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Fig. 1. We present a framework for the automatic generation of load bearing sheet metal parts from high level specifications. This image illustrates an
aerospace application of our method: an avionics bay environment with multiple subsystems that require sheet metal parts to connect to the structure. On the
left is the result of a domain expert, on the right is the output of our system, with selected flat patterns. Our method is able to fully automate this design task,
which otherwise requires significant time and domain expertise. Further analysis shows that our system produced lighter parts and was significantly faster.

Sheet Metal (SM) fabrication is perhaps one of the most common metalwork-
ing technique.

Despite its prevalence, SM design is manual and costly, with rigorous
practices that restrict the search space, yielding suboptimal results.

In contrast, we present a framework for the first automatic design of
SM parts. Focusing on load bearing applications, our novel system gener-
ates a high-performing manufacturable SM that adheres to the numerous
constraints that SM design entails:

The resulting part minimizes manufacturing costs while adhering to
structural, spatial, and manufacturing constraints. In other words, the part
should be strong enough, not disturb the environment, and adhere to the
manufacturing process. These desiderata sum up to an elaborate, sparse, and
expensive search space.

Our generative approach is a carefully designed exploration process,
comprising two steps. In Segment Discovery connections from the input load
to attachable regions are accumulated, and during Segment Composition the
most performing valid combination is searched for.
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For Discovery, we define a slim grammar, and sample it for parts using a
Markov-Chain Monte Carlo (MCMC) approach, ran in intercommunicating
instances (i.e, chains) for diversity. This, followed by a short continuous
optimization, enables building a diverse and high-quality library of sub-
structures. During Composition, a valid and minimal cost combination of
the curated substructures is selected. To improve compliance significantly
without additional manufacturing costs, we reinforce candidate parts onto
themselves — a unique SM capability called self-riveting. we provide our
code and data in https://github.com/amir90/AutoSheetMetal.

We show our generative approach produces viable parts for numerous
scenarios. We compare our system against a human expert and observe
improvements in both part quality and design time. We further analyze our
pipeline’s steps with respect to resulting quality, and have fabricated some
results for validation.

We hope our system will stretch the field of SM design, replacing costly
expert hours with minutes of standard CPU, making this cheap and reliable
manufacturing method accessible to anyone.
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1 INTRODUCTION
Sheet Metal (SM) fabrication is a widespread metalworking tech-
nique, with uses inmany industries, including construction, aerospace,
industrial machinery, consumer products, medical implants, and
transportation. In its most popular variant, the fabrication process
consists of a series of cut and bend operations performed on a flat
metal sheet. SM fabrication offers a fast and inexpensive process
that wastes significantly less material than other machining tech-
niques, due to the fact that the raw material is a sheet instead of
block. Despite its prevalence, SM design has seen scant refinement
over the years. Most work in the field aids the designer through
interaction and analysis; to our awareness, none automatically sug-
gests how to issue a functional and manufacturable SM part from
its requirements. For this reason, SM design is currently laborious,
taking hours for an expert engineer to design and test even moder-
ately elaborate parts [Research 2019]. To mitigate design complexity,
experts have adopted rigid practices, such as preferring to use right
bend angles, which make the design conceptually easier, but doing
so restricts the search space and impairs performance, in terms of
strength to weight ratio.

In this paper, we introduce a novel generative approach to the de-
sign of SM parts. As we demonstrate, this approach yields parts that
adhere to the functional requirements. Additionally, our design time
was faster and the resulting parts were lighter, compared to those
of a SM design expert. Generating SM parts is challenging, with an
elaborate search space and numerous considerations that must be
taken into account. Hence, we restrict our focus to the fundamental
application of load-bearing fixtures. Even for this application, how-
ever, many requirements must still be respected: minimal material
use, sufficient strength to support the given load, collision avoid-
ance with the environment and adherence to SM manufacturing
constraints.
Accounting for all requirements produces a complex
and highly constrained search space that induces computationally

expensive operations. In addition, the space representation must
also be of a mixed continuous/discrete nature, including both a topo-
logical component (the discrete number and structure of the cutting
and bending operations) and a geometrical component (continuous
bend angles and cut dimensions). More specifically, the SM design
process must take into account the following constraints, in addition
to considering manufacturing costs:

• Environment constraints. The environment where the fix-
ture is placed imposes collision (restricted regions) and con-
nectivity (attachable regions) constraints.

• Manufacturing constraints. To be manufactured, the shape
must be cut from a single sheet of material and be sequentially
bent in a collision-free manner.

• Structural constraints. Mechanical performance (or strength),
which we express in terms of stress and compliance. Note
these constraints require physical simulation for evaluation.

We posit that such complexity has deterred the automation of SM
designs despite its prevalent need.
As a running example for our generative design approach, we

consider the prominent setting of the aerospace industry. Here,
SM structures are used to connect electronic subsystems to other

structural elements of the airframe: an aircraft typically carries tens
to hundreds of such custom sheet metal fixtures, riveted to the
airframe (see Figure 1)
We apply three key insights to address the challenges of auto-

matically producing SM designs that respect all aforementioned
constraints. First, fixtures are hierarchical compositions of substruc-
tures, with each one connecting the load to a point of support. This
insight lets us decompose the problem into two phases, discovery
and composition. In the discovery phase, we create a library of com-
ponents that satisfy spatial and manufacturing constraints and are
likely to achieve optimal trade-offs between manufacturing cost
and strength. In the composition phase, we search for a composi-
tion of library substructures that meet structural constraints while
minimizing costs.

However, building such a library is still difficult, even when con-
sidering a single substructure: the search space remains large, and
valid solutions are sparse. To manage the search space, our sec-
ond insight both exploits the search space structure and decomposes
the search process into sparse discrete sampling and local continu-
ous optimization. For the former, we use stochastic search over a
fabrication-oriented grammar; we select a Markov-Chain Monte
Carlo (MCMC) approach with a sampling scheme that avoids col-
lisions and a likelihood function that rewards diverse connections
to attachable areas. For the latter, we propose a physics-inspired
contraction process that respects environmental constraints while
minimizingmaterial usage. Together, these steps ensure we populate
our library with parts that are valid and locally optimal.
Diversity, it turns out, is a difficult goal to achieve. Sampling

strategies typically introduce bias, tending to find "easier" solutions
more often, yielding similar parts, and failing to fully span the space
of possible candidate solutions. Accordingly, our third insight is
to jointly search the space for candidates using multiple concurrent
MCMC chains that communicate with each other. Searching for sub-
structures independently typically results in rather simple structures
connecting the load to the frame, limiting solution expressiveness.
An immediate solution is to allow new sub-structures to spawn from
previously found ones, in addition to the load itself.

This approach, however, biases results towards the earlier found
structures, again limiting expressiveness and diversity. We hence
propose combining both approaches: we run multiple MCMC in-
stances (or chains), where each beam allows starting new structures
from older ones. Running several chains at the same time helps in
avoiding committing to parts of the solution early. To further ensure
the different chains yield different results, we encourage searching
regions that are already under-explored, across all chains.
We validate system performance on several environments of

varying complexity and show that the parts generated adhere to
the aforementioned environment, manufacturing, and structural
constraints. We further compare our results to those achievable by a
human expert, showing that our system yields better expressiveness
in terms of generating non-trivial parts with comparatively lower
weight and and processing time.

Finally, we demonstrate manufacturability by physically realizing
several SM parts designed by the system.

Ours is the first system to establish the viability of a fully automated
solution for sheet metal design, exchanging hours of human expert
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labor with minutes of standard CPU computation. We anticipate that
the system’s ease of use could bring the realm of metal sheet design
closer to novice users and makers, as well.

The remainder of this paper presents RelatedWork (Section 2); the
Methods we choose for generative design, including specification
of our design objectives, design space, and exploration algorithm
(Section 3); the Discovery process for segments (Section 4); the
Composition process for segments (Section 5); Results (Section 6),
which includes evaluation findings as well as design limitations and
future work opportunities; and our Conclusion (Section 7).

2 RELATED WORK
Our work leverages ideas from prior work on generative design and
procedural modeling.

2.1 Computational Design for Sheet Metal
Due to its widespread use, modern CAD systems (e.g., Solidwork,
Onshape, SolidEdge, NX) offer specific tools that guide designers in
creating sheet metal parts. These include 3D/2D interfaces for flat
pattern design and automatic insertion of relief holes for fabrication.
Most research in computational design of SM focuses on algorithms
that support these interactive tools [Herrmann and Delalio 2001;
Jonsson et al. 2020; Naranje 2010]. There has also been progress on
feature detection for SM design to reverse engineer a 3D model into
a plan for sheet metal fabrication [Salunkhe et al. 2019].
Initial work considered generative capabilities for sheet metal,

but it still requires manual effort and does not target functional
parts. [Soman and Campbell 2002] define a 17-rule grammar for
SM parts but does not apply it to generative design from a high-
level specification. [Patel and Campbell 2008, 2010] use a grammar
and a genetic algorithm for automatic design of basic sheet metal
parts with certain geometrical goals, but they do not account for
functionality objectives.

Our method, on the other hand, offers an end-to-end solution for
generating complete sheet metal fabrication plans (i.e., flat patterns)
that can be directly employed since the resulting parts are optimized
for fabrication and comply with requested physical performance
specifications. Our approach decouples the exploration and opti-
mization phases, which lets us concentrate on just a single objective
(i.e., making connections) during the exploration phase, making op-
timization more feasible, robust, and efficient. This mono-objective
exploration formulation makes genetic algorithms, such as [Yuan
et al. 2014], used in previous works ineffective, as there is no "Pareto
front" to be found.

2.2 Generative Design
Generative design is the programmatic approach to synthesizing
a design given a user’s specifications of how the resulting model
should perform. Fully automated design has been a long-stretch
goal in computer-aided design over the past several decades. One of
its fundamental challenges is constraining the search space to man-
ufacturable artifacts. Further, different fabrication methods impose
design constraints that can be complicated to navigate. Recently,
significant advances in generative design are being prompted by
the increased popularity of additive manufacturing; the freedom of

form of this manufacturing technique has enabled successful appli-
cation of topology optimization [Bendsoe and Sigmund 2013; Liu
et al. 2018], an active research area that is extending the capabilities
of generative design in terms of materials, resolution [Zhu et al.
2017] and functionality [Du et al. 2020]. Notably, [Zhu et al. 2017]
also deals with design space exploration in the voxel domain to
design parts for 3D printing, and give a space exploration proce-
dure that also relies on a combination of stochastic and continuous
optimization steps that are run iteratively. Moreover, similar to our
approach, their stochastic step employs a formulation that combines
a term that promotes samples with desirable properties multiplied
by another term that penalizes over-sampled regions of the design
space, thus promoting diversity. Unfortunately, the development of
generative approaches for some manufacturing methods are lagging
far behind others. While some research progress is being made in
subtractive methods (such as CNCmachining [Morris et al. 2020]) as
well as in generative design of millable or castable topologies (such
as Frustum’s GENERATE) for commercial products, these methods
do not directly extend to forming processes such as those used for
sheet metal.

2.3 2D and 3D Fabrication
Sheet metal creates 3D shapes using bends from a 2D flat pattern.
Our work is therefore related to the vast literature on 2D to 3D
fabrication. Most prior work in this area takes as input a 3D shape
and searches for an optimal decomposition into 2D planes for fabri-
cation [Chen et al. 2013; Guseinov et al. 2020; Hildebrand et al. 2012].
Some techniques here include computational geometry algorithms
in the origami domain [Demaine 2006; Demaine and Tachi 2017],
which can even produce designs that automatically fold [Felton
et al. 2013]. However, such methods start from a 3D shape, not from
high-level specifications of functionality directly exploring the man-
ufacturing space. Though some recent work performs optimization
for functionality using 2D to 3D fabrication [Chen et al. 2020; Rus
and Tolley 2018], it requires user assistance because it cannot auto-
matically explore the mixed discrete and continuous spaces of 2D
to 3D fabrication.

2.4 Shape Grammars
Closest to our work are computational design tools that use gram-
mars to jointly search a mixed discrete and continuous domain.
[Ertelt and Shea 2008] define a shape grammar for CNC; [Wu et al.
2019] define a carpentry design space as a shape grammar and
explore it using a genetic algorithm; [Sass 2006] defines a shape
grammar for house construction from plywood sheets and applies
it to automatically subdivide the completed frame of the house
into a manufacturable production of the grammar; [Schulz et al.
2017] develop a grammar for robot fabrication that dictates compo-
sition rules. Our work is similar to these approaches since it uses a
grammar for sheet metal, but we propose unique solutions that can
efficiently navigate the complexity of our domain.

3 METHODS
Figure 2 shows a system overview of our approach. Generative
design inputs include an environment and a load to be placed in
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Fig. 2. System overview. The input to our system (left) includes the specifications of a subsystem (the input load) and the environment in which it should be
mounted. A Metropolis-Hasting-based optimization traverses our shape grammar in alternating discrete/continuous steps (Segment Discovery), populating a
library with physically valid, material-efficient potential segments connecting the load to regions of support. Compositions of parts from the library are then
considered using a Beam-search approach (Segment Composition). The final result is the part that uses the least material while adhering to the physical and
manufacturing constraints (right).

it; the output is a manufacturing plan for a functional sheet metal
part connecting the load to the environment while adhering to
spatial/environment, manufacturing, and mechanical performance
constraints. The desired part should be manufactured from a sin-
gle sheet, without welding. Therefore, manufacturing instructions
consist of a flat pattern and a set of bend operations that should be
performed in a given order.

Rivet

The input environment
is represented by a 3D
model defining obstacles
to avoid and rivet areas,
i.e., a subset of the mesh
surface that defines the
places where sheet metal fixtures can be mounted. As shown in
the inset figure, the process of riveting can only happen in desig-
nated areas and therefore must be specified by the engineer as part
of the input. The load is represented by a 3D box in the environment
and the external force applied on it.

3.1 Design Objectives
Engineers account for many different, and often conflicting, require-
ments when designing SM parts. Therefore, a fundamental step in
developing an automatic design strategy involves identifying and an-
alyzing these desiderata. This work formulates these requirements
in four categories:

environmental constraints (𝐶𝐸 ), manufacturing constraints (𝐶𝑀 ),
manufacturing objectives (𝑂𝑀 ), and structural constraints (𝐶𝑆 ).

• Environment Constraints (𝐶𝐸 ).
The sheet metal fixtures must be connected to pre-defined
allowable rivet areas while avoiding collisions with restricted
regions in the environment.

• Manufacturing Objectives (𝑂𝑀 ). To reduce manufacturing
costs, the part should minimize the amount of used material
and the number of bends.

• Manufacturing Constraints (𝐶𝑀 ) .We prohibit overlaps in
the flat pattern and ensure that the part does not collide with
itself during manufacturing and bending. We further limit
the minimal/maximal tab size and bending angles according
to the specifications of the bending and cutting tools.

• Structural Constraints (𝐶𝑆 ). To ensure structural integrity,
the stress and compliance values throughout the part must be
kept below thresholds defined by the specifications. namely,
we use the margin of safety (MOS) and compliance of the part
as metrics. The required engineering definitions are given in
the supplementary materials.

This approach formulates the problem as it is typically addressed
by engineers: manufacturing cost is optimized, while other consid-
erations are treated as strict requirements. Further, and importantly,
decoupling the different considerations lets us define an efficient
exploration strategy over such a tightly constrained space. We can
define a design space such that solutions that satisfy 𝐶𝑀 can be
directly sampled; 𝐶𝐸 can be checked on a partial design (when only
a subset of the sheet metal part has been discovered), while𝐶𝑆 alone
can be evaluated on the full design; and (𝑂𝑀 ) can be measured ad-
ditively. These inform our decisions for design space representation
and exploration strategy, which we outline next.

3.2 Design Space
As is popular in the literature [Schlecht et al. 2007], [Ripperda and
Brenner 2009], we represent our exploration space using a context-
free grammar. The hierarchical derivations in a grammar tree cor-
relate well to chains of bending operations on the SM parts. To
reduce the search space as much as possible, we streamline popu-
lar grammars. Ours consists of only one type of node, called a tab,
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which represents a region that remains flat in the final SM part, and
that emanates from an edge of another tab at a specified angle. By
explicitly defining the bending order, the grammar maps directly to
manufacturing instructions, which enables immediate checkers for
all manufacturability requirements (𝐶𝑀 ).

 

𝜃2 

𝑣0 𝑣3 
𝑑 

𝑣1 
𝑣2 

𝑤 

𝜃1 

𝜃3 
𝑙 

Parent Tab 

We use the following six
parameters to define tab ge-
ometry (see inset figure): 𝑑 ,
𝑤 , 𝑙 , 𝜃1, 𝜃2, 𝜃3, represent-
ing, respectively, the start-
ing point on the parent edge,
tab width, tab perpendicu-
lar length, and three rota-
tion angles with respect to the parent tab, i.e., in-plane rotation
angle of the tab end, in-plane rotation angle of the tab itself, and
off-plane rotation angle. These six parameters, though minimalistic,
can express a trapezoidal tab and hence, we argue, are sufficient.

Each tab (excluding the initial, or "base" tab) is connected in a tree
structure to its parent through an edge and adds three additional
edges to the part, which can serve as parents to other tabs. We do
not enforce a single child per edge since some environments require
more (see Figure 1).

Fig. 3 shows an example of a grammar tree and the associated part.
Upon creation, tab parameter values are sampled from a predefined
probability prior distribution (see Section 4). For simplicity, we
initialize the root of the grammar to be a rectangular tab with 4 free
edges that is attached to the bottom of the load, we call this tab the
base tab. In general, there is no requirement for the base tab to be a
rectangle, and our algorithm remains valid for any other polygonal
shape.

Fig. 3. Shape Grammar. Each grammar tree (right) corresponds to a sheet
metal part (left). The tabs of the part correspond to nodes in the tree, with
corresponding connectivity. Each node stores the tab geometry, represented
by the grammar parameters.

3.3 Part Generation Algorithm
Due to the many design space constraints, a fundamental challenge
with searching the space for an optimal design is finding feasible
solutions on one hand, while fully searching the space on another.

We address this difficulty by applying the insight that sheet metal
fixtures are composed of segments (sequences of tabs) that connect
the load to the environment. In addition, we note that segments are
monotonic with respect to strength, i.e., each added segment nec-
essarily reinforces the fixture, rather than weakens it, in the same

way adding a spring the a system of springs in parallel can only
increase the total stiffness. This means that segments can be identi-
fied independently and composed afterwards. Hence we perform
our exploration scheme in two phases: the segment discovery step,
followed by the segment composition one. For additional clarity, we
provide pseudo-code for the main components of the algorithm in
the supplementary.

Segment Discovery. The goal of this step is to build a library of
segments that expresses the solutions of interest, i.e., it should both
explore the space of diverse segments and converge to segments
that are likely to be useful for composition. We address this by
alternating a stochastic sampling method that explores the space
with a local optimization technique that pushes the samples toward
high-performing solutions.

Our stochastic sampling strategy searches over themixed discrete-
continuous space defined by the grammar using aMetropolis-Hastings
(MH) sampler. We find that a direct implementation of this strategy
(as given in [Talton et al. 2011] does not yield samples that span the
search space well; directly searching for segment grammar trees that
connect the load to the rivet areas favors simple solutions, although,
as we show in our results, more elaborate solutions with multiple
branching connections are often required to satisfy the engineering
requirements. We hence propose allowing new segments to emanate
from already found ones, thus encouraging the desired branching
behavior and better spanning our search over the entire space.
This accumulative approach, though, also turns out to be sub-

optimal; it favors solutions that emanate from the earlier found
segments, regardless of their quality. We hence propose a middle-
ground strategy. We run multiple instances, or chains (MH search
processes). Each chain collects segments while allowing new seg-
ments to grow out off previous ones found by same chain. This both
encourages the construction of elaborate non-trivial segments and
alleviates the bias introduced towards early found connections. To
promote diversity even further, we allow the MH chains to share
information about their segments with each other (The informa-
tion shared is defined precisely in Eq. 1 and Eq. 2), encouraging the
chains to omit regions that have already been connected too many
times in other chains.
To account for the sparsity of the solution space, the sampling

process considers only the combination of constraints and priors to
ensure solutions that satisfy segment-level constraints (accounting
for 𝐶𝐸 and 𝐶𝑀 , safe for a final collision detection step after com-
position). We then optimize over the continuous parameters of the
sampled segments to find solutions that are likely to contribute to
global part-level considerations once composed (𝑂𝑀 and 𝐶𝑆 ). We
achieve this by modeling the segment as a non-linear spring system
and running a physically inspired spring retraction process that (1)
uses heuristics motivated by domain knowledge to minimize mate-
rial usage while improving structural integrity and rigidity, and (2)
adheres to manufacturability constraints.

Segment Composition. Given the Segment Library, the Segment
Composition phase seeks a subset of the library that optimally fulfills
the desiderata, i.e., it is valid (e.g., does not intersect with itself
and adheres to structural integrity constraints) and uses minimal
material. To do this, we employ a beam-search inspired search over
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the Segment Library (Section 5.1), giving the user a single parameter
(number of iterations) to trade-off quality with run-time in the large
𝑂 (2𝑁 ) part pool search space. Finally, we exploit a unique feature of
sheet metal and add self-riveting (Section 5.2), both intra- and inter-
segment (see Fig. 6). This step dramatically improves the ability to
adhere to compliance constraints (𝐶𝑆 ) with less material and fewer
bend operations (𝑂𝑀 ).

4 SEGMENT DISCOVERY
During segment discovery, our sampling scheme finds segments
that can potentially be composed later into a single high quality part.
The found segments should individually adhere to all constraints
(Section 3.1), span the space of possible segments well, and perform
optimally. To address this, we propose alternating a stochastic sam-
pling approach that encourages diverse solutions with a continuous
optimization that seeks local maximum performance. The sampling
step sends out thin (meaning, having the minimal manufacturable𝑤 ,
as set by the user) and long ’feeler’ segments in an attempt to make
connections to rivet areas, resembling the role of feelers in nature,
the feelers grow in the sampled directions until they collide with the
environment or with volume bounds. From these, new feelers con-
tinue growing until a connection is found. To increase exploration
diversification, we use multiple beams that communicate with each
other. . For each found connection, the continuous geometry opti-
mization (Section 4.2) seeks maximal strength and minimal material
usage. We employ spring energy to contract the overly long feeler
while avoiding collision with the environment. Finally, the widths
are determined for the segment tabs, and redundant planar tabs are
merged.

To avoid overloading the library with similar segments produced
by different MH beams, and to eliminate bias towards easier-to-
reach rivet areas, an optimized segment is only added to the library
given a certain selection probability. That probability is determined
according to the following criteria.

Segment similarity score. We score a candidate segment according
to its distance from all segments already in the library. We define
the distance between two segments as the distances between their
root and end edges, which connects them to the rivet area.

Regularization. Additionally, we add a regularization term to pre-
fer segments for which the root (i.e, first) and connecting (i.e, last)
edges are more colinear and that have fewer tabs. We find that these
segments make more visual sense. If the segment being evaluated
for optimization has a score that is similar to an existing segment in
the library but a lower regularization score, we replace that segment
with the segment under evaluation.

After the optimized segment is added to the library, new feelers
can emerge from the segment’s free edges as well as the base tab,
allowing tree-like hierarchies to form. This alternating MH explo-
ration and geometry optimization runs 𝑀 parallel beams, with 𝑁
iterations for each beam. In our experiments (Section 6), we set N
to 500 and M to 10.

4.1 Reversible Jump Metropolis-Hasting (MCMC)
Algorithm

Metropolis-Hasting (MH) is an MCMC algorithm used to obtain
random samples that converge to a required distribution. Since
our search space difficult to cover, such an approach is required.
Furthermore it was shown that MCMC lends itself well to gram-
mars [Ripperda and Brenner 2009; Schlecht et al. 2007]. We employ
Reversible Jump MCMC [Green 1995] since it lets us vary the di-
mensionality of samples along the progression of the search, as
proposed for grammars by Talton et al. [Talton et al. 2011]. To pro-
mote efficient and varied exploration, we adapt this algorithm to
our problem setting.
The MH framework we employ [Talton et al. 2011] suggests a

sampling approach that evolves tree structures based on grammar
rules. Given a current grammar tree configuration, the MH sam-
pler performs one of the following operations, with some selection
probability:

• Diffuse move: a local move, where a feeler (i.e, not part
of some optimized segment in the Segment Library) tab is
chosen and its parameters are re-sampled. Note that this
might induce a change in geometry to more than just the tab
itself if the feeler is not a leaf in the grammar tree.

• Jumpmove: a global move, where a some free edge of a feeler
tab is chosen and its sub-tree is deleted, and a new sub-tree
is re-sampled. to maintain validity, we check collision with
the environment, the load and the part’s already optimized
segments, and remove all tabs in the subtree which are not
valid. Note that this is the main reason we opt to not sample,
but rather “cast”, the tab length, as random lengths would
create a high number of removed (i.e, rejected) tabs in the
subtree due to the physical constraints.

The sampling process is governed by a likelihood function 𝑓 ,
which indicates the probability that a current configuration will be
chosen. This function should promote both the amount and variety
of connections. To promote connections with the rivet areas in the
exploration phase the policies defined are biased towards getting
closer to the rivet areas. As a proxy for finding connections, we
measure the distance from the currently added tab to each rivet
area. To promote variety, we penalize connecting to rivet areas that
are popular across all the MH chains we ran simultaneously. We
propose the following likelihood function:

𝑓 =

#𝑅𝐴∑︁
𝑖

𝑒𝑑𝑔𝑒 (𝑇 )∑︁
𝑗

𝑒−𝛼 ·𝑑𝑖𝑠𝑡 (𝑒𝑑𝑔𝑒 𝑗 ,𝑅𝐴𝑖 ) · (1 − 𝑐 (𝑅𝐴𝑖 )
(1 +∑

𝑅𝐴𝑖
𝑐 (𝑅𝐴𝑖 ))

)𝛽

(1)
where 𝑅𝐴𝑖 is the 𝑖𝑡ℎ rivet area, 𝑒𝑑𝑔𝑒 𝑗 is an edge of the unoptimized
(feeler) tab, 𝑑𝑖𝑠𝑡 is the shortest distance between each rivet area
and 𝑒𝑑𝑔𝑒 𝑗 , and 𝑐 is a function that counts the number of existing
connections to 𝑅𝐴𝑖 across all beams. 𝛼 and 𝛽 are hyper-parameters,
which we set to 1 and 3, respectively. Eq. 1 gives the unnormalized
probability of a production of the grammar (i.e, a part) We use this
unnormalized probability as an input to the MH sampler. The first
term in the likelihood function rewards parts that have edges close
to a rivet area, and the second term scales the reward down by rivet
area "popularity". The jump move requires an additional likelihood
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function for the selection of the tab to remove. We use a function
similar to 𝑓 :

𝑝𝑒 (𝑇 ) =
∑︁
𝑅𝐴𝑖

𝑒−𝛼 ·𝑑𝑖𝑠𝑡 (𝑝𝑒 (𝑇 ),𝑅𝐴𝑖 ) ·𝑠𝑒 (𝑇 ) · (1 − 𝑐 (𝑅𝐴𝑖 )
(1 +∑

𝑅𝐴𝑖
𝑐 (𝑅𝐴𝑖 ))

)𝛽

(2)
where 𝑝𝑒 (𝑇 ) is the edge connecting 𝑇 to its parent and 𝑠𝑒 =

1 − #𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 (𝑝𝑒 (𝑇 ) )
#𝑠𝑡𝑒𝑝𝑠+1 , where #𝑠𝑡𝑒𝑝𝑠 is the ordinal number of the

current exploration step. Eq. 2 gives the unnormalized probability
of selecting an edge in the existing part which is then normalized
over all the free edges. We add 𝑠𝑒 to the first term as a scaling factor
that prefers fewer selected edges.

When generating a new tab, all its values are randomly assigned
except for its width𝑤 , which is minimal (since it is in feeler form),
and its length 𝑙 . For the latter, we extend the feeler until it collides
with the environment or reaches a maximal length. This design
choice reduces the dimensionality of the search space, and does not
adversely effect the results, as the geometry optimization minimizes
𝑙 back.

4.2 Geometry Optimization
Our exploration procedure discovers connections from optimized
tabs to rivet areas. These connections are usually impractical for
manufacturing in terms of length and width. During optimization,
the segment’s total length decreases, which decreases total material
usage. We now make a domain knowledge motivated distinction
between the length and width of a segment. In SM fixture design,
it is good practice to maximize the connections to the rivet area,
due to the fact that material in the width dimension can be reduced
using internal cutouts in the tab without affecting the segment
validity (i.e it still connects to the rivet area). This means that in
practice, A wider segment usually means a stronger part without
increased material costs. Of course, the segment must still respect
spatial, environment, and other constraints (Section 3.1) during
optimization. To summarize, the geometry optimization is split to
steps - length minimization and width maximization. for length
minimization, direct gradient optimization approaches over tab
parameters are unfitting due to factors such as collision avoidance
with the environment, which is typically a complicated mesh. We
have also found that Derivative-free optimizations (such as those
offered by the NLopt library) are not sufficiently robust or efficient
for our case.
To overcome this, we propose a spring-based process.Modeling

the segment as a spring network, with the rest length being the min-
imal allowed tab length, 𝑙𝑚𝑖𝑛 , and simulating its contraction under
the spring forces. Note that modeling the segment as a regular spring
network minimizes the sum of squared tab lengths rather than the
overall segment length. Therefore, we make a simple correction to
the spring constant and define it as 𝑘𝑏𝑎𝑠𝑒/(𝑙𝑖 − 𝑙𝑚𝑖𝑛)for each plane
𝑖 in the segment. From Eq. 3, we get that the energy minimized
under this formulation becomes the sum of the lengths (and not
squared lengths). This approach is simple to implement using exist-
ing physics frameworks (e.g., Nvidia’s Physx) and naturally handles
intersections while maintaining a valid state in every time step.

In this way, our spring model becomes essentially a force-density
model, as defined in [Schek 1974].

𝐸𝑠𝑒𝑔𝑚𝑒𝑛𝑡 =
1
2

∑︁
𝑖

𝑘 · (𝑙𝑖 − 𝑙𝑚𝑖𝑛)2

=
1
2

∑︁
𝑖

𝑘𝑏𝑎𝑠𝑒

(𝑙𝑖 − 𝑙𝑚𝑖𝑛)
· (𝑙𝑖 − 𝑙𝑚𝑖𝑛)2

=
1
2
𝐾𝑏𝑎𝑠𝑒

∑︁
𝑖

(𝑙𝑖 − 𝑙𝑚𝑖𝑛)

(3)

The width maximization step is simpler and performed by in-
creasing𝑤 and decreasing 𝑑 for each segment until an intersection
is reached or the segment is fully expanded to its parent edge width,
as depicted in Figure 4.

Fig. 4. Geometry Optimization. Left: Step (1). The segment is modeled as a
constant force spring network and simulated until convergence. Right: Step
(2). The segment’s 𝑑 and 𝑤 are decreased and increased, respectively, until
intersection with the environment or root edge width is reached.

5 SEGMENT COMPOSITION
Although each chain can produce a complete SM part, the com-
plexity of the heavily constrained, discrete-continuous optimiza-
tion space pushes it regularly toward local minima (see ablation
in 6.4.2). To overcome this, we collect all discovered segments from
the different chains into the Segment Library. When the exploration
procedure ends, we can compose a subset of the Segment Library’s
nodes to create a part. This subset is found in a global, yet inexpen-
sive search process over the Segment Library (Section 5.1). Then, if
necessary, the recomposed part can be reinforced with self-riveting
(Section 5.2) to increases compliance.

5.1 Searching the Segment Library
To avoid local minima in the SM-elaborated parameter space, we
compose the output sheet metal part from the segments generated
in the Segment Discovery phase. We search for a subset of segments
in the Segment Library that minimize material use and comply with
the constraints specified in Section 3.1. To satisfy structural con-
straints, we must run costly physical simulations for each candidate
subset. Hence, an exhaustive search (involving 2𝑂 (𝑁 ) FEM calls) is
not feasible, even for a small Segment Library. Instead, we adapt a
beam-search inspired algorithm, originally proposed for computa-
tional linguistics, that suggests a middle ground between greedy and
exhaustive search. Beam-search lets the user to control the beam
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width, a single parameter trading off quality with run-time. The
search algorithm is detailed in the supplementary materials.
Fig. 2 shows a typical recomposition case, while Fig. 5 provides

more complex and elaborate examples.

Fig. 5. Example Segment Library. The library can be visualized as a tree,
where each node represents an optimized segment and the root is the base
tab. Note that some segments are built on previous ones, and nodes originate
from differentMH beams. Selecting a subset of tree nodes defines a potential
part.

5.2 Self-Riveting
It is possible to increase a part’s rigidity by using a unique feature of
sheet metal design, which we call self-riveting. This involves bending
a part to be flush to itself so overlaps can be riveted together. Joining
an edge with high compliance to one with low compliance increases
overall part rigidity.
We employ self-riveting during beam-search when a candidate

part’s values have a sufficient margin of safety (MOS) but its compli-
ance is too high. We calculate a visibility graph between every two
free edges in the candidate part. Two edges are defined as visible
to one another if their 4 endpoints are on the same plane and their
parent tabs are not.
According to the visibility graph, we add self-riveting to con-

nect low-compliance (rigid) edges to a high-compliance edge, Fig. 6
shows this process. We refer the reader to the supplementary mate-
rials for a more detailed explanation of this step.

Fig. 6. Self-Riveting. For each free edge, visibility is calculated to all other
free edges. The system attempts to connect high- and low-compliance edges
to reduce overall part compliance. This stage occurs after geometry opti-
mization if the MOS of the part is admissible but its compliance is not.

6 RESULTS

6.1 Sheet Metal Part Generation
We test our pipeline on several environments of varying complexity.
We define our SM material to be Aluminum 2024T3 with a thickness
of 0.063" (1.6 mm), which is widely used for aerospace applications.
For all runs, we set the number of concurrent chains to 10 and the

number of exploration iterations to 1000, after which the Segment
Library is searched for an optimal composition of segments to make
a valid part. Supplementarymaterials present a full list of parameters
for each experiment.
We summarize results in Fig. 7, showing how our method can

generate manufacturable sheet metal designs that satisfy the user-
specified structural requirements for models with varying levels
of complexity. As shown in the figure, our method can effectively
overcome challenges such as obstacles (g, h) and rivet planes with
sharp angles (c). Each of these results took 10-20 minutes to generate.
Fig. 8 shows a more comprehensive run of our method, with

compliance, MOS, and amount of material given as a function of
iteration number. Note that as the number of exploration iterations
increases, we achieve convergence of the results. This is due to our
Segment Library, which tracks potential segments found during
exploration and prevents our pipeline from getting stuck at local
minima.

6.2 Expert Comparison
To provide a reference for the performance of the system we com-
pare our results to those achieved by a domain expert. We gave an
SM design engineer ( an avionics bay with 10 positioned input loads
and marked allowable rivet areas, as shown in Fig 10. The engineer
was asked to design SM parts for installing each input load using
the allowed rivet areas. We then used our pipeline on the same
scenario. Results show that we significantly reduced weight while
finishing in much less time than the expert. The table to the right
of Fig 10 summarizes cumulative findings. We provide a thorough
explanation of the comparison procedure as well as a per input load
comparison in the supplementary materials.

6.3 Fabrication
To demonstrate that our system generates designs usable for SM
production, we fabricated 4 results that were computed with our
tool. Fabrication material is Aluminum 2024, at 0.0063". Minor post-
processing was performed for manufacturing, such as adding relief
holes at bend corners (to avoid causing the material to crack during
the bend); this post process is well defined given a part geometry
and is supported by standard CAD systems. Fig. 12 shows examples.

6.4 Ablation Studies
We present three ablation studies. Each demonstrates the necessity
of a specific system component

6.4.1 Segment Optimization and Edge Selection Policies. Section 4
presented our policies for selecting an edge to explore and a seg-
ment to optimize. To demonstrate the necessity of these policies, we
compare exploration results using two naive policies: greedy and
uniform. For the edge selection, the greedy policy always picks the
edge that is closest to a rivet area, and the uniform policy picks uni-
formly from all the part’s free edges. For the Segment Optimization,
the greedy policy always optimizes a segment when one is avail-
able for optimization, and the uniform policy optimizes a segment
uniformly at random from all those available for optimization. We
create a maze-like environment for this test, shown in Fig. 13(a).
This environment has 5 rivet areas arranged in a sequence away
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7. System results for a variety of environments and constraints, with the flat pattern shown to the right. For the given scenarios, our pipeline finds valid
sheet metal part designs that use the minimal amount of material from the connections discovered during the exploration procedure, especially for complex
environments with many obstacles such as in (h), and environments with that have very angular surfaces, such as in (c), which are difficult to design for with
traditional CAD tools.

from the input load, where the near rivet planes are easier to reach
during exploration. For each policy configuration (segment greedy,
segment uniform, edge greedy, edge uniform, ours), we run our
pipeline’s exploration procedure for 500 iterations and compare the
resulting Segment Library size for rivet areas 1, 3 and 5. Further-
more, to study the quality and variety of the resulting segments,
we use t-SNE analysis for clustering; The features used for t-SNE
clustering are the midpoint positions of the root and connecting
edge of the segment, the cumulative value of 𝑙 for the segment
and the cumulative absolute values for 𝜃2 and 𝜃3. These features
define a segment geometrically, and therefore will cluster geometri-
cally similar segments.13(b) shows the number of connections per
rivet area. We observe that for the greedy and uniform segment
optimization policies, we quickly reach the maximum number of
connections per rivet plane (capped at 10 for this test) but get repet-
itive or poor quality connections, as shown in the t-sne analysis
in Fig. 13(c-d). For greedy or uniform edge selection policies, we
get ineffective exploration results, with no connections made in the
more challenging rivet area 3. Our policies are tuned to achieve
effective exploration without bloating the Segment Library with

redundant or low-quality segments, which hinder the run-time and
output quality of the Segment Composition phase.

6.4.2 Segment Composition. Aswe note in Section 5, each chain can
produce a complete part, but its tendency toward local minima make
it insufficient. We demonstrate this for a given scenario. We run the
exploration phase for 500 iterations, with 10 parallel chains. Fig. 14
shows the parts generated for each chain, and the part generated
using composition. We observe that the chains tend to exhibit self-
differentiation behavior, where each chain focuses on a different
"area" of the environment. This is due to our segment optimization
policy, which we designed to avoid bloating the Segment Library
with identical segments from different chains. In general, depending
on the environment’s complexity, not all chains might contribute
to the library. For the example shown, 9 chains were sufficient, as
one chain did not make any connections. This localized behavior of
individual chains motivates the Segment Composition phase, which
helps search over all segments to compose an overall better part.

6.4.3 Self-Riveting. In Section 5.2, we counter-intuitively claim that
adding self-riveting reduces material use. To demonstrate this, Fig. 9
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Fig. 8. A comprehensive run of our pipeline for a given scenario. Due to our exploration procedure, which commits a potential connection to the Segment
Library, our pipeline avoids local minima and generally achieves convergence after a certain number of exploration iterations. The graphs above show the part
weight and compliance as a function of exploration iterations (the solid green line is the maximum allowed compliance).

Weight: 2.5 kg

Compliance: 0.13

Weight: 1.15 kg

Compliance: 0.16Compliance Target: 0.2

Compliance: 5.6

Fig. 9. Self-riveting ablation: (left) the input load is close to a wall but far
away from the floor. Naively connecting to the wall produces a springboard-
like structure, which naturally has high compliance. (middle) without self
riveting, the it is necessary to make a costly connection to the floor in order
to lower the compliance to a valid amount. (right) with self riveting, the
part can be reinforced to itself, drastically lowering the compliance with a
comparatively small addition of weight.

introduces a light load close to a wall. The immediate connection to
the wall can satisfy compliance conditions only with self-riveting;
otherwise, expensive connections to the floor are needed instead.

7 CONCLUSION
In this work we present, to the best of our knowledge, the first fully
automatic tool for the generation of functional, load bearing sheet
metal parts from high level specifications. This design problem has
a challenging combined discrete and continuous nature, and has
remained relatively unexplored. Our framework takes advantage of
the insight that the problem can be divided in to exploration and

Time [ℎ𝑟𝑠] Material [𝑚2]
Expert 12.45 5.169
Ours 3.65 4.467

% change -70.6 -13.5

Fig. 10. Top: The avionics bay environment with 10 input loads. Bottom:
Cumulative results for all input loads; note the large time difference between
the domain expert and our pipeline.

composition phases. We note that this structure characterizes a vari-
ety of other connection finding problems, such as designing efficient
3d printed supports and plastic sprues, on which our framework
can be applied on with minimal, domain specific changes. Therfore,
we believe our framework can be used to make feasible a class of
previously underexplored design problems.

7.1 Limitations and Future Work
As previously discussed, our method terminates once it discovers a
solution that complies with the user specifications. While the beam-
search over the Segment Library aids in avoiding local minima, there
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Fig. 11. The final parts created by the domain expert and our system, and the resulting flat patterns. The CAD tool used by the expert does not allow for easy
handling of non-right bend angles, leading to non-optimal segments. Our system creates more elaborate," flat patterns due to our geometry optimization,
allowing for lighter valid solutions.

are no guarantees that our solution will be a global optimum, like
most optimization methods over combinatorial spaces. Additionally,
due to the challenge of recruiting participants with equivalent ex-
pertise, we provide a reference comparison against a single expert.
Although this comparison serves as a reference of our system’s ca-
pabilities, claiming that the system outperforms human sheet metal
engineers in general would require conducting the comparison on a
large amount of experts. In practice, though, we have found that our
method successfully produces viable results consistently. A compu-
tational bottleneck for our method is the depth of the grammar tree
and maximum number of children we allow during discovery. In
the future, it would be interesting to conduct a thorough scalability
evaluation that extends our method to enable deeper graphs, which
could be useful outside the typical industrial settings. One potential
application for this would be artistic design.

Our work also leaves room for future research on expanding the
capabilities of our design system. Expanding the grammar to include
other specialized sheet metal operations – such as joggles, curls,
or deep drawing – would enable a larger design space that is rele-
vant to more applications and fields. Another interesting direction
could consider different ways of exploring conflicting objectives
with multi-objective search methods. This would help designers ex-
plore trade-offs between manufacturing cost and physical behavior
instead of treating the latter as a set of hard constraints.

We further note that ourmethod can be adapted to other connection-
finding design problems, such as plastic sprues and 3d printing
supports.

Finally, to cope with elaborate and complex scenarios, the system
could benefit from an enriched understanding of its environment.
Global semantic understanding could be incorporated, e.g., as better,
more meaningful priors given to the MCMC searching algorithm
(instead of the current uniform ones). A suitable way to deduce
such semantic awareness includes, of course, deep neural networks:
designs produced by our method could be a starting point for the
generation of an SM part dataset for deep learning. Such a dataset
could open avenues for even faster convergence and far more elab-
orate scenarios.
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Fig. 13. Exploration results after 500 iterations for different policies. Our edge and segment selection policies balance the number of discovered segments with
segment variety. Note that both greedy and uniform edge selection policies do not reach rivet area 3 at all. The greedy and uniform segment selection policies
find more segments, but most are identical to existing segments or of low quality, resulting in an unnecessarily bloated Segment library.
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Fig. 14. Segment Composition ablation. The compliance target given was 0.85. Each chain creates has a valid part locally, but none cover all the possible rivet
areas. The composition is shown on their right. The table on the right shows that none of the parts achieve the required compliance target. The composition
step allows us to build a part from each segments’ chains, allowing us to build a part which connects to all available rivet areas, allowing for better compliance.
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