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Abstract

Forest inventory forms the foundation of forest management. Remote sensing (RS) is an efficient

means of measuring forest parameters at scale. Remotely sensed species classification can be used to

estimate species abundances, distributions, and to better approximate metrics such as above ground

biomass. State of the art methods of RS species classification rely on deep learning models such as

convolutional neural networks (CNN). These models have 2 major drawbacks: they require large samples

of each species to classify well and they lack explainablity. Therefore, rare species are poorly classified

causing poor approximations of their associated parameters. We show that the classification of rare

species can be improved by as much as 8 F1-points using a neuro-symbolic (NS) approach that combines

CNNs with a NS framework. The framework allows for the incorporation of domain knowledge into

the model through the use of mathematically represented rules, improving model explainability.

Index Terms

neuro-symbolics, explainable machine learning, remote sensing, tree species classification, convo-

lutional neural network.

I. INTRODUCTION

Forests play a vital role in maintaining life on Earth. They store carbon, are a habitat for

countless animals and provide fuel and production materials for numerous industries. As a result,

governments and the forestry industry invest heavily in forest monitoring and management.

Traditional inventory methods rely on manual field surveys that are used to estimate forest

parameters such as biomass, tree mortality rates, species abundances, and species distributions

based on sampling plots within the forest [1]. Though standard field survey plots are 1 hectare

or less in area, manual sampling is labor intensive and therefore the number of plots inventoried



2

is limited by available people-power. Limited sampling ability hampers high precision estimates

of forest parameters at scale.

Since the 1970’s, remote sensed data products have become readily available [2]. RS data

products can include optical images such as RGB and hyperspectral (HS), as well as LiDAR

point clouds and synthetic aperture radar (SAR) returns. With the help of automation, these data

products are used for forest monitoring at scales of 10’s to 1000’s of hectares [3], [4].

Recognizing species from RS data products is termed species classification. Accurate species

classification is particularly important for measuring species abundances, species distributions,

and biodiversity; non-species-specific metrics such as above ground biomass and basal area may

be estimated more accurately when species is taken into account [5]. Methods for classifying

species based on LiDAR, HS images, RGB images, SAR returns and almost every combination

of the aforementioned modalities have been developed [6]. Here we focus on optical imagery.

Early methods of species classification used parametric statistical models such as linear dis-

criminant analysis (LDA) and quadratic discriminant analysis (QDA) or methods like maximum

likelihood estimation (MLE) [6]. Most modern methods use decision tree based classifiers or

neural models on LiDAR, RGB, or HS data [6]–[8], with studies suggesting that using HS data

gives superior performance. Advanced deep models for species classification include CNN’s (2D

and 3D), CNN’s with attention, and transformers [9], [10].

Neural models have several drawbacks. Most prominently, they typically require large training

sets, can be computationally intensive to train, and have low explainability [11], [12]. Guidelines

for training deep neural models suggest 1,000’s of instances of each class for optimal performance

[12], [13]. Unfortunately, datasets are built by sampling from the real world and ecological

systems like forests typically contain a few common species and many rare species [14]. Trees

that are rare in a forest are likely to be rare within the dataset. This means that neural models for

species classification are typically poor at recognizing rare species. Depending on the application,

a species’ frequency within the dataset may or may not positively correlate with the importance

of its recognition to the user. An analysis of challenges inherent in rare species classification

can be found in [15].

One approach to reducing dataset size requirements and improving explainability is neuro-

symbolics (NS). NS architectures are a combination of neural and symbolic models [16]. Sym-

bolic models use logical formalisms or distance metrics to make inferences. Domain knowledge

in symbolic models is usually represented as a rule, an equation, a knowledge base, or knowledge
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graph. First order logic (FOL) and propositional logic are two commonly used formalisms for

creating models where inferences are made by reasoning over dataset instances with a set of

rules [17], [18].

While neural models are good at learning from labeled examples, the “reasoning” behind

their inferences is generally unclear to humans. By comparison, models that make inferences

based on symbolic representations of data tend to have higher explainability, but may learn

poorly from examples. The idea behind NS is that by combining the two approaches, we can

capture the best of both worlds: the high explainability of symbolic models with the learning

capacity of neural models. Studies have also shown that NS models are better able to learn in

data constrained settings compared to purely neural models [19]. In this work, we leverage this

property to improve classification on rare species.

The use of NS models for species classification is not new to ecology. [20] combines a

convolutional neural network (CNN) with a knowledge graph and text embeddings to classify

bird species from RGB images. [21] combines a CNN with text embeddings to classify tree

species from RGB images. However, the frameworks and methods used by [20] and [21] are

not easily applied to other models and require the user to find auxiliary data in the form of text

or knowledge graphs to embed for semantic reasoning.

To address these shortcomings we propose using a modified version of DeepCTRL, a NS

framework created by Google that uses a form of semantic regularization [22]. DeepCTRL

allows the user to create rules as equations that incorporate domain knowledge into a neural

network through its loss function. By incorporating a rule as a term in the loss function, the

model is penalized during optimization for both incorrect inferences and inferences that break

rules. Therefore during training, optimum performance occurs when correct inferences are made

without breaking the rule. Because the model is forced to follow a known rule, and the degree

to which a rule is followed can be estimated from the training loss, the model becomes more

explainable. Ideally, the model would be able to learn the rule solely from the training data, but

due to noise and other factors, this is not always the case. Our method gives a simple way for

users to build NS and thus explainability into their models.

II. DATA

The dataset for our study comes from the Tea Kettle Experimental Forest (TEAK). TEAK

is one of 81 sites monitored by the National Ecological Observatory Network (NEON). TEAK
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is a mixed coniferous forest in the Sierra National Forest east of Fresno California at 36°58’

N latitude and 119°1’ W longitude. See [23] and [24] for a full description of its ecological

characteristics.

NEON annually surveys monitored forests from an airborne observation platform that is

instrumented with RGB and hyperspectral cameras and both discrete and full-waveform LiDAR.

Flights occur annually over monitored sites when the ecosystem is in a period of peak greenness.

The resolution of RGB and hyperspectral data products are 0.1 m and 1 m respectively [25].

The dataset we use was curated for [9]. It consists of HS and RGB rasters, along with a

co-registered canopy height model (CHM). Data comes from a 2017 NEON survey of TEAK

along with a field sample conducted by Fricker et al. in September of 2017. We supplement the

dataset with a digital elevation model (DEM) for TEAK created by the US Geological Survey

[26]–[28]. See [9] for more information on dataset curation.

The curated dataset has 8 classes, white fir (Abies concolor), red fir (Abies magnifica), incense

cedar (Calocedrus decurrens), Jeffrey pine (Pinus jeffreyi), sugar pine (Pinus lambertiana), black

oak, (Quercus kelloggii), lodgepole pine (Pinus contorta), and “dead”. Standing dead trees of

any species are assigned this label. Table I gives the number of trees in each class and its

abbreviation.

Using the CHM and DEM we identified differences in the structural traits and topographic

preferences of the species within this dataset to be used as the foundation for symbolic rules.

The left plot in Fig. 1 shows the distribution of each species’ height as represented by the

dataset. At this site, black oak (quke) and lodgepole pine (pico) are shorter compared to other

species in the dataset and distinct from each other in overall height distribution. Therefore we use

maximum crown height from the training data as the foundation for a pair of rules demonstrating

how to leverage the structural traits of species (Rules 1 and 2). The right plot in Fig. 1 gives

the distribution of each species’ elevation range within the dataset. A number of species show

distinctive elevational distributions at the site. We chose the minimum elevation for red fir (abma)

as the basis for a rule demonstrating how to leverage topographic distribution limits (Rule 3).

Finally, we also demonstrate the use of a rule based only on the imagery itself to differentiate

between living and dead trees using the green leaf index (GLI; Rule 4) [29].
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TABLE I

THE NUMBER OF TREES AND PIXEL PATCHES IN EACH CLASS.

Code Species Abbreviation Tree Count Patch Count

0 white fir abco 119 2,908

1 red fir abma 47 851

2 incense cedar cade 66 1,853

3 Jeffrey pine pije 164 4,384

4 sugar pine pila 68 2,740

5 black oak quke 18 111

6 lodgepole pine pico 62 895

7 any species dead 169 3,520

Total — 713 17,262

III. METHODOLOGY

For classification we use the model from [9], an 8 layer fully-convolutional CNN. The model

architecture is shown in Fig. 2.

We combine the Fricker CNN with the DeepCTRL framework. DeepCTRL is a model and

data agnostic NS framework that is easy to use. The framework is composed of a task encoder,

a rule encoder, and a decision block (see Fig. 2b). The loss function is a linear combination of

task loss and rule loss, where task loss is the loss contributed by the model’s failure to predict

a label and the rule loss is contributed from the model’s failure to follow a rule.

Following the protocol from [9] we create train, validation, and test sets. Using stratified

sampling, the dataset is composed of 15 x 15 pixel patches sampled from the set of tree crowns.

Again following the protocol in [9], we use 10 fold cross validation and report the mean of the

macro-F1 score for each fold and the mean F1 score for the class on which each rule is based.

For our study we focus on RGB images. While it is possible to apply our approach to HS

images, RGB imagery is much more widely available and the model we used made few mistakes
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Fig. 1. The left plot shows distribution of species’ crown height. The right plot shows distribution of species’ elevation. The

red lines indicate sample means.

that are correctable with domain knowledge when trained on HS images.

We use DeepCTRL as described in [30] with some modifications. Because DeepCTRL is data

agnostic it can be made to work with any type of input. In our case, the input is a 15 x 15 patch

of an RGB image created from the aforementioned NEON geotiffs. We concatenate the image

with auxiliary data, a 15 x 15 patch of a co-registered CHM or DEM raster. In the case of the

DEM, the raster is scaled by one-tenth so its values are of the same order as the values of the

RGB geotiff.

After removing the final output stage, we use the CNN from the Fricker model as both the

task and rule encoder. zd and zr are the output of convolution layer 5 (shown in Fig. 2a) from

the task and rule encoder respectively. The decision block is composed of a convolutional layer

with an input dimension of 256 and an output dimension of 8. Finally, the output of the decision

block is passed through a softmax layer.

In the original design, during training, zd and zr are scaled by the constants α and 1 − α.

α is sampled from a β-distribution. This allows the model to learn varying degrees of rule

enforcement during training. At inference, the user can vary the value of α depending on the

strength of their belief in how much the rule is followed in the test set. We obtained better results
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(a) CNN

(b) DeepCTRL

Fig. 2. CNN and DeepCTRL architectures.

by fixing α at 0.4 for both training and inference. By fixing α, the model loses its ability to

alter how strongly the rule is adhered to post training, but gains in performance. A pseudocode

description of the algorithm is given in [30].

We use the following notation. Dataset D consists of tuples of inputs from set X and labels

from set Y where X is the set of pixel patches and Y is the set of their species labels:

D = {(x1,y1), (x2,y2), ..., (xn,yn)}. Each label yi is a an 8-way 1-hot encoding. Each model

prediction, ŷ, is an 8-way probability simplex.

The loss function is composed of the linear combination of two simpler loss functions, Lrule

and Ltask. Ltask is the cross entropy loss between y and ŷ as shown in (1).

LCE(y, ŷ) (1)

We define Lrule as the cross-entropy loss between a function, ϕ, and ŷ where x is a training

instance and

ϕ : x → u ∈ (0, 1). (2)
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Lrule then becomes

LCE(ϕ(x), ŷk) · 1(ŷk = +) (3)

where 1(·) is an indicator function, ŷk is k-th element of ŷ, and the + indicates the k-th class

is predicted.

We define ϕ as the composition of two functions. An inner function, f where

f : x → t ∈ R. (4)

Function f quantizes how much x is in compliance with its respective rule. σ is a differentiable

function that maps f(x) to a value ∈ [0, 1]. We use the sigmoid function:

σ(t) =
1

1 + exp(−t)
. (5)

For each rule, there is a threshold that we represent as a translation of the sigmoid along the

x-axis. Depending on the domain knowledge, the presence or absence of the species of interest

may only occur above or below the threshold. The function used for f varies with each rule. ϕ

then becomes the composition of σ and f ,

ϕ = σ ◦ f. (6)

For rules 1-3 the internal function, f , takes the maximum value of the auxiliary data layer.

For rule 4, which uses no auxiliary data, f calculates the GLI of x as

gli(x) =
2 ·G−R−B

2 ·G+R +B
(7)

where R, G, B are the pixel values in each RGB channel. The equations for each rule are given

in the next section.

Rules 1 - 3 come from examining presence - absence cut-offs in the CHM and DEM distri-

butions. Rule 4 comes from examining errors in the validation set confusion matrix referenced

against GLI.

IV. EXPERIMENTS

A. Experiment Setup

Following the protocol from [9], stratified sampling was used to create 10 folds of 15 x 15

pixel patches from the RGB, CHM, and DEM rasters. We created 4 rules. In natural language,
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rule 1 states that if the height of a tree crown is over 46 m it is unlikely to be a black oak. We

write this mathematically as

ϕ1(x) =
1

1 + exp(−(1× 103(−maxCHM(x) + 46.0)))
. (8)

Rule 2 states that trees taller than 53.2 m are unlikely to be lodgepole pine. We write rule 2

mathematically as

ϕ2(x) =
1

1 + exp(−(1× 103(−maxCHM(x) + 53.2)))
. (9)

Rule 3 states that trees growing at an elevation less than 2072 m are unlikely to be red fir.

Rule 3 is written mathematically as

ϕ3(x) =
1

1 + exp(−(−(1× 103(−maxDEM(x) + 2072))))
. (10)

Rule 4 states that trees with a GLI less than 0.1 are unlikely to be incense cedar. Rule 4 is

written mathematically as

ϕ4(x) =
1

1 + exp(−(−(1× 103(−gli(x) + 0.1))))
. (11)

For rules 1 and 2 the RGB raster is augmented with the CHM by adding the CHM as

a 4th channel. Similarly, for rule 3 the DEM is added as the 4th channel. These channels

are also available to the baseline neural model when making comparisons. We use the patch

classifier from [9] trained on the RGB image with auxiliary data as a baseline. Both baseline

and experiment models are trained for 5 epochs using the Adam optimizer with L2 regularization

and a learning rate of 1×10−4. Finally, we perform an ablation study to determine how much each

rule contributes to the change in model performance. For each rule we set a random threshold

value for the CHM, DEM, or GLI between the minimum and maximum values present in the

training dataset. The randomized values are selected from a uniform distribution. We repeat

the ablation study 30 times for each rule and average the results as the difference between the

experimental model with the threshold used in its respective rule and the experimental model

with the randomized threshold.

B. Results and Analysis

Compared to the baseline, the rules had a mostly positive effect on performance. Fig. 3 shows

that rules 1 and 2 improved both the overall F1 and the rule’s class F1, while rule 3 caused
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a reduction in the overall F1 but still improved its class F1. Differences are quantified as F1-

points, where a 0.01 change in F1 is a change of 1 F1-point. Rule 1 improved overall F1 by

0.63 F1-points. The rule’s class F1 was improved by 8.3 F1-points. For rule 2 overall F1 and

class F1 improved by 0.43 and 1.84 F1-points respectively. Rule 3 worsened the F1 by 0.97

F1-points, but still increased class F1 by 0.6 F1-points. Rule 4 improved F1 by 0.59 F1-points

and class F1 by 1.1 F1-points.

Fig. 3. The change in macro-F1 and the class specific F1 for each rule. Rule 1 had the biggest impact on performance.

Fig. 4 shows the changes in the confusion matrices between the baseline model and the

experiment models for each rule. The recall columns are normalized by row and the precision

columns are normalized by column. For rule 1 both precision and recall are improved. For class

5, black oaks, the precision is improved by 3 points and the recall by 12 points. The rule has

the largest negative impact on the precision of class 1, which is reduced by 5 points.

Rule 2, which was designed to affect class 6, improves both precision and recall. Class

precision improves by 2 points and class recall by 5 points. Rule 2 has the largest negative

impact on the precision of class 1, reducing it by 4 points. Rule 2 also has a positive effect on

class 5, improving its recall by 11 points.

Rule 3, which was written around class 1, improves class 1’s precision and recall by 1 and

3 points respectively. It has a negative impact on the precision and recall of class 5. This is

contrary to rules 1 and 2 which both improve class 5.

Rule 4, which is designed around class 2, improves class precision by 1 point. The overall

F1 is improved by 0.59 points, while class F1 improves by 1.1 F1-points. This rule improves

on the precision of class 5 by 2 points, while reducing class 5’s recall by 3 points.
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The rarest species was most affected by the inclusion of domain knowledge. We hypothesize

that this effect is most profound when rules derived from domain knowledge are applicable to

the dataset, but the model, due to noise, data imbalance, or other reasons, is unable to learn the

rule from the data alone.

By rarity, species are ordered 5, 1, 6, 2, but by base model ascending class F1 performance

they are ordered 1, 5, 6, 2. Rule 3, which affects class 1, had the largest ratio of the number

of rule-correctable incorrect predictions to the number of total predictions, while rule 1 had the

2nd largest. Rule 3 which is designed for the 2nd rarest species with the worst base model

performance is significantly less effective than rule 1, suggesting that the domain knowledge

derived from rule 1 may be a better differentiator between species than the domain knowledge

applied to rule 3.

Fig. 4. The change in the confusion matrices for baseline and experiment models normalized by column for precision and row

for recall.
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The results of the ablation study are shown in Fig. 5. The results suggest that the influence of

domain knowledge is strongest for rule 1, which is likely due to the rarity of black oak in the

dataset. Nevertheless, each species for which a rule was created was impacted by the inclusion

of domain knowledge. As in [30] the study suggests that there is a slight boost in performance

when the model is placed in a NS framework and that this boost is independent of additional

domain knowledge.

Fig. 5. The average difference between F1 and F1 class when using correct thresholds versus randomized thresholds. Error

bars show 95% confidence intervals (µ± CI; n=30).

V. CONCLUSION

In this work we show that domain knowledge can be encoded through a function and then

injected into a species classification neural network. This method is more accessible than other

NS frameworks that use formalisms such as FOL, knowledge bases, or text embeddings. Our

results show that model performance on rare species can be significantly improved through the

inclusion of domain knowledge using our method, which simply applies a slight modification to

the original model architecture and adds an additional term to the loss function.
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