =

N∑
i=0

vTijk

N∑
m=0

Ŝim

(
f̃1∗
(i,m)jk

+ �̃
1◊
(i,m)jk

)

(skew-sym. of Ŝ, sym. of f1∗ & re-index) =
1

2

N∑
i,m=0

Ŝim

(
(vTijk − vTmjk)

T f̃1∗
(i,m)jk

+ vTijk�̃
1◊
(i,m)jk

− vTmjk�̃
1◊
(m,i)jk

)

(definition of r1, (76)) =
1

2

N∑
i,m=0

Ŝim

({{
J a⃗1

}}
(i,m)jk

⋅
(
Ψ⃗ijk − Ψ⃗mjk

)
− r1

(i,m)jk

)

(re-index, sym. of {{⋅}} & skew-sym of Ŝ) =

N∑
i,m=0

Ŝim

({{
J a⃗1

}}
(i,m)jk

⋅ Ψ⃗ijk −
1

2
r1
(i,m)jk

)

(definition of Ŝ) =

N∑
i,m=0

2Qim
{{
J a⃗1

}}
(i,m)jk

⋅ Ψ⃗ijk
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−

N∑
i,m=0

B̂im
{{
J a⃗1

}}
(i,m)jk

⋅ Ψ⃗ijk

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=Ψ̄1
Rjk

−Ψ̄1
Ljk

−
1

2

N∑
i,m=0

Ŝimr
1
(i,m)jk

(78)

(def. of {{⋅}} & SBP properties, (44)) =

N∑
i=0

J a⃗1ijk ⋅ Ψ⃗ijk

N∑
m=0

Qim

⏟⏟⏟
∶=0

+

N∑
i,m=0

QimJ a⃗
1
mjk ⋅ Ψ⃗ijk

+ Ψ̄1
Ljk − Ψ̄1

Rjk −
1

2

N∑
i,m=0

Ŝimr
1
(i,m)jk

=

N∑
i,m=0

QimJ a⃗
1
mjk ⋅ Ψ⃗ijk + Ψ̄1

Ljk − Ψ̄1
Rjk −

1

2

N∑
i,m=0

Ŝimr
1
(i,m)jk

. (79)

The quantities introduced in (78) denote the contravariant entropy potentials at the boundaries, Ψ̄1
Ljk

and Ψ̄1
Rjk

,

which are derived using the generalized SBP properties (44),

N∑
i,m=0

B̂im
{{
J a⃗1

}}
(i,m)jk

⋅ Ψ⃗ijk =

N∑
i=0

Ψ⃗ijk ⋅
N∑
m=0

B̂im
{{
J a⃗1

}}
(i,m)jk

=

N∑
i=0

li(+1)Ψ⃗ijk ⋅
{{
J a⃗1

}}
(i,R)jk

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶Ψ̄1
Rjk

−

N∑
i=0

li(−1)Ψ⃗ijk ⋅
{{
J a⃗1

}}
(i,L)jk

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=Ψ̄1
Ljk

.

We now obtain the entropy production by the new terms in � that connect all degrees of freedom with the left

boundary. Again, we scale with the two-dimensional weight, !jk, to obtain

(b)�
jk

!jk
=

N∑
i=0

vTijkli(−1)

[
�̃1

(
uijk, ũLjk

)
−

N∑
m=0

lm(−1)�̃
1
(
ũLjk,umjk

)]

(eval. ṽ & re-index) =

N∑
i=0

li(−1)
[
vTijk�̃

1
(
uijk, ũLjk

)
− ṽTLjk�̃

1
(
ũLjk,uijk

)]

(definition of �̃1) =

N∑
i=0

li(−1)

[
(vijk − ṽLjk)

T f̃1∗
(
uijk, ũLjk

)

+vTijk�̃
1◊ (

uijk, ũLjk
)
− ṽTLjk�̃

1◊ (
ũLjk,uijk

)]

(definition of r̃1, (49),(77)) =

N∑
i=0

li(−1)
({{

J a⃗1
}}

(i,L)jk
⋅
(
Ψ⃗ijk −

⃗̃ΨLjk

)
− r̃1

(i,L)jk

)

(def. of Ψ̄1
Ljk & boundary metrics) =Ψ̄1

Ljk −
(
⃗̃ΨLjk ⋅ J a⃗

1
Ljk

)
−

N∑
i=0

li(−1)r̃
1
(i,L)jk

where ṽLjk is again the interpolation of the entropy variables to the left boundary, and we use the entropy-projected

entropy potential,

⃗̃ΨLjk ∶= Ψ⃗

(
N∑
i=0

li(−1)v(uijk)

)
. (80)
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The integral of the left � surface terms along the � direction reads

(c)�
jk

=

N∑
i=0

vTijk!jkli(−1)
[
f̂1a

(
ũLjk, ũ

+
Ljk

)
+ �̂1◊

(
ũLjk, ũ

+
Ljk

)]

=!jkṽ
T
Ljk

[
f̂1a

(
ũLjk, ũ

+
Ljk

)
+ �̂1◊

(
ũLjk, ũ

+
Ljk

)]

(Sum zero) =!jkṽ
T
Ljk

[
f̂1a

(
ũLjk, ũ

+
Ljk

)
+ �̂1◊

(
ũLjk, ũ

+
Ljk

)]

+
!jk

2

(
(ṽ+
Ljk

)T f̂1a
(
ũ+
Ljk

, ũLjk

)
+ (ṽ+

Ljk
)T �̂1◊

(
ũ+
Ljk

, ũLjk

)
−
(
⃗̃Ψ+
Ljk

⋅ J a⃗1Ljk

))

−
!jk

2

(
(ṽ+
Ljk

)T f̂1a
(
ũ+
Ljk

, ũLjk

)
+ (ṽ+

Ljk
)T �̂1◊

(
ũ+
Ljk

, ũLjk

)
−
(
⃗̃Ψ+
Ljk

⋅ J a⃗1Ljk

))

(replace (75),(76)) =!jk

(
f̂ 1S

(
ũijL, ũ

+
ijL

)
+

1

2
r̂1
(
ũijL, ũ

+
ijL

)
+
(
Ψ⃗Ljk ⋅ J a⃗

1
Ljk

))
. (81)

Terms (d) and (e) are again analyzed in the same form as terms (b) and (c). Gathering all contributions in the �
coordinate direction we obtain

−(a)�
jk
+(b)�

jk
+ (c)�

jk
− (d)�

jk
− (e)�

jk

=!jk

[
f̂ 1S

(
ũLjk, ũ

+
Ljk

)
− f̂ 1S

(
ũRjk, ũ

+
Rjk

)
+

1

2

(
r̂1
(
ũLjk, ũ

+
Ljk

)
+ r̂1

(
ũRjk, ũ

+
Rjk

))

+
1

2

N∑
i,m=0

Ŝimr
1
(i,m)jk

−

N∑
i,m=0

QimJ a⃗
1
mjk ⋅ Ψ⃗ijk +

N∑
i=0

(
li(+1)r̃

1
(i,R)jk

− li(−1)r̃
1
(i,L)jk

)]
. (82)

Summing (82) over j and k, and adding the contributions of the terms in directions � and � we obtain the desired

result,

N∑
i,j,k=0

!ijkJijkṠijk = +

N∑
j,k=0

!ik

[
f̂ 1S

(
ũLjk, ũ

+
Ljk

)
− f̂ 1S

(
ũRjk, ũ

+
Rjk

)
+

1

2

(
r̂1
(
ũLjk, ũ

+
Ljk

)
+ r̂1

(
ũRjk, ũ

+
Rjk

))]

+

N∑
i,k=0

!ik

[
f̂ 2S

(
ũiLk, ũ

+
iLk

)
− f̂ 2S

(
ũiRk, ũ

+
iRk

)
+

1

2

(
r̂2
(
ũiLk, ũ

+
iLk

)
+ r̂2

(
ũiRk, ũ

+
iRk

))]

+

N∑
i,j=0

!ij

[
f̂ 3S

(
ũijL, ũ

+
ijL

)
− f̂ 3S

(
ũijR, ũ

+
ijR

)
+

1

2

(
r̂3
(
ũijL, ũ

+
ijL

)
+ r̂3

(
ũijR, ũ

+
ijR

))]

+
1

2

N∑
i,j,k,m=0

!ijk

(
Ŝimr

1
(i,m)jk

+ Ŝjmr
2
i(j,m)k

+ Ŝkmr
3
ij(k,m)

)

+

N∑
i,j,k=0

!jk

(
li(+1)r̃

1
(i,R)jk

− li(−1)r̃
1
(i,L)jk

)

+

N∑
i,j,k=0

!ik

(
lj(+1)r̃

2
i(j,R)k

− lj(−1)r̃
2
i(j,L)k

)

+

N∑
i,j,k=0

!ij

(
lk(+1)r̃

3
ij(k,R)

− lk(−1)r̃
3
ij(k,L)

)
.

−

N∑
i,j,k=0

!ijkΨ⃗ijk ⋅
N∑
m=0

(
DimJ a⃗

1
mjk +DjmJ a⃗

2
imk +DkmJ a⃗

3
ijm

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=0

,
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where the last term is equal to zero if the discrete metric identities,

(
3∑
l=1

)

)�l
(Jald)

)

ijk

= 0, d ∈ {1, 2, 3}, (83)

hold for all the nodes of the element, i, j, k ∈ {0,… , N}. For example, they can be computed from a discrete curl

[35].

Remark 5. It is possible to replace the volume non-conservative two-point term (67),

�̃
1◊
(i,m)jk

∶=
1

2

[
(B⃗ ⋅ J a⃗1)ijk + B⃗mjk ⋅

{{
J a⃗1

}}
(i,m)jk

]
�MHD
ijk +

↔

�GLM
ijk ⋅ J a⃗1ijk {{ }}(i,m)jk , (84)

with the alternative term

�̃1⋆
(i,m)jk ∶=

{{
B⃗
}}

(i,m)jk
⋅
{{
J a⃗1

}}
(i,m)jk

�MHD
ijk +

↔

�GLM
ijk ⋅ J a⃗1ijk {{ }}(i,m)jk . (85)

Although both terms differ, i.e.,

�̃1⋆
(i,m)jk = �̃

1◊
(i,m)jk

+
1

4
�MHD
ijk B⃗ijk ⋅

r
J a⃗1

z
(i,m)jk

, (86)

their evaluation in (63) is algebraically equivalent for generalized SBP operators if the metric identities (83) hold.

5. Numerical Results

In this section, we test the numerical accuracy and entropy consistency of our entropy-stable Gauss-DGSEM dis-

cretization of the GLM-MHD equations, and compare the results with other methods in the MHD literature. In all

cases, the time integration was performed with the explicit fourth-order five-stages Runge-Kutta scheme of Carpenter

and Kennedy [38]. The time-step size is computed as in [39],

Δt =
CFL �a(N)Δx

�a
max

(2N + 1)
, (87)

where CFL is the CFL number, �a
max

is the largest eigenvalue, Δx is the element size, and �a is a proportionality

coefficient derived for the RK method from numerical experiments such that CFL≤ 1 must hold to obtain a (linear)

CFL-stable time step for all polynomial degrees. As a "conservative" approach, we use CFL = 0.5. The hyperbolic

divergence cleaning speed, cℎ, is adjusted at every time step as the maximum value that retains CFL-stability, and we

use �0 = 1 as the magnetic permeability of the medium.

All simulations presented in this section were computed in parallel with the 3D open-source code FLUXO (www.

github.com/project-fluxo/fluxo) on the High Performance Computing (HPC) system ODIN of the Regional

Computing Center of the University of Cologne (RRZK). Each node of ODIN has two sockets, each with an Intel(R)

Xeon(R) CPU E5-2670 0 @ 2.60GHz of eight cores. The number of nodes for each simulation was selected depending

on its computational cost. The 2D simulations were computed with 2D extruded meshes with one element in the z-

direction.

5.1. Numerical Verification of the Schemes
5.1.1. Convergence Test with the Manufactured Solutions Method

To test the accuracy of the entropy-stable Gauss DGSEM discretization of the GLM-MHD equations on three-

dimensional curvilinear meshes, we run a convergence test with the method of manufactured solutions. As in [21, 28],

we assume an exact solution to the ideal GLM-MHD system of the form

uexact =
[
ℎ, ℎ, ℎ, 0, 2ℎ2 + ℎ,

1

2
ℎ,−

1

4
ℎ,−

1

4
ℎ, 0

]T
with ℎ = ℎ(x, y, z, t) = 0.5 sin(2�(x + y + z − t)) + 2, (88)
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and a heat capacity ratio of 
 = 2.

To obtain the exact solution (88), we equip the ideal GLM-MHD system with a source term:

)tu + ∇⃗ ⋅
↔

fa(u) + �(u, ∇⃗u) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ℎx
ℎx + 4ℎℎx
ℎx + 4ℎℎx

4ℎℎx
ℎx + 12ℎℎx

1

2
ℎx

−
1

4
ℎx

−
1

4
ℎx
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (89)

We carry out the computations until the final time t = 1 on the unit cube, Ω = [−1, 1]3, with 23, 43, 83, 163, and 323

hexahedral elements and the polynomial degrees N = 2, 3, 4, 5. All boundaries are set to periodic. In addition, we

use the entropy-conservative flux of Derigs et al. [4] for the volume and surface numerical fluxes, and supplement the

surface fluxes with the nine-waves entropy-stable dissipation operator of Derigs et al. [4].

A heavily-warped curvilinear mesh is obtained by applying a transformation function (adapted from [1]) to all

nodes of the mesh,

X(�, �, � ) = (x, y, z) ∶ Ω → f (Ω) (90)

such that

y = � + �Lx cos

(
3�

(
�

Lx
− L̃

))
cos

(
�

(
�

Ly
− L̃

))
cos

(
�

(
�

Lz
− L̃

))
,

x = � + �Lz cos

(
�

(
�

Lx
− L̃

))
sin

(
4�

(
y

Ly
− L̃

))
cos

(
�

(
�

Lz
− L̃

))
,

z = � + �Ly cos

(
�

(
x

Lx
− L̃

))
cos

(
2�

(
y

Ly
− L̃

))
cos

(
�

(
�

Lz
− L̃

))
, (91)

with a warping factor � = 0.075, the domain lengths Lx = Ly = Lz = 2, and the shift parameter L̃ = 0. The mesh

was generated with the HOPR package [40] with a geometry mapping degree Ngeo = 2.

Figure 1 summarizes the results of the convergence analysis for the entropy-stable Gauss- and LGL-DGSEM. We

show the L2 norm of the discretization error for each variable,

‖‖�i‖‖2 =
(
∫ N
Ω

(ui − u
exact
i )2dx⃗

∫ N
Ω

dx⃗

) 1

2

, ∀i ∈ {1,… , 9}, (92)

as a function of the number of degrees of freedom (DOFs). In (92), the superscriptN denotes the numerical integration

with a Gauss/LGL quadrature of N + 1 points. The entropy-stable Gauss collocation scheme is always more accurate

than the LGL scheme. In many cases, it is as accurate as the LGL scheme with one polynomial degree higher. However,

we note that the LGL-DGSEM allows for larger time-step sizes [41].

Tables 1 and 2 show the average experimental order of convergence (EOC) for each of the state quantities of the

LGL and Gauss scheme, respectively. The average EOC is computed with the error of the three simulations with the

highest number of degrees of freedom from Figure 1. Both the LGL- and Gauss-DSEM exhibit a formal EOC of

around N + 1, with small deviations due to the heavily warped mesh.
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N � �v1 �v2 �v3 �E B1 B2 B3  
2 2.62 2.68 2.66 2.62 2.71 2.77 2.67 2.61 2.72
3 3.60 3.60 3.60 3.96 3.71 3.71 3.67 4.04 3.78
4 4.64 4.61 4.63 4.76 4.73 4.67 4.67 4.80 4.79
5 5.64 5.53 5.71 5.75 5.73 5.62 5.76 5.78 5.82

Table 1

Average experimental order of convergence for the state quantities in the L2 norm for the manufactured solution test using
the LGL-DGSEM scheme on a heavily warped mesh. The average is computed with the error of the three simulations with
the highest number of degrees of freedom.

N � �v1 �v2 �v3 �E B1 B2 B3  
2 2.57 2.62 2.64 2.51 2.75 2.64 2.44 2.51 2.90
3 4.03 3.98 3.89 3.73 4.01 4.30 3.93 3.73 3.92
4 5.40 5.04 4.91 5.45 5.02 5.45 5.68 5.72 4.87
5 5.98 5.72 5.57 6.28 5.76 6.12 6.34 6.33 5.52

Table 2

Average experimental order of convergence for the state quantities in the L2 norm for the manufactured solution test using
the Gauss-DGSEM scheme on a heavily warped mesh. The average is computed with the error of the three simulations
with the highest number of degrees of freedom.

where u0 is a uniform medium with

�0 = 1, p0 = 3∕5, v⃗0 = 0⃗, and B⃗ =
(
1,
√
2, 1∕2

)T
. (94)

The quantity ũ is a sinusoidal perturbation with amplitude A = 10−6 at an oblique angle (to test the 3D capabilities of

the code) multiplied by the exact eigenfunctions of the fast, slow, Alfvén, and contact waves.

We carry out the computations in the domain x ∈ [0, 3], y, z ∈ [0, 1.5] with polynomial degrees N = 2, 3, 4, 5
and 2Nd × Nd × Nd degrees of freedom. Athena computations are performed on a Cartesian mesh, while FLUXO

simulations are carried out on Cartesian and moderately-warped meshes. The moderately-warped meshes are obtained

from the unit cube, Ω = [−1, 1]3, using the transformation (91) with a warping factor � = 1∕16, the domain lengths

Lx = 3, Ly = Lz = 1.5, and the shift parameter L̃ = 0.5.

Figure 2 shows convergence results obtained with FLUXO for each wave family using different polynomial de-

grees on Cartesian meshes, and a comparison with the astrophysics code Athena [42]. We show the L1 norm of the

discretization error

‖�‖1 = max
i∈[1,…,9]

(
∫ N
Ω

|ui − uexacti |dx⃗
∫ N
Ω

dx⃗

)
, ∀i ∈ {1,… , 9}, (95)

because that is the quantity reported for the Athena code [42].

It is clear that our DG methods exhibit high-order convergence for all wave families and that the entropy-stable

Gauss scheme is always more accurate than the LGL scheme (down to machine precision) for the same number of

degrees of freedom and polynomial degree.

Interestingly, the fifth-order (N = 4) Gauss-DGSEM method exhibits superconvergence in this particular case,

being more accurate than the sixth-order Gauss and LGL methods.

The convergence results on the moderately-warped meshes are reported in Figure 3. We retain high-order con-

vergence on the warped meshes, but the accuracy of most DG approximations deteriorates slightly due to the mesh

distortion. However, both the Gauss and LGL schemes now show superconvergence for N = 4.
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B1(x, y, t = 0) = ca cos �, B2(x, y, t = 0) = 0, B3(x, y, t = 0) = ca sin �,
(98)

where 
 = 5∕3, the Mach number is M = 1, y0 = 1∕20 is the steepness of the shear, ca = 0.1 is the Alfvén speed, and

� = �∕3 is the angle of the initial magnetic field. Moreover, the parameters of the perturbation are v2,0 = 0.01 and

� = 0.1.

We carry out the computations with our three-dimensional code using the polynomial degrees N = 3, 7, and the

computational domain x ∈ [0, 1], y ∈ [−1, 1] and z ∈ [−100, 100] with Kx × 2Kx × 1 Cartesian elements. We

adjust the number of elements in the x direction, Kx, to test different resolutions: 64 × 128, 128 × 256 and 256 × 512

degrees of freedom. The size and number of elements in the z direction is chosen such that the state quantities cannot

present significant fluctuations in z. The left, right, front and back boundaries are periodic, whereas the top and bottom

boundaries are perfectly conducting slip walls.

We remark that the Lorenz force acts on the z component of the momentum during the simulation due to the

non-zero magnetic field in z, giving rise to three-dimensional effects in this pseudo 2D example.

For this example, we use the entropy-conservative flux of Derigs et al. [4] for the volume numerical fluxes and the

nine-waves entropy-stable flux [4] for the surface numerical fluxes.

Figure 6 shows the evolution of the magnetized Kelvin-Helmholtz instability problem for the fourth- (N = 3) and

eighth-order (N = 7) DGSEM using Gauss and LGL nodes and the highest resolution that we tested (256×512 DOFs).

We show the ratio of the poloidal field,

Bp ∶=
√
B2
1
+ B2

2
, (99)

to the toroidal field, Bt ∶= B3, using the same color range as Mignone et al. [45] for comparison purposes. At early

stages of the simulation (t ≤ 5), the perturbation follows a linear growth phase, in which the cat’s eye vortex structure

forms, see e.g. the top row of Figure 6 and [45]. As the simulation continues, magnetic field lines become distorted

and energy is transferred to smaller scales in the onset of MHD turbulence. Energy is then dissipated by the artificial

viscosity and resistivity of the methods.

At early stages of the simulation (t ≤ 5), the Gauss- and LGL-DGSEM discretizations show a similar Bp∕Bt
field distributions, regardless of the polynomial degree. As the flow field transitions to turbulence (t ≈ 8), slight

differences start to appear between the numerical solutions of the different methods: the eight-order LGL and Gauss,

and the fourth-order Gauss methods are remarkably similar, whereas the fourth-order LGL scheme shows fewer small

vortical structures. As turbulence develops in the domain, it is clear that increasing the order of the approximation and

switching from LGL to Gauss nodes allows the development of smaller scales.

Mignone et al. [45] proposed the use of the normalized volume-integrated poloidal magnetic energy and the so-

called growth rate to compare the numerical dissipation of different schemes and grid resolutions during the transition

to MHD turbulence. The normalized volume-integrated poloidal magnetic energy is defined as

⟨B2
p⟩(t) ∶=

∫
Ω
B2
p(t)dx⃗

∫
Ω
B2
p(t = 0)dx⃗

, (100)

and the growth rate is defined as

Δvy(t) ∶=
vmax
2

− vmin
2

2
. (101)

Figure 7 shows the evolution of ⟨B2
p⟩ and Δvy during the transition to turbulence for the magnetized KHI example

using the fourth- (N = 3) and eighth-order (N = 7) DGSEM with Gauss and LGL nodes on different grid resolutions.

As in [45], we observe that the poloidal magnetic energy grows faster in the transition to turbulence when the

resolution is increased and when a scheme with a higher convergence order is selected, which indicates that the over-

all numerical dissipation is smaller. Figures 7a and 7b suggest that the Gauss-DGSEM allows for a less dissipative

transition to turbulence that the LGL-DGSEM, being the difference greater at low polynomial degrees and coarse

resolutions.

The evolution of the growth rate, Δvy, follows a similar trend as the poloidal magnetic energy, which was also

observed by Mignone et al. [45]. Here, however, the difference between the Gauss- and LGL-DGSEM gets smaller as

the resolution and convergence order of the scheme are increased.
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LGL (N=3) LGL (N=7) Gauss (N=3) Gauss (N=7)

Figure 6: Evolution of the magnetized Kelvin-Helmholtz instability problem at times t = 5 (top panel), t = 8 (second
panel), t = 12 (third panel) and t = 20 (bottom panel) with the highest resolution (256 × 512 DOFs). We show the ratio
of the poloidal field, Bp, to the toroidal field, Bt ∶= B3.

In Figure 7, we also plot the best result obtained by Mignone et al. [45] with the highest resolution and convergence

order that they tested (256 × 512 degrees of freedom and a fifth-order finite difference scheme) as a reference. In [45],
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Appendices

A. Direct Carryover of the GLM-MHD Equations to Gauss-DGSEM

The most straightforward way to carry over the non-conservative discretization of Bohm et al. [21], (31), to the

Gauss-DGSEM of Chan et al. [1], (45), is to generalize the non-conservative part of the volume integral using B̂ and
use the traditional volume non-conservative term for the new terms that connect the inner degrees of freedom with the
boundaries:

J!j u̇j +
N∑
k=0

(
Ŝjkf

∗
(j,k)

+ (Qjk − B̂jk)�
∗

(j,k)

)

−lj(−1)

[
f∗

(
uj , ũL

)
+�∗

(
uj , ũL

)
−

N∑
k=0

lk(−1)
(
f∗

(
ũL,uk

)
+�∗

(
ũL,uk

))
+ f̂a

(
ũL, ũ

+
L

)
+�◊ (

ũL, ũ
+
L

)]

+lj(+1)

[
f∗

(
uj , ũR

)
+�∗

(
uj , ũR

)
−

N∑
k=0

lk(+1)
(
f∗

(
uk, ũR

)
+�∗

(
ũR,uk

))
+ f̂a

(
ũR, ũ

+
R

)
+�◊ (

ũR, ũ
+
R

)]
= 0. (102)

Remark 6. It is plain to see that (102) is algebraically equivalent to the entropy-stable LGL-DGSEM discretization

of the GLM-MHD system of Bohm et al. [21], (31), when LGL nodes are used. Hence, it provides entropy conserva-
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tion/stability for that choice of nodes. However, when Gauss nodes are used, (102) differs from (56), which can be

easily seen when we subtract the two equations.

When we subtract the volume terms of (102) from (56) we obtain

V =

N∑
k=0

(
Ŝjk�

◊
(j,k)

−
(
Qjk − B̂jk

)
�∗

(j,k)

)

(def. of Ŝ, (46) & identity (58)) =

N∑
k=0

((
2Qjk − B̂jk

)
�

◊
(j,k)

−
(
Qjk − B̂jk

) (
2�

◊
(j,k)

−�j

))

(SBP property (44), and simp.) =

N∑
k=0

B̂jk

(
�

◊
(j,k)

−�j

)
. (103)

Clearly, V = 0 when LGL nodes are used due to the consistency property of �◊ and because B̂
LGL

= B is a diagonal

matrix. However, B̂ is dense for Gauss nodes, and so V ≠ 0 in general.

When we subtract the rest of the terms of (102) from (56) we obtain

F = − lj(−1)

[
�◊ (

uj , ũL
)
−�∗

(
uj , ũL

)
−

N∑
k=0

lk(−1)
(
�◊ (

ũL,uk
)
−�∗

(
ũL,uk

))]

+ lj(+1)

[
�◊ (

uj , ũR
)
−�∗

(
uj , ũR

)
−

N∑
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lk(+1)
(
�◊ (

ũR,uk
)
−�∗

(
ũR,uk

))]

(identity (58)) = − lj(−1)

[
�j −�◊ (

uj , ũL
)
−

N∑
k=0

lk(−1)
(
�

(
ũL

)
−�◊ (

ũL,uk
))]

+ lj(+1)

[
�j −�◊ (

uj , ũR
)
−

N∑
k=0

lk(+1)
(
�

(
ũR

)
−�◊ (

ũR,uk
))]

, (104)

which is again zero for LGL, but not necessarily for Gauss.

When we sum the contributions of (103) and (104), some terms cancel out due to the generalized SBP properties,

(44). We obtain

V + F = + lj(−1)

[
�◊ (

uj , ũL
)
+

N∑
k=0

lk(−1)
(
�

(
ũL

)
−�◊ (

ũL,uk
))]

− lj(+1)

[
�◊ (

uj , ũR
)
+

N∑
k=0

lk(+1)
(
�

(
ũR

)
−�◊ (

ũR,uk
))]

+

N∑
k=0

B̂jk�
◊
(j,k)

,

which is non-zero in the general case for Gauss nodes.

Due to the difference between the two Gauss-DGSEM discretizations, (102) fails to provide entropy conserva-

tion/stability, as is shown in the next section.

A.1. Entropy Balance
To obtain the entropy balance of (102), we follow a very similar manipulation of terms as in the proof of Lemma

4. For the volume terms we obtain

(a) =
N∑
j=0

vTj

N∑
k=0

(
Ŝjkf

∗
(j,k)

+ (Qjk − B̂jk)�
∗
(j,k)

)
= ΨL − ΨR −

1

2

N∑
j,k=0

Ŝjkr(j,k) −
N∑

j,k=0

vTj

[
B̂jk

(
�

◊
(j,k)

−�j

)]
.

(105)

It is plain to see that the last term of (105) vanishes for LGL discretizations due to the diagonal boundary matrix and

the consistency property of the surface numerical non-conservative term. However, for Gauss discretizations, the last

term is not guaranteed to vanish.
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For the new terms that connect all degrees of freedom with the left boundary we obtain

(b) =
N∑
j=0

vTj lj(−1)

[
f∗

(
uj , ũL

)
+�∗

(
uj , ũL

)
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+
L

)]
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(
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.

(106)

Again, the last sum of (106) vanishes for LGL discretizations due to the existence of nodes at the boundaries, but not

for Gauss.

The entropy balance of the left boundary term is exactly the same as in the proof of Lemma 4,

(c) =
N∑
j=0

vTj lj(−1)
[
f̂a

(
ũL, ũ

+
L

)
+�◊ (

ũL, ũ
+
L

)]
= ṽTL

[
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+
L

)
+�◊ (

ũL, ũ
+
L

)]
. (107)

As in the previous proofs, terms (d) and (e) are analyzed in the same form as terms (b) and (c). Gathering all

contributions and manipulating the boundary terms we obtain

N∑
j=0

!jJṠj = − (a) + (b) + (c) − (d) − (e)

=f̂S
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+
R

)]

+
1

2
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j,k=0

Ŝjkr(j,k) +
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(
lj(+1)r̃(j,R) − lj(−1)r̃(j,L)

)
+ ṠGauss. (108)

The additional production term, ṠGauss, gathers the entropy production of the discretization of the non-conservative

terms in (102),

ṠGauss = −

N∑
j=0

lj(−1)
[
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◊ (
uj , ũL
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− ṽTL

(
�◊ (

ũL,uj
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(
ũL

))]

+

N∑
j=0

lj(+1)
[
vTj �

◊ (
uj , ũR
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(
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vTj B̂jk�
◊
(j,k)

, (109)

where some of the additional non-zero terms of (a) cancel out with additional non-zero terms of (b) and (d). Clearly,

ṠGauss vanishes in LGL discretizations, but not necessarily in Gauss discretizations.

B. Hybridized SBP formulation

In this section, we describe the formulation of the entropy stable Gauss collocation scheme in one dimension using

“hybridized” summation-by-parts operators [46]. Formulations using hybridized operators are similar to formulations

using traditional SBP operators, but are equivalent to the formulation (45) which introduce additional surface terms.

First, we define the matrix Vℎ

Vℎ =

[
I

Vf

]
∈ ℝ

N+3,N+1

Multiplication by Vℎ maps nodal values at Gauss nodes to the vector containing nodal values at both Gauss nodes and

face nodes. Next, we introduce the hybridized SBP operator

Q
ℎ
=

1

2

[
S VTfB

−BVf B

]
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where we have used the skew-symmetric matrix Ŝ = 2Q−VTfBVf = Q−QT . The operator Q
ℎ

satisfies a generalized

SBP property and can be used to construct degree N approximations to derivatives [1].

We now introduce the skew-symmetric hybridized matrix Ŝℎ = Q
ℎ
−QT

ℎ
. Then, (56) can equivalently be formulated

as

J!j u̇j +
N+2∑
k=0

2Vℎ,kjrℎ,k +
N∑
k=0

(
Vf

)
kj
sk = 0, (110)

where rℎ,k, sk are volume and surface contributions computed in terms of the hybridized SBP operator

rℎ,j =

N+2∑
k=0

Ŝℎ,jk

(
f∗
(j,k)

+�
◊
(j,k)

)
, sj = �jN

(
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(N,R)

+�
◊
(N,R)

)
− �j0

(
f̂a
(0,L)

+�
◊
(0,L)

)
. (111)

Note that, in contrast to (56), the formulation (110) combines the additional local surface terms into the definition of

the volume operator. The resulting contributions rℎ and s more closely resemble the simpler LGL formulation (57).

To show equivalence, we first note that since the entries of (Vf )1j and (Vf )2j are lj(−1) and lj(+1), the surface

term
∑N
k=0

(
Vf

)
kj
sk can be rewritten as

−lj(−1)
(
f̂a
(0,L)

+�
◊
(0,L)

)
+ lj(+1)

(
f̂a
(N,R)

+�
◊
(N,R)

)
. (112)

Next, we split the since the contribution
∑N+2
k=0 2Vℎ,kjrℎ,k into two parts. Note this can be written equivalently as a

matrix-vector product

VTℎ rℎ =

[
I

Vf

]T [
r

rf

]
= r + VTf rf .

upper left block of Ŝℎ is the skew symmetric part of the generalized SBP operator Ŝ, one can write the entries of the

contribution rj as

N∑
k=0

Ŝjk

(
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)
. (113)

Finally, we consider the contribution VTf rf . The term rf is equivalent to

rf,j =

N∑
k=0

−�j0lk(−1)
(
f∗
(L,k)
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)
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)

Multiplication by VTf then yields

VTf rf = −lj(−1)

(
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(
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))
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(114)

Combining (112), (113), and (114) then recovers the Gauss-DGSEM formulation for GLM-MHD (56).
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