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ABSTRACT

The non-linear interaction between electromagnetic waves and plasmas attracts significant attention in astrophysics because it
can affect the propagation of Fast Radio Bursts (FRBs) — luminous millisecond-duration pulses detected at radio frequency. The
filamentation instability (FI) — a type of non-linear wave—plasma interaction — is considered to be dominant near FRB sources,
and its non-linear development may also affect the inferred dispersion measure of FRBs. In this paper, we carry out fully kinetic
particle-in-cell simulations of the FI in unmagnetized pair plasmas. Our simulations show that the FI generates transverse density
filaments, and that the electromagnetic wave propagates in near vacuum between them, as in a waveguide. The density filaments
keep merging until force balance between the wave ponderomotive force and the plasma pressure gradient is established. We
estimate the merging time-scale and discuss the implications of filament merging for FRB observations.

Key words: plasmas—instabilities — relativistic processes — Fast Radio Bursts.

1 INTRODUCTION

The non-linear interaction between electromagnetic waves and
plasmas has been widely studied in laboratory plasmas. It is well-
known that the non-linear interaction induces numerous plasma
instabilities, such as stimulated/induced Brillouin scattering (SBS),
stimulated/induced Raman scattering, filamentation instability (FI),
modulation instability, two-plasmon decay instability, and oscillating
two-stream instability (e.g. Kaw, Schmid & Wilcox 1973; Max
1973b; Drake et al. 1974; Max, Arons & Langdon 1974; Forslund,
Kindel & Lindman 1975; Mima & Nishikawa 1975; Cohen & Max
1979; Mima & Nishikawa 1984; Kruer 1988). The SBS is also
referred to as induced Compton scattering when kinetic effects
are important. These non-linear phenomena play a crucial role
for various laser—plasma experiments, like wakefield acceleration
(Tajima & Dawson 1979) and fast ignition of inertial confinement
fusion (Tabak et al. 1994; Deutsch et al. 1996).

Recently, the non-linear wave—plasma interaction has attracted
significant attention from astrophysics in the context of Fast Radio
Bursts (FRBs). FRBs are extremely bright millisecond duration
pulses at radio frequency and often show a high degree of linear
polarization (e.g. Lorimer et al. 2007; Michilli et al. 2018; Day et al.
2020; Luo et al. 2020; Nimmo et al. 2021). Magnetars have emerged
as one of the leading FRB progenitors (e.g. Andersen et al. 2020;
Bochenek et al. 2020; Lyubarsky 2021). In the magnetar scenario,
the FRB radio pulse propagates through the magnetar wind, which
consists of a pair (electron—positron) plasma. The stimulated/induced
Raman scattering, two-plasmon decay instability, oscillating two-
stream instability, and modulation instability do not occur for linearly
polarized pump waves propagating through pair plasmas because
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of the lack of electrostatic plasma waves (cf., Matsukiyo & Hada
2003). Therefore, only the SBS and the FI can operate near FRB
progenitors. Recently, Ghosh et al. (2022) demonstrated that the SBS
is suppressed for realistic pump waves with a broad spectrum and the
Fl s then the prevailing process. On the other hand, the development
of the FI can profoundly affect the wave propagation. Sobacchi et al.
(2023) pointed out that the FI generates transverse density filaments
separated by near-vacuum regions. The FRB waves propagate in the
near-vacuum regions like in a waveguide, and this can significantly
affect the inferred dispersion measure of FRBs. The FI must be taken
into account for the propagation of FRB radio pulses.

The excitation of the FI is confirmed by particle-in-cell (PIC)
simulations of relativistic magnetized shocks (Iwamoto et al. 2017;
Plotnikov, Grassi & Grech 2018; Babul & Sironi 2020; Sironi et al.
2021; Iwamoto et al. 2022), in which the electromagnetic waves
are excited self-consistently in the shock transition. Relativistic
magnetized shocks are often considered to be one of the candidates
for the origin of the coherent FRB emission (e.g. Lyubarsky 2014;
Beloborodov 2017; Metzger, Margalit & Sironi 2019; Plotnikov &
Sironi 2019; Beloborodov 2020; Margalit, Metzger & Sironi 2020a;
Margalit et al. 2020b). The wave emission from the shock front is
very strong, in the sense that the wave strength parameter is much
greater than unity, ay = eEo/m.cwy > 1 (Iwamoto et al. 2017),
where E, is the wave amplitude and w, is the wave frequency,
indicating that the radio pulses satisfy ap >> 1 in the vicinity of the
FRB progenitors (see e.g. Beloborodov 2020). Although the wave
amplitude drastically decreases with distance from the sources, the
previous studies (Sobacchi et al. 2022; Sobacchi et al. 2023) showed
that the FI has significant influence on the propagation process of the
radio pulses even for ayp < 1. In this paper, we focus on the regime
ap < 1 in which the radio pulses are far away from the sources.

The FI is caused by the ponderomotive force, which expels
particles from the regions of high wave intensity. The refractive
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index increases in the low-density region, where the electromagnetic
waves are, in turn, accumulated and the wave intensity is further
enhanced, completing the feedback loop. The plasma temperature
in the resulting high-density region gradually increases due to
adiabatic heating and this loop ceases — equivalently, the instability
saturates — when force balance between the wave ponderomotive
force and the plasma pressure gradient is achieved (Kaw et al.
1973; Sobacchi et al. 2023). When the initial particle thermal
energy m,c? B2, is much smaller than the pump wave ponderomotive
potential m,c?a? /4,

Bino K ao, (D

a high-density compression is required for the force balance and so
the density fluctuation achieves substantial amplitudes. Here, B is
the thermal velocity normalized by the speed of light c¢. Therefore,
the FI leads to a significant density contrast for 8,0 < ao, a condition
which can be satisfied in FRB environments (Sobacchi et al. 2023).

The plasma temperature plays an important role for the lin-
ear evolution of the FI as well. It is well-known that the lin-
ear growth rate transitions from weak to strong coupling (e.g.
Drake et al. 1974; Forslund et al. 1975; Cohen & Max 1979;
Kruer 1988). In the strong coupling regime, the non-linear effect
is quite significant and the density fluctuation is no longer a
normal mode of the plasma. Considering the cold plasma con-
dition (equation (1)), we obtain the threshold for the weak and
strong coupling regimes (see Section 2 for the detailed derivation),
respectively,

Wpe .
\ /aow—’; & By < ag (weak coupling), 2)

Bs < ao% (strong coupling), 3)
wo

where B is the sound speed normalized by the speed of light and w,,,
is the plasma frequency. Here we have assumed the limit of a high-
frequency pump wave with g > wp./ag, which is valid for FRB
environments (Sobacchi et al. 2023). In the strong (respectively,
weak) coupling regime, the e-folding time of the FI is shorter
(respectively, longer) than the sound crossing time of the density
filaments, as discussed in Section 2. We investigate the FI for these
two cases.

In this paper, we perform PIC simulations and study the FI in
pair plasmas, a composition which is still underexplored because
laboratory plasmas are generally ion—electron plasmas. Although
Ghosh et al. (2022) carried out PIC simulations of the FI in pair
plasmas, they focused on the linear phase. We follow the long-
term evolution of the FI and discuss the saturation mechanism in
more detail. This paper is organized as follows. We reproduce the
linear analysis of the FI for the sake of completeness in Section 2.
Section 3 describes our simulation results. We compare them with
the linear analysis and describe the saturation mechanism of the FI.
In Section 4, we summarize this study and discuss its implications
for FRBs.

2 LINEAR ANALYSIS

We here reproduce the linear growth rate of the FI for the sake of
completeness. This linear analysis is based on previous works (Ed-
wards, Fisch & Mikhailova 2016; Schluck, Lehmann & Spatschek
2017; Sobacchi et al. 2021; Ghosh et al. 2022; Sobacchi et al. 2022).
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2.1 Fluid approximation

The linearly polarized electromagnetic pump wave is described by
the wave equation,

2
{A—la]A=—4nJ, )

c? 012 c

where the Coulomb gauge condition V - A = 0 is applied. Let us
assume an unmagnetized pair plasma governed by fluid equations,

0
a()’jnj)'i‘v ~(yjnjvj) =0, 3)
O o)+ ;- V) 2 Vo
Lot (0 Vv, = —2 2
ot Yivj Jj Vivj oy

L4 [0 x4l ®

mjc ot 4 ’
J=Y anvj, D
j

where the subscript j = e, p represents particle species (i.e. electron
and positron) and y is the Lorentz factor. We assume that the electron
temperature is equal to the positron one and non-relativistic ¢, < c.
The vector potential of the pump wave Ay is given by

Ay = (0, Ag siny, 0), ®)

where ¢ = kox — wot. We assume that the wave frequency w, is much

higher than the electron plasma frequency w,, = \/4mwnge?/m, (i.e.
wo =~ cky), where ng is the unperturbed electron density and n, =
n, = ny is initially satisfied. The wave amplitude is small in the sense
that the wave strength parameter ay is sufficiently smaller than unity,

EAO

ag = < 1. ©)

mec

By substituting Ay into the basic equations, we obtain the zeroth-
order three velocity vy and density ny + dny,

1
Vojx = ané(l — cos 2¢y), (10)
. 1, 1,
vojy = Ecapsingy | 1 — Zao + Zao cos2¢y |, (11)
1
dng = —Znoag cos 2¢y, (12)

where the positive (negative) sign corresponds to the electron
(positron). The dispersion relation including the lowest-order non-
linear correction is (e.g. Sluijter & Montgomery 1965; Max et al.
1974)

wp — kG — 202, (1 - iaé) =0. (13)
Although the zeroth-order solution is valid only for weak, high-
frequency electromagnetic waves and does not represent an exact
steady-state solution, which cannot be analytically derived (see, e.g.
Kaw & Dawson 1970; Max 1973a), we now perturb this quasi-
equilibrium and study the non-linear interaction between the pump
wave and the unmagnetized pair plasma. Considering only the
lowest-order coupling (w4, k+) = (wo = w, k¢ £ k), which is valid
for ap < 1, the perturbed quantities are written as

A=A+ 8A,e +8A_e" +c.c. (14)
v, = Vg + 8ve'? + Sv e’ 4 Sv_e’ +c.c., (15)
v, = Vgp + Sve'® — Sv el — Sv_e'd +c.c., (16)
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Figure 1. Wavevector diagram for the FIL.

ne = ng + dng + dne'® + c.c., (17)

n, = ng + 8ng + Sne'® + c.c.. (18)

where c.c. indicates the complex conjugate, ¢ =k - x — wt, |o| K
wp, and ¢y = ky - X — w+t = ¢y £ ¢. We assume that no charge
separation is excited, which is valid for a linear polarized pump
wave (cf., Matsukiyo & Hada 2003). Substituting these into the
linearized equations and neglecting the non-resonant terms o

e/2P0EP) i34+ e finally obtain the dispersion relation,
1 cos’f,  cos’6_
340@pe(Qnuia = 1) ( o ) =1, (19)
where
Ag-6AL

cosfy = ———, (20)

T |Al[8A]

k>
Ofuia = D, (21)
1

Dy = ol — 2 - 202, (1 - Zag) , (22)
D, = o* — k% (23)

D, = 0and D, = 0 describe the dispersion relation of the scattered
electromagnetic waves and sound waves, respectively. We here
assume that the scattering occurs only in the x — y plane (i.e. 6 A+
lies in the x — y plane). Considering ky L Apand ky L §A4, cosO L
satisfies

ko - ks
kol k|

cosby = (24)
The FI can be interpreted as the four-wave coupling (e.g. Drake
et al. 1974; Kruer 1988),

D, =D_=0. (25)

Equation (25) can be satisfied only for k < ko, showing that the FI
originates from two forward-scattered electromagnetic waves. The
wavevector geometry of the FI is sketched in Fig. 1. We can evaluate
the real frequency of the FI from equation (25),
2
Re(w) = X0 K, 26)
wo

where ¢%ky/wy is the group velocity of the pump wave. Since Re(w)
~ 0 is satisfied for k¢ - k ~ 0, the FI is a purely growing mode.

We now estimate the maximum growth rate of the FI. For the
FI, we can safely assume k - kg ~ 0 and cos 61 ~ 1. For |o| < ck,
equation (19) reduces to
(a)2 - csz) (a)2 —

At aga)2 Akt
S )= e 27)

4a)3 4a)0
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Substituting w = iI", where I' < ¢k, into equation (27), we obtain
= —r (28)

The condition I < ¢,k is generally referred to as the weak coupling
regime (e.g. Drake et al. 1974; Forslund et al. 1975; Cohen & Max
1979; Kruer 1988). We can find the maximum growth rate and
corresponding wavevector,

r aSwZ ak 1 29
™= 4820 (weak coupling), (29)

k, = d0®pe (weak coupling) (30)
T Vacp, '

The validity condition I' < ¢,k is

Wpe .
Bs >  /ap—— (weak coupling). 31)

wo
For I" > ¢k, which is the so-called strong coupling regime, equation
(27) reduces to

it agew?

7= ———. (32)
4wy 4o}

The growth rate increases with k and the asymptotic solution is
written as

Fpax = apwp, (strong coupling). (33)

I" is then expanded for large &,

datwin?
r= <1 - 064](04"> Tinax. (34)
Thus I' asymptotically approaches the maximum for
[aywow,,
k> Y (35)

We have neglected factors of order of unity. The validity condition is

«/anpre

Ope

<Lk, €

By < 4 ag (strong coupling). (37)

This condition and maximum growth rate show that the e-folding
time of the FI Ty ~ 1/Tmax ~ l/agwp. is much shorter than the
sound crossing time of the density filaments 7 o5 ~ 1/cky > Vagw,
for the strong coupling regime. On the other hand, 7 ,os/Terow ~
aywpe/Biwy < 1 is satisfied for the weak coupling regime. This
difference affects the heating physics during the linear and non-linear
evolution of the FI (see Section 3.3).

(strong coupling), (36)

2.2 Fully kinetic formulation

We here assume an unmagnetized pair plasma governed by the
Vlasov equation,

0f; ofi 4 [_ 04 fi _

o0 TV ax+mc{ at”’X(VXA)} ou =0 Y

J=Zq_,-/vf,«du, (39)
J

where u = yv is the particle four velocity. Let us assume that the
zeroth-order distribution function fy; satisfies

/ fo;du = ng (1 - %aé cos 2¢0> , (40)
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Figure 2. Linear growth rate of the FI for the strong (left) and weak (right) coupling cases.

which is motivated by the fluid approximation in equation (12). fo; is
then written as

1, q;A
ij = Ny 1— —dg COS 2¢0 Fo(ujl)é uj + — 1, (41)
4 m;
where u; and u;, are the four velocity components of parallel
and perpendicular to the vector potential A, respectively. The 6 is the
Dirac delta function and this term comes from the conservation of the
canonical momentum. For ay < 1, Fy is given by the non-relativistic
1D Maxwellian distribution,

U2
Fy 3 } ; (42)

1 {
= —=——oxp [~ 5
N 21 V0 2073
where v,,0 = /kpT,/m, is the thermal velocity and the electron
temperature T, is equal to the positron one T),. Substituting Ag and
Joj into the Vlasov and wave equations, we obtain the dispersion
relation

1
wy — kg — 2w, (1 - Zaé) =0, (43)
which is identical to the fluid approximation. Considering only the
lowest-order coupling, which is valid for ay < 1, the perturbed
quantities can be expressed as

A=Ag+8A,e% +8A_e +c.c., (44)

1, ip q;A
fj =Ny 1 — Zdo COSZ(ﬁo (F() +5Fe )5 uj + mf +c.c.,
J
(45)

where §F is independent of u ;. Linearizing the basic equations, we
finally obtain the fully kinetic dispersion relation,

I, , cos’f,  cos’h_
anwpg(ka - 1)( D, 0 ) =1, (46)
where
2 dz
Okin = lehoas 47)
(= . 8)
V2vok
Z(¢) is the plasma dispersion function given by
1 o =i
Z(¢) = ﬁ [m ;dz, (49)
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4z 2(1 Z 50
i (1 +¢2). (50)
The difference from the fluid approximation is that the sound wave
dispersion relation in equation (19) is replaced by the kinetic one.

We numerically derive the linear growth rate of the FI and show it
in Fig. 2 for (ag, wo/wpe, Bmo) = (0.3, 30, 0.01) (left) and (0.3,30,0.1)
(right). Our simulations are performed for these two cases. The black
solid lines in Fig. 2 indicate the kinetic growth rates. We also show
the fluid ones with the adiabatic index y,; = 1 (isothermal) and
Yad = 3 (1D gas) in red and blue dashed lines, respectively. The
left panel refers to the strong coupling regime |w| > c¢sk. Since the
results of fluid and kinetic calculations are comparable as further
discussed below, we can safely use the analytical estimates from the
fluid approximation and equations (33) and (36) give, for the strong
coupling regime,

1—‘max 2
2~ 1.0x 1072, (51
[20)]
ky
0l —<x 1. (52)
ko

In contrast, for the weak coupling regime |w| < ¢k in the right
panel, the maximum growth rate and the corresponding wavevector
are estimated from equations (29) and (30),

FleX

~2.5 %1073, (53)
[20)
ky
=~ 0.07. 4
ko

Here we have assumed f; ~ Buo. These analytical estimates are
roughly consistent with the numerical results.

We now expand why the fluid and kinetic calculations give com-
parable results. This is not surprising because the density fluctuation
is a non-propagating mode and the FI is almost unaffected by the
Landau damping as already discussed by Cohen & Max (1979).
The derivative of the plasma dispersion function is expressed by the
expansion (see e.g. Fried & Conte 1961) for [¢]| > 1 (i.e. strong
coupling regime |w| > c,k),

dz 1 31 151

@ etaptaE -
and for |¢] < 1,
% = _2Jmice™ —2+47% — §€4+"'~ (56)
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Here we have used Im(¢) > 0. Qyiy is thus approximately expressed
as for the strong coupling regime |w| > ¢k,

2k2 3 2 k2
Ouin = - (1 + l) : (57)
()

o2
and for the weak coupling regime |w| < ¢;k,

C2

Okin ~ ———. (58)
Uiho
QOhuia 18 expressed as for || > ¢k,
k? k>
Omia =~ —- <1 + =5 ) . (59)
[O)

w

and for |w| < ¢k,

o2

Ofuia & ——- (60)
CS

If we assume the adiabatic index y ., = 3 for || > ¢k and y g =

1 for || < csk, Qi is identical to Qgug. Therefore, the fluid

approximation for the FI is reasonable.

On the other hand, the effect of Landau damping is not negligible
for the SBS because the SBS induces sound-like waves that are
heavily damped unless a strong temperature difference between
electrons and positrons is induced. The fluid approximation for
the SBS is then valid only for the strong coupling regime (see
Appendix A).

3 NUMERICAL SIMULATION

3.1 Set-up

We use a fully kinetic PIC code (Matsumoto et al. 2015, 2017),
which employs an implicit Maxwell solver without any digital filters
(Ikeya & Matsumoto 2015), a charge conservation scheme for the
electric current deposition (Esirkepov 2001), and a second-order
shape function for computational macroparticles. We consider a
rectangular simulation box in x-y plane and the boundary condition in
all directions is periodic for both the fields and the particles. All three
components of fields and velocities are tracked in our simulations.
The initial condition is based on Ghosh et al. (2022). The plane
monochromatic pump wave is initially introduced,

Ey = (0, Eo cos kox, 0), (61)
Ck()

Bo = O, O, 7E0 Ccos k()x . (62)
wo

We also study the case of a pump wavevector potential perpen-
dicular to simulation plane (see Appendix B). This pump wave
propagates through homogeneous, unmagnetized pair plasmas with
a Maxwellian distribution. We calculate the initial thermal spread
Buno in the proper frame. The initial bulk four velocity satisfies

1
iojy = Ecaé sin® kox, (63)
ﬁ()jy = :i:Cd() sin k()x, (64)
igj. =0, (65)

where the positive (negative) sign corresponds to the electron
(positron). The SBS generally grows faster than the FI for monochro-
matic pump waves (Ghosh et al. 2022). The simulation domain in the
x direction is just one wavelength of the pump wave L, = Ao, where
Ao is the wavelength of the pump wave. Since the backward SBS is

2137

most unstable and the wavenumber of the back-scattered wave can
be estimated as ks = kg — k >~ —(1 — 2,)koX (e.g. Kruer 1988), the
SBS can be suppressed by a small box as already discussed by Ghosh
et al. (2022). This is the case for the weak coupling case; however,
the SBS grows into a substantial amplitude for the strong coupling
case (see Appendix A). The simulation domain in the y direction is
Ly, = 12019 = 87 c/w), to follow the filament mergers. The grid size
and time-step are, respectively, set as Ax/xy = 0.005 and woAr =
0.0314. The number of particles per cell per species is ngAx*> = 32.
Tests of numerical convergence are shown in Appendix C.

We fix the pump wave frequency wo/wp,, = 30 and the wave
strength parameter ap = 0.3 throughout this study. We carry out
our simulations for strong and weak coupling cases: By,o = 0.01 and
0.1, which satisfy the condition (1).

3.2 Simulation results

Fig. 3 shows the time evolution of the transverse electron density
fluctuations én,(y) = +/(n, — ng)2 for By = 0.01 (left) and 0.1
(right), where (), indicates the physical quantities averaged over
the x (pump wave propagation) direction. We compute the power
spectrum of én,(y) and then take its square root for Fig. 3. Note that
the horizontal axis range in units of ) is different. The most unstable
modes are shown in blue. The total of all modes (i.e. the spectrum-
integrated signal), which is shown in red, is strongly dominated by
the most unstable mode at the linear phase ' < 10, where 'y,
is the maximum growth rate numerically determined from the linear
theory (equation (46) for k, = 0). In both cases, the density filaments
exponentially grow until "7 ~ 10 and then they get saturated. The
maximum growth rates I'j,,x determined from linear theory (black
dashed lines) give a good agreement with our simulation results.
In the non-linear phase, [",¢ = 10, the time evolution of the most
unstable mode gradually deviates from the total because the filaments
begin to merge and the wavenumber of the mode with the highest
power gradually decreases, as further discussed below.

The time history of the electron thermal velocity (By) averaged
over the whole simulation domain is shown in green (axis on the
right of each panel). The thermal velocity is calculated in the fluid rest
frame for each species. Note that the vertical axis for (fy,) is in linear
scale. For the strong coupling regime (left in Fig. 3), (8) increases
for wot < 200 due to the SBS (see Appendix A). However, most of the
heating happens during the non-linear evolution of the FI and we thus
think that the SBS has little impact on the FI growth. The increase of
(Bw) at early times is not seen for the weak coupling regime (right
in Fig. 3), demonstrating that the SBS is well-suppressed for Sy =
0.1.

Fig. 4 shows the temporal evolution of the x-averaged electron
density (n,.), (top panels) and x component of the Poynting flux (S,),
(bottom panels) for Bp = 0.01 (left column) and 0.1 (right column),
where (S,), is normalized by the initial mean flux Sy = Eé /8m. In
the linear phase I' .t S 10, the amplitude of the density filaments for
Bumo = 0.01 is larger than for B0 = 0.1, because colder plasmas are
more easily compressed by the wave ponderomotive force due to their
weaker pressure gradients. In the final state of our simulations, the
density amplitudes are comparable between the two cases, because
the plasma gets heated during the non-linear evolution of FI and the
temperatures become comparable in the two cases, as shown with the
grey lines in Fig. 3 and further discussed in Section 3.3. The density
filaments gradually merge for ['yxf 2 10 and the filament merging
continues until the wavelength of the filament reaches ~27 c/w),, i.e.
comparable to the electron skin depth. We discuss the saturation of
the filament merging in Section 3.3. The wave Poynting flux peaks

MNRAS 522, 2133-2144 (2023)

€20z Jaquisldas |0 uo Jasn AlsiaAiun uoleoulld Aq 60221 2/SE12/2/2ZS/8101e/Seluw/wod dno-olwapeoe//:sdny WwoJj papeojumoq



2138 M. Iwamoto, E. Sobacchi and L. Sironi

Fmazt
0 10 20 30 40 50

— total
1044/ —— most unstable mode [ o>
I ----linear growth rate
10 0.00
0 1000 2000 3000 4000 5000
th

Fmazt
0 10 20 30 40 50

r0.14

r0.13

r0.12

<ﬂth

r0.11
— total

—— most unstable mode [ 1
----linear growth rate

10 0.09
0 5000 10000 15000 20000 25000

th

Figure 3. Time evolution of the amplitude of the transverse electron density fluctuations én, for Bno = 0.01 (left) and 0.1 (right). The most unstable modes
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in the lower density regions, i.e. the wave power accumulates in the
density cavities. The electromagnetic waves then propagate between
the density filaments as in a waveguide.

Fig. 5 shows the time evolution of the power spectra of the x-
averaged electron density fluctuations for By = 0.01 (left) and
0.1 (right). The blue lines correspond to the wavenumber of the
theoretical fastest-growing modes: k,/kg ~ 0.2 for B0 = 0.01 and
kylko ~ 0.07 for Bno = 0.1 in Fig. 2. The observed peaks at the linear
stage I'max? < 10 are consistent with the theoretical estimates. The
most unstable wavenumber gradually decreases down to ~w)/c.
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3.3 Saturation mechanism of filament merging

The FI saturates when force balance between the pressure gradient
and ponderomotive force is achieved (Kaw et al. 1973; Sobacchi
etal. 2023). The ponderomotive force exerted by the electromagnetic
wave expels particles from the region of high intensity. The pressure
gradient is gradually amplified by the compression and it finally
balances the ponderomotive force. Fig. 6 shows snapshots of the
x-averaged ponderomotive force (blue) and plasma pressure (red)
normalized by eEj at the final state of our simulations wot = 157254
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green lines indicate the x-averaged electron density.

for Bmo = 0.01 (left) and 0.1 (right). The pressure gradient Vp, is the
y derivative of the yy component of the pressure tensor and averaged
over the x direction. The ponderomotive force is by definition the sum
of the advection and non-linear Lorentz force averaged over the wave
period. We determine the y component of the ponderomotive force
Fpona for electrons from the snapshots averaged over the x direction
(i.e. one wavelength of the pump wave),

e

Fpond = <_(ve . V)Uey - (UFZBX - vesz)> . (66)

X

e

The green lines indicate the x-averaged electron density. The elec-
tromagnetic waves escape from the higher density region as shown
in the bottom panels of Fig. 4, and thus the ponderomotive force
vanishes there. The force balance between the pressure gradient and
ponderomotive force is clearly achieved across the whole transverse
direction.

Sobacchi et al. (2023) discussed the saturation mechanism of the FI
based on the assumption that the adiabatically compressed density
filaments are supported by the ponderomotive force in the steady
state. They pointed out that non-adiabatic heating can be important
for the strong coupling regime and it can raise the plasma temperature
because the force balance between the ponderomotive force and the
pressure gradient does not have time to be established for gy

&K Teross» Where Ty is the e-folding time of the FI and 7 o is the
sound crossing time of the density filaments. To investigate the effect
of the non-adiabatic heating, we measure the thermal velocity in our
simulations. Fig. 7 shows the electron thermal velocity (black) at the
final state of our simulations wot = 157254, which is the same time as
Fig. 6, for B0 = 0.01 (left) and 0.1 (right). The green lines indicate
the x-averaged electron density. If only the adiabatic compression
contributes to the plasma heating, the thermal velocity satisfies

2
ﬂl/l

-1
n;’ad

= const. (67)

The adiabatic thermal velocity is determined from the measured
density profile adopting a choice of y ., = 3 and shown in blue. For the
weak coupling case B = 0.1 (right in Fig. 7), the thermal velocity in
the higher density region is well-explained by the adiabatic heating.
The non-adiabatic heating operates in the density cavity and is
associated with the filament mergers. For the strong coupling regime
Bmo = 0.01 (left in Fig. 7), the thermal velocity at the final time
is much larger than the adiabatic heating, indicating that the non-
adiabatic heating is dominant.

The non-adiabatic heating may saturate when the equipartition
between the ponderomotive potential and total (electron + positron)
thermal energy is achieved. Since the initial ponderomotive potential
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is m.c*a3 /4, the equipartition thermal energy is m.c*a3/8 and the
thermal velocity is thus

B (68)

4]

232
which is shown in red in Fig. 7. This estimate is roughly consistent
with the measured thermal velocity at the final time. The filament
merging continues until the wavelength of the filament reaches
~2mclwy as already shown. The saturation wavelength may be
explained by an argument relying as well on the saturation thermal
velocity. If the linear analysis is still valid at the saturation stage,
equation (30) for B, ~ a0/2\/§ reduces to k, ~ wp./c in the weak
coupling case. In the strong coupling case, equation (36) reduces to

22w,

<k < V20p (69)

c c

®pe

where wy > wp./ay is applied. The wavenumber of the most unstable
mode may gradually approach the inverse skin depth due to the non-
adiabatic heating.

4 SUMMARY AND DISCUSSION

We study the non-linear evolution of the FI of strong electromagnetic
waves in pair plasmas using 2D PIC simulations. Our simulations
show that the FI generates transverse density filaments and that
the electromagnetic waves propagate in near vacuum between the
density filaments, as in a waveguide. We find that the density
filaments merge until the filament wavelength reaches the electron
skin depth. The filament merging ceases when force balance between
the ponderomotive force and the pressure gradient is established.
Non-adiabatic heating operates during the evolution of the FI and
can be important especially in the strong coupling regime, i.e. when
the e-folding time of the FI is shorter than the sound traveltime across
the filaments. Non-adiabatic heating may saturate when equipartition
between the ponderomotive potential and the plasma thermal energy
is achieved.

We now discuss the implications of our results for FRBs. The
FRB propagation has four important time-scales: (i) the time-scale
on which the FI exponentially grows, 7y, (ii) the filament merging
time-scale Tperge, (iii) the pulse duration time Tpuse, and (iv) the
expansion time of the wave front 7.,. We estimate 7 yerge from our
simulations in the strong coupling regime, as appropriate for FRBs
(Sobacchi et al. 2023). Fig. 8 shows the time evolution of the peak
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Figure 8. Time evolution of the peak wavenumber for the strong coupling
regime Bpo = 0.01 in the left panel of Fig. 5. The blue solid line indicates
the fastest-growing mode from the linear theory.

wavenumber of the power spectrum (taken from the left panel of
Fig. 5). The blue solid line indicates the fastest-growing modes from
linear theory, which agrees with the simulation results in the linear
phase t < tg ~ 10/T hax. Since the peak wavenumber exponentially
decreases until ', ~ 40, we define the merging time as T pere ™~
4t ~ 40/T hax. Evaluating I' .« from linear theory, the merging time
Tmerge 1N the rest frame of the magnetar wind can then be estimated
as

1 . L
L T2 N :
Tmerge ™ 80 ms <W) <W)

Yo \ 3 Vob R 2

w o\ 2 obs

X — ], 70
(102) (1 GHZ) <1014 cm) 70
where L is the observed radio luminosity, N is the particle outflow
rate, y,, is the wind bulk Lorentz factor, vqys is the observed radio
frequency, and R is the distance from the source (Beloborodov 2020;

Sobacchi et al. 2023). The time duration of the radio pulse in the
wind rest frame 7 g 18

Toutse = 2 Tabs ~ 200 ms (y—“) ( Fobs ) an
pulse Yw Tobs 102 1 ms s
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where 7 is the observed pulse duration. The expansion time of the
wave front in the wind frame is

R R Yu \ 7!
o= o~ 20s [ . 7
o0 = e S<1014cm)(102> (72)

Since Trr S Tmerge S Tpulse K Texp» the radio wave is filamented, and
the filaments merge before the radio pulse can propagate through the
unperturbed plasma ahead of the wave front.

The merging time may get longer for the realistic case in which
the peak wavenumber in the linear stage is >w./c, a case we
cannot achieve due to computational limitations. Then the FI may
develop in the regime where the merging time is longer than the
duration of the radio pulse, i.e. Trr S Tpuse S Tmerge K Texp- IN
this regime, the evolution of the filaments on the time-scale T perge 1S
unclear. Our simulations employ a periodic boundary condition in the
wave propagation direction, so the radio pulse continuously interacts
with density filaments. In contrast, for realistic FRB conditions,
the density filaments are non-propagating and stop interacting with
the radio pulse after the time-scale 7. Then the pulse should
propagate through an unperturbed plasma ahead of the wave front.
We will study the effect of more realistic boundary conditions —
including a self-consistent description of wave propagation — in a
future publication.

We assumed that the initial velocity distribution is isotropic in this
study. When plasmas are highly magnetized, which is the case for
the magnetar wind, a temperature anisotropy is generally expected.
Sobacchi et al. (2022) discussed the effect of the ambient magnetic
field and demonstrated that the FI is independent of the thermal
velocity in the direction perpendicular to the ambient magnetic
field because the ponderomotive force preferentially pushes particles
along the parallel direction. Therefore, we expect that the FI should
be primarily affected by the parallel temperature for the anisotropic
velocity distribution.

Our results are valid for the weak pump wave condition ay < 1, in
which the particle oscillation velocities in the wave fields are much
smaller than the speed of light. The radio pulses are much stronger
near the FRB progenitors and @y = 1 can be satisfied for R < 10%*
cm (Luan & Goldreich 2014; Beloborodov 2020). In this relativis-
tic regime, higher-order couplings (w,, k,) = (v + nwy, k + nky),
where n = £2, £3, £4,... is an integer, are no longer negligible. We
will explore the relativistic regime aq = 1 in a future publication.
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APPENDIX A: STIMULATED BRILLOUIN
SCATTERING

The maximum growth rate of the SBS can be derived from the
same dispersion relation as the FI. cosf. = —1 is satisfied for
the backward scattering and D is non-resonant for the SBS. The
dispersion relation (19) reduces to
2 202 k2
@ — ) |0 + ——(k — o)k | = — 2P " (A1)
2(1)0 4({)()

Substituting w = ¢,k + iI", where I' <« ¢k for the weak coupling,
we obtain

a’w? ck iTc?
r2_ 0%t T 1€ [k—z(ko—c“w(’)]kzo. (A2)
8c,wo 2wy c?

The maximum growth rate and corresponding wavevector are written
as

= (A3)
k3PS = 2(1 = Bo)ko. (A4)

The validity condition I' < c¢gk now becomes

Bs > ( o%) ' . (A5)

0

Here we have neglected factors of order of unity. For the strong
coupling I" > ¢k, we obtain

2 Q2w k2
&+ ——(k — 2kglka® + T =0, (A6)
2(1)0 46()0
The growth rate takes its maximum at around k& = 2 k; and we find
w= (aéa)f,ea)o)%e%. (AT)
We finally obtain
NG 1

mar = (@30 00)°, (A8)

kSBS = 2k, (A9)

and the validity condition is

2

Wye \ 3

B < (aoi> .
wo

Our parameters (ag, wo/®pe, Pmo) = (0.3, 30, 0.1) and (0.3, 30,
0.01) satisfy the weak (equation (AS5)) and strong (equation (A10))

(A10)

apg = 03, wol/wpe = 30’. Bth() = Oql

—— Kkinetic
-==- fluid,y,q =3
3.0 7 ===+ fluid,y,s=1

4.0

3.5 1

S 257
X,2.01
3
3154
1.0 4

0.5 1

0.0 T T T
0.0 0.5 1.0 15

kz/k()

2.5

coupling conditions for the SBS, respectively. We numerically derive
the linear growth rate of the SBS and show it in Fig. A1 for the strong
(left) and weak (right) coupling cases. The SBS grows faster than
the FI for both cases. For the weak coupling case, the kinetic growth
rate is much smaller than the fluid one because the fluid growth
rate is always overestimated due to the absence of Landau damping.
The unstable wavevector is smaller than 2 kj, indicating that the
backscattered waves propagating the —x direction are not resolved
in our simulation box L, x L, = A x 1204, which helps to suppress
the SBS as already discussed by Ghosh et al. (2022). In fact, for hot
plasmas with B0 = 0.1, we find that the amplitude of the SBS-
generated density fluctuations is very small (8n./ng ~ 1072), i.e. the
SBS is suppressed.

In contrast, in the strong coupling case the unstable wavevector can
exceed 2 ko and thus SBS operates even for our simulation setting.
Fig. A2 shows the snapshot of the electron density at wot = 629
for B0 = 0.01 (left). The density fluctuation at the wavenumber k,
~ 2 ko is clearly seen, indicating that the SBS indeed operates for
the strong coupling regime. The time evolution of the y-averaged
electron density is shown in the right panel of Fig. A2. The white
dashed line represents fluctuations propagating with the sound speed
¢, where the adiabatic index y,q = 3 is assumed, showing that the
the density fluctuation at k, ~ 2 ko is propagating in the +x direction
with the sound speed. Since the SBS is expected to generate the
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Figure A2. Left: snapshot of the electron density at wot = 629. Right: time
evolution of the y-averaged electron density. The white dashed line represents
fluctuations propagating with the sound speed c;.
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Figure A1. Linear growth rate of the SBS for strong (left) and weak (right) coupling cases.
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Figure A3. Time evolution of the SBS. The amplitude is calculated from the
Fourier components of the y-averaged density fluctuations for B = 0.01.
The most unstable modes (blue) and integral of all modes (red) are shown.
The black dashed lines correspond to o el'maxtwhere T'pax is determined
from the linear theory (equation (46) for k, = 0).

forward-propagating sound-like waves, this provides a clear proof of
the SBS.

Fig. A3 shows the time evolution of Fourier components of the
y-averaged density fluctuations for the strong coupling case B0 =
0.01. The black dashed lines are maximum growth rates 'y, of
SBS determined from the linear theory (equation (46) for k, = 0),
showing a good agreement with our simulation result. Based on the
above analysis, we conclude that the longitudinal density fluctuation
with k, ~ 2 ko originates from the SBS and that the SBS is not fully
suppressed by our numerical setting for the strong coupling case.

APPENDIX B: OUT-OF-PLANE VECTOR
POTENTIAL

In the main text, we focus on the pump wavevector potential lying in
the y direction. One can choose the out-of-plane vector potential (z
direction in our coordinates) and the corresponding wave fields are

Ey = (0,0, Eycoskox), B
Cko

By = (0, =2 Ejcoskox,0 ). (B2)
o

In this case, Ay || A+ (i.e, cos 04 = 1) is always satisfied regardless
of the scattering direction, and thus side scattering (kg L k4 ) survives
unlike in the in-plane configuration.

Fig. B1 shows the time evolution of the x-averaged power spectrum
for Bmo = 0.01 in the out-of-plane configuration. The numerical
parameters are identical to the in-plane configuration in the main
text and only the direction of the initial vector potential changes.
The clear peak can be no longer seen near the theoretical most
unstable mode of the FI (the blue line in Fig. B1). The filaments
merge much earlier than the in-plane configuration. Furthermore,
the mode with k, ~ 2 ky apparently grows faster than others, which
is not observed in the in-plane configuration. We think that the
side-scattered wave plays the role of a pump wave and the peak
at k, ~ 2 ko can be attributed to a secondary SBS of the side-
scattered wave. In fact, the green line indicates the most unstable
mode of the secondary SBS, showing a good agreement with the
observed peak. Although the secondary SBS may induce the side-

ky/ko

Figure B1. Time evolution of the power spectrum of the x-averaged electron
density fluctuations for Sno = 0.01 with the out-of-plane vector potential.
The blue and green lines correspond to the most unstable mode of the FI and
SBS, respectively.
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Figure B2. Time evolution of the y component of the x-averaged Poynting
flux for Bo = 0.01 with the out-of-plane vector potential. The black dashed
line indicates the electromagnetic waves propagating in the y direction.

scattered wave again, the wavevector is almost identical to the pump
wave and these waves cannot be distinguished. We here assumed
that the wavenumber of the side-scattered wave, which plays a role
for the pump wave of the secondary SBS, satisfies k; >~ +koy. We
confirmed this for By, = 0.1 and the secondary SBS works for both
strong and weak coupling cases. Note that our simulation setting can
numerically suppress only the back-scattering which is the dominant
mode of the SBS (Ghosh et al. 2022). The side-scattering survives
even for the weak coupling regime in which the backward SBS is
well-suppressed.

Fig. B2 shows the time evolution of the y component of the
x-averaged Poynting flux (S,), for Bgo = 0.01, where (S,), is
normalized by the initial mean flux Sy = E3/8m. The grid-like
structures are clearly seen in addition to the transverse filamentary
structures from FI. The black dashed line represents the electro-
magnetic waves propagating in the y direction, indicating that the
grid-like structures originate from side-scattered waves traveling
towards the +y direction. It has been argued that side scattering
for the out-of-plane vector potentials is numerically enhanced
due to the periodic boundary condition in the y direction (e.g.
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Cohen et al. 2005). We find that the side scattering preferen-
tially works and dominates over FI for the out-of-plane vector
potentials.

APPENDIX C: NUMERICAL CONVERGENCE

Here, we demonstrate the convergence of the growth rate and
saturation level with respect to the number of particles per cell per
species 19 Ax>.

Fig. C1 shows the time evolution of the spectrum-integrated signal
of §n.(y) for Byo = 0.1 for ngAx> = 8 (red), 16 (green), 32 (blue),
and 64 (purple). The black dashed line represents the fastest-growing
mode from the linear theory. It is natural that the initial noise level
should decrease as no Ax” increases. Both growth rate and saturation
level converge for ngAx? > 32. Based on this result, we choose
nyAx*> = 32 in the main text. In fact, the blue line shown in Fig. C1
is the same as the red line in the right panel of Fig. 3.
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Figure C1. Numerical convergence with respect to the number of particles
per cell per species for Bno = 0.1. The total of all Fourier modes of the
transverse electron density fluctuations én, is shown for ng Ax? =8 (red), 16
(green), 32 (blue), and 64 (purple). The black dashed lines represent oc e ax!,
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