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A B S T R A C T 

The non-linear interaction between electromagnetic waves and plasmas attracts significant attention in astrophysics because it 
can affect the propagation of Fast Radio Bursts (FRBs) – luminous millisecond-duration pulses detected at radio frequency. The 
filamentation instability (FI) – a type of non-linear wave–plasma interaction – is considered to be dominant near FRB sources, 
and its non-linear development may also affect the inferred dispersion measure of FRBs. In this paper, we carry out fully kinetic 
particle-in-cell simulations of the FI in unmagnetized pair plasmas. Our simulations show that the FI generates transverse density 

filaments, and that the electromagnetic wave propagates in near vacuum between them, as in a wav e guide. The density filaments 
keep merging until force balance between the wave ponderomotive force and the plasma pressure gradient is established. We 
estimate the merging time-scale and discuss the implications of filament merging for FRB observations. 

Key words: plasmas – instabilities – relativistic processes – Fast Radio Bursts. 
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 INTRODUCTION  

he non-linear interaction between electromagnetic waves and 
lasmas has been widely studied in laboratory plasmas. It is well- 
nown that the non-linear interaction induces numerous plasma 
nstabilities, such as stimulated/induced Brillouin scattering (SBS), 
timulated/induced Raman scattering, filamentation instability (FI), 
odulation instability, two-plasmon decay instability, and oscillating 

wo-stream instability (e.g. Kaw, Schmid & Wilcox 1973 ; Max 
973b ; Drake et al. 1974 ; Max, Arons & Langdon 1974 ; Forslund,
indel & Lindman 1975 ; Mima & Nishikawa 1975 ; Cohen & Max
979 ; Mima & Nishikawa 1984 ; Kruer 1988 ). The SBS is also
eferred to as induced Compton scattering when kinetic effects 
re important. These non-linear phenomena play a crucial role 
or various laser–plasma experiments, lik e w ak efield acceleration 
Tajima & Dawson 1979 ) and fast ignition of inertial confinement 
usion (Tabak et al. 1994 ; Deutsch et al. 1996 ). 

Recently, the non-linear wave–plasma interaction has attracted 
ignificant attention from astrophysics in the context of Fast Radio 
ursts (FRBs). FRBs are extremely bright millisecond duration 
ulses at radio frequency and often show a high degree of linear
olarization (e.g. Lorimer et al. 2007 ; Michilli et al. 2018 ; Day et al.
020 ; Luo et al. 2020 ; Nimmo et al. 2021 ). Magnetars have emerged
s one of the leading FRB progenitors (e.g. Andersen et al. 2020 ;
ochenek et al. 2020 ; Lyubarsky 2021 ). In the magnetar scenario,

he FRB radio pulse propagates through the magnetar wind, which 
onsists of a pair (electron–positron) plasma. The stimulated/induced 
aman scattering, two-plasmon decay instability, oscillating two- 

tream instability, and modulation instability do not occur for linearly 
olarized pump waves propagating through pair plasmas because 
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f the lack of electrostatic plasma waves (cf., Matsukiyo & Hada
003 ). Therefore, only the SBS and the FI can operate near FRB
rogenitors. Recently, Ghosh et al. ( 2022 ) demonstrated that the SBS
s suppressed for realistic pump waves with a broad spectrum and the
I is then the pre v ailing process. On the other hand, the development
f the FI can profoundly affect the wave propagation. Sobacchi et al.
 2023 ) pointed out that the FI generates transverse density filaments
eparated by near-vacuum regions. The FRB waves propagate in the 
ear-vacuum regions like in a wav e guide, and this can significantly
ffect the inferred dispersion measure of FRBs. The FI must be taken
nto account for the propagation of FRB radio pulses. 

The excitation of the FI is confirmed by particle-in-cell (PIC)
imulations of relativistic magnetized shocks (Iwamoto et al. 2017 ; 
lotnikov, Grassi & Grech 2018 ; Babul & Sironi 2020 ; Sironi et al.
021 ; Iwamoto et al. 2022 ), in which the electromagnetic waves
re excited self-consistently in the shock transition. Relativistic 
agnetized shocks are often considered to be one of the candidates

or the origin of the coherent FRB emission (e.g. Lyubarsky 2014 ;
eloborodov 2017 ; Metzger, Margalit & Sironi 2019 ; Plotnikov &
ironi 2019 ; Beloborodov 2020 ; Margalit, Metzger & Sironi 2020a ;
argalit et al. 2020b ). The wave emission from the shock front is

ery strong, in the sense that the wave strength parameter is much
reater than unity, a 0 = eE 0 / m e c ω 0 � 1 (Iwamoto et al. 2017 ),
here E 0 is the wave amplitude and ω 0 is the wave frequency,

ndicating that the radio pulses satisfy a 0 � 1 in the vicinity of the
RB progenitors (see e.g. Beloborodov 2020 ). Although the wave 
mplitude drastically decreases with distance from the sources, the 
revious studies (Sobacchi et al. 2022 ; Sobacchi et al. 2023 ) showed
hat the FI has significant influence on the propagation process of the
adio pulses even for a 0 � 1. In this paper, we focus on the regime
 0 � 1 in which the radio pulses are far away from the sources. 
The FI is caused by the ponderomotive force, which expels 

articles from the regions of high wave intensity. The refractive 
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ndex increases in the low-density region, where the electromagnetic
aves are, in turn, accumulated and the wave intensity is further

nhanced, completing the feedback loop. The plasma temperature
n the resulting high-density region gradually increases due to
diabatic heating and this loop ceases – equi v alently, the instability
aturates – when force balance between the wave ponderomotive
orce and the plasma pressure gradient is achieved (Kaw et al.
973 ; Sobacchi et al. 2023 ). When the initial particle thermal
nergy m e c 

2 β2 
th 0 is much smaller than the pump wave ponderomotive

otential m e c 
2 a 2 0 / 4, 

th 0 � a 0 , (1) 

 high-density compression is required for the force balance and so
he density fluctuation achieves substantial amplitudes. Here, β th0 is
he thermal velocity normalized by the speed of light c . Therefore,
he FI leads to a significant density contrast for β th0 � a 0 , a condition
hich can be satisfied in FRB environments (Sobacchi et al. 2023 ). 
The plasma temperature plays an important role for the lin-

ar evolution of the FI as well. It is well-known that the lin-
ar growth rate transitions from weak to strong coupling (e.g.
rake et al. 1974 ; Forslund et al. 1975 ; Cohen & Max 1979 ;
ruer 1988 ). In the strong coupling regime, the non-linear effect

s quite significant and the density fluctuation is no longer a
ormal mode of the plasma. Considering the cold plasma con-
ition (equation ( 1 )), we obtain the threshold for the weak and
trong coupling regimes (see Section 2 for the detailed deri v ation),
espectively, 

 

a 0 
ω pe 

ω 0 
� βs � a 0 (weak coupling) , (2) 

s �
√ 

a 0 
ω pe 

ω 0 
(strong coupling) , (3) 

here βs is the sound speed normalized by the speed of light and ω pe 

s the plasma frequency. Here we have assumed the limit of a high-
requenc y pump wav e with ω 0 � ω pe / a 0 , which is valid for FRB
nvironments (Sobacchi et al. 2023 ). In the strong (respectively,
eak) coupling regime, the e-folding time of the FI is shorter

respectively, longer) than the sound crossing time of the density
laments, as discussed in Section 2 . We investigate the FI for these

wo cases. 
In this paper, we perform PIC simulations and study the FI in

air plasmas, a composition which is still underexplored because
aboratory plasmas are generally ion–electron plasmas. Although
hosh et al. ( 2022 ) carried out PIC simulations of the FI in pair
lasmas, they focused on the linear phase. We follow the long-
erm evolution of the FI and discuss the saturation mechanism in

ore detail. This paper is organized as follows. We reproduce the
inear analysis of the FI for the sake of completeness in Section 2 .
ection 3 describes our simulation results. We compare them with

he linear analysis and describe the saturation mechanism of the FI.
n Section 4 , we summarize this study and discuss its implications
or FRBs. 

 LINEAR  ANALYSIS  

e here reproduce the linear growth rate of the FI for the sake of
ompleteness. This linear analysis is based on previous works (Ed-
ards, Fisch & Mikhailova 2016 ; Schluck, Lehmann & Spatschek
017 ; Sobacchi et al. 2021 ; Ghosh et al. 2022 ; Sobacchi et al. 2022 ).
NRAS 522, 2133–2144 (2023) 
.1 Fluid approximation 

he linearly polarized electromagnetic pump wave is described by
he wave equation, [ 

� − 1 

c 2 

∂ 2 

∂ t 2 

] 

A = −4 π

c 
J , (4) 

here the Coulomb gauge condition ∇ · A = 0 is applied. Let us
ssume an unmagnetized pair plasma go v erned by fluid equations, 

∂ 

∂ t 
( γj n j ) + ∇ · ( γj n j v j ) = 0 , (5) 

∂ 

∂ t 
( γj v j ) + ( v j · ∇ ) γj v j = −c 2 s 

∇ n j 

γj n j 

+ 

q j 

m j c 

[
−∂ A 

∂ t 
+ v j × ( ∇ × A ) 

]
, (6) 

J = 

∑ 

j 

q j n j v j , (7) 

here the subscript j = e , p represents particle species (i.e. electron
nd positron) and γ j is the Lorentz factor. We assume that the electron
emperature is equal to the positron one and non-relativistic c s � c .
he vector potential of the pump wave A 0 is given by 

A 0 = (0 , A 0 sin φ0 , 0) , (8) 

here φ0 = k 0 x −ω 0 t . We assume that the wave frequency ω 0 is much
igher than the electron plasma frequency ω pe = 

√ 

4 πn 0 e 2 /m e (i.e.
 0 � ck 0 ), where n 0 is the unperturbed electron density and n e =
 p = n 0 is initially satisfied. The wave amplitude is small in the sense
hat the wave strength parameter a 0 is sufficiently smaller than unity, 

 0 = 

eA 0 

m e c 
� 1 . (9) 

y substituting A 0 into the basic equations, we obtain the zeroth-
rder three velocity v 0 and density n 0 + δn 0 , 

 0 jx = 

1 

4 
ca 2 0 (1 − cos 2 φ0 ) , (10) 

 0 jy = ±ca 0 sin φ0 

(
1 − 1 

4 
a 2 0 + 

1 

4 
a 2 0 cos 2 φ0 

)
, (11) 

n 0 = −1 

4 
n 0 a 

2 
0 cos 2 φ0 , (12) 

here the positive (negative) sign corresponds to the electron
positron). The dispersion relation including the lowest-order non-
inear correction is (e.g. Sluijter & Montgomery 1965 ; Max et al.
974 ) 

 
2 
0 − c 2 k 2 0 − 2 ω 

2 
pe 

(
1 − 1 

4 
a 2 0 

)
= 0 . (13) 

lthough the zeroth-order solution is valid only for weak, high-
requency electromagnetic waves and does not represent an exact
teady-state solution, which cannot be analytically derived (see, e.g.
a w & Da wson 1970 ; Max 1973a ), we now perturb this quasi-

quilibrium and study the non-linear interaction between the pump
ave and the unmagnetized pair plasma. Considering only the

owest-order coupling ( ω ±, k ±) = ( ω 0 ± ω, k 0 ± k ), which is valid
or a 0 � 1, the perturbed quantities are written as 

A = A 0 + δA + e 
iφ+ + δA −e iφ− + c .c . (14) 

 e = v 0 e + δv e iφ + δv + e 
iφ+ + δv −e iφ− + c .c ., (15) 

 p = v 0 p + δv e iφ − δv + e 
iφ+ − δv −e iφ− + c .c ., (16) 
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Figure 1. Wav ev ector diagram for the FI. 
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 e = n 0 + δn 0 + δne iφ + c .c ., (17) 

 p = n 0 + δn 0 + δne iφ + c .c .. (18) 

here c . c . indicates the complex conjugate, φ = k · x − ωt , | ω| �
 0 , and φ± = k ± · x − ω ±t = φ0 ± φ. We assume that no charge

eparation is excited, which is valid for a linear polarized pump 
ave (cf., Matsukiyo & Hada 2003 ). Substituting these into the 

inearized equations and neglecting the non-resonant terms ∝ 

 
i(2 φ0 ±φ) , e i(3 φ0 ±φ) , we finally obtain the dispersion relation, 

1 

2 
a 2 0 ω 

2 
pe ( Q fluid − 1) 

(
cos 2 θ+ 

D + 

+ 

cos 2 θ−
D −

)
= 1 , (19) 

here 

cos θ± = 

A 0 · δA ±
| A 0 || δA ±| , (20) 

 fluid = 

c 2 k 2 

D a 

, (21) 

 ± = ω 
2 
± − c 2 k 2 ± − 2 ω 

2 
pe 

(
1 − 1 

4 
a 2 0 

)
, (22) 

 a = ω 
2 − c 2 s k 

2 . (23) 

 ± = 0 and D a = 0 describe the dispersion relation of the scattered
lectromagnetic waves and sound wav es, respectiv ely. We here 
ssume that the scattering occurs only in the x − y plane (i.e. δA ±
ies in the x − y plane). Considering k 0 ⊥ A 0 and k ± ⊥ δA ±, cos θ±
atisfies 

cos θ± = 

k 0 · k ±
| k 0 || k ±| . (24) 

The FI can be interpreted as the four -wa ve coupling (e.g. Drake
t al. 1974 ; Kruer 1988 ), 

 + = D − = 0 . (25) 

quation ( 25 ) can be satisfied only for k � k 0 , showing that the FI
riginates from two forward-scattered electromagnetic waves. The 
av ev ector geometry of the FI is sketched in Fig. 1 . We can e v aluate

he real frequency of the FI from equation ( 25 ), 

e ( ω ) = 

c 2 k 0 · k 
ω 0 

, (26) 

here c 2 k 0 /ω 0 is the group velocity of the pump wave. Since Re( ω)
0 is satisfied for k 0 · k ∼ 0, the FI is a purely growing mode. 
We now estimate the maximum growth rate of the FI. For the

I, we can safely assume k · k 0 ∼ 0 and cos θ± ∼ 1. For | ω| � ck ,
quation ( 19 ) reduces to 

(
ω 

2 − c 2 s k 
2 
)(

ω 
2 − c 4 k 4 

4 ω 
2 
0 

)
= 

a 2 0 ω 
2 
pe c 

4 k 4 

4 ω 
2 
0 

. (27) 
ubstituting ω = i �, where � � c s k , into equation ( 27 ), we obtain 

 
2 + 

c 4 k 4 

4 ω 
2 
0 

= 

a 2 0 ω 
2 
pe c 

2 k 2 

4 ω 
2 
0 β

2 
s 

. (28) 

he condition � � c s k is generally referred to as the weak coupling
egime (e.g. Drake et al. 1974 ; Forslund et al. 1975 ; Cohen & Max
979 ; Kruer 1988 ). We can find the maximum growth rate and
orresponding wav ev ector, 

 max = 

a 2 0 ω 
2 
pe 

4 β2 
s ω 0 

(weak coupling) , (29) 

 y = 

a 0 ω pe √ 

2 cβs 

(weak coupling) . (30) 

he validity condition � � c s k is 

s �
√ 

a 0 
ω pe 

ω 0 
(weak coupling) . (31) 

or � � c s k , which is the so-called strong coupling regime, equation
 27 ) reduces to 

 
4 + 

c 4 k 4 

4 ω 
2 
0 

� 
2 = 

a 2 0 ω 
2 
pe c 

4 k 4 

4 ω 
2 
0 

. (32) 

he growth rate increases with k and the asymptotic solution is
ritten as 

 max = a 0 ω pe (strong coupling) . (33) 

 is then expanded for large k , 

 = 

( 

1 − 4 a 2 0 ω 
2 
0 ω 

2 
pe 

c 4 k 4 

) 

� max . (34) 

hus � asymptotically approaches the maximum for 

 �
√ 

a 0 ω 0 ω pe 

c 
. (35) 

e hav e ne glected factors of order of unity. The validity condition is
√ 

a 0 ω 0 ω pe 

c 
� k y � a 0 ω pe 

cβs 

(strong coupling) , (36) 

s �
√ 

a 0 
ω pe 

ω 0 
(strong coupling) . (37) 

his condition and maximum growth rate show that the e-folding 
ime of the FI τ grow ∼ 1/ � max ∼ 1/ a 0 ω pe is much shorter than the
ound crossing time of the density filaments τ cross ∼ 1/ c s k y � 1/ a 0 ω pe 

or the strong coupling regime. On the other hand, τcross /τgrow ∼
 0 ω pe /β

2 
s ω 0 � 1 is satisfied for the weak coupling regime. This

if ference af fects the heating physics during the linear and non-linear
volution of the FI (see Section 3.3 ). 

.2 Fully kinetic formulation 

e here assume an unmagnetized pair plasma go v erned by the
lasov equation, 

∂ f j 

∂ t 
+ v j · ∂ f j 

∂ x 
+ 

q j 

m j c 

[
−∂ A 

∂ t 
+ v j × ( ∇ × A ) 

]
· ∂ f j 
∂ u 

= 0 , (38) 

J = 

∑ 

j 

q j 

∫ 
v f j d u , (39) 

here u = γ v is the particle four velocity. Let us assume that the
eroth-order distribution function f 0 j satisfies ∫ 

f 0 j d u = n 0 

(
1 − 1 

4 
a 2 0 cos 2 φ0 

)
, (40) 
MNRAS 522, 2133–2144 (2023) 
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M

Figure 2. Linear growth rate of the FI for the strong (left) and weak (right) coupling cases. 
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hich is moti v ated by the fluid approximation in equation ( 12 ). f 0 j is
hen written as 

 0 j = n 0 

(
1 − 1 

4 
a 2 0 cos 2 φ0 

)
F 0 ( u j⊥ ) δ

(
u j‖ + 

q j A 

m j 

)
, (41) 

here u j‖ and u j⊥ are the four velocity components of parallel
nd perpendicular to the vector potential A , respectively. The δ is the
irac delta function and this term comes from the conservation of the

anonical momentum. For a 0 � 1, F 0 is given by the non-relativistic
D Maxwellian distribution, 

 0 = 

1 √ 

2 πv th 0 
exp 

[
− v 2 x 

2 v 2 th 0 

]
, (42) 

here v th 0 = 

√ 

k B T e /m e is the thermal velocity and the electron
emperature T e is equal to the positron one T p . Substituting A 0 and
 0 j into the Vlasov and wave equations, we obtain the dispersion
elation 

 
2 
0 − c 2 k 2 0 − 2 ω 

2 
pe 

(
1 − 1 

4 
a 2 0 

)
= 0 , (43) 

hich is identical to the fluid approximation. Considering only the
owest-order coupling, which is valid for a 0 � 1, the perturbed
uantities can be expressed as 

A = A 0 + δA + e 
iφ+ + δA −e iφ− + c .c ., (44) 

 j = n 0 

(
1 − 1 

4 
a 2 0 cos 2 φ0 

)
( F 0 + δF e iφ) δ

(
u j‖ + 

q j A 

m j 

)
+ c .c ., 

(45

here δF is independent of u j‖ . Linearizing the basic equations, we
nally obtain the fully kinetic dispersion relation, 

1 

2 
a 2 0 ω 

2 
pe ( Q kin − 1) 

(
cos 2 θ+ 

D + 

+ 

cos 2 θ−
D −

)
= 1 , (46) 

here 

 kin = 

c 2 

2 v 2 th 0 

d Z 

d ζ
, (47) 

= 

ω √ 

2 v th 0 k 
. (48) 

 ( ζ ) is the plasma dispersion function given by 

( ζ ) = 

1 √ 

π

∫ ∞ 

−∞ 

e −z 2 

z − ζ
d z, (49) 
NRAS 522, 2133–2144 (2023) 
d Z 

d ζ
= −2(1 + ζZ) . (50) 

he difference from the fluid approximation is that the sound wave
ispersion relation in equation ( 19 ) is replaced by the kinetic one. 
We numerically derive the linear growth rate of the FI and show it

n Fig. 2 for ( a 0 , ω 0 / ω pe , β th 0 ) = (0.3, 30, 0.01) (left) and (0.3,30,0.1)
right). Our simulations are performed for these two cases. The black
olid lines in Fig. 2 indicate the kinetic growth rates. We also show
he fluid ones with the adiabatic index γ ad = 1 (isothermal) and
ad = 3 (1D gas) in red and blue dashed lines, respectively. The

eft panel refers to the strong coupling regime | ω| � c s k . Since the
esults of fluid and kinetic calculations are comparable as further
iscussed below, we can safely use the analytical estimates from the
uid approximation and equations ( 33 ) and ( 36 ) give, for the strong
oupling regime, 

� max 

ω 0 
∼ 1 . 0 × 10 −2 , (51) 

 . 1 � k y 

k 0 
� 1 . (52) 

n contrast, for the weak coupling regime | ω| � c s k in the right
anel, the maximum growth rate and the corresponding wav ev ector
re estimated from equations ( 29 ) and ( 30 ), 

� max 

ω 0 
∼ 2 . 5 × 10 −3 , (53) 

k y 

k 0 
∼ 0 . 07 . (54) 

ere we have assumed βs ∼ β th0 . These analytical estimates are
oughly consistent with the numerical results. 

We now expand why the fluid and kinetic calculations give com-
arable results. This is not surprising because the density fluctuation
s a non-propagating mode and the FI is almost unaffected by the
andau damping as already discussed by Cohen & Max ( 1979 ).
he deri v ati ve of the plasma dispersion function is expressed by the
xpansion (see e.g. Fried & Conte 1961 ) for | ζ | � 1 (i.e. strong
oupling regime | ω| � c s k ), 

d Z 

d ζ
= 

1 

ζ 2 
+ 

3 

2 

1 

ζ 4 
+ 

15 

4 

1 

ζ 6 
+ · · · , (55) 

nd for | ζ | � 1, 

d Z 

d ζ
= −2 

√ 

πiζe −ζ 2 − 2 + 4 ζ 2 − 8 

3 
ζ 4 + · · · . (56) 
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ere we have used Im( ζ ) > 0. Q kin is thus approximately expressed
s for the strong coupling regime | ω| � c s k , 

 kin � 

c 2 k 2 

ω 
2 

(
1 + 

3 v 2 th 0 k 
2 

ω 
2 

)
. (57) 

nd for the weak coupling regime | ω| � c s k , 

 kin � − c 2 

v 2 th 0 

. (58) 

 fluid is expressed as for | ω| � c s k , 

 fluid � 

c 2 k 2 

ω 
2 

(
1 + 

c 2 s k 
2 

ω 
2 

)
. (59) 

nd for | ω| � c s k , 

 fluid � −c 2 

c 2 s 
. (60) 

f we assume the adiabatic index γ ad = 3 for | ω| � c s k and γ ad =
 for | ω| � c s k , Q kin is identical to Q fluid . Therefore, the fluid
pproximation for the FI is reasonable. 

On the other hand, the effect of Landau damping is not negligible
or the SBS because the SBS induces sound-like waves that are 
eavily damped unless a strong temperature difference between 
lectrons and positrons is induced. The fluid approximation for 
he SBS is then valid only for the strong coupling regime (see
ppendix A ). 

 NUMERICAL  SIMULATION  

.1 Set-up 

e use a fully kinetic PIC code (Matsumoto et al. 2015 , 2017 ),
hich employs an implicit Maxwell solver without any digital filters 

Ikeya & Matsumoto 2015 ), a charge conservation scheme for the 
lectric current deposition (Esirkepov 2001 ), and a second-order 
hape function for computational macroparticles. We consider a 
ectangular simulation box in x - y plane and the boundary condition in
ll directions is periodic for both the fields and the particles. All three
omponents of fields and velocities are tracked in our simulations. 
he initial condition is based on Ghosh et al. ( 2022 ). The plane
onochromatic pump wave is initially introduced, 

E 0 = (0 , E 0 cos k 0 x , 0) , (61) 

B 0 = 

(
0 , 0 , 

ck 0 

ω 0 
E 0 cos k 0 x 

)
. (62) 

e also study the case of a pump wav ev ector potential perpen-
icular to simulation plane (see Appendix B ). This pump wave 
ropagates through homogeneous, unmagnetized pair plasmas with 
 Maxwellian distribution. We calculate the initial thermal spread 
th0 in the proper frame. The initial bulk four velocity satisfies 

¯ 0 jx = 

1 

2 
ca 2 0 sin 2 k 0 x , (63) 

¯ 0 jy = ±ca 0 sin k 0 x , (64) 

¯ 0 jz = 0 , (65) 

here the positive (negative) sign corresponds to the electron 
positron). The SBS generally grows faster than the FI for monochro- 
atic pump waves (Ghosh et al. 2022 ). The simulation domain in the
 direction is just one wavelength of the pump wave L x = λ0 , where
0 is the wavelength of the pump wave. Since the backward SBS is
ost unstable and the wavenumber of the back-scattered wave can 
e estimated as k s = k 0 − k � −(1 − 2 βs ) k 0 ̂  x (e.g. Kruer 1988 ), the
BS can be suppressed by a small box as already discussed by Ghosh
t al. ( 2022 ). This is the case for the weak coupling case; ho we ver,
he SBS grows into a substantial amplitude for the strong coupling
ase (see Appendix A ). The simulation domain in the y direction is
 y = 120 λ0 = 8 πc / ω pe to follow the filament mergers. The grid size
nd time-step are, respectively, set as � x / λ0 = 0.005 and ω 0 � t =
.0314. The number of particles per cell per species is n 0 � x 2 = 32.
ests of numerical convergence are shown in Appendix C . 
We fix the pump wave frequency ω 0 / ω pe = 30 and the wave

trength parameter a 0 = 0.3 throughout this study. We carry out
ur simulations for strong and weak coupling cases: β th0 = 0.01 and
.1, which satisfy the condition ( 1 ). 

.2 Simulation results 

ig. 3 shows the time evolution of the transverse electron density
uctuations δn e ( y) = 

√ 〈 n e − n 0 〉 2 x for β th0 = 0.01 (left) and 0.1
right), where 〈〉 x indicates the physical quantities averaged over 
he x (pump wave propagation) direction. We compute the power 
pectrum of δn e ( y ) and then take its square root for Fig. 3 . Note that
he horizontal axis range in units of ω 0 is different. The most unstable
odes are shown in blue. The total of all modes (i.e. the spectrum-

ntegrated signal), which is shown in red, is strongly dominated by
he most unstable mode at the linear phase � max t � 10, where � max 

s the maximum growth rate numerically determined from the linear 
heory (equation ( 46 ) for k x = 0). In both cases, the density filaments
xponentially grow until � max t ∼ 10 and then they get saturated. The
aximum growth rates � max determined from linear theory (black 

ashed lines) give a good agreement with our simulation results. 
n the non-linear phase, � max t � 10, the time evolution of the most
nstable mode gradually deviates from the total because the filaments 
egin to merge and the wavenumber of the mode with the highest
ower gradually decreases, as further discussed below. 
The time history of the electron thermal velocity 〈 β th 〉 averaged

 v er the whole simulation domain is shown in green (axis on the
ight of each panel). The thermal velocity is calculated in the fluid rest 
rame for each species. Note that the vertical axis for 〈 β th 〉 is in linear
cale. For the strong coupling regime (left in Fig. 3 ), 〈 β th 〉 increases
or ω 0 t � 200 due to the SBS (see Appendix A ). Ho we ver, most of the
eating happens during the non-linear evolution of the FI and we thus
hink that the SBS has little impact on the FI growth. The increase of
 β th 〉 at early times is not seen for the weak coupling regime (right
n Fig. 3 ), demonstrating that the SBS is well-suppressed for β th0 =
.1. 
Fig. 4 shows the temporal evolution of the x -averaged electron

ensity 〈 n e 〉 x (top panels) and x component of the Poynting flux 〈 S x 〉 x 
bottom panels) for β th0 = 0.01 (left column) and 0.1 (right column),
here 〈 S x 〉 x is normalized by the initial mean flux S 0 = E 

2 
0 / 8 π . In

he linear phase � max t � 10, the amplitude of the density filaments for
th0 = 0.01 is larger than for β th0 = 0.1, because colder plasmas are
ore easily compressed by the wav e ponderomotiv e force due to their
eaker pressure gradients. In the final state of our simulations, the
ensity amplitudes are comparable between the two cases, because 
he plasma gets heated during the non-linear evolution of FI and the
emperatures become comparable in the two cases, as shown with the
rey lines in Fig. 3 and further discussed in Section 3.3 . The density
laments gradually merge for � max t � 10 and the filament merging
ontinues until the wavelength of the filament reaches ∼2 πc / ω pe , i.e.
omparable to the electron skin depth. We discuss the saturation of
he filament merging in Section 3.3 . The wave Poynting flux peaks
MNRAS 522, 2133–2144 (2023) 
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Figure 3. Time evolution of the amplitude of the transverse electron density fluctuations δn e for β th0 = 0.01 (left) and 0.1 (right). The most unstable modes 
(blue) and total of all Fourier modes (red) are shown. The black dashed lines represent ∝ e � max t , where � max is the maximum growth rate determined from 

linear theory (equation ( 46 ) for k x = 0). The time history of the box-averaged thermal velocity 〈 β th 〉 is shown in green (axis on the right of each panel). 

Figure 4. Time evolution of the x -averaged electron density (top panels) and x component of the x -averaged Poynting flux (bottom panels) for β th0 = 0.01 (left 
column) and 0.1 (right column). 
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n the lower density regions, i.e. the wave power accumulates in the
ensity cavities. The electromagnetic waves then propagate between
he density filaments as in a wav e guide. 

Fig. 5 shows the time evolution of the power spectra of the x -
veraged electron density fluctuations for β th0 = 0.01 (left) and
.1 (right). The blue lines correspond to the wavenumber of the
heoretical fastest-growing modes: k y / k 0 ∼ 0.2 for β th0 = 0.01 and
 y / k 0 ∼ 0.07 for β th0 = 0.1 in Fig. 2 . The observed peaks at the linear
tage � max t � 10 are consistent with the theoretical estimates. The
ost unstable wavenumber gradually decreases down to ∼ω pe / c . 
NRAS 522, 2133–2144 (2023) 
.3 Saturation mechanism of filament merging 

he FI saturates when force balance between the pressure gradient
nd ponderomotive force is achieved (Kaw et al. 1973 ; Sobacchi
t al. 2023 ). The ponderomotive force e x erted by the electromagnetic
av e e xpels particles from the region of high intensity. The pressure
radient is gradually amplified by the compression and it finally
alances the ponderomotive force. Fig. 6 shows snapshots of the
 -av eraged ponderomotiv e force (blue) and plasma pressure (red)
ormalized by eE 0 at the final state of our simulations ω 0 t = 157254
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Figure 5. Time evolution of the power spectra of the x -averaged electron density fluctuations for β th0 = 0.01 (left) and 0.1 (right). The blue lines indicate the 
theoretical fastest-growing modes. 

Figure 6. Snapshots of the ponderomotive force (blue) and pressure gradient (red) at the final state ω 0 t = 157254 for β th 0 = 0.01 (left) and 0.1 (right). The 
green lines indicate the x -averaged electron density. 
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or β th0 = 0.01 (left) and 0.1 (right). The pressure gradient ∇p e is the
 deri v ati v e of the yy component of the pressure tensor and av eraged
 v er the x direction. The ponderomotive force is by definition the sum
f the advection and non-linear Lorentz force av eraged o v er the wav e
eriod. We determine the y component of the ponderomotive force 
 pond for electrons from the snapshots averaged over the x direction 

i.e. one wavelength of the pump wave), 

 pond = 

〈
−( v e · ∇ ) v ey − e 

m e c 
( v ez B x − v ex B z ) 

〉
x 

. (66) 

he green lines indicate the x -averaged electron density. The elec- 
romagnetic waves escape from the higher density region as shown 
n the bottom panels of Fig. 4 , and thus the ponderomotive force
anishes there. The force balance between the pressure gradient and 
onderomotive force is clearly achieved across the whole transverse 
irection. 
Sobacchi et al. ( 2023 ) discussed the saturation mechanism of the FI

ased on the assumption that the adiabatically compressed density 
laments are supported by the ponderomotive force in the steady 
tate. They pointed out that non-adiabatic heating can be important 
or the strong coupling regime and it can raise the plasma temperature
ecause the force balance between the ponderomotive force and the 
ressure gradient does not have time to be established for τ grow 
τ cross , where τ grow is the e-folding time of the FI and τ cross is the
ound crossing time of the density filaments. To investigate the effect
f the non-adiabatic heating, we measure the thermal velocity in our
imulations. Fig. 7 shows the electron thermal velocity (black) at the
nal state of our simulations ω 0 t = 157254, which is the same time as
ig. 6 , for β th0 = 0.01 (left) and 0.1 (right). The green lines indicate

he x -averaged electron density. If only the adiabatic compression 
ontributes to the plasma heating, the thermal velocity satisfies 

β2 
th 

n 
γad −1 
e 

= const. (67) 

he adiabatic thermal velocity is determined from the measured 
ensity profile adopting a choice of γ ad = 3 and shown in blue. For the
eak coupling case β th0 = 0.1 (right in Fig. 7 ), the thermal velocity in

he higher density region is well-explained by the adiabatic heating. 
he non-adiabatic heating operates in the density cavity and is 
ssociated with the filament mergers. For the strong coupling regime 
th0 = 0.01 (left in Fig. 7 ), the thermal velocity at the final time

s much larger than the adiabatic heating, indicating that the non-
diabatic heating is dominant. 

The non-adiabatic heating may saturate when the equipartition 
etween the ponderomotive potential and total (electron + positron) 
hermal energy is achieved. Since the initial ponderomotive potential 
MNRAS 522, 2133–2144 (2023) 
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Figure 7. Snapshots of the electron thermal velocity (black) at the final state ω 0 t = 157254 for β th0 = 0.01 (left) and 0.1 (right). The x -averaged electron density 
is shown in green. The thermal velocity determined from the adiabatic relation β2 

th /n 
2 
e = const. is shown in blue. The red lines indicate the thermal velocity for 

the energy equipartition. 
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Figure 8. Time evolution of the peak wavenumber for the strong coupling 
regime β th0 = 0.01 in the left panel of Fig. 5 . The blue solid line indicates 
the fastest-growing mode from the linear theory. 
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s m e c 
2 a 2 0 / 4, the equipartition thermal energy is m e c 

2 a 2 0 / 8 and the
hermal velocity is thus 

th ∼ a 0 

2 
√ 

2 
, (68) 

hich is shown in red in Fig. 7 . This estimate is roughly consistent
ith the measured thermal velocity at the final time. The filament
erging continues until the wavelength of the filament reaches
2 πc / ω pe as already shown. The saturation wavelength may be

xplained by an argument relying as well on the saturation thermal
elocity. If the linear analysis is still valid at the saturation stage,
quation ( 30 ) for βs ∼ a 0 / 2 

√ 

2 reduces to k y ∼ ω pe / c in the weak
oupling case. In the strong coupling case, equation ( 36 ) reduces to 

ω pe 

c 
< k y < 

2 
√ 

2 ω pe 

c 
, (69) 

here ω 0 � ω pe / a 0 is applied. The wavenumber of the most unstable
ode may gradually approach the inverse skin depth due to the non-

diabatic heating. 

 SUMMARY  AND  DISCUSSION  

e study the non-linear evolution of the FI of strong electromagnetic
aves in pair plasmas using 2D PIC simulations. Our simulations

how that the FI generates transverse density filaments and that
he electromagnetic waves propagate in near vacuum between the
ensity filaments, as in a wav e guide. We find that the density
laments merge until the filament wavelength reaches the electron
kin depth. The filament merging ceases when force balance between
he ponderomotive force and the pressure gradient is established.
on-adiabatic heating operates during the evolution of the FI and

an be important especially in the strong coupling regime, i.e. when
he e-folding time of the FI is shorter than the sound traveltime across
he filaments. Non-adiabatic heating may saturate when equipartition
etween the ponderomotive potential and the plasma thermal energy
s achieved. 

We now discuss the implications of our results for FRBs. The
RB propagation has four important time-scales: (i) the time-scale
n which the FI exponentially grows, τFI , (ii) the filament merging
ime-scale τmerge , (iii) the pulse duration time τ pulse , and (iv) the
xpansion time of the wave front τ exp . We estimate τmerge from our
imulations in the strong coupling regime, as appropriate for FRBs
Sobacchi et al. 2023 ). Fig. 8 shows the time evolution of the peak
NRAS 522, 2133–2144 (2023) 
avenumber of the power spectrum (taken from the left panel of
ig. 5 ). The blue solid line indicates the fastest-growing modes from

inear theory, which agrees with the simulation results in the linear
hase t � τ FI ∼ 10/ � max . Since the peak wavenumber exponentially
ecreases until � max t ∼ 40, we define the merging time as τmerge ∼
 τ FI ∼ 40/ � max . Evaluating � max from linear theory, the merging time
merge in the rest frame of the magnetar wind can then be estimated
s 

merge ∼ 80 ms 

(
L 

10 42 erg s −1 

)− 1 
2 
(

Ṅ 

10 39 s −1 

)− 1 
2 

×
( γw 

10 2 

) 1 
2 
( νobs 

1 GHz 

)(
R 

10 14 cm 

)2 

, (70) 

here L is the observed radio luminosity, Ṅ is the particle outflow
ate, γ w is the wind bulk Lorentz factor, νobs is the observed radio
requency, and R is the distance from the source (Beloborodov 2020 ;
obacchi et al. 2023 ). The time duration of the radio pulse in the
ind rest frame τ pulse is 

pulse = 2 γw τobs ∼ 200 ms 
( γw 

10 2 

)( τobs 

1 ms 

)
, (71) 
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here τ obs is the observed pulse duration. The expansion time of the 
ave front in the wind frame is 

exp = 

R 

2 γw c 
∼ 20 s 

(
R 

10 14 cm 

)( γw 

10 2 

)−1 
. (72) 

ince τ FI � τmerge � τ pulse � τ exp , the radio wave is filamented, and 
he filaments merge before the radio pulse can propagate through the 
nperturbed plasma ahead of the wave front. 
The merging time may get longer for the realistic case in which

he peak wavenumber in the linear stage is �ω pe / c , a case we
annot achieve due to computational limitations. Then the FI may 
evelop in the regime where the merging time is longer than the
uration of the radio pulse, i.e. τ FI � τ pulse � τmerge � τ exp . In 
his regime, the evolution of the filaments on the time-scale τmerge is
nclear. Our simulations employ a periodic boundary condition in the 
ave propagation direction, so the radio pulse continuously interacts 
ith density filaments. In contrast, for realistic FRB conditions, 

he density filaments are non-propagating and stop interacting with 
he radio pulse after the time-scale τ pulse . Then the pulse should 
ropagate through an unperturbed plasma ahead of the wave front. 
e will study the effect of more realistic boundary conditions –

ncluding a self-consistent description of wave propagation – in a 
uture publication. 

We assumed that the initial velocity distribution is isotropic in this
tudy. When plasmas are highly magnetized, which is the case for
he magnetar wind, a temperature anisotropy is generally expected. 
obacchi et al. ( 2022 ) discussed the effect of the ambient magnetic
eld and demonstrated that the FI is independent of the thermal 
elocity in the direction perpendicular to the ambient magnetic 
eld because the ponderomotive force preferentially pushes particles 
long the parallel direction. Therefore, we expect that the FI should 
e primarily affected by the parallel temperature for the anisotropic 
elocity distribution. 

Our results are valid for the weak pump wave condition a 0 � 1, in
hich the particle oscillation velocities in the wave fields are much 

maller than the speed of light. The radio pulses are much stronger
ear the FRB progenitors and a 0 � 1 can be satisfied for R � 10 13 

m (Luan & Goldreich 2014 ; Beloborodov 2020 ). In this relativis-
ic regime, higher-order couplings ( ω n , k n ) = ( ω + nω 0 , k + n k 0 ),
here n = ±2, ±3, ±4,... is an integer, are no longer negligible. We
ill explore the relativistic regime a 0 � 1 in a future publication. 
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Figure A2. Left: snapshot of the electron density at ω 0 t = 629. Right: time 
evolution of the y -averaged electron density. The white dashed line represents 
fluctuations propagating with the sound speed c s . 
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PPENDIX  A:  STIMULATED  BRILLOUIN  

CATTERING  

he maximum growth rate of the SBS can be derived from the
ame dispersion relation as the FI. cos θ± = −1 is satisfied for
he backward scattering and D + is non-resonant for the SBS. The
ispersion relation ( 19 ) reduces to 

 ω 
2 − c 2 s k 

2 ) 

[
ω + 

c 2 

2 ω 0 
( k − 2 k 0 ) k 

]
= −a 2 0 ω 

2 
pe c 

2 k 2 

4 ω 0 
. (A1) 

ubstituting ω = c s k + i �, where � � c s k for the weak coupling,
e obtain 

 
2 − a 2 0 ω 

2 
pe c 

2 k 

8 c s ω 0 
− i�c 2 

2 ω 0 

[ 
k − 2 

(
k 0 − c s ω 0 

c 2 

)] 
k = 0 . (A2) 

he maximum growth rate and corresponding wav ev ector are written
s 

 
SBS 
max = 

a 0 ω pe 

2 
√ 

βs 

, (A3) 

 
SBS 
x = 2(1 − βs ) k 0 . (A4) 

he validity condition � � c s k now becomes 

s �
(

a 0 
ω pe 

ω 0 

) 2 
3 

. (A5) 

ere we have neglected factors of order of unity. For the strong
oupling � � c s k , we obtain 

 
3 + 

c 2 

2 ω 0 
( k − 2 k 0 ) kω 

2 + 

a 2 0 ω 
2 
pe c 

2 k 2 

4 ω 0 
= 0 . (A6) 

he growth rate takes its maximum at around k = 2 k 0 and we find 

 = ( a 2 0 ω 
2 
pe ω 0 ) 

1 
3 e 

πi 
3 . (A7) 

e finally obtain 

 
SBS 
max = 

√ 

3 

2 
( a 2 0 ω 

2 
pe ω 0 ) 

1 
3 , (A8) 

 
SBS 
x = 2 k 0 , (A9) 

nd the validity condition is 

s �
(

a 0 
ω pe 

ω 0 

) 2 
3 

. (A10) 

ur parameters ( a 0 , ω 0 / ω pe , β th 0 ) = (0.3, 30, 0.1) and (0.3, 30,
.01) satisfy the weak (equation ( A5 )) and strong (equation ( A10 ))
NRAS 522, 2133–2144 (2023) 

Figure A1. Linear growth rate of the SBS for str
oupling conditions for the SBS, respectively. We numerically derive
he linear growth rate of the SBS and show it in Fig. A1 for the strong
left) and weak (right) coupling cases. The SBS grows faster than
he FI for both cases. For the weak coupling case, the kinetic growth
ate is much smaller than the fluid one because the fluid growth
ate is al w ays o v erestimated due to the absence of Landau damping.
he unstable wav ev ector is smaller than 2 k 0 , indicating that the
ackscattered waves propagating the −x direction are not resolved
n our simulation box L x × L y = λ0 × 120 λ0 , which helps to suppress
he SBS as already discussed by Ghosh et al. ( 2022 ). In fact, for hot
lasmas with β th 0 = 0.1, we find that the amplitude of the SBS-
enerated density fluctuations is very small ( δn e / n 0 ∼ 10 −2 ), i.e. the
BS is suppressed. 
In contrast, in the strong coupling case the unstable wav ev ector can

xceed 2 k 0 and thus SBS operates even for our simulation setting.
ig. A2 shows the snapshot of the electron density at ω 0 t = 629
or β th 0 = 0.01 (left). The density fluctuation at the wavenumber k x 

2 k 0 is clearly seen, indicating that the SBS indeed operates for
he strong coupling regime. The time evolution of the y -averaged
lectron density is shown in the right panel of Fig. A2 . The white
ashed line represents fluctuations propagating with the sound speed
 s , where the adiabatic index γ ad = 3 is assumed, showing that the
he density fluctuation at k x ∼ 2 k 0 is propagating in the + x direction
ith the sound speed. Since the SBS is expected to generate the
ong (left) and weak (right) coupling cases. 
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PIC simulations of the filamentation instability 2143 

Figure A3. Time evolution of the SBS. The amplitude is calculated from the 
Fourier components of the y -averaged density fluctuations for β th0 = 0.01. 
The most unstable modes (blue) and integral of all modes (red) are shown. 
The black dashed lines correspond to ∝ e � max t , where � max is determined 
from the linear theory (equation ( 46 ) for k y = 0). 
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Figure B1. Time evolution of the power spectrum of the x -averaged electron 
density fluctuations for β th0 = 0.01 with the out-of-plane vector potential. 
The blue and green lines correspond to the most unstable mode of the FI and 
SBS, respectively. 

Figure B2. Time evolution of the y component of the x -averaged Poynting 
flux for β th0 = 0.01 with the out-of-plane vector potential. The black dashed 
line indicates the electromagnetic waves propagating in the y direction. 
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orw ard-propagating sound-lik e w av es, this pro vides a clear proof of
he SBS. 

Fig. A3 shows the time evolution of Fourier components of the 
 -averaged density fluctuations for the strong coupling case β th 0 = 

.01. The black dashed lines are maximum growth rates � max of
BS determined from the linear theory (equation ( 46 ) for k y = 0),
howing a good agreement with our simulation result. Based on the 
bo v e analysis, we conclude that the longitudinal density fluctuation 
ith k x ∼ 2 k 0 originates from the SBS and that the SBS is not fully

uppressed by our numerical setting for the strong coupling case. 

PPENDIX  B:  OUT-OF-PLANE  VECTOR  

OTENTIAL  

n the main text, we focus on the pump wav ev ector potential lying in
he y direction. One can choose the out-of-plane vector potential ( z 
irection in our coordinates) and the corresponding wave fields are 

E 0 = (0 , 0 , E 0 cos k 0 x ) , (B1) 

B 0 = 

(
0 , 

ck 0 

ω 0 
E 0 cos k 0 x , 0 

)
. (B2) 

n this case, A 0 ‖ δA ± (i.e, cos θ± = 1) is al w ays satisfied regardless
f the scattering direction, and thus side scattering ( k 0 ⊥ k ±) survives
nlike in the in-plane configuration. 
Fig. B1 shows the time evolution of the x -averaged power spectrum 

or β th0 = 0.01 in the out-of-plane configuration. The numerical 
arameters are identical to the in-plane configuration in the main 
ext and only the direction of the initial vector potential changes. 
he clear peak can be no longer seen near the theoretical most
nstable mode of the FI (the blue line in Fig. B1 ). The filaments
erge much earlier than the in-plane configuration. Furthermore, 

he mode with k y ∼ 2 k 0 apparently grows faster than others, which
s not observed in the in-plane configuration. We think that the 
ide-scattered wave plays the role of a pump wave and the peak
t k y ∼ 2 k 0 can be attributed to a secondary SBS of the side-
cattered wave. In fact, the green line indicates the most unstable 
ode of the secondary SBS, showing a good agreement with the 

bserved peak. Although the secondary SBS may induce the side- 
cattered wave again, the wav ev ector is almost identical to the pump
ave and these waves cannot be distinguished. We here assumed 

hat the wavenumber of the side-scattered wave, which plays a role
or the pump wave of the secondary SBS, satisfies k s � ±k 0 ̂  y . We
onfirmed this for β th0 = 0.1 and the secondary SBS works for both
trong and weak coupling cases. Note that our simulation setting can
umerically suppress only the back-scattering which is the dominant 
ode of the SBS (Ghosh et al. 2022 ). The side-scattering survives

ven for the weak coupling regime in which the backward SBS is
ell-suppressed. 
Fig. B2 shows the time evolution of the y component of the

 -averaged Poynting flux 〈 S y 〉 x for β th0 = 0.01, where 〈 S y 〉 x is
ormalized by the initial mean flux S 0 = E 

2 
0 / 8 π . The grid-like

tructures are clearly seen in addition to the transverse filamentary 
tructures from FI. The black dashed line represents the electro- 
agnetic waves propagating in the y direction, indicating that the 

rid-like structures originate from side-scattered waves traveling 
owards the ±y direction. It has been argued that side scattering
or the out-of-plane vector potentials is numerically enhanced 
ue to the periodic boundary condition in the y direction (e.g.
MNRAS 522, 2133–2144 (2023) 
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ohen et al. 2005 ). We find that the side scattering preferen-
ially works and dominates o v er FI for the out-of-plane vector
otentials. 

PPENDIX  C:  NUMERICAL  CONVERGENCE  

ere, we demonstrate the convergence of the growth rate and
aturation level with respect to the number of particles per cell per
pecies n 0 � x 2 . 

Fig. C1 shows the time evolution of the spectrum-integrated signal
f δn e ( y ) for β th0 = 0.1 for n 0 � x 2 = 8 (red), 16 (green), 32 (blue),
nd 64 (purple). The black dashed line represents the fastest-growing
ode from the linear theory. It is natural that the initial noise level

hould decrease as n 0 � x 2 increases. Both growth rate and saturation
ev el conv erge for n 0 � x 2 ≥ 32. Based on this result, we choose
 0 � x 2 = 32 in the main text. In fact, the blue line shown in Fig. C1
s the same as the red line in the right panel of Fig. 3 . 
NRAS 522, 2133–2144 (2023) 
igure C1. Numerical convergence with respect to the number of particles
er cell per species for β th0 = 0.1. The total of all Fourier modes of the
ransverse electron density fluctuations δn e is shown for n 0 � x 2 = 8 (red), 16
green), 32 (blue), and 64 (purple). The black dashed lines represent ∝ e � max t .
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