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Abstract

Relaxation Runge-Kutta methods reproduce a fully discrete dissipation (or
conservation) of entropy for entropy stable semi-discretizations of nonlinear con-
servation laws. In this paper, we derive the discrete adjoint of relaxation Runge-
Kutta schemes, which are applicable to discretize-then-optimize approaches for
optimal control problems. Furthermore, we prove that the derived discrete re-
laxation Runge-Kutta adjoint preserves time-symmetry when applied to linear
skew-symmetric systems of ODEs. Numerical experiments verify these theoret-
ical results while demonstrating the importance of appropriately treating the
relaxation parameter when computing the discrete adjoint.

Keywords: relaxation Runge-Kutta method, discrete adjoint, time-symmetry,
entropy conservation, entropy stability

1. Introduction

The relaxation Runge-Kutta method was first introduced by [1, 2] for stabil-
ity of time discretizations of ordinary differential equations (ODEs) with respect
to a given inner-product norm, or in more general a convex entropy functional.
Recently, this relaxation approach has been generalized to multistep time inte-
grators, [3]. We are interested in the application of these relaxation methods to
optimal control problems, in hopes of leveraging stability properties especially
for entropy stable semi-discretizations of nonlinear partial differential equations
(PDEs).

In this paper we present novel adjoint computations and properties of the
relaxation Runge-Kutta method. The discrete linearization and adjoint of the
relaxation Runge-Kutta method is derived by using a matrix representation,
similar to [4], and by using implicit differentiation in order to address the depen-
dency of the relaxation parameter on the solution at current time steps. Numer-
ical experiments presented here highlight the importance of proper linearization.
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We also prove, and demonstrate numerically, time-symmetry properties of the
relaxation Runge-Kutta method when applied to linear skew-symmetric ODE
systems, for general explicit and diagonally implicit Runge-Kutta methods.

Adjoint computations, by which we mean computations associated with the
adjoint state method, are an efficient way to compute gradients of objective func-
tionals in PDE-constrained optimization problems; see [5, 6] for an overview of
optimal control problems and the adjoint state method. There are two main
approaches associated with adjoint computations: one can either derive the ad-
joint state equations for the continuous problem and then discretize (referred
to as the optimize-then-discretize approach) or alternatively discretize the state
equations first and then compute the adjoint (referred to as the discretize-then-
optimize). The advent of automatic/algorithmic differentiation (AD) has accel-
erated the advancement and utility of PDE-constrained optimization by essen-
tially automating the adjoint state method and computation of sensitivities in a
discretize-then-optimize approach, [7, 8]. However, regardless of the convenience
of AD, one must exercise caution since a discretize-then-optimize approach may
produce a discretization that is inconsistent with the continuous optimization
problem, e.g., [9].

Issues with the discretize-then-optimize approach are dependent on the choice
of discretization of the state equations, and much research has gone into ana-
lyzing this approach for different numerical schemes. Previous work on the dis-
crete adjoint of Runge-Kutta methods showed that a discretize-then-optimize
approach is indeed consistent, and moreover, that the adjoint of a Runge-Kutta
method is yet another Runge-Kutta scheme of same order, [10, 11, 12]. In [13],
the author examines the links between symplectic Runge-Kutta methods and
applications into the computation of sensitivities and adjoints. See also [14] for
a more general paper on the discrete differentiation and convergence of iterative
solvers.

The relaxation Runge-Kutta method can be viewed as an adaptive time step
method, making the step-size dependent on the solution at previous time steps.
Previous work related to discrete adjoints of generic adaptive time stepping
methods argues that taking the variable step-size into account in the lineariza-
tion produces “non-physical” effects in the sensitivity and adjoint computations,
[15, 16]. The authors also argue that the resulting discretize-then-optimize ap-
proach is inconsistent. In this paper, however, the opposite is true, and a proper
linearization of relaxation Runge-Kutta methods is not only consistent but also
necessary for accuracy.

The paper is outlined as follows: In section 2.1, we present some nota-
tion, along with the standard Runge-Kutta method, as well as its discrete lin-
earization and adjoint. Next, in section 2.2, we discuss the relaxation Runge-
Kutta method, derive its discrete linearization and adjoint, and discuss its time-
symmetry property. In section 3, the numerical experiments and results section,
we demonstrate the importance of proper linearization for relaxation Runge-
Kutta methods. We also verify the time-symmetry property of these relaxation
methods on a skew-symmetric linear problem. Results are summarized in the
conclusion, section 4. Detailed derivations of discrete linearization and adjoint
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formulas are given in the appendix.

2. Theory

Consider the following optimal control problem:

min
u

C(y,u) (1a)

s.t. E(y,u) = 0 (1b)

where y and u denote the vectors of state and control variables respectively. The
state equation 1b specifies a system of first-order initial value problem (IVP),
potentially the semi-discretization of some PDE, of the form:

y′(t) = f(y,u, t), 0 < t ≤ T (2a)

y(0) = yinit(u), (2b)

with y,yinit, f(y,u, t) ∈ R
N . Following a discretize-then-optimize approach,

the continuous optimal control problem 1 is replaced by the following discrete
optimization problem:

min
u

C(y,u) (3a)

s.t. E(y,u) = 0 (3b)

where C and E denote the discretized cost and state-equation operators respec-
tively. Throughout this paper, we will use Sans Serif font to denote discretized
quantities. The equality constraint 3b corresponds to the discretization of IVP
2 by some time stepping scheme, which in turn informs the discretization of the
state and control vectors; we give more details in section 2.1 when discussing
the Runge-Kutta method.

If the mapping y 7→ E(y,u) is invertible, then we can use the equality con-
straint 3b to express the state variable as a function of the control variable. In
other words,

y = y(u) := E−1(0,u).

which allows us to reformulate 3 as an uncontrained optimization problem with
reduced cost function

C̃(u) := C(y(u),u).

Using implicit differentiation, one can show that the gradient of the reduced
cost function is given by

∇C̃(u) = ∇uC(y,u)−

(
∂E

∂u
(y,u)

)>

λ (4)

where y must satisfy the state equation 3b, while the adjoint-state (or co-state)
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vector λ satisfies what is known as the adjoint equation,

(
∂E

∂y
(y,u)

)>

λ = ∇yC(y,u). (5)

Equations 4 and 5 can also be derived from standard optimization theory via
Lagrange multipliers.

Equations 4 and 5 show that gradient computations of the cost function
hinge on the linearization and adjoint of the state-equation operator, i.e., the
choice of time integrator. Before we derive the linearization and adjoint of the
relaxation Runge-Kutta method, we present the well understood updates for
standard Runge-Kutta. For the majority of the paper, we drop the control
vector u and simply focus on the state-equation operator E(y) (its linearization
and adjoint) associated with discretizations of IVP 2.

2.1. Linearizations and adjoints of Runge-Kutta methods

A generic s-stage Runge-Kutta (RK) method, specified by its coefficients

As :=




a11, a12 · · · a1s
a21, a22 · · · a2s
...

...
...

...
as1 as2 · · · ass


 , bs :=




b1
b2
...
bs


 , cs :=




c1
c2
...
cs


 ,

applied to IVP 2, yields the following time-stepping formulas:

yk = yk−1 +∆t

s∑

i=1

biFk,i, (6a)

Yk,i = yk−1 +∆t

s∑

j=1

aijFk,j , for i = 1, ..., s, (6b)

where
Fk,i := f(Yk,i, tk−1 + ci∆t).

and yk is an approximation to the solution at time tk = tk−1+∆t. The Yk,i are
referred to as the RK internal stages. Assuming the RK method takes a total
of K steps, we define vector y to be the concatenation of all yk and Yk,i. Let

Yk :=




Yk,1

...
Yk,s


 ∈ R

sN ,
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then

y :=




y0
Y1

y1
...

YK

yK




∈ R
N (7)

where N := N+N(s+1)K. Throughout the remainder of this paper we will use
an overline and bold Sans Serif font to denote vectors of dimension N , whose
components are grouped and denoted in a similar fashion to what was presented

for y in equation 7. For example, w ∈ R
N is interpreted as

w =




w0

W1

w1

...
WK

wK




with wk ∈ R
N and

Wk =




Wk,1

...
Wk,s


 ∈ R

sN .

It can be shown that the discrete state equation 3b, associated with an RK
discretization, is of the form

E(y) := Ly −N(y)− χ0yinit = 0 (8)

where L is a lower unit-triangular matrix, and N is a block lower-triangular
(potentially nonlinear) operator acting on y that involves the evaluation of the

right-hand-side function f at internal stages. The matrix χk ∈ R
N×N is defined

such that χ>

k y = yk. Thus, for v ∈ R
N , we have that v = χkv is a vector

of length N with vk = v and zeros everywhere else. In other words, the term
χ0yinit accounts for the initial condition. We refer to the appendix for more
details concerning this “matrix representation” of the RK method, which bor-
rows notation from [4], and is used to derive the time-stepping formulas for the
discrete linearization and adjoint of RK and its relaxation variant. Note that
the inverse mapping of E is guaranteed to exist (barring any issues from the po-
tentially nonlinear function f) since E will be a block lower-triangular operator.
In fact, time-stepping formulas 6 specify this inverse map, solving the discrete
state equation by forward substitution.

We provide the linearization of standard RK formulas 6 as a point of ref-
erence for our discussion of adjoint computations for relaxation RK, which are
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derived by computing the Jacobian of the discrete state operator E(y) in equa-
tion 8 with respect to y. The linearized RK time-stepping formulas are

δk = δk−1 +∆t

s∑

i=1

biJk,i∆k,i +wk (9a)

∆k,i = δk−1 +∆t
s∑

j=1

aijJk,j∆k,j +Wk,i, 1, ..., s, (9b)

where

Jk,i :=
∂f

∂y
(Yk,i, tk−1 + ci∆t).

We refer to δk and ∆k as the linearized RK approximation and linearized RK
internal stages, respectively. These equations represent the solution to the fol-
lowing block lower-triangular system via forward substitution,

E′(y)δ = w

for some given right-hand-side vector w ∈ R
N , which can be used to incorporate

initial conditions and/or source terms. Note that Jk,i is the Jacobian matrix of
f evaluated at the i-th internal stage Yk,i. In the case that f(y(t), t) is linear in
y we can expect E′(y)y = E(y).

The adjoint RK formulas follow from solving

E′(y)>λ = w,

a block upper-triangular system, by back substitution:

λk−1 = λk +
s∑

i=1

Λk,i +wk−1, (10a)

Λk,i = ∆t J>k,i

(
biλk +

s∑

j=1

ajiΛk,j

)
+Wk,i, i = 1, ..., s. (10b)

In the adjoint formulas 10, right-hand-side vector w ∈ R
N incorporates source

terms as well as a final time condition. We refer to λk and Λk as the adjoint
RK approximation and adjoint RK internal stages, respectively. Note that the
adjoint update formula uses λk to update λk−1, in other words, we are marching
backwards in time. We also point out that this presentation of the adjoint RK
method is based on the derivation from the matrix representation, unlike other
presentations that reformulate the equations above to resemble an RK method;
see [10, 12].
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2.2. Relaxation RK methods

Let η : RN → R denote the entropy function (smooth and convex) associated
with IVP 2, where the time evolution of the entropy is given by

dη

dt
(y(t)) = ∇η(y(t))> f(y(t), t).

IVP 2 is said to be entropy dissipative if

∇η(y(t))> f(y(t), t) ≤ 0

or entropy conservative if

∇η(y(t))> f(y(t), t) = 0.

In the discrete setting, we wish to ensure

η(yk+1) ≤ η(yk), (for entropy dissipative),

or η(yk) = η(y0), (for entropy conservative).

The relaxation RKmethod achieves discrete entropy conservation/dissipation
by modifying the update step as follows:

yk = yk−1 + γk∆t

s∑

i=1

biFk,i (11)

where γk, the relaxation parameter, is the non-zero root (closest to one) of the
nonlinear scalar function rk( · ; y),

rk(γ; y) := η

(
yk−1 + γ∆t

s∑

i=1

biFk,i

)
− η(yk−1)− γ∆t

s∑

i=1

bi∇η(Yk,i)
>Fk,i.

(12)
Internal stages Yk,i are calculated as in equation 6b. After computing γk, there
are two options for determining the solution at the next time step:

i. Incremental direction technique (IDT) method: yk ≈ y(tk−1 +∆t)

ii. Relaxation RK (RRK) method: yk ≈ y(tk−1 + γk∆t)

Implementation wise, both IDT and RRK require the solution to a scalar root
problem at each time step, though RRK resembles more of an adaptive time-
stepping scheme given that tk = tk−1 + γk∆t at the moment the RRK ap-
proximation is updated. In terms of accuracy, it was shown in [2] that RRK
methods preserve accuracy of the underlying RK scheme. On the other hand,
IDT schemes are order p− 1 accurate for an underlying method of order p. For
the purposes of a clean presentation, we first derive the linearized and adjoint
formulas for the simpler IDT method, and then extend to RRK with some minor
modifications.
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2.2.1. Discrete linearization and adjoint of IDT

The state-equation operator, E, associated with IDT is modified in accor-
dance to equation 11 by adding a dependency on the relaxation parameter vector
γ := (γ1, . . . , γK)> ∈ R

K . Assuming IDT takes K steps, where K is the number
of steps taken by the underlying RK method, we have

E(y,γ) := Ly −N(y,γ)− χ0yinit.

The relaxation parameter γk is defined by the solution to a root equation at
each time step. This root equation can be written in vector form as

r(γ; y) :=




r1(γ1; y)
r2(γ2; y)

...


 =




0
0
...


 .

Note that the equation above implicitly defines the relaxation parameter vector
as a function of y, i.e., γ = γ(y). Using this, we denote the reduced state-
equation operator by

Ẽ(y) := E(y,γ(y)).

A proper linearization of the IDT method will require the Jacobian of the
reduced state-equation operator,

Ẽ
′

(y) =
∂E

∂y
(y,γ(y)) +

∂E

∂γ
(y,γ(y))γ′(y).

Unfortunately, one cannot directly compute γ′ since the relaxation parameters
are computed numerically using some iterative root-solving algorithm. One
could bypass this issue by simply taking ∂E/∂y as the Jacobian, ignoring the
second term above, essentially viewing the relaxation parameter as a constant
in the linearization, as suggested by [15, 16]. This approach would result in
linearized and adjoint time-stepping formulas that are almost identical to RK,
equations 9a and 10a (and equation 10b for the adjoint internal stages), but
with weights bs 7→ γkbs. We will show in our numerical results that ignoring
the relaxation parameter will have negative consequences.

For a proper linearization, we compute γ′ via implicit differentiation. Note
that γk is dependent on yk−1 and Yk only, thus it suffices to compute partial
derivatives with respect to these variables. In particular,

(∇yγk)
> :=

∂γk
∂yk−1

(y) = −

(
∂rk
∂γ

)−1
∂rk

∂yk−1

∣∣∣∣
(γ(y);y)

∈ R
1×N (13a)

(∇Y γk,i)
> :=

∂γk
∂Yk,i

(y) = −

(
∂rk
∂γ

)−1
∂rk
∂Yk,i

∣∣∣∣
(γ(y);y)

∈ R
1×N , (13b)

(∇Y γk)
> =

(
(∇Y γk,1)

>, ..., (∇Y γk,s)
>

)
∈ R

1×sN , (13c)
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where rk, again, is defined in 12 and

∂rk
∂γ

(γ(y); y) = ∆t

s∑

i=1

bi

(
∇η(yk)−∇η(Yk,i)

)>
Fk,i (14a)

∂rk
∂yk−1

(γ(y); y) = ∇η(yk)
> −∇η(yk−1)

> (14b)

∂rk
∂Yk,j

(γ(y); y) = γkbj∆t

{(
∇η(yk)−∇η(Yk,j)

)>
Jk,j − F>

k,j∇
2η(Yk,j)

}
, j = 1, ..., s.

(14c)

We provide the remaining details in the appendix, and simply state the resulting
time-stepping formulas in the following lemmas.

Lemma 1. The linearized IDT time-stepping formulas are

δk = δk−1 + γk∆t

s∑

i=1

biJk,i∆k,i + ρk ∆t

s∑

i=1

biFk,i +wk (15)

where
ρk = (∇yγk)

>δk−1 + (∇Y γk)
>∆k

and the computation of the internal stages ∆k is the same as for RK (see
equation 9b).

Lemma 2. The adjoint IDT time-stepping formulas are

λk−1 = λk +

s∑

i=1

Λk,i + ξk∇yγk +wk−1 (16)

where

ξk= ∆t

s∑

i=1

biF
>

k,iλk

Λk,i = ∆t J>k,i

(
γkbiλk +

s∑

j=1

ajiΛk,j

)
+ ξk∇Y γk,i +Wk,i. (17)

As we show in the appendix section, linearized and adjoint IDT formulas
define solutions to the following matrix systems, respectively:

(
∂E

∂y
+

∂E

∂γ
γ′

)
δ = w, (linearized)

(
∂E

∂y

>

+ (γ′)
> ∂E

∂γ

>
)
λ = w, (adjoint).

Terms associated with the linearization of γk in the linearized/adjoint IDT up-
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date formulas above, and in Lemmas 1 and 2, are highlighted using red text.
We see that taking into account the relaxation parameter in the linearization
results in having to compute gradients ∇yγk and ∇Y γk as well as scalars ρk
and ξk at each time step. These gradients in turn require RK approximations
at two time steps (yk−1 and yk), internal stages Yk, and the evaluation of the
right-hand-side function f and its Jacobian, as well as the gradient and Hessian
of the entropy function.

2.2.2. Time-symmetry of IDT

Before moving on to the discrete RRK adjoint, we discuss the special case
where

f(y(t), t) = Sy(t)

for a skew-symmetric matrix S ∈ R
N×N in IVP 2. It can be shown that IVP 2

is entropy/energy conservative with respect to the square entropy

η(y(t)) =
1

2
‖y(t)‖2.

Of course, given that f(y) is linear in this case, it follows that linearization
of the continuous state equation coincides with the original problem, ignoring
initial conditions. This is not obvious but still true for the IDT formulas, even
though the relaxation parameter is nonlinear with respect to y. In other words,
discretization by an IDT method commutes with linearization in this special
case.

Theorem 1. Suppose we were to apply IDT and the linearized IDT to IVP
2 with f(y(t), t) = Sy(t), where S is skew-symmetric and the entropy function
is η(y) = 1

2‖y‖
2. It follows that IDT updates are equivalent to linearized IDT

updates. In particular, if linearized IDT is applied with δ0 = yinit, wk = 0 and
Wk = 0, then δk = yk for all time steps.

Proof. Before proving equivalence between IDT and linearized IDT, we first
make some observations. In this linear case, we have

Fk,i = SYk,i, and Jk,i = S.

Moreover, the root function for computing the relaxation parameter is quadratic
in γ,

rk(γ; y) =
1

2
‖yk−1 + γdk‖

2 −
1

2
‖yk−1‖

2 − γek

where

dk := ∆t
s∑

i=1

biFk,i = ∆t
s∑

i=1

biSYk,i, (18)

ek := ∆t

s∑

i=1

bi∇η(Yk,i)
>Fk,i.
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The vectors dk and ek are based on notation from [2] and represent the search
direction (based on a projection interpretation of relaxation methods) and the
entropy production at the current time step, respectively. Note that ek = 0
since ∇η(y) = y and

∇η(Yk,i)
>Fk,i = Y>

k,iSYk,i = 0

by skew-symmetry of S.
Since rk(γk; y) = 0 is nothing more than a quadratic root problem we can

come up with an explicit formula for γk, the non-zero root of this quadratic
function:

γk := −
2y>k−1dk

‖dk‖2
, (19)

which is consistent with what is reported in [1]. Furthermore, the gradients
with respect to yk−1 and Yk,i are given by

∇yγk = −
2

‖dk‖2
dk, (20)

∇Y γk,i = −
2bi∆t

‖dk‖2
S>

(
yk−1 −

2y>k−1dk

‖dk‖2
dk

︸ ︷︷ ︸
y
k
=y

k−1
+γkdk

)
= −

2bi∆t

‖dk‖2
S>yk. (21)

We now prove that the k-th step of the linearized IDT method is equivalent
to the k-th IDT step, assuming δk−1 = yk−1. First note that the internal stages
coincide, ∆k = Yk, since their update formulas are identical, see equations 6b
and 9b. This follows from δk−1 = yk−1, Jk,j = S and Fk,j = SYk,j . Next we
look at the update step for linearized IDT, equation 15. In particular,

∇yγ
>

k δk−1 = −
2

‖dk‖2
d>k yk−1 = γk

and

∇Y γ
>

k ∆k = −
2

‖dk‖2
y>k

(
∆t

s∑

i=1

biSYk,i

)

= −
2

‖dk‖2
y>k dk

= −
2

‖dk‖2
(yk−1 + γkdk)

>dk

= −γk,

which implies that

ρk = ∇yγ
>

k δk−1 +∇Y γ
>

k ∆k = 0.
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Using δk−1 = yk−1, ∆k,i = Yk,i, and ρk = 0, we can conclude that the k-th
step is given by

δk = δk−1 + γk ∆t

s∑

i=1

biS∆k,i

︸ ︷︷ ︸
dk

+��ρk∆t

s∑

i=1

biSYk,i

= yk−1 + γkdk

= yk.

Assuming δ0 = y0 = yinit, we can conclude by induction that δk = yk and
∆k = Yk for all time steps.

Building off of the equivalence of the forward and linearized continuous sys-
tems, and similarly for IDT and linearized IDT, we discuss an interesting re-
lationship with their respective adjoints. The adjoint of IVP 2, again with
f(y, t) = Sy, is given by

−λ′(t) = S>λ(t), 0 < t < T (22a)

λ(T ) = λfinal (22b)

along with the following adjoint condition

λ>

finaly(T ) = λ(0)>yinit. (23)

For skew-symmetric S, system 22 is essentially the original problem but with a
final time condition. In particular, if λfinal = y(T ), then system 22 is equivalent
to the forward problem in reverse time, i.e., λ(t) = y(t) for all time 0 ≤ t ≤ T .
Note that condition 23 is automatically satisfied here since the problem is norm
conservative,

λ>

finaly(T ) = ‖y(T )‖2 = ‖y(0)‖2 = λ(0)>yinit.

We refer to this equivalency between the forward and adjoint systems as a time-
symmetry property of the continuous problem. In Theorem 2 we prove that
IDT preserves a similar time-symmetry with its adjoint.

Theorem 2. Assume the underlying RK method is explicit or diagonally im-
plicit. Suppose we were to apply IDT to IVP 2 with f(y, t) = Sy, where S is
skew-symmetric and the entropy function is η(y) = 1

2‖y‖
2. It follows that the

IDT method preserves time-symmetry. In particular, if adjoint IDT is applied
with λK = yK (assuming IDT takes K steps), wk = 0 and Wk = 0, then
λk = yk for all time steps, up to machine precision.

Proof. This proof makes use of some simplifications derived in the first half of
the proof for Theorem 1, based on the linearity of the problem. In particular,
we make use of Fk,i = SYk,i, Jk,i = S, dk as defined by equation 18, the explicit
formula for γk given by equation 19, and gradients of γk (equations 20 and 21).
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Consider the k-th step (in reverse time) of the adjoint IDT algorithm, as-
suming λk = yk. Note that

ξk = ∆t

s∑

i=1

biF
>

k,iλk = d>k yk.

The internal stages are given by

Λk,i = ∆tJ>k,i


γkbiλk +

s∑

j=1

ajiΛk,j


+ ξk

(
∇Y γk,i

)

= ∆tS>


γkbiyk +

s∑

j=1

ajiΛk,j


+

(
d>k yk

)(
−
2∆t bi
‖dk‖2

S>yk

)

= ∆tS>




s∑

j=1

ajiΛk,j


+ γkbi∆tS>yk − γkbi∆tST yk

= ∆tS>




s∑

j=1

ajiΛk,j


 ,

where we made use of

−
2

‖dk‖2
d>k yk = −

2

‖dk‖2
d>k (yk−1 + γkdk)

= γk − 2γk

= −γk,

Recall that the RK coefficient matrix As is lower triangular for explicit or
diagonally implicit RK method. Thus, we have the following set of equations
for the internal stages,

(
I− aii∆tS>

)
Λk,i = ∆tS>

∑

j>i

ajiΛk,j , i = 1, ..., s.

It is easy to see, that for i = s,

(
I− ass∆tS>

)
Λk,s = 0 =⇒ Λk,s = 0.

Moreover, by induction, it can be shown that Λk,i = 0 for all i = 1, ..., s.

13



Since the internal stages zero-out, the k-th adjoint update step reduces to

λk−1 = λk +
s∑

i=1

�
��Λk,i + ξk∇yγk

= λk +
(
d>k yk

)(
−

2

‖dk‖2
dk

)

= yk − γkdk

= yk−1.

Assuming λK = yK , we can conclude by induction that λk = yk for all subse-
quent time steps.

Again, we emphasize that our notion of adjoint in this paper is based the
transpose of the matrix-form of the linearized state-equations induced by the
time-stepping scheme. Moreover, by time-symmetry we refer to the relationship
between the forward and adjoint continuous system as well as the forward and
adjoint IDT time-stepping formulas. In other words, for IDT, time-symmetry
refers to the adjoint time-step as reversing the corresponding forward time-
step. The use of adjoint and time-symmetry should not be equated with the
standard definitions used in the literature for symplectic/geometric numerical
integrators; see [17, 18] for other definitions of time-reversibility, time-symmetry,
and adjoints of time-stepping methods.

2.2.3. Discrete linearization and adjoint of RRK

Recall that RRK yields the update yk ≈ y(tk−1 + γk∆t). For this reason
RRK can be interpreted as an adaptive time-stepping scheme. Consequently,
special care is taken in order to ensure that at the end of the time loop we end
up with an approximation at the desired final time. Suppose that at time step
K− 1 we have tK−1+∆t > T and tK = tK−1+ γK∆t > T . In other words, the
RRK time loop terminates after K steps. One could apply some continuation
method to interpolate an approximation at t = T . This interpolation step will
need to be entropy stable in some sense and be accounted for in the linearization
and subsequently adjoint of the RRK method.

As an interpolation-free alternative, we take an IDT final step but with a
corrected step size of ∆t∗ := T − tK−1, resulting in tK = T . In other words,

yK = yK−1 + γK∆t∗
s∑

i=1

biFK,i,

YK,i = yK−1 +∆t∗
s∑

j=1

aijFK,j , i = 1, ..., s,

where yK ≈ y(T ). This approach is similar to what is considered in [15, 16] for

14



generic adaptive time-stepping methods. Note that

∆t∗ = T − t0 −∆t

K−1∑

`=1

γ`, (24)

which implies that ∆t∗ is dependent on γ` (and thus y`−1 and Y`) for ` =
1, ...,K − 1. Moreover, since ∆t∗ is the step size used in rK this implies γK
is dependent on (y`−1,Y`) for ` = 1, ...,K. These dependencies must be taken
into account for a proper linearization. Again, we provide the derivation on the
appendix and summarize the results here.

Lemma 3. Assuming RRK takes K steps, and that the last step is taken as an
IDT step, with ∆t∗ = T − tK−1, then the linearized RRK approximations and
internal stages, δk and ∆k for k = 1, ...,K − 1, are as given by the linearized
IDT computations in equations 15 and 9b, respectively. The linearized RRK
update formula for the final step is given by

δK = δK−1 + γK∆t∗
s∑

i=1

biJK,i∆K,i + ρK∆t∗
s∑

i=1

biFK,i +wK

where

∆K,i = δK−1 +∆t∗
s∑

j=1

aijJK,j∆K,j − ρ∗∆t

s∑

j=1

aijFK,j +WK,i,

ρ∗=

K−1∑

k=1

ρk.

Lemma 4. Assuming RRK takes K steps, and that the last step is taken as
an IDT step with ∆t∗ = T − tK−1, then the adjoint RRK approximations and
internal stages for the first adjoint step, λK−1 and ΛK , are given by the adjoint
IDT formulas, equations 16 and 17 respectively, though with ∆t 7→ ∆t∗. The
adjoint RRK update formulas for k = K − 1, ..., 1 are given by

λk−1 = λk +

s∑

i=1

Λk,i + (ξk − ξ∗)∇yγk +wk−1

where

Λk,i = ∆t J>k,i

(
γkbiλk +

s∑

j=1

ajiΛk,j

)
+ (ξk − ξ∗)∇Y γk,i +Wk,i,

ξ∗= ∆t

s∑

i=1

s∑

j=1

ajiF
>

K,iΛK,j .

In relation to the matrix-form, linearized and adjoint IDT formulas define
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solutions to the following matrix systems, respectively:

(
∂E

∂y
+

∂E

∂γ
γ′+

∂E

∂∆t∗
d∆t∗

dy

)
δ = w, (linearized)

(
∂E

∂y

>

+ (γ′)
> ∂E

∂γ

>

+

(
d∆t∗

dy

)>
∂E

∂∆t∗

>
)
λ = w, (adjoint).

Again, terms associated with linearization with respect to the relaxation pa-
rameter are in red. In blue we have terms related to linearization with respect
to the final step size ∆t∗. We note that accounting for ∆t∗ in the lineariza-
tion requires computing the scalar quantity ρ∗, which can be done efficiently
by simply accumulating the ρk scalars. This scalar shows up in the internal
stage computations for the last time-step. For the adjoint RRK method, we see
an expected structure that is complementary to linearized RRK. In particular,
the final step is as given by the adjoint IDT formula (with ∆t 7→ ∆t∗). The
scalar ξ∗, computed from the final step, shows up as a correction term for the
remaining time steps.

Consider again the special case when f(y, t) = Sy, where S is skew-symmetric.
The same results we observed for IDT hold for RRK as well.

Theorem 3. Suppose we were to apply RRK, and linearized RRK to IVP 2
with f(y, t) = Sy, where S is skew-symmetric. It follows that RRK updates are
equivalent to linearized RRK updates. In particular, if linearized RRK is applied
with δ0 = yinit, wk = 0 and Wk = 0, then δk = yk for all time steps.

Proof. Given that the first K − 1 steps of RRK are algorithmically identical to
IDT, it follows from theorem 1 that (δk−1,∆k) = (yk−1,Yk) for k = 1, ...,K−1.
Moreover, in the proof of theorem 1, we showed that ρk = 0 for k = 1, ...,K − 1
(ρK = 0 can similarly be proven), thus the accumulated scalar ρ∗ in RRK is
also zero. From this it is easy to see that the proposition holds.

Theorem 4. Assume the underlying RK method is explicit or diagonally im-
plicit. Suppose we were to apply RRK to IVP 2 with f(y, t) = Sy, where S is
skew-symmetric. It follows that the RRK method preserves time-symmetry. In
particular, if adjoint RRK is applied with λK = yK (assuming RRK takes K
steps), wk = 0 and Wk = 0, then λk = yk for all time steps, up to machine
precision.

Proof. In adjoint RRK, we have to account for the auxiliary scalar ξ∗,

ξ∗ = ∆t
∑

ij

ajiF
>

K,iΛK,j .

Just as in the IDT case, the first set of internal stages, ΛK,i for i = 1, ..., s, are
all zero, hence ξ∗ = 0. This allows us to carry on and show that λk−1 = yk−1

for all time steps.

16



3. Numerical experiments and results

This section presents numerical results that validate and highlight properties
discussed in the previous sections. We restrict our focus to the more interesting
and applicable RRK method, though analogous results can be generated for
IDT as well. We mention in passing that a bisection algorithm, similar to that
of [19], is used to solve the scalar root subproblem when computing relaxation
parameters at each time step.

The previous section presented the discrete linearization and adjoint of RRK,
taking into consideration the relaxation parameter, γ, and the corrected final
step-size, ∆t∗. We demonstrate various consequences of improper linearization,
when γ and ∆t∗ are not considered in the linearization; we refer to these cases as
the γ-constant or ∆t∗-constant case respectively. Recall that ∆t∗ can be written
in terms of γ` for ` = 1, ...,K − 1 (see equation 24), hence, in the γ-constant
case ∆t∗ is also considered constant.

3.1. Mathematical models

We consider three mathematical models throughout our numerical tests
which we present at this moment.

Nonlinear pendulum

For the nonlinear pendulum, we take the first-order form as done in [2],

d

dt

(
y1(t)
y2(t)

)
=

(
− sin(y2(t))

y1(t)

)
, 0 < t ≤ T (25)

with initial condition

y(0) = yinit :=

(
1.5
1

)
.

This problem is entropy conservative with respect to the following entropy func-
tion,

η(y) =
1

2
y21 − cos(y2).

1D compressible Euler

The 1D compressible Euler equations are given by

∂ρ

∂t
+

∂(ρu)

∂x
= 0, (26a)

∂(ρu)

∂t
+

∂(ρu2 + p)

∂x
= 0, (26b)

∂E

∂t
+

∂(u(E + p))

∂x
= 0, (26c)
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which we solve over 0 < t ≤ 1.5 and −1 ≤ x ≤ 1, with initial condition

ρ(x, 0) = 1 + 1
2 exp(−50(x− 0.1)2),

u(x, 0) = 0,

p(x, 0) = ρ(x, 0)γ ,

assuming the pressure, p, satisfies the following constitutive relation:

p = (γ − 1)(E − 1
2ρu

2), γ = 1.4.

We arrive at IVP 2 by discretizing in space the compressible Euler equations
with an entropy stable DG scheme [20, 21]. In particular, y(t) represents semi-
discretized quantities related to the variables ρ, ρu and E. The entropy function
associated with this semi-discretized system corresponds to a discretization of
the continuous total entropy,

η(y(t)) ≈

∫
S(ρ, ρu,E) dx

where S is the continuous entropy function

S(ρ, ρu,E) := −
ρs

γ − 1
, s = log

(
p

ργ

)
.

Linear skew-symmetric system

For experiments concerning time-symmetry of RRK, as detailed in theorem
4, we solve the following linear problem:

y′(t) = Sy(t), 0 < t < T, (27a)

y(0) = yinit (27b)

where S ∈ R
N×N is a randomly generated skew-symmetric matrix and yinit ∈

R
N is a randomly generated initial condition; we take N = 10. The final time

is taken to be proportional to the Frobenius norm of S, specifically,

T = 10 · ‖S‖F ≈ 133.46.

As previously mentioned, this system is entropy conservative with respect to

η(y(t)) =
1

2
‖y(t)‖2.

3.2. RK schemes
The following are the RK schemes used throughout our experiments:

• Heun’s method, a 2-stage, second-order RK scheme which we refer to as
RK2,

A2 =

(
0 0
1 0

)
, b2 =

(
1/2
1/2

)
, c2 =

(
0
1

)
.
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• A 3-stage, third-order RK scheme (see [22]), which we refer to as RK3,

A3 =




0 0 0
1 0 0
1/4 1/4 0


 , b3 =




1/6
1/6
2/3


 , c3 =




0
1

1/2


 .

• The standard 4-stage, fourth-order RK scheme, referred to as RK4,

A4 =




0 0 0 0
1/2 0 0 0
0 1/2 0 0
0 0 1 0


 , b4 =




1/6
1/3
1/3
1/6


 , c4 =




0
1/2
1/2
1


 .

• A 3-stage, third-order DIRK scheme, referred to as DIRK3, with

A3 =




α 0 0
τ2 − α α 0
b1 b2 α


 , b3 =




b1
b2
α


 , c3 =




α
τ2
1


 ,

where

α = 0.435866521508459

τ2 = (1 + α)/2

b1 = −(6α2 − 16α+ 1)/4

b2 = (6α2 − 20α+ 5)/4.

We refer the reader to [23, 24] for additional details on this DIRK scheme.

All relaxation variants of a specified RK scheme are simply denoted by an ex-
tra “R” in front of RK. For example, RRK4 and DIRRK3 refer to the relaxation
variants of RK4 and DIRK3, respectively.

3.3. Verifying linearizations

The first set of numerical experiments verify our linearization RRK formulas,
as well as highlight the importance of taking into consideration the relaxation
parameter and the corrected final step-size in the linearization process. Let

E(y) = w

denote an abstract system of time-stepping equations for a given right-hand-side
vector w. Let H denote the inverse of E, i.e., if y is the solution to the equation
above then y = H(w). Essentially, H specifies the explicit update formulas of a
given time-integration scheme. From implicit differentiation, it follows that the
directional derivative of H, evaluated at w in direction d, is given by δ,

δ = H′(w)d.

19



In practice, we compute δ as the solution to

E′(y)δ = d.

This motivates our work in computing the Jacobian E′ for the different schemes.
To verify that our linearized code indeed computes derivatives we study

the numerical convergence of a simple finite difference approximation to the
directional derivative, similar to what is done in [25] under a different context.
In particular, we check that

∥∥∥∥
H(w + hd)−H(w)

h
−H′(w)d

∥∥∥∥ =

∥∥∥∥
yh − y

h
− δ

∥∥∥∥ = O(h) (28)

as h → 0+, where y, yh and δ are solutions to the following systems:

E(y) = w,

E(yh) = w + hd,

E′(y)δ = d.

3.3.1. Nonlinear pendulum results

We use the nonlinear pendulum equations 25 as our first model for tests
concerning proper linearization. When computing the finite difference error in
equation 28, we take w = 0 and d = χ0d0 where d0 is a random vector meant
to represent a random initial condition.

Figure 1 plots finite difference error 28 for different choices of Jacobian E′

representing linearized RRK formulas with proper linearization or for the γ-
constant or ∆t∗-constant cases. As expected, we observe that proper lineariza-
tion achieves linear convergence while the other two cases do not, which is
apparent for lower order RK schemes. Interestingly enough, the ∆t∗-constant
case yields significantly smaller errors than the γ-constant case, though both
fail to converge.

3.3.2. 1D Compressible Euler equations results

We run the same FD convergence test with proper and improper lineariza-
tions of RRK when solving the semi-discretization of the one-dimensional com-
pressible Euler equations 26. For the step size, we use

∆t = CFL×
h

CN

, CN =
(N + 1)2

2

where h = 1/16 is the size of the DG element, N = 3 the polynomial order of
the DG method, and CFL is a user-defined constant.

Figure 2 demonstrates the FD convergence, or lack of, for different choice of
CFL constant. As before, linear convergence is achieved clearly under proper
linearization. Larger step sizes reveal that indeed the improper linearizations
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(a) Using RK2. (b) Using RK3.

(c) Using RK4.

Figure 1: Convergence of the finite difference error 28 for RRK with nonlinear pendulum
model; ∆t = 0.1 and T = 200.

fail to converge. Unlike the nonlinear pendulum example, however, the ∆t∗-
constant case yielded larger errors than the γ-constant case.

(a) Using RK4, CFL = 1. (b) Using RK4, CFL = 1.5.

Figure 2: Convergence of the finite difference error 28 for RRK with 1D compressible Euler
model.
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3.4. Consistency of discrete RRK adjoints

As mentioned in the introduction, the discretize-then-optimize approach
yields a discrete adjoint equation 5 for gradient computations of cost functions.
An optimize-then-discretize approach would have resulted in a continuous ana-
log, with some continuous adjoint equation. The discrete adjoint equation is
said to be consistent if its solution converges to the solution of the continuous
adjoint equation.

Depending on the choice of time-integrator, the resulting adjoint equation
may or may not be consistent. For RK time-integrators, it has been shown that
the discrete adjoint equation correspond to an RK discretization (of same order)
of the continuous adjoint equation, [12]. Concerning adaptive time-integrators,
[15, 16] argue that taking into consideration the adaptive step-size in the lin-
earization process can result in inconsistent adjoint scheme. We present here a
convergence study of the discrete RRK adjoint to address these concerns and
verify (at least numerically) consistency.

Consider control problem 1 with cost function

C(u) =
1

2
‖y(T )‖2,

subject to

d

dt

(
y1(t)
y2(t)

)
=

(
− sin(y2(t))

y1(t)

)
, 0 < t ≤ T,

y(0) = u,

where the initial condition is the control variable. The discretized optimal con-
trol problem is given by 3 with

C(y,u) =
1

2
‖yK‖2 =

1

2
y>χKχ>

Ky,

E(y,u) = L−N(y)− χ0u,

assuming the state equation has been discretized by an RK/RRK scheme, taking
K steps to arrive at the final time. The gradient of the reduced, discrete cost
function is

∇C̃(u) = χ>

0 λ = λ0

where λ is the solution to the discrete adjoint equation,

(
∂E

∂y
(y,u)

)>

λ = χKχ>

Ky. (29)

Note that y in the discrete adjoint problem corresponds to the solution of the
forward problem, that is, the state equation E(y,u) = 0. Moreover, the right-
hand-side of the adjoint equation here simply dictates the final time condition,
specified by yK .
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In the numerical experiments presented here, we examine the convergence
of

forward error =
‖yK − yref(T )‖

‖yref(T )‖
, adjoint error =

‖λ0 − λref(0)‖

‖λref(0)‖

as ∆t → 0, where yref and λref are computed using RK4 (and its adjoint) with
a small step-size of ∆t = 10−5. Given that RK4 and its adjoint are consistent
discretizations of the continuous state and adjoint state equations, we can expect
that our reference solution will be sufficiently accurate for these tests.

Figure 3 shows the well expected convergence of RK and RRK schemes of
different order for the forward problem. In the adjoint problem, figure 4, we
observe that adjoint RRK, along with its improper linearization variants, is
indeed consistent. Moreover, optimal convergence rates are achieved by adjoint
RRK with proper linearization and the γ-constant case. Interestingly enough,
we see that we lose an order of convergence in the ∆t∗-constant case.

Figure 3: Convergence of RK and RRK discretizations of nonlinear pendulum problem; T = 2.

3.5. Qualitative behavior of adjoint solutions

The adjoint convergence plots in figure 4 not only demonstrate that the
adjoint RRK method (with proper linearization) is consistent but is also the
most accurate out of all of the other methods, including standard RK. We
explore this in these next set of experiments, using again the nonlinear pendulum
as our state equations with a much larger final time of T = 200.

In figure 5 and 6a, we plot the norm of the adjoint solution as a function or
time. Note that the plots are presented with the time axis in reverse, in spirit
with the back-propagation of adjoint numerical methods. We see that all of the
methods for computing the adjoint solution yield consistent results in the case
where we use both RK4 and a small step-size of ∆t = 0.1, figure 5c. However,
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(a) Using RK2. (b) Using RK3.

(c) Using RK4.

Figure 4: Convergence of RK, and improperly linearized RRK, discretizations of the adjoint
nonlinear pendulum problem; T = 2.

when using RK2, we begin to see standard RK2 and RRK2 (γ-constant) deteri-
orate, figure 5a. Standard RK2 yields significant differences from the onset but
eventually recovers a similar growth in the adjoint solution. Conversely, RRK2
(γ-constant) yields reasonably accurate results as it begins stepping backwards
in time, but soon after becomes erratic. RRK with proper linearization and
with ∆t∗-constant produce accurate results for all three choices of RK schemes,
at least for the smaller step-size, ∆t = 0.1.

For the larger step-size, figure 6a, we can observe more significant differ-
ences between RRK with proper linearization and the ∆t∗-constant case, which
becomes more apparent as we progress backwards in time. Moreover, the γ-
constant case results in a substantial growth of the adjoint solution by the time
we arrive at the initial time. The standard adjoint RK4 method yields highly in-
accurate results, in part due to the numerical dissipation observed in its forward
solution, see figure 6b.

3.6. Preservation of time-symmetry

The next set of results verify the time-symmetry property of RRK schemes
for model skew-symmetric problems 27, as detailed in theorem 4. To showcase
time-symmetry (or the lack thereof) we solve the skew-symmetric problem and
use the numerical solution at the final time as the final-time condition for the
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(a) Using RK2. (b) Using RK3.

(c) Using RK4.

Figure 5: Norm of adjoint solutions to the nonlinear pendulum model; ∆t = 0.1 and T = 200.

(a) Norm of adjoint solutions. (b) Phase plot of forward solutions.

Figure 6: Norm of adjoint solutions and scattered plot of forward solution to the nonlinear
pendulum model, using RK4; ∆t = 0.9 and T = 200.

adjoint solution. If a scheme is time symmetric then the initial condition and
the numerical adjoint solution should coincide up to machine precision. Figure
7 plots the error

‖λ0 − yinit‖

‖yinit‖

versus ∆t.
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Numerical results demonstrate the ability for RRK to preserve time-symmetry
in its adjoint, as observed by the small errors for both explicit and implicit RK
schemes. Time-symmetry is violated in both the standard RK and RRK with
γ-constant cases. Interestingly enough, numerical results show that RK4 and
RK2 (e.g., even order RK schemes) converge at a rate higher than anticipated
(fifth and third order convergence respectively) while RK3 and DIRK3 main-
tain their third order convergence. The authors are unaware as to why RK4 and
RK2 exhibit this super convergence behavior. It is also observed that the ∆t∗-
constant case demonstrates time-symmetry, which can be explain by the fact
that the terms appearing in the proper linearization (specifically scalar ρ∗ and
ξ∗ in Lemma 3 and 4) that would otherwise be missing in the ∆t∗-constant case
actually zero-out for this linear problem. In other words, proper linearization
and the ∆t∗-constant case are equivalent for this linear problem with square
entropy.

(a) RK4 results. (b) RK3 results.

(c) RK2 results. (d) DIRK3 results.

Figure 7: Time-symmetry results.
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4. Conclusion

We have presented the discrete linearization and adjoint of relaxation RK
methods. Our approach is based on implicit differentiation and a global ma-
trix representation of the time-stepping equations. Even though the relaxation
parameter is a nonlinear function of the state variables, we are able to prove
that the relaxation RK method is equivalent to its linearization when applied
to a skew-symmetric linear problem. Moreover, the relaxation method is proven
to be time-symmetric for explicit and diagonally implicit RK schemes on skew-
symmetric linear problems, in the sense that the adjoint time-step reverses the
forward time-step. Numerical results also demonstrate the importance of proper
linearization, in particular, the importance of taking into account the relaxation
parameter, and the corrected final step-size for our implementation of RRK. Nu-
merical results also show that the discrete RRK adjoint is not only consistent
(with optimal convergence), but is more accurate in computing adjoint solutions.

Appendix

In this appendix we present in detail derivations of linearization and adjoint
computations for RK and its relaxation variant using a matrix representation.
We use an approach and notation similar to [4]. The plan is to interpret time-
stepping algorithms as solutions to global matrix-vector systems and use the
Jacobians of said systems to deduce a time stepping scheme for the discrete
linearization and adjoint.

We first recap and introduce some notation.

• N is the dimension of the state vector y(t) in IVP 2;

• K is the total number of time steps taken by a given time-stepping scheme;

• s is the number of internal stages for an RK method;

• As,bs, cs are the coefficients of a specified s-stage RK method;

• The concatenation of vectors indexed by internal stages is denoted by
simply removing the internal stage index, e.g.,

Yk :=




Yk,1

...
Yk,s


 ∈ R

sN ;

• Vectors of size N := N +N(s+ 1)K are denoted using bold font and an
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overline and have components denoted as follows:

y :=




y0
Y1

y1
...

YK

yK




,

with yk ∈ R
N and Yk ∈ R

sN ;

• Matrix χk ∈ R
N×N is defined such that χ>

k y = yk, extracting the k-th
step vector. Moreover, for a given v ∈ R

N , then v := χkv is vector of
length N with zero entries everywhere except at vk = v;

• IM denotes the M ×M identity matrix;

• 0M is the zero vector of dimension M ;

• 0M1×M2
is the M1 ×M2 zero matrix;

• ⊗ denotes the Kronecker product.

RK Matrix-representation

A single step of the RK method, as specified by equations 6, can be written
in matrix form as

(
−C IsN
−IN IN

)


yk−1

Yk

yk


−

(
AFk

B>Fk

)
=

(
0sN
0N

)

where

• A := ∆tAs ⊗ IN ∈ R
sN×sN ,

• B := ∆tbs ⊗ IN ∈ R
sN×N ,

• C := 1s ⊗ IN ∈ R
sN×N , with 1s := (1, ..., 1)> ∈ R

s,

• Fk is the concatenation of the Fk,i := f(Yk,i, tk−1 + ci∆t), and subse-
quently can be viewed as a vector valued function of Yk.

The RK method as a whole can be represented as a concatenation of the matrix
systems above, resulting in a global system of time-stepping equations:

E(y) := Ly −N(y)− χ0yinit = 0
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with

L :=




IN
−C IsN
−IN IN

−C IsN
−IN IN

. . .




, N(y) :=




0N
AF1

B>F1

AF2

B>F2

...




.

We make some remarks and observations:

• Boxes are meant to help visually separate blocks associated with different
time steps in both L and N(y).

• The unboxed IN in the top left corner of L is related to the enforcement
of the initial condition.

• L ∈ R
N×N is lower unit triangular, though not quite block diagonal due

to some slight overlap in columns.

• Given the repeating block structure of matrices presented here, we only
write out the blocks associated the initial/final conditions and two subse-
quent time steps. Dots indicate a repeating pattern with the understand-
ing that the block structure repeats K times with appropriate indexing
when relevant.

• N : RN → R
N is block lower triangular in the sense that the k-th N(s+1)

block of the output does not depend on the j-th N(s + 1) block of the
input, for j > k. For example, the N(s+1) block of N(y) associated with
the k-th time step, is (

AFk

B>Fk

)

which only depends on Yk, and not on y at later time steps.

Linearized RK formulas 9 are derived by computing the Jacobian, E′, and
interpreting the solution to linear system E′(y)δ = w (via forward substitution)
as a time-stepping algorithm. The Jacobian of the global time-stepping equation
operator E(y) is given by

E′(y) = L−N′(y)

with

N′(y) =




0N×N

AJ1
B>J1 0N×N

AJ2
B>J2 0N×N

. . .



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Jk := diag(Jk,1, · · · , Jk,s) ∈ R
sN×sN ,

Jk,i :=
∂f

∂y
(Yk,i, tk−1 + ci∆t) ∈ R

N×N .

We see that the block lower triangular structure of the operator N yields a
proper block lower triangular Jacobian N′. Putting it together, we have

E′(y) =




IN
−C IsN − AJ1
−IN −B>J1 IN

−C IsN − AJ2
−IN −B>J2 IN

. . .




In particular, each time step is associated with solving the following system for
∆k and δk, with δk−1 given by the previous time step:

(
−C IsN − AJk
−IN −B>Jk IN

)


δk−1

∆k

δk


 =

(
Wk

wk

)
,

=⇒





∆k,i = δk−1 +∆t

s∑

j=1

aijJk,j∆k,j +Wk,i, i = 1, ..., s,

δk = δk−1 +∆t

s∑

i=1

biJk,i∆k,i +wk.

Adjoint RK formulas 10 are derived in a similar fashion, but with the trans-
pose of E′, which results in a block upper triangular matrix,

E′(y)> =




. . .

IN −C> −IN
IsN − J>K−1A

> −J>K−1B

IN −C> −IN
IsN − J>KA> −J>KB

IN




.

Analogous to L, we see a repeating block structure with overlapping columns,
though with an identity block at the lower right corner, associated with the final
time condition. We interpret the solution to linear system E′(y)>λ = w (via
back substitution) as a time-stepping algorithm running in reverse time. Each
time step is associated with solving the following system for Λk and λk−1, with
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λk given by the previous adjoint time step:

(
IN −C> −IN

IsN − J>k A
> −J>k B

)


λk−1

Λk

λk


 =

(
wk−1

Wk

)
,

=⇒





λk−1 = λk +

s∑

i=1

Λk,i +wk−1,

Λk,i = bi∆tJ>k,iλk +∆t

s∑

j=1

ajiJ
>

k,iΛk,j +Wk,i, i = 1, ..., s.

IDT matrix representation

The matrix representation of the IDT method is very similar to what we
derived for RK,

E(y,γ) := Ly −N(y,γ)− χ0yinit = 0

where the relaxation parameters γ = (γ1, ..., γk) appear on the (nonlinear) term
N only, i.e.,

N(y,γ) :=




0N
AF1

γ1B
>F1

AF2

γ2B
>F2

...




. (30)

Recall that γk is defined as the positive root near 1 (for ∆t small enough) of
the root function r(γ; yk−1,Yk), equation 12. In other words the relaxation

parameters depend implicitly on y, i.e., γ = γ(y). Let Ẽ(y) denote the reduced
state-equation operator, that is,

Ẽ(y) := E(y,γ(y)).

The Jacobian is given by

Ẽ
′

(y) = L−

(
∂N

∂y
(y,γ(y))+

∂N

∂γ
(y,γ(y))γ′(y)

)

︸ ︷︷ ︸
Ñ

′

(y)

.
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In particular,

Ñ
′

(y) =




0N×N

AJ1
Γy,1 γ1B

>J1 +ΓY,1 0N×N

AJ2
Γy,2 γ2B

>J2 +ΓY,2 0N×N

. . .




where
Γy,k := B>Fk(∇yγk)

>, ΓY,k := B>Fk(∇Y γk)
>

are associated with the term ∂N
∂y

γ′, which we highlight using red text. Again,
gradient terms in Γy,k and ΓY,k correspond to gradients of γk with respect to
yk−1 and Yk respectively, and are computed via implicit differentiation; see
equations 13 and 14.

The Jacobian matrix for IDT is thus given by

Ẽ
′

(y) =




IN
−C IsN − AJ1

−IN −Γy,1 −γ1B
>J1 −ΓY,1 IN

−C IsN − AJ2
−IN −Γy,2 −γ2B

>J2 −ΓY,2 IN
. . .




.

Solving Ẽ
′

(y)δ = w via forward substitution results in solving at each time step
the following system for ∆k and δk, with δk−1 given by the previous time step,
deriving the linearized IDT formulas in lemma 1:

(
−C IsN − AJk

−IN−Γy,k −γkB
>Jk−ΓY,k IN

)


δk−1

∆k

δk


 =

(
Wk

wk

)

=⇒





∆k,i = δk−1 +∆t
s∑

j=1

aijJk,j∆k,j +Wk,i, i = 1, ..., s,

δk = δk−1 + γk∆t

s∑

i=1

biJk,i∆k,i +Γy,kδk−1 + ΓY,k∆k +wk.

Note that

Γy,kδk−1 + ΓY,k∆k = ρk∆t

s∑

i=1

biFk,i

with scalar ρk := ∇yγ
>

k δk−1 +∇Y γ
>

k ∆k.
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The transpose of the Jacobian is given by

Ẽ
′

(y)> =




. . .

IN −C>
−IN−Γ

>

y,K−1

IsN − J>K−1
A>

−γK−1J
>

K−1
B−Γ

>

Y,K−1

IN −C>
−IN−Γ

>

y,K

IsN − J>KA>
−γKJ>KB−Γ

>

Y,K

IN




.

Solving Ẽ
′

(y)>λ = w via back substitution results in solving at each time step
the following system for Λk and λk − 1, with λk given by the previous time
step, deriving the adjoint IDT formulas in lemma 2:

(
IN −C> −IN −Γ>

y,k

IsN − J>k A
> −γkJ

>

k B−Γ>

Y,k

)


λk−1

Λk

λk


 =

(
wk−1

Wk

)

=⇒





λk−1 =

s∑

i=1

Λk,i + λk +Γ>

y,kλk +wk−1,

Λk,i = ∆t J>k,i

s∑

j=1

ajiΛk,j + γkbi∆t J>k,iλk +Γ>

Y,kλk +Wk,i, i = 1, ..., s.

Note that

Γ>

y,kλk = (∇yγk) F
>

k Bλk = ξk(∇yγk)

Γ>

Y,kλk = (∇Y γk)F
>

k Bλk = ξk(∇Y γk)

with scalar

ξk := F>

k Bλk = ∆t

s∑

i=1

biF
>

k,iλk.

4.1. RRK matrix representation

The matrix representation for RRK is quite similar to what we derived for
IDT:

E(y,γ,∆t∗) := Ly −N(y,γ,∆t∗)− χ0yinit = 0,

where we have made the operator N dependent on the modified step size ∆t∗ :=
T − tK−1 as well. Only the last N(s + 1) rows of N, associated with the last
time step, differ from what was presented in the IDT case (equation 30). These
last last N(s+ 1) rows of N are specified by

(
A∗FK

γKB>

∗ FK

)
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with

A∗ := ∆t∗As ⊗ IN =
∆t∗

∆t
A,

B∗ := ∆t∗bs ⊗ IN =
∆t∗

∆t
B.

Recall that in RRK we have tk = tk−1+γk∆t for k = 1, ...,K−1, and hence

∆t∗ = T − t0 −∆t

K−1∑

`=1

γ`

which makes ∆t∗ a function of y`−1 and Y` for ` = 1, ...,K − 1, i.e., ∆t∗ =

∆t∗(y). With this is mind, let Ẽ(y) denote the reduced state-equation operator,

Ẽ(y) := E(y,γ(y),∆t∗(y)).

Given how N is modified in RRK, it follows that the Jacobian dẼ
dy

will coincide

with what we derived for IDT except at the last N(s + 1) rows. In particular,
computing

d

dy

(
A∗FK

)
= A∗

dFK

dy
+ AFK

(
d

dy

∆t∗

∆t

)
,

d

dy

(
γKB>

∗ FK

)
= γKB>

∗

dFK

dy
+ B>

∗ FK

(
dγK
dy

)
+ γKB>FK

(
d

dy

∆t∗

∆t

)
,

will require the derivatives of γK and ∆t∗ with respect to y.
The derivatives of ∆t∗ can be expressed in terms of derivatives of the relax-

ation parameters as follows:

d

dy

∆t∗

∆t
(y) = −

(
∂γ1
∂y1

,
∂γ1
∂Y1

, · · · ,
∂γK−1

∂yK−1

,
∂γK−1

∂YK−1
, 0>N(s+2)

)∣∣∣∣
y

= −
(
∇γ>

1 , · · · , ∇γ>

K−1, 0>N(s+2)

)
,

where

∇γk :=

(
∇yγk
∇Y γk

)
.

An added complication is that ∆t∗ is also the step size used in rK , thus
implying that γK is dependent on information from all previous time steps. As
before, we can compute dγK

dy
via implicit differentiation, though we will have to
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compute partial derivatives of γK with respect to y`−1 and Y` for all ` = 1, ...,K;

∂γK
∂y`−1

= −

(
∂rK
∂γ

)−1
∂rK
∂y`−1

,

∂γK
∂Y`

= −

(
∂rK
∂γ

)−1
∂rK
∂Y`

.

The partial derivatives of rK with respect to γ, yK−1 and YK , evaluated at
(γK , yK−1,YK) are as given in equation 14, with k 7→ K and ∆t 7→ ∆t∗. Just
as in equation 13, we use ∇yγK and ∇Y γK to denote the gradient of γK with
respect to yK−1 and YK respectively. For the remaining ` = 1, ...,K − 1,

∂rK
∂y`−1

(γ(y), y) = γK

s∑

i=1

bi

(
∇η(yK)−∇η(YK,i)

)>
FK,i

∂∆t∗

∂y`−1

(y)

= −γK

(
∆t

∆t∗
∂rK
∂γ

(γ(y), y)

)
(∇yγ`)

>

where we have used
∂∆t∗

∂y`−1

(y) = −∆t (∇yγ`)
>.

Similarly,

∂rK
∂Y`,j

(γ(y), y) = γK

s∑

i=1

bi

(
∇η(yK)−∇η(YK,i)

)>
FK,i

∂∆t∗

∂Y`,j

(y)

= −γK

(
∆t

∆t∗
∂rK
∂γ

(γ(y), y)

)
(∇Y γ`,j)

>.

Thus,

∂γK
∂y`−1

(y) = γK
∆t

∆t∗
(∇yγ`)

>,

∂γK
∂Y`

(y) = γK
∆t

∆t∗
(∇Y γ`)

>.

Putting it all together, we have

dγK
dy

(y) =
(
γK

∆t
∆t∗

∇γ>

1 , · · · , γK
∆t
∆t∗

∇γ>

K−1,∇γ>

K , 0>N

)

= −γK
∆t

∆t∗

(
d

dy

∆t∗

∆t
(y)

)
+
(
0>N(s+1)(K−1), ∇γ>

K , 0>N

)
.
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In summary,

d

dy

(
A∗FK

)∣∣∣∣
y

= −
(
AFK∇γ>

1 , · · · , AFK∇γ>

K−1, 0sN×N , −A∗JK , 0sN×N

)

d

dy

(
γKB>

∗ FK

)∣∣∣∣
y

=
(
0>N(s+1)(K−1), Γy,K , ΓY,K , 0>N

)

with
Γy,K = B>

∗ FK(∇yγK)>, ΓY,K = B>

∗ FK(∇Y γK)>.

We jump forward to interpreting the solution of Ẽ
′

(y)δ = w via forward
substitution as a time stepping scheme. Again, the first K−1 steps are as given
by IDT. The last step, as shown in lemma 1, is derived from the solution of the
following system for ∆K and δK , with (δ`−1,∆`) for ` = 1, ...,K − 1 given by
the the previous time steps:

(
AFK∇γ>

1
· · · AFK∇γ>

K−1
−C IsN − A∗JK

−IN −Γy,K −γKB>
∗ JK −ΓY,K IN

)




(
δ0

∆1

)

..

.(
δK−2

∆K−1

)

δK−1

∆K

δK




=

(
WK

wK

)

=⇒





∆K,i = δK−1 +∆t∗
s∑

j=1

aijJK,j∆K,j−ρ∗∆t
s∑

j=1

aijFK,j +WK,i, i = 1, ..., s,

δK = δK−1 + γK∆t∗
s∑

i=1

biJK,i∆K,i + Γy,KδK−1 + ΓY,K∆K +wK

with scalar

ρ∗ :=

K−1∑

`=1

(
(∇yγ`)

>δ`−1 + (∇Y γ`)
>∆`

)
.

Similar to before,

Γy,KδK−1 + ΓY,K∆K = ρK∆t∗
s∑

i=1

biFK,i,

with scalar ρK := (∇yγK)>δK−1 + (∇Y γK)>∆K .
The transpose of the Jacobian is

(
dẼ

dy
(y)

)
>

=




. . .
.
.
.

IN −C>
−IN − Γ

>

y,K−1
∇yγK−1F

>

KA>

IsN − J>K−1
A>
∗ −γK−1J

>

K−1
B∗ − Γ

>

Y,K−1
∇Y γK−1F

>

KA>

IN −C>
−IN − Γ

>

y,K

IsN − J>KA>
∗ −γKJ>KB∗ − Γ

>

Y,K

IN



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We now interpret the solution of Ẽ
′

(y)>λ = w via back substitution as a time
stepping scheme. Again, the last step (or first step in reverse-time) is as given
by the adjoint IDT formulas in lemma 2, but with ∆t 7→ ∆t∗. The remaining
K − 1 steps, as given in lemma 4, are derived from the solution to the following
systems for Λk and λk−1, with λk given by previous time step and ΛK given
by the last step,

(
IN −C> −IN −Γ>

y,k 0N×P ∇yγ
>

k F>

KA>

IsN − J>k A
> −γkJ

>

k B−Γ>

Y,k 0sN×P ∇Y γ
>

k F>

KA>

)



λk−1

Λk

λk

...
ΛK




=

(
wk−1

Wk

)

where P = N(s+ 1)((K − 1)− k), which gives

=⇒





λk−1 =

s∑

i=1

Λk,i + λk +Γ>

y,kλk + ξ∗∇yγ
>

k +wk−1,

Λk,i = ∆t J>k,i

s∑

j=1

ajiΛk,j + γkbi∆t J>k,iλk +Γ>

Y,kλk − ξ∗∇Y γ
>

k +Wk,i, i = 1, ..., s,

with scalar

ξ∗ := ∆t

s∑

i=1

s∑

j=1

ajiFK,iΛK,j = F>

KA>ΛK .
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