BRAID LOOPS WITH INFINITE MONODROMY ON THE
LEGENDRIAN CONTACT DGA

ROGER CASALS AND LENHARD NG

ABSTRACT. We present the first examples of elements in the fundamental group of the space
of Legendrian links in (S*, &) whose action on the Legendrian contact DGA is of infinite
order. This allows us to construct the first families of Legendrian links that can be shown to
admit infinitely many Lagrangian fillings by Floer-theoretic techniques. These new families
include the first known Legendrian links with infinitely many fillings that are not rainbow
closures of positive braids, and the smallest Legendrian link with infinitely many fillings
known to date. We discuss how to use our examples to construct other links with infinitely
many fillings, and in particular give the first Floer-theoretic proof that Legendrian (n,m)
torus links have infinitely many Lagrangian fillings if n > 3,m > 6 or (n,m) = (4,4), (4,5).
In addition, for any given higher genus, we construct a Weinstein 4-manifold homotopic to
the 2-sphere whose wrapped Fukaya category can distinguish infinitely many exact closed
Lagrangian surfaces of that genus in the same smooth isotopy class, but distinct Hamiltonian
isotopy classes. A key technical ingredient behind our results is a new combinatorial formula
for decomposable cobordism maps between Legendrian contact DGAs with integer (group
ring) coefficients.
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In this article, we construct Legendrian loops for several families of Legendrian links in the

standard contact 3-sphere (S?, &) and show that their monodromy action on their Legendrian

contact DGA is of infinite order.

studied loops.
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These are the first examples of such a Floer-theoretic
infinite order, in sharp contrast with the known finite order DGA action of all previously
We provide several new consequences of these results, including the first
known examples of Legendrian links with infinitely many Lagrangian fillings which are not



the rainbow closure of a positive braid!, and can be distinguished via Floer theory.? These
Lagrangian fillings are all smoothly isotopic, but their Hamiltonian isotopy classes are all
distinct. One of these new Legendrian links has 2 components and, with its Lagrangian
fillings being of genus 1, is arguably the smallest known Legendrian link to date, in terms
of genus and components, with infinitely many Lagrangian fillings. In addition, for any
given genus g > 2, we construct Weinstein 4-manifolds homotopic to the 2-sphere whose
wrapped Fukaya categories can distinguish infinitely many (Hamiltonian isotopy classes of)
exact closed Lagrangian surfaces of that genus, all in the same smooth type. Finally, we
show how to Floer-theoretically detect the existence of infinitely many Lagrangian fillings
for the Legendrian (n,m) torus links of maximal Thurston-Bennequin number (“max-tbh”),
with n > 3,m > 6 and (n,m) = (4,4), (4,5), and many other Legendrian links, by using the
Legendrian DGA.3

The manuscript also develops technical results on the Legendrian contact DGA, of indepen-
dent interest, needed for our argument. In particular, we present a combinatorial model for
computing DGA morphisms associated to decomposable Lagrangian cobordisms L, where the
morphisms are enhanced over integer group ring coefficients. We show that this is isomor-
phic to the abstract enhancement previously developed by Karlsson, thus proving invariance
and allowing us to perform explicit computations over Z[H;(L)]. This integrally enhanced
package is then used to prove the above Floer-theoretical results concerning infinitely many
Lagrangian fillings.

1.1. Context. Legendrian links in contact 3-manifolds [Ben83l [Ad90] are instrumental in
the study of 3-dimensional contact geometry [OS04], [Gei08]. The study of their Lagrangian
fillings yields non-trivial DGA representations of the Legendrian contact DGA associated to
any Legendrian link, which themselves are effective invariants for distinguishing Legendrian
representatives in the same smooth type [Che02, Ng03|, [SiviI]. In particular, Floer theory
has provided far-reaching methods to address questions on Legendrian links; for instance,
along the lines of this paper, see [EP96l [Etn03, K105, [Chal0].

Recently, the first examples of Legendrian links in (S?,&s) which admit infinitely many
Lagrangian fillings in (D*, \s;) were discovered [CG21]. Indeed, [CG21], Corollary 1.5] shows
that the max-tb Legendrian (n,m)-torus link A(n,m) admits infinitely many Lagrangian
fillings if n > 3,m > 6 or (n,m) = (4,4),(4,5). The method of proof itself relies on the
theory of microlocal sheaves, and it remained unclear whether the existence of infinitely
many Lagrangian fillings, even for one Legendrian link, could also be proven via Floer-
theoretic methods. It also remained unknown whether (typically smaller) links which were
not rainbow closures of positive braids — from which the current sheaf methods do not apply
— could actually admit infinitely many Lagrangian fillings.

(i) First, we show that the Legendrian DGA detects infinitely many fillings and it does so for
new Legendrian links (including links that are not the rainbow closure of a positive braid).
In fact, we significantly improve on [CG21l, Corollary 1.5] by showing that simpler classes
of Legendrian braids already admit infinitely many exact Lagrangian fillings, and doing so
Floer-theoretically. For instance, the family of Legendrian braids of affine D,-type depicted
in Figure (1] (right) is one such class. This also gives an alternative Floer-theoretical proof
that the torus links in [CG21, Corollary 1.5] admit infinitely many Lagrangian fillings.

1Previously known methods to build infinite Lagrangian fillings, including the techniques from microlocal
sheaf theory, do not apply in this general setting.
2Note that, before this manuscript, none of the infinite Lagrangian fillings in [CG21] or [CZ21] was known
to be distinguished via Floer theory.
3In all cases being considered, the max-tb condition is a necessary condition on the Legendrian links in
order to admit an embedded exact Lagrangian filling, see e.g. [Chal0].
3
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FIGURE 1. The family of Legendrian links A,, C (S3,&s), n > 1, on the left.
The Legendrian links of affine D, -type are depicted on the right, n > 4. All
of these have infinitely many fillings. The boxes indicate a series of positive
crossings.

Note that, since the appearance of [CG21], the articles [CZ21) [GSW20al [GSW20b] have also
continued to develop various cluster and sheaf-theoretic methods that detect infinitely many
Lagrangian fillings for a Legendrian link A C (S3,&). Nevertheless, all these techniques are
currently only effective at studying Legendrian links which are positive braids, i.e. when
A C (S?,&:) admits a Legendrian front given by the rainbow closure of a positive braid,
and do not apply to several of our smallest links. In contrast, the Floer-theoretic argument
we develop also applies to certain Legendrian links A C (S?, &) which are not the rainbow
closure of positive braids. For instance, we show that each of the Legendrian links A,,, n € N,
depicted in Figure [1| (left) admits infinitely many Lagrangian fillings. For n = 1, this yields
a Legendrian link A; which is not the rainbow closure of a positive braid because it contains
a tb = —3 stabilized unknot component.

(ii) Second, the existence of infinitely many Lagrangian fillings for our families of Legendrian
links A C (S?, &) is deduced from a stronger result on Legendrian loops, Theorem as
we explain shortly. In particular, we provide the first examples of Legendrian loops whose
induced monodromy action on the Legendrian contact DGA has infinite order. In addition, we
present the first example of a Weinstein 4-manifold homotopic to the 2-sphere with infinitely
many Hamiltonian isotopy classes of exact Lagrangian surfaces of genus 2 (and no Lagrangian
2-spheres nor exact Lagrangian tori). This is part of the family of Weinstein 4-manifolds in
Corollaries[I.6 and [1.7] which construct such Weinstein 4-manifolds for all genera g > 2. Note
that, at the level of smooth topology, the concatenation of these Legendrian loops with any
decomposable Lagrangian filling does not change the smooth type of the Lagrangian filling.
Thus, we can use these Legendrian loops to produce infinitely many Lagrangian fillings (and
surfaces in Weinstein 4-manifolds) which are distinct up to Hamiltonian isotopy, but these
surfaces are all smoothly isotopic.

(iii) Third, at a technical level, we study the lifts of the DGA maps induced by exact La-
grangian cobordisms to Z-coeflicients, which is required to argue the infinite order in our
argument. This is interesting on its own, as it provides correct signs for Floer theoretical
invariants, such as augmentations, and it is a necessary ingredient for the study of cluster
structures* on augmentation varieties and their holomorphic symplectic structures, as this
requires Floer theory in characteristic 0. In particular, these results from this manuscript
are used in the recent article [CGGS20] to construct a holomorphic symplectic structure on
the augmentation varieties associated to Legendrian positive braids.

4n characteristic different from 2. In particular, the correct signs are needed for arguing in characteristic
0, the most studied case in cluster theory.
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FIGURE 2. On the left, Lagrangian projection of the Legendrian links A,,, n >
1, and the purple box, which contains n positive crossings. The purple-box
Legendrian loop ¥ : S' — L(A,,) is depicted by the dashed purple trajectory.
On the right, Lagrangian projection of the Legendrian link A(f)n), n > 4,
and the purple box, which contains (n — 2) positive crossings. The purple-box
Legendrian loop 9 : St — L£(A(D,,)) is also illustrated by the dashed purple
trajectory.

1.2. Main Results. Let § be a positive braid, representing an element in the N-stranded
positive braid monoid Brj\r,, N € N. We can associate a Legendrian link A(8) C (S3,&s) to
B such that A(p) is topologically the (—1)-framed closure of 3: this is achieved by placing
in a standard contact neighborhood of the standard Legendrian unknot in S* of Thurston—
Bennequin number tb = —1. See Figure |3| for a depiction of A(8), where throughout this
paper we will describe Legendrian links through their front and/or Lagrangian projections
(see Section [2] for a review). We now define the Legendrian links that we will study in this

paper.

A(B) A(B11) = A((02‘710302)4U301)

e

FIGURE 3. The general front for the Legendrian links A(8), on the left, and
the specific example of the Legendrian link A(S11), on the rlght

By definition, the D,-Legendrian link is the Legendrian A(B (l~)n)) C (S3, &) associated to
B(Dy) = (0201030209030102)0] 2 A%, n > 4,

where A = 1 (0201)(030201) is the 4-stranded half-twist. Figure[l](right) shows a Legendrian
front projection for A(D,,), and the terminology will be explained in Section 5

Similarly, the Legendrian link A, C (S3, &) is the Legendrian link A,, = A(f3,) associated to
the braid word

Bn = (o2010109)0T, n> 1.

Figure [1| (left) shows a Legendrian front projection for A,. These are two distinct families
of Legendrian links, with the exception of the accidental Legendrian isotopy As = A(Ds).

5The ﬁn-Legendrian should be read as the affine D,-Legendrian.
5



Finally, we will also consider the Legendrian links associated to the following braids:
Bap = (09010309) c%0?, a,be {1,2}.

Note that A(B22) is Legendrian isotopic to A(Dy). See Figure (right) for a drawing of
A(B11). Following the above Dynkin-diagram notation, A(f311) can also be referred to as the
A(As;)-Legendrian link. From now onwards, we denote by

H= {An}nzl U {A(Em)}m24 U {A(611)7 A(/B12)7 A(BQl)}

the set-theoretic union of the Legendrian links in the A, and A(f)n) families described above
and the three Legendrians links A(811), A(B12), A(B21). The Legendrian links in #H allow us
to tackle a wide range of additional Legendrian links, thanks to Corollary [I.3] below. This
includes torus links, as in Corollary [I.4] and the knots discussed in Section [7] see Remark

[L.H below.

Let £(A) be the space of Legendrian links isotopic to the Legendrian link A C (S?, &), with
base point an arbitrary but fixed Legendrian representative. In Section [2| for each of the
links A € H, we will define a certain loop ¥ of Legendrians based at A: that is, a continuous
map ¥ : (S*,pt) = (L(A),A). For instance, for the Legendrians in Figure [2| the loop arises
from moving the purple box around the link in the manner depicted. We will refer to this
Legendrian loop ¥ as the purple-box Legendrian loop.

The graph of the Legendrian loop ¢ produces an exact Lagrangian concordance Ly in the
symplectization of (S3, &) from A to itself. Given any filling L C (D% \) of A, which we
can view as an exact Lagrangian cobordism from the empty link to A, we can concatenate L
with any number of copies of Ly to produce an infinite family of fillings

L#L3, neN,
of A. What we will show is that for A € H, we can choose a filling L of A such that all of
these fillings L# L} are distinct.

As discussed earlier, our method of proof involves the Legendrian contact DGA Aj of A,
which is an invariant of the Legendrian isotopy class of A C (S3, &), up to stable tame DGA
isomorphism. The concordance Ly induces a DGA isomorphism

A(Ly) : Ay — An
while the filling L induces a DGA morphism (“augmentation”)
er + Ay — (Z[H\(L)],0),

where (Z[H1(L)],0) is the DGA with trivial differential, concentrated in degree 0. Functorial-
ity then implies that the filling L#L} induces the augmentation e, 0 A(Ly)". To distinguish
the fillings L#Lj from each other, we will distinguish the augmentations ez, o A(Ly)", even
allowing for different choices of local systems on the fillings.

To be precise, we say that the ¥J-orbit of the augmentation ey, is entire if for any k,l € N
distinct, there is no automorphism ¢ € Aut(Z[H;(L)]) such that

olep 0o A(Ly)¥) = ep 0o A(Ly)' : Ax — Z[H1(L)).
The first result in our article is the following:

Theorem 1.1. Let A € H be a Legendrian link. The purple-box Legendrian loop ¥ : ST —
L(A) induces a DGA map A(Ly) : A(A) — A(A) of infinite order. In fact, there exists an
ezact Lagrangian filling L C (D*, \y) such that the 9-orbit of the corresponding augmentation
er, : An — Z[H (L)) is entire.

To our knowledge, Theorem presents the first Legendrian loops which induce an infinite
order action on the augmentations of a Legendrian contact DGA Aj. Our work is a spiritual
6



successor to the work of T. Kélméan [Kal05], who studied Legendrian loops for positive torus
links A(n, m) whose induced action on A(A(n,m)) has finite order (n + m).

Theorem implies the following:

Corollary 1.2. Let A € H. Then the purple-box Legendrian loop ¥ generates an infinite
subgroup Z{9) C mi(L(A)). In addition, the graph of the Legendrian loop ¥ produces a
Lagrangian self-concordance of A which has infinite order as an element of the Lagrangian
concordance monoid based at A.

Let us now focus on Lagrangian fillings. Theorem [I.T]implies that each of the Legendrian links
A € H admits infinitely many Lagrangian fillings, up to Hamiltonian isotopy. More precisely,
there exists a countably infinite collection {L;};cn of oriented embedded exact Lagrangian
fillings L; C (D* \s) of the Legendrian link A in the boundary S* = dD?* such that all L;
are smoothly isotopic for ¢ € N, relative to a neighborhood of the boundary A, but none of
the L; are Hamiltonian isotopic to each other; that is, if i # j, there exists no compactly
supported Hamiltonian isotopy {¢:} € Ham®(D*, As), po = Id, such that o1 (L;) = L;.

We note that among the Legendrian links in #, four links—A1, A(B11), A(B12), and A(B21)—
have a component which is a stabilized unknot with Thurston-Bennequin number —3. (In
fact A(f11) has two such components.) It follows that none of these four links is the rainbow
closure of a positive braid. We emphasize that the methods developed in |[CG21, [CZ21],
GSW20al, (GSW20b] for the detecting of infinitely many Lagrangian fillings only apply to
rainbow closures of positive braids, and thus our Floer-theoretic techniques provide new
results that we currently do not know how to address through cluster algebras [GSW20al,
GSW20b] or the study of microlocal sheaves [CG21], [CZ21].5

We can use Legendrian links with infinitely many fillings to produce other Legendrian links
with infinitely many fillings. Roughly speaking, if there is an exact Lagrangian cobordism
from A_ to Ay and A_ has infinitely many fillings, then A does as well. (We only prove this
statement subject to some important hypotheses; see Proposition for the precise result.)
In particular, we have the following consequence of Theorem

Corollary 1.3 (see Proposition . Let Ao, A C (S?,&4) be Legendrian links with Ao in
the list H, and suppose that there is a Lagrangian cobordism from Ay to A consisting of a
sequence of saddle moves at contractible Reeb chords of degree 0. Then the Legendrian link
A admits infinitely many exact Lagrangian fillings, distinct up to Hamiltonian isotopy.

As a special case, since there are such cobordisms to the max-tb Legendrian (n,m) torus links

A(n,m) from A; for n = 3,m > 6, and from A(l~)4) for n,m > 4, we recover the following
result of [CG21].

Corollary 1.4 ([CG21]). The Legendrian torus links A(n,m) each admit infinitely many
exact Lagrangian fillings if n > 3,m > 6 or (n,m) = (4,4), (4,5).

Remark 1.5. As we will discuss in Section [7.2], among the universe of Legendrian links with
infinitely many fillings, a sensible notion of “simplicity” is given by the Thurston—-Bennequin
number, or equivalently the sum 2g + m, where g is the genus of an exact Lagrangian filling
and m is the number of connected components of the link: the smaller 2¢g + m is, the simpler
the link is. Among the Legendrian links that we can prove have infinitely many fillings, the
simplest by this measure is A(11), which has (m, g) = (2,1) and thus 29 + m = 4.

If we focus on Legendrian knots, rather than Legendrian links, Corollary [I.3]implies that, for
instance, the knot types 10139, m(10145), m(10152), 10154, and m(10161) all have Legendrian
representatives with infinitely many fillings; see Proposition [7.7] Among these, the simplest

6By Corollary we can in fact construct an infinite family of links with infinitely many fillings that are
not the rainbow closure of a positive braid: A((02010302)4U§01) for n > N.
7



is m(10145), with ¢ = 2 and 2g+m = 5. Two of these knots, 10139 and m(10152), are positive
braid closures and indeed their Legendrian representatives are rainbow closures of positive
braids. We remark that the only other knots with crossing number < 10 that are positive
braid closures are the torus knots 7'(2,3), 7'(2,5), T7(2,7), T(3,4), T(2,9), and T'(3,5); it is
conjectured that the (max-tb) Legendrian representatives of each of these knots has finitely
many fillings [Cas21l, Conjecture 5.1]. O

The above results on Lagrangian fillings also have consequences in the study of Stein surfaces.
For each g € N and g > 6, the article [CG21] gave the first examples of Stein surfaces
homotopic to the 2-sphere S? with infinitely many Hamiltonian isotopy classes of embedded
exact Lagrangian surfaces of genus g (and none of genus less than g). The lower bound was
recently improved to g > 4 in [GSW20b]. In the present work, we can further improve this
bound:

Corollary 1.6. Let g € N and g > 2. Then, there exists a Stein surface W homotopic to
the 2-sphere S? which admits infinitely many Hamiltonian isotopy classes of embedded exact
Lagrangian surfaces of genus g. In addition, W contains no embedded exact Lagrangian
surfaces of genus h, h < g — 1.

In Corollary [I.6] the Stein surface W for g = 2 can be constructed by attaching a Weinstein
2-handle to the standard symplectic 4-ball (D%, \;) along a max-tb Legendrian representative
of the smooth knot m(10145). The results we prove also allow us achieve g = 1 if we allow

ourselves a bouquet of just two 2-spheres as the given homotopy type, instead of the 2-sphere
S?:

Corollary 1.7. The Stein surface W obtained by attaching two Weinstein 2-handles along
A(B11) C (8D4,§5t), one per connected component, contains infinitely many Hamiltonian
isotopy classes of embedded exact Lagrangian tori.

Corollaries [I.6] and are proven in Section [7} It remains an outstanding problem to con-
struct a Legendrian knot with infinitely many distinct embedded Lagrangian 2-disk fillings
(pairwise smoothly isotopic), or show no such knot exists.”

Organization. Here is an outline of the rest of the paper. In Section [2| we review some nec-
essary background and formally describe the Legendrian links discussed in this introduction.
The Floer-theoretical core of the article is developed in Sections [3] [ and In particu-
lar, Sections [3] and [4] jointly with Appendix [A] develop a new combinatorial model for the
maps between Legendrian contact DGAs with integral coefficients associated to a decompos-
able exact Lagrangian cobordism. We believe these results are of independent interest for
3-dimensional contact topology and Floer theory. We then apply these maps in Sections 6] to
prove Theorem [I.1] and prove a number of corollaries and other ancillary results in Section[7]

Acknowledgements. We thank Tobias Ekholm, Honghao Gao, Eugene Gorsky, Linhui
Shen, and Daping Weng for illuminating conversations. R. Casals is supported by the NSF
grant DMS-1841913, the NSF CAREER grant DMS-1942363 and the Alfred P. Sloan Foun-
dation. L. Ng is partially supported by the NSF grants DMS-1707652 and DMS-2003404. [

"The case of a link with infinitely many planar Lagrangian fillings (pairwise smoothly isotopic) might
already be an interesting start. In terms of Stein surfaces, the analogue of the knot case would be to construct
a Stein surface homotopic to S? with infinitely many Hamiltonian isotopy classes of pairwise smoothly isotopic
Lagrangian 2-spheres.
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2. LEGENDRIAN LINKS AND ¥-LOOPS

In this section we describe the classes of Legendrian links A C (R?, &) and Legendrian loops
that we study in this article. We begin in Section with a review of Legendrian links
and exact Lagrangian cobordisms, and then proceed in Sections [2.2] and [2:3] to describe the
particular links of interest to us, which include the links in A presented in the introduction.
We conclude in Section [2.4] by describing the purple-box Legendrian loops that are a key
ingredient in our constructions.

2.1. Legendrian links, exact Lagrangian cobordisms, and fillings. Here we briefly
review the basic geometric terminology that we will need for this paper. There is now
an extensive literature on exact Lagrangian cobordisms, including the papers cited in the
introduction, to which we refer the reader for further details; specifically, the paper [EHKI16]
has a full exposition of the setting we will use here.

Rather than work with the contact manifold (S3, &) directly, it is convenient to remove a
point and work in the contact manifold (R?, &), where & is the contact structure given by
the kernel of the standard contact 1-form ag = dz — ydz on R3, endowed with Cartesian
coordinates (x,y,2) € R3. By definition, a link A C (R3, &) is Legendrian if it is everywhere
tangent to &, or equivalently if ag |y = 0; all Legendrian links in this paper are oriented.

As is customary, we will describe Legendrian links in (R3, &) by their front and Lagrangian
projections. These are the images of the link under the projections Il , Il : R3 — R? to the
xz and zy planes, respectively. Given a Legendrian link A, the Reeb chords of A are integral
curves of the Reeb vector field 0, with endpoints on A; these correspond to the crossings
of the Lagrangian projection II,,(A). One numerical invariant associated to a Legendrian
link A is the Thurston-Bennequin number tb(A), which is the number of crossings of I, (A)
counted with sign.

Example 2.1. The simplest Legendrian knot in R? is the standard Legendrian unknot with
tb = —1, which we will denote by U. The front projection I, (U) is a “flying saucer” with
two cusps, while the Lagrangian projection Il,,(U) is a “figure eight” diagram with a single
crossing; see the top left of Figure O

The symplectization of R? is the 4-manifold R* = R; x R? equipped with the exact symplectic
form wg = dAg; with A\g; = efag;. Note that this symplectic manifold is symplectomorphic to
(R*, d)\g), where \g := %(wldyl — yrdxy + wadys — yodxa), (21,91, T2, y2) € RY, is the radial
Liouville form in R*. Given that (R*, d\s) is symplectomorphic to the Liouville completion
of the standard symplectic Darboux ball (D*, d\g), we will also write Ag; for Ag and denote
by (D%, Ast) the unique exact symplectic filling of (S?, &), with a radial primitive Liouville
form.

We will be interested in Lagrangian submanifolds of (R*, d)\), which are surfaces L C R* such
that ws|r, = 0. One class of Lagrangian submanifolds is given by cylinders over Legendrians:
if A C R? is Legendrian, then R x A C R* is Lagrangian.

More generally, suppose that A, A_ are Legendrian links in R3. A Lagrangian cobordism
from A_ to A, is a Lagrangian L C R* such that, for some 7' > 0,

LN ((—00,—T) x R3) = (=00, =T) x A_ and LN ((T,00) x R?) = (T,00) x Aj.

The Lagrangian cobordism L is ezact if there is a function f : L — R such that A\g|p = df
and f is constant on each of the ends (—oo,—T) x A_ and (T,00) x A4 separately. All
Lagrangian cobordisms considered in this paper will be oriented, embedded, and exact. In

the special case where the negative end is empty, an exact Lagrangian cobordism from ) to
A is called a filling of A. See Figure [4]



R3
FIGURE 4. A Lagrangian cobordism from A_ to A4 (left) and a filling of A (right).

We will be interested in Lagrangian cobordisms and fillings up to exact Lagrangian isotopy,
which is an isotopy through exact Lagrangian cobordisms that fixes the two cylindrical ends
(or the positive cylindrical end, in the case of fillings). In the setting of R?, this is the same as
a Hamiltonian isotopy, see e.g. [Oh15, Section 3.6], which is an isotopy through Hamiltonian
diffeomorphisms fixing the two ends (—oo, —T) x R3 and (T, 00) x R3.

Remark 2.2. Associated to a Legendrian link in R? or a Lagrangian surface in R* is its
Maslov number, which takes values in Z. For a Lagrangian surface L, this is the greatest
common divisor of the Maslov numbers of all closed loops in L, where the Maslov number of a
loop in L is understood to be the Maslov number of the corresponding loop in the Lagrangian
Grassmannian of R*. For a Legendrian link A, the Maslov number is the Maslov number of
the surface R x A. All Legendrians and Lagrangians that we consider in this paper will have
Maslov number 0. ([

We will construct exact Lagrangian cobordisms out of key building blocks called elemen-
tary cobordisms, due to [EHKI16]. There are three types of elementary cobordisms between
Legendrian links, which we describe in turn.

(i) Isotopy cobordisms. If A_ and A are Legendrian links that are related by a Leg-
endrian isotopy A4, then the trace of this isotopy (the union of {t} x A; over all ¢) can be
perturbed to an exact Lagrangian cobordism from A_ to Ay, which we will call the isotopy
cobordism associated to this isotopy. The isotopy represents a path in the space of Legen-
drian links from A_ to A4, and homotopic paths lead to isotopy cobordisms that are exact
Lagrangian isotopic.

(ii) Minimum cobordisms. Let U denote a standard Legendrian unknot as in Example[2.1]
By [EP96], U has a filling by a Lagrangian 2-disk, which is necessarily exact, and this filling
is unique up to exact Lagrangian isotopy. Thus if A_ is any Legendrian link and A is the
split union of A_ and a standard unknot U, then there is an exact Lagrangian cobordism
from A_ to Ay given by the union of the filling of U and the cylinder R x A_. This cobordism
is called a minimum cobordism and corresponds topologically to the addition of a 0-handle.

(iii) Saddle cobordisms. Let A, be a Legendrian link. Reeb chords of A} correspond
to crossings in the Lagrangian projection II,,(A4). A Reeb chord is called contractible if
there is a Legendrian isotopy of A, inducing a planar isotopy of Il,,(A4) and ending in a
Legendrian where the height of the Reeb chord is arbitrarily small. Suppose that we have
a contractible Reeb chord a of A4 that corresponds to a positive crossing of I, (Ay) (in
symplectic terms, the Conley—Zehnder index of a is even). One can modify the diagram
II,,(A4) by replacing the corresponding crossing by its oriented resolution to produce the
Lagrangian projection of another Legendrian link A_; see Figure [} There is then an exact
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Lagrangian cobordism from A_ to Ay called a saddle cobordism. This is sometimes called a
pinch move because of what it looks like in the front projection, and we will also sometimes
refer to this as “resolving” the Reeb chord; it corresponds topologically to the addition of a

1-handle.
GO

A A

~—"
%)
N
FicURE 5. Two elementary Lagrangian cobordisms, depicted in terms of their
xy projections: a minimum cobordism (left) and a saddle cobordism (right).
The dotted arrows go from the bottom to the top of the cobordisms. The
diagram on the top left is the standard Legendrian unknot U.

We can build more cobordisms out of elementary pieces through the operation of concatena-
tion. Suppose that L, and Ly are exact Lagrangian cobordisms that go from Ay to A1 and
from A; to Ag, respectively. We can remove the top cylinder of L; and the bottom cylinder
of Ly and glue the resulting Lagrangians along their common boundary A; to produce a new
exact Lagrangian cobordism Li#Lo from Ag to As, the concatenation of L and Ls. An
exact Lagrangian cobordism is decomposable if it is the concatenation of some number of
elementary cobordisms. All of the cobordisms and fillings that we consider in this paper will
be decomposable. Now that we have reviewed the basic geometric concepts and terminology,
let us delve into the specific objects of interest with a view towards the new contributions of
this manuscript.

2.2. Legendrian links associated to positive braids. We now describe the specific Leg-
endrian links in (R3, &) that we will consider in this paper. These are a natural family of
Legendrian links associated to positive braids, topologically given by the closures of these
braids with one full negative twist.

Let Bry denote the N-strand braid group, N € N. The standard presentation of Bry is
given by Artin generators oi,...,0n_1, where o; corresponds to a single positive crossing
between strands ¢ and ¢ 4+ 1 of the braid, with relations o;0;110; = 0;+10;0;41 for all ¢ and
oi0j = ojo; for |i — j| > 1. Within Bry, let Brj\rf denote the monoid of positive braids; any
element [ of Br]'t[ can be written as a braid word

1(B)
8= HUZ']., ’ijE[l,N—l],
7=0

where () is the length of 3 € Brj;, equivalently its number of crossings.

Given a positive braid 3, the rainbow closure of 5 is the Legendrian link whose front projection
is given by drawing [ horizontally and joining the left and right ends of 5 by a nested set
of non-intersecting arcs with a single left and right cusp; see the top diagrams in Figure
Topologically this link is the 0-framed closure of 5. As mentioned in the introduction, rainbow
closures are the subject of several other papers on fillings of Legendrian links, including

[CG21), [CZ21], [GSW20a, [GSW20H].
11



We note that not all Legendrian links are (isotopic to) rainbow closures of positive braids.
In particular, if A is the rainbow closure of a positive braid g € BrE, then A has Thurston—
Bennequin number tb(A) = I(5) — N. If we write g(A) for the Seifert genus of the topological
link type of A, then there is an obvious Seifert surface for A whose Euler characteristic is
N —I(B). It follows that the Bennequin inequality tb(A) < 2g(A) — 1 must be sharp in
this case, and in particular that A must maximize Thurston—Bennequin number within its
topological type. Thus even if A represents a topological link that is a positive braid closure,
it can only be a rainbow closure if it maximizes tb.

We will focus on another Legendrian link associated to a positive braid £, which we describe
next and call the (—1)-closure of 5. This is topologically the closure of 8 with a full negative
twist, and is arguably more naturally associated to § than the rainbow closure, due to its
connection to Legendrian satellites as described below. We remark that any rainbow closure
of a positive braid is also (Legendrian isotopic to) the (—1)-closure of another braid, namely
the concatenation of the original braid with a full positive twist.

There is a well-defined (up to isotopy) Legendrian link K(ﬁ) C (J'S!, &) associated to 3
(cf. [EVIR]). By definition, the Legendrian A(8) C (J'S!, &) is the Legendrian link whose
front in S' x R (image of the projection map J'S! = T*S! x R — S' x R) consists of the
N horizontal strands S! x {j}, 7 = 1,..., N, where (positive) crossings are added left to

right according to the braid word 3. Figure |§| depicts A(B) with an explicit example: the
S'-coordinate is horizontal, and the two vertical yellow walls are identified with each other.

S xR St xR

A(B) A(B)

FIGURE 6. The front for the Legendrian link /~\~(B) C (JIS!, &) associated

to the braid word g (left). Explicit example of A(S) associated to the braid
word 8 = 01050402030504030403020403050405030402050102 € Brg (right).

Given a Legendrian link A(3) C (JS!, &), we denote by A(8) C (R?, &) the Legendrian link
obtained by satelliting ./N\(B) along the standard Legendrian unknot U C R3. To be precise,
(JIS!, &) is contactomorphic to a standard contact neighborhood Op(Ag) C (R3, &) of
Ao C (R3, &), and A(B) is the image of A(3) under the resulting inclusion J'S! < R3; this
is a special case of the Legendrian satellite construction [NT04].

Figure[7] (bottom left) shows the front projection for the Legendrian link A(3). The transition
from II,,(A) to IL,y (A) (“resolution”) can be performed as in [Ng03|, Proposition 2.2] and it is
also depicted in Figure (7} both for rainbow and (—1)-closures. In this Lagrangian projection,
a combinatorial advantage is that Reeb chords for A(3) C (R3, &) are in bijection with the
(positive) crossings of II;, (A(5)).

We will be interested in the Legendrian contact DGA and associated monodromy of A(f),
both of which can be combinatorially described via the zy projection of A(S). Rather than
use the xy projection shown in the bottom right of Figure [7] it will significantly simplify
our computations to change A(S) by a Legendrian isotopy to have a slightly different zy
projection, as we describe next.

12
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F1GUure 7. Two different Legendrian links A associated to a positive braid
B, depicted in their front projection (left) and Lagrangian projection (right).
The top row depicts the rainbow closure of ; the bottom row is A(/). The
Lagrangian projections are obtained by resolving the corresponding front pro-
jections. The arrows indicate the orientation of the link.

Definition 2.3. Let 3 be a positive braid. Consider the link diagram in R? given by the
blackboard-framed satellite closure of 3 around the figure-eight unknot diagram II,(U), as
depicted in the rightmost diagram of Figure [§] If this diagram is the Lagrangian projection
of a Legendrian link, then we call this Legendrian link the (—1)-closure of 3. O

It is apparent that A(/) and the (—1)-closure of 5 represent smoothly isotopic links, as they
are both the (—1)-framed closures of the braid 8. Furthermore, their Lagrangian projections
are regularly homotopic: an isotopy between them is indicated in Figure [8| The first step in
this isotopy is just a planar isotopy moving the (g ) negative crossings to the left of 5 to the
top of the diagram. We then use a sequence of Reidemeister II and III moves to obtain the
square-grid configuration of crossings shown in the blue box in Figure |8 (right). However,
the smooth isotopy from the center diagram to the right diagram does not always represent a
Legendrian isotopy—and in particular the right diagram does not even necessarily represent
a Legendrian link—as we illustrate by an example.

2
R%

—

FIGURE 8. An isotopy from the Lagrangian projection obtained by the reso-
lution of a front projection (left) to the (—1)-closure (right). The red excla-
mation mark indicates that the smooth isotopy between the center and right
diagrams does not necessarily represent a Legendrian isotopy, depending on
the choice of .

Example 2.4. Consider the Legendrian link A(e) where e is the trivial 2-stranded braid
[2] € Brj. Following the resolution procedure as in Figure |7} we find that the Lagrangian
13



projection of A(e) is the exact Lagrangian L C R? depicted in Figure @(1) In what follows,
we use D. Sauvaget’s calculus [Sau04, Section II.2] for exact Lagrangian projections — see also
[Lind6l, Section 2] for an introduction. Let A, B,C, Py, P, € R be the areas of the bounded
regions R? \ L, as shown in Figure @(i); we may and do assume that we have B < C. The
two area constraints for this projection read

Pr=A+B, P=A+C.

In order to perform a Reidemeister III in the region with area B, we first empty the area in
that region, leading to Figure @(ii), and the corresponding exactness constraints are satisfied:

P=0+(A+B), P,=(A+B)—(A+0).

The Reidemeister III move leads to Figure [9](iii) and an additional Reidemeister II move,
creating a canceling pair of crossings, to Figure @(iv). A second Reidemeister III move,
which is admissible due to the zero area in its triangular region, yields Figure @(v) The
area constraints are still satisfied, as they coincide with those in Figure @(u) These moves
concatenate to a Hamiltonian isotopy from Figure @(1) to Figure @(v), through exact La-
grangians. Now, we claim that the transition from Figure |8 (Center) to Figure [§] (right)
cannot exist through exact Lagrangians: the resulting Lagrangian — shown in Figure [J] - is
not an exact Lagrangian. This can be directly seen by the area constraints:

a:7+5+€7 Oé+,6+6:’)/, 04,5,’)/,5,6€R+,

which imply 6 + B + 2 = 0, contradicting positivity of the areas ¢, 3, € RT. Alternatively,
it is rather immediate that the two curves in Figure [9] (vi) bound an immersed annulus, with
positive area. Hence, the conclusion is that a constraint on § needs to be imposed, should
we want to work with a Legendrian link through a Lagrangian projection of the form shown
in Figure [§| (right). O

We will want to consider braids where the isotopy in Figure [§| is legal. In the following
definition, let 7 : J'S' — T*S! denote the projection to the first factor, where JIS' =
T*S' x R, with the standard contact form dz — .

Definition 2.5. Let 8 € Br};, N € N, and consider its smooth braid closure ¢(3) in S! xR 2
T*S', depicted as a (horizontal) link diagram. Then 8 € Br}, is said to be admissible if ()
is the Lagrangian projection of a Legendrian link A C (J'S! &;): that is, if there exists a
Legendrian link A C (J'S!, &) such that ¢(3) = 7(A) as link diagrams, where crossings are
taken into account. O

As we now explain, if § is admissible, then the isotopy in Figure [§]is legal and in particular
it makes sense to refer to the (—1)-closure of 3.

Proposition 2.6. Suppose that (3 is admissible. Then the diagram on the right of Figure[§ is
the Lagrangian projection of a Legendrian link in R3, and the sequence of moves in Figure
represents a Legendrian isotopy.

Proof. Suppose 3 is admissible, and let A be the Legendrian link in J'S! whose Lagrangian
projection is ¢(3). If we cut A at a point in S! then we obtain a Legendrian braid in
J1([0,1]) in the terminology of [EVIS|. By the classification of positive Legendrian braids
[EVIS, Theorem 3.4], this braid is Legendrian isotopic to the Legendrian braid whose front
projection is 8. It follows that this remains true when we satellite these braids around the
standard Legendrian unknot U C R3. The satellite of the latter braid is A(3) as defined in
Section which in the Lagrangian projection is the leftmost diagram in Figure[8] On the
other hand, one directly sees (without passing to the front projection) that the Lagrangian
projection of the satellite of A is the rightmost diagram in Figure 8 The result follows. [
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FicurE 9. The sequence of Lagrangian projections discussed in Example
The transitions from (i) to (v) are all realized by Hamiltonian isotopies,
preserving the exactness of the immersed Lagrangian. Item (vi) displays an
example of a Lagrangian which is not exact. The consequence of (v) not being
necessarily Legendrian isotopic to (vi) leads to Definition

Example shows that not every braid g € Brﬁ is admissible. Let us introduce a sufficiency
criterion for a braid § € Brﬁ to be admissible. For that, let

N—1N—i
Ay = H H oj € Brj\}
i=1 j=1
denote the half-twist on N strands, i.e., the Garside element of the N-stranded braid group
Bry.

Proposition 2.7. Any positive braid containing a half-twist is admissible, i.e. if 51, B2 are
braids in Brj(,, then B1ANBo is admissible.

Proof. Since admissibility depends only on the closure of the braid in the solid torus, we
may move (2 to the beginning of the braid; it thus suffices to show that if g € Br} then

BAp is admissible. For this, consider the standard front for K(ﬁA ~) in S' x R and deform
it, scanning left-to-right, using the resolution procedure in [Ng03 Section 2.1]: see [Ng03,
Figure 3] and Figure [10] (left). The procedure described in [Ng03] uses a front projection in
R, xR, instead of Sé xR, but can still be used with this latter base S! x R by using the half-
twist Ay € Br}, which is part of the braid SAy by hypothesis. Indeed, this is depicted in
Figure [10] (left), where the half-twist is shown in the yellow box. The Lagrangian projection
associated to this deformed front is depicted in Figure [10| (right), where the half-twist Ay
now appears thanks to the crossings associated to the (green) Reeb chords that appear at
the right-most part of the front in S; x R,. This concludes the statement. (|
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T*S! = S! x R,

== :6-’—1

FIGURE 10. Deforming the front projection for A(3Ay) in S* x R (left) so
that the corresponding Lagrangian projection in 7*S! is as shown on the right.

For future reference we note the following variant on Proposition [2.7] Each crossing in the
Lagrangian projection in 7*S' of a Legendrian link in J!S' corresponds to a Reeb chord
of the link. A Reeb chord is called contractible if its height can be made arbitrarily small
without changing the Lagrangian projection of the link (up to planar isotopy).

Proposition 2.8. If 81, B2 are braids in Brﬁ, then any crossing coming from 1 or B2 in
the admissible braid 1 ANPs is contractible.

Proof. First consider the special case where By consists of a single crossing. We claim that
this crossing is contractible. Indeed, a slight variant on the construction from Figure
involving swapping two of the strands in the yellow box in the front projection gives the
desired contractible crossing: see Figure

/\161:;\62

A

FIGURE 11. A variant on the argument from Proposition Here two of
the strands passing through the yellow Ay box in the front projection swap
places, producing a contractible crossing in the Lagrangian projection: the
red dot on the right, corresponding to the single crossing of (s.

In the general case, cut the closure of the braid 81 AyxpB2 at the specified crossing. Push Ay
to the end of the resulting braid by a sequence of Reidemeister III moves. From the above
special case, we can realize the resulting braid as the Lagrangian projection of a Legendrian
link in such a way that the distinguished crossing is contractible. Then push Ay back into
its original position without disturbing a neighborhood of the contractible crossing; this is a
braid isotopy and thus corresponds to a Legendrian isotopy by the classification of positive
Legendrian braids [EV18]. O

2.3. A class of Legendrian (—1)-closures. The Legendrian links that we use in this man-

uscript are particular examples of (—1)-closures, obtained by the following procedure. Let

w(fB) € Sy be the permutation given by the Coxeter projection w : Bry — Sy of 8 onto

the symmetric group, where the relations o? = 1 are imposed for the Artin generators

i = 1,...,N — 1. Suppose that the bijection w(5) : [1, N] — [1,N] has a fixed point

i, for some ¢ € [1, N]. Then the Legendrian A(f3) contains a connected component A(S3);
16



which is a standard Legendrian unknot. Since A(8); C (R3, &) is a Legendrian link, there
exists a neighborhood Op(A(p);), disjoint from A(S) \ A(B):, which is contactomorphic to
Op(A(B)i) = (JTA(B)i, &), where the contactomorphism sends A(B3); € Op(A(B);) to the
zero section A(B); C (JYA(B):, Est)-

Now, let v € Br& be a positive M-stranded braid, M € N. Let us denote by A(vy); C

Op(A(p);) the Legendrian link obtained by satelliting K(’y) C (J'S', &) along the standard
Legendrian unknot A(8); C Op(A(B):).

Definition 2.9. Let 3 € Br}; be such that i € [1, N] is a fixed point of w(f3), and v € Br&
be an M-stranded braid, M € N. The Legendrian link A(3, ;) C (R3, &) is the Legendrian
link (A(B)\A(B):)UA(7); C (R3, &), where A(7y); € Op(A(B);) is embedded in an arbitrarily
but fixed neighborhood of the component A(S);. Colloquially, A(S3,4;7) is the result of
satelliting the braid - around the component of the Legendrian link A(3) labeled by i. O

The Legendrian links in Theorem are of the form A(8,1;~) for v € Br; and 8 € Br},
where N = 2,3. For instance, the Legendrian links A,, come from setting 8 = ¢y and v = o7
with N =M = 2:

A, = A(ad 1;07).
Similarly, the Legendrian links A(ﬁn), n > 4, come from setting 8 = (01020901)%035 and
vy =0} with N =3, M = 2:

A(lNDn) o~ A((01020201)20%, 1; O’?_2).

Remark 2.10. As noted in the introduction, the Legendrian links A(D,,), n > 4, are also
the rainbow closures of the positive braids

N = (0201030902030102)07 ™, n >4, n, €Br].

The brick diagram [Rud92, BLLI1§| associated to this positive braid word 7, coincides with
the CoxeterDynkin diagrams D,, associated to the affine Coxeter group of D-type. This affine
Coxeter diagram also arises from two natural constructions starting with 7,,. First, the quiver
associated to the positive braid 7, according to the algorithm in [BFZ05], and second, as
the diagram for the intersection form associated to a set of (distinguished) generators in the
first homology group of a minimal-genus Seifert surface associated to the link given by nj,
[Mis17, BLL18]. In addition, the augmentation variety associated to A(D,,) admits a cluster
structure of 5n-type. These reasons lead us to the notation A(]_N?n) and referring to these
braids as the (maximal-tb) affine D,,-Legendrian links. O

Definition is rather direct diagrammatically. Indeed, given the front diagram for A(8) C
(R3, &) shown in Figure @ (left), a front diagram for A(8,i;v) C (R3, &) is obtained by
taking the M-copy Reeb push-off of the i-th component of A(3), corresponding to the i-th

strand in Brj;, and inserting the front diagram for A(v). This is shown in Figure

R? A(B)

FIGURE 12. Front projections for the Legendrian links A(3) C (R3, &) (left)
and A(B,4;7) € (R? &) (vight).
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Similarly, this construction is depicted in the Lagrangian projection in Figure

FIGURE 13. Lagrangian projections for the Legendrian links A(8) C (R?, &)
(left) and A(B,4;7) C (R3,&) (right). These are the Lagrangian projections
that we use in order to compute the Legendrian contact DGA.

The crucial property of the Legendrian links A(3,4;v) C (R3, &) is the existence of a specific
contact isotopy ¢y : (R3, &) — (R3, &), t € [0,1], such that ¢1(A(B,4;7)) = A(B,4;7) and
otlrs\op(a(p),) = Id for all ¢ € [0, 1], as we now explain.

2.4. The purple-box Legendrian loop. Let § € Brj(,,’y € Brj/[ and consider the Legen-
drian link A(8,1;v) C (R3,&s). We construct a Legendrian loop 9 : St — L(A(3, ;7)) based
at A(B,7;), whose action on the Legendrian contact DGA of A(f,4;7) will be studied in
Section [p, and subsequently lead to Theorem Intuitively, the Legendrian loop ¥ will fix
the components of the Legendrian link A(3) which do not belong to the satellite A(y) C A(8),
and induce a rotation of A(v) corresponding to one full revolution of the S! direction in J!S!.
Let us provide the details for its rigorous description.

Consider the component A(3); C A(S) with a standard neighborhood Op(A(8);) and the
Legendrian link A(vy) € Op(A(5):). Fix a contactomorphism

Op(A(B):) = ('S, ker(dz — podd),

where (J'S}, ker(dz — pgdf)) is the 1-jet space with coordinates (6,pg) € T*S!, z € R.
Fix the standard round metric in S', and choose R € Rt such that /~X('y) C Bg, where
Br = Dr(T*S') x [-R,R] C T*S! x R, with Dg(T*S!) being the radius R (open) disk
bundle.

Now, consider the Hamiltonian pg : J lSé — R and its associated contact vector field X,,, =
—0g. Let ¢ € R*, and choose a smooth cut-off function y : J'S! — R such that

X‘BR+E =1, X|BR+2E\BR+E =0.

The contact vector field Xy associated to the Hamiltonian x - pg : J IS! — R restricts to —dy
in the tube Bg containing A(7), and it vanishes away from Br. The contact flow of Xy yields
a compactly supported contact isotopy Oy : (J'S!, &) — (JISY, &), which we parametrize

such that ¢ = 1 is the smallest ¢ € Rt with ©,(A(y)) = A(y) pointwise.

Definition 2.11. Let 3 € Brj; be such that i € [1, N] is a fixed point of w(8), and let
v E Brj\r/l be an M-stranded braid, M € N. The ©;-contact isotopy associated to A(S,7;) C
(R3, &), t € [0,1], is the compactly supported isotopy obtained by extending the compactly
supported contact isotopy O : Op(A(B):) — Op(A(B)i), t € [0,1], by the identity map on
the complement of Op(A(B);). A Legendrian loop ¥ : S! — L(A(B,4;7)) is said to be a
¥-loop if it is obtained as O4(A(B,4;7)), t € [0,1], for a ©;-contact isotopy associated to
A(Byi37) C (R?, &) O
18



We will also call the Legendrian ¥-loops in Definition [2.11] purple-box Legendrian loops, as
they are obtained by moving the purple box which contains the braid + clockwise around
until it comes back to itself. Figure [14] (left) provides a schematic picture of such a ¥-loop.

FIGURE 14. Left: a Legendrian ¥-loop for the Legendrian link A(S3,4;7y) C
(R3, &), where the purple y-box moves around clockwise around the 3-box
and comes back to itself using the upper strands). Right: the local move,
consisting of a sequence of () Reidemeister III moves, which we use in order
to push the purple v-box, right to left, through the £-box.

From a computational viewpoint, it is important to stress that a Legendrian ¥-loop can be
described in the Lagrangian projection strictly in terms of Reidemeister I1I moves and planar
isotopies.8 In precise terms, a Legendrian ¥-loop consists of two pieces:

(i) Transferring the purple v-box through the 8-box, through a sequence of Reidemeister
IIT moves. Indeed, it suffices to notice that moving the purple ~-box through one
strand is achieved by I() consecutive Reidemeister 11T moves, one per each crossing
of v. This local move, past one strand, is shown in Figure (right). Thus, the
purple 7-box can be pushed through the 8-box, right to left, by performing I(3) - ()
Reidemeister IIT moves.

(ii) Moving the purple y-box from the left of the S-box to its right using the upper strands.
This is achieved by a planar isotopy, which moves the purple v-box up and to the
right (leaving the S-box beneath and passing above it), and then applying N2 - [()
Reidemeister I1I moves to make the purple y-box go around the pig-tailed loop until
it returns to its initial position.

Hence, using a total of I()- (N2 41(3)) Reidemeister III moves in the Lagrangian projection,
we can realize the Legendrian ¥-loops in Definition [2.11

Remark 2.12. Legendrian ¥-loops can be considered as elements in w1 (L(A(B,14;7))), or we
can graph them in the symplectization as Lagrangian self-concordances Ly C (R x R3, \)
from the Legendrian link A(3,4;7) C (R3, &) to itself. Most interestingly, given an exact
Lagrangian filling L C (D%, A\gt) of A(B, ;) C (S3, &), we can concatenate L with Ly, at the
convex end of L and the concave end of Ly. One may ask whether concatenating Lagrangian
fillings with Ly yields new Lagrangian fillings not Hamiltonian isotopic to L. Theorem
shows that there are Legendrian links where concatenating certain Lagrangian fillings with
k consecutive copies of Ly yields (infinitely many) pairwise distinct Lagrangian fillings, for
different values of k£ € N. U

Example 2.13. Legendrian 9-loops behave differently depending on the choice of braids
B € Br} and v € BrL. For example, if v € Br;r is the trivial 1-stranded braid, then
the ¥-loop is constant on the entire link A(3,4;7) C (R3, &), regardless of the choice of

80ne could instead use the resolution of the front projection as in Figure (7} and similarly push the purple
~-box around the front projection; this is e.g. what Kélman does in [Kal05]. However, this version of the
isotopy requires the use of both Reidemeister III and II moves. Our setup does not require Reidemeister 11
moves and this consequently simplifies our computations with the Legendrian contact DGA.
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RS Br};. On the other hand, if we choose the braid 8 to be 1-stranded and the purple box
v = 071“'2 € Brj to be 2-stranded, then we recover Kalman’s Legendrian loop of (2, n)-torus
links [Kal05]. In this case, [Kal05, Theorem 1.3] shows that the action of the ¥-loop on
the degree-0 Legendrian contact homology of A(f,4;7) is nontrivial but of finite order. See

Section for further discussion of the Kalman loop. O

3. LEGENDRIAN CONTACT DGAS AND COBORDISM MAPS

In this section, we review the definition of the Legendrian contact DGA, with particular
attention paid to integer and group-ring coeflicients and the role of spin structures. We then
proceed to discuss maps between DGAs induced by exact Lagrangian cobordisms, including
exact Lagrangian fillings. There is now a reasonably large literature about these cobordism
maps, beginning with work of Ekholm, Honda, and Kélman [EHKI16|] defining the maps over
Zo; we will need to compute a lift of these maps to Z, which abstractly exists by work
of Karlsson [Karl7, Kar20]. In this section we will present a framework that will allow
us to perform explicit combinatorial computations of the cobordism maps over Z, building
them out of maps corresponding to particular elementary cobordisms. The maps for these
elementary cobordisms are then presented in the following section, Section

3.1. The Legendrian contact DGA. The Legendrian contact DGA, also known as the
Chekanov—Eliashberg DGA, has been well-studied in the literature, especially in the setting
of (R3,&). For the definition of the DGA in this setting, we refer the reader e.g. to [Che02]
for the original definition over Zs, [ENS02] for the definition over Z[t*'] (see also the survey
[ENTS]), and [NRI3, INRST20] for an upgraded definition with multiple base points. Here
we will briefly review the definition that we will use, with Z coefficients and multiple base
points.

Let A be an oriented Legendrian link in (R?, &) equipped with a number of base points, such
that there is at least one base point on each component. We will assume that A is sufficiently
generic that the xy projection I, (A) in R? is immersed with only transverse double point
singularities, and no base point lies at one of these double points. We label the crossings of
II,,(A), which correspond to Reeb chords of A, as ay,...,a,, and decorate each base point
with a monomial of the form +s. Let {s1,...,s,} be the collection of indeterminates that
appear in the labeling of the base points. To this decorated oriented Legendrian link A, we
can associate the Legendrian contact DGA (Ajy, 9), as follows.

Generators. The algebra A, is the unital tensor algebra over the coefficient ring Z[s{d, N
generated by ay,...,a,. (One can lift this to the “fully noncommutative” algebra where the
coefficients siil do not commute with Reeb chords a;, and in our computations we will some-
times order our monomials accordingly. However, for the purposes of this paper, we will

always assume that coefficients and Reeb chords commute.)

Grading. We assume for simplicity that each component of A has rotation number 0, which
will be the case for the Legendrian links we study. The algebra Ay is then graded over
the integers Z; if A has a single component, then this grading is well-defined, while if A has
multiple components, the grading depends on some additional choices. We will fix the grading
by choosing a collection of distinguished base points, one on each component, such that the
oriented tangent vectors to II,,(A) at these points are all parallel in R?. Label these base
points by t1,..., %y, where m is the number of components of A and the base point ¢; is on
the j-th component. Consider a Reeb chord a € A that ends on component 7(a) and begins
on component c¢(a); we define a capping path 7, along A to be the concatenation of a path
from the beginning point (undercrossing) of a to t.), and a path from t,,) to the ending
point of a, following the orientation of A for both paths. As we traverse 7,, the unit tangent
vector to Iy (7,) changes continuously from the tangent vector to the undercrossing at a to
20
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the tangent vector to the overcrossing; let r(vy,) € R denote the number of counter-clockwise
revolutions around S' that the tangent vector makes during this process, and note that
7(Ya) € 37 because of transversality. Then the grading of a is defined to be —[2r(7,)] € Z.
We also place all the marked point monomials s; in grading 0, which completes the grading
of Ay.

Differential. In order to set up the differential 9 on Ay, we first decorate the four quadrants
at each crossing of Il,,(A) by two signs, a Reeb sign and an orientation sign. At each
crossing, two opposite quadrants have Reeb sign + and the others have Reeb sign —, while
the orientation signs depend on whether the crossing is positive (even degree) or negative
(odd degree): for positive crossings, two quadrants have orientation sign + and two have —,
while for negative crossings, all four quadrants have orientation sign +. See Figure

X XX

P

_Sllag/

FIGURE 15. In the top row, the Reeb signs (left diagram) and orientation
signs (two right diagrams) at a crossing. Quadrants that have — orientation
sign are shaded, while all other quadrants have + orientation sign. In the
bottom row, two examples of disks in A(a). Both disks have sgn = +1 (on
the right, the corner with negative orientation sign cancels the — in —sfl)
and they contribute +1 and +sz_1a2a131_1a3, respectively, to d(a).

The differential now counts immersions of a disk D? with boundary punctures to R?, mapping
the boundary of D? to Il,,(A), such that a neighborhood of each boundary puncture is
mapped to one of the four quadrants at a crossing of I, (A). We call such a disk an immersed
disk for short; each corner of an immersed disk is a positive (+) corner or a negative (—)
corner depending on the Reeb sign of the quadrant. For a Reeb chord a, define A(a) to
be the set of immersed disks (up to reparametrization) with a single 4+ corner at a and no
other + corners. To any such disk A € A(a), we can define two quantities. One is the
sign sgn(A) € {£1}, given by the product of the orientation signs over all corners of A,
multiplied by the signs of any base points traversed by the boundary of the disk (+1 for any
base point labeled by siil and —1 for any base point labeled by —s;ﬂ). The other is the word
w(A) € Ay, which is the product, in order, of the Reeb chords at the — corners and the
base points that are encountered as we traverse the boundary of the disk counterclockwise,
beginning and ending at the corner at a. A base point labeled by :l:sfEl contributes sgﬂ if it
is traversed along the orientation of A and sfl if it is traversed oppositely. The differential
d(a) is now defined to be:
Jd(a) := Z sgn(A)w(A).

A€A(a)

See Figure [15] for an example.
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Remark 3.1 (multiple base points). In order to count augmentations over Z, it is important
that each component of A have at least one base point. Adding extra base points beyond
one per component changes the DGA in a simple way. First note that moving a base point
labeled :l:sfEl along A and through a crossing a has the effect of replacing a by (:I:s;ﬂ)ila:
that is, the algebra is the same before and after the move, and the differential changes by
conjugation by the automorphism that sends a to (:l:sl:-tl)ila and fixes all other generators.
Thus if we have multiple base points on a single component, then up to a Z[sfl, . ,sqﬂ]—
algebra isomorphism of the DGA, we can assume that all of the base points lie on the same
segment of II,,(A). In this case we can replace the multiple base points by a single base

point labeled by the product of their labels, and the differential is unchanged. [l

Remark 3.2 (dependence on spin structure). In the differential over Z of the Legendrian
contact DGA (Ay, ) of a link A, the signs depend on a choice of spin structure on A, as laid
out by the construction of Ekholm, Etnyre, and Sullivan [EES05]. For each S! connected
component of the Legendrian link A, there are two spin structures: the Lie group spin
structure, induced by the fact that the 1-sphere S' is a Lie group, and the null-cobordant
spin structure, induced by the fact that S! bounds a 2-disk D? and we can restrict the unique
spin structure on D? to the boundary S!. Here we review the discussion in [EES05] about
how the choice of spin structure affects the differential 0 in (Ax,9).

Choose one base point on each of the m components of A, so that A, is an algebra over
R = Z[tlﬂ, ..., tE1], and write 9°°™ for the combinatorial differential on A, as defined
above. The set of spin structures on A is an affine space based on Hj (A, Zy) = Z5'; of interest
to us will be two spin structures differing by (1,...,1), given by choosing the Lie group spin
structure or the null-cobordant spin structure on all components of A. We will write 9™ and
ONC for the geometric differentials on Aj corresponding to these two spin structures.” The
two differentials ™€ and ONC depend on a number of auxiliary choices, including capping
operators for Reeb chords—see Section below for further discussion—but up to R-algebra
isomorphism, (Ax,9™¢) and (Ay, ONC) are well-defined.

The combinatorial differential 9°°™ comes from the Lie group spin structure on A. To be

precise, in [EES05, Theorem 4.32] it is shown that one can make choices so that 9% agrees
with our definition of 9°™P with signs as in Figure except that for positive crossings
(the left diagram on the top right of Figure , the opposite two quadrants are shaded.'®
This change of shading corresponds to the R-algebra isomorphism of A, sending each Reeb
chord a to —a for even-graded Reeb chords and +a for odd-graded Reeb chords, and so this

isomorphism sends (A, 9°mP) =5 (A, d4°).

For cobordisms, the null-cobordant spin structure is more natural than the Lie group spin
structure. To compute ONC, we can appeal to [EES05, Theorem 4.29] (see also Remark 4.35
from the same paper), which implies that changing the spin structure by (ci1,...,cm) € Z5
has the effect of replacing ¢; by (—1)%t; for i = 1,...,m. In particular, define the Z-algebra
isomorphism ¢ : Ay — Ap by ¢(a) = a for all Reeb chords a and ¢(t;) = —t; for all i; then

~

¢ : (Ap, M) — (Ap, ONC).

More generally, suppose that we have multiple base points on each component of A as in

Remark each decorated by a monomial of the form sfﬂ. Then, since no base point
introduces a sign, the resulting combinatorial DGA (Ax, ™) over Z[si!,... , 51 has
signs corresponding to the Lie group spin structure. Now suppose that S is any subset of

these base points. If we replace the decoration 3;&1 of each base point in S by —sfd, we

obtain a new differential 3 on A,. Then 9° gives the differential corresponding to the spin

9The superscript ONC stands for Null-Cobordant.
101 fact [EES05, Theorem 4.32] presents two choices of signs for 8™, of which we are describing one;
however, it was subsequently proven in [Ngl0] that the two choices lead to isomorphic DGAs.
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structure that differs from the Lie group spin structure by (ci,...,¢n) € Z5', where ¢; is the
number of base points in S that lie on component i. In particular, if S has an odd number

of points on each component!!, then we have an isomorphism of DGAs over Z[s{d, e sil]:

1°q
(Ap,0%) = (Ay, ONC).
]

3.2. Link automorphisms. In the case where A is a multi-component Legendrian link,
rather than a knot, there is a structure on the Legendrian contact DGA of A that is hidden
in the knot case. This is the “link grading” first introduced by K. Mishachev [Mis03], which
essentially gives the DGA the structure of a path algebra (the “composable algebra”) on
a graph whose vertices are components of A and whose edges are Reeb chords of A. This
structure leads to a family of automorphisms of the DGA of the Legendrian link A, which
we call link automorphisms. These will feature in our discussion at various points, and we
discuss them now in detail.

Let A = AjU---UA,, be an m-component Legendrian link. For any Reeb chord a of A, define
r(a),c(a) € {1,...,m} to be the number of the component containing the endpoint (for r(a))
or beginning point (for ¢(a)) of a. The key observation of Mishachev is the following: in the
DGA for A, any term in the differential Oa of a Reeb chord a must be of the form a;, - - - a;,,
where r(a) = r(a;,),c(ai,) = r(ai,), ..., c(ai,_,) = r(ai,),c(a;,) = c(a). This motivates the
following definition.

Definition 3.3. Let A be an m-component Legendrian link and (Ax,0) its DGA. A link
automorphism of A is an algebra automorphism € : Ay — Ap of the following form: there
exist units uy, ..., U, in the coefficient ring of Ax such that for all Reeb chords a,

1
a

Qa) = Up(a) U ) 8-

The following is an immediate consequence of Mishachev’s observation.

Proposition 3.4. Let A be a Legendrian link. Any link automorphism Q : Ay — Ap is a
chain map of the Legendrian DGA (Ax,0). O

In addition, Mishachev’s link grading structure is preserved by Legendrian isotopy, as can
be checked by keeping track of components in the DGA chain maps induced by Legendrian
isotopy. See [Mis03], and see Section below for explicit formulas for these chain maps.
As a consequence, link automorphisms persist under Legendrian isotopy:

Proposition 3.5. Suppose A and A’ are Legendrian isotopic links with respective DGAs
(Ap,0) and (Apr, ). Suppose that U : (Ap,0) — (Aas, ) is the DGA map induced by a
Legendrian isotopy. If Q : Ay — Ap is a link automorphism of A, then there is a corre-
sponding link automorphism Q' : A\ — A\ of A" such that Q' o U = Vo Q.

Proof. The numbering of the components of the Legendrian link A induces a corresponding
numbering of the components of the link A’. If  is defined by Q(a) = ur(a)uc_((ll)a for some
(u1,...,upy), then we define ' in the same way: Q'(a) := uT(a)u(?(;)a. Since W preserves the
link grading, it follows that it intertwines € and €', as desired. O

HErom a geometric viewpoint, S indicates points where we add a w-rotation to the Lie group trivialization
of the stabilized tangent bundle to S'. Doing this an odd number of times on each component yields the
null-cobordant trivialization. See [EES05, Remark 4.35].
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Link automorphisms will appear in our discussion in two related ways. First, they naturally
arise when considering the family of augmentations induced by an exact Lagrangian filling,
as we will next describe in Section Second, in Section below, we describe a formula
for the cobordism map over Z associated to a saddle cobordism; our proof that the formula is
correct is indirect and essentially reduces to arguing that there is only one possible candidate
for the cobordism map that is actually a chain map over Z. However, the existence of link
automorphisms forces us to qualify this statement, since composing a chain map with a link
automorphism produces another chain map. See Proposition and Appendix [A]

3.3. The geometric map induced by an exact Lagrangian cobordism. Suppose that
A is a Legendrian link in (R3, &) and that L C (R*, \s) is a Lagrangian filling of A. Then
L induces an augmentation of the Legendrian contact DGA (LAj,0). More precisely, the
filling L equipped with a rank 1 local system induces an augmentation; put another way, the
filling gives a family of augmentations and the additional choice of a local system picks out
one of these. In the setting of (R3, &), the study of augmentations coming from fillings was
initiated by Ekholm, Honda, and Kalmén [EHK16], who proved that an exact filling induces
an augmentation over the group ring Zs[H1(L)] through a count of rigid holomorphic disks in
the symplectization of R? with boundary on L. Karlsson [Kar20] subsequently lifted Zy to Z
by showing that the relevant moduli spaces of holomorphic disks can be coherently oriented.
We summarize all of this work as follows.

Theorem 3.6 ([EHKI6, Kar20]). Suppose that L is an (oriented, embedded, exact) La-
grangian filling of the Legendrian link A C (R3,&g) with Maslov number 0. Then L induces
a DGA map
er : (Ap,0) — (Z[H1(L)],0)

where Z[H1(L)] lies entirely in grading 0. (The map €1, is referred to as an augmentation.)
Furthermore, if L and L' are Lagrangian fillings of A which are isotopic through exact La-
grangian fillings of A, then the corresponding augmentations €1, and €5, are DGA homotopic
maps. O

Note that an exact Lagrangian isotopy extends to an ambient Hamiltonian isotopy, e.g. by
[Oh15 Section 3.6], especially [Oh15, Theorem 3.6.7], and see also [Pol01l Exercise 6.1.A].
Conversely, the image of an exact Lagrangian submanifold under a Hamiltonian diffeomor-
phism remains exact, and thus exact Lagrangian isotopies are equivalent to Hamiltonian
isotopies. In fact, this also holds with compact support: [Oh15, Theorem 3.6.7] implies that
a compactly supported exact Lagrangian isotopy extends to a compactly supported Hamil-
tonian isotopy.

Remark 3.7. For the definition of DGA homotopic maps, see e.g. [K&I05, [EHK16, NRS™20];
we omit the definition here because for the Legendrian links that we consider in this paper,
we can replace “DGA homotopic” by “the same”. All of our links A have rotation number
0 on each component, and all of the fillings that we construct are composed of minimum
cobordisms and saddle cobordisms at Reeb chords with degree 0. It follows that each of
these fillings has Maslov number 0. In addition, for all choices of A in this paper, all Reeb
chords lie in nonnegative degree (in fact, in degree 0 or 1), and so A is supported entirely
in nonnegative degree. In this setting, two DGA maps (Ap,0) — (Z[H1(L)],0) are DGA
homotopic if and only if they are equal. Thus if two fillings L, L’ produce augmentations to
Z[H,(L)] that are distinct (under an isomorphism identifying H;(L) and Hy (L)), then we
can use Theoremto conclude that L, L’ are not exact Lagrangian isotopic (or, equivalently
in this setting, not Hamiltonian isotopic). O

Remark 3.8. The augmentation 7, depends on a choice of spin structure on the filling L, as

explained in [Kar20]. If we change the spin structure by an element ¥ € H'(L;Zs), then we

can define an isomorphism Z[H;(L)] — Z[H{(L)] by  — (—=1)?®)z, and the augmentation
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changes by composition with this isomorphism. This does not change the augmentation up
to equivalence, in the sense of Definition below. O

It will be convenient for us to enlarge the coefficient ring Z[H;(L)] to incorporate link au-
tomorphisms, as introduced in Section above. Suppose that A is a Legendrian link
with m components. Recall that given units uy, ..., u,, we can define a link automorphism
Q: (Ap,0) — (Aa,0). Any augmentation of (Ax,d) can be composed with this link au-
tomorphism to produce another augmentation, and so a single augmentation produces an
(m — 1)-parameter family of augmentations. This family is parametrized by si,..., $m—1,
where we define s; = u;/uy, for i < m — 1. We restate this observation as follows.

Consider the ring Z[H;(L)][st!,...,st' ] = Z[H (L) ® Z™']. Then the augmentation

m—1

er : (An,0) — (Z[H1(L)],0) lifts to an augmentation
Er: (An,0) — (Z[H((L) & Z™'],0)

defined as follows: for any Reeb chord a of A ending on component r(a) and beginning on
component ¢(a), we define £7,(a) := ur(a)uc_(i)q(a), where u; = s; for i < m —1 and wu,, = 1.
The augmentation &7 to Z[Hi(L) © Z™ '] incorporates both the geometry of the filling L
and link automorphisms; henceforth we will view it as “the” augmentation coming from the
filling L and will drop the tilde. We will also not need the distinction between generators of
H;y(L) and generators of Z™~!. Tt is then convenient to recast the augmentation ¢, in the
following definition.

Definition 3.9. A k-system of augmentations of A is an algebra map
e: Ay = Z[sT, .. .,sfl]
such that € o @ = 0. By definition, two k-systems of augmentations
e Ay — Z[sT ., skﬂ], e Ax = Z[(s)F . (s)FY
are considered to be equivalent if there exists a Z-algebra isomorphism
Y st ... ,sfl] = Z[(s)F, . (sh)FY

such that ¢’ = 1oe. Note that the space of such isomorphisms is parametrized by Z’§ x GLg(Z).
O

Finally, we now recast Theorem for our purposes in the following proposition; note that
if L has genus g then Hy(L) ® Z™~! has rank 2g + 2m — 2.

Proposition 3.10. Let A be an m-component Legendrian link. Let L be a connected, ori-
entable exact Lagrangian filling of A of genus g and Maslov number 0. Then L gives rise to
a (29 + 2m — 2)-system of augmentations of A, and this system is well-defined, independent
of choices, up to equivalence. Furthermore, if all Reeb chords of A have nonnegative degree,
then isotopic fillings of A give rise to equivalent systems of augmentations. ([

3.4. Signs and functoriality of the cobordism map. In order to establish our main
results, such as Theorem (1.1} we will apply Proposition to systems of augmentations
that we will explicitly compute for particular fillings. For that, we will divide our fillings into
elementary cobordism pieces, calculate the cobordism map for each elementary piece, and
compose the resulting cobordism maps, using the fact that the cobordism map is functorial.
This functoriality over Z is established in the work of Karlsson [Kar20], and we summarize
in this subsection the results from [Kar20] that we need.

Given an orientable exact Lagrangian cobordism L between A, and A_, we choose a spin

structure on L that restricts on each component of AL and A_ to the null-cobordant spin

structure. Note that there are |H; (E, Z9)| such spin structures, where L is the closed surface

obtained from L by gluing a disk to each boundary component, and any such spin structure
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will do. Besides a spin structure on L, the other pieces of auxiliary data that Karlsson uses
to define the cobordism maps are systems of capping operators for AL and A_ satisfying
certain technical conditions. These capping operators are used by Karlsson to define the
signs in the DGAs (Ax,,03°) and (Ax_, 0NC), where 9YC are the differentials associated to
the null-cobordant spin structures on A, as well as the signs in the cobordism map between
the DGAs.

In our setting, for any Legendrian A with the Lie group spin structure, a suitable system of
capping operators has been constructed in [EES05, Section 4.5], compare [Kar20, Remark
2.9]. These capping operators give precisely the signs for the DGA differential on A that we
have presented combinatorially in Section above and written as 9P, see Remark
However, for the cobordism maps we need the signs from the null-cobordant rather than the
Lie group spin structure. As explained in Remark we can express this combinatorially
by choosing a set S of marked points on A with an odd number of marked points on each
component, resulting in a differential 9° on A, such that we have an isomorphism

¢% 1 (Ap,0%) = (Ap,0NO).
To return to the setting of a cobordism L between Ay and A_, Theorem 2.5 in [Kar20] gives
a DGA map over Z, @1, : (Ax,, ONC) — (Ap_,0NC). If we choose sets of marked points Sy
on Ay with an odd number of marked points on each component of A4, then ®; induces a
DGA map from (Ax,, 05+) to (Ax_,0%). We also denote this map by ®, and it satisfies
that the following diagram commutes:

spy ¢ NC
(AA+78 +)H('AA+76 )

| |

S_
(A, 85 ) 2~ (An_,8NO),

IR

]

Furthermore, the cobordism maps ®; constructed by Karlsson are functorial. To state this
property, suppose that L; and Lo are exact Lagrangian cobordisms that go from Ay to A;
and from A; to Ag (from bottom to top), respectively. We can concatenate these to produce
an exact cobordism Li# Lo from Ay to Ay. As before, equip L1, Lo with spin structures
that restrict to the null-cobordant spin structures on their boundaries. Choices of capping
operators on Ag, A1, Ay now produce DGA maps ®r, : (Ap,,NC) — (Ap,,NC), &1, :
(Apy, ONC) — (An,,0NC), and @ 41, 1 (Ap,, ONC) = (Ap,, ONC), and [Kar20, Theorem
2.6] states that:
Pr, 0P, = P41,

Let us choose collections of marked points Sy, S1,So on Ag, A1, As such that each component
has an odd number of marked points (as usual). Then, we can use the isomorphisms be-
tween (Ay,, %) and (An,, ONC) to produce DGA maps &1, ®1,, ®r, 41, between the DGAs
(Ay,, %) such that the following diagram commutes:
5oy 9% NC
(AA278 )H(AAwa )
®r, l i‘b%
51y _ 9% NC
(3.1) Qry#L, (Ap,, 0°1) — (Ap,,0"") Pry#Ly
q)“l i%

Soy 4% NC
(Aona O)H(AAoaa )

1R

R

1R

Note that all of the horizontal maps in this diagram are algebra maps over the relevant
coefficient ring. Colloquially, they send each homology coefficient s; to s;, and not to —s;.
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This discussion above is summarized in the following result.

Proposition 3.11. Given an exact Lagrangian cobordism L between Ay and A, and choices
of marked points S+ on A4 with an odd number on each component, we can write the cobor-
dism map 1, as a DGA map from (A, ,05%) to (Ax_,0%). If we have ezact cobordisms
Ly from Ay to Ay and Lo from Ay to As, and marked points S, S1,S2 on Ag, A1, Ao with an
odd number on each component, then the cobordism maps for L1, Lo, and their concatenation
Ll#LQ satisfy (I>L1 @) (1>L2 = (I)LI#LQ- U

3.5. System of augmentations for a decomposable filling. All the Lagrangian fillings
that we consider in this paper are decomposable in the sense of [EHKI6] (see Section .
For a decomposable filling, one can explicitly construct the corresponding system of augmen-
tations by composing the cobordism maps induced by each of the elementary cobordisms.
These elementary cobordism maps are described in Sections and below. To combine
them into the desired system of augmentations, we additionally need to keep track of base
points and discuss how they produce the parameters in the system of augmentations. This
is the content of the discussion that now follows.'?

First, consider a general exact Lagrangian cobordism L between Legendrians A and A_,
inducing a chain map ®;, between the DGAs of A4 and A_. Recall from Section that in
the setting of the DGA of a Legendrian A, it is convenient to choose base points on A and
use these points to keep track of the homology classes of the boundaries of the holomorphic
disks that contribute to the differential. In a similar manner, we will keep track of homology
classes contributing to @7, by placing arcs on L and counting intersections of holomorphic
disks with these arcs.

To this end, suppose that we have a collection of oriented arcs and circles on L, such that
all circles lie in the interior of L, the endpoints of all arcs lie on AL U A_, and the arcs

are transverse to Ay U A_ at their endpoints. Label these arcs vi,...,7;. Some subset
{Virs- -7, } has at least one endpoint on A, and we view these endpoints as base points on
A ; similarly some subset {~;,,...,7;,} has at least one endpoint on A_, and we view these

endpoints as base points on A_. The chain map ®; between the DGAs of Ay and A_ is
defined by counting a finite collection of holomorphic disks with boundary on L and boundary
punctures mapping to Reeb chords for A4 and A_; we make the (generic) assumption that
our curves 7y; intersect the boundaries of these disks transversely, and that no endpoint of an
arc ; lies at the endpoint of a Reeb chord of AL or A_.

In this setting, ®; is a map of algebras over the coefficient ring Z[s{d, . .,skil]. More
precisely, the DGA for A equipped with the base points from ~;,, ..., ;, has coefficient ring
Z[sil,...,sil], and we can tensor this DGA over Z[sil,...,sil] with Z[sfl,...,sfl] to
obtain a DGA over Z[s{,...,sF'], which we write as (Aa,, 0+ ). Similarly we can define the
DGA (Ap_,d_) over Z[sT!, ..., si']. Then we can define the chain map ® : Ay, — Ax_
as a map of Z[sfl, e sfl}—algebras: each holomorphic disk A contributing to ®;, is given

the coefficient s|"
intersections of 0A with the curve ~;.

& .. SZ’“(A) € Z[st, ..., s%l}, where n;(A) counts the number of signed

We now apply this discussion to describe how to concretely construct a system of augmen-
tations for a Legendrian link A associated to a connected, decomposable exact Lagrangian
filling L of A. Let m denote the number of components of A and g the genus of L. By assump-
tion, L is a union of 0-handles (minimum cobordisms) and 1-handles (saddle cobordisms); let
k denote the number of 0-handles, and note that it follows that there are 2g +m+k —2 =: ¢
1-handles. We can cut off a small neighborhood of each minimum of L to produce a new

12\We note that a similar treatment of base points on Lagrangian cobordisms and the induced DGA maps
(over Z2) appears in [GSW20al, section 2].
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cobordism L’ whose top end is A and whose bottom end is a k-component unlink Ay, such
that L’ is assembled out of just the 1-handles of L.

We can view L’ through slices from top to bottom, so that it becomes a movie of embedded
Legendrian links (except at finitely many times) starting with A, at the top, and ending with
the k-component unlink Ay, at the bottom. In the Lagrangian projection, each saddle move
is then represented by replacing a (contractible) crossing by its O-resolution. We can now
add base points to this movie as follows. Place base points t1,..., ¢, on the m components
of A. Each time we pass through a saddle, add two more base points labeled s; and —52-_1.

All base points persist to the bottom of the cobordism, Ag. See Figure

FIGURE 16. On the left, placing a pair of base points at the bottom of a saddle
cobordism, representing opposite sides of an arc passing through the saddle
point in the cobordism. On the right, dividing a decomposable filling of A
into elementary pieces: from top to bottom, a sequence of saddle cobordisms
ending at an unlink Ag, and then filling in each unknot component.

On the Lagrangian cobordism L', the base points t1,...,t, trace out arcs joining A to Ag,
while for each ¢ = 1,..., ¢, the base points s;, —5;1 together trace out an arc joining Ag to
itself. We call these arcs 71,...,7, and o1,..., 0y, respectively. Orient the 7; arcs upwards,

and orient the o; arcs so that in each slice the arc is oriented upwards at the point labeled s;
and downwards at the point labeled —5;1. This places the decomposable cobordism between
Ag and A in the general picture described above of a cobordism equipped with oriented arcs.
Label the slices of L' from bottom to top by Ag,Aq,..., Ay = A, and divide L’ into saddle
cobordisms Ly, ..., Ly, where L; is the piece of L’ between A;_; and Aj; note that the saddle
of L; is associated to the arc o,y1_;. Each A; is equipped with a collection of base points
each labeled by either ¢; or j:siﬂ. For j = 1,...,4, let (AAj,acomb) denote the DGA of

A; over Z[tfl, o tEL sicl, e szﬂ] with the differential 9°°™ defined combinatorially as in
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Section (note that some of the s; parameters may not correspond to base points of A;
and thus may not appear in the definition of 9<°™P).

We next relate the DGAs (AA].,ﬁcomb) to the discussion from Section To this end, for
each j = 0,...,¢, we identify a subset S; of the base points on A; such that each component
of A; contains an odd number of points in Sj; we abbreviate this condition by calling such a
subset odd-cardinality. We define S; by backwards induction on j. Let Sy be the collection of
all of the base points t1,...,t, on Ay = A, and note that this is odd-cardinality. Given Sj,
each base point on A; descends to a corresponding base point on A;_;, and so we may view
S; as a collection of base points on Aj_1. On Aj_1, we can add to §; one more base point,
from the two new base points labeled by isﬁl_ i such that the resulting collection S;_1 is
odd-cardinality: if A;_; has one more component than A;, then the choice of this extra base
point is forced by the odd-cardinality condition, while if A;_; has one fewer component than
A;, then we can choose either.

The choice of base points S; on A; produces a differential 05 on Ay, as follows: first remove
the — signs at the front of any base points on A; labeled by —si_l, so that all base points
are labeled by t; or s?ﬂ; then negate any base point in §;, and let 05 be the resulting
combinatorial differential as in Remark Note that each t; is negated in this process,
while exactly one of s; or 32-_1 is negated, depending on which of these base points is in S;.
Thus we can define a Z-algebra isomorphism

+1 +1 _+1 +1 +1 +1 _+1 +1
Y LTty ST Sy S Lt Sy

Ym0 Ym0
by (t;) = —t; for all i = 1,...,m and ¢(s;) = +s; for each i = 1,...,¢ (with the sign
determined by whether s; or si_l is in Sp), which extends to a map v : Ax, — Ap; by
specifying ¥ (a) = a for all Reeb chords a. This map ¢ now intertwines the differentials
9P and 95
b (Ap,, 80MP) s (Ay,, %),

We can combine this with the isomorphism ¢% : (Ay,, %) = (Ap,,ONC) from Section
to obtain an isomorphism ¢ o 1) from (AAj,acomb) to the DGA (Ay;, ONC) with the null-
cobordant spin structure.

Recall from Section @ that since each S; is odd-cardinality, each cobordism L; induces a
cobordism map @, : (Aa,, 0%) = (Ap i1 0%-1). By combining this with the isomorphism
1, we can view the cobordism map as a map (AAj,ﬁcomb) — (AAj_l,acomb), which we also
write as @, so that the following diagram commutes:

(

o)

(AAj’acomb) = (AAj7aSj)

o | o,

(Ap, ,,00m0) —2o (Ay. | BSi-).

1R

Similarly, we can view the cobordism map ®7/ as a DGA map (Ay, 9°™P) — (Ap,, 0°mP).
By the functoriality property from Proposition [3.11] we have

Dy =Dy 000Dy, i (Ay, ) (Ay,, 9.

We obtain the filling L of A from the cobordism L’ by filling in the k components of the
unlink Ag with disjoint Lagrangian disks. Each disk filling produces a unique augmentation,
as we record in the following statement.

Proposition 3.12. Let U denote the standard Legendrian unknot with a collection of base
points with labels 1y, ...,l, (where typically each label is of the form is;tl or :I:t;tl). If

li---1, = =1 then the DGA (Ay,0y) has a unique augmentation.
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Proof. Let a denote the Reeb chord of U. If ly,...,l; are the base points on one lobe of
the figure eight in II,,(U) and l441,...,l, are the base points on the other, then Jy(a) =
Lioolg+ 10 q_-i}l' The condition for € to be an augmentation is that £(dy(a)) = 0, in

which case ¢ is uniquely determined since €(a) = 0 for grading reasons. U

Now let wq,...,w; denote the product of the labels of the base points on each of the &
components of the unlink Ag, and write R for the ring

R=(Z[tf', ...t s sE ) f(wy = - = wp = — 1),

m »°1

Then the filling of Ag by disks yields an augmentation
IS 'AA() — R.
Composing with @7, now gives the augmentation of A induced by L:

by =eggo®r: Ay — R.

We will already call this ®;, the combinatorial system of augmentations of A induced by L,
even though it will not become fully combinatorial until we present the combinatorial cobor-
dism maps for isotopy cylinders and saddle cobordisms in Section [ This is to temporarily
distinguish ®;, from the geometric system of augmentations of A from Proposition [3.10] In
fact, the two systems agree up to equivalence, as we will show next.

3.6. The systems of augmentations agree. In this subsection, we prove that the com-
binatorial and geometric systems of augmentations of a decomposable filling L are equiv-
alent. This result generalizes a result of Y. Pan from [Panl7b, section 3|, which uses Zs
coefficients and treats the case where A has a single component. We use the same no-
tation as in the previous subsection: @ is a map from Ax to R, where R is the ring
R= (Z[t%l, e ,t,inl,slﬂ, e 752'[1])/(101 = .- =w = —1) with wy, ..., w, being words asso-
ciated to the £ minima of L. The desired equivalence is shown in the following result, which
will be proven momentarily:

Proposition 3.13. Suppose that the filling L of A is connected. Then we have R =
Z[72912m=2] and consequently @1 is a (2g + 2m — 2)-system of augmentations of A. Fur-
thermore, up to equivalence, ®; agrees with the geometric system of augmentations from

Proposition [3.10}

The crucial consequence of Proposition [3.13|is that since geometric systems of augmentations
are invariant under Hamiltonian isotopy of the filling, the same is true of the combinatorial
system of augmentations ®7. This is the fact that will allow us to distinguish fillings through
a combinatorial calculation of their augmentations. Indeed, the following result is a direct

consequence of Propositions and

Proposition 3.14. Let L be a connected filling of A, and suppose that all Reeb chords of
A have nonnegative degree. Then the combinatorial system of augmentations @ of A is
invariant, up to equivalence, under exact Lagrangian isotopy of L. O

The argument for Proposition [3.13] above occupies the remainder of this section.

Proof of Proposition|3.13 By functoriality, ®;, and the system of augmentations from Propo-
sition |3.10| agree over Z. What we need to do is keep track of the homology coefficients that
appear in the definitions of the two families of augmentations, and show that the two agree
up to equivalence. Thus, we reduce mod 2 and work with group rings over Zs. In the course
of tracking the homology coefficients, we will see that the abelian group generated multi-
plicatively by t1,...,tm, S1,...,S¢ with relations wy = --- = wy = 1 is isomorphic to a free
abelian group with 2g + 2m — 2 generators, whence it will follow that R 2 Z,[Z29+2m~2].
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Asin Section let 7; and o; denote the oriented arcs on L’ corresponding to ¢; and s;. The
map P, counts intersections with 7; and o;; what we will show is that these counts keep track
of homology classes in H;(L) along with link automorphisms. If a is a degree-0 Reeb chord
of A, let M(a) denote the moduli space of (rigid) holomorphic disks A with boundary on L
and a single positive boundary puncture mapping to a. We may assume that L is generic, so
that none of the minima of L lies on the boundary of a holomorphic disk in any of the M(a).
Recall that L’ is obtained from L by removing a neighborhood of each minimum of L. By
making these neighborhoods sufficiently small, we may assume that the boundary of each
of the holomorphic disks A € M(a) lies entirely in L’ and does not intersect the negative
boundary Ag of L’: that is, OA is an oriented arc on L’ with endpoints at the endpoints of a.

The cobordism map @, is then given as follows, for all degree 0 Reeb chords a of A:

p(a)= > wd) eyt 5 st s
AeM(a)

where
m l
_ #(0ANT;) #(0ANo;)
(3.2) w(A) = H t! H s )
i=1 i=1

By the discussion preceding the proposition, the augmentation @7, is the composition of ®;,
with the quotient map

Zg[tlﬂ, . ,til,sfl,...,sgﬂ] — Zg[tfl,...,til,sfl, .. .,sztl]/(wl =...=w,=1).

We want to compare ®;, with the geometric setup from Section Recall from Theorem
that L induces an augmentation ey, : Ax — Zo[H1(L)]. This map agrees over Zy with &,
but the group-ring coefficients are given by:

er(a) = Y exp([9A]) € Zo[Hy(L)).
AeM(a)

The notation here is as follows. Choose a capping path ~, for each Reeb chord a of A: a
path in the connected surface L whose endpoints are the same as the endpoints of ~,. For
each disk A € M(a), close up the arc A by adding the reverse of ~, to give a closed loop
OA = (0A) U (—74). Then OA represents a homology class in Hq(L), and we denote this
class in Zg[H1(L)] by exp([0A]) (the exponential changes addition to multiplication).

We specify particular capping paths ~, as follows. Fori =0,...,0—1,let Lv; := L;11U---ULy
denote the portion of L above A;, and L~y := A. Note that L~, has m components while
L~¢ has 1 component, and there are exactly m — 1 values of 4 for which L ;_1) has 1 fewer
component than L-;. For notational simplicity we will assume that these are the largest
possible values: ¢ = £ —m + 2,...,£. (A similar argument holds in general.) In this case
the first m — 1 saddle moves from the top are all cobordisms that merge components. The
arcs oy,...,om—1 are the cores of these 1-handle attachments, and we write oy,...,0_4
for the corresponding cocores. (More explicitly, begin at the i-th saddle, place one point on
each strand of the crossing above this saddle, and trace this pair of points upwards through
the cobordism to A to produce ¢.) The paths o, ...,0,,_; join the m components of A to
each other. For each Reeb chord a of A, we can now choose the capping path ~, to lie on
AUoY U---Ug),_; and to avoid the base points t1,...,t, on A. By construction, among the
arcs Ti,...,Tm,01,--.,0¢, the only ones that ~, intersects are some subset of o1,...,0m—1
determined by which components of A contain the endpoints of a.

v

Since the arcs oy, ...,0_; form a tree connecting the components of A, we can find units

ULy ny Uy € Zg[s%l, . .,si{l} such that for each i =1,...,m — 1, if 5} ends on component
r(i) and begins on component ¢(i) of A, then s; = uT(i)ugé); furthermore, (uq,...,uy) are

well-defined once we specify u,, = 1, and the induced map Zs [sid, . sil_l] — 7o [ufl, e ufnl_l]
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is an isomorphism. (Concretely, for any 4 there is a unique path from component m to com-
ponent ¢ that traverses :ta}/l, e ,:ta;-/k, where the + signs denote orientation, and then w;
;!:11 e sil.) It now follows by the construction of the capping paths 7, that if
a is any Reeb chord of A and r(a),c(a) € {1,...,m} are the components of the ending and

beginning points of a, then

is given by s

m—1

#( amo'i) _ —1
H 5i i = Ur(a) uc(a) :
=1

Suppose for now that L has exactly one minimum; the general case will be considered after-
ward. Then Ag is a single-component unknot U, and the product of the labels of the base
points on Ag is t1 - - - t,, since the s; base points cancel in pairs. Note that the abelian group
generated by t1,...,tm,s1,...,S¢ with a single relation ¢1---%¢,, = 1l isfreeonm+/¢—1=
2g + 2m — 2 generators; ®1, maps to the ring Zo[t¥!, ... tE1 sF L sztl]/(tl oty =1) 2
Z2 [Z2g+2m—2].

When L has one minimum, the relative homology Hy(L,A) is generated by oy,,...,0, and
To — T1,...,Tm — T1. (Strictly speaking all of these arcs end on Ag; we extend these arcs by
adding arcs in the disk filling Ag, so that any endpoint on Ag is replaced by an endpoint at the
minimum of L.) Since Hi(L) is dual to H1(L,A), we can compute the homology class [0A]
for A € M(a) by counting intersections with the generating set of Hj(L,A). To be precise,

we can identify Zo[H1(L)] = Zs [t2ﬂ, contELsEL Szﬂ], and under this isomorphism we
have
m _ _ {4 _ m ¢
exp[aA] _ Ht;#:(aAﬁTi)f#(aAﬂTl) H S;#:(aAQO'i) — (t2 . tm)—#(aAﬂTl) H t;#(aAﬂTz) H S?(@Amoi)‘
=2 i=m i=2 i=m

We now compare this to the formula for w(A) in equation (3.2)):

m m—1 ¢

OANT; 0ANo; OANo;

w(A)’tI:(t?..tm)*l = (th#( a )) H Sz%( N )Hsfé( No;)
=1 t1=(tg-tm)~1 =1 i=m

m—1

m ¢
= (ty-tm) #(aA“Tl)Htf( i) 11 stlrenei) I1 siHOANT)
i=2 i=1 i=m
= ur(a)uc_([ll) exp[0A],
where in the second equality we use the fact that A and 7, have the same endpoints and
o; is a separating curve in L. Now, we extend

er t Ax = Zo[Hi (L)) 2 Zo[t3, ... t5Y s o s
by a link automorphism to
Er: Ar — Zo[H (L) @ Z™ 1) = Zg[til,...,til,sil,...,sfl,ufl,...,urinl_l]

defined by £1(a) := uT(a)u;(i)sL(a), as in Section Then, we have
Ela) = ) unaytge exP(PA) = D W)=yt -
AeM(a) AEM(a)

That is, the following diagram commutes:

€L +1 +1 *1 +1 | +1 +1
Ap Zolty o st Sy ooy Sg UL ey U]
X i:
+2 +1 1 +1 _
Zg[tl ,...,tm,Sl ,...,Sé }/(tl--'tm—]_).



This shows that the combinatorial cobordism map ®; and the geometric cobordism map £,
agree up to isomorphism when L has one minimum.

Now suppose that L has £ > 1 minima. We claim that we can reduce to the above case
of a single minimum. The arcs o; have endpoints at the minima; since L is connected,
there is a spanning tree of k — 1 arcs that connects all of the minima to each other. For
notational simplicity, we assume that these arcs are oy_j42,...,0,. Now imagine deforming
L by homotopy equivalence by successively contracting each arc oy—_g12,...,0¢ to a point.
The result is a new surface L with a single minimum, which inherits the arcs 7q,..., 7, and
oi, t <€ —k+ 1. The geometric cobordism map £, is defined homologically and does not
change when we replace L by L.

We now examine what happens to the cobordism map ®; as we pass from L to L. Recall
that &y is an augmentation taking values in the ring

Zg[tlﬂ,...,til,s%l,...,seil]/(wl = =wp=1),
where for j = 1,...,k, w; is the word given by the product of the arcs having an end-

point at the j-th minimum (each endpoint contributes tiﬂ or s;tl depending on the ori-
entation of the corresponding arc at the minimum). At the step where we contract oy,

note that s; appears in exactly two words w;, and w;, corresponding to the endpoints of

0;. We use the relation for one of these words, w;; = 1, to solve for s;, and substitute
into w;, = 1; the result is exactly the relation corresponding to the new minimum given
by contracting ¢;. Once we have contracted all of gy_g10,...,0¢, we are left with a single
word w for the unique remaining minimum, and this process gives an isomorphism between
the coefficient ring Zz[titl, . ,tf%l,sfl, . ,s}tl]/(wl = ... = wg = 1) for L and the ring
Zg[ti‘:l, . ,t#,sfl, e silkH]/(w = 1) for L. In particular, note that the abelian group
generated by t1,...,tm, S1, ..., S¢ with relations w; = - -- = wg = 1 is again free on 2g+2m—2

generators, just as in the case where L has one minimum.

0A 0A 0A
\ \ 9i / h gi /
Ficure 17. Sliding the arc A to avoid intersections with o;, and then con-
tracting o;.

Now in L, the boundaries A of some holomorphic disks may pass through the minimum.
To restore transversality, we perturb each JA as follows: at the step where we contract oy,
we homotop OA near any intersection with o; so that it wraps around one of the endpoints
of o; instead; see Figure This removes any intersections of 0A with o;, and it does not
change the word w(0A) as given in because of the relations w; = 1. The end result

is the surface L where all boundaries A are disjoint from the minimum of L, and we have
reduced to the case of a single minimum. This completes the proof. O

Remark 3.15. The above proof shows that the augmentation/cobordism map &y, : Ay —
Zg[tlﬂ, e ,til,slﬂ, e sgﬂ]/(wl = ... = wg = 1) sends the product t; - -t,, to 1, since the
product wy - - - wyg is equal to ¢ - - - t,,: each o arc contributes endpoints that cancel, and each

T arc ends at exactly one of the minima.

We can lift this statement to Z coefficients: if Ay is the DGA of A with the Lie group spin
structure, then ®; : Axy — Z[t%ﬂ, ... ,til,sfl,...,sfl]/(wl = =wg =1)sends t; -ty
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to (—1)™. This follows from a result of Leverson [Levl7| that any augmentation of Ay to a
field (whether or not it comes from a filling) must send ¢; - - - t,,, to (—1)™, whence this must
be true of ®y,. O

4. COBORDISM MAPS FOR ELEMENTARY COBORDISMS

Given a decomposable Lagrangian filling L of a Legendrian link A, we have described in
Section [3| the general theory of how to build a system of augmentations for L. In order to
apply this theory, we will use combinatorial formulas for cobordism maps corresponding to
elementary cobordisms, which we can then compose to produce a formula for the cobordism
map of an arbitrary decomposable filling. Of the three elementary cobordisms in Section
we have already discussed the DGA map for a minimum cobordism; see Proposition
In this section we present combinatorial formulas for the cobordism maps for the other two
elementary cobordisms: isotopy cobordisms and saddle cobordisms.

The map for an isotopy cobordism (Section is not new and dates back originally to
work of Kélmén [K&l05]. The map for a saddle cobordism (Section occupies the bulk
of Section [ with some technical details postponed to Appendix [A] It builds on work of
Ekholm-Honda-Kalmén [EHKI6], but introduces two new features:

1. A combinatorial lift to integer coefficients Z,
2. A formula that (even) over Zg works for some saddle cobordisms (where the combi-
natorial EHK map over Zs does not).

In order to lift the saddle cobordism map to Z, rather than directly constructing explicit
orientations of the relevant moduli spaces, we use an ad hoc argument that allows us to
deduce signs for a particularly simple saddle cobordism from the fact, due to work of Karlsson
[Kar20], that the map must be a chain map over Z. In fact we conclude a slightly weaker
result: namely, we show that the cobordism map agrees with our combinatorial formula
up to a link automorphism. Nevertheless, this additional choice of link automorphism will
not affect our computations, and the statement we obtain is sufficient for the purposes of
calculating augmentations for fillings. This is explained in Section

4.1. The cobordism map for a Legendrian isotopy. In this subsection we review the
cobordism map for an isotopy cobordism. Suppose that Ay and A_ are Legendrian links
related by a Legendrian isotopy. There is then a quasi-isomorphism between the DGAs
(Aa,,0) and (Ap_,0), as first constructed by Chekanov [Che02] over Z; and then lifted to
Z in [ENS02]. More precisely, these quasi-isomorphisms are DGA maps that are constructed
for certain elementary Legendrian isotopies, to be described below. Any general Legendrian
isotopy can be broken down into a sequence of elementary isotopies, and we compose the
DGA maps for the elementary pieces to produce a DGA map for the isotopy.

This picture fits in a natural way with cobordism maps. Given a Legendrian isotopy between
Ay and A_, let L denote the corresponding Lagrangian cobordism between Ay and A_.
Then Ekholm-Honda-Kélman [EHKI6| section 6.3] show that over Zs, the cobordism map
¢ 2 (Ap,,0) — (Aa_,0) agrees with the DGA map associated to the isotopy; note that by
functoriality, it suffices to show this when L is the cobordism for an elementary isotopy. This
result was subsequently upgraded to Z coefficients by the combined work of Kalman [K&l05],
who showed that the map of DGAs over Z associated to an isotopy (a path in the space of
Legendrian links) is invariant under homotopy of the path; Ekholm—Kalméan [EKO0S|], who
showed that over Zso, this DGA map gives the differential for the Legendrian contact DGA
of the Legendrian surface given by the lift of L; and Karlsson [Kar20l section 6], who showed
that one can assign signs to the differential of this Legendrian surface to induce signs for the
cobordism map ®;,. For our purposes, we summarize this work as follows.
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Proposition 4.1 ([Kal05, [EK08, [EHK16, Kar20]). Suppose that Ay and A_ are related
by an elementary Legendrian isotopy, with corresponding Lagrangian cobordism L. Choose
base points, a spin structure, and capping operators on Ay ; these induce, via the isotopy,
a corresponding choice of base points, spin structure, and capping operators on A_. Then,
the cobordism map @, : (Ap,,0) = (Aa_,0) is equal to the DGA map for the isotopy as
constructed in [Che02, ENS02].

By “elementary Legendrian isotopy”, we will mean one of the following three isotopies be-
tween Legendrian links with base points, all described in terms of their zy projections:

e Base point moves: fix the zy projection and move a base point across a crossing,
e Reidemeister III moves (triple point moves),
e Reidemeister II moves.

Any Legendrian isotopy can be decomposed into these elementary isotopies, along with planar
isotopies of the zy projection in R2.

In the remainder of this subsection, we review the combinatorial formulas from [Che(2,
ENS02] for the DGA maps for elementary isotopies. As usual, to compute the cobordism
map for a general Legendrian isotopy, we can divide the isotopy into elementary isotopies
and compose the resulting cobordism maps.

4.1.1. Base point moves. Suppose that A and A’ are Legendrian links that are related by a
base point move: outside of a neighborhood of a Reeb chord a, their xy projections agree,
and inside this neighborhood, a base point moves across the crossing. See Figure Then
the DGA map for this move is ¥ : (Ap,0) — (Aps, ') defined as follows: ¥ acts as the
identity on all Reeb chords besides a and on all base point variables including s, and

V(a) = sa (left diagram) U(a) =as' (right diagram).

Note that W is an isomorphism, and the DGA map for the reverse of one of these base point

moves is U1,
a Sa/ a;' a”
X—X X—X
A N A A

FiGURE 18. A base point move.

We observe that if we move a base point (or collection of base points) all the way around
a component of A until it returns to where it started, the corresponding automorphism of
(A, 0) is the identity map. (This uses the fact that the variable s associated to the base
point commutes with Reeb chord generators of A; in the fully noncommutative setting
where s does not commute with Reeb chords, the automorphism is conjugation by s.) As
a consequence, when calculating the cobordism map for an isotopy cobordism L, we do not
need to specify an arc on L joining corresponding base points on the ends of L, since any
two choices of such an arc will yield the same map.

4.1.2. Reidemeister III moves. Suppose that A and A’ are related by a Reidemeister IIT move:
see Figure There are two types of Reidemeister 111 moves, 111, (left diagram) and III,
(right diagram); these are called “Move IT” and “Move I” in [ENS02], respectively, and “L1la”
and “L1b” in [EHK16]. There is a one-to-one correspondence between the Reeb chords of A
and A/, with the correspondence between the three crossings involved in the move shown in
Figure Under this identification, Ay and A/ are identical.
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A A

FiGure 19. The two types of Reidemeister III moves.

The DGA map for Reidemeister I11,, which we will actually not need in this paper, is simply
the identity map on Ap. To describe the DGA map for Reidemeister 111, let o € {£1}
denote the product of the orientation signs of the three quadrants of II,,(A) indicated in
Figure this is +1 or —1 depending on whether an even or odd number of those quadrants
are shaded. Then the DGA map ¥ : (Ap,d) — (Aps,d") is defined to be the identity on all
Reeb chords except for a; and on all base point variables, and

\I'(al) = a1 +oasaz.

4.1.3. Reidemeister II moves.

A A
~—— bl/\b2
= XX

FIGURE 20. A Reidemeister II move.

The DGA maps for a Reidemeister IT move are more involved than for the other elementary
isotopies. Suppose that A and A" are related by a Reidemeister IT move, with IT,,(A’) having
two more crossings than II;,(A), as shown in Figure

Let aq,...,a, be the Reeb chords of A, and let by, by denote the two new Reeb chords of A’.
Write (Ap,0) and (A, d') for the DGAs of A and A’. Let |b1| =i = |be| + 1 in Ay, and
construct the stabilization (S(Ax), 0) by adding two generators ey, ez with |e1| =i = |ez|+1
to Ap and extending the differential 9 by d(e1) = e2, d(e2) = 0. There is a chain isomorphism
U . An — S(Ap) whose definition we recall below. We can then compose ¥~! with the
inclusion map i : Ay — S(Ajp) to get a chain map W~1oi : Ay — Aps. In the other direction,
we can compose ¥ with the projection map p : S(Ap) — Ap sending each generator of Ay
to itself and sending eq, es to 0, to get a chain map po ¥ : Ay — Ay:

W—log

N

Ay === S(Ar) <o Ay,

U
po¥

Then U1 04 and p o ¥ are the cobordism maps for the cobordisms from A’ to A and from
A to A, respectively, induced by the Reidemeister II isotopy.

We will need the precise definition of ¥ from [ENS02], and we recall it now. Let aq,...,a,

be the Reeb chords of A, ordered in increasing height. Inductively construct a sequence of

algebra isomorphisms Wy, Wy, ..., ¥, : Ay, — S(Ap) as follows. By inspecting Figurem we

see that there is a bigon for A’ with + corner at b; and — corner at by, and so we can write
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d'(b1) = oba + v where o € {£1} and v counts disks with + corner in the leftmost quadrant
at by. The map ¥y (written as @ in [ENS02]) is defined by

\Ifl(bl) = e1 \Ill(bg) = 0(62 — 1)) \Ifl(ag) = Qy.

Given Wy_q1, we define U, = gy o ¥y_y, where g, : S(Apr) — S(Ayp) is the identity on all
generators except ag, and

gz(ag) =ay+ H((‘)ag — \114_18’@).

Here H is the map on S(A,) (a module map, not an algebra map) defined by H(w) = 0 if w
is any word that either does not contain ey or es, or for which the leftmost e; appearing in w
is e1, and H(wieqwsy) = (—1)‘w1|+1w161w2 if wy does not contain ey or ey. Finally, ¥ = ¥,..

Noting that for each ¢, W(ay) = ¥y(ay) = gr(ar), we can restate the definition of ¥ more
succinctly as follows:

\I/(bl) = €1
(4.1) (b)) =o(e2 —v)
U(ap) =ap— HWY ay).

This definition looks circular since ¥ occurs on the right hand side of the definition of ¥(ay),
but in fact the height ordering and Stokes’ Theorem imply that for any ¢, &a, involves only
b1,b2,a1,...,a0—1 and not agy1,...,a,, and so can be used to recursively define ¥(ay).
Note that the height ordering does not appear explicitly in ; however, the existence of
the height filtration means that the recursive definition terminates and thus produces
a well-defined result.

Remark 4.2. It follows from the definition of ¥ that the chain map po ¥ : Ay — Ap has
the following simple form:

(poW)(b1) =0 (poW)(bz) = —ow (po¥)(ar) = ay.

This concludes our description of the DGA maps associated to isotopy cobordisms.

4.2. The cobordism map for a saddle cobordism. We now address the cobordism map
associated to a saddle cobordism. Let A} be a Legendrian link with a contractible Reeb
chord a of degree 0; contractible chords of even degree can be similarly treated with suitable
modification to the grading. In the zy projection, replacing the crossing a by its oriented
resolution yields a Legendrian link A_, and we write L, for the saddle cobordism between
A_ and A+.

Our goal in this subsection is to write down a combinatorial formula for the cobordism map
®r, 0 (Ar,,0) = (Ax_,0). In [EHKI6|], Ekholm-Honda-Kélméan describe such a formula
for this map over Zo, subject to the assumption that the Reeb chord a is what they call
“simple”. Our goal here is to describe the EHK map over Z and for what we call “proper
chords”, which are a different (and apparently larger) class of contractible Reeb chords than
simple chords. The proof that our map is indeed the geometric cobordism map ®r, (stated
as Proposition below) is deferred to Appendix

Recall from Section [3.1] that the Legendrian contact differential 0 for a Legendrian A counts
immersed disks with a single + corner, where “immersed disk” in our terminology includes
the condition that all punctures are mapped to single quadrants (i.e., all corners are convex).
We will now need to consider more general disks, which we call immersed disks with concave
corners. These are immersed disks where each boundary puncture is again mapped to a
crossing of the Lagrangian projection II,,(A), but where we now allow a neighborhood of
each boundary puncture to be mapped to either a single quadrant at the crossing (a convex
corner) or the union of three quadrants (a concave corner). As with convex corners, we can
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label each concave corner as positive or negative, depending on whether 2 of the 3 quadrants
covered by the corner are positive or negative, respectively.

Definition 4.3. A contractible Reeb chord a of Ay is proper if the following condition holds.
For any immersed disk A, possibly with concave corners, such that:

A has a positive convex corner at some Reeb chord besides a,

A has at least one positive convex corner at a,

all other convex corners of A are negative, and

the only possible concave corners of A are positive concave corners at a,

then it must be the case that the (closure of the) boundary of A in II,, (A4 ) passes through
the crossing Il,,(a) only once. That is, any immersed disk A with the given properties
must have no concave corners, A must have exactly one positive convex corner at a, and the
boundary of A never passes through a except at that corner. [l

Remark 4.4. We remark that being proper and being simple in the sense of [EHKI16] are
not the same. We refer to [EHKI16l Definition 6.16] for the index condition that defines
the latter property. In our language, the condition for a Reeb chord a to be simple can be
restated as follows: for any immersed disk A such that A has k positive convex corners at
a, a positive convex corner at some Reeb chord besides a, and all other corners (including
concave corners) being negative, it must be the case that A has at least k concave corners.
The contractible Reeb chord ag in Figure [22| below is proper but not simple; the necessity of
considering saddle moves at Reeb chords like ag in this paper is what motivated our definition
of proper chords. We do not know if all simple contractible chords must be proper. O

All of the Reeb chords that we use in this paper to perform saddle cobordisms are contractible
and proper. This is a consequence of the following result.

Proposition 4.5. If 8 € Br}, is an admissible braid and a is a crossing of 3 such that 8\ {a}
contains a half-twist, then as a Reeb chord of the (—1)-closure A(B), a is contractible and
proper.

Proof. Contractibility has already been shown in Proposition[2.8} we need to show properness.
Suppose that A is a disk as in Definition Because A has a positive convex corner at
a, it must be “thin” in the sense that it lies in the neighborhood of the Legendrian unknot
that contains the satellite A(53). The presence of the half-twist, and the fact that A has
no concave corners in the half-twist, prevents A from passing through the half-twist. This
forces A to be embedded in the neighborhood of the unknot, and so its boundary only passes
through a once. U

We will next present a formula for the map for a saddle cobordism at a Reeb chord a when
a is contractible and proper. As in [EHK16], the key is to consider immersed disks with two
+ corners, one of which is at a. We break these into two types.

Let a; be a Reeb chord of Ay not equal to a. Define A7’ (a;), respectively A (a;), to be the
set of immersed disks for Ay, such that:

e all corners are convex, and there are exactly two positive corners, one at a; and one
at a;

e at the corner at a, the orientation of A points toward, respectively away from (for
Af (a;)), the disk.

1310 conversation with T. Ekholm, it emerged that there is a typo in [EHK16, Definition 6.16]: the
inequality ind(u) > k in that definition should be ind(u) > k + 1. The revised inequality corresponds to our
condition of having at least k£ concave corners.
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A

Ficure 21. A disk in A;7(a;) (left) and a disk in AY (a;) (right). For the
disk on the left, wy(A) = aga; and we(A) = ay. For the disk on the right,
wi(A) =1 and wa2(A) = ag.

See Figure For any A € A7 (a;) UAY (a;), we can define three quantities. One is the sign
sgn(A) € {£1}, which is the product of the orientation signs over all corners of A, multiplied
by the signs of any base points traversed by the boundary of the disk. The other are two
words w1 (A), wa(A) € Ap_, defined as follows: w;(A) is the product of the — corners and
base points that we encounter as we traverse the boundary of A counterclockwise from a; to
a, and wa(A) is the analogous product as we traverse the boundary counterclockwise from a
to a;. See Figure [21] for an example.

Definition 4.6. The combinatorial cobordism map, denoted @‘famb : Ax, — Aa_, is the
composition of three algebra maps:

(I)comb <I><— o <I>—> o (I)O
where @9 : Ax, — Aa_ is defined by ®g(a) = s and ®g(a;) = a; for any Reeb chord a;

besides a, and 7, ®< : Ay — Ax_ are defined as follows. Let a; be a generator of Ay _,
that is, a Reeb chord of A_, which is then also a Reeb chord of Ay . Then,

o7 (ai) =ai+ Y (=1 sgn(A)07 (wi(A))s wy(A)
AeAF (a;)

O () =ai+ Y (1) sgn(A) (wi(A))s wa(A).
AeAY (a )

O

Remark 4.7. As with the definition of the Reidemeister II cobordism map, equation
in Section [£.1] these definitions may appear circular but can be used to recursively define
®~ and ®“. The reason is that if we order the Reeb chords aq,...,a, in increasing order
of height, then all disks with positive punctures at a and a; can only have negative corners
at ai,...,a;—1 and not at aj41,...,q;.: in particular, if A € A7 (a;) UAS (a;) then wi(A)
only involves ay,...,a;_1. O

The key result in this subsection is the relation between @CLzmb, as defined above, and @y, .
This is the content of the following result:

Proposition 4.8. If a € Ax, is a proper contractible Reeb chord, then the cobordism map
@7, 0 Ax, — Apa_ is equal to the combinatorial map @%"amb, up to a link automorphism of
A_. That is, there is a link automorphism  : Ax_ — Ax_ such that ®p, = Qo @%‘f}mb.

Proposition is proved in Appendix [A| below. Let us illustrate how to compute
an explicit example, which will also appear as part of our later computations.

Pgomb i

Example 4.9. Consider the configuration shown in Figure this appears as part of our

calculations for the l~)4—Legendrian in Section The first step in that calculation is a saddle
39



F1GURE 22. Calculating the cobordism map for a saddle cobordism at ag.
Left, the Legendrian link at the top of the cobordism; right, an immersed disk
showing that ag is not simple.

move at ag, and we calculate the corresponding map ®< here. By inspection we see that
Af(a;) = 0 for 10 < i < 13, while Af (a14) and Af (a15) each contain one disk apiece, with
negative corners at a3, a;; and aig, a3 respectively. For aig, A;(alﬁ) contains three disks,
one with no negative corners, one with negative corners at ajg, a14, and one with negative
corners at ajs,ai;. It follows from this that ® (a;) = a; for 10 < ¢ < 13 and

" (a14) = a14 — ® (ar3a11)s™ = a14 — arzan s

O (a15) = a5 — ®(1)s 'apa13 = a15 — s~ 'asgais

O (a16) = a16 — s+ — s tarpars — T (arza1r)st =
=ais—s ' — s tajpais — (a15 — 8_16110&13)&118_1-

For the complete Legendrian that we study in Section [6.2] an inspection of Figure [28] shows
that Ay’ (a;) = 0 and thus @7 (a;) = a; for 10 <4 < 16. It follows that the map @%‘l‘;b sends
ag to s and agrees with @ for a;, 10 < i < 16.

We note that in this example, ag is contractible and proper but not simple, and thus even
over Zy we cannot directly apply the combinatorial formula from [EHKI16]. The reason ag is
not simple (cf. Remark is the disk shown in Figure which has 2 positive corners at
ag, 1 positive corner at a6, and a single concave corner at a;s. O

Remark 4.10. If ¢ is not just proper but also simple, then our definition of CI)CL‘Zmb can be
stated in an easier way, to match [EHKI6]. In this case, write Ag(a;) = A, (a;) U AY (a;).
If A is any disk in Ay(a;) and a; is a negative corner of A, then it must be the case
that Ay(aj) = 0; otherwise the union of A and a disk A" € Ag(a;) is an immersed disk
with concave corner at a; and two positive (convex) corners at a, violating the simplicity
condition. Then we can drop the &~ and ®¢ in &7 (wy(A)) and & (w1(A)), and conclude
directly that for all a;,

O (@) =ai+ Y sgn(A)wi(A)s wa(A).
AEAa(ai)

If we set s = 1 and reduce mod 2, this recovers the formula for the cobordism map from
[EHK16, Proposition 6.18]. O

4.3. Assembling elementary cobordism maps. Having described the cobordism maps
for elementary cobordisms, we can calculate the map associated to any decomposable cobor-
dism by composing the maps for its elementary pieces, and indeed this is what we do in
Sections [B] and [6] below. There is a possible difficulty with this approach: we have only
calculated the saddle cobordism map up to a link automorphism (see Proposition 4.8). How-
ever, for a filling, the extra flexibility provided by the basepoint parameters gets rid of this
problem, as we explain in this subsection.

Let L be a connected decomposable genus-g filling of an m-component Legendrian link A.
As in Section [3.5] we decorate L with arcs corresponding to base points t1,...,tm, S1,. .., Sp.
Divide L into elementary cobordisms L, ..., Lg, where:
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e L; is a cobordism between Legendrians Aj_; and Aj, with Ag = () and Ay = A;
e [ is a disjoint union of minimum cobordisms;
o for j =2,...,k, L; is either an isotopy cobordism or a saddle cobordism.

Note that this decomposition differs slightly from our simplified setup in Section [3.5], where
we suppressed isotopy cobordisms.
As in Section let R be the ring

Ri= (2l st st (o = o =y = —1) 2 Z[H (L) 0 277,

where wq,...,wg are words coming from the minima of L. For each j, let (AA].,8C°mb)
denote the DGA for A; over R, with Ay = Aj,. Then each elementary cobordism gives a
map &y, : (AAj,Ocomb) — (.AAj_l,ﬁcomb), and their composition is a (2g + 2m — 2)-system
of augmentations for A:

P, = (I>L1 o--- O(I)Lk : (AA,é)C‘)mb) — (R,O).

Now suppose that for j =1,...,k, ; : Ax, , — Ap,_, is a link automorphism of A;_1, and
define (iLj = Qj @) (I)Lj.

Proposition 4.11. The maps ®;, = @, 0---0®, and &m = §>L1 0---0 (T)Lk are equivalent
systems of augmentations of A.

Proof. We prove by induction that for j = 1,...,k, @, 0--- 0 ®y, and éLl 0+--0 &)Lj are
equivalent as maps (AAj,ﬁcomb) — (R,0). The base case j = 1 is true since @, and thus
&y, are both the zero map on Reeb chords of A;.

For the induction step, assume that ¢, o---o®r and (T>L1 0-+-0 5,;3. are equivalent, so that

there is an automorphism 1; of R such that EIVDLl o-rodp =10 (Pr,0---0 cI)Lj). Since
the map @1, o---o®p agrees with the geometric system of augmentations for Ly U---U L;
by Proposition @, and the geometric system incorporates link automorphisms of Aj, the
link automorphism €2; of A; induces an automorphism w; of R such that

((I)LIO---O(I)Lj)OQj:ij((I)Llo---O‘I)L].).

(Note that Proposition assumes that L; U--- U L; is connected; however, the argu-
ment here extends to the disconnected case as well, since the system of augmentations of a
disconnected filling annihilates any Reeb chord with endpoints on different components.)

We conclude that the following diagram commutes:

‘AAJ‘H
@Lj:/ Vﬁﬁl
Q;
Ay, = Ay,
<I>L10~~~o<bLz/ <I>Llomoq)i/ \T‘)\Llomo&mj
R “ R i R.

1%
1%

It follows that &, o---0 Qp, 0@, and &)Ll 0---0 <T>Lj o &)LHI are equivalent since one is
the composition of the other with 1; o w;, and this completes the induction. (]

By Proposition when we build systems of augmentations for fillings by composing ele-
mentary cobordism maps, we can replace any elementary cobordism map by its composition
with a link automorphism. In particular, Proposition |4.8| implies that we can use the com-
binatorial saddle map ®°™ as the cobordism map for a saddle cobordism, and this is what
we will do in subsequent sections.
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5. LEGENDRIAN CONTACT DGA AND COBORDISM MAPS FOR (—1)-CLOSURES

In this section we present an algebraically amenable description of the Legendrian contact
DGA for the (—1)-closure of an admissible braid, and detail the effect of the ¥-loops and
saddle cobordisms on the DGA.

5.1. The DGA of the (—1)-closure of an admissible braid. Let oy, --- 0%, € Br} be
an admissible positive braid. Henceforth we will write A(oy, - - 0%, ) for the (—1)-closure of
this braid in the sense of Definition 4 We decorate the xy projection of A(oy, --- oy, )
as follows; see Figure Place a column of base points on the n strands of the braid
between braid crossings, as well as on either end of the braid, and label these base points ,;,
1<i<n,0</¢<r. (In practice we may only need some small subset of these base points;
in that case we formally set t;; = 1 for all of the other base points and then remove them.)
The Reeb chords for A(og, - - - ok,.) consist of:

® ai,...,a., of degree 0, corresponding to the crossings of the braid, and labeled in the
obvious way;

e cj, 1 <i,57 < n, of degree 1, corresponding to the Reeb chord of the standard
Legendrian unknot U.

Recall from Section that in order to calculate degrees of Reeb chords, we need to choose
a base point on each component of the link; any subset of the t,; will do and produces the
degrees given above.

n 7f(J.,n tl,n t2,n

F1GURE 23. The Lagrangian projection of the Legendrian link A(oy, - - - 0%, ),
with crossings and base points labeled. The braid itself is in the blue box.
Arrows represent the orientation of the link.

The differential on the Legendrian contact DGA of A(oy, ---o0k,.) can be expressed in a
compact way using the path matrices of Kalman [KaI06].'> For k = 1,...,n — 1, define an
n x n matrix Py(a) (as a function of an input a) as follows:

i=jandi#kk+1
(i,5) = (k,k+1) or (k+1,k)
i=j=k+1

otherwise;

(Pe(a))i; =

SO Q = =

MNote that this differs from the notation A(B) in Section but by Proposition the two notations
represent links that are Legendrian isotopic.
15Note that we number our braid strands in increasing order from bottom to top, while Kdlméan numbers
braid strands from top to bottom. We also incorporate base points while Kélmén does not.
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that is, Py (a) is the identity matrix except for the 2 x 2 submatrix given by rows and columns
k and k+1, which is (! ). (These are the path matrices considered in [K&I06], but note that
we number our braid strands in increasing order from bottom to top, while Kalman numbers
braid strands from top to bottom.) Also define t, = (t¢1,...,tr,) and write D(t,) for the
diagonal n X n matrix with #;1,...,%s, along the diagonal.

Definition 5.1. Let 8 = oy, - - - 0%, be an n-stranded braid decorated with base points, with
crossings and base points labeled as in Figure The path matriz of 8 is the n X n matrix

Pp = D(to) Py, (a1) D(t1) Py, (a2) D(t2) - - - Py, (ar) D(t;).

Colloquially, the (7, j) entry of the path matrix P(f) counts paths beginning at the left of
on strand ¢, ending at the right on strand j, and at each crossing the path encounters, either
passing straight through the crossing, or turning a corner if the path changes direction from
southeast to northeast at the corner. Each path produces a word by reading the base points
traversed and corners turned in order, and the (7, j) entry of P(3) is the sum of these words.

Proposition 5.2. The differential on the DGA (AA((,kl...Ukr),a) for Aok, -+ - ox,.) is given
as follows: 0(ag) =0, and if we assemble the c;j into an n x n matriz C = (¢;;) and write 1
for the n x n identity matriz, then:

a(C) =1+ P;.

Proof. Each degree-0 generator a, has vanishing differential for degree reasons. For c;;, there
are two possible types of immersed disks (all of which are in fact embedded) with + corner
at ¢;j, depending on which + quadrant at ¢;; is covered by the disk. There is an embedded
disk with + puncture at the right quadrant of ¢;; and no — puncture if ¢ = j, and otherwise
there is no immersed disk with + puncture at this right quadrant. This produces the 1 term
in the formula. For embedded disks with + puncture at the left quadrant of ¢;;, we need to
keep track of ways that the boundary of this disk can enter the braid from the left on strand
1 and exit the braid to the right on strand j, with possible convex corners at some crossings
ag. The contribution of these disks to d(c;;) is precisely the (i, j) entry of the path matrix
Pg. O

5.2. ¥-monodromy action on the DGA. Consider a Legendrian link A = A(S,k;7) C
(R3, &) and its ¥-loop, as defined in Section Here we compute the morphism

A(9) + Ay — An

induced by this Legendrian isotopy, which we call the ¥-monodromy or purple box mon-
odromy. To be precise, any Legendrian isotopy between Legendrian links induces a chain
isomorphism between the (suitably stabilized) DGAs of the links, as described in [Che(02,
ENS02]. In the case of the isotopy given by the ¥-loop, which consists entirely of Reide-
meister III moves, it is not necessary to stabilize the DGAs, and as a result we obtain the
aforementioned chain isomorphism A(#), which we now compute explicitly.

The Lagrangian projection of A(3, k;~y) is given in the right diagram in Figure Let n
denote the braid index of v, and let N be the number of braid strands in A(3, k; ), so that the
braid index of §is N —n+1. As in Section the Reeb chords of A(f,;y), which generate
the Legendrian contact DGA Ay, come in two types: the degree 1 chords ¢;;, 4,7 € [1, N],
and the degree 0 chords in the braiding region. We can divide these Reeb chords into two
types in another way. Call the sublink of A(f, ;) corresponding to the i-th strand of 5 (and
containing the purple box 7) the satellite sublink; this is depicted in purple in Figure
We call crossings of A(B,1;7) satellite crossings and non-satellite crossings depending on
whether or not they involve the satellite sublink. Note that the satellite crossings of degree
1 are precisely ¢;; with ¢, € {k,...,k+n —1}, while the satellite crossings of degree 0 come
in groups of n, with each group coming from a single crossing of 3.
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We allow for the placement of arbitrarily many base points on A(S, k;~), subject to the
restriction that any base points lying on the satellite sublink actually lie in the purple box
for 4. (In practice, there will be one base point per strand of A(S, k;~), and the base points
in the purple box will lie on its right edge.) Let P, denote the n x n path matrix for v with

its base points. Extend this to an N x N matrix P, by

_ 1 0 O
P,=10 P, O
0 0 1
where the central matrix P, corresponds to rows and columns k,...,k+n — 1.

Proposition 5.3. The purple-box monodromy map A(9) : Ay — Ap is given on generators
as follows. Assemble the degree 1 generators c;j into an N x N matriz: then
A(0)(C) = P,CP; .

For degree 0 generators, A(9) fizes all non-satellite crossings, while its action on degree 0
satellite crossings is as follows:

h1 hi
A(ﬁ)(;):ﬂ(:)

hn hn

h} hy
«409)(;):(13?)‘1(;)-

h, h},

Here hy, ..., hy is any group of satellite crossings coming from a crossing of 3 where the i-th
strand is the overcrossing, while b, ... hl is any group of satellite crossings coming from a
crossing of B where the i-th strand is the undercrossing. See Figure [27)

A(B) A(B, k;v) A(B) A(B, k)

FIGURE 24. A group of satellite crossings coming from an overcrossing (left)
and an undercrossing (right).

Proof. The ¥-loop consists of a sequence of Reidemeister 111 moves that push the purple box
around, and consequently the map A(¢) is the composition of a sequence of algebra isomor-
phisms corresponding to these Reidemeister III moves, as given concretely in Section
In particular, any non-satellite crossing does not participate in any of the Reidemeister 111
moves and so it is fixed by A(49).

Next consider a group of degree 0 satellite crossings hi,...,h, as in the statement of the
proposition (the argument for h},..., A/ is similar and will be omitted). The ¥-loop pushes
the purple box containing v through hy, ..., h, from right to left. Since the path matrix P,
is a product of path matrices for individual crossings and columns of base points, and we can
factor the action of A(¢¥) on hy,...,h, by pushing each individual crossing and base point
column across hi, ..., hy, from right to left and composing the results, the key is to observe
what happens when we push a single crossing or base point column of v across hi,..., hy.
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FIGURE 25. Pushing a crossing (left) or a column of base points (right) across
a group of satellite crossings.

If we push a crossing a from ~y across h1, ..., h, by a single Reidemeister III move as shown in
Figure (left), then from Section the associated isomorphism sends a + a, h; — hjy1,
and hjt1 — h; + ah;y1. (Note that compared to Figure the crossings h; and h;y; have
switched places after the Reidemeister III move.) This is precisely the matrix map

(i) = () (),

hi
Thus pushing the crossing a across hi,...,h, acts on ( :

hn
path matrix for a. If instead we push a column of base points across hy,...,h, as shown
in Figure (right), then from Section the associated isomorphism sends h; to t;h;
for i € [1,n], which corresponds to left multiplication by the diagonal matrix with diagonal
entries tq,...,t,. Composing the individual isomorphisms, we conclude that the purple-box
monodromy indeed acts on h1, ..., hy, by left multiplication by the path matrix P,, as desired.

) by left multiplication by the

FiGure 26. Pushing the purple box through the pigtail.

Finally, we consider the degree 1 crossings. As we perform the ¥-loop, the purple box passes
through the “pigtail” region with the degree 1 crossings twice; see Figure 26l On the first

pass, when the purple box pushes through the strand containing crossings cij,. .., cy;, this
C1j C1j

yields the map that sends : — Py : |, by the same argument as for the degree 0
Cnj Cnj

crossings hi, ..., h, above. Thus the first pass of the purple box through the degree-1 region
cumulatively has the effect of sending C' to PyC'. Similarly the second pass (from upper right
to lower left) sends C' to CP; L. Together, the two passes send C to P,CP; L O
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5.3. The Kalman loop. The techniques of this section can be applied to compute the mon-
odromy of other loops of Legendrian links besides 9J-loops. One case where it is particularly
simple to calculate the monodromy in our setting is the loop of Legendrian T'(p, q)-torus
links originally studied by Kalman in [K&l05]. For concreteness we focus here on the most
basic example of the Kalman loop, which involves the max-tb Legendrian right handed trefoil
(p =2,q = 3). Kélman constructs a loop in the space of these Legendrian trefoils and proves
that the induced action on the degree-0 Legendrian contact homology has order 5. Here we
reinterpret this result in our setting.

In our language, the Legendrian trefoil is the (—1)-closure of the admissible 2-stranded braid
o?; in other words, it is A(B,1;7) C (R? &) where 8 € Br{ is the l-stranded braid and
v = a? € Br; We label the crossings of v a1, ..., a5 and place base points t1,%s to the right
of 7, as shown in Figure 27| (left). The ¥-loop moves the entire braid o9 around the standard
unknot A(S) = U until it returns to its starting point. We can factor this loop as the fifth
power of another loop §, which moves the single leftmost crossing of 0? around the unknot
until it returns to v as the rightmost crossing. Note that this move shifts the position of
the base points t1,t2; we then slide t1,¢s along the knot until they return to their original
positions. See Figure The combination of the crossing move and the base point move
forms a loop beginning and ending at A(f,1;~), which is the Kalmén loop and which we
denote by 9.

ap G2 a3z a4 as iy az a3 Q4 astag az az a4 as ai it

@m//\/f\f;: ........ . X//\f//\///\///'fc ........ . /\//\f/\//\//\f;;

FIGURE 27. The Legendrian trefoil is the (—1)-closure of the depicted braid
o?. Left, the braiding region with base points; middle, the result of moving
the leftmost crossing to the right; right, the result of sliding the base points

back to their original position (with the slides shown in the middle diagram).

The action A(6) of the loop § on the Legendrian contact DGA A(A(S,1;7)) is easy to
describe. Moving a; to the right simply permutes the a;: a; — as,...,aq4 — as,a5 — aj.
From Section sliding the base points as indicated in Figure [27] fixes a; and sends a; to
t; raity for i = 3,5 and t5 a;ty for i = 2,4. Thus A(S) acts on the DGA as follows:

aj +— t;lagtl ag +— tl_lagtz as +— t§1a4t1 aq —r tl_la5t2 as — aj.

(The degree 1 generators are fixed by \A(d).) By inspection we see that A(d) has order 5, in
agreement with Kalman’s result: A(5)® = A(¥) is the identity map.

This argument readily generalizes to (p, ¢)-torus links for arbitrary positive p, g. In the general
case, the Legendrian link is the (—1)-closure of the admissible braid (o1 ...0,-1)P™ € Br;l,
and the Kalmén loop § moves the leftmost p — 1 crossings around the unknot. As in the case
of the trefoil, we immediately see that 6P*9 acts as the identity on the Legendrian contact
DGA.

Remark 5.4. The original proof in [K4105] that .A(0) has order p + ¢ uses the Legendrian
link given by the resolution of the rainbow closure of the braid (o - --o0p—1)9. The DGA for
this link has (p — 1)gq generators in degree 0, and Kélman’s computation of the monodromy
of § on this DGA is rather nontrivial, both because Reidemeister II moves are involved and
because the DGA differential itself is quite complicated due to the presence of non-embedded
disks. K&alméan then performs an intricate computation to show that this monodromy has
order p+ ¢q. The mere fact that p+ ¢ appears here, e.g. instead of p or ¢, is rather mysterious
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from the geometric viewpoint. By contrast, in our setup with (—1)-closures, the DGA has
(p — 1)(p + q) generators in degree 0, the monodromy of § simply cyclically permutes these
generators, and it is evident without computation that this action has order p + q. ([

5.4. The saddle cobordism map for (—1)-closures. So far we have discussed the 9-
monodromy. We now turn to the other principal computational ingredient in our calculations
for the upcoming Section [6] namely the calculation of saddle cobordism maps: we will consider
augmentations corresponding to specific decomposable fillings, and these augmentations are
the composition of a number of saddle maps.

In Section we defined a combinatorial cobordism map peomb . A, L Ap_ associated
to a saddle cobordism at any proper contractible Reeb chord. This combinatorial formula
allows us in Section [f] to calculate the augmentations corresponding to particular fillings of
(—1)-closures, and the reader may skip ahead to that section at this point. In the present
subsection, we take a slight detour and discuss what the formula for ®<°™ looks like for
saddle cobordisms of (—1)-closures, in terms of the matrix formula for the DGA of a (—1)-
closure from Section In particular, this will allow us to see combinatorially that ®comP
is indeed a chain map in this case, without going through the general theory. The interested
reader may want to compare our discussion here with [GSW20al section 3.3], which presents
an independent but rather similar matrix treatment of saddle cobordism maps.

Consider a saddle cobordism whose top end is a Legendrian (—1)-closure Ay = A(oy, - - - 0%,.),
and whose bottom end is the Legendrian link A_ obtained by resolving a contractible proper
crossing of A;. For ease of notation, we will assume that the crossing is a1, corresponding
to the braid generator oy, and so A = A(ok, ---0k,). (The case of a saddle resolving an
arbitrary crossing ay, is easy to deduce from this; just perform the cyclic-permutation isotopy
sending Ay = A(oy, - op,) to A(oy, - - 0,0k, - - 0k,_, ) and similarly for A_.)

From Section above, we can write down the differentials 0+ on A4 in matrix form.
Specifically, as in Section we place base points t7;, 1 < i < n, 1 < ¢ < r, next to the
crossings of A;. Then A_ inherits this same array of base points, along with two new base
points in place of the crossing a1, one on strand ki + 1 labeled by s; and one on strand k;
labeled by —sfl. By Proposition in the notation from Section the differentials 04
and J_ for the DGAs of Ay and A_ are given by the matrix formulas:

0+(C) =1+ Py, (a1)D(t1) Py, (az)D(t2) - - - Py, (ar) D(tr)
0_(C) =1+ D(to)D(t1)Py,(a2)D(ta) - - - Py, (ar)D(t;)

where to = (1,...,1, —31_1, s1,1,...,1) (with —31_1 and s; in the k1 and &y + 1 components
respectively).

Let ®°mb = o< 0 & o PV : Ap, — Aa_ be the cobordism map from Proposition We
first note that the action of ®©°™ on degree-1 Reeb chords ci; is easy to write down. Indeed,
write Ty "(s1) for the n x n matrix equal to the identity matrix except with (k1, k1 + 1) entry

given by sfl. Then we have
(5.1) peomb () = T,;(sl)C(T,;(sl))’l.

This can be seen directly from an inspection of Figure using the fact that A7 (ci;) = 0,
while the only possible disks in A§ (c;;) are thin disks heading left from their + corner at a1,
following the figure eight, and ending in the region containing the ¢;;’s. We omit the details

here.

The explicit nature of this algebraic model allows us to sketch a direct argument for why
®mb js a chain map. Note that this argument is mainly provided for context and is not
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needed in the rest of the paper,'® and so we do not provide full details; see also [GSW20a,
section 3.3] for a related discussion with more details.

Proposition 5.5. ®©°™ 69, = §_ o pomb,

Proof. In order to show that ®°°™" is a chain map, it suffices to show that ®°°™P (9, (C)) =
O_ (®°°mb(C)). Note that

O (Pyy (1)) = Piy (s1) = T (1) D(t0) Ty, (s1)

where T}’ (s1) is the identity matrix except with (k1 + 1, k1) entry given by s;'. Since ®

acts on C' by conjugation by Tj"(s1), showing that @ is a chain map reduces to verifying the
following:

(5.2)

O (T (s1) D(t1) Py (a2) D(t2) - - - Py, (ar) D(t,)Tji; (51)) = D(t1) Py (a2) D(t2) - - - Py, (ar) D(t,).

Call a matrix lower-unipotent if it is of the form 1+ N where N is a strictly lower triangular
matrix; that is, a lower-unipotent matrix is a lower triangular matrix with 1’s along the
diagonal. Note in particular that Tk_f (s1) is lower-unipotent. Next we observe that if T is
lower-unipotent then

T' = (Py,(ae + Tip18,)) " TPy, (ar)

is again lower-unipotent: this follows from the identity of 2 x 2 matrices

0 1 /1 0\ [0 1\ (1 0
T ag+ Thyr1,k, Tipr1k, 1) \1 ag 0 1)°

We can thus inductively define a sequence of lower-unipotent matrices 77, Ty, T4, Ts, . .., T/, T;
as follows:

T{ = Ty, (s1),
T, = D(tg)flTéD(tg),
T; = (Py,(ar + (Te—1)k1,0,)) " TPy, (ar).
Then we have
To—1 Py, (ae)D(te) = P, (ae + (To-1)kpt1,0,) D (t) Ty
Write x¢ := (Ty—1)k,+1,k, for short; we now have
Ty, (s1)D(t1) Py, (a2) D(t2) - - - Py, (ar) D(t;)
= D(tl)Pk2 (ag + fCQ)D(tQ)PkB (a3 + .2133) ce Pkr (ar + :E,«)D(tT)TT.
The key fact now, whose proof (and precise statement) we omit here, is that the matrices Ty
have geometric meaning: for i > j, the (7, j) entry in 7T counts embedded disks whose leftmost
end is a positive corner at a; and whose rightmost end is a vertical line segment connecting
strands 7 and j just to the right of crossing ay. (In particular, 7, = 1.) Furthermore, the
map @ from Section [£.2]is constructed exactly to satisfy
D7 (ap + ) = ag
for all £=2,...,r. As a consequence, we have
7 (Ty,) (1) D(t1) Py, (a2) D(t2) - - Pr, (ar) D(t;)) = D(t1)Pry(a2)D(t2) Pyy (as) - - - Pr, (ar) D(tr).
Similarly, & satisfies
O (D(t1) Py, (a2)D(t2) -+ Py, (ar)D(t,) Ty, (1)) = D(t1)Pry(a2) D(t2) Py (as) - - Py, (ar) D(t;).

Combining this equation and the previous equation now yields (5.2)), whence ®°°™ is a chain
map. O

16The computation in the proof of Proposition does contribute to the implementation of the program
[Ng], in the code calculating the augmentation associated to a filling of a (—1)-closure.
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6. PROOF OF INFINITELY MANY FILLINGS

In this section we prove Theorem [1.1] First, we describe the scheme of proof that we will
use for all the Legendrian links A € H. The cases A(Dy), A1, Ao and A(B11), A(B12), A(B21)
are then proven directly using this strategy. The general cases A(D,,), A, are concluded from

Proposition and the proofs we give for the two cases A(Dy), As.

6.1. The argument. Let A C (R3 &) be a Legendrian link A = A(B,4;7), 8 € Brj\r,,’y €
Br]'\z, and consider its ¥-loop, as introduced in Section The general structure of our
proofs can be described in three steps, as follows:

(i) First, choose an ordered sequence of crossings for 8 and « such that resolving these
crossings yields an orientable exact Lagrangian filling L C (R*, \t) of the Legendrian
link A.

(ii) Second, compute the augmentation 7, : Ay — Z[H;(L) ® Z™ '] associated to the
exact Lagrangian filling L (where m is the number of components of A) and the in-
duced maps 9* : Ay — Ap, k € N. We note that all crossings chosen in (i) will have
the property that their complement contains a half-twist, and consequently they are
contractible and proper by Proposition Thus we may apply the combinatorial
formulas from Section in this step.

(iii) Third, fix a crossing a for the braid word [ associated to the Legendrian link A,
which we consider as one of the generators a € A of the Legendrian contact DGA.
Consider the invariant

E(k,a):= m

k
n:REE(Z’(nogLOﬁ )(a)” keN,
where R = Z[Hy(L) ® Z™ '] and n : R — Z rtuns over all possible unital ring
morphisms. Note that the set of such morphisms is finite, as the first Betti number
b1 (L) is finite, and thus E(k, a) is a well-defined maximum over a finite set of integers.

Finally, show that E(k,a) is a strictly increasing function of k£ € N.

The different choices for the Lagrangian filling (and thus the augmentation ;) and crossing
a € Ay influence the computation of the invariant E(k,a). Finding the maximum over a
set whose cardinality grows exponentially in () + I(7) makes brute force computation a
difficult (though not unfeasible) route. Thus, particular care must be devoted in choosing
the augmentation 7, and the crossing a € A): we will find crossings a € A, and Lagrangian
fillings whose augmentations satisfy that (e o ¥¥)(a) is a positive Laurent polynomial in
Z[H1(L)], for all k € N, making the invariant E(k, a) readily computable.

Remark 6.1. Executing the argument laid out here for specific Legendrian links, including
all of the ones that we consider in this section, is readily amenable to calculation by computer.
A Mathematica notebook that performs the calculations contained in the remainder of this
section, and is suitable for calculations for general (—1)-closures, is available at the second
author’s web page [Ng]. We will work out the argument for Dy in detail, without recourse
to the computer program, in Section below; we provide fewer details for subsequent
computations and refer the reader to the program. O

6.2. Augmentations for A(l~?4). We now turn to proving Theorem for the Legendrian
link A(D,,), n > 4. In this subsection we present the argument for n = 4; the general n > 4
case is deduced from this in Section [6.5

As stated in the introduction, the Legendrian link A(Dy) C (R3, &) C (S?, &) is defined to
be the rainbow closure of the positive braid (c2010302)%, which is also the (—1)-closure of
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the braid (02010302)4032)0% = (02010302)%A2. A Lagrangian projection for A(54) is depicted
in Figure Let us prove the following result:

Theorem 6.2 (The DyLegendrian). Let ¢ : St — L£(A(Dy)) be the purple-box Legendrian

loop. Then there exists a Lagrangian filling L C D* of A(ﬁ4) such that the V¥-orbit of the
system of augmentations €, is entire.

In order to prove Theorem we set some notation and lay out the pieces that go into the
proof. Let us label the crossings of the positive braid (02010302)4032)0% from left to right as

aie, - - ., a1, 017,018,019, A20-
Figure shows the Lagrangian projection of A(54) that we use for the proof, where the
labeled crossings are also depicted. These crossings are the degree-0 Reeb chords of a Leg-
endrian front for A(Dy). The ¥-monodromy is obtained by carrying around the purple box

containing the two crossings aj9,azo and the two base points 1, t2, as shown in Figure 28]
cf. Figure 2]

aio ag a2 ay7 Q18
/ / [
N9 as N a5 a4 / u,/;_/ .
ary 7 /—\<_§3 / @19 20
/ f
/

/

F1GURE 28. Lagrangian projection for the Legendrian link A(l~)4), as used in
the proof of Theorem[6.2] The crossings ai1, ag, in blue, are used to detect the
infinite order of the ¥-monodromy. In this case, the ¥-monodromy is obtained
by moving the crossings aig, asg around this projection.

The filling L of A(154) that we will consider is the decomposable filling constructed as follows.
Resolve the following crossings of A(Dy) in order:

ag, aio, aii, @12, a13, ai4, 15, A16-

Note that at each step the remaining braid is admissible in the sense of Definition this
follows from Proposition and the fact that the crossings a4, as, a2, a1, a17,a19 comprise
a half-twist. Thus each step produces a legal Lagrangian projection of a Legendrian link,
and each resolved crossing is contractible. The result of resolving these 8 crossings is the
(—1)-closure of a full positive twist, which we write as Ag and is precisely the standard 4-
component Legendrian unlink. We then fill in each of the 4 component unknots. This gives
the desired filling L of A(Dy), expressed as 8 saddle cobordisms and 4 minimum cobordisms.

Following the discussion in Section we use Z[tfﬂ, .. ,tfl,sgl,...,sfﬁl] as the coeffi-

cient ring for the DGA A(A(Dy)). We will need two maps on A(A(Dy)), induced by the
Y-monodromy and the filling L. The former map is an automorphism ¢ : A(A(Dyg)) —

A(A(Dy)). For the latter, as in Section L induces an augmentation 7, : A(A(D4)) — R.

Here R = Z[til,...,tfl,séﬂ,...,s{cﬁl]/(wl = wy = wg = wy = —1), where wy,wsy, ws, wy

are the product of the labels of the base points on each unknot in Ay. Since by inspection
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t1,to,t3,t4 appear on all distinct components of Ag, the quotient allows us to solve for the
t;’s, and we conclude that R = Z[s$', ... si)].

Our aim is to pairwise distinguish the iterates ez, o 9% : A(A(l~?4)) — R, k € N, even up
to automorphisms of R. We will do this by computing the image of ag under each of these
maps. In order to perform this computation, we need to partially compute the maps ¥ and
€L

We first consider the monodromy automorphism ¥, which we compute using Proposition
First note that ¢ fixes the variables a19, asg, t1, 2 that appear inside the purple box. We will
be interested in what ¢ does to the two Reeb chords ag, ai;1, which are depicted in blue in
Figure 28] The path matrix associated to the purple box is given by

M= 0 1 ) 0 1 . tl 0 o tl t2a20
1 ag 1 ag 0 to tiarg  ta2(1 4 argazo)

By Proposition the effect of the DGA automorphism ¢ € Aut(A(A(Dy))) on the two
crossings ai1, ag, which are depicted in blue in Figure 28] is

<a11) L (cm) M (au) .
ag ag ag
Next consider the augmentation e, which we can explicitly compute using the formulas from

Section [4. We will only need the following partial computation:

Lemma 6.3. We have er(ag) = sg, er(a11) = s11, and

er(t1) = —s11815,
59512513516
(t2) = ———
811515
_ 959 59812513
er(ag) = — — —5——,
S11 511515
3 2 2 2 .2 2 2
_ 511515 511515 511515 511514575
EL(GQ()) = - + — + 5 .
59512513516 59512513 59510513516 59512573516
Proof. For ¢ = 9,...,16, let ®; = <I>C°mb denote the combinatorial cobordism map associ-
ated to the saddle cobordlsm at a;, as "described in Section [£.2} also let gg : Ay, — R =
Z[séﬂ, .. 316 ] denote the augmentation associated to the disk filling of Ag. We have

€L:€00(I)160---O(I)9.

We begin by computing £y. Note that all Reeb chords of Ay either have degree 1 (for the
42 crossings on the right) or connect different components of Ay (for the crossings a; for
1 <i<8and 17 < i < 20). Since the filling of Ay consists of four disjoint disks, it follows
that g sends all Reeb chords to 0. As for the t; parameters, an inspection of Figure [28] yields
that the unknot components of Ay containing ¢; and ¢ contain the following base points in
order: —81_51, —sl_ll,tl and —81_61,815,—81_31,—81_21,811,—89_1,152, respectively. Setting each of
the products of these base points equal to —1 gives t1 = —s11815 and to = —%, and
these are the respective images of ¢; and ¢t under ¢y (and thus under €, as well).

We now proceed to compute €, for ag, a11, a19, asg. The sequence of saddle moves has been
chosen to simplify the computation of er(ag) and er(a11): indeed, e (ag) = Pg(ag) = sg,
while (I)g and (I)l(] fix a11 and so EL(all) = q’ll(dn) = S11-

For a9, we keep track of disks with two positive punctures, one at a1g9 and one at the crossing
being resolved. There are no such disks when we resolve ag and a;g. When we resolve a1,
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as ayr ag aiq aio ag az ayr aig
\7\ .s'j‘ S \
5 “s 59
5

+/f7m

FIGURE 29. Disks with positive corners at aj1,aig (left) and a5, a9 (right),
contributing to ®11(a19) and ®15(a19) respectively. For these disks, the pos-
itive corner at ai9 has positive orientation sign, while the positive corner at
a11 and a5 has negative orientation sign.

there is one disk A € A7’ (a1g9) passing through —sg ! (against the orientation) with no
negative corners; see Figure From Definition we read off @7 (aj9) = a9 + 5951_11 and
O (a19) = ayg, and so P11(aig) = a9 + 8951_11. As we successively resolve aqs,...,as, the
only additional relevant disk with two positive punctures comes when we resolve a5 and is

shown in Figure this gives ®15(a19) = a19 — 8981_1181281381_5181_11. We conclude that

S9 59512513 S9 59512513
er(a1g) = €o(P15(P11(a19)) = €o <a19+"'> - shs15

S11 82815 s11 82,815

The computation of £ (agg) is similar but slightly more involved. We compute that
Dg(ag) = azp — t1a115q 'ty "
®1o(ag) = ago — trarasyty
®13(az0) = ago + tispy araty
®15(az0) = ago + t1s5 arety
piecing these together, along with ®;(a;) = s; and the values computed above for £y(¢1) and

eo(t2), gives the desired expression for e, (ag). O

We are now in position to prove Theorem

Proof of Theorem[6.3. Consider the following matrices with entries in Z[sg!, ..., si3]:
. . a1\ _ [(sn s 1 |
MO .—EL(M), Vo ‘_EL(CL9>_<89)’ N.—(Sg 0), M1 =N M()N

For k € N, the augmentation €7, o ¥* sends the column vector (%) to

_ 1 1
en(M)E - ep (‘2191> = M¥vg = N(N“TMyN)* . (0) = NMF <0> .

We can explicitly write down M7 using Lemma[6.3] This leads to the following observation: if
we replace s11, S12, S15, S16 by their negatives —s11, —S12, —S15, —S16, the matrix M; becomes

mi m12>
)

(Ml)‘{8j—>—5j7j=11,12,15,16} = <m21 Moo

where the entries are

2
59513579 59514512 59515512 59514515
+ + +

mi1 = + S9S16

510511 S11 $10 $13

812513
miz = p + S15

11

59513515

ma1 = e + S9514512
10

ma2 = 512513-
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Note that all the coefficients are positive Laurent polynomials in the variables sg,..., sig:
this is the algebraic reason for our choice of augmentation e, and the change of signs for the
variables si1, $12, S15, S16-

Let us now finally conclude that the iterates ez, o ¥* are pairwise distinct. We do this by
studying the quantity

B(k,a0) = max [0 21 0")(as),

where 1 : R — Z runs over all possible 2% unital ring morphisms. This is an integer-valued
invariant of an augmentation ¢y, : Ay — R even up to post-composition of an automorphism
of R. That is, if E(k,a9) # E(l,a9) then there exists no automorphism ¢ € Aut(R) such
that ¢(er, 0 9¥) = e 0 ¥, and thus the k-th and I-th ¥-iterates of e, are distinct. In order

to compute F(k,ag), we note that
1 1
o o () -Jo o)

(e, 0 9*)(ag)| =
is the absolute value of the upper-left entry of Mf. A unital ring morphism 7 : R — Z
is uniquely determined by specifying the values sg,...,s16 € {1} and since the entries
mi1, M2, Ma1, Moy are positive Laurent polynomials, the value |(ef, o ﬁk)(a9)| is maximized
when s; = —1 for i = 11,12,15,16 and s; = 1 for ¢ = 9,10,13,14. It follows that E(k,ag)
is equal to the upper-left entry of (3 %)k, which is a strictly increasing function of k. This
proves that E(k,ag) # E(l,ag9) if k # [, as required. O

6.3. Three Variations on the Affine D4-braid. Let us next consider the following three
Legendrian links from the Introduction:

A(B12) = A((o1020201)%01,1;07),  A(Ba1) = A((o1020201)%07, 15 01),

A(B11) = A(01090901)%01, 15 01).

These are obtained from the 154—braid by removing the crossing aig, for 812, the crossing aqg,
for P21 or the two crossings aig, asg, for the braid £11. See Figure [28| for the notation on the
crossings, we denote the crossings of these three braids by the same labels!” as in Figure
In these three cases, we can use the template given by the proof of Theorem [6.2] again by
studying the crossings ag, a11. We will omit the details and just give the choice of Lagrangian
filling L, its corresponding augmentation € as computed from the formulas in Section
and the augmented matrices M;. These computations are also contained in the Mathematica
notebook [Ng].

- The link A(Bi12). The Lagrangian filling L is obtained by resolving the crossings
ag, a9, a11, a2, i3, ais, aig in order. The augmentation €7 sends

59512513516 59 51251359
1 — —=susis5,lg = ———————,09 — S9,a11 — S11,019 — — + —5
511515 S11 511515
2 .3 2 2 .2
S15511 815811 8158713

ag0 — —

83512513316 59812513 59510513516
The augmented matrix M; = N~ 'MyN satisfies

2
59513579 59515512 $12813
_7\41| . — 510511 + 510 + 59516 S11 + 515
{sj——s;,j=11,12,15,16} 5052, 813 )
= 812813
$10

whose entries are all positive Laurent polynomials.

LT hat is, the crossing a; for the l~74—braid is still denoted a; for the braids B;;, 1 < 4,5 < 2, where (22 is
precisely the Dy4-braid.
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- The link A(fB21). The Lagrangian filling L is obtained by resolving the crossings
ag, a9, a11,a12, 13, 14, a1 in order. This augmentation €5, sends

2
59512513 59513579  S13512 59514512 . S9
ty > ————,to = —S11816, a9 — S9,a11 —> S11, Q19 — + — + —

2 2 :
S11 510571516 511516 511516 S11

The augmented matrix M; = N~ MyN satisfies

2
59513879 89514812 512813
M| . = 510811 + 511 T 89516 S11
{sj——s;,j=11,12,16} 5951352,
B + 898145812 512513

whose entries are all positive Laurent polynomials.

- The link A(B11). The Lagrangian filling L is obtained by resolving the crossings
ag, a10,a11,a12, a13, aig in order. This augmentation €7, sends

2

59512513 59513579 513512 S9

1 = ————, 12 = —S11516, 09 — S9, Q11 —> S11,Q19 — 5 + +—.
S11 510511516 S11816  S11

The augmented matrix M; = N™!MyN satisfies

2
5951358 S128
M — S105112 + 59516 1821113
1|{s]~H75j,j=11,12,16} - 393%2513
510 512813

whose entries are all positive Laurent polynomials.

This completes the proof of Theorem for the Legendrian links A(511), A(B12), A(B21). We
emphasize that these links all have a stabilized component (or two, in the case of A(S11)).
In particular, these Legendrian links are not the rainbow closure of a positive braid, and our
Floer-theoretic argument is presently the only known argument that shows the existence of
infinitely many Lagrangian fillings for these Legendrian links.

F1GUrE 30. Lagrangian projection for the Legendrian link Aj, as used in the
proof of Theorem In this proof, the crossings aig, ag, in blue, are used to
detect the infinite order of the ¥¥-monodromy. The ©¥-monodromy is obtained
by moving the purple box around this projection. To construct As instead,
add an additional crossing labeled a14 to the purple box, between a3 and the
base points t1, to.
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6.4. Monodromy for the Braids A; and A;. We next prove Theorem [I.1] for the Legen-
drian links A; and As from the Introduction. Figure [30] depicts a Lagrangian projection of
A1; As comes from adding one additional crossing to the purple box.

Theorem 6.4 (The A;— and Ay—Legendrians). Let Ay and Ay be the (—1)-closures of the 3-
braids (oe010102)301 and (02010109)30%, respectively. Let ¥ : St — L(A1) be the purple-box
Legendrian loop. Then for n = 1,2, there exists a Lagrangian filling L C D* of A,, such that
the ¥-orbit of the system of augmentations €y, is entire.

Proof. As in Section this follows the proof of Theorem and we will simply specify
the fillings and describe the corresponding augmentations and augmented matrices. The
computation of the augmentations can be found in [Ng].

We begin with A;, whose Lagrangian projection is shown in Figure We choose the filling
L given by resolving the crossings

aio, ag, asg, ar, ag, as, @12

in order. (As usual, this produces an unlink, and we then fill in each of the 3 unknot
components to complete the construction of L.) The augmentation e, sends

858889
t1 — ,to — —S6S7510812, A9 — S9, A10 — S10,
8657510
S5 87 S9 S558 S5 1
a3 — — — — +—+ —

+ .
2.2 2.2
S6 S8 510  S5S7S10S12 555759510512 S6575859510512

t a 1 _
Define My = ¢y, 2 ), N=¢g (10 ,and My = N"1MyN; then
t1  aistse ag O
_[m11 ma2
Mi|(s; s, j=57810) = <m21 m22> ,
and the entries
2
565105128 S5
my = T | 565951257 + 8551081257 + —
S8 565759 5859
5558
mig =
5657510

2 2
565751257 + 55510 4 S10
S8 S65759 5859

2
ma1 = §55751257¢ +
5558
ma =
5657

are all positive Laurent polynomials.

For Ao, we start with the diagram for A; in Figure and add one more crossing labeled
a14 directly to the right of a13. Choose the filling L of A given by resolving the crossings

aio, ag, as, ar, ag, as, a12, @11

in order. The augmentation e, sends

555859512 S5 87 . 89 555859
l1 = —8657510811,t2 = ———————,a9 — S9, @10 —* 10,13 & — — — + — — 5 55—,
5657510511 S¢ S8  S10  S§5751gS11
2.2.2 3¢303 o2 22,3 2 2.2.3 2
a1 — 8657510511 8657510511 | S657510511 _ S657510511
233 2.3 2. -
5588859 555859812 855859512 853889812
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Define M, — sL( h a14t2 v ) N = ¢ (‘“0 (1)) and M, = N-'MyN: then
2

aist1 (14 aizais ag
mi1 Mmi2 .
Milrg oo i = and the entries
1|{s]—> s4,j=5,7,8,10} Ma1 Moo )

2.2 3 2 2 2 2 2 2
. 5651051157 25681081187 5651051157 + 5651051257 4 55581051187 + 8681081187+

mi =
85.5%83 S%S% S5S§89 S8 8883 58859
S5 1
+ 865951257 + 5551051257 + +—
565759 5889
2
5651051157 5551051157 5558
mig = ————— + 8651157 + + )
5859 59 5657510
3 2 3 2.3 3 2 2
8587511870 28687811810 S657511570 2 865751257 55510 S10
ma1 = 5 + 55 + 35 T S557512570 + + + )
5889 5859 S$558959 S8 S6S57S9 5889

2 2 2
m 55587511570 4 56575115710 4 55858
22 = .
59 5859 5657

are all positive Laurent polynomials. U

FiGure 31. Lagrangian projection for the Legendrian link A,, n > 1.

\@

aio ag as a7 aig /

a3 a2 ag as

ay

n—2

F1GURE 32. Lagrangian projection for the Legendrian link A(ﬁn), n >4, as
used in the proof of Theorem

6.5. The general case: A(D,) and A,. We now turn to the Legendrian links A(D,,),
n > 5, and A,, n > 3, which are depicted in Figures |31 and The action of the ¥-loops on
the Legendrian contact DGA for A(f)n), respectively A,, can be studied directly thanks to
our understanding of the ¥-loops for the Legendrian braids A(l~)4), respectively As. The main

ingredient that allows us to deduce the general cases from a particular case is the following:
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Proposition 6.5. Let 8 € Br]'t] be an admissible braid, let k1,ko € N with 2 < k1 < ko, and
let L be an exact Lagrangian filling of A(53,1; a]fl). Consider an exact Lagrangian cobordism
Y from A(B, 1; a]fl) to A(B, 1; 011”) obtained by resolving any combination of (ka—k1) crossings
in the braid a]f2 which are not the initial nor the final crossings. Let

s - AM(B, 1;01%)) = A(M(B, 1;01"))
denote the induced map between the Legendrian contact DGAs. Let a denote any Reeb chord
of A(B, 1;0{“) not in Ulfl, as well as the corresponding Reeb chord of A(S, 1;0]1“2). Then for
all m € N, we have

(e, 0¥")(a) = (e 0 Py 0 95")(a),

where ¥; denotes the ¥-loop of A(B,1; O']fi), 1=1,2.

Consequently, if the ¥1-orbit of the augmentation e, of A(5,1; a’fQ) is entire, then the ¥2-orbit
of the augmentation er0x, = €1, 0 Px; of A(S, 1; ai”) s entire.

Proof. We begin by noting that fx fixes any Reeb chord of A(f,1; a'fz) outside of the braid
O'IfQ. This is because fs: consists of a composition of saddle cobordism maps that count disks
with two positive corners, and the only such disks with a positive corner at one of the resolved
crossings must have its other positive corner at a crossing in the braid, by our assumption
that we do not resolve the two extreme crossings of alfQ.

There are two types of crossings in A(f, 1; 0]1”) besides the crossings in J]f22 the ones that
come from crossings of A(3) involving the satellited strand of /3, and the ones that do not. If
a is of the latter type, then 92 and ¥; both fix a. Since fx(a) = a, we are done in this case.

Now assume that a is of the former type, and note that crossings of this type come in pairs
corresponding to the two strands of Ui”. Recall that the action of the ¥-monodromy on such
a pair of crossings is completely determined by the path matrix of the braid. If we write Py
and P for the path matrices for the braids alfl and 0]f2 respectively, then it suffices to show
that
Py = fs(P).

Note that these path matrices incorporate all base points in the braid region; in particular,
the braid a]fl includes base points in its interior, coming from the resolved crossings of U’fQ.

XOCC XX

ay az  as ay Sy as

FIGURE 33. Resolving a crossing in o3 to produce o2.

To prove P, = fx(P,), by functoriality we may assume that ¥ consists of a single saddle
cobordism. Furthermore, since fs; fixes any crossing besides the two crossings adjacent to
the saddle, it suffices to check the equality when k; = 3 and kg = 2; see Figure [33] In this
case, if a1, az, az denote the crossings in oy, as shown in Figure we have fx(a1) = a; —52_1,

fu(ag) = s2, fx(asg) = ag — 32_1, and we compute:

w626 D)-6 D05 6 D

as desired.

The final sentence of the proposition follows from the fact that ®y; is surjective; see the proof

of Proposition [7.5] below. O
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From Proposition and the fact that A(54) and Ao have fillings for which the 9-orbit of
the associated augmentation is entire, it follows that the same is true for A(D,,), n > 5, and
Apn, n > 3. This completes the proof of Theorem

Remark 6.6. A consequence is that the Legendrian links A(f) ), n > 5, and A,, n > 3 have
infinitely many fillings. This conclusion also follows from just the existence of a cobordism
from A(Dy4) or As to these links, using Proposition [7.5] below. However, Theorem [1.1] is
stronger: we have actually constructed an infinite famﬂy of fillings of each of these links that
are all provably distinct from each other. O

7. PROOF OF COROLLARIES AND CONCLUDING REMARKS

In this section we discuss some of the applications stated in the Introduction. First, we
show that the smooth isotopy type of the Lagrangian fillings we construct is independent of
the iteration of the 1¥-loop. Then, we precisely state the notion of aug-infinite Legendrians
(which implies the existence of infinitely many fillings) and prove some of its properties
under exact Lagrangian cobordisms. We also conclude Proposition providing a gamut
of small smooth knots with a max-tb Legendrian representative that admits infinitely many
Lagrangian fillings. Finally, we prove Corollaries and regarding closed Lagrangians
surfaces in certain Weinstein 4-manifolds.

7.1. Smooth isotopy class of Lagrangian fillings. Let L C (D% \y) be an exact La-
grangian filling of A C (S?,&) and 9 : S' — L£(A) a Legendrian loop. The isotopy cobor-
dism gr(¥) C S* x [0, 1] associated to the Legendrian loop ¥ is an exact Lagrangian self-
concordance of A, which we can concatenate with L. This yields another exact Lagrangian
filling Ly = L#gr(¥) of A. Theorem shows that, for certain ¢, Ly may not be Hamil-
tonian isotopic to L. For the Legendrian ¥-loops we use in this article, let us prove that Ly
is always smoothly isotopic to L. The argument is the same as in (the updated version of)
[CG21]; we reproduce it here for convenience:

Proposition 7.1. Let A C (S3, &) be a Legendrian link of the form A = A(B,i;7v), where
B e Brﬁ,fy € Br;\rj. Let Ly C (D* \g) be an exact Lagrangian filling obtained by a pinching
sequence ™ € S|, and I : S' — L(A) a Legendrian 9-loop. Then, the exvact Lagrangian
fillings L and Ly are smoothly isotopic relative to their boundary A.

Proof. From the perspective of a positive braid representative g € Brf\, of A = A(p), a
Legendrian 9J-loop consists of two moves: Reidemeister 111 moves and conjugations. Let us
denote the ordered crossings of 3 by (a;), j € [1,]B|], with a4 being the k-th crossing
to be resolved. First, any pinching (resolution) sequence 7 € Sg yields a surface which is
smoothly isotopic to L. From the smooth perspective, resolving a crossing corresponds to
an elementary surface cobordism of index 1 and thus two consecutive such cobordisms can
be performed in either order without affecting the smooth type, see Figure [34] below. Since
any two different pinching sequences differ by a composition of transpositions, the smooth
isotopy class of L is equal for any pinching sequence 7 € Sjg. It thus suffices to consider
the case of the identity permutation 7 = e, and show that L. Uy gr(¥) is smoothly isotopic
to Le.

Consider a Reidemeister III move for three (consecutive) crossings a;_1, a;, a;+1, which leads

t0 aj+1, a4, a;—1. For the Lagrangian filling L., these three crossings are resolved left to right:

starting at a;—1, then a; and a;+1, in this order. Starting at a;y1,a;, a;—1 we can describe two

smooth cobordisms, both local to this piece of the braid (constant relative to its endpoints):
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(i)

These cobordisms are depicted in Figure Both tangle cobordisms start at the tangle
a;+1, ai,a;—1 and end up in the trivial 3-stranded tangle. Since the crossings a;—1 and a; 1 are
interchanged in a Reidemeister III move (a;—; before being geometrically the same as a;+1),
as are a;y1,ai—1, the two tangle cobordisms are smoothly isotopic. Hence, concatenating
with the graph of an isotopy given by a sequence of Reidemeister 11T moves, from A to itself,

R2 ]RQ R2

Ty Ty Ty

s € [0,1]

FIGURE 34. A compactly supported smooth isotopy between two (local) exact
Lagrangian cobordisms which are not Hamiltonian isotopic. The coordinate
t € R represents the symplectization direction R; x R?‘,;,%Z and the diagrams
are Lagrangian projections in R2 , as indicated. The variable s € [0,1] is the

x?y
real coordinate associated to the isotopy itself.

Apply a Reidemeister 111 move down to a;_1,a;, a;+1 and then resolve according to

m = e. Namely, first a;_1, then a; and finally a;41.

Directly resolve the three crossings a;1, a;, a;—1, using the transposition = = (i, 1+ 2).

That is, we resolve a;41 first, then a; and lastly a;—;.

does not affect the smooth isotopy type of a Lagrangian filling L.

Q41 a;—1
X (X)

X

aij—1 Qi+1

FiGurRE 35. The two (local) exact Lagrangian cobordisms associated to a
Reidemeister III move: the cobordism in Item (i) in the text is depicted on
the left, whereas the cobordism in Item (ii) is drawn on the right. These
cobordisms are to be compared smoothly, relative to their common ends.
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The same occurs for conjugation of the given positive braid g = (a1,a2,...,a3-1,q4))-
Indeed, there are two smooth concordances starting with (aw,al, ag, ..., a|ﬁ\—1)3

(i) Apply the cyclic shift from (a g, a1, az, . .., a|g—1) down to (a1, az, . ..,ag-1,a) and
then resolve the crossings starting at ag and then left to right, that is, continuing
with ay, az and resolving through ag ;.

(ii) Directly resolve the crossings of (aig|,a1,a2,...,a5—1) according to m = e: starting
at a|g, then a1, az through ajg_;.

These two concordances yield smoothly isotopic surfaces. In conclusion, starting with the
Lagrangian filling L. C (D%, \g), the concatenation Ly = L Uy gr(¥9) yields a Lagrangian
filling of the form L, for a permutation m € S|g. Since L; and L. are smoothly isotopic,
the required statement follows. O

7.2. Aug-infinite Legendrian links and cobordisms. Here we describe a method for
starting with one Legendrian link known to have infinitely many fillings and producing others.
First we need to define a condition that implies having infinitely many fillings and is in turn
implied in our examples by the ¥J-orbit being entire.

Suppose that A is a Legendrian link with a (connected, orientable, exact Lagrangian) filling
L of Maslov number 0. As discussed in Section L induces a (2g + 2m — 2)-system of aug-

mentations €7, : Apy — Z[slﬂ, . ,s%tglﬂm_?], where ¢ is the genus of L and m is the number
of components of A. Furthermore, up to equivalence (automorphism of Z[s{?, ..., sétgl +om—2l)s

this system is well-defined, independent of choices, and invariant under Hamiltonian isotopy
of L. Here, as in Section we have assumed in defining the DGA (Ay, 0) that there is one
base point on each component of A.

There are 229t2m=2 ring morphisms from Z[sfl, - .,sétglJer_Q] to Z, each sending each s;

to +1. By composing 7, with these homomorphisms, we obtain 229172"~2 augmentations
from Ap to Z. In this way, the filling L of A induces finitely many Z-valued augmentations
(Ap,0) — (Z,0). Note that this continues to hold even if L is not connected: the augmenta-
tions induced by a disconnected filling of A necessarily annihilate any Reeb chord of A whose
endpoints lie on different components of the filling, and each component of the filling induces
finitely many augmentations of the sublink of A given by the boundary of the component.

Definition 7.2. A Legendrian link A is aug-infinite if the collection of all Z-valued aug-
mentations (Ap,0d) — (Z,0) induced by orientable exact Lagrangian fillings of A of Maslov
number 0, ranging over all possible such fillings, is infinite.

Note that the aug-infinite condition is independent of the choices made along the way, in-
cluding spin structure, capping paths and operators, and placement of base points. Adding
extra base points also does not affect the condition; cf. the proof of Proposition below.

The following is an immediate consequence of the fact that each filling induces finitely many
Z-valued augmentations.

Proposition 7.3. If A is aug-infinite then it has infinitely many fillings.

In the conclusion of Proposition infinitely many Lagrangian fillings refers to the fact that
there are infinitely many Lagrangian fillings up to Hamiltonian isotopy. A prior, they might
not be smoothly isotopic. Nevertheless, as proven in Proposition this is the case for the
Lagrangian fillings we construct with 9J-loops.

Next we observe that our arguments from Section [0] actually prove that the Legendrians
A(Dy,), A, and A(As) satisfy this strengthened version of having infinitely many fillings.

Proposition 7.4. The three classes of Legendrian links A(Dy) (n > 4), Ay, (n > 1), and

A(B11) = A(Z2),A(512),A(521) are aug-infinite.
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Now we claim that for particular decomposable Lagrangian cobordisms, if the bottom of the
cobordism is aug-infinite, then the top is as well. To be precise, we have the following.

Proposition 7.5. Let Ay and A_ be Legendrian links with rotation number 0, and suppose
that A_ is an aug-infinite Legendrian link. Suppose that the following two properties hold:

- The zy projection I, (A_) is obtained from Il,,(Ay) by a sequence of saddle cobor-
disms at proper contractible Reeb chords of Ay of degree O;
- All Reeb chords of A_ (and thus of Ay ) are in nonnegative degree.

Then the Legendrian link Ay is aug-infinite.

Proof. Tt suffices to consider the case where A4 and A_ are related by a single saddle move at
a Reeb chord a of A;. Suppose that A+ has m components, and place a base point on each;
these base points trace down to A_. As in Section we place a pair of base points on A_
coming from the saddle at a. Then both Ay, and Ay_ are DGAs over Z[tiﬁl, N N S
and the cobordism gives a map ® : (Ax,,0) = (Ax_,0).

Any filling of A_ produces a system of augmentations for A_ as in the discussion in Sec-
tion note that now one component of A_ has more than one base point, but the construc-
tion from Section works just as well in this case. From Remark [3.I] adding each extra
base point has the effect on (LA _, 0) of replacing one generator ¢ of the coefficient ring by two
generators t’',t” and setting ¢t = t't” in the differential. It follows that there is a two-to-one
correspondence between Z-valued augmentations of (Ap_, 0) after and before the extra base
point is added, and so adding extra base points does not affect the aug-infinite condition.
We conclude that (A _,0) has infinitely many augmentations coming from fillings. Since

there are finitely many choices for the images of t1,...,t,,,s under such an augmentation,
there exist t9,...,t0 s" € {£1} such that (Ax_,d) has infinitely many augmentations from

fillings that send ¢; to t? and s to sV.

Write A/Z\+ and .A/ZL for the DGAs over Z obtained by setting ¢; = t? and s = s%. The
cobordism map ® induces a map ®% : A%+ — A% satisfying ®%(a) = +1 and for all
other Reeb chords a; of Ay, ®%(a;) = a; + f(a;) for some f(a;) € Ax_ determined by the
construction in Section[d.2] As observed in Section [4.2] this map respects the height filtration:
for each i, f(a;) only involves Reeb chords of strictly smaller height than a;. We conclude
from this that ®y is surjective.

Since A% has infinitely many augmentations from fillings, there is some Reeb chord a;
of A_ that is sent to infinitely many values in Z under these augmentations. Now use the
surjectivity of ®Z and suppose that x € Ap, satisfies ®Z(z) = a;. Each augmentation of A%
from a filling of A_ produces an augmentation of .A%+ from a filling of Ay by composition
with ®Z, and x is sent to infinitely many values in Z under these augmentations. This shows
that A%+ has infinitely many augmentations from fillings of Ay, and consequently that A
is aug-infinite. O

Remark 7.6. It is expected that Proposition should hold whenever there is an exact
Lagrangian cobordism between Ay and A_, without the restriction of being composed strictly
of saddle moves (and not isotopy cylinders) or even of being decomposable. One approach
to proving the more general result is to show that exact cobordisms induce injective maps
on the augmentation categories of Legendrian links (over Z), in the spirit of previous work
of Pan [Pani7a] for Legendrian knots and the upcoming paper [CSLLT21| for links. ([

As the first application of Proposition [7.5 we have Corollary [I.4}
Proof of Corollary|[1.7]. Observe that there is a decomposable Lagrangian cobordism to the

Legendrian (4,4) torus link A(4,4), which is the (—1)-closure of the 4-braid (c10203)% =
61



(02010302)* 0301, from the link A(Dy) = A((02010302)* 0203, consisting of two saddle cobor-

disms at proper contractible degree 0 Reeb chords. Since A(Dy) is aug-infinite, it follows that
A(4,4) is aug-infinite as well. In addition, there is an another such cobordism from A(4,4) to
the Legendrian (n,m) torus link A(n, m) for any n,m > 4, and so by Proposition[7.5] A(n,m)
is aug-infinite for any n,m > 4. Similarly, we can deduce that the Legendrian (3,6) torus
link A(3,6), which is the (—1)-closure of the 3-braid (o109)? = (020%02)309, is aug-infinite
because there is a cobordism to A(3,6) from Aj; it then also follows that the (3,m)-torus
link A(3,m) is aug-infinite for all m > 6. The proof is complete. O

We can also apply Proposition to show that various other single-component Legendrian
knots have infinitely many fillings.

Proposition 7.7. The Legendrian knots given by the (—1)-closures of the following positive
braids have infinitely many fillings:

(i) (o9010302)*090103, which has smooth type m(10145), Thurston—Bennequin number 3
and genus 2 fillings,

(ii) (o2010309)30530%20302010% € By which has smooth type 10154, Thurston—Bennequin
number 5 and genus 3 fillings,

(iii) o30%030303070901 € Bs, which has smooth type m(10161), Thurston—Bennequin
number 5 and genus 3 fillings,

(iv) o90?030303030303 € Bs, of smooth type 10139, Thurston—Bennequin number 7 and
genus 4 fillings,

(v) o90%03020201090%0301 € Bs, of smooth type m(10152), Thurston—Bennequin number
7 and genus 4 fillings.

Proof. The m(10145) and 10154 knots have a cobordism from the link A(S;1), which is the
(—1)-closure of (02010302)*0103. The other three knots have cobordisms from the link A1,
which is the (—1)-closure of oo0?030i05020907. O
In light of Proposition given two Legendrian links A, A_ with infinitely many fillings,
we might consider A_ to be “simpler” than A, if there is a saddle cobordism from A_ to A.
Since such a cobordism increases Thurston—Bennequin number as we go from bottom to top,
a rough measure of the simplicity of a Legendrian link with infinitely many fillings is given
by its Thurston-Bennequin number: the lower the tb, the simpler the link. (Alternatively,
we could use 2g + m where ¢ is the genus of a connected filling and m is the number of
components of the link, since tb = 2g + m — 2.) From this perspective, m(10145) (tb = 3) is
the simplest knot that is known to us to have infinitely many fillings, while A(Ay) (tb = 2)
is the simplest known link.

Remark 7.8. We presently do not know of any Legendrian knots with infinitely many genus
1 fillings, or of any Legendrian links with infinitely many planar (genus 0) fillings. From the
perspective of cluster algebras, the existence of the former would be somewhat unexpected
if we restrict to the class of (—1)-closures of admissible braids. O

7.3. Lagrangian surfaces in Weinstein 4-manifolds. Here we prove Corollaries [1.6| and

Let A C (S3,&t) be a Legendrian link with m := |mo(A)| components, and W (A) the

Weinstein 4-manifold obtained by attaching m Weinstein handles to (D?, \s), one along

each component of the Legendrian A C (S3, &) = (OD*, ker(\st|gp4)). Given an embedded

exact Lagrangian filling L C (D%, Ay ), we denote by L C W (A) the closed embedded exact
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Lagrangian surface in W(A) given by the set-theoretic union L:=LU Leap, where Ly, is
the (disjoint) union of the Lagrangian cores of the m Weinstein handles.

The augmentations e, : Ax — Z[H1(L)] of the Legendrian contact DGA used in this manu-
script employ the system of coefficients Z[H1(L)], geometrically keeping track of local systems
in a Lagrangian filling L C (D%, \st). In the transition from L to L C W (A), we must compare

Z[H1(L)] and Z[H,(L)], which are not isomorphic unless A has a single component. This
motivates the following definition.

Definition 7.9. Let L C (D%, \s) be a filling of a Legendrian link A C (S?, &), inducing the
system of augmentations e, : Ax — Z[H;(L)], where A is equipped with the null-cobordant
spin structure. The restricted system of augmentations associated to L is the composition

er s Aa Ly Z[Hy(L)] — Z[H,(L)],

where the second map is induced by the quotient map Hy(L) — Hy(L). O

If we place a single base point ¢; on each component A; of A, then ¢; represents the homology
class of A; in both Hi(A) and H;(L), and the quotient map in Definition [7.9|sends each ¢; to
1 since A; is null-homologous in L. For practical purposes, if L is a connected decomposable
filling of an m-component link A, we can compute the restricted system of augmentations e

associated to L as follows.

Let us write (Ap, ) for the DGA of A with the Lie group spin structure, which is a DGA
over Z[tf!,... tF1]. Recall from Sections and the construction of the system of

augmentations e, : Apx — R where R = (Z[tll,...,t,,jfll,sfl,...,sgﬂ])/(wl = = w, =
—1). We can further quotient the ring R by the relations t; = -+ = ¢, = —1 to get
R:=R/(t; = -+ =t, = —1): this corresponds to passing from H;(L) to Hi(L), where the

— sign comes from the fact that we are using the Lie group, rather than the null-cobordant
spin structure, on L. From Remark ti-tym = (—=1)™ in R, and this new quotient
imposes m — 1 new relations. We have R = Z[H;(L) ® Z™ '] and R = Z[H,(L) ® Z™ 1]
imposing the conditions t; = --- = t,,, = —1 on the system of augmentations for L produces
the restricted system of augmentations ez for the Lagrangian filling L, enhanced by link
automorphisms in each case.

Remark 7.10. When A is a single-component Legendrian knot, there is no difference between
the system and the restricted system of augmentations for a filling L. This comes from the
result of Leverson [Lev16] that any augmentation in this case must necessarily send the unique
t variable to —1; geometrically, this correlates with the fact that A is already null-homologous
in L before we pass to L. O

The purpose of restricted systems of augmentations for L is that they correspond to local
systems that extend to local systems for the closed exact Lagangian surface L. Let Ly, Ly C
(D*, A\st) be Lagrangian fillings of a Legendrian link A C (S3,&). If Ly, Ly are Hamiltonian
isotopic, then their associated augmentations are DGA homotopic; see Theorem As
noted in Remark for the Legendrian links studied in this paper, we can replace “DGA
homotopic” by a simpler notion. Following Definition [3.9] we define two restricted systems
of augmentations

€f1 : AA — Z[Hl(fl)], €f2 : .AA — Z[Hl (fg)]
to be equivalent if there exists an isomorphism v : Z[H;(L1)] — Z[H1(L5)] such that
e, =Y oeg,.

Then for Legendrian links such that the entire DGA A is concentrated in nonnegative

degree, as is the case for all of the examples in this paper, DGA homotopic (restricted)

systems of augmentations are necessarily equivalent (restricted) systems of augmentations.
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Now, both Corollaries and will be proven by using the following Proposition [7.11]
which is not essentially new and uses the recent articles [EL19, [Ekh19, [GPS19]. We thank
T. Ekholm, S. Ganatra, and Y. Lekili for illuminating discussions regarding the proof of

Proposition [7.11]

Proposition 7.11. Let A C (S3,&4) be a Legendrian link and Ly, Loy C (D* \g) two fillings
of A. Suppose that the two restricted systems of augmentations

6Z1 : .AA — Z[Hl(fl)], 8f2 : .AA — Z[Hl(z2)]

are not DGA homotopic. Then the exact Lagrangian surfaces L1, Ly C W(A) are not Hamil-
tonian isotopic in the Weinstein 4-manifold W (A).

Proof. Let Q0(W (A)) be the wrapped Fukaya category of the Weinstein 4-manifold W (A), C
the union of the m co-cores of the Weinstein handles of W(A), and CW(C) the endomorphism
ring of C' as an object in (W (A)). By [CDGGI1T, Theorem 1.1], C' generates 20(W (A)), see
also [GPS19| Theorem 1.10], and thus we consider the category 20(W (A)) through its Yoneda
embedding Hom(C, —) := CW(C, —). The Lagrangian surfaces L1, Ly are exact and hence
represent objects in 23(W (A)), equally denoted L1, Lo. Under the Yoneda embedding, these
two objects become Hom(C, L;) := CW(C, L;), i = 1,2. We will now argue that Ly, Ly €
Ob(20(W (A))) are distinct objects, which proves that the exact Lagrangian surfaces Ly, Lo C
W (A) are not Hamiltonian isotopic. It suffices to show that CW(C, L1) and CW(C, Ls) are
distinct as CW(C')-modules.

Let L C (D%, \y) be a filling of A and €, : Ay — Z[H;(L)] its associated augmentation. The
holomorphic disks that define ¢, are explained in detail in [EHK16], see also [EN18, Theorem
6.8] and Sections (3| and [4f above. In short, a Reeb chord a € A, is sent to the contributions
from rigid holomorphic disks u : (D%, dD?) — (D%, \s;) with a positive puncture at the Reeb
chord a, and each disk contribution is weighted by the homology class [0u] € Z[H;(L)], where
Ou C L is appropriately capped in L. The claim is that the holomorphic disks that define
the CW(C')-module structure of CW(C, L), namely the composition A.-map

n : CW(C) ® CW(C, L) — CW(C, L),

or equivalently CW(C) — End(CW(C, L)), are in bijection with those contributing to the
restricted augmentation . Indeed, we first observe that C'N L, which generates CW(C, L),
consists of precisely a point per each component of C. The disks contributing to n; have: a
positive puncture at a generator of CW(C'), which is either a minimum of a Morse function
on C or a Reeb chord of its Legendrian boundary 0C' C 0W (A); a positive puncture at a
generator of CW(C, L); and a negative puncture at a generator of CW(C, L) (in fact, the
two generators of CW(C, L) here must be the same). These disks are depicted in the right
diagram of Figure [36] In our case, the contributions of these disks are weighted by their
boundary homology classes, where we only keep track of the piece of the boundary that
belongs to the closed Lagrangian surface L. These contributions yield coefficients in the
ground ring Z[H; (L)].

Now, the decomposition L = LU Legyp of the Lagrangian surface L C W (A) into a Lagrangian
filling L and the cores L4 is compatible with neck-stretching along the contact hypersurface
(OD*, &) containing A, where the Weinstein handles are attached. That is, the Weinstein
4-manifold decomposes as

l
W(A) = (D4a)\st) U(’)p(A) (U(T*D2a Ast)) )
i=1
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CW(C, L) as
CW(C) — module

FiGURE 36. On the left, the holomorphic disks contributing to the aug-
mentation €7, (bottom) and the surgery isomorphism CW(C) = A (top).
On the right, the holomorphic disks contributing to the module structure
CW(C) — End(CW(C,L)). The notation g(CW(C)) and g(Ax) stands for
generators of the algebras CW(C') and Ay: g(CW(C)) are Reeb chords of 9C
or the minimum of C, and g(Ay) are Reeb chords of A.

and performing a neck-stretching procedure to the holomorphic disks contributing to nr
breaks them into two pieces. See [Abb14, Chapter 3], [BEHT03, Section 3|, or [CDGG20),
Section 5] for the neck-stretching technique along such a contact hypersurface, in this case a
standard contact level set of the symplectization of (S?, &y ). For a sufficiently large stretching,
see e.g. [EHKI6, Corollary 3.10] or [BEH'03| Section 11.3], there is a one-to-one correspon-
dence between the rigid holomorphic disks contributing to 77, and two-level broken disks.

The first level consists of holomorphic disks in the moduli space M(c), following the no-
tation in [EL19], where ¢ := cpz¥cz", cp is a product of Reeb chords in A, 2V, 2" are
intersections in C'N Legp, and ¢ is a generator of CW(C). The boundaries of these holomor-
phic disks start belonging in L.y, at the left of the leftmost positive puncture in cj, then
continue to belong to L., as the Reeb chords in cj are visited, and switch to belonging to
C, when 2" is reached; then, the boundary (away from the punctures) belongs to C' as the
chords in ¢ are visited and we reach 2, where the boundary switches back to L. The
curves in this first level are depicted in the top of the left diagram of where 2V, 2% are
the two points marked by C' N Ly, and these moduli were studied in detail in [EL19] by
using the properties proved in [EKh19]. In particular, [ELI9, Theorem 2] shows that the
Aso-map {®;}ien : CW(C)® — Ap defined by counting rigid contributions of the moduli
spaces M(c) (for ¢ = 1; for ¢ > 1, we have multiple positive punctures at generators of
CW(C)) is an Ax-quasi-isomorphism, see [ELI9, Theorem 72| for details.

The second level consists of holomorphic disks with a positive puncture at the Reeb chords
of A and boundary in L. These are the same rigid holomorphic disks as those contributing to
the augmentation map e, : Ax — Z[H1(L)]. However, we note that the weights are counted

with coefficients in Z[H;(L)]; that is, the count of holomorphic disks contributing to the

second level of 77, is precisely given by the restricted augmentation ey : Ay — Z[H;(L)].

In conclusion, the moduli space of disks contributing to the CW(C')-module structure np,
splits into M(c), which yields the A-quasi-isomorphism CW(C') = Ay, and the moduli
space of holomorphic disks contributing to the restricted augmentation £, associated to the
closed Lagrangian L. Thus, under the surgery isomorphism, the CW(C)-module structure
nr, is precisely given by the augmentation ez on Aj.
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Now if Ly, Ly are Hamiltonian isotopic fillings of A, then Lj, Lo are (exact) Lagrangian
isotopic in W(A), even relative to the co-cores. It follows that their associated restricted
augmentations ez and ez, are DGA homotopic, and the result follows. O

For the following two corollaries, we emphasize, and implicitly use, that the DGA Ap as-
sociated to the Legendrian braids A = A(B) C (S%,&4), B € Brj(,, are concentrated in
nonnegative degree, and thus DGA homotopic (restricted systems of) augmentations are the
same as equivalent (restricted systems of) augmentations.

Proof of Corollary[1.6. For g = 2, we consider the Legendrian knot A = A(8) C (S3, &)
given by the positive braid 8 = (02010302)*020103. By Proposition A(B) admits infin-
itely many genus 2 exact Lagrangian fillings {L; };cn, distinguished by their augmentations
er;, - An — Z[H1(L;)]. Consider the Weinstein 4-manifold W := W (A), which is homotopic
to a 2-sphere S? because A(3) is a knot. For the same reason, all Lagrangian fillings of A are
restricted. Note that since A is a knot, the restricted augmentation er, s the same as ¢y,

for all 7. By Proposition it follows that the exact Lagrangian surfaces {L;};en in W are
not Hamiltonian isotopic. This proves the assertion in the case of g = 2.

For higher g > 2, it suffices to apply the same argument to the Legendrian knots associated to
the braids 3, = (02010302)40201030%(9 _2). Since there exists an exact Lagrangian cobordism
from A(B) = A(B2) to A(By) for all g > 2, each knot A(B,) admits infinitely many exact
Lagrangian fillings of genus ¢g. Hence Proposition implies that the Weinstein 4-manifold
Wy := W (A(By)), homotopic to a 2-sphere S?, also admits infinitely many exact Lagrangian
surfaces of genus g which are not Hamiltonian isotopic. In each case, W, does not admit any
embedded exact Lagrangian surface of genus h < g — 1 since its intersection form is given by

the 1 x 1 matrix (tb(A(By)) — 1). This concludes the proof. O

Proof of Corollary[1.7]. Consider the Legendrian link A = A(f11) and the Weinstein 4-manifold
W (A(B11)), which is homotopic to S? vV S? because A(311) has two components. Theorem [1.1
implies that this 2-component link admits infinitely many distinct exact Lagrangian fillings.
In order to apply Proposition [7.11] we need to ensure that these infinitely many fillings are
distinguished by their restricted systems of augmentations. For that, let us study the aug-
mentation e, associated to the (initial) Lagrangian filling L in Subsection and its ¥-loop
iterates. There are four homology variables t1, ts, t3,t4; under €, , these are augmented to

595128 1 s
t1 — 79 12 13, to — —S11516, tg — — s ty — 710 .
S11 510516 59512513
Note that the ¥-loop monodromy fixes each homology variable, and so the ¥-loop iterates

g1, o ¥ have the same effect as €7, on t1,to, t3,t4 for all k € N.

The first two variables ¢1,ts lie in one component of A and t3,t4 lie in the other compo-
nent. From the discussion following Definition 7.9 we can impose the additional conditions
(t1,t2,t3,t4) = (+1,—1,41,—1) to obtain the restricted system of augmentations ey (en-
hanced by link automorphisms); this is because we first set ¢t; = t3 = 1 to reduce to a single

base point on each component, and then set to = t4 = —1 to pass from H;(L) to Hi(L). In
terms of the s variables, there are 3 new conditions (the 4th is redundant):

895125813 = S11, S11516 = 1, S10516 = —1.

Now we note that (sg, s10, S11, S12, $13, S16) = (1,1, —1,—1,1,—1) in particular satisfy these
conditions. These values of the s; also produce the maximal value of |(sr o ¥¥)(ag)| for all
k € N, from the computation in Section It follows that the same argument that we used
there, to show that the J-orbit of the system of augmentations ¢y, is entire, also shows that
the same is true of the restricted system of augmentations e;. We can now apply Proposition
to conclude that W(A(f11)) admits infinitely many distinct exact Lagrangian tori, up
to Hamiltonian isotopy. (]
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APPENDIX A. THE COBORDISM MAP FOR AN ELEMENTARY SADDLE COBORDISM

The goal of this section is to prove Proposition [£.8] the formula for the cobordism map
over Z for a saddle cobordism at a proper contractible Reeb chord. The proof will come in
several steps. In Section we will first add what we call “mini-dips” on either side of
the Reeb chord, which then propagate through the cobordism; this changes the cobordism
by a Hamiltonian isotopy. The advantage of adding these mini-dips is that they localize the
disks that contribute to the cobordism map, so that the map mod 2 is quite simple and
can be written down very explicitly. The main technical result is lifting this map to Z and
showing that Proposition holds for the cobordism with mini-dips; this is the content
of Proposition below. The proof of Proposition is somewhat indirect and involves
making the cobordism even more complicated, with the trade-off benefit being that the
cobordism map becomes easier to handle. This is in the spirit of a well-known technique
in Legendrian knot theory called “dipping”, and occupies Sections and Finally, in
Section [A.4] we deduce Proposition from its mini-dipped special case, Proposition
by tracing the effect of mini-dips on the cobordism map.

A.1. Formula for the saddle cobordism map.
/" N\ af\/.y
x K/Y/\/ - Ay
X OOCOCa
/\ -/ . T

FIGURE 37. A saddle cobordism (left) and the mini-dipped version of this
cobordism (right).

As in Section [£.2] we consider a saddle cobordism L, between Legendrian links A_ and A,
where A_ is obtained from A, by replacing a contractible Reeb chord a of Ay by the oriented
resolution of the crossing. To simplify the cobordism map, we perturb A+ by a Legendrian
isotopy (and consequently the saddle cobordism by a Hamiltonian isotopy) as follows: use
two Reidemeister II moves to push the understrand of a over the overstrand on either side
of a, as shown in Figure We call these moves “mini-dips” of a.'® Note that the crossing
a is situated differently in Figure [37| than the similar-looking Figure 18 from [EHKI16], and
consequently our mini-dip is different from the dip considered there. Also note that the
crossing data for the mini-dips (with the understrand of a passing over the overstrand in
the minidips) is forced by the condition that we want the resulting diagrams to represent
Lagrangian projections of Legendrian links—apply Stokes’ Theorem to a bigon whose two
corners are the contractible chord a and an adjacent crossing in either of the mini-dips.

For the next few subsections, we will assume that Ay and A_ contain the mini-dips shown
in Figure we will return to the general case without mini-dips in Section [A.4] Over Zg,

18These are independently introduced in [GSW20a)], where they are called “double dipping” and are used
for the same purpose of simplifying cobordism maps.
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the mini-dips force the cobordism map ®r, : Ax, — Ax_ to have the following simple form:

®;.(a)=s
®r (a1) =a; +s!
Oy (az) = ag + s
®p,(a;) = a;

where the final equation holds for all Reeb chords a; of Ay besides a,a1,as. This follows
directly from the work of [EHK16] (cf. Section because there are only two disks with a
positive puncture at a, the bigon between a1 and a and the bigon between a and as.

Over the course of Sections and we will prove that the cobordism map ®, with
signs is given as follows.

Q4 az s ai as

X/\//\//\/X \\/ pN /\\’
Ay

FiGURE 38. A saddle cobordism with mini-dips. Crossings and base points
are labeled, and quadrants with negative orientation sign are shaded.

Proposition A.1. Suppose that Ay and A_ are related by a saddle cobordism as in Figure[38:
the Lagrangian projection of AL has a contractible crossing a flanked by mini-dips with the
crossings on either side of a labeled by a1 and as, and A_ is the result of resolving the crossing
a and placing base points labeled s and —s™1 on either side of the resolved crossing. Then,
the cobordism map ®r,, : Ay, — Ax_ over Z is given, up to a link automorphism of A_, by:

®(a)=s
®(ay) =a; — s *
P(ag) =ag — s+
®(a;) =a;

where the final equation holds for all Reeb chords a; of Ay besides a,aq,as. More precisely,
there is a link automorphism € : Ax_ — Ax_ such that the ®p, : Ay, — Ap_ is chain
homotopy equivalent to 2 o ® with ® as defined above.

Remark A.2. We believe that the auxiliary data needed to define signs (capping operators,
etc.) can be chosen so that the combinatorial formula for ® in Proposition is precisely
the geometric map ®r,,, without composing with a link automorphism of A_. However, we
will not need the stronger statement for our purposes. O

A.2. Splashes and diagonal automorphisms. Our strategy for proving Proposition
is as follows: the signs for the formula for ®; given there are essentially forced, up to a link
automorphism of A_, by the algebraic requirement that ®1, needs to be a chain map over
7Z.. This forcing is not true in full generality, but we will see that it is true if we isotop A+ via
Reidemeister II moves so that their differentials consist of many terms, each of which is easy
to handle. This sort of strategy is familiar in the subject through the technique of dipping;
see, e.g., [FR11L [Sab05l [Sivi1]. We will present a variant of this technique in this subsection,
and then return to the proof of Proposition in Section below.

Let A be a Legendrian link. By applying planar isotopy and Reidemeister II moves, we can
isotop A so that its Lagrangian projection II;,(A) satisfies the following properties:
68



e all vertical tangencies (parallel to the y axis) lie on two lines z = ¢y and 2 = ¢1, and
there are at least 2 vertical tangencies on each of these lines;

e no crossings in either the Lagrangian or front projections occur at the same x coor-
dinate.

Note in particular that II,,(A) is the plat closure of some braid between z = ¢y and =z = ¢;
where the braid strands go from left to right. Furthermore, in the front projection Il,,(A),
all left cusps lie on the line x = ¢y and all right cusps lie on x = ¢;.

Subdivide the interval [co, ¢1] by choosing zg < 1 < --- < xp, with zg = ¢, 2, = ¢ such
that:

e there are no crossings in either II,,(A) or II,,(A) in the intervals « € [zg, ;] and
[Tp—1, Tpl;

e fori=1,...,p—2, in the interval = € [z;, x;11] there is exactly one crossing in either
I,y (A) or II,;(A), and no crossing in the other.

)2 *_/?\_K\J |

:J: : J V_—

FIGURE 39. A set of splashes, in the front projection (left) and corresponding
Lagrangian projection (right).

Now in a neighborhood of the x = x; slices for ¢ = 1,...,p — 1, introduce a collection of
“splashes” ! as shown in Figure This is a C%small perturbation in the front projection,
while in the Lagrangian projection, each strand is pushed through the other strands. For
definiteness, we order the collection of splashes at x = x; from left to right in increasing
order of the y-coordinate of the splashed strand; in the Lagrangian projection, the crossing
information for the new crossings is determined by the relative z coordinates of the strands at
x = x;. Let A’ denote the resulting Legendrian link, and note that II,,(A’) is obtained from
1., (A) by a (large) number of Reidemeister II moves. See Figure {40|for a sample illustration
of A.

Write the Chekanov-Eliashberg DGA of A’ as (Ay/, d). Say that an automorphism ¥ of the
algebra A/ is diagonal if it is of the following form: if a; denote the Reeb chords of A’, then
there is a collection of (invertible) scalars A; such that ¥U(a;) = A\;a; for all i.

Proposition A.3. Suppose that V is a diagonal automorphism of Ap: that is also a chain
map: Wod=90o0W. Then V is a link automorphism of A'.

In order to prove Proposition [A73] we need some more notation. Let s denote the number of
vertical tangencies in the Lagrangian projection of A at each of x = ¢y and z = ¢q, so that
the Lagrangian projection is the plat closure of a 2s-stranded braid. Number these strands
1,2,...,2s so that in [zg, z1], the strands are numbered in increasing order of y coordinate;

19T his terminology is inspired by [FRI11], though our splashes are slightly different from theirs and more
resemble what [EHKI16] call “dips”.
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Ficure 40. A full example of splashing. Top to bottom: the front and

Lagrangian projections of A, with strands joining z = ¢y and x = ¢; labeled
1,2,3,4, and the Lagrangian projection of A’ with some crossings labeled.

keep the numbering of braid strands consistent throughout the braid, and that in general the
strands will not remain numbered in increasing order beyond x = x;.

Now suppose that ¥ satisfies the hypotheses of Proposition We will construct units
uq,...,uss such that the following condition holds for all Reeb chords a of A’:

(%) U(a) = ur(a)uc_(i)a.

Here we use r(a) and c(a) to denote the labels of the strands that are the endpoint and
beginning point of a, respectively.

The following lemma is a useful tool for propagating condition (). Say that an embedded
bigon with boundary on IT,,(A’) and two convex corners at Reeb chords of A is a standard
bigon if one corner is + and one is —; similarly say that an embedded triangle is a standard
triangle if one corner is + and the other two are —.

Lemma A.4. If ay,as are Reeb chords of A’ such that there is a (unique) standard bigon
with corners at ay,as, then holds for ay if and only if it holds for as. If a1,as,as are
Reeb chords such that there is a (unique) standard triangle with corners at ay,as,as, then if

holds for two of a1, as,as, then it holds for the third as well.

Proof. A bigon with + corner at a; and — corner at as contributes a term ay to d(ay); since
r(a1) = r(a2) and c(a1) = c(az) and Yo = 9V, it follows that if holds for one of ay,ag,
then it holds for the other. Similarly, a triangle with + corner at a; and — corners at ao, as
contributes a term agas to d(aq); now use the fact that r(a1) = r(az2), c(az) = r(a3), and
c(a1) = ¢(as) to conclude the desired result. See Figure O
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FiGURE 41. Left two diagrams: a standard bigon and a standard triangle.
Right diagram: a chain of bigons joining awl,aff,a‘j;l,agzz. (If strand i is
instead above strand j, then these are still standard bigons but all + and —

labels are interchanged.)

We next label the crossings of A’ in the splashes as follows. Consider the splashed portion

of strand 1 at T = Tq4. For any j # 14, this splash crosses strand j twice; label these two

q,l

crossings a ! (left) and a 2 (right). In this way we label all splashed crossings in A’ as a;;

f0r1§23§23( #7), 1<q<p—1 and 1 <[ <2. SeeFlgureEforanexample

2 g1
al?, a% a%? satisfies (), then so

Lemma A.5. For fized i, j,q, if one of the crossings alj sG55 ag A

do the other three.

Proof. In a neighborhood of x = x4, strand i lies either completely above or completely below
strand j in the z coordinate. It follows that there is a chain of three standard bigons linking

1 ¢2 ql q2.
aqj’ ,agj’ ,a?; ,a?; : see Figure H The result follows from Lemma O

Lemma A.6. If U satisfies the hypotheses of Proposition[A.3, then there are uy, ..., uzs such
that holds for all Reeb chords of \.

Proof. We will prove that holds for all a = ag]’.l by induction on ¢. In the course of the

proof, we will also show that holds for all other Reeb chords of A’, which correspond
precisely to the Reeb chords of A.

We first establish the induction base case ¢ = 1. Set u; = 1. Then for j = 2,...,2s, the
Reeb chords al ' have one endpoint on strand 1 and one endpoint on strand j; since each

\I'(alj)1 l'is an invertible scalar multiple of alj , it follows that there are unique choices of
Ua, . .., Ugs SO that (| . ) holds for a = a}’jl for all j = 2,...,2s. Thus by Lemma also

holds for al "and ol Jj=2,...,2s, 1l = 1,2. Next suppose j > i > 2. Consider the two

Jl’
triangles shown in Figure Of the two corners at a”2,
and similarly for the two corners at ail’ . Of the corner at a}f and the corner at aﬂl, again
one must be 4+ and one must be — since the union of the two triangles is a standard bigon.
Since no triangle can have three — corners by Stokes’ T heorem it follows that one of the two

triangles in Figure (42| must be standard. Thus by Lemma . ) holds for aw , whence it
holds for ailjil and a;;l by Lemma This completes the base case ¢ = 1.

one must be + and one must be —,

FIGURE 42. Showing that aij’? satisfies .
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Now suppose that holds for a = agj’-l for fixed ¢ and all 4, j,l; we need to show that it

g;rl’l for all 4, j,1. There are two cases depending on whether the crossing

between x = x4 and © = 2441 is in I, (A) or in I, (A). First suppose that the crossing is in
II,,(A), and let ki, k2 denote the labels of the strands involved in the crossing. Choose any

also holds for a = a

two indices i # j and assume without loss of generality that a;]’Z is to the right of agf. As

long as {i,j} # {k1, ka}, there is a standard bigon joining a % to aq;r 1 and it follows from

Lemmas and and the induction hypothesis that aq+1 1, ;5’;“1 2, agj 1’1, a??m satisfy

(). If on the other hand {i,7} = {k1, k2}, then if We label the crossing between = = x, and

T = Z4q41 by a, there are standard bigons joining a % to a and a to an+1 !

1,1 1,2 1,1 1,2 .
before that a?f ’ ,ag;r ’ ,a?;r ’ ,a;l-j '“, along with a 1tself, all satisfy .

It remains to treat the case where the crossing between z = x4 and = 441 is in II;,(A).
Say that this crossing is between strands k; and ky, where we choose the labels so that strand
ko has larger y coordinate than strand ky between x = x, and * = x441. The only difference
between the splashes at * = x4 and x = z441 is that strand k; lies above ko at z, while
ko lies above k1 at x441, or vice versa. It follows that for any two indices i # j, as long as

{i, 3} # {k1, k2}, there is a standard bigon joining af; % to aqj'l 1 (or af b % to a?jl 1) as in the

g+L,1 _q+12 q+1,1 q+1,2
R O O satisfy .

Finally suppose {7, j} = {k1, ka2}. We will show that aerkQ’ satisfies , whence by Lemma
all four crossings of the form a "for {i,j} = {ki,k2} and | = 1,2 satisfy (), and the
induction step will be complete. Slnce A has at least 4 strands joining left and right, there

is some other strand labeled k3 with k3 # ki,ke. There are three cases depending on the
position of the y coordinate of strand k3 relative to strands k; and kg in [z, 2g41].

and it follows as

previous case, and we conclude as before that a;;

If k3 lies above both k; and ke in the y direction, then consider the two triangles shown

in Figure For both of these triangles, one corner is at aZ;rkl 1 and the other two corners

satisfy . Since these triangles split in two a standard bigon with corners at aj 2k and

a?kl 1 asin the q = 1 case one of the triangles must be standard. It follows from Lemma

that . holds for aq+1 , as desired. If k3 lies between ki and ko, or k3 lies below both kq
and k:g, entlrely smnlar arguments using the triangles shown in Figure [44] again show that
aZTklg satisfies , and we are done. O

\\V/

T =Tg+1

FIGURE 43. Showing that aq+ " satisfies .

We can now finally prove Proposition
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q+1,1
g+1,1 e /\ Ak
k2 aklkz }2 1R2
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A

FI1GURE 44. Two more cases to show that azjklz’l satisfies .

Proof of Proposition[A.3 Suppose ¥ : Ay — Ay is a chain map and an isomorphism. By
Lemma we have uq, ..., uss so that holds for all Reeb chords of A’. Now the strands
1,...,2s are joined in pairs at the left end of A’, and joined in pairs again at the right end. On
the left end, for k = 1,..., s, strands 2k—1 and 2k are connected, and this yields an embedded
disk with a single corner at a%}j_l or» Which must be a + corner by Stokes. This contributes a
constant (1) term to 5(a;;€1_1 o) Since ¥ is a chain map and \Il(a;}j_l k) = u2ku2_,3_1a;}€1_1 ok
by , it follows that uop_1 = uoy.

More generally, the same argument shows that if strands ¢ and j are joined at either end of
A, then u; = ;. It follows that u; = u; whenever i and j are part of the same connected

component of A’. Thus we may remove duplicates and rename uq,...,uss as U, ..., Un,
where m is the number of components of A’. Then becomes precisely the condition for
U to be a link automorphism of A’, and we are done. O

A.3. Proof of Proposition With the auxiliary result Proposition [A.3] in hand, we
next prove Proposition [A1] Suppose that A and A_ are related by a saddle cobordism at
a contractible crossing flanked by mini-dips, as in the statement of Proposition [A-3] or the
right hand side of Figure We first show that the desired map ® is indeed a chain map,
and then proceed to the main proof.

Lemma A.7. The map ® : Ay, — Apx_ defined in Proposition[A.1]is a chain map: ®o0y =
0_o®.

Proof. We show that ®od; and J_o® agree on all Reeb chords of A;. Note that 4 (a) = 0, so
®(04+(a)) =0=0_(s) =0_(P(a)). Also if we denote the mini-dip crossing next to a; by as,
then 0, (a1) = 0_(a1) = —az, so ®(0;(a1)) = —P(a3) = —az = 0_(a1 — s 1) = O_(®(a1));
similarly ® (04 (az2)) = 0—(P®(az)).

a2 ai_ o 9 G2 ai o

—s 1

FIGURE 45. Labeling the strands of Ay (left) and A_ (right) in the cobordism
region, and disks that pass through the cobordism region and contribute to

0+ (a;) and 0_(a;).
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Now suppose that a; is a Reeb chord of A besides a, aj, as: we need to show that ®(94(a;)) =
0_(a;). The disks that make up the differentials 04 (a;) and 0_(a;) are exactly the same
except where they pass through the cobordism region encompassing aj,a,as. Where these
disks pass through the cobordism region, there is also a precise correspondence between the
disks for 04 (a;) and 9_(a;). The oriented boundary of such a disk enters the region on one of
the strands on the left and exits on one of the strands on the right, or it enters on the right
and exits on the left. If we label the strands as shown in Figure then for instance any disk
contributing to 0_(a;) that enters on the left on strand 1 and exits on the right on strand 2
must pass s and turn a corner at aj; there are two corresponding disks contributing to 95 (a;)
with the same enter and exit data, one of which turns no corners in the cobordism region
and one of which turns corners at a and a;. See Figure the result replaces a monomial
saj in 0_(a;) by 1+ aaj in 04 (a;). In all, there are 8 ways to pass through the cobordism
region, with resulting contributions to d4 (a;) as follows:

| | 0i(a) [ 9 (a) | | O (a:) | 0(a) |
1—1 a s 1< 1] —a; —as —ajaas | s 1 —aysas
1—2 1+ aa; saq 1+ 2 1+ aas Sa9
2—1 1+ asa ass 2+1 1+ aja ais
252 a+as+asaa; | —s T+ agsa; || 2+ 2 —a —s

Now an inspection of this table shows that each entry in the 0_(a;) column is obtained from
the corresponding entry in the 9y (a;) column by replacing a,a,as by s,a; — s !,as — s}

respectively. It immediately follows that ®(04(a;)) = 0—(a;). O

We now have a chain map ® : Ay, — Ax_. In order to prove Proposition we want
to show that this is equal to the geometric cobordism map ®r, up to a link automorphism.
To do this, we will first localize the differentials of A+ by introducing splashes in the spirit
of Section In what follows, we continue to refer to the small region of AL containing
a; and ay (and a for A} ) as the “cobordism region”, outside of which Ay and A_ coincide.
We now change A_ by a sequence of Reidemeister II moves that avoid the cobordism region,
first pulling all vertical tangencies of II,,(A_) left or right so that they line up vertically,
then adding splashes to separate any crossings in II,,(A_) or IL,,(A_) outside the cobordism
region. From this we obtain a link A’ , Legendrian isotopic to A_, for which there are
g < 71 < -+ < xp such that:

e all vertical tangencies lie on x = g or z = x,, and the number of vertical tangencies
on each of these lines is at least 2;

e there is a collection of splashes in a neighborhood of x = x; for:=1,...,p—1;

e there is one i € {1,...,p — 2} such that [x;,2;11] contains the cobordism region, and
in that interval [x;, z;11] the only crossings in either IT,,(A_) or II;.(A_) are between
the two strands involved in the cobordism region;

e for every other i = 1,...,p — 2, in the interval [x;, 2;11] there is exactly one crossing
in either I, (A_) or II;.(A_), and no crossing in the other;

e [z9,z1] and [xp_1,xp) contain no crossings in I, (A—) or . (A_).

In short, we follow the prescription from Section except that we do not separate the
crossings in the cobordism region from each other.

If we follow the same sequence of Reidemeister IT moves going from A_ to A’ , but start with
AL, then we obtain a Legendrian link A’_ that differs from A’ only in the cobordism region.
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We summarize the picture as follows:

A.&.HA;

o

A ——=A",

where the horizontal arrows are Legendrian isotopies given by (the same) Reidemeister II
moves, and the vertical arrows are (identical) elementary saddle cobordisms. Note that the
saddle cobordism between A, and A_ is Hamiltonian isotopic to the concatenation of the
three cobordisms specified by the other three sides of the square: from top to bottom, the
isotopy from A4 to A/., followed by the saddle cobordism between A/, and A’ followed
by the isotopy from A’ to A_. By [EHKIG, Kar20], the cobordism map ®r, : Ax, —
Aj_ is chain homotopy equivalent to the composition of the cobordism maps given by the
three cobordisms. We will show that this composition is the map ® from the statement of

Proposition

We first consider the cobordism map @’ : AA’+ — Ap/ . By Lemma , we know of another
chain map @y : ‘AA/+ — Ay o this is defined by ®1(a) = s, ®1(a1) = a1 — s, ®1(az) =
as — s~ 1, and ®1(a;) = a; for all other Reeb chords a;. Since [EHKI6] gives a formula for
geometric cobordism maps mod 2 and this formula is especially simple in our case, we know

that the geometric map ®' agrees with ®; up to signs. By replacing s by —s if necessary, we
can assume that ®'(a) = s.

Lemma A.8. There is a link automorphism Q : Ay — Axr such that @ = Qo ®y.

Proof. Write 9/, and 0’ for the differentials on .AA/+ and A,/ respectively.

Since the terms in ®' agree with the terms in ®; up to sign, there are signs o; € {£1}
such that ®(a;) = o1a1 + 571, ®(az) = og2az + 571, and ®'(a;) = o;a; for all other i. In
fact, because ® is a chain map, we must more specifically have ®(a;) = o1a; — s~! and
®’(as) = goag — s~ 1. To see this for a; (with a similar argument for as), we use the fact
that A/, have more than 2 strands joining left and right in the x direction, as stipulated
in their construction. In particular, there is a strand of A/, that lies either above or below
the cobordism region in the xy projection. Assume this strand lies above (the argument
for below is very similar). The splashes from this strand on either side of the cobordism
region intersect the strands from the cobordism region in a number of crossings, two of which
are labeled a3 and a4 in Figure In I, (A’,), there is a standard bigon with corners at
az and ay4, contributing either ay to ' (a3) or ag to &’ (as). For definiteness assume the
former (the argument is same for the latter). An inspection of Figure [46|shows that &, (a3)
contains the terms +(1 + aja)ay while &’ (ag) contains +ajsay, and furthermore that these
are the only terms in 0/ (a3) that involve a4. Since 0_®'(az) = ®'04(as), we must have
+ajsay = ' ((1+ aja)ay) = (1 + (0101 &+ s71)s)ay, which implies that the & sign is — as
claimed.

FIGURE 46. Splashes on either side of the cobordism region in A/, (left) and
A’ (right), with relevant crossings labeled.
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Now let €2 to be the algebra automorphism of Ay, defined by (a;) = o;a; for all i; then by

our expression for ®, we have ® = Qo ®;. It follows from the fact that ® and ®; are both
chain maps that € is also a chain map. Indeed, for any 7 we have

8’_Qaz = 8/_@,(11‘ == <I>’6ﬁrai == Q<I>18ﬁral = QB’_@laz = Qa’_ai,
where when i = 1,2 the first and last equality follow from the fact that 9’ (s~1) = 0.

It remains to show that € is a link automorphism of A’ . To do this, we use the fact that Qis a
diagonal automorphism of A,/ and a chain map, and appeal to a variant of Proposition

We cannot use Propositiondirectly because A’ does not have a splash between a; and as.
However, we can still follow the inductive proof of Proposition in this setting. The only
thing we need to check is the inductive step where we are given that a; satisfies the condition
from the proof and need to conclude that ao also satisfies this condition. To do this, let
as and as be the crossings depicted in Figure 6] and note that there is a standard bigon in
I, (A" ) with corners at ag and as. If the positive corner of this bigon is at as, then 9’ (a3)
contains the terms (ajsas — s~ !)as, while if the positive corner is at as, then 9’ (as) contains
the terms ag(aisaz —s~1). In either case, since ) is a chain map, Q(a1)sQ(az) — s~ must be
equal to +(aisas — s~ 1). Since ay satisﬁes, Qay) = uT(al)u;(;l)al; but this implies that

Qaz) = (ur(al)uc_(il))*lag = ur(@)uc_((lm)ag and so ay satisfies (4), as desired. This completes
the proof of Lemma O

We next examine the maps given by the Legendrian isotopies between A, and A’ , and
between A_ and A’ . Suppose that A’ is obtained from A_ by N Reidemeister II moves.
Then we can follow [Che(02, [ENS02| to construct a DGA isomorphism W_ between A/

and the DGA S™(Aj_) given by stabilizing Ay N times (adding 2N generators in the
process). This isomorphism comes from N applications of the isomorphism coming from a
single Reidemeister II move, as already described in Section By that construction, if
we start with A_ and add the Reidemeister IT moves one by one, we see that the nontrivial
parts of ¥_ come from disks with two positive punctures, one of which is at a crossing in
the Reidemeister II move. By inspection, there is no point at which there is such a disk
where the other positive puncture is at either a; or ag, and it follows that ¥_(a;) = a; and
U_(ag) = as.

Similarly, since A/, is obtained from A by the same Reidemeister IT moves, we have a DGA
isomorphism W between A,/ and SN(An,), and U (a1) = a1, ¥4 (a) = a, ¥4 (az) = as.
Indeed, we can say more about the relation between W, and ¥_. The key point is that
there is a precise correspondence between the twice-positive-punctured disks that determine
W, and the twice-positive-punctured disks that determine ¥_: algebraically, one obtains the
latter from the former by replacing a, a1, as by s,a1 — s~ ', as — s~! just as in the proof of
Lemma Consequently, for any Reeb chord a; of A/, (and thus of A’ ) besides a,a1, as,
U_(a;) is obtained from W (a;) by this algebraic replacement.

Put another way, let ®; be as above, and similarly define ®5 : S™(Ap,) = SV (Aar_) by
®y(a) = s, Pa(a1) = a1 — s7, Pa(az) = az — s~!, and @, is the identity on all other
generators of SN(.AA+). Note that by Lemma E ®; and ¥, are both chain maps. By the
above discussion, we conclude that the following diagram commutes:

Uy

SV (An,) = Ay,
l‘bz lqh
v_
SN(Ax_) Anr



The cobordism map Ax, — .AA/+ is simply the composition of the inclusion map i : Ay, —
SN (Ap . ) and the inverse of ¥, and the cobordism map Ay, — A, _ is the composition of
U_ and the projection map p: SV (Ax_) — Aa_.

We can now finally turn to the geometric cobordism map ®r, : Ax, — Aax_. To complete
the proof of Proposition we want to show that 7, = Qo ® for some link automorphism
Qof A_.

At this point we have broken down @7, into a composition of three cobordism maps: \Illl 07 :
Apr, — ’AA'+’ o .AA/+ — Ay ,and poW_ @ Ay — Ap_. That is, @7, is chain homotopy
equivalent to the composition po ¥_ o ® o \I/jrl o4 of the five maps going around the sides of
the following rectangle:

Ar, d SN(An,) = Apr
|
®r, | @2 l@’
¥ v_
Apn SN(.AA_) Apr .

[~23

From Lemma there is a link automorphism € of A’ such that ® = Qo ®;. Since A’
and A_ are Legendrian isotopic, €2 induces a link automorphism of A_, which we also call €2,
so that €2 commutes with the chain map poW_: Ay, — Aj_ induced by the isotopy. Thus

oy, zpo\Il_oi)/o\I/_T_loi:po\I/_oQoCI)lo\Il_T_loi :Qopo\Il_oq)lo\I/_T_loi =Qopodyoi.

But p o ®3 07 is exactly equal to ® as defined in the statement of Proposition and we
are done with the proof.

A.4. Proof of Proposition The remainder of this section is devoted to the proof of
Proposition At this point, by Proposition we know the saddle cobordism map for
a saddle flanked by mini-dips; to prove Proposition we just need to compose this map
with maps corresponding to the Reidemeister II moves of adding and removing mini-dips.
This is similar to the proof of Proposition in the previous subsection, except that it will
now be important to calculate these Reidemeister II maps in more detail.

Suppose that, as in the statement of Proposition 4.8, we have a saddle cobordism between
A, and A_, where the cobordism is given by resolving a proper contractible Reeb chord a of
A4. Let A/, be the result of adding a mini-dip to A just after a following the orientation of
AL, and let Al be result of further adding a mini-dip to A/, on the other side of a. Similarly
define A” and A”. Then Ay are obtained from A by a single Reidemeister II move, A’[ are
obtained from A, by another Reidemeister IT move, and A/l and A” are related by a saddle
move of the precise form that we considered in Proposition See Figure [A7]

’ 12

Ay Ay Ay
RII o a1 _as RII as  ap a; _as
Y M N NV
/ S - N4 -
saddle
, RII ] RII )
N N N\ NV
N AN AN (.
A A A"

FIGURE 47. Adding mini-dips to Ax.
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The properness condition for a translates into the following result.
Lemma A.9. Given that the Reeb chord a is proper:

e if ag is any Reeb chord of A!\, and 0’ denotes the differential on A, then any term
m 3’(aq) that contains ag must contain as exactly once and cannot contain ai;

o if aq is any Reeb chord of A, and 0" denotes the differential on A'[, then any term
in &' (aq) that contains as must contain as exactly once and cannot contain any of
ai, a2, a3.

FIGURE 48. Turning an immersed disk A’ for A/, into an immersed disk A for A,.

Proof. We will establish the statement for A’ ; the proof of the statement for A is similar.
If a, is any of a, ay, a3, then the statement is trivially true: by action considerations, the only
term in 0’(aq) that could contain as is just the term ag itself in 9'(a;). Now assume qa, is not
a,ay,a3. Consider any word in &' (agq), corresponding to an immersed disk A’ in A/, with sole
+ corner at a4 and a — corner at az. Then A’ in turn produces an immersed disk A in A4,
now possibly with concave corners at a: see Figure If A’ contained multiple corners at
as, or corners at both a; and a3, then the boundary of A would pass through II,,(a) more
than once, violating the properness condition from Definition O

We will now piece together the five maps Ay, — .AA/+ — AA/J; — Ay — Ay — Ap_ to
get the desired cobordism map. The central map AAl — Ap» has already been computed,
while the remaining maps come from Reidemeister II isotopies.

We will focus for now on the map Ap, — AA;, which we call ¥77. This is the chain map
induced by adding a Legendrian Reidemeister II move, as derived in [Che02, [ENS02] and
summarized in Section above, and we describe it explicitly now. Label the Reeb chords
of Ay besides a as as,...,a,, so that we can write Ay, = A(a,as,...,a,) and 'AA/+ =
A(a,a1,a3,as,...,a,). We stabilize Ay, by adding two new generators ey, e with |e;| = 0,
lea] = —1, d(e1) = e2, A(e2) = 0, to produce a new DGA S(Ay, ) = A(a,as, ..., ar, e1,€2).
As described in Section and specifically defined in , there is a chain isomorphism
U Ay, — S(Aa. ), which in our case is defined by ¥(a;) = e1, ¥(a3) = —e2, ¥(a) = a,
and for £ > 5,
U(ap) = ay— HYO ay
where ¢’ is the differential on A/,. Then U7’ is defined to be equal to U1 oig.

We now claim that W* satisfies the following formula, which can be compared to the definition
of &7 from Section

Lemma A.10. For all { > 5, we have

(A1) V(e —ar— 3 (—1)M O sgn(A)T (wi(A))arws(A).
AeAF (ar)
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Proof. Assume without loss of generality that a,as, ..., a, are ordered by height (note that a
is contractible and thus has the shortest height). We first claim that for all ¢ > 5, ¥(a,) —aq
only includes terms that involve at least one e; and no ez: we abbreviate this condition by
U(aq) —ag = O(e1). We prove this by induction on ¢, where the base case is actually a; = a
(note ¥(a) —a = 0). For the induction step, note that ¥(a,) —a, = —HV ay, and the right
hand side only contains terms involving at least one e;; we need to show that H¥d a, does
not involve es.

Consider any word w in 0'a,. If a3 does not appear in w, then w involves only a, a1, as, . . ., aq—1,
and so by induction ¥(w)—w = O(e1) and HY(w) = H(w) = 0. On the other hand, if w does
involve ag, then by Lemma w = wiazwe where wy,ws involve only a,as, ..., aq—1; then
by induction again, HU(w) = —H((¥(w1))ea(¥(ws))) = —H(wieaW(w2)) = ftwie; U(ws)
does not involve ep. This completes the proof that ¥(aq) — ag = O(e1) for all ¢ > 5.

We now prove the lemma, again by induction on ¢. The base case is actually ¥’ (a) = a,
which is with @ = ay. For the induction step, we compute that:

U7 (ap) = U Hap) = ap + TV HUY a.

Now suppose that w is a word in @’ay, and again apply Lemma If w does not contain
a3, then H¥(w) = 0. If w does contain a3, then we write w = wiagwy and compute:

HU(w) = HU(wiazws) = —H (U (w1)ea¥(ws)) = —H (wiea¥(wa)) = (—1)“ wieq U (w,)
and thus

ULHT(w) = (1)1 wi e U ws)) = (—1) 110wy )agws = (—1)107 (wy)agws,
where we have used the fact that w; does not involve a1 or ag and thus U= (w;) = U~Li(w;) =
U7 (wi). Finally note that the disk for w in A/, precisely corresponds to a disk A in A7 (ay)

in Ay, and that the sign for w in day is —sgn(A) since A replaces a corner at ag with

positive orientation sign with a corner at a with negative orientation sign. Now the signed
sum of UT1H W (w) = U7 (wy)ajws over all disks in Ay’ (ar) gives (A.1]), and this completes

the induction. (|
In a similar way, we write W for the cobordism map from AA; = A(a,a1,a3,as,...,a,) to
AA/+/ = A(a, a1,a2,a3,a4,as, . .., a,) induced by the Reidemeister II isotopy between A, and
A"

Jr

Lemma A.11. For all £ > 5, we have

U(a) =ar— Y (=D sgn(A)W7 (wi(A))awa(A).
AeAy (ag)

Proof. This is essentially identical to the proof of Lemma Given our choice of orienta-
tion signs, there are two sign differences here from the proof of Lemma U(ay4) is now eg
rather than —es, and the sign of a word contributing to & (ay) is now equal to + sgn(A) rather
than —sgn(A) for the corresponding disk A € A¥ (ap). These two sign changes cancel out.
One other subtle difference is that if we follow the proof of the previous lemma, then A{(ay)
in the statement of the present lemma should be for A/, rather than for A . However, by the
properness condition for a, there is a one-to-one correspondence between disks in A¥(ay) for
A/, and A4, and so the desired formula holds for either form of A{ (ay). O

We can now finally piece together our various subsidiary results to prove Proposition |4.8
To distinguish between the saddle cobordisms in the dipped and undipped settings, let L,
be the cobordism between Ay and A_ as in the statement of Proposition and let L, be
the cobordism between A/l and A”. As shown in Figure we can concatenate L, and four

Lagrangians coming from Legendrian isotopies to create a five-story cobordism between A4
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and A_ which is Hamiltonian isotopic to L,: from top to bottom, the five cobordisms go
between Ay, A’ AL, A” A’ and A_.

The chain map ®r, : Ax, — Aa_ is then chain homotopic to the composition of the chain
maps coming from the five cobordisms. We summarize this in the following diagram, which
commutes up to chain homotopy:

Lng e

+ +
An, Ay, Ay

l(bLa \LQEG‘

p2 pP1
.AA7 .AA/_ -AA/_/ .

Here U7* and ¥ are the maps computed in Lemmas [A.10] and [A.11], while p; and po are
the maps induced by the reverse Reidemeister IT moves from A” to A’ and from A’ to A_.
By Remark these last two maps (which correspond to p o ¥ in Remark are given
simply by projection: pj(a2) = pi1(as) = pa(a1) = p2(ag) = 0 and p1,ps are the identity on
all other generators.

Now by Proposition (I)Za = Q o ® where  is a link automorphism of A” and ® is the
map given in the statement of the proposition. Since A” and A_ are isotopic, Q induces a

link automorphism of A_ which we also denote by 2, and ps op; 0 Q2 = Qo ps o pj. At this
point we have:

@La:pQOplo@Zaolﬂio\PH:Qopgoplo®oW$on.

We will be done if we can show that the composition pop;o®o Wi oW is equal to the map
@CL‘;mb = P 0 ® o ®; from Proposition But @‘ﬁmb is specifically designed so that this
is the case. Specifically, if a; is any Reeb chord of A4 besides a, then ®7(ay) and @ (ay)
are precisely the result of replacing a; and ap by —s~! in the expressions for U (ag) and
U (ag) from Lemmas and But by the definition of ®, this replacement is exactly
the effect of composing with the map py o p; o ®, which sends a1, as to —s~! and sends ay to
itself for ¢ > 5. It follows that

BE () = (© 0 ®7)(ar) = (p2 0 p1 o @)((¥ 0 WT)(ar)

for all /. Combined with the fact that @‘i‘lmb(a) =5 = (ppopro®o Wy oW )(a), this
establishes that CIDCLC;mb =paopro® oW oW, The proof of Proposition is complete.
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