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Abstract—Decision-making on networks can be explained by both homophily and social influences. While homophily drives the formation
of communities with similar characteristics, social influences occur both within and between communities. Social influences can be
reasoned through role theory, which indicates that the influences among individuals depending on their roles and the behavior of interest.
To operationalize these social science theories, we empirically identify the homophilous communities and use the community structures to
capture such “roles”, affecting particular decision-making processes. We propose a generative model named the Stochastic Block
influences Model and jointly analyzed both network formation and behavioral influences within and between different empirically-identified
communities. To evaluate the performance and demonstrate the interpretability of our method, we study the adoption decisions for a
microfinance product in Indian villages. We show that although individuals tend to form links within communities, there are strongly
positive and negative social influences between communities, supporting the weak ties theory. Moreover, communities with shared
characteristics are associated with positive influences. In contrast, communities that do not overlap are associated with negative
influences. Our framework facilitates the quantification of the influences underlying decision communities and is thus a helpful tool for
driving information diffusion, viral marketing, and technology adoption.

F

Index Terms—Social influence; Homophily; Stochastic Block Model;
Community structure; Generative model

1 INTRODUCTION

We are living in an increasingly connected society [1], [2], [3].
The connections among individuals foster information diffusion
and enable inter-dependencies in decisions among peers. Therefore,
understanding and modeling how hidden social influences change
individuals’ decisions are essential and critical to many practical
applications, such as viral marketing, political campaigns, and
large-scale behavioral change [4], [5].

Homophily, the tendency of similar individuals to associate
together, widely exists in various types of social networks and
controls the outcomes of many critical network-based phenomena
[6]. Salient features for homophily come from a wide range of
sources, including age, race, socioeconomic status, occupation, and
gender [6]. The complex nature of social relationships and the high-
dimensional characteristics of individuals thus determine the multi-
dimensionality of homophily [7]. Homophily can lead to locally
clustered communities and may affect network dynamics, such as
information diffusion and product adoption. The block model has
been applied to low-dimensional, pre-defined homophilous features
and provides a building block to uncover underlying community
structures1 with high-dimensional homophily empirically [8].

Social influences are widely studied in both economics and
computer science literature due to their importance in understanding
human behavior. In economics, researchers focus on causally
disentangling social influences from homophily with randomization

1. In this paper, we use community and block interchangeably.

strategies, such as propensity score matching, behavioral matching
and regression adjustment. In the computer science literature,
researchers focus on maximizing the likelihood of the diffusion path
of influences by proposing different generative processes. These
works focus on the strength or the pathways of social influence, and
they do not link social influences to the underlying homophilous
communities and the network formation process.

Two theories explain how local communities affect information
diffusion and contagion in decision-making. On the one hand, ho-
mophily and the requirement of social reinforcement for behavioral
adoption in complex contagion theory indicate that influences tend
to be localized in homophilous communities [6], [9]. In other words,
behavioral diffusion and network formation are endogenous, which
helps explain the phenomenon of within-community spreading
[10]. On the other hand, the weak ties theory [11] implies that
bridging ties between communities facilitates the spread of novel
ideas. Empirically, it has been shown that reinforcement from
multiple communities, rather than from the same communities,
predicts a higher adoption rate [12]. Motivated by these competing
theories, we seek whether social influences spread locally within
each homophilous community or globally to other communities by
taking advantage of long ties.

According to the role theory, “the division of labor in society
takes the form of interaction among heterogeneous specialized
positions” [13]. That is to say, depending on the social roles and
the behavior of interest, the underlying interactions and norms
for decision-making are different. Motivated by this proposition,
we develop a method to associate social influences with the
underlying communities, which are associated with the behavior
of interest. To formalize this idea, we propose a generative model
to understand how social influences impact decision-making by
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inferring the spread of influences across empirically-identified
blocks. Using our framework, we uncover the underlying blocks
and infer two types of relationships across these blocks: social
interaction and social influence. Unlike the Stochastic Block
Model, the observed individual decisions are used to inform the
communities, complementing the observed network. In addition,
we infer an influences matrix consisting of the social influences
across different communities. This influences matrix reveals hidden
social influences at the community level, which would otherwise
be impossible to observe and generalize.

As a case study, we experiment on the diffusion of microfi-
nance in Indian villages and perform extensive analysis on the
influences matrices estimated from the model. Even though social
relationships are denser within communities, social influences
mainly spread across communities. This may be due to the
importance of across community weak ties [11], and the strength of
structural diversity [12]. Our generative framework and subsequent
understanding of how social influences operate have practical
applications, such as viral marketing, political campaigns, and
large-scale health-related behavioral change.

Our paper makes the following contributions to the literature:
• SBIM integrates networks, decisions, and characteristics into the
generative process. It jointly infers two types of relationships
among empirically-identified communities: social connections
and social influences. It can flexibly accommodates positive and
negative social influences, which cannot be obtained from SBMs.

• Our SBIM is motivated by role theory, which posits that
individuals make decisions depending on the context of the
decision type [13] (e.g., adopting microfinance as opposed to
adopting healthy habits). To achieve this, we allow the underlying
community to vary with the behavior of interest.

• We perform a case study on the adoption of microfinance
products in Indian villages. We demonstrate the interpretability
of our SBIM with detailed analyses of the influences structure.

2 RELATED LITERATURE
There are two prominent theories for explaining social influence
propagation: simple contagion and complex contagion. According
to simple contagion theory, individuals will adopt the behavior as
long as they have been exposed to the information [11], which is a
sensible model for epidemics and information spreading. Complex
contagion theory, on the other hand, requires social reinforcement
from neighbors to trigger adoption [9]. Many studies have shown
that complex contagion explains behaviors such as registration
for health forums [14]. However, these exposure-based models are
analytically simple and do not allow social influences to be negative,
i.e., the adoption decision of one’s neighbors might decrease, rather
than increase, the likelihood of one’s adoption decision. Moreover,
they typically are not able to capture the heterogeneity of social
influences [5]. In this paper, we propose a model to account for
negative and heterogeneous influences.

The Stochastic Block Model (SBM) is a statistical model for
studying latent cluster structures in the network data [8]. The
SBM generalizes the Erdos-Renyi random graph model with higher
intra-cluster and lower inter-cluster probability. The traditional
SBM only infers community structures from network connections.
However, when contextual information on nodes is available,
leveraging information from different sources facilitates inference.
There has been interesting work on utilizing covariates to infer
underlying block structures in recent statistics literature. For
example, Binkiewicz et al. [15] present a covariate-regularized

community detection method to find highly connected communities
with relatively homogeneous covariates. They balance the two
objectives (i.e., the node covariance matrix and the regularized
graph laplacian) with tuned hyper-parameters. Yan et al. [16]
propose a penalized optimization framework by adding a k-means
type regularization. This framework is based on the premise that
the estimated communities are consistent with latent membership
in the covariate space. Although these variations to the SBM
utilize auxiliary information on individual nodes, they specify
the importance of recovering the network and the smoothness
of covariates on the network on an ad hoc basis. Different from
these models, we take advantage of role theory [13] and utilize
the decision-making process on the network that could also inform
community detection. More importantly, the communities that
we discover are specifically relevant for the decision-making of
interest, while the ones discovered by SBM is only affected by the
network connects (and agnostic to decision-making). For example,
professional communities are more useful for the adoption of
technologies at work, while social communities are more useful for
the adoption of social mobile apps. The underlying communities
depend on the role and behavior of interest because social influences
spread through network links in different applications. SBIM
bridges the rich SBM and social contagion literature. It opens up
future opportunities to adapt to other variations of SBM.

3 METHODOLOGY

3.1 Stochastic Block influences Model
Assume a random graph G(V, E) with N individuals in node
set V and edge set E . It is partitioned into C disjoint blocks
(V1, ...,VC ), and the proportion of nodes in each block c is ⇡c,
and

PC
c=1 ⇡c = 1. A 2 RN⇥N represents the adjacency matrix.

Aij = 1 if i and j are connected, and Aij = 0 otherwise. Let
matrix B 2 RC⇥C denote block-to-block connection likelihood.
Let Mi be the block assignment of individual i, and by summing
over all C blocks, we have

PC
k=1 Mik = 1. We combine the block

vector of all individuals in the matrix M 2 RN⇥C . Therefore,
the probability of a link between vi and vj between two separate
blocks Vk and Vl as P

�
(vi, vj) 2 E|vi 2 Vk, vj 2 Vl

�
= pij .

y 2 RN is a binary vector representing individuals’ adoption
behaviors. Let Xi 2 RD represent demographic features, where
D is the number of covariates. We use F 2 RC⇥C to represent the
block-to-block influences matrix. Finally, h is a binary vector, that
captures whether or not each individual is aware of the product at
the beginning of the observation period. For a new product, h is
sparse, while for a mature product, h is dense.

In SBIM, we link latent communities to adoption decisions
and socio-demographics. SBIM reveals the underlying nature of
high-dimensional homophily in a data-driven fashion rather than
using pre-defined communities using observed sociodemographics
(e.g., race or occupation). Solely using pre-defined homophilous
characteristics does not aptly capture the multi-faceted character-
istics that define individuals and their social ties. In other words,
individuals are associated with different communities, each formed
by various homophilous characteristics. Neighbors belonging to
different communities may influence focal individuals differently.

We illustrate this using the adoption of microfinance in Indian
villages. We posit that several traits define the diverse nature of
individuals: different professions, castes, education levels, and a
variety of other demographic features. One individual, an educated
worker of a lower social caste, belongs with varying degrees of
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affiliation to different communities. The individual is perhaps most
strongly affiliated with a group that has a certain level of education
and less strongly affiliated with another group where most of
the group are of a lower caste. This mixed membership captures
the realistic nature of our social relationships and characteristics.
Within such a village with multi-dimensional homophily, how can
we understand who influences this individual and what processes
are involved in that individual’s decision-making? Specifically, this
individual could be influenced by neighbors belonging to different
communities characterized by specific educational backgrounds,
professions, and castes. The data-driven multi-dimensional blocks
of the model allows us to capture these critical, hidden relationships.

Next, we formalize our SBIM model. To jointly infer how
influences spread within and across communities, we create a
model with the following properties:
1) The model leverages both the observed friendship network struc-

ture and adoption behavior to infer the underlying communities.
2) The link formation and social influences between two individu-

als are jointly determined by their underlying communities.
Blocks for network connections. For each individual pair {i, j},
depending on their community assignment vectors, the predicted
link Âij is generated according to the connection probability
matrix, B. In particular, the probability of the existence of a link
between i and j is:

P(Âij = 1|M,B) = (MBMT )ij . (1)

Blocks for decision-making. Next, we discuss how we incorporate
individual characteristics and adoption decisions into our SBIM.
The adoption likelihood depends on individuals’ characteristics and
on the influences of their neighbors who have already adopted
[17]. This generative model builds upon the communities an
individual i and i’s neighbors belong to, as well as the community-
to-community influences matrix Fij . Each individual decides on
whether or not to adopt to maximize her utility. The utility of
i depends on what this individual prefers and the aggregated
influences of neighbors. The pairwise influences depend on the
communities that i and her neighbors belong to. We illustrate
how influences and communities affect one’s decision-making in
Figure 1. We consider individual A, who has three friends, B, C,
and D, belonging to a lower socioeconomic status (SES) group (as
colored in red), and one friend, E, belonging to a higher SES group
(as colored in blue). The adoption likelihood of individual A is a
function of this individual’s preferences as well as the influences
of friends B, C, D, and E. The strength of the influences depends
on the corresponding communities of A and her friends.

More generally, a user’s adoption likelihood, ŷ, is defined as:

ŷi = logit
�
�Xi+

X

j

�
(MFMT )�((h⌦1)�A)

�
ji
+✏i

�
, (2)

where � is the element-wise matrix multiplication. The first
term, �Xi, measures the adoption decision conditioned on i’s
sociodemographic features if there were no social influence, where
� 2 RD andD is the dimension of the covariates. The second term
aggregates the influences of i’s neighbors. ✏i is the idiosyncratic
error term. Without loss of generality, we assume ✏i ⇠ N (0, 1).

For a mature product that everyone knows, we can simplify
Eq. (2) as:

ŷi = logit
⇣
�Xi +

NX

j=1

�
(MFMT ) �A

�
ji
+ ✏i

⌘
. (3)

High class 
Teachers with high education in 
late 40s in a high social caste.  

Low class 
Low-income farmers in a 

lower social caste.

Whether to adopt 
Microfinance?

A

B C

D

E

HG

F

A

B C D E

A’s personal preference
+

Social influence from 
friends belonging to 

different communities

Fig. 1: Graphical representation of the Stochastic Block influences
Model (SBIM). Assume there are two communities, a high socioeco-
nomic status (SES) group (dark blue) and low SES group (dark red),
characterized by multi-dimensional sociodemographic features. The
two groups have higher intra SES group connection probability and
lower inter SES group connection probabilities. The decision-making
of individual A is jointly influenced by this individual’s preferences,
as well as her friends from the same and different communities.

Eq. (2) only accounts for the influences among direct neighbors.
Note that in a small-scale network, it is reasonable to assume higher-
order social influences do not exist. In a large-scale network, Leng
et al. [18] show that social influences spread beyond immediate
neighbors. Our model can be easily adapted to higher-order
influences by summing up the powers of the adjacency matrix
A to account for multiple degrees of separation, as done in [5].

We finally introduce the loss function (L):
L = �

X
ylog(ŷ)�

X
Alog(Â). (4)

The first component is the main objective for typically SBM and the
second component is SBIM’s main advantage. The same inferred
blocks M are used to compute both Â (Eq. (1)) and ŷ (Eqs. (2)
and (3)). In the loss function, we minimize the difference between
(1) predicted and observed links (the objective for existing SBM
in “Blocks for network connections”); (2) predicted and observed
behaviors (contribution of our paper discussed in “Blocks for
decision-making”).

3.2 Generative process
For the full network, we assume the following generative process
in the model, which defines a joint probability distribution over N
individuals, based on the node-wise membership matrix M, block-
to-block interaction matrix B, block-to-block influences matrix F,
attributes’ coefficients �, observed friendship networkA, observed
attributes X, and observed adoption decision y. For brevity, we
denote Z as set of the hidden variables, Z = {M,�,B,F} and
✓ as the set of hyperparameters, where ✓ = {c, a, b, µ,�, µb,�b}.
(1) For each node vi 2 V , draw a C-dimensional mixed member-

ship vector Mi ⇠ Dirichlet(c).
(2) For the connection probability from community k to l in the

block-to-block connectivity matrix, draw Bkl ⇠ Beta(a, b).
(3) For the influences from community k to l in the block-to-block

influences matrix, draw Fkl ⇠ N (µF ,�F ).
(4) For each attribute in �d, draw the coefficient �d ⇠ N (µb,�b).
(5) Draw the connection between each pair of nodes vi and vj ,

Âij , according to Eq. (1).
(6) Draw the adoption decision ŷi, according to Eq. (2).

Steps (3), (4), and (6) are unique processes of SBIM, which
are relevant to the adoption behavior of our method. The blocks
used in SBM in Step (1) are also used in the generation process
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in Eqs. (2)-(3) in Step (6). As discussed in Section 3, the latent
component M contributes both to Â (Eq. (1)) and ŷ (Eqs. (2) and
(3)), as it affects both the decision-making and the link formation.

The posterior distribution defined by SBIM is a conditional
distribution of the hidden block structure and relationships given
the observed friendship network and adoption behavior, which
decomposes the agents into C overlapping blocks. The posterior
will place a higher probability on configurations of the community
membership that describe densely connected communities and
stronger (positive or negative) influences.

The posterior of the SBIM is intractable, similar to many
hierarchical Bayesian models. Therefore, we use the Markov Chain
Monte Carlo (MCMC) algorithm as an approximate statistical
inference method to estimate the parameters. The MCMC draws
correlated samples that converge to the target distribution and are
generally asymptotically unbiased. MCMC methods include Gibbs
sampling, Metropolis-Hastings, Hamiltonian Monte Carlo (HMC),
and No-U-Turn Sampler (NUTS). Gibbs sampling and Metropolis-
Hastings methods converge slowly to the target distribution as they
explore the parameter space by random walk. HMC suppresses the
random walk behaviors with an auxiliary variable that transforms
the problem by sampling to a target distribution using simulated
Hamiltonian dynamics. However, HMC requires the gradient of
the log-posterior, which is complicated in our model. Moreover, it
requires a reasonable specification of the step size and several steps,
which would otherwise result in a substantial drop in efficiency
[19]. Therefore, we apply the NUTS, a variant of the HMC
method, to eliminate the need for choosing the number of steps
by automatically adapting the step size. Specifically, the NUTS
builds a set of candidate points that spans the target distribution
recursively and automatically stops when it starts to double back
and retrace its steps [19].

4 EXPERIMENTS

We study the adoption of microfinance in five villages in India
collected by the Abdul Latif Jameel Poverty Action Lab (J-PAL)
[20]. In 2007, a microfinance institution introduced a microfinance
program to some selected villages in India. In early 2011, they
collected information about whether or not the villagers had
adopted the microfinance product. Because the villages are fairly
small and microfinance had been on the market for four years when
JPAL collected individuals’ adoption decisions, it is reasonable to
assume that everyone in the village was aware of microfinance,
which is hence a considered mature product in this village.
Therefore, we employ Eq. (3) as the decision-making function.
The data contains information about self-reported relationships
among households and other amenities, including village size,
quality of access to electricity, quality of latrines, the number of
beds, the number of rooms, the number of beds per capita, and the
number of rooms per capita. These demographic features are used
as the independent variables. The outcome variable is the adoption
decision of microfinance. The microfinance institution asked the
villagers to self-report other villagers they considered as friends.

To train our model and evaluate the performance for a particular
C , the number of blocks, we cross-validated by randomly splitting
the data into 75% training samples and 25% test samples. We repeat
this process ten times. With NUTS, we obtain the point estimates
for all latent variables in Z . We then rerun our model (as previously
described) with all latent variables fixed to the estimates on the
test dataset. This step returns the predicted adoption probability

for each villager in the test data. To choose the optimal number
of blocks, we first tune the model for C 2 {2, 6, 10, 14} and then
calculate the average loss. We observe a negative parabolic trend
with the loss peaking at its lowest at C = 10 blocks, so we use
this optimal number of blocks in additional analyses. We use a
machine learning model with sociodemographics and the hidden
community learned by spectral clustering2 (i.e., blocks) on the
adjacency matrix as the independent variables. In this way, we use
the same information in SBIM and the benchmarks.

Since the dependent variable in our data is imbalanced, we
evaluate our SBIM using the area under the Receiver-Operating-
Characteristics curve (AUC) that we plot using the false positive
rate and correct positive rate for different thresholds. We define
a loss metric to select the best configurations during the training
period. We formulate it by taking the negative of the standard
improvement measure, which is the absolute improvement in
performance normalized by the room for improvement. This
measure captures the improvement of our SBIMcompared to the
baseline model. Since we have a small test set, making predictions
on a randomly-drawn test set is hard. Measuring the relative
improvement ensures that the composition of the test set does
not bias the performance due to sample variation. This metric is
formulated by: L = Baseline test AUC�SBIM test AUC

1�Baseline test AUC
, where the AUC of the

baseline model and SBIM on the test split in cross-validation are
represented as Baseline test AUC and SBIM test AUC, respectively.

SBIM has seven hyperparameters in ✓.Since the parameter
space is large, we adapt a bandit-based approach to tune the
parameters developed called hyperband [22]. Our adaptation of
this algorithm allows each configuration tested to run with full
resources due to our sampling procedure, allowing NUTS to run
consistently across all configurations.

We compare the performance of our SBIM model with six
methods benchmarks, all of which use the learned block as the
extra feature, in Table 1. We find that our SBIM outperforms the
best benchmark (elastic net with blocks) in the test set by 13.4%
using the improvement metric mentioned above.

TABLE 1: Model and baseline performance
Train: Mean (S.D.) Test: Mean (S.D.)

Random forest (with blocks) 0.901 (0.010) 0.610 (0.095)
Gradient boosting (with blocks) 0.843 (0.075) 0.531 (0.058)
Adaboost (with blocks) 0.876 (0.038) 0.528 (0.058)
Elastic net (with blocks) 0.724 (0.107) 0.612 (0.079)
Lasso regression (with blocks) 0.719 (0.069) 0.607 (0.078)
Multilayer perceptron (with blocks) 0.703 (0.098) 0.536 (0.056)
SBIM 0.805 (0.022) 0.664 (0.062)

5 ANALYSIS AND DISCUSSIONS
Interpretability is a broad term in machine learning. We follow the
definition of [23]. We define interpretable machine learning as the
extraction of relevant knowledge from a machine-learning model
concerning relationships either contained in the data or learned
by the model. Our SBIM model satisfies several characteristics of
the model-based interpretability methods developed in this paper,
including sparsity, simulability, and modularity. We discuss how
our model satisfies each criterion in the Appendix.

We can associate individuals’ sociodemographics with the
individuals who belong to each block to generalize block types as
consisting of characteristics such as high or low SES, homogeneous

2. Spectral clustering uses the second smallest eigenvector of the graph
laplacian as the semi-optimal partition [21].
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or diverse, and skilled or less educated, as depicted in Table 2
(remaining examples are shown in Table A1 in the Appendix).
In this example, each block is associated with a qualitative type,
and the attributes within that block describe such characterizations.
Caste composition, education levels, and profession types are
employed to designate lower or higher SES blocks. Homogeneous
or diverse blocks are designated by some professional composition,
caste types, native language composition, gender imbalance, and
what fraction of village inhabitants are natives. We also display the

We use normalized entropy to measure the diversity of attributes
studied in this paper. Normalized entropy is a metric used to capture
the number of types of characteristics within each category while
accounting for the frequency of each entity type within a category.
It can be formulated by, Q = �

Pq
i=1 pi log(pi)Pq

i=1
1
ni

log( 1
ni

)
, where q denotes

the number of types within a category, pi denotes the probability
of each type i, f denotes the number of each type ni.

The gender ratio (R) is measured within a block and is
formulated by R = rm

rf
, where rm and rf denote the number

of occurrences of males and females respectively. Thus, since R
denotes the ratio of males to females in a block, both a high or low
gender ratio corresponds to a high gender imbalance.

Fig. 2: Net influences into and out of each block.

The total influences into and out of each block are depicted in
Figure 2, which allows us to evaluate the aggregated influences
a block receives and spreads (net positive, negative, or neutral).
For example, we can see diverse, low-SES block five and senior,
low-SES block six have high output levels of positive influence,
and diverse, middle-SES block eight receives a net high level
of negative influence. We find that some blocks have stronger
outgoing influences than others and can perceive these as positive
and negative influences leaders. Similar reasoning applies to
characterize blocks that receive a high level of influence as
follower blocks. We also observe the difference in net incoming
and outgoing influences within each block relating to its role in
the block-to-block network. We refer to this to interpret different
dynamics between social blocks and then pairing this information
with demographics to make further evaluations about the block
characteristics associated with different types of influence.

In Figure 3, a subset of the sociodemographic features is
displayed for each block, where the network of blocks is connected
with varying degrees of influences between them. We find that the
equal gender ratio block ten positively influences the similarly equal
gender ratio block nine. Block ten positively influences block nine,
with similarly high caste diversity. Lower professionally diverse
block one negatively influences higher professionally diverse block
three. Due to space limit, we display other attributes in Figure A1
in the Appendix.

Fig. 3: Social influences across social blocks (directed links) for
gender ratio and profession diversity (node color).

TABLE 2: Block characteristics example. SES shorts for socioeco-
nomic status. Higher education refers to having education levels at PUC
(pre-university course) and having a “degree or above” designation.

Block Block Type Attributes

1 Homogeneous, low-SES Only one disadvantaged caste and one language spoken
Low profession diversity and education levels

2 Diverse, skilled, highly-educated Several different castes from many levels
Diverse languages and diverse, high-skilled professions

3 Senior, low-SES Majority disadvantaged caste
Majority low skill-level professions in agriculture

4 Young, low-SES
Younger average age, gender imbalanced block
Majority lowest caste members, mostly natives
Higher education

5 Diverse, low-SES
Diverse number of disadvantaged castes
Moderate language diversity, moderate education

By analyzing several examples in this manner using block
characteristic composition and observing the types and patterns
of influence, several general trends arise, as depicted in Table 3.
The block attributes most frequently associated with different types
of influence are summarized into key trends. Positive influence
occurs when two blocks overlap in the following characteristics:
gender distribution, majority castes and professions. Negative
influence frequently occurs when two blocks have a lack of
overlap in the following characteristics: gender distribution, caste
composition, and profession diversity level. Furthermore, the
direction of negative influence is most frequently observed from a
low-SES block to a high-SES block. Additionally, we frequently
observe positive self-influence, which is from a block to itself, and
this occurs when a block is characterized by a younger average
age, highly-educated, high job diversity, higher-skilled jobs, high
language diversity, large gender imbalance, and having a large
number of village natives. The remaining examples are displayed
in Table A2.

TABLE 3: Block attributes (including gender, caste, and profession)
associated with different types of influence.

Attribute Positive influence Negative influence Positive self-influence
Gender Similar gender distribution Gender-imbalanced block is more open

to negative influences
Large gender imbalance

Caste Overlapping majority castes Lack of overlap in caste composition Majority village natives

Profession Profession overlap, in spe-
cialty jobs specifically; large
professions diversity

Professionally diverse block receives neg-
ative influences from a less professionally
diverse block; lack of professional overlap
causes a negative influences

High job diversity and
higher-skilled jobs

When we analyze several examples using block characteristic
composition and observing the types and patterns of influence,
several general trends arise, as depicted in Table A2. The block
attributes most frequently associated with different influences
are summarized into key trends. We find a positive influence
when two blocks overlap in the following characteristics: gender
distribution, majority castes, professions, high profession diversity,
highly educated, highly-skilled jobs, and native languages. Negative
influences frequently occur when two blocks do not overlap in the
following characteristics: gender distribution, caste composition,
profession diversity level, education levels, and average age.
Furthermore, negative influences are most frequently observed
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from a low-SES block to a high-SES block. Additionally, we
frequently observe positive self-influence, which is from a block to
itself, and this occurs when a block is characterized by a younger
average age, highly-educated, high job diversity, higher-skilled
jobs, high language diversity, large gender imbalance, and having a
large number of village natives.

When paired with block type characterizations, we find that
these trends lead to interesting associations, such as block-to-block
perceptions of lower or higher SES groups having influence. Blocks
with the higher SES group designation more frequently receive
negative influences from lower-SES blocks. Blocks of similar SES,
especially higher SES, have more frequent positive influences, and
High-SES blocks also have more frequent positive self-influence.

These findings suggest that firms employ marketing strategies
that take into account the underlying communities. For example,
the microfinance institution could organize separate information
sessions for the high-SES and low-SES groups to take advantage
of the positive influences between groups that share similar charac-
teristics while avoiding the negative influences across the different
communities. Moreover, suppose the microfinance institution is
to introduce the product into other villages (as a new product).
In that case, they should send the information to individuals with
the following characteristics: (1) high-SES with fewer low-SES
neighbors, (2) individuals who speak a diverse set of languages,
and (3) communities with similar gender ratios.

6 CONCLUSION

According to the role theory, the interactions of individuals depend
on their roles and behaviors of interest. To conceptualize this idea,
we use the underlying community structures to capture the “roles,”
which affect the particular decision-making processes of individuals.
Specifically, we develop the Stochastic Block influences Model,
which infers two types of hidden relationships: (1) block-to-block
interactions, and (2) block-to-block influences on decision-making.
Moreover, our model flexibly allows for both positive and negative
social influences. The latter is more common in practice but has
been largely ignored in the contagion models in the literature
[9], [20]. In the adoption of microfinance examples we present,
the inferred block-to-block influences analysis offers insights
into how different social blocks influence individuals’ decision-
making. Our framework has far-reaching practical impacts for
understanding the patterns of influences across communities and
identifying the crucial characteristics of influential individuals for
several applications, including the following. First, practitioners
and researchers can identify the most influential communities
(e.g., leaders and followers) and understand the dynamics among
different communities that are not available nor observable with-
out our SBIM model. Second, marketers can investigate which
sociodemographics predict positive or negative social influences
and utilize this information when introducing a product to a new
market. Lastly, Marketing firms can use the influences of each
individual to decide whom to target for campaigns [5].

Our SBIM is not without limitations and opens up several
directions for future studies. First, future research can easily adapt
the SBIM to accommodate a more complicated stochastic block
model, such as a degree-corrected SBM or a power-law regularized
SBM. Second, a scalable inference method as an alternative to
NUTS sampling will help to improve the efficiency and scalability
of SBIM. Third, future research can extend the SBIM to a dynamic
model and consider its application for new products, where the

influences matrix varies with time and distances from the source of
information, and consider the diffusion rate. Lastly, for computer
scientists and social scientists who have access to similar types of
data but in different settings (e.g., different behaviors collected in
different regions), it will be interesting to apply and compare the
influences matrices to see if there exists any generalizable pattern
to support the contagion and decision-making theories.
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