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Dynamic light scattering (DLS) is a commonly used analytical tool for characterizing the size distribution
of colloids in a dispersion or a solution. Typically, the intensity of a scattering produced from the sample
at a fixed angle from an incident laser beam is recorded as a function of time and converted into time
autocorrelation data, which can be inverted to estimate the distribution of colloid diffusivity to estimate
the colloid size distribution. For polydisperse samples, this inversion problem, being a Fredholm integral
equation of the first kind, is ill-posed and is typically handled using cumulant expansions or
regularization methods. Here, we introduce a user-friendly graphical user interface (GUI) for analyzing
the measured scattering intensity time autocorrelation data using both the cumulant expansion method
and regularization methods, with the latter implemented using various commonly employed algorithms,
including NNLS, CONTIN, REPES, and DYNALS. The GUI allows the user to modulate any and all of the
fit parameters, offering extreme flexibility. Additionally, the GUI also enables a comparison of the size
distributions generated by various algorithms and an evaluation of their performance. We present the fit
results obtained from the GUI for model monomodal and bimodal dispersions to highlight the strengths,
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1. Introduction

Dynamic light scattering (DLS) is a non-destructive spectro-
scopic technique widely used for determining the size distribu-
tion of suspended colloids in dispersions or solutions.'™*
Typical applications for this method include measuring the
size distributions of proteins, micelles, polymers, and nano-
particles.* ™ In practice, a laser beam is directed towards a
sample solution/dispersion, and the intensity of the scattered
light is measured by a photon detector set at a fixed angle from
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the path of the laser and a fixed distance from the scattering
sample.®'® Owing to the continuous Brownian motion of the
scatterers in the sample solutions/dispersions, the intensity of
the scattered light fluctuates over time. The detector measures
the fluctuating light intensity as a function of time, which is
converted into time autocorrelation data and subsequently
analyzed to obtain a distribution of the scatterer’s diffusion
coefficient, enabling an estimation of the distribution of the
scatterer’s solvodynamic (typically hydrodynamic) size.®*°
Several methods have been developed for extracting the
scatterer size distribution data from the initial intensity-time
measurements and can be divided into two broad categories:
method of cumulants and regularization methods."**°2 The
difference between these two groups of methods is how they
approach the problem of extracting the diffusion coefficient
distribution. The method of cumulants®'® attempts to fit the
modified correlation data to a cumulant generating function
with one to four terms. The cumulants of the function provide
information on the distribution of the diffusion coefficient, such
as the mean, variance, skew, and kurtosis.'® This method works
well for predicting the monomodal polydisperse size distributions
because the algorithm inherently assumes a single mean scatterer
size but struggles with multimodal size distributions.
Regularization methods, in contrast, seek to fit a diffusion
coefficient distribution to the intensity autocorrelation data
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without employing a predefined function for the size distri-
bution."'®'” The simplest regularization method is the non-
negative least squares method (NNLS),'® which attempts to find
the diffusion coefficient distribution that results in the smallest
absolute difference between the autocorrelation data and the
corresponding fit while enforcing a constraint that the diffu-
sion coefficient distribution, and as such the size distribution,
cannot contain a negative value. Algorithms such as CONTIN"”*%2
and REPES' have built upon the NNLS algorithm by introducing
side constraints to adjust the curvature of the size distribution.
Regularization methods are very flexible algorithms because
they do not need a predefined function but can run into the
issue of producing wide distributions and, as such, require
some background knowledge of the system to narrow down the
range of diffusion coefficients (or particle sizes).

Typically, commercial DLS instruments and the software
packages that accompany them provide inflexible data analysis
options and do not allow for straightforward ways to compare
the size distribution predictions from multiple algorithms nor
the ability to tune or constrain the model parameters, with the
latter being especially relevant for regularization algorithms.
This “one method fits all data” approach has limited the
accuracy and applicability of DLS as it underestimates the
versatility of all the models and fitting algorithm and their
respective advantages. Here, we aim to address these software
shortcomings by developing a user-friendly graphical user
interface (GUI) to analyze the time autocorrelation data from
DLS experiments using multiple algorithms, comparisons
between their particle size distribution predictions, and perfor-
mance evaluation for identifying the optimal algorithm for
fitting any user generated DLS autocorrelation data.

This paper is organized as follows — we begin by describing
the mathematical underpinnings of the two families of algo-
rithms for obtaining the size distributions from DLS auto-
correlation data: the method of cumulants and regularization
methods. We then briefly overview the experimental methodology
and the GUI that has been developed. Then, we present the results
and a discussion on the fits obtained from DLS autocorrelation
data for model monomodal or bimodal dispersions. Lastly, we
summarize and discuss the efficacy of various algorithms and
limitations of DLS to obtain particle size distributions.

2. Theory

The DLS setup comprises an incident laser (wavelength 1) at a
solution/dispersion (solvent viscosity n and refractive index n)
maintained at temperature T and detection of the scattered
light using a photon-counting detector stationed at a certain
fixed angle 0 from the incident beam. Scatterers in a solution/
dispersion elastically scatter the incident laser, and some of the
scattered photons are captured by the photodetector. Since the
scatterers undergo continuous Brownian motion, the flux of the
photons captured at the detector (i.e., intensity I) varies with
time ¢. The number of photons measured by the photodetector
in a typical DLS experiment are used to calculate a normalized
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time autocorrelation function of the scattered light intensity,
g, as:’

(I(g:0)1(g,1+ 1))
(g, ))(I(g,1+ 7))

&%ﬂ:< (1)
Here 7 is the correlation time delay and () represent an

average of intensities over time ¢. The wave vector ¢

holds information on the experimental conditions and is

defined as:
4nn . (0
- e 2
q 7 sin (2) (2)

The autocorrelation of the intensity can be related to the
field-field time autocorrelation function, gi(g,7) as:

£2(q,7) = B + Blgi(g,0)|” ®)

Here the baseline B and f are the values of g,(gq,7) as
approaches infinity and zero, respectively. In general, the field-
field time autocorrelation function, g;(g,t), can be expressed as
a Laplace transformation:

00
alg.) = | Gr)esp(-roar @

Here I’ is the decay rate and G(I) is the decay rate distribu-
tion function normalized to unity, ie., [("G(I')dI" = 1. With
these relationships as the foundation, both the cumulant and
regularization algorithms attempt to extract G(I'). I', in turn, is
related to the diffusion coefficient, D, as:

I =Dpg* (5)

Once the diffusion coefficient distribution is known, the
distribution of the scatterer hydrodynamic radius, R, is esti-
mated using the Stokes-Einstein equation as:

R = kgT/6mnD (6)

Here kg is the Boltzmann’s constant.

2.1. Method of cumulants

The cumulant method describes the exponential of the decay
rate using a Taylor series expansion around the exponential
term of the average decay rate I'(= ['T'G(I')dI’) as:

T Sl

exp(—I't) = exp(—1I'1) I

(7)

n=1

Substituting the above expression in eqn (4) results in an
approximate field—field correlation function:

. [X(r=Iy’G(rydr

g1(4,%) = exp(~T'D) T

[r-n’erydr, [X(r-n*erydr,
3 T+ 2 T —...

(8)
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Substituting eqn (8) into eqn (3) and rearranging yields the
following relationship between coefficients:

—B=§ ZQﬁ _oF 1 kzz_k33 k442
& - gl - eXp( T) eXp + j‘f i‘f + *4'1'
©)

The k;= [ (I' =T')G(I')dI' terms are the cumulants
and describe the distribution function; &, is the average, k, is
the variance, k; is the skew, and k, is the kurtosis of the
distribution.

2.2. Regularization methods

Regularization methods do not attempt to fit a predefined
function and require little manipulation of eqn (4) to find a
decay rate distribution. We note, however, that the integral
equation in eqn (4) is a Fredholm integral equation of the first
kind. It is an ill-posed problem, such that small errors or
perturbations in the g; can result in large fluctuations in
G(I'). A unique solution to the problem does not exist. For
this reason, regularization approaches generally invoke a side
constraint to smoothen the size distribution function while
achieving minimal deviation of the fit from the experimental
data. Discretizing the field correlation function, g, through a
Riemann sum yields:

N
&1 (qa Tm) = Z G(['”)()—Fn‘fm (10)

n=1
where G(I',) is the distribution function of the decay rate and is

N
normalized to unity, i.e., > G(I',)dI', = 1. The above equation

n=1
can be rewritten using vector notation as:

&m = AmnXn (11)

Zm contains the field correlation data, x,, contains the decay rate
distribution, G(I',), and 4,,, is a transfer matrix containing the
decay rate and time delay relationship, e~"*. Using the matrix
notation recasts this problem as a minimization problem for the
decay rate distribution with the following objective function:

V= ”Am,nxn - gmH2 (12)

However, because A is not necessarily a square matrix and
there are many possible solutions, a side constraint is typically
added to make the solution numerically tractable. Although
this constraint varies based on the specific algorithm, the
fitting problem can be generalized to take the following form:

V= HA,,,,”xn —gmHz—Q—asz—Qx”Hz (13)

Here o is the regularization parameter that dictates the
relative weight of the side constraint, w is a term that stores
any prior information of the distribution and Q is a term
that contains some constraint on the decay rate distribution
solution x,,. The regularization parameter is chosen by the user
and involves a trade-off between reducing the normalized error
of the fit and the restrictions on the fit distribution. As such, an
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Table1 The values of o and Q for the regularization methods implemen-
ted in the GUI in this work

Algorithm o Q
NNLS 0 0
CONTIN Variable Second derivative of x,
REPES Variable Second derivative of x,,
DYNALS 0 0

L-curve algorithm was developed to provide the user with the
optimal regularization parameter.”’ It is typically assumed that
the user would have no prior information about the system and
o is set to zero. The value of the other terms for each of the four
regularization methods used by the GUI is summarized in
Table 1. We note that the CONTIN and NNLS algorithms
attempt to fit the time autocorrelation of the intensity data
(g2) while the REPES and DYNALS algorithms attempt to fit the
field-field time autocorrelation data (g;).

3. Experimental methods and GUI

DLS autocorrelation data from three standard aqueous disper-
sions of monodisperse spherical silica nanoparticles (NanoXact
Silica Nanospheres, nanoComposix) were utilized for the
comparison of the algorithms. The diameters of the silica
nanoparticles, as provided by the vendor (determined by trans-
mission electron microscopy), are 47 nm + 3 nm, 118.5 nm +
5.7 nm, and 194 nm + 16 nm. The hydrodynamic radii of the
particles are also provided by the vendor as 27 nm, 68.8, and
106 nm, respectively. We will refer to these particles as 25 nm,
65 nm, and 100 nm silica standards in this study. The DLS
autocorrelation data were obtained on a BI-200SM goniometer
containing a red laser diode with a wavelength of 637 nm and
a TurboCorr digital correlator (Brookhaven Instruments,
Holtsville, NY). The detector was set at an angle of 90° from
the laser, and all experiments were run at 25 °C. The refractive
index and the viscosity of water were 1.333 and 1 cP, respectively.
The 100 nm silica standard was used to compare the performance
of the algorithm in describing monomodal distributions. Different
molar mixtures of 100 nm and 25 nm silica standards were used to
investigate the ability of the algorithm to model bimodal distribu-
tions. For the CONTIN algorithm, a mixture of 25 nm and 65 nm
silica standards were analyzed to investigate the ability of the
algorithm to model a bimodal distribution and differentiate
between the two similar particle sizes.

A graphic user interface (GUI) was developed in Python to
analyze the correlation function data and is available for down-
load as an executable file from these websites.*>** A screenshot
of the GUI is shown in Fig. 1. Once the data file is loaded into
the GUI, it provides an estimate of the value of f and a range for
the baseline (B) estimation. If needed, these parameters can be
adjusted by the user by changing the values in the input boxes
on the top right, and an updated plot will be displayed upon
clicking the update button. Below the load data button (on the
top left), the GUI also has input boxes to allow users to provide
the parameters used in the data analysis. A drop-down menu

Soft Matter, 2023,19, 6535-6544 | 6537
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Fig. 1 Animage of the graphical user interface (GUI) for DLS autocorrelation data analysis. The upper right plot displays the autocorrelation data and the
fit to the data. The dotted blue and red lines show the bounds used to find the baseline for the calculations. The dotted green line represents the beta
coefficient used for the calculations. The lower right plot displays the normalized error for the fits. The lower left plot displays the size distribution

resulting from the selected algorithm.

for the selection of the data analysis algorithm allows a selec-
tion from four cumulant (linear, quadratic, cubic, and quartic)
and four regularization (CONTIN, NNLS, DYNALS, and REPES)
methods. Once an algorithm is selected, the GUI provides an
estimate of the range of the size distributions for the subsequent
analysis. If needed, the user may adjust this range from prior
knowledge of the system. For the CONTIN and REPES algorithms,
the L-curve button allows for the estimation of the optimal
regularization parameter using the L-curve method. Once satisfac-
tory parameters are added, the data analysis updates the correla-
tion function plot wherein a fit to the experimental data is
displayed, along with updated plots depicting the size distribution
and the normalized error between the experimental data and the
model fits. The analysis of the data can be extracted to a text file by
selecting the Export Fit button. For creating a size distribution
corresponding to the cumulant expansions, the parameters from
the fits were included in Gram-Charlier expansion®**® on a
Gaussian distribution to provide a probability distribution func-
tion of the decay rate.

4. Results and discussion

We present the results from the analysis of the DLS autocorre-
lation data for monomodal and polymodal dispersions with

6538 | Soft Matter, 2023, 19, 6535-6544

commonly used algorithms using the GUI we have developed to
highlight its versatility and ease of use. We will demonstrate
how the GUI allows a comparative study of the various
algorithms with respect to their accuracy and suitability for
monomodal and bimodal dispersions. Volume-based size
distributions are reported; intensity- and number-based size
distributions can be estimated in the GUI if needed.

4.1. Particle dispersions with monomodal size distributions

The autocorrelation function data for a 100 nm silica standard
was imported into the GUI and analyzed using the quadratic
cumulant expansion and CONTIN algorithms. As shown in
Fig. 2A, both algorithms were able to fit the correlation function
data very well; the normalized error of both fits were less than
10°, with the quadratic algorithm having a markedly larger
error at early delay times (r) as compared to the CONTIN
algorithm (Fig. 2B). Even with the slight differences in the
normalized error, both algorithms accurately modeled the
mean particle size with the peaks occurring at a hydrodynamic
radius of about 100 nm (Fig. 2C). However, the two algorithms
provided different widths of the particle size distributions.
This difference in size distributions can be attributed to how
each of these two algorithms approach the problem of calculat-
ing a decay rate distribution. The cumulant algorithms attempt
to find parameters to fit into a modified Gaussian distribution.

This journal is © The Royal Society of Chemistry 2023
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Fig. 2 Analysis of DLS autocorrelation data from an aqueous dispersion of
100 nm particles. (A) The experimental autocorrelation data and fits using
the quadratic Taylor expansion and CONTIN algorithms (« = 0.78). (B) The
normalized error of the fits. (C) The size distributions computed by the two
algorithms.

For the case of quadratic expansion, the algorithm attempts to
fit a Gaussian distribution with a mean and a standard devia-
tion. For the monodispersed sample, the standard deviation
was found to be two orders of magnitude smaller than the
mean, resulting in an apparent sharp peak. In contrast, the
broad distribution predicted by the CONTIN algorithm is

This journal is © The Royal Society of Chemistry 2023

View Article Online

Paper

the result of both the regularization method and the side
constraint. The CONTIN method attempts to fit the distribution
of the decay function directly to the data through a transforma-
tion matrix using least-squares regression and does not have a
predefined equation, allowing the algorithm flexibility in fitting
a decay rate distribution while still converging rather swiftly
(Fig. S1, ESIT). This results in the CONTIN algorithm providing
a fit with smaller errors compared to the cumulant algorithms
but can result in an artificially wider size distribution.

The breadth of the size distribution predicted by the
CONTIN method is also dependent on the weight of the side
constraint dictated by the regularization parameter «; changing
o may result in different size distributions corresponding to the
same autocorrelation data set. The larger the regularization
parameter, the larger the effect of the side constraint; the
CONTIN side constraints favor smaller concavity resulting in
wider distributions at higher regularization values. As demon-
strated in Fig. 3A, as the regularization parameter decreases, so
does the error, at the expense of a wider distribution. We note
that fits to the autocorrelation data corresponding to different o
values, varying across three orders of magnitude, appear to be
very similar (Fig. 3B), and so do the normalized error values as
a function of the delay time t (Fig. 3C). The predicted size
distributions, however, become markedly broader with increas-
ing o (Fig. 3D).

Thus, finding the optimal regularization parameter requires
an L-curve criterion which was developed to simultaneously
incorporate the residual norm and the distribution norm. The
norm of the distribution and residual values are calculated for a
range of regularization parameters. These points are then
scaled to a square plane as described by Castellanos et al.**
and two fitting lines were drawn: one through the points with
the lowest residual values and another through those with the
lowest distribution norms. The regularization parameter that
lies closest to the intersection point of these two lines provides
the best combination of normalized error and distribution
norm and is deemed to be the optimal regularization parameter.
We note that Scotti et al' showed recently that the CONTIN
algorithm combined with the L-curve criteria could provide suita-
ble performance to determine size distributions for colloidal
dispersions. As Fig. S2 (ESIt) demonstrates, the REPES algorithm
demonstrates a similar trade-off as the CONTIN. As such, for the
remainder of this paper, the fit results shown correspond to an
optimal regularization parameter that was found using the L-curve
criterion.

4.2. Particle dispersions with polymodal size distributions

Both the cumulant and regularization methods work well for
systems with monomodal scatterer size distributions, but to be
useful for experimental datasets, their performance, and accu-
racy of prediction should be investigated for systems with
polymodal size distributions as well. To this end, autocorrela-
tion data from a 5:1 dispersion (by number concentration of
particles) of 25 nm and 100 nm silica standards was analyzed
using different methods. The cumulant methods were not
expected to perform well for such systems, given the inherent

Soft Matter, 2023,19, 6535-6544 | 6539
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Fig. 3 The influence of the regularization parameter on the fits using the
CONTIN algorithm to the DLS data from an aqueous dispersion of 100 nm
standards. (A) The L-curve showing the variation of the norm of the distribution
and the residual with varying o. The optimal regularization parameter o = 0.78
corresponds to the filled data point. The dashed lines represent the smallest
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assumption of a monomodal distribution of the decay rate that
feeds into them. At the same time, regularization methods that
do not make any initial assumptions about the decay rate
distributions are expected to perform better in obtaining the
expected size distribution.

Interestingly, the fits obtained from the cumulant methods
(quadratic cumulant expansion) and the CONTIN regulariza-
tion method do not appear to be very different (Fig. 4A). The
magnitude of the normalized error was also less than 107
(Fig. 4B), although systematic deviations between the data
and the fits were observed for the cumulant methods, indicat-
ing the inability of the quadratic cumulant method to capture
the decay of the g, with 7 precisely.

An inspection of the predicted size distributions from the
two methods (Fig. 4C) clearly demonstrates the difference in the
ability of the cumulant and the regularization methods to describe
polymodal solutions/dispersions. While the CONTIN algorithm
predicted a bimodal size distribution with two populations, each
centered around 30 nm and 100 nm radii, respectively. The
quadratic cumulant expansion method, contrastingly, predicted
a monomodal size distribution with a ~75 nm mean radius.

These differences can also be explained by the algorithms’
approach to fitting the autocorrelation data. The Gaussian
distribution that the cumulant expansion algorithm is attempt-
ing to fit inherently assumes there is only one average particle
size. As such, the algorithm tries to find parameters that will
best fit the data but will have no physical significance. In
contrast, the CONTIN algorithm was able to capture the bimo-
dal distribution with the two peaks being close to the average
size of the individual particles because it possesses the flex-
ibility of fitting an arbitrary decay rate distribution instead of a
predefined function to the autocorrelation data.

This case study also illustrates the importance of choosing
the appropriate f§ value, especially for systems with significant
scattering contributions in the low-t range. A suboptimal f
value can result in slight deviations between the autocorrela-
tion data and the fit, resulting in size distribution predictions
with systematic offsets. An example of such a case is presented
in Fig. S3 (ESIf), where the same data as shown in Fig. 4 was
analyzed but with a slightly lower than optimal f value, leading
to an overestimation of the size of the smaller particle popula-
tion. We note that the difference between the optimal and
suboptimal f§ values was small (2.645 x 10° vs. 2.642 x 10°,
respectively). An inspection of the errors produced by the fits in
the low-t range, especially from the cumulant fits, is a clear
indication of the effect of the f§ values in enabling appropriate
fits to the autocorrelation data. These errors can serve as a
guide to the optimal choice of f values.

4.3. Comparing regularization methods

The GUI we developed also enabled a comparison of the
different regularization methods. As noted in Section 2, NNLS
is the most primitive regularization method with no side
constraints, while the DYNALS algorithm is a special case of
the REPES algorithm with the regularization parameter o set
to 0. Therefore, we chose to restrict the comparison among the

This journal is © The Royal Society of Chemistry 2023
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regularization methods in their ability to describe model dis-
persions with monomodal and bimodal size distributions to
the CONTIN and the REPES algorithms only, realizing that
NNLS and DYNALS algorithms will not perform better than
either of the chosen algorithms.

This journal is © The Royal Society of Chemistry 2023
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Considering first the dispersion with a monomodal size
distribution, the autocorrelation data are satisfactorily
described by both CONTIN and REPES algorithms (Fig. 5A).
However, systemic errors begin to appear in the fits obtained by
the REPES algorithm, although they are still smaller than the
errors produced in the large 7 range (Fig. 5B). The differences
between the size distribution predictions become apparent in
Fig. 5C, where REPES was found to predict a slightly smaller
mean size and broader size distribution as compared to the
CONTIN algorithm.

These differences became even more significant for disper-
sions with bimodal size distributions, wherein it became clear
that not all the regularization methods predict a bimodal
distribution. Even though the fits to the autocorrelation data
appeared similar (Fig. 5D), the normalized error clearly shows
the inability of the REPES algorithm to fit the autocorrelation
data for 1 < 107> s (Fig. 5E). Correspondingly, the REPES
algorithm was unable to detect the bimodal size distribution
and predicted a monomodal size distribution instead, with a
mean size similar to that predicted by the quadratic cumulant
method (Fig. 4B).

The disparity between the size distributions obtained using
the CONTIN and REPES regularization methods can be attrib-
uted to the REPES algorithm employing a minimization func-
tion that utilizes the experimental g; (instead of CONTIN
employing g,) and not normalizing the sum of the distribution
to one in the minimization function but instead normalizing
the distribution after the minimization. The REPES algorithm
(and the DYNALS algorithm) is more effective in handling noise
in the data compared to the CONTIN algorithm.'® As such,
peaks with low intensity will be treated as noise and will not
appear in the final distribution. In the case of the bimodal
sample analyzed, the REPES algorithm treats the weak intensity
25 nm peak as noise and generates a monodispersed fit similar
to what the cumulants expansion methods would provide. In
contrast, the CONTIN algorithm is less aggressive in terms of
noise cancellation; therefore, it can pick up the smaller inten-
sity peaks at the expense of higher noise in the predicted size
distributions and yield, in this case correctly, a bimodal
distribution.

4.4. Pushing the limits of the DLS technique and the CONTIN
algorithm

A limitation of the DLS method is the disproportionate con-
tribution of larger particles towards the scattering intensity,
masking the scattering contributions of smaller particles. The
Rayleigh scattering intensity of the scattered light is propor-
tional to the sixth power of the radius of the scatterers; thus,
larger particles will dominate the scattering intensity."" We
note that the scattering intensity is also directly proportional to
the number density of the scatterers. Thus, scattering signals
from smaller particles can be increased by increasing their
concentration in the sample if only the tentative estimates of
the scatterer sizes are known a priori.

Earlier, we demonstrated that CONTIN could detect small
particles in a bidisperse mixture (size ratio 4:1, concentration
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Fig. 5 Comparing the performance of CONTIN and REPES algorithms (A) and (D) The experimental correlation data and fits using the CONTIN and
REPES algorithms for (A) an aqueous dispersion of 100 nm standards (o« = 0.78 for CONTIN and 14 for REPES) and (D) bimodal 5:1 aqueous dispersion
of 25 nm and 100 nm standards (¢ = 0.11 for CONTIN and 14 for REPES). (B) and (E) The corresponding normalized errors from the fits. (C) and

(F) The corresponding size distributions computed by the two algorithms.

ratio 5:1) when the smaller particles were present in significant
excess. Here, we push the algorithm further to predict size
distributions in mixtures with smaller relative concentrations
of the smaller particles. In Fig. 6A-F, we demonstrate the
results from such fits obtained from our GUI for two bidisperse
mixtures (size ratio 4:1) with concentration ratios of 1:1
(Fig. 6A-C) and 1:5 (Fig. 6D-F), respectively. Clearly, good fits
to the autocorrelation data were produced (Fig. 6A and D,
respectively), and the errors produced were small (mostly less
than 10~°, Fig. 6B and E). Indeed, the CONTIN algorithm was
able to predict a bimodal size distribution for the 1:1 disper-
sion of 25 nm and 100 nm particles (Fig. 6C), although the
intensity of the 25 nm peak was much smaller here as com-
pared to the 5:1 dispersion (Fig. 5F), appeared at a smaller size
than expected, and could easily be mistaken for noise. How-
ever, as shown in Fig. 6F, the CONTIN algorithm failed to

6542 | Soft Matter, 2023, 19, 6535-6544

predict the bimodal distribution for the 1:5 dispersion of
25 and 100 nm particles. The algorithm instead predicted a
monomodal distribution with a peak corresponding to
the larger particle size. This, again, can be attributed to the
small contribution to the scattering intensity from the smaller
particles.

Another limitation of the CONTIN algorithm can be its
inability to differentiate between particles of similar-size popu-
lations. Having demonstrated that, by choosing the optimal
regularization parameter o, the CONTIN algorithm can enable
the detection of bidisperse mixtures with a size ratio of 1:4, we
endeavored to push the limits of the algorithm by testing its
ability to differentiate particle populations with a size ratio of
5:13 by employing a 5: 1 dispersion of 25 and 65 nm standards.
As is evident in Fig. 6G-I, the algorithm was indeed able to
capture the bidisperse size distribution when working with the

This journal is © The Royal Society of Chemistry 2023
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Fig. 6 Testing the performance of CONTIN algorithm (A), (D) and (G) The experimental correlation data and fits using the CONTIN algorithm for (A) a
bimodal 1:1 aqueous dispersion of 25 nm and 100 nm standards (x = 0.3), (D) a bimodal 1:5 aqueous dispersion of 25 nm and 100 nm standards
(x = 0.78), and (G) a bimodal 5:1 aqueous dispersion of 25 nm and 65 nm standards. (B), (E) and (H) The corresponding normalized errors from the
respective fits. (C), (F) and (I) The corresponding size distributions. In (G)—(), fits, errors, and size distributions to the optimal alpha (o = 0.043) (solid blue)

and a typical alpha (« = 0.5) (dashed black) are shown.

optimal «, providing satisfactory fits (Fig. 6G) with minimal errors
(Fig. 6H) and predicting two populations centered around 30 nm
and 65 nm, respectively (Fig. 6I). In contrast, when the algorithm
operates at a non-optimal «, it is unable to capture the size
distribution correctly. This difference in the algorithm perfor-
mance highlights the importance of combining prior knowledge
of the samples with the use of optimal o values, especially for
samples with multiple scatterer populations with similar sizes.

5. Conclusion

In this work, a GUI and the underlying numerical calculation
engine were developed to provide users the ability to imple-
ment, compare, and evaluate algorithms (including cumulant
methods and regularization methods such as NNLS, CONTIN,
REPES, and DYNALS) available for analyzing time autocorrela-
tion data obtained from DLS experiments. The cumulant and
regularization methods (CONTIN and REPES) were both shown
to accurately describe the average particle size of colloidal
dispersions containing monomodal size distributions. For
dispersions with bimodal size distributions, however, the

This journal is © The Royal Society of Chemistry 2023

cumulant method was shown to be ineffective, while the
CONTIN algorithm performed satisfactorily in capturing the
size distribution. The CONTIN algorithm was further tested in
bimodal dispersions with a size ratio of 1:4 and concentration
ratios of 5:1,1:1, and 1: 5. While the algorithm performed well
in the first two cases, it failed to capture the bimodal size
distribution for the 1:5 concentration dispersion, which can be
attributed to the significantly small contribution of the smaller
particles towards the overall scattering from the sample. Lastly,
we pushed the CONTIN algorithm to detect bimodal size
distribution in a 5: 1 concentration dispersion of particles with
a size ratio of 5:13. The CONTIN algorithm, supported by the
optimal regularization parameter estimated using the L-curve
criterion, was able to capture the bimodal distribution in this
case as well. Our analysis highlights that, when coupled with
the appropriate data analysis algorithms, DLS can serve as a
versatile and robust analytical technique in diverse applica-
tions. However, appropriate care must be exercised in choosing
the parameters, especially for the regularization approaches, to
obtain physically relevant results. The GUI we have developed
here provides a powerful software tool for comparing the
analysis from multiple autocorrelation data fitting algorithms
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and aids in the selection of the appropriate parameters to constrain
and support the data fitting procedure, enabling realtime data
analysis, and supporting the optimization of experimental protocols.
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