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FedHybrid: A Hybrid Federated Optimization
Method for Heterogeneous Clients

Xiaochun Niu

Abstract—We consider a distributed consensus optimization
problem over a server-client (federated) network, where all clients
are connected to a central server. Current distributed algorithms
fail to capture the heterogeneity in clients’ local computation ca-
pacities. Motivated by the method of multipliers in centralized
optimization, we derive a Newton-type primal-dual method with
a distributed implementation utilizing the server-client topology.
Then we propose FedHybrid as a hybrid primal-dual method that
allows heterogeneous clients to perform different types of up-
dates. Specifically, those clients with higher computational capabil-
ities and/or cheaper costs to perform computation can implement
Newton-type updates locally, while other clients can adopt much
simpler gradient-type updates. Theoretically, we propose a novel
merit function by combining the dual optimality gap and the primal
tracking error. We prove that FedHybrid converges linearly to
the exact optimal point for strongly convex functions, regardless
of clients’ choices of gradient-type or Newton-type updates. Fi-
nally, we show numerical studies to demonstrate the efficacy of
our method in practice. To the best of our knowledge, this is
the first hybrid method allowing heterogeneous local updates for
distributed consensus optimization with provable convergence and
rate guarantees.

Index Terms—Server-client networks, distributed optimization,
primal-dual algorithm, heterogeneous systems.

I. INTRODUCTION

‘ N J E STUDY the distributed optimization problem over a
server-client (federated) network,

min
weRd

> filw), (1
1=1

where n is the number of clients in the network connected to
a central node (server) and f; : R? — R is the local objective
function corresponding to the ¢th client. In such problems, each
client only has access to its local data and communicates with
the central server. The goal of the system is to learn a shared
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model over all the data, represented by w, in the network without
exchanging local data due to privacy issues or communication
limitations [1]. For instance, in a supervised learning setting, if
we consider an empirical risk minimization problem, the local
objective function f; represents expected loss over the local data
distribution at the sth client.

Solving Problem 1 using a distributed procedure over the
server-client network where both data collection and model
training is pushed to a massive number of edge clients has
gained significant attention recently. This is motivated by a
wide range of applications such as multi-vehicle and multi-robot
networks [2], [3], machine learning [4], and especially federated
learning [5], [6].

To develop a distributed algorithm for solving Problem 1, we
decouple the computation of individual clients by introducing
local copies of the decision variable. We index the central server
as the Oth node and denote by x¢, z; € R? local copies of w kept
at the server and client 7, respectively. We formulate Problem
I under the server-client network as a consensus optimization
problem [7], [8],

n

Zfl(mz) s.t. xg = x;, fors € {1, .. .,n}. 2)

i=1

min

LOyLYyeeey Ty
We remark that the consensus constraint xg = x; for i €
{1,...,n} enforces the equivalence of Problems 1 and 2.

In practice, distributed systems, particularly federated se-
tups [1], [9], may involve heterogeneous clients [10] due to the
drastically varying storage, computation, and communication
capabilities among the clients caused by hardware, network
connectivity, and battery power. This work focuses on het-
erogeneous systems where clients have various computation
capabilities. Namely, some can efficiently compute second-order
information, whereas others can only process first-order infor-
mation. Such systems are common nowadays since processors
with advanced computation capabilities have limited availability
due to the recent global chip shortage. Consequently, many
distributed computation systems have only a few agents with
advanced hardware co-existing with many older processors.
While there is proliferating literature on developing distributed
methods to solve Problem 2, most existing works consider
homogeneous settings where all clients implement the same
kind of local computation, such as all gradient-type methods [8],
[11], [12] or all Newton-type methods [13], [14], [15], [16].
In this paradigm of algorithmic development, a fast-converging
method utilizing higher-order information may not be applicable
to a distributed system if any agent cannot handle high-order
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computation. The resulting system could not fully utilize the
distributed computation capability. It is, therefore, imperative
to provide a flexible and efficient hybrid method to utilize
heterogeneous clients. To the best of our knowledge, this paper
takes the first step in this direction.

To utilize the heterogeneous system, we propose a distributed
hybrid method for the server-client (federated) network named
FedHybrid, which allows some clients to perform gradient-type
updates while others use Newton-type information. The goal
is to maximally utilize varying local computation capabilities
to speed up the system’s performance and improve overall com-
munication efficiency. Specifically, we first introduce a gradient-
type primal-dual method with a practical distributed implemen-
tation. Moreover, motivated by the superlinear convergence of
Newton-type primal-dual methods in centralized settings, we
propose a Newton-type distributed method as a distributed ap-
proximation of the centralized method to improve convergence
speed. In particular, we form a block diagonal approximation
of the dual Hessian utilizing the server-client topology. Then
we propose FedHybrid as a combination of gradient-type and
Newton-type primal-dual methods. Specifically, those clients
with higher computational capabilities and/or cheaper cost to
perform computation can implement Newton-type updates lo-
cally, while other clients can adopt much simpler gradient-type
updates. To analyze the intricate coupling of primal and dual
updates in FedHybrid, we combine the dual optimality gap and
the primal tracking error as a novel merit function, based on
which we show that FedHybrid achieves a linear (Q-linear)
convergence rate to the exact optimal solution for strongly
convex functions. Numerical experiments on both synthetic and
real-life data are conducted to demonstrate the efficacy of our
method.

We clarify that we name the Federated Hybrid (FedHybrid)
method mainly due to the server-client topology of the sys-
tem. The method serves as a starting point for hybrid meth-
ods combining first and second-order updates to utilize het-
erogeneous computation capabilities among clients, a crucial
issue frequently arising in federated settings, and ignores some
practical requirements of federated learning, including partial
participation of clients, multiple local updates, and nonconvex
objectives. We consider these practical requirements as future
directions with modifications and variants of FedHybrid.

A. Literature Review

Our work is related to the growing literature on distributed
algorithms for solving Problem 2. A line of works studies the
general network topology. First-order primal iterative methods,
including distributed (sub)-gradient descent (DGD) and related
methods [8], [11], [17], have updates in the form of linear
combinations of a local gradient descent step and a weighted
average among local neighbors. Second-order primal meth-
ods, including Network Newton [18] and Distributed Newton
method [19], rely on iterative schemes to approximate a Newton
step. In work [20], the authors derive a DGD-based method
with the inclusion of first and second-order updates in the
continuous-time setting. Their method cannot be directly applied

in discrete time and lacks convergence rate analysis. In addition,
the method NEXT proposed in [21] combines successive convex
approximation techniques with consensus mechanisms while
also lacking a rate analysis. Another popular approach is to use
dual decomposition-based methods such as ADMM [22], [23],
ESOM [24], and CoCoA [25]. Among these, ESOM performs
second-order updates in the primal space and first-order updates
in the dual space and has a provable linear convergence rate.
Another line of research focuses on the server-client network,
also known as the federated learning/optimization setting. Ex-
isting works include primal first-order methods like FedAvg [5],
[26], FedProx [27], FedSplit [28], FedAC [29], FedNova [30],
and adaptive federated methods [31]; and primal-dual methods
like FedPD [32] that utilizes first-order updates in both the primal
and the dual spaces. Such methods suffer from slow convergence
speed due to their first-order nature. Some second-order methods
have been proposed. Examples include DANE [13], DiSCO [14],
GIANT [15], DINGO [16], and DAve-QN [33]. However, all
of these methods except for GIANT require an inner loop to
approximate Newton’s direction at each iteration. Also, DANE,
DiSCO, and GIANT only give the best performance when each
client has access to i.i.d. local data, which is not realistic in
practice, especially in federated optimization settings. More-
over, none of the existing works for either general topology or
server-client architecture allow heterogeneous client updates.

B. Contributions

Our main contributions are fourfold:

e We propose FedHybrid as a heterogeneity-enabling primal-
dual method, where clients in the network can perform
different types (gradient or Newton-type) of updates si-
multaneously based on their computation capacities.

e [f all clients choose second-order updates, we develop a
Newton-type primal-dual method in the distributed scheme
by approximating both the primal and the dual Hessian
matrices utilizing the server-client network.

® We propose a novel merit function and show that FedHy-
brid converges to the exact optimal solution in a linear
(Q-linear) rate for strongly convex functions, independent
of clients’ choice of first or second-order updates.

® We provide numerical experiments to demonstrate the ef-
ficacy of FedHybrid in practice.

To the best of our knowledge, FedHybrid is the first hybrid
method allowing heterogeneous local updates for federated op-
timization with a provable convergence and rate guarantee. Fed-
Hybrid significantly enhances the flexibility and applicability of
distributed methods to various hardware applications.

Notations: For any m € Z*, we denote by [,,, the identity
matrix, 1, = (1,...,1)T € R™, and [m] = {1,...,m}. Let
® denote the Kronecker product. For any symmetric positive
definite matrix X € RP*?, we denote by 0,;, (X)) its smallest
eigenvalue and ||y||% = yT Xy the quadratic form for any y.

II. PRELIMINARIES

In this section, we formulate Problem 2 in a compact form and
review the method of multipliers in centralized optimization.
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The method of multipliers is derived by formulating a dual
problem based on the augmented Lagrangian function [34],
which motivates our derivation of FedHybrid.

We first assume the following conditions for local functions.

Assumption 1: For any agent ¢ € [n], the local function f;
is twice differentiable and m;-strongly convex and its gradient
V f; is ¢;-Lipschitz continuous with constants 0 < m; < ¢;.

For any agent 7 € [n], Assumption 1 implies that eigenvalues
of the local Hessian are bounded by m;I; < V2f;(-) < £;1,.
We define m = min,ep,,){m;} and £ = max;cp,,{£; }.

Problem Reformulation: Problem 2 has the compact form,

n
’je]g(li{}l)d f(.’E) = 2; fl(‘rl) st. Wz =0, (3)
i
,aT)Tand T = (2§, 2T)T are the concatena-
n+1)d

where z = (27,. ..
tions of local variables, f: R( — R is the aggregate func-
tion, and W = (1,,, —1,,) ® Iy € R™¥*(»+1)d i the incidence
matrix of the server-client network. We remark that the ith row of
W2 = Orepresents the consensus constraint 2y = ; in Problem

2. Since f(Z) only depends on the value of z, for convenience,
we also define f : R™ — R, f(z) = Y0, fi(z:) = f(F). We
differentiate whether a variable includes the server’s decision or
clients’ by the tilde.

Dual Problem: Now we introduce the dual problem of Prob-
lem 3 based on the augmented Lagrangian. We denote by A\ =
(A],...,AT)T the dual variable with \; € R? associated with
the ¢th constraint x(y = z; and define the augmented Lagrangian

function L(%, \) of Problem 3 as follows,

L@\ = f(@) + \TW7 + giTWTWE, @
where p > 0 is a constant. We remark that the matrix WTW is
the graph Laplacian of the network. The augmented Lagrangian
in (4) can also be viewed as the (unaugmented) Lagrangian
associated with the penalized problem

min f('f)+ngWTwz SLWE=0. (5

FeR((n+1)d
Problem 5 is equivalent to Problem 3 since the augmentation
term pzTWTW /2 is zero for any feasible z. Otherwise, the
term serves as a penalty for the violation of the consensus
constraint. By Assumption 1 and the Slater’s condition, strong
duality holds for Problem 5 [35]. Thus, Problem 5, as well as
Problem 3, is equivalent to the following dual problem,
min  L(Z, \),
FeR(n+1)d

max g(A), where g(\) = (6)

AeRnd
where we refer to g : R"® — R as the dual function. For any
A € R™ as we will show in Lemma 8, L(-, \) is a strongly
convex function with a unique minimizer. We define

7*(\) = argmin L(Z,\), (7

FeR(n+1)d
the unique minimizer of the inner problem in Problem 6. By
the definition of ¢ in (6), we have L(Z*(A),\) = g(X) for any
e R™. As we will prove in Lemma 9, the dual function g is
strongly concave with a unique maximizer, which we denote by
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\*. We define 7OFT as the optimal solution of Problem 3. Then
the strong duality implies that 2*(\*) = 2OFT,

Method of Multipliers (MM): We now review MM [34], [36],
which solves Problem 3 in the dual space based on the augmented
Lagrangian L and helps to motivate our derivation of FedHybrid.
Ateach iteration k&, MM finds the exact primal minimizer Z* (\*)
and take one step in the dual space

7 (A\F) = argmin L(Z, AF),

A= U@ (W), A"), ®)

where U : R(*+Ddxnd _, R 5 a general dual update formula
with the property that \* = U (z*(\*), A*). We give some pop-
ular choices for U as follows,

U3 (& (AF), AF) = A%+ B1Vg(AF),
Us(F*(AF), M) = AF — By ANF,

(%a)
(9b)

where 31, B2 > 0 are stepsizes and AN¥ is the Newton’s direc-
tion satisfying V2g(A\*)AN* = Vg(\*). We remark that (9a)
and (9b) correspond to the gradient ascent method and the New-
ton’s method with respect to the dual function g(\), respectively.
The following lemma shows the explicit forms of Vg(A) and
V2g(\) used in (9a) and (9b).

Lemma 2 (Dual Gradient and Hessian [36]): Under Assump-
tion 1, with *(\) defined in (7), the gradient and the Hessian
of the dual function g(\) defined in Problem 6 are given by

Vg(A) = WE (), V2g(\) = —W(VZL@E (V),A) ' WT.

We remark that the primal update in (8) is computationally
expensive due to the requirement of an exact solution to the inner
minimization problem and it cannot be readily implemented in a
distributed manner due to the nonseparable augmentation term
pZTWTWZ/2in L(Z, N).

III. ALGORITHM

In this section, we first introduce a distributed gradient-type
primal-dual method to reduce the computation complexity of
MM, which is a particular case of FedHybrid with all gradient-
type clients. For a speedup, we derive a Newton-type primal-dual
method utilizing the server-client topology, which leads to an-
other particular case of FedHybrid with all Newton-type clients.
Finally, we combine them to propose FedHybrid, which allows a
mixture of first and second-order updates by various clients and
provides flexibility to handle and utilize heterogeneity in the
network. In all of these methods, the clients could only process
local information and are not allowed to communicate local
Hessian matrices due to the expensive communication costs and
privacy concerns.

A. Gradient-Type Primal-Dual Method

To develop a first-order method based on the dual gradient
ascent update in (9a), we need to compute Vg(A\*) = Wz*(\)
by Lemma 2. However, the computation of the exact *(\*)
can be computationally expensive. Thus, we approximate it by
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taking a gradient descent step in the primal space, leading to the
gradient-type primal-dual algorithm. At each iteration k,

P = 3 — oy VEL(ER, NP,

ML= \F 4 3y W TR, (10)

where a1, 81 > 0 are the primal and the dual stepsizes, respec-
tively. This recovers the Arrow-Hurwicz-Uzawa method [37].
The updates in (10) can be easily implemented in a distributed
scheme as follows. At each iteration k, each client i € [n]
performs a primal and a dual updates,

aith = af — o (Vfi(af) = A+ p(af — af)),
ML= \F LBy (ak — 2F); (11)

and the central server updates by aggregating information,

okt =2k oy lz N (nxlg - fo)] . (12)
i=1 i=1

This is a special case of FedHybrid when all clients perform
gradient-type updates. While this gradient-type primal-dual
method leads to simple distributed implementation, it suffers
from slow convergence due to its first-order nature. This moti-
vates us to consider Newton’s method for a speedup.

B. Newton-Type Primal-Dual Method

We now derive a Newton-type primal-dual method utilizing
the server-client network topology.

Primal Update: We consider a Newton’s step as an ap-
proximation of the primal update in (8). The primal Hessian
V2. L(7FF, A\F) = V2 f(#*) + uWTW is nonseparable due to
the graph Laplacian WTW, which makes it intractable to
compute the exact Hessian inverse in a decentralized man-
ner. Thus, we replace WTW by its block diagonal £ =
diag{m 1,...,1} ® I; € ROv+Ddx(n+1)d - By ysing H* =
V2f ( k) + ,uE as an approximation of the primal Hessian
VHN(~’“ ,A\%), we obtain the following Newton-type primal
update. At each iteration k,

P = B8 — (H)IVELER, ). (13)
In particular, the server update takes the following form,
1
k+1 _ 4 k_ Ab. 14
REEDIE LT (14

i€[n] ze[n]

We remark that when taking «; = 1/(un) in (12), the central
server will have the same updates as in (14).

Dual Update: We consider the exact dual Newton update A\*
in (9b). We note that it’s difficult to compute AN in a distributed
manner since the dual Hessian V2g(\¥) given in Lemma 2
is nonseparable. Thus, in order to obtain a Newton-type dual
update in a distributed scheme, we will provide an estimator
of AN*. We first substitute Z* as an approximation of Z*(\*)
and define @g()\k) and §2g(>\k) as estimators of Vg(\*) and
A& g()\k), respectively, as follows,

Vg(\F) = Wik, V2g(\F) = W (VZL(E* ) twT,

We define a Hessian weighted average of primal variables as,

> VEfilaf) Z v file
i€[n]

lE 71
We introduce the following lemma to characterize the estimator
~k ~k
AN of A)\k, where A\ satisfies,

15)

T2\ AN = Tg(Ab). (16)

Lemma 3 (Approximated Dual Newton Update): Under As-
sumption 1, with the incidence matrix W and yk defined in (15),

the dual Newton update Axk in (16) satisfies
~k ~
WTAXN = V2. LG5 N (1,01 @ y* — 7).

Proof: By the formula in (16) and the dual gradient @g()\k)

and the dual Hessian V2 g(A\¥) given in Lemma 2, we have
CW(VELE ) TIWTAN = Wk

We note that the null space of the matrix W is Null(W) =
{I41 ®y :y € R?}. Thus, there exists 4* € R such that

(VELLE, A TWTAR 35 = 1,41 @y,

Rearranging terms in the previous equation, we have
~k ~ -~

WTAXN = V2 L(E* M) (1,1 @ y* — 75)
= (V2J(@) + W W) (Lo ® y* —7%),

where the last equality follows from the explicit form of
VZ.L(z* A¥). Since (17, ® I;)WT =0, by multiplying

17 ., ® I on both sides of (17), we have
0= (1], ®1s)V? f(@

a7)

(L1 @y - 7).
i€[n] sz’b J} yk ze[n] v fl( ) f’
and ths, o = [,cq V2] [Sicgy Vhiab)al]

Substituting the preceding relation into (17), we have

Then we have (Z

WTAN = V2 L7, A (1 @ y* — 7,

where 4/ is defined above. O

We remark that calculating y* in Lemma 3 directly is im-
practical in a distributed way, since communicating d x d local
Hessian matrices can be prohibitively expensive. We then intro-
duce another approximation of estimating y* using x5 in (14).
The next lemma justifies this approximation.

Lemma 4 (First-Order Stationary Condition): At the optimal
point of Problem 6, it holds that }_,,,) A; = 0.

Proof: For the optimal primal-dual pair (z*, A*), based on
optimality and feasibility, we have ng(%, A) | @y = 0and
WZ* = 0. This implies that V f(Z*) + WTA* = 0. Thus, the
part related to the central variable z( can be written as 1T \* =
0. O

The above lemma implies that 33’5 in (14) can be viewed
as a penalized average of primal variables {xf’l}ie[n], where
the penalty term vanishes at the optimal point, i.e., xy =
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Dicln] T0/M = 2iefn) Ai/ (kn) = x5. Moreover, due to the
consensus constraint, =} =z, for any ¢ € [n], we have y* =
(i V2 fila})) ™ Yiepn V2 file})xg = x5 Thus, at the
optimal point, the estimator g is equal to y.

If we substitute xlg defined in (14) and H” defined above as
estimators of y* and V?ﬁz(f’“, A\F ) in Lemma 3, respectively,

ok ~k ok
then we obtain an estimator A\ of A\ satisfying WTAN =
H*(1,,41 ® zE — 7*). Then by the structure of the incidence
matrix W, we have

AN = —HEWE, (18)

where H* = V2 f(2%) + pl,q € R is a submatrix of H*,
corresponding to components related to the clients. Thus, using
the dual Newton’s formula in (9b) with the estimator defined in
(18), we obtain a Newton-type dual update

AlﬁLl — /\k +62HkW%k

(19)
By combining (13) and (19), we obtain a Newton-type primal-
dual method as follows. At each iteration k,

T =3 — (H)TIEL(ER ),

)\kJrl _ )\k 4 ﬂszWi:k

(20)

where H* = V2f(2%) + pul,g and H* = diag{unly, H*}.
This is a special case of FedHybrid when all clients perform
Newton-type updates. The following is the distributed imple-
mentation of (20). At iteration k, each client i € [n] performs

k+1 _ .k
T, =

AL+l = ),
1)

— (V2 filw:) + pla) H(V fi(a}) —
AT = N o+ Bo(V2 fils) + pla) (z — 2f);

and the server aggregates information and updates using (14).

C. FedHybrid to Handle System Heterogeneity

Since the clients in the network may be heterogeneous, we
consider combining gradient-type method in (10) and Newton-
type method in (20) to provide a hybrid update framework.
Specifically, all clients in the network can choose to perform
gradient-type or Newton-type updates based on their computa-
tion capabilities. For notational convenience, we denote J; =
{i € [n] : client i performs gradient-type updates} and simi-
larly, Jo = {i € [n] : client i performs Newton-type updates}.
Based on such choices of different update types, we propose
our hybrid updates as follow. At each iteration k, we have

)71VEEE(§]€7 Ak))
N+ BD*W ik,

gk’—&-l — %k _ Av(ﬁk

AL — (22)
where A = diag{ag, ay, ..., an} ® Iy € R(vFDdx(n+1)d
and B = diag{by,...,b,} ® I; € R4 with personalized
stepsizes a;, b; > 0 and update matrices DF = diag{Iy, Dk} S
RHDdx(n+1)d  and  DF = diag{D},..., DF} € Rrd*nd,
Here D¥ = 1, if i € J; while DF = V2 fi(z;) + ulyifi € Ja.
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Algorithm 1: FedHybrid: Hybrid Primal-dual Algorithm for
distributed consensus optimization.

1: Input: Initialization index sets J; and Jo, 20, 29,
A\ € R% and a;,b; € R foralli € [n], and penalty
parameter /.
2:fork=1,...,K —1do
3:  Server sends m’{j to all clients in the network;
4: for each clients € J; do >Gradient-type
500 oMt =gk _ q(Vfi(xF) = NF 4 ek - 2F));
6: )ﬁ““ A by () — )
7.
8
9
0

Send xk'H and /\k+1 to the server;
end for
for each clienti € Jo do >Newton-type
100 2t =ab = ay (V2 fi(af) + pla) 7 (Vfilef) -

N ek — o))

1L Af“ A+ bi(V2 fi(ah) + pla) (x§ — 2F);
12: Send xf“ and Af“ to the server;
13:  end for

14:  Server consensus updates:

k“ = (Zie[n] xfﬂ)/n - (Zie[n] Af“)/(un)-
15: end for

The updates in (22) generalize both (10) and (20). On the
one extreme, if J; =[n] and Jo =@, (22) recovers the
gradient-type updates in (10); on the other extreme, if J; = &
and Jy = [n], (22) recovers the Newton-type updates in (20).
Using (22), we propose the FedHybrid method with a distributed
implementation based on (11) and (21) in Algorithm 1.

FedHybrid in Algorithm 1 consists of two steps: gradient-type
or Newton-type updates at the clients, simultaneously, followed
by a consensus update at the server. Specifically, gradient-type
(Lines 4-8) and Newton-type updates (Lines 9—13) follow from
(22) by extracting the corresponding block. For the consensus
update, to simplify the method, we choose the stepsize ag =
1/(un) in A of (22) and replace the primal and dual decision
variables 2 and A* by their updated counterpart z5 ! and \* 1.
By substitution, we obtain that

1
o= Ly
n
i€[n]

(23)

o
pn i€n]

which corresponds to the consensus update in Line 14.

D. Discussions

Naive Attempt: A naive attempt to solve Problem 2 us-
ing a mixture of first and second-order information would
be zFt1 =k —Vfi(xk) for i in J; and 2Pl =gk —

= aF
[VQfl(xo)} 1Vfl(x0) for i in Jy with zf ™! = EZ ] xk+1
k+1 _ k

The server’s update is equivalently written as x5 = z§ —
s, Vi) — Yo, (V2 fi(ah) 19 1(h). However, at
the optimal solution, we have », () Vfi(z") =0, and the
Hessian weighted local gradients do not sum to 0. Therefore this
iteration does not converge to =*. This was the reason behind
our usage of the Lagrangian formulation.
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Multiple Primal Updates: FedAvg ($§+1 =aF — a;Vfi(xf)
andzf ™ = D iein] 21y with more than one local update does
not go to the correct optimal point [28], whereas [38] shows
the exact convergence to the optimal solution of primal-dual
gradient method with any number of local primal updates. Thus,
Lagrangian-based methods are more likely to work with multiple
local updates. This is desirable in federated learning settings, as
multiple local updates can save communication costs. We leave
this as a promising open direction to explore.

Connections with Other Primal-Dual Methods: FedHybrid
runs one primal and one dual step for each agent at each iteration
instead of local rounds of x;-updates to solve the primal problem
to a certain accuracy, as required by FedProx [27], FedSplit [28],
and FedPD [32]. Though Algorithm 1 requires all clients’ syn-
chronous participation and exact local gradient/Hessian com-
putations, we consider asynchronous updates (partial partic-
ipation) and stochastic gradient or subsampled Newton [39]
local updates as important future directions. We note while full
client participation is not always possible, it occurs in certain
engineered systems, such as autonomous vehicles platoon [40]
and high-performance-computing clusters [41].

Heterogeneity in Computation Capabilities: We highlight that
FedHybrid in Algorithm 1 is designed to utilize the system het-
erogeneity in computation capabilities among agents. Namely,
some agents can process second-order information efficiently,
while others can only compute first-order information. On the
other hand, another notion of system heterogeneity often consid-
ered in distributed settings is the dissimilarities of local objective
functions (datasets). Due to its primal-dual update framework,
we remark that FedHybrid also handles the latter scenario com-
pared with some primal-only methods like FedAvg with multiple
local updates and FedProx. The analysis and implementation of
FedHybrid do not require any similarity assumptions on local
functions.

IV. THEORETICAL CONVERGENCE

This section presents the linear convergence rate for FedHy-
brid in Algorithm 1, regardless of clients’ choices of gradient-
type or Newton-type updates. In Section IV-A, we reformulate
the augmented Lagrangian L and obtain a simplified represen-
tation of FedHybrid. In Section IV-B, we show strong convex-
ity/concavity and Lipschitz smoothness of the primal and the
dual functions. Finally, in Section IV-C, we propose a novel
merit function and show that FedHybrid converges to the exact
optimal solution at a linear rate.

A. Reformulation Based on the Consensus Update.

In this section, we reformulate the augmented Lagrangian L
based on the consensus update (23) and obtain a function L. For
convenience, we will use L in the subsequent analysis.

We note that the consensus update (23) in Algorithm 1 can be
writtenas x4 1 = Xo (21, AFT1) where X : R™ x R —
R is a function defined as follows,

Xo(@,N) = (I @ L)fe/n - M (). (@4)

By substituting g = Xo(x, A) in (24) into the consensus con-
straint in Problem 3, we have

Wz =1, ® Xo(z,\) —x =Mz — Z\/u, (25)

where matrices Z = (1,17) ® I;/n € R"®"? and M =
I,q — Z. It’s easy to show that both matrices are idempotent,
thatis, Z? = Z and M? = M. Thus, wehave | Z|| = || M| = 1.
Moreover, if we substitute 9 = Xo(x, A) into the augmented
Lagrangian L defined in (4) and define L : R™ x R™ — R
such that L(z, \) = L(Xo(x, A), z, \), then we have

L(z,\) = f(z) — \TMz + %xTM:E - i)\TZ)\. (26)

The following lemmas studies the connection between L and Z,
which enables a simplified representation of FedHybrid.

Lemma 5 (Partial Gradients of L and L): Under Assumption
1, with 29 = Xo(x, \), for any z, A € R™?, it holds that

VmL(l', )\) = VIZ(.T(), x, >‘) | $o:X0(zv)‘)'

By the definition of Xj, we have V,L(z,\)=
VoL(20,2, M) | sgxo(ey = V(@) = MA+ uMz. By
Lemma 5, the primal update in Algorithm 1 is as follows,

= b — A(DF) IV, L(ak, 2R ) | zk=Xo(a*,\¥)
= ajk - A(Dk)_lsz(xk’ )\k)

Thus, we can rewrite FedHybrid in Algorithm 1 in a compact
form. At each iteration k, FedHybrid consists of the steps,

2P =gk — A(DF)IV,L(2F, M),

ML= Nk BDEWER, 2h T = Xo (o A @27)
where Wz is defined in (25). For convenience, we will use the
equivalent representation (27) of FedHybrid in the subsequent
analysis. Next, we characterize the primal optimal point Z*()\)
for the inner problem in Problem 6.

Lemma 6 (Inner Primal Optimal Point): Given any
A€ R™, we consider the primal optimal point Z*(\) =
(x5 (A)T,2*(A)T)T for the inner problem in (6). It holds that,

25(A) = Xo(z"(A), A).

Lemma 6 shows L(z"(A), A) = L(Xo(z"(A), A),2"(A), A)
— Lm0 2" (W), A) = L@ (V) ) = g(). More-
over, Lemmas 5 and 6 imply V,L(z"(\),A)=
Vo L(Xo(z"(A), A), 2" (A), A) = Vo L(z5(A), 27 (A), A) =
V. L(z*(\), \) = 0, which ensures z*(\) = argmin, L(z, \).

B. Properties of Primal and Dual Functions.

In this section, we show the strong convexity/concavity and
the Lipschitz smoothness of the primal function L(-, \) and
L(-,\) and the dual function ¢, respectively.

Lemma 7 (Strongly Convex and Lipschitz Smooth Primal):
Under Assumption 1, for any fixed A € R™?, the function L(-, \)
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is m-strongly convex and its partial gradient V, L(x, \) is ¢ -
Lipschitz continuous with {7, = ¢ + p.

Proof: Given any fixed A € R™, by taking partial Hes-
sian with respect to x of the function L defined in (26), we
have V2 L(z,)\) = V2f(x) + pM. We prove the Lemma by
bounding the partial Hessian. Under Assumption 1, using the
fact that 0 < M < I,,4, we have mI,q < V2 L(z,\) < (¢ +
) I,q. This concludes the proof of the Lemma. g

We also show that the original Z(, A) is strongly convex.

Lemma 8 (Strongly Convex Primal E(, A)): Under Assump-
tion 1, for any A € R™, the function 5(7 A) is strongly convex.

Proof: We denote by H = diag{0,m,...,m} ® I;. Given
any fixed \ € Rjd, by taking partial Hessian with respect to @
of the function L defined in (4), we have

VZLL(E ) = V(@) + pWTW = H+ pW™W
_ pndg —pll @ I,
T\ —ula @I (At m)lng )’

where the inequality is due to Assumption 1 and the last equality
is due to the definition of W. By the Schur complement, since
pnlg =0 and pnlg — (_:u]l:rrz ® Id)(:u + m)illnd(_ﬂﬂn ®
Ig) = pn(1 — p/(p 4+ m))Iq > 0, the matrix H + pWTW is
positive definite. Thus, the matrix V2 (a: A) is positive def-
inite with a uniform lower bound ﬂ + uWTW for all x €
R(+14 Thus, L(-, \) is strongly convex. O

Now we study the properties of the dual function g(\).

Lemma 9 (Strongly Concave and Lipschitz Smooth Dual):
Under Assumption 1, the dual function g(-) is mg-strongly
concave and its gradient Vg(-) is £4-Lipschitz continuous with
constants my = 1/(p+ ¢) and £, = 1/p.

Proof: By Lemma 2, the dual Hessian is given by VZg(\) =
—W(V2f(Z*(\) + pWTW)"LWT. We show both lower and
upper bounds on V2 g. We define H = diag{0,m,...,m} ®
I; and H = diag{0,¢,...,¢} ® I; € R(+Ddx(n+1)d Under
Assumption 1, we have (H + pWTW)™! < (V2 (7 (\) +
pWTW)™t < (H + pWTW)~! for any A € R™4.

For any constant s >0, we consider the matrix S =

diag{0, s, ..., s} ® I; € ROHDdx(n+1)d By the inverse of a
block matrix using Schur complement [35], we have
-1
I —ulT @ 1,
(S+pwrw) L= [ M i B
_,U/]ln ® Iy (,U/ + S)Ind
+s 1
_ < ZWGI nsﬂll@]d )
= ) .
ns ]1 ® Id uts Ind + (,qus) Z

Then by straightforward matrix multiplications, we have
W (S +uWTW) ' WT = La/(n+ ) + sZ/[1n(u + s)).
Thus, using the fact that 0 < Z < I, we have
Lua/(p+s) WS +uWTW)'WT < 1.4/

We also note that for any matrix S € R("f)dx(”“)d, if S <
S < S, wehave WSWT L WSWT X WSWT. Thus, we ob-
tain a lower and an upper bounds on the dual Hessian,

Lna/(p+€) X W(H + pWTW)'WT < =V?g())
<W(H+pWTW) 'WT < I,4/p.
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Therefore, we conclude the proof of the Lemma. O

We remark that there are existing literature [42], [43], [44]
studying dual problems and showing the strong concavity and
Lipschitz gradients of the dual function g. While here we provide
tighter bounds with constants m, and £, defined in Lemma 9
utilizing the structure of the server-client topology.

C. Convergence Analysis of FedHybrid.

In this section, we show the convergence analysis of FedHy-
brid. We first introduce the performance metrics.

Merit Function: We define z = (z;y). Most existing anal-
yses of primal-dual gradient methods study ||z* — z*|| as the
merit function [45], [46], which decreases geometrically such
that |25t — 2|2 < p[|2* — 2*||?, for a matrix V = 0 and
a constant p > 0 implying linear convergence. However, such
analysis does not apply to FedHybrid A similar procedure leads
to [[2F — 2|12, < pll2¥ — 2*||3,. with time-varying {V* =
0} due to the time-varying local Hessian matrices, which does
not guarantee a linear rate. Thus, we customize a novel merit
function and introduce a new line of analysis that combines
primal function tracking error and dual function optimality gap
to address the challenge of the time-varying local Hessians. We
define the primal tracking error and the dual optimality gap as
performance metrics,

AR = L% \F) — L(z*(\F), \F),

AY = g(\) = g(\"), (28)
where 2*(\) = argmin,, L(x, A) and A" is the optimal solution
to Problem 6. Here A quantifies how close the augmented
Lagrangian at z* is from the optimal value of the inner prob-
lem given \* and Ak measures the distance of the current
dual function value to the optimal one. We remark that since

L(a*(\%), ) = L(@ ("), \*) and L(a*,\*) = L(@*, \"),
we also have A% = L(F*(\*), \¥) — L(z*, )\k). We define the
merit function by combing the performance metrics in (28) as

AF =13AF + AR, (29)
We remark that by the definition of z*(\) and \*, both A¥ and
Ak are nonnegative, so does the merit function A*. Thus, the
convergence of A* to zero guarantees the convergence of A*
and A’A“. Specifically, under Assumption 1, the convergence of
Ak and Ak ensures that the primal variable sequence {z*} and
the dual sequence {\*} converge to the optimal Z*(\*) and \*,
respectively, where 7 (\*) = ZOFT is the optimal solution of the
original problem in (3) due to strong duality.

Linear Convergence of FedHybrid: Now we present the theo-
retical analysis and the linear convergence result of FedHybrid.
We decompose our analysis into three steps. Due to the coupled
nature of primal and dual updates in the algorithm in 27, our
main idea for analyzing primal-dual methods is to first upper
bound the dual optimality gap A’; and the primal tracking error
Ag through coupled inequalities. Propositions 12 and 13 show
the coupled inequalities obtained by the first two steps. Then we
combines these results and show the linear convergence rate of
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Before presenting the analysis, we introduce the following
lemma, which is a corollary of the strong convexity of L(-, A).

Lemma 10: Under Assumption 1, forall £ =0,1,..., K —
1, the iterates generated from FedHybrid in Algorithm 1 satisfy
Wt — Wi (B < VoL (ak, Xb)]|/m.

We also provide the following lemma that bounds the dual
update [[\*F! — A\¥| by an alternative primal tracking error
[V L(z*, \*)||> and the dual gradient || Vg()\*)||. For conve-
nience, we define a constant 3 as follows,

p= max{rirégi( {bi}7 ?é%f{bi (4; + M)}} . (30)

The constant 3 serves as an upper bound of || BD¥|| since
| BD*I| = max{b:| DI} < 6. 31
Lemma 11: Under Assumption 1, forall k =0,1,..., K —

1, the iterates generated from FedHybrid in Algorithm 1 satisfy
IWZ* |3 e < 2B8( Vo Lz, A%)|IP/m® +2[[Vg(A") 5 o
and [N = A2 < 2621V, L(ak, AF)||2/m? + 28] Vg
)2,

Now we start the convergence analysis of FedHybrid. First,
we derive a bound of the dual optimality gap A’;“ with an
alternative primal tracking error ||V, L(z*,\*)||> using the
Lipschitz smoothness of the dual function g.

Proposition 12 (Bounding the Dual Optimality Gap): Un-
der Assumption 1, given a constant p > 0 and stepsizes
{as,bi}iepn) > 0, with 8 and £, defined in (30) and Lemma 9,
forall k =0,..., K — 1, the iterates from Algorithm 1 satisfy

, 1 '
Ak < af (- 86 ) 1990 o

1 B
Proof: The {,-Lipschitz continuity of Vg in Lemma 9 im-
plies,

g()\k+1)
l
> V)  (Vg(Nk), BT — XE) — SZAFRH 32

SR 4
= g(\") + (Vg(\"), BD*W¥) — LN = \F|2,
(32)

where the equality is due to the dual update in (27). Now we
consider the second term in (32). By adding and subtracting
(Vg(A\*), BD*Vg(\")) in the inner product, we have

(Vg(\*), BD*Wzk)
= (Vg(\"), BDFWE* — BDFVg(AF))
+(Vg(\"), BD*Vg(A"))

v

1 1 ~
=S IVI e = 5 IWE* = Vo)
+ 1990 3

1 1 - s
= SIVIO ) e — 3 IWE* = W )

1 k(2 B E oy k2
> §HV9()\ Napr — ﬁHVmL(m AN (33

where the first inequality follows from the inequality that for
any a,b € R, 2aTb < ||a||* + ||b]|%, the last equality is due to
Lemma 2, and the last equality is due to Lemma 10.

By substituting (33) and Lemma 11 into (32), we have

SN 2 g0 + (5 - 88 ) 900

1
- (2 + ﬁ@) %H%L(x’%’“)ll?

By subtracting the optimal value g(\*) and taking negative signs
on both sides, we conclude the proof. OJ

Next, we provide an upper bound of A¥*! using the dual
optimality gap A’j. Specifically, we upper bound the updated
primal tracking error by the Lipschitz smoothness of L(x, \)
with respect to x and obtain the following result.

Proposition 13 (Bounding the Primal Tracking Error): Un-
der Assumption 1, given a constant p > 0 and stepsizes
{ai,bi}iepn >0, forall k =0,1,..., K — 1, the iterates gen-
erated from FedHybrid in Algorithm 1 satisfy

AT < AL+ RV Gpr = IV LAY
+ AF - AR
where constant x = 3 +23%/u% + 3/ and matrix PF =
A(DFYY — (B +£1,/2)A%2(D¥)2 — Br/m?1.

Proof: By the definition in (28), the tracking error of the
primal update A%+ consists of the following three terms,

ARFL = [(ghHL N L (ge (ARFD), AR
= L(ah+1, ML) Lkt 2Ry
term (A)
+ L(zFTE ) — L(z* (A7), AF)
term (B)
+ Lz (A"), %) = L{z" (A1), A",
term (C)

(34)

where term (A) measures the increase due to the dual update,
term (B) represents the updated primal tracking error, and term
(C) shows the difference between dual optimality gaps. In the
sequel, we upper bound terms (A)—(C), respectively.

Term (A):By the definition of L in (26), we have

L(I’k+1,)\k+1) _ L(xk+1,)\k)

1
— (\ktl BT k+1y _  — (yE+INT k+1
(W XET(= M) — 2 (T2
1
+ —(A")TZAF
2u( )
_ ()\k+1 o )\k)'r (—Ma:k+1 o 1ZAk+1> + i()\k)'rz)\k
Iz 2
+ l(/\k-kl _ )\k)TZ)\k-H _ i(}\k-‘rl)Tz)\k-‘rl
1 2p

_ ()\k-i-l _ )\k)TW%kJrl +i ()\k+1 _ /\k)'rz(/\k—i-l _ )\k)’
term (A.1) term (A.2)

(35)
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where the last equality follows from (25). Next, we will bound
terms (A.1) and (A.2), respectively.
Term (A.1): Based on the dual update in (27), we have

()\k+1 )\k)-rw“'k-i-l (BDkW )TWEIH_I
= |[Wa*|% o + (WEE)TBDF(WZEH — wzk)
3. 1, _
< SIWEHGpe + SIWE = Wk [fp, (36)

where the inequality follows from the inequality that for any
a,b € R™,2aTh < ||a||? + ||b]|?. We note that the first term in
(36) can be upper bounded by Lemma 11. Now we upper bound
the second term. Based on (25) and (27), we have

Wz — Wak |3

1 2
= H—M(az’““ —af) = —Z(A =0
7]

BD*
2

<2 HM<xk+1 . xk)HZDk +92 Hiz(/\kﬂ _ )\k:)

BD*

2
< 26||-77k+1 _ JZkHQ /8||/\k+1 )\k”Q, (37)

where the first inequality follows from the inequality that for any
a,b € R", 2a7h < ||al|? + ||b]|? and the last inequality follows
from the fact that | M|| = ||Z|| = 1 and | BD*|| < Bin(31). By
the primal update in (27), we have

PP = | A(DF) IV Lk, AT
Thus, substituting (38) and Lemma 11 into (37), we have
IWEHH — WE |G < 28]|A(D*) IV, L(@*, AV

s 4ﬁ
2 — Vg% toas

[Eaa— (38)

3
sV Lz, A2 (39)
Finally, substituting Lemma 11 and (39) into (36), we have
(N1 = XTI < BJLA(DR) 7V, L, X1
62 Ky 2
+ (34— ) IV 5w

BBy + 2ﬁ2)

R Vo L(z®, XF)||% (40)

Term (A.2): By the fact that || Z|| = 1 and Lemma 11, we have

(VL= AR TZOF - X < [ Z] A - A2
262 E oyky2 k
S IV L@, N1 + 28IV g(\) 3o (41)
Therefore, substituting (40) and (41) into (35), we have
L(zFHE ML) — LRt AR
B(3u? +262 + ,
< ( 2,2 )”me(ﬂfk’)‘k)HQ
m2p
3 25 AP
+ +*+M IV g(A)I% o
+ BIIA(D") VL L(@E*, A7) . 42)
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This provides an upper bound on term (A).
Term (B): Using the £1,-Lipschitz continuity of V,L(xz, \¥)
from Lemma 5, we have
L(zF T NF) < L(a® \F) + V, L(2%, \o)T (2P — 2F)

l
+ 5L||xk+1 - kaZ

= LX)+ LA VL LR A

— Vo L(z", \")TA(D") 'V, L(2", \F), 43)

where the equality follows from the primal update in (27).
Subtracting L(z*(A\*), A*) on both sides of (43), we have the
following upper bound on term (B):

L(zFH1 N — L(z*(A\F), Ay < Ak — ||VxL($k,)\k)||,24(Dk)*1

+ %\\A(Dk)*lvrz;(xk, AR)|2. (44)
Term (C): Since for any A, L(z*(\), A) = g(A), we have
L(z* (%), AF) — L(z* (AFF1), XY = g(AF) — g(AF+H)
=AY - AT 45)
Finally, by substituting (42), (44), and (45) into (34), we have
a2 o (34 204 D) wg00 e+ - af

— V,L(z" )T {A(Dk) (g + ) A?(DF)~2

BB+ 26 + Bu)

m2u2

I} V. L(z" \F).

This concludes the proof of the proposition. U
Finally, we combine the coupled inequalities in Propositions
12 and 13 and provide the linear convergence rate of FedHybrid
using the strong-convexity/concavity of L(-, A) and g(-).
For convenience, we define constants « and 3 as follows,

a = min{min{a; }, min{a;/(¢; + p)}},
i€Jy i€Js
8= min{gt}r}{bi}, {Ielljlz{bz (mi 4+ p)}} (46)

These constants provide lower bounds to eigenvalues of matrices
A(D¥)~1 and BDF, respectively, since

a = min{min{a;}, minfa: /(6 + p)}}

< min aﬂmm((Dk) ) = 9min(A(Dk)_1)7

i€[n]
B = min{min{b; }, min{b;(m; + p)}}
- i€y i€ds

< m[in] biOmin (DY) = 050 (BDF). 47)
i€n
Now we show the main theorem stating that FedHybrid finds
the optimal solution at a linear rate under Assumption 1.
Theorem 14 (Linear Convergence of FedHybrid): For any
given p > 0, under Assumption 1, we suppose that the stepsizes
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{ai,b;}iepn) > 0 satisfy the following conditions,

a; < 1/(221/9 +2¢), b; < min{pu/9,am?/21}, fori € Jy,

ai < (mq +p)/(22p/9 + 20),

b; < min{pu/9,am?/21}/(L; + p), fori € J,
where o is defined in (46). Then forallk = 0,1,..., K —
iterates generated from FedHybrid in Algorithm 1 satisfy

AFHL < (1= p) AR,

where p = min{35/(13m + 13p), ma/2} with 3 defined in
(46) and AF is the merit function defined in (29).
Proof: If dual stepsizes satisfy (48), 3 defined in (30) satisfies

(48)
1, the

2
B = max{maxb“maxb (i +p)} < mln{g a;; }

(49)
Then if primal stepsizes satisfy (48), using 8 < 11/9 and ¢}, =
1 + ¢ defined in Lemma 7, we have

1ADDM = Q%aill(l?f)‘lll

%
< max ¢ max a;, max
1€J1 i€Ja My =+ 1Y

1
2(11p/9 + £) = 228 +41) 0

Next, we show some bounds on a constant x + 12¢, and a ma-
trix Q% = P* — (6 + 1254,)3/m>I related to r and P* defined
in Proposition 13, respectively. By straightforward calculations,
with 8 < 1/9in (49) and ¢, = 1/p, we have

k+120,8 =3 +28%/u* + 138/ < 9/2.

By the definition of P* in Proposition 13, matrix Q* satisfies

(G

; —1 ¢ 2/ k-2
Q"= a0ty - (54 ) 420"
(12,84 6)5
m2
= A(D®)1 <B + ) A?(DF)~2 2271521
- %A(Dk) <5+ >A2(D’f)

1

= SAT(DF) I - (28 + L) A(DV) AR (DY) 3,
(52)

where the first inequality is due to 5 < 11/9 in (49) and (51) and

the last inequality is due to 3 < am? /21 in (49) and (47). Thus,

by (52), the smallest eigenvalue of Q" satisfies

emin(Qk)
> %enlin (A%(Dk)’%[f — (28 +€L)A(Dk)’1]A%(Dk)*%)
> {1 (28 + L) [ ADS) i (ADH) )
> J0uin(ADH) ) > §. (53)

where the third and the last inequalities are due to (50) and
(47), respectively. Now we combine Propositions 12 and 13 to
show the result. By multiplying Proposition 12 by 12 and adding
Proposition 13, we have

LBAYH + AP < 13AY — (6 — 12,8 — 1) [ Vg(N") [ 5 o
+ AL — [ VoL, 2|3, (54)
where Q¥ = P* — (6 + 123¢,)3/m>I. By the m,-strong con-
cavity of g(\) in Lemma 9 with m, = 1/(p + £), we have
. P
[VgA")I* > 2my(g(A) — g(A")) = —= AL (59)
T4
Thus, by (51), we have
. 3 X
(6 — 12,8 — K)[[Vg(A) B pr > §|\V9()\k)||23m
3 36
> “Opmin(BD" AR > A¥ 56
2 5 0umin(BDY)[[Vg(AT)I” = PR (56)

where the last inequality follows from (47) and (55). Similarly,
by the m-strong convexity of L(-, \¥) in Lemma 7, we have

IV L(a®, AM)[I? > 2m(L(z*, A¥) — L(a"(A"), A¥))

=2mAF. (57)
Thus, by the lower bound of Q¥ in (53), we have
IV L(z", A%) |8 > <9min(Qk)||VanL(3?ka>\k)||2
—||v L(z, )12 > SmAk,  (58)

where the last inequality follows from (57). Flnally, substituting
(56) and (58) into (54), we have

33
—ﬁA (1——) Ak

3p k may Ak
< - = _
_13(1 13(u+€)>AA+(1 ; )Aw

< (1 - p)(13AF + A),

where p = min{33/(13(u + £)), ma/2}. O

Theorem 14 prgvides a linear (Q-linear) convergence rate
with respect to the merit function AF. which consists of the
dual optimality gap A’§ and the primal tracking error A¥. It
ensures that FedHybrid converges linearly to the optimal point,
regardless of clients’ choices of gradient-type or Newton-type
updates. Moreover, the linear rate of FedHybrid holds for any
local functions satisfying Assumption 1, which do not need
to be i.i.d. among clients. In FedHybrid, clients can choose
personalized stepsizes related to properties of local functions
under condition (48), which provides more flexibility.

Other distributed methods like ESOM [24] that adopt Newton
or quasi-Newton information also have provable linear rates
as FedHybrid. The existing superlinearly converging method
either works only in centralized settings [47], [48] or requires an
expensive inner loop at each iteration in distributed settings [49],
[50]. To avoid the computation and communication overhead
introduced by an inner loop, in FedHybrid, we choose to adopt
a distributed approximation of the true Newton’s step and thus

13ANTE 4 AR < 13A%
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a linear rate is the best we can expect for FedHybrid, even when
all agents are Newton-type. The current linear rate coefficient
1 — pis aconservative worst-case analysis, relying on the worst
condition number among clients. Let « = ¢/m denote the condi-
tion number of the global objective Zie[n] fi-Itis easy to check

that p is of order + 3.

V. NUMERICAL EXPERIMENTS

In this section, we present experimental results for FedHybrid
on convex distributed optimization problems. Specifically, we
study least squares and binary classification problems in server-
client networks, over synthetic and real-life datasets.

Experimental Setup: We evaluate all methods on three setups
with non-i.i.d. data partitioning, where in each setup, there are n
clients with d-dimensional decision variables and a total amount
N = 3,cn Ni of data in the network with IN; the size of each
local datasets. Now we introduce the setup details.

We begin with a regularized linear regression problem,

1 n
min, 7y 2l —wil + Ll

where A; € RY:*4 and y; € RN are known as the feature
matrix and the response vector at client 7, respectively,and p > 0
is the penalty parameter. We introduce a setup with non-i.i.d. data
distribution based on the above model.

(1) Linear regression on a synthetic dataset. We set n = 10,
d = 3,and N; ~ lognormal(4, 2) 4+ 50. Ateach client i, we gen-
erate a scaling value n; ~ lognormal(2, 4) andset 4, = 7, /T{I'i,
where A; € RIPi1*4 has elements from U(0,1] and T; € R4x4
is a diagonal scaling matrix. For 6 of the clients, we set Y; = I,
while for each of the other 4 clients, we randomly selecta j € [d]
toset [Y;];; = 100 and set [Y;];; = 0.01 for the other two diag-
onal elements. In this way, the 4 clients have local functions with
larger condition numbers. The response y; € R™: is generated
as y; = Aywo + v;, where we generate a fixed wy ~ N(0, I)
and noise v; ~ N (0, Iy,).

The other two experiments solve binary classification prob-
lems using the regularized logistic regression model,

n

1 p
. T L o . o . L 2
min — > [yl log hy — (1 — i) log(1 — hy)] + 5 Il

R4
we i—1

where h; = 1/(1 + exp(—A;w)), A; € RN* and ¢, € RV
are the known feature matrix and label vector at client 7, re-
spectively, and p is the penalty parameter.

(2) Logistic regression on a synthetic dataset. The dataset non
i.i.d. Synthetic (0.5, 0.5) is originally introduced in [27]. Here we
take n = 30 and d = 15. For another setup (2°), we set n = 10
and d = 12.

(3) Logistic regression on a mushroom dataset from UCI. For
data preprocessing, we encode categorical features and add a
vector of all ones. In this way, we have d = 99. We set n = 8 and
sample relative local dataset sizes from U (0, 1]. We set 4 and 3
clients to only have data points with labels 0 and 1, respectively,
and 1 client to have data with both labels. We refer to these
experiments as setups (1)—(3).
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Compared Methods: We conduct experiments on FedHybrid
as well as other distributed methods designed for the server-
client network. We denote by FedH-K FedHybrid with the
number of K clients performing Newton-type updates while all
others doing gradient-type updates. We remark that for FedH- K,
we have | J3| = K. In particular, FedH-G and FedH-N are short
for FedHybrid with all clients performing gradient-type and
Newton-type updates, respectively.

We first consider primal iterative methods including Fe-
dAvg [5], GIANT [15], and DiSCO [14]. FedAvg is the base-
line of first-order methods for the server-client network. We
implement the non-stochastic FedAvg, where all clients in the
network take a full gradient descent step at each iteration. As
a second-order method, GIANT gives the best performance
when the clients have i.i.d. local data due to its approximation
of the global Newton’s direction using the harmonic mean of
local Hessians. DiSCO [14] is an inexact Newton’s method
with damped stepsizes, which uses conjugate gradients as an
inner loop to approximate the global Hessian. While the original
DiSCO paper proposes to use conservative stepsizes with guar-
anteed convergence, in practice often a larger stepsize can lead
to better performance. Here we implement a practical version
named DiSCO_prac, which uses a larger fixed stepsize.

As for the primal-dual methods, we remark that FedPD [32]
with all clients taking a full gradient step at each iteration
coincides with FedH-G, a special case of FedHybrid when all
clients choose gradient-type updates. Other than FedHybrid,
we also implement a primal-dual method labeled as PN-DG
in figures, inspired by ESOM [24]. In PN-DG, all clients take a
primal Newton’s step as in (21) and a dual gradient step asin (11)
followed by an averaging step by the server at each iteration.
Compared with PN-DG, we can show the advantage of the
dual Hessian approximation in FedHybrid. We also implement
other federated methods, including SCAFFOLD [51] and Fed-
Dyn [52], which adopt multiple local gradient updates or argmin
of dynamic regularizers, as a comparison of our approximated
second-order updates. We remark that since the server and clients
only exchange vectors in all these methods, the costs of each
communication round for FedHybrid and other methods are the
same.

For each setup and each method, we tune parameters and
stepsizes using grid search in the range [10~%,10] and [107%, 1],
respectively, and choose the best one that minimizes the opti-
mality gap. We remark that to save the parameter tuning time,
in FedHybrid we use the same stepsizes for clients with the
same type of updates, that is, we set a; = a1, b; = by fori € J;
and a; = 1,b; = by fori € Js and only tune stepsizes a1, by, bo.
Here we set a; = 1 for 7 € Js for clients doing Newton-type
updates to approximate Newton’s method. The optimal value f*
in figures are obtained by the solver and the stopping criteria is
set to be log(f(xp) — f*) < —20.

Observations: In Fig. 1, the x-axis represents the num-
ber of communication rounds and the y-axis is the logarithm
of the optimality gap. As shown in Fig. 1, with some clients
in the network performing Newton-type updates, FedHy-
brid improves the overall training speed a lot and outper-
forms the baseline method FedAvg in many scenarios. In
particular, if all clients in the network perform Newton-type
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Fig. 1. Performance of FedAvg, DiSCO, SCAFFOLD, FedDyn, & FedH-K.

updates, the second-order FedH-N method achieves a compara-
ble convergence performance as DiSCO_prac. Moreover, FedH-
N outperforms PN-DG consistently, which benefits from the dual
Hessian approximation utilizing the server-client topology in
FedHybrid. The primal method GIANT does not always perform
well since its global Hessian approximation can be far from the
true Hessian with non-i.i.d. clients. FedH-N also outperforms
SCAFFOLD-2 (with two local updates per iteration) and Fed-
Dyn consistently, which only adopt first-order information in
the updates or the regularizer.

Fig. 1 shows clearly that FedHybrid has a linear performance,
which validates the linear rate shown in Theorem 14. Moreover,
as shown in the plots on the right column, as the number of
Newton-type clients increases, the empirical convergence of
FedHybrid is likely to become faster since the local information
get better used. This observation suggests that in practical sys-
tems, those clients with higher computational capabilities and/or
cheaper costs to perform computation can choose to implement
Newton-type updates locally to help speed up the overall training
speed of the whole system.

In traditional distributed optimization algorithms, all clients
perform the same updates. The complexity of the method is
determined by the clients equipped with the worst computation
hardware. While in the FedHybrid framework, since for a part
of the clients, efficient Newton-type updates are involved, the
overall system enjoys a faster convergence speed compared
to systems running gradient-type methods only. In this sense,
FedHybrid utilizes local computation capabilities to improve
overall performance. In addition, it provides a novel way to use

Newton-type updates rather than multiple local gradient steps to
save communication rounds effectively. Thus we can maximally
leverage the parallel heterogeneous computation capabilities in
this setting.

VI. FINAL REMARKS AND FUTURE WORKS

This paper proposes FedHybrid, a distributed hybrid primal-
dual method that allows clients to perform either gradient-type
or Newton-type updates based on their computation capacities.
We develop a novel merit function for analysis and show a linear
convergence rate of FedHybrid for strongly convex objective
functions. Numerical studies are also provided to demonstrate
the efficacy of FedHybrid in practice.

We highlight a few interesting directions for future work
on FedHybrid and distributed optimization. First, an improved
linear rate coefficient showing a tradeoff between the number of
Newton-type agents and the number of communication rounds
might be possible for future works. Second, we could consider
stochastic FedHybrid methods. For instance, each client in the
network could perform stochastic gradient-type or subsampled
Newton-type methods on its local dataset. Moreover, in practice,
it is possible that only a small subset of the clients are active
at each communication round. Thus, we could consider asyn-
chronous updates in FedHybrid, where only a randomly selected
subset of the clients perform updates at each iteration. Also,
we expect FedHybrid could be generalized to broader settings,
such as time-varying graphs and/or systems with non-convex
objective functions.

APPENDIX

We now show the proofs that are omitted from the paper.
Proof of Lemma 5: By the definition that L(xz,\) =
L(Xo(z, A), z, \) and the chain rule in calculus, we have

VaL(z,\) = Vo L(Xo(x, \), 2, \)
= VaXo(@, M) Vo L(@0, 2, 0) | 2o =xo w1

+ vzz(an x, )‘) ‘ zo=Xo(z,\)*
Then we take partial gradient with respect to xg in L,

onz(%a &€, >‘) | zo=Xo(x,\)
= (1 ® L) "M + p(ln @ 20 — )] | 2g=Xo (1)
= lm[l"o - Xo(l‘, /\)] |mo:Xo(I>)\) =0,

where the second equality follows from the definition of
Xo(x, \). By combining the above two equations, we have

Vo L(2,A) = Vo L(20, 7, A) | =X (20)-

This concludes the proof of the Lemma. ]
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Proof of Lemma 6: By the first-order optimality condition of
the inner problem in Problem 6, we have
0= VzL(@,\)| F=7(\)

= VFE ) + WA+ gWTWE (V).

If we consider the first block corresponding to the central deci-
sion variable x( in the above equation, we have

(11 © LA + unFp(A) — p(1] ® Ip)a" (A) = 0.
Rearranging terms in the above equation, we have
To(A) = (I3, @ La)[z"(A) /n = A/ (un)] = Xo(z*(A), A),

where the last equality is the definition of X in (24).
Proof of Lemma 10: Using (27), Lemma 6, and (25), we have

Wzt — Wz (\M)[[= 1M " — 2" ()] < [la* = 2" ()],

where the inequality is due to (31) and || M || = 1. Now we upper
bound the RHS in the above equation by ||V, L(z*, \*)||. By
the m-strong convexity of L(-, \) in Lemma 7, we have

IV L, AF)]| = [ Vo L(ak, AF) = VL (FF), A9
> mllz* — 2" (A")].
Thus, by combing the preceding two equations, we have
W3~ W3 ()] < [V, AN

This concludes the proof of the lemma. g
Proof of Lemma 11: Since 2aTb < ||a||? + ||b||? for any a, b,
Wz |15 e
< 2[Wat = W\ [Gpe + 2AWE A5
=2|Wa* — Wz (\)I[Epr + 21Vg(A) I s

2
< UL AP+ 2V e, (59)

5

where the equality is due to Lemma 2 and the last inequality is
due to (31) and Lemma 10. By taking dual updates in (27),

[N+ = AF|2 = | BDEWEF|? < BIWE" (1% o
2p? Eoyky|2 NP
< LIV L@ X2 + 28 Vg (A3
where the inequalities are due to (31) and (59). O
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