
1.  Introduction
Severe geomagnetic storms can give rise to widespread societal, economic, and technological disruption 
(Hapgood et al., 2021). Rare events, such as the 1859 Carrington storm (Cliver & Dietrich, 2013), and the 1921 
storm (Hapgood, 2019) have been estimated to potentially result in nationwide disruption of power distribution 
(Oughton et al., 2017) or significant satellite loss (Horne et al., 2013). Consequently, long-term forecasting of 
magnetospheric space weather is of significant operational interest (Morley, 2020). A key element of an extreme 
space weather event is a dramatic and rapid enhancement of the large scale currents carried by the ionosphere 
and magnetosphere. This perturbs the magnetic field at the surface of the earth. Ground-based magnetometer 
observations, spanning multiple solar cycles, form the basis of geomagnetic indices which are routinely used 
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to quantify magnetospheric activity (Mayaud, 1980). Geomagnetic storms drive enhancements of earth's ring 
current and this can be monitored by low- and mid-latitude magnetometer stations.

The hourly Dst index is based upon an average of observations from four such low-latitude stations (Sugiura, 1964), 
and is commonly used in the characterization of geomagnetic storms (Gonzalez et al., 1994). Whilst it is under-
stood that the detailed spatial and temporal evolution of a storm, which map directly onto its detailed impact, are 
not consistently captured by ring current indices (e.g., Sandhu et al. (2021) and references therein), the Dst index 
combines fidelity with multi-solar cycle coverage. Indices built on ground based magnetometers will inevitably 
sample space weather events in an inhomogeneous manner. The location of the ground based stations relative to 
the excited storm-time current systems will vary from one event to another, as will the number of stations and 
their duty cycles. Our results will therefore provide a lower bound on the event return level, which we anticipate 
will increase with improved spatial and temporal sampling in SMR as compared to Dst, particularly if these indi-
ces respond to current systems other than the symmetric ring current.

Storm occurrence rates and intensities vary with the approximately 11  years cycle of solar activity (Bergin 
et al., 2022; Chapman, McIntosh, et al., 2020) and each cycle is unique in amplitude and duration. Statistical 
studies to quantify space weather risk thus require observations spanning multiple solar cycles. Extreme events 
are by definition rare events, so that, whilst it is well known that their occurrence has a solar cycle modulation 
(Chapman, McIntosh, et  al.,  2020; Love,  2021), “benchmark” statistical estimates are based on observations 
across multiple cycles (Love et al., 2015; Riley, 2012). Provided the asymptotic tail of the underlying distribution 
(aggregated over a number of solar cycles) is sufficiently sampled, an extreme value analysis via peaks over 
threshold is still valid. As with previous work (Acero et al., 2018; Love et al., 2015; Riley, 2012; Tsubouchi & 
Omura, 2007), the study presented here should be understood as a solar cycle aggregate.

The Dst index is used as the de-facto benchmark in studies of space weather hazards (Cliver et al., 2022) and 
remains valuable as an indicator of geomagnetic field disturbance activity. The observed distribution of geomag-
netic storm amplitudes, as seen in the maximum excursion of indices such as Dst, is routinely modeled to infer 
space weather risk. Such modeling provides an estimate of the amplitude of rare, extreme, “one in a hundred 
year” events. From physical constraints, there will be an upper limit to the size of such events, estimated at 
Dst ∼  −2,000  nT to −2,500  nT (Liu et  al.,  2020; Vasyliūnas,  2011). Events that have occurred in the past 
100 years fall within this limit. For example, the 1921 storm which today could cause continent-wide disruption 
(Hapgood, 2019; Oughton et al., 2017) had a Dst estimated at ∼ −900 nT, comparable with the Carrington event 
(Love et al., 2019); whereas the 1989 storm which caused local disruption including a 9 hr power blackout in 
Quebec reached Dst of −589 nT.

One approach to space weather risk inference is to fit different specific functions to the observed distributions 
of storm sizes (Love, 2020; Love et al., 2015; Riley, 2012). In the distribution tail this leads to a wide range of 
estimates. For example, for a power-law tail the probability of another extreme geomagnetic event comparable to 
the Carrington event occurring within the next 10 years is 10.3% 95% confidence interval (CI) [0.9,18.7] but is 
only 3.0% 95% CI[0.6,9.0] for a lognormal distribution (Riley & Love, 2017). Confidence intervals are generally 
large (Love et al., 2015; Riley, 2012). To increase the number of events in the sample and to cover a wider range 
of solar activity, lower fidelity indices that exist for longer time intervals have been re-engineered to estimate Dst, 
giving estimates for the 100-year return level of −663 nT, with a bootstrap 68% CI[−694, −497] nT (Love, 2021) 
based on the constrained Weibull model, and the 150-year Dst return level to be −809 95% CI[−955, −663] nT 
(Chapman, Horne, & Watkins, 2020) based on an exponential model. Estimated probabilities are sensitive to the 
assumed source distribution (Love, 2021; Riley & Love, 2017).

An alternative approach is extreme value theory (EVT) (see e.g., Coles, 2001; Embrechts et al., 1997; Leadbetter 
et al., 1983). EVT offers a systematic method for estimating the functional form of the source distribution, suit-
able for classes of distribution tail that encompass power law, log-normal and exponential. Previous studies have 
applied EVT to long-time record but relatively low fidelity indices (Elvidge, 2020; Koons, 2001; Silbergleit, 1999; 
Siscoe, 1976). The underlying observations are highly coarse grained compared to Dst (Chapman, Horne, & 
Watkins, 2020, and refs therein.). EVT was first applied to the Dst index for the years 1957–2001 (Tsubouchi & 
Omura, 2007), giving a 1 in 100 years storm level of −645.3 95% CI[−754.5, −536.1] nT, latterly for Dst over 
1957–2014 this becomes −576.9 95% CI[−680.44, −473.37] nT as it incorporates more recent, quieter solar 
cycles.
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In this work we will apply EVT to the 1-min resolution SMR and SYM-H indices, which have been constructed 
to mimic Dst but at considerably improved resolution. Ground based magnetometers typically have 1 min time 
resolution, and over three hundred are now operating globally. This data set is now being used through the Super-
MAG collaboration (Gjerloev, 2012) to construct the SMR index which incorporates data from up to 120 mid 
and low latitude stations, and is produced at 1-min cadence (Newell & Gjerloev, 2012). With a greater station 
density and temporal resolution, SMR is more likely to resolve the space and time localized variations in storm 
time magnetospheric-ionospheric disturbances that are not consistently resolved by the Dst index (Newell & 
Gjerloev, 2012; Wanliss & Showalter, 2006). The SYM-H index is also produced at 1-min cadence, based on data 
from 6 stations from a network of 11 (Iyemori et al., 2010). The presence of more information content in SYM-H, 
compared to hourly Dst, has been reported (Bej et al., 2020). Although low-latitude indices such as Dst were 
designed to monitor the ring current, for more extreme events, other current systems can come into play, and can 
contribute to localized and intense disturbances. Regardless of their source, these ground disturbances and their 
temporal variations are potential space weather hazards.

We for the first time apply EVT to 1-min SMR and SYM-H indices. We isolate individual extreme events using 
the standard peak-over-threshold (POT) method and compare Dst events with those identified in 1-min cadence 
SYM-H and SMR, and their hourly averages. When the return level and period are empirically estimated for 
individual POT events, SYM-H and SMR track each other. For return periods less than about 10 years, Dst POT 
events track those of hourly averages SMR and SYM-H, and are systematically offset from POT events in 1 min 
SYM-H and SMR. The EVT analysis of the full set of POT events reveals a divergence between the return level 
found for Dst, and those for SMR and SYM-H, that increases non-linearly with return period.

2.  Methods
Three geomagnetic indices are of relevance for the present study; Dst, SYM-H, and SMR. The Dst index is 
compiled by the WDC for Geomagnetism Kyoto (Nose et  al.,  2015) and is available at 1-hr cadence. Four 
magnetometer stations located at geomagnetic latitudes between −35° and +30° record horizontal component 
disturbances in the geomagnetic field. Dst is then the baseline-corrected, magnetic latitude-adjusted, average of 
the four hourly mean disturbances. Dst for years 1957–2016 is termed “final” Dst and is “provisional” for years 
2017–2021. The SYM-H index is also compiled by WDC for Geomagnetism Kyoto (Iyemori et al., 2010), it is 
available at 1-min cadence. Each month, six stations from the network of 11 geomagnetic observatories with 
geomagnetic latitudes between −50° and +50° are selected for the derivation of SYM-H, depending on data 
availability and quality. SYM-H is the baseline-corrected, magnetic latitude-adjusted, average of the disturbance 
component at each minute for the 6 stations. The SMR index (Newell & Gjerloev, 2012) is a SuperMAG index, 
based on all ground magnetometer stations contributing to the SuperMAG network at geomagnetic latitudes 
between −50° and +50°. The number of available stations has increased greatly over time, from the first available 
SMR observation based on less than 5 stations, to a present maximum count of 120 stations. The 1-min averages 
of baseline-corrected, magnetic latitude-adjusted, horizontal component disturbances are averaged within four 
equally sized local time sectors to produce four local time SMR indices, SMR is then the average of these four 
local time indices.

The following procedure is used in this study to select distinct extreme events: (a) exceedances of threshold, u are 
identified in the timeseries; (b) exceedances of u which are separated by a duration less than cluster interval, r, are 
labeled part of the same event, but when the time interval between successive exceedances is greater than r they 
constitute distinct events; (c) the peak (maximum) level recorded during each event is identified; (d) each event is 
represented by the timestamp and magnitude of the event peak. Following Acero et al. (2018) and Tsubouchi and 
Omura (2007), a cluster interval r = 48 hr is used in the runs declustering of the geomagnetic indices throughout.

3.  Results
We apply EVT to six geomagnetic index timeseries: the 1-min resolution SMR, available from 1973 (Newell 
& Gjerloev, 2012), 1-hr resolution Dst from the same interval, the full 1-hr resolution Dst, available from 1957 
(Sugiura, 1964), an hourly average of SMR, which has the same temporal resolution as Dst, but is still constructed 
from a larger number of stations, the 1-min resolution SYM-H, available from 1981, and an hourly average of 
the SYM-H record. For convenience we will use minus the value of the index, for example, (−)Dst, throughout 
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(neglecting the—sign, geomagnetic storm perturbations are negative). The timeseries are overplotted in Figure 1a. 
Activity can be seen to vary with the approximately 11 years solar cycle, and with cycle strength, it is relatively 
weak over the last 11 years (the weak cycle 24). Working with the SMR index from 1973 then misses the rela-
tively active period (1957–1973), however the plot shows that the interval from 1973 does sample a wide range 
of activity levels. We present results for both the full Dst from 1957, and the Dst from 1973, contemporaneous 
with SMR. In Figure 1a we can also see that for the most extreme events, hourly averaged SMR often exceeds 
hourly Dst, and hourly indices are systematically exceeded by 1-min SMR and 1-min SYM-H. Improved spatial 
resolution (in SMR), and temporal resolution (in both SYM-H and SMR) may translate into increased estimates 
of return levels for extreme space weather events (Newell & Gjerloev, 2012; Wanliss & Showalter, 2006).

We need to identify individual extreme events in these timeseries. We will use the standard POT method (Davison 
& Smith, 1990) such that events are identified where observations systematically exceed some high threshold, 
u. EVT requires that the extreme events to be modeled are independent but, in geomagnetic index time series, 
temporal clustering of threshold exceedances is expected. Declustering is the procedure most commonly used to 
obtain a sample of independent events (Coles, 2001; Embrechts et al., 1997; Fawcett & Walshaw, 2012). Here, 
runs declustering (Smith, 1989) is applied to the timeseries, the result of which is shown in Figure 1b. We spec-
ify a minimum cluster interval r such that any sequence of ≥r consecutive observations below the threshold u 
discriminates two independent events. Following Acero et al. (2018) and Tsubouchi and Omura (2007), we use a 
cluster interval r = 48 hr Figure 1c shows that for r > 6 hr the results are insensitive to this choice.

EVT provides a framework to model the probability of extreme events that are rarely observed in a timeseries and 
to extrapolate these models to unobserved levels. The basis for the POT method (Davison & Smith, 1990) is that, 
for a stationary process, peak exceedances over a suitably high threshold, separated in time by a suitable cluster 

Figure 1.  Data sets and declustering. (a) Daily maxima of indices are plotted with data availability indicated below the time series (horizontal line) for (−)Dst 
[1957–2021] (blue), (−)Dst [1973–2021] (purple), hourly average (−)SMR (orange), 1-min (−)SMR (green), and (−)SYM-H (red) indices. (b) Observations are plotted 
for (−)SMR [1-min, 1973] time series (green circles) between 30 March and 4 April 2001 showing how declustering is performed; threshold u = 250 nT (black solid 
line), event start and end points (black dashed lines), cluster interval r = 48 hr (green shading), and event peak-over-threshold (POT) (black open circle). (c) Event 
peak-over-thresholds for the (−)SMR [1-min, 1973] time series are plotted in time where distinct events are identified using cluster intervals r = 6 hr (blue), 12 hr 
(orange), 24 hr (yellow), and 48 hr (green).
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interval, have a limiting distribution which asymptotically approaches the generalized Pareto distribution (GPD) 
with survival function:

𝐻̄𝐻(𝑦𝑦; 𝜉𝜉𝜉 𝜉𝜉) =

⎧⎪⎨⎪⎩

(
1 +

𝜉𝜉𝜉𝜉

𝜎𝜎

)−1∕𝜉𝜉

, 𝜉𝜉 ≠ 0

exp
(
−
𝑦𝑦

𝜎𝜎

)
, 𝜉𝜉 = 0,

� (1)

defined on 𝐴𝐴 {𝑦𝑦 ∶ 𝑦𝑦 𝑦 0 and 𝐴𝐴 (1 + (𝜉𝜉𝜉𝜉)∕𝜎𝜎) > 0} , where the GPD limiting distribution has two parameters: scale (σ), 
and shape (ξ). We obtain the GPD for each geomagnetic index timeseries. The specification of an appropriately 
high threshold, here u = 250 nT, for the GPD to be valid is addressed in the Supporting Information S1. A first 
indication of the GPD behavior is provided by a plot of the mean excess:

𝐸𝐸(𝑋𝑋 − 𝑢𝑢|𝑋𝑋 𝑋 𝑋𝑋) =
1

𝑛𝑛𝑢𝑢

𝑛𝑛𝑢𝑢∑
𝑖𝑖=1

(𝑥𝑥𝑖𝑖 − 𝑢𝑢)� (2)

where 𝐴𝐴 𝐴𝐴1, . . . , 𝑥𝑥𝑛𝑛𝑢𝑢
 are the nu observations that exceed u. If a GPD is a reasonable model for excesses of a threshold 

u0, for u > u0, E(X − u∣X > u) is a linear function of u, with a gradient that determines the shape parameter. This 
is plotted in Figure 2a where we see that below 300 nT the mean excess is indistinguishable for Dst and SMR, 
but it diverges at higher thresholds. The SYM-H index mean excess systematically exceeds that of Dst or SMR 
samples over thresholds in the range 100–500 nT, but the shape of the SYM-H mean excess plot approximately 
tracks that of 1-min SMR. For a given time interval, the indices record approximately the same number of events, 
but 1-min indices have 60 times more data points than the 1-hr indices, so that the mean excess uncertainties 
are much smaller for 1-min SMR and SYM-H than 1-hr Dst or SMR timeseries. From Figure 2a, one can then 
discern for example, that the 1 min SMR is systematically more long-tailed than Dst; it has a larger positive 
gradient, hence larger positive shape (ξ) parameter on the mean excess plot, suggesting more long-tailed behavior. 
Figure 2b plots histograms of the number of events identified in each timeseries as a function of declustering 
threshold. The longer interval, full Dst record contains more geomagnetic storms than the other timeseries, so 
can more frequently populate the far-tail. For data taken over the same time interval (from 1973), 1-hr average 
SMR matches, and can exceed, Dst. Both Dst and 1-hr SMR from 1973 are systematically exceeded by the sizes 
of events in 1-min SMR and SYM-H. For thresholds greater than 375 nT, the number of POT events in 1-min 
SYM-H (from 1981) exceeds that of Dst (from 1957), due to the higher values exhibited by the 1-min SYM-H 
index. For thresholds beyond 300 nT, the number of events in 1-min SMR (from 1973), exceeds that of Dst (from 
1957).

We obtain GPD fits to these samples of events. The GPD model fit to the peaks-over-thresholds are shown in 
Figures 3 and 4 and the parameter estimates with their 95% confidence intervals are given in Table 1. The esti-
mated GPD shape and scale parameters agree with each other; estimates for ξ are close to zero but the confidence 
intervals span the three families of the GPD; ξ < 0, ξ = 0, and ξ > 0. Estimates of σ have large, overlapping 
confidence intervals. The more extreme events are, with the exception of the single largest event, reasonably 

Figure 2.  Mean Excess and event histograms. (−)Dst [1957–2021] (blue), (−)Dst [1973–2021] (purple), hourly average (−)
SMR (orange), 1-min (−)SMR (green), and (−)SYM-H (red) indices. (a) Mean excess plot (solid) with approximate 95% CI 
(shaded). (b) Histogram of events.
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Figure 3.  Generalized Pareto Distribution (GPD) models. Event peak-over-threshold values (filled circles) and corresponding GPD fit (black solid line) with 95% CI 
(black dashed line) for indices (a) (−)Dst [1957–2021] (blue), (b) (−)Dst [1973–2021] (purple), (c) hourly average (−)SMR (orange), (d) 1-min (−)SMR (green), and (e) 
1-min (−)SYM-H (red). Insets repeat main plots with semi-log scale. (f) Overplot GPD fits and confidence intervals from (a) and (c) with GPD fit and 95% CI for hourly 
average (−)SYM-H index (pink). (g) Overplot GPD fits and confidence intervals from (d) and (e). (h) Overplot GPD fits and confidence intervals from (a) and (d).
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tightly clustered around the GPD fit (see Figures 3a–3e), they fall well within 
the 95% CI. The details of each GPD fit are different, as can be seen in 
Figures 3f–3h and 4. Comparing their appearance on linear axes, the fits to 
1 hr indices are similar (Figure 3f). Despite scatter between the underlying 
empirical distribution, the GPD fits track each other for Dst [1-hr, 1957], 
hourly mean SYM-H, and hourly mean SMR indices. Similarly, the 1-min 
SYM-H and SMR indices (Figure 3g) show some scatter in the underlying 
empirical distribution but the GPD fits appear similar on a linear axis. Where 
the 1-hr Dst (from 1957) and 1-min SMR empirical distribution and best 
GPD fits are compared (Figure 3h), the distributions do not track each other. 
When the best fit GPD curves are displayed with a semi-log axis (Figure 4), 
the differences between the curves based on shape and scale parameters tabu-
lated in Table  1 can be more clearly seen. Up to around 350  nT there is 
reasonable agreement between the 1-hr SYM-H, 1-hr SMR and Dst indices, 
beyond this point the GPD curves diverge and the 1-hr SYM-H and 1-hr 
SMR curves exhibit longer tails than either Dst sample. 1-minute SYM-H 
and SMR distributions track each other reasonably closely and show longer 
tailed behavior than any of the 1-hr indices up to around 650 nT. We note 
that Dst (from 1957) gives a bounded GPD distribution ξ  <  0 consistent 
with previous authors (Acero et al., 2018), as does 1-min SYM-H, whereas 
the other samples are unbounded ξ > 0. Whilst a bounded GPD distribution 
would have significant implications for extrapolating to the most extreme, 
Carrington-class events, we emphasize that the uncertainties contain both 
bounded and unbounded GPD fits. Our EVT based estimates should not be 

extrapolated beyond the aforementioned estimated upper limit to the size of events, Dst ∼ 2,000–2,500 nT (Liu 
et al., 2020; Vasyliūnas, 2011).

Risk is typically framed in terms of return level, for example, the 1 in 100 year return level is the amplitude that 
the index will exceed, on average, once in 100 years. If we rank-order the events in decreasing size, so that rank 
1 is the largest observed event, then the rank is simply the number of times an event of that size has been seen to 
occur in the time interval of observation. The rank, divided by total number of events, is the survival function, so 
that our GPD fits translate directly into return level plots. Rather than invert the GPD fits, we use an expression 
for the return level that directly arises from the EVT (Coles, 2001, p. 103), as detailed in the SI. Estimates for 
the 5, 10, 50 and 100 year return levels for each index are tabulated in Table 2. Table 3 presents the percentage 
enhancement of return level estimates, relative to equivalent return period estimate and 95% CI for Dst (from 
1957). Large confidence intervals for return levels translate to a large range in the confidence interval for percent-
age enhancement. Figures 5a–5e provide return level plots for the index timeseries. Return level estimates and 

Figure 4.  Compare Generalized Pareto Distribution (GPD) models. GPD fits 
to event peak-over-threshold values for indices (−)Dst [1957–2021] (blue), (−)
Dst [1973–2021] (purple), hourly average (−)SMR (orange), 1-min (−)SMR 
(green), 1-min (−)SYM-H (red), and hourly average (−)SYM-H index (pink) 
from Figure 3 on semi-log axis. Inset shows zoom for index values between 
250 and 400 nT.

Table 1 
Parameters of the Generalized Pareto Distribution Fit to Declustered Peaks-Over-Threshold Are Tabulated for Indices (−)
Dst [1-hr, 1957], (−)Dst [1-hr, 1973], Hourly Average (−)SYM-H [1-hr, 1981], Hourly Average (−)SMR [1-hr, 1973], (−)
SMR [1-min, 1973], and (−)SYM-H [1-min, 1981]

Index Year u n ξ σ

Dst [1-hr, 1957] 1957 250 36 −0.13 [−0.39, 0.14] 88 [51, 125]

Dst [1-hr, 1973] 1972 250 21 0.01 [−0.41, 0.43] 73 [29, 117]

SYM-H [1-hr, 1981] 1981 250 22 0.06 [−0.35, 0.47] 80 [33, 126]

SMR [1-hr, 1973] 1972 250 26 0.10 [−0.28, 0.48] 70 [32, 107]

SYM-H [1-min, 1981] 1981 250 26 −0.06 [−0.39, 0.27] 109 [54, 164]

SMR [1-min, 1973] 1972 250 32 0.00 [−0.31, 0.32] 97 [52, 142]

Note. Year refers to the first year of the time series and n is the number of distinct events in the timeseries that is, declustered 
peaks over threshold. The GPD fit parameters consist of u the threshold, ξ the shape parameter and σ the scale parameter. 
Estimates of the 100-year return level for the indices based on the GPD model are presented. Estimates of the lower and upper 
bounds of 95% confidence intervals are in brackets.

 15427390, 2023, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022SW

003304 by Johns H
opkins U

niversity, W
iley O

nline Library on [01/09/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Space Weather

BERGIN ET AL.

10.1029/2022SW003304

8 of 14

confidence bounds are overplotted with the rank-order estimates for the return levels of extreme events within the 
timeseries (the same events that form the basis of the GPD fits in Figure 3) and we can again see that the extreme 
events are, with the exception of the largest event, well within the 95% CI. The upper bound (ξ < 0) of Dst (from 
1957) is evident in the curved return level in Figure 5a. Comparing the return level estimates based on Dst (from 
1957) to that for Dst (from 1973) in Figure 5b, 95% CI bounds are larger for the estimate based on the shorter 
time period but contain the estimate for the full available timeseries. Though SMR can have up to 120 stations 
and SYM-H is limited to 6 stations, comparing the 1-min SYM-H and SMR return level estimates (Figure 5f), the 
similarity between best GPD fits (Figure 3g) equates to return period estimates that are also consistent, despite 
the scatter between SMR and SYM-H POT empirical distributions. Despite the difference in numbers of stations, 
the extreme value analysis of the two 1-min timeseries returns very similar results. The hourly average SYM-H 
and SMR index return levels are compared to 1-hr Dst (Figures 5g and 5h). Comparing the return levels in Table 2 
and the percentage enhancement over Dst (from 1957) in Table 3, it is seen that, up to 10 year return periods, 
the return level estimates are largely similar. At 50-year return periods and at 100-year return periods, the return 
level estimates are higher for 1-hr SYM-H and SMR than for those obtained for 1-hr Dst. The 1-min SYM-H and 
SMR index return levels are compared to 1-hr Dst (Figures 5i and 5j). The return level estimates for the 1-min 
indices are larger than those for Dst; the percentage increases are progressively bigger for longer return periods. 
Similarity between the 1-min SYM-H and SMR return period plots equates to similar percentage increases above 
the 1-hr Dst return level plot. From Tables 2 and 3, 1-min SYM-H and SMR return level estimates exceed those 
for Dst by increasing percentages for 5, 10, 50 and 100 year return periods.

SYM-H and Dst have been compared in the literature before, differences in quiet time and Sq variation subtrac-
tion are mentioned as possible sources of differences between the indices (Gannon & Love,  2011; Katus & 
Liemohn, 2013; Wanliss & Showalter, 2006). Wanliss and Showalter (2006) compared hourly-averaged SYM-H 
values to corresponding hourly Dst values. They found a linear relationship between Dst and SYM-H, with a 
break in the fit at −300 nT; they found that increased activity coincided with larger differences between Dst and 
SYM-H, and that intense storms have deviations that are usually less than 20 nT. Wanliss and Showalter (2006) 
highlight multiple possible sources of differences between the indices, including spatial non-uniformity in 
ring current variations, magnetic field-aligned currents, and ionospheric currents at low latitudes; geologic 

Table 2 
Estimates for 5, 10, 50, and 100 Year Return Levels (RL) Based on the Generalized Pareto Distribution Model Are 
Presented for Each Index

Index 5-year RL 10-year RL 50-year RL 100-year RL

Dst [1-hr, 1957] 337 [304, 371] 384 [342, 427] 485 [409, 560] 524 [424, 624]

Dst [1-hr, 1973] 315 [276, 353] 362 [310, 414] 476 [365, 587] 527 [369, 685]

SYM-H [1-hr, 1981] 331 [287, 375] 385 [320, 450] 537 [351, 723] 617 [328, 906]

SMR [1-hr, 1973] 324 [287, 361] 373 [318, 429] 516 [358, 673] 592 [348, 835]

SYM-H [1-min, 1981] 371 [319, 424] 433 [363, 504] 583 [426, 739] 650 [429, 870]

SMR [1-min, 1973] 359 [316, 403] 420 [352, 489] 603 [381, 824] 703 [352, 1054]

Note. Estimates of the lower and upper bounds of 95% confidence intervals are in brackets.

Table 3 
Percentage Enhancement of 5, 10, 50, and 100 Year Return Level Estimates (RL) Relative to the Estimates for the Dst [1-hr, 
1957] Index Timeseries

Index 5-year RL 10-year RL 50-year RL 100-year RL

Dst [1-hr, 1973] −8% [−21%, 4%] −7% [−22%, 8%] −2% [−26%, 22%] 1% [−30%, 32%]

SYM-H [1-hr, 1981] −2% [−17%, 14%] 1% [−18%, 19%] 10% [−23%, 43%] 15% [−29%, 59%]

SMR [1-hr, 1973] −4% [−17%, 9%] −2% [−18%, 14%] 7% [−24%, 37%] 12% [−29%, 54%]

SYM-H [1-min, 1981] 11% [−8%, 29%] 14% [−7%, 34%] 21% [−9%, 50%] 23% [−12%, 59%]

SMR [1-min, 1973] 9% [−7%, 26%] 12% [−6%, 31%] 21% [−9%, 51%] 25% [−14%, 64%]

Note. Based on results tabulated in Table 2, estimates of the 95% confidence intervals are in brackets.
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Figure 5.  Return level plots. (a) (−)Dst [1957–2021] (blue), (b) (−)Dst [1973–2021] (purple), (c) hourly average (−)SMR (orange), (d) 1-min (−)SMR (green), and (e) 
(−)SYM-H indices. For each timeseries, extreme value theory (EVT) return level estimates (solid line) with 95% confidence intervals (dashed line) are plotted. Circles 
indicate empirical estimates of the return levels for observed events (declustered exceedances of u = 250 nT). The EVT return level estimates are compared between 
(f) 1-min (−)SMR and 1-min (−)SYM-H. The EVT return level estimates are compared between 1-hr (−)Dst[1957–2021] and (g) 1-hr (−)SYM-H (pink), (h) 1-hr (−)
SMR, (i) 1-min (−)SYM-H, (j) 1-min (−)SMR indices.
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conductivity structures beneath the stations used to compute the indices are also variable; furthermore, transients 
such as those formed by the compression of the magnetopause by coherent structures in the solar wind result in 
fluctuations that vary on timescales shorter than the cadence of Dst observations. Katus and Liemohn (2013) 
also show that the differences between SYM-H and Dst are largest during super-storms. They find a difference 
of approximately 20% between the indices storm peaks. A record of Dst [1-min, 1985–2009] is studied in their 
analysis, the authors agree with a previous study (Gannon & Love, 2011) linking the differences between Dst 
[1-min, 1985–2009] and SYM-H indices to greater sensitivity of SYM-H to auroral zone ionospheric currents, as 
a result of the additional stations at higher magnetic latitudes in the SYM-H network.

In Figure 6, the POT values recorded by different indices are compared for events where both indices register a 
POT for the same event. Index record lengths vary so identified POT samples also vary from index to index; more-
over, for some events one index will exceed 250 nT while another does not cross this threshold, thus a sub-sample 
of events are established for each pair of indices, where POT values have been identified in both of the index 
timeseries. Figure 7 gives an indication of which events will be included in the analysis of Figure 6; filled circles 
represent POT values of the SYM-H or SMR indices for which a corresponding POT has been identified in Dst, 
open circles indicate an POT value in the SYM-H or SMR timeseries for which no corresponding Dst POT has 
been identified. POT identification is consistent across the indices for extreme events with estimated return peri-
ods greater than 5 years. Comparing the POT values in Figure 6, we find that the SYM-H and SMR indices most 
closely track each (panels a,d); with percentage enhancement of ±10% for 1-hr SMR over 1-hr SYM-H. 1-min 
SYM-H and 1-min SMR also show agreement (panels g, j), even for the largest event in the study with SYM-H 
∼750 nT on 14 March 1989. SYM-H is based on only 6 stations, whereas SMR can include data from up to 120 
stations. These results suggest that it is the temporal, rather than spatial, sampling that is the key driver of differ-
ences found between 1-min SMR and Dst. We that the hourly average SYM-H and SMR POT values correspond 
to similar values of Dst (panels b,c,e,f). We find that the most significant difference between POT values arises 
when 1-hr Dst is compared to the 1-min SYM-H and SMR indices. There is greater deviation to the left of the 
diagonal (panels h and i), and percentage enhancement of either 1-min index over Dst ranges between −10% and 
+50% (panels k,l), with a weak positive trend seen for greater percentage enhancement for larger values of Dst. In 
their analysis, Gannon and Love (2011) name the inclusion of higher latitude stations in the SYM-H network as 
a possible source of difference between 1-min SYM-H and 1-min Dst. This comparison indicates that increased 
cadence of the SYM-H index relative to Dst has a greater impact than the inclusion of higher latitude stations. 
Figure 7 shows empirical estimates of the return levels for events identified in the timeseries. Comparing return 
level estimates for 1-hr indices (Figure 7a), we find that the rank-order empirical estimates for return periods of 
POT values are comparable, up to periods of 10 years. When the 1-min indices are compared to 1-hr Dst from 
1957 (Figure 7b), the empirical return level plots do not track each other; in particular, the relationship between 
these indices is not linear and for extreme values these geomagnetic indices are not directly interchangeable.

4.  Discussion and Conclusions
We performed a comparative extreme value analysis between the recent SuperMAG SMR index, the SYM-H 
index, and the Dst index, the latter being a benchmark for assessing the risk of geomagnetic storms. Compared 
to Dst, the SYM-H index offers greater temporal resolution and the SMR index has comparatively higher spatial 
and temporal resolution. As such, the SYM-H and SMR indices are expected to more closely resolve spatially 
and temporally localized extremes in the ground magnetic field disturbance (Newell & Gjerloev, 2012; Wanliss 
& Showalter, 2006). For extreme events, the contributions from the ring current (which these indices are designed 
to monitor) and contributions from magnetopause current (e.g., sudden commencement), substorm current wedge 
(both field-aligned currents and change in cross-tail current), or other magnetosphere-ionosphere current systems 
cannot be discriminated solely from the Dst, SYM-H or SMR indices (see e.g., Ohtani, 2022). Regardless of their 
source, such extremes are important since these short-time duration spikes in ground magnetic field perturbation 
are responsible for ground induced currents and hence damage to systems such as power transmission grids.

Whilst the time resolution of the indices does not vary within the record, the number of stations available to 
construct SMR increases with time (Bergin et al., 2020; Newell & Gjerloev, 2012). The spatial sensitivity of SMR 
is initially comparable with that of SYM-H but by halfway through the record has increased to over 50 stations. 
The derivation of the SMR index (see Section 2) involves averaging over stations within four local time sectors; 
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Figure 6.  Comparison of peak-over-threshold (POT) events across indices. Corresponding POT values for individual events as parameterized by (a) 1-hr SYM-H and 
1-hr SMR, (b) 1-hr Dst and 1-hr SYM-H, (c) 1-hr Dst and 1-hr SMR, (g) 1-min SYM-H and 1-min SMR, (h) 1-hr Dst and 1-min SYM-H, and (i) 1-hr Dst and 1-min 
SMR. Percentage enhancement of index relative to another for (d) 1-hr SMR over 1-hr SYM-H versus 1-hr SYM-H, (e) 1-hr SYM-H over Dst versus Dst, (f) 1-hr SMR 
over Dst versus Dst, (j) 1-min SMR over 1-min SYM-H versus 1-min SYM-H, (k) 1-min SYM-H over Dst versus Dst, and (l) 1-min SMR over Dst versus Dst.

 15427390, 2023, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022SW

003304 by Johns H
opkins U

niversity, W
iley O

nline Library on [01/09/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Space Weather

BERGIN ET AL.

10.1029/2022SW003304

12 of 14

increasing spatial resolution within each local time sector will act to increase 
the sensitivity of the index to geomagnetic perturbations. The reasonably 
close (−10%,+15%) coincidence of 1-min SMR and SYM-H POT values 
(Figures 6g and 6j) suggests that the significantly different station numbers 
supporting the indices are not a strong driver of differences in the POT return 
levels. This suggests that the change in station numbers with time in SMR 
does not significantly affect our results.

From the GPD distributions fitted to the data, we found that for these 
more extreme events, SYM-H and SMR predict disturbances that are 
more intense than previously obtained using Dst, however, the increase 
does not increase linearly with event severity. Regarding comparison 
with previous estimates for Dst return levels, we would expect that fitting 
specific parametric distributions such as power laws or lognormals would 
also yield significant increases in the estimated return levels. This implies 
that selection of indices can have significant implications for risk assess-
ment and planning mitigation against space weather hazard, for example, 
for 1-in-10-year return levels, our estimates based on 1-min SYM-H or 
SMR exceed those based on Dst by about 12%, while the 1-in-100-year 
return levels show enhancement of almost 25%.

Risk is commonly parameterized by estimated intensity of the 1 in 100 years 
event; our results suggest that a more nuanced approach to index selection 
may be required. Our results suggest that for more extreme events, these 
geomagnetic indices are not directly interchangeable, they contain different, 
complementary information and should be used together in any detailed anal-
ysis. Such an analysis may improve the correlation between return levels and 
the impact of severe geomagnetic storms.

In their comparison of Dst and SYM-H, Katus and Liemohn  (2013) call 
attention to the role that global storm indices play in model assessment; the 
authors highlight that the interchangeable use of indices, without accounting 
for the differences between the indices, could bias data-model comparison 
tests. These authors recommended the use of multiple indices in determi-
nation of low-to middle-latitude magnetic perturbations and suggested that 
difference between indices could be considered as an error estimate on these 
values. Some recent studies such as Brenner et al. (2021) use the Dst, SYM-H, 
and SMR indices interchangeably. Our results show that the indices are not 
interchangeable, particularly during extreme events, and further emphasize 
the consideration that should be given to index choice in model validation 
and cross-study comparison.

Data Availability Statement
The Dst and SYM-H indices used in this paper were provided by the WDC for Geomagnetism, Kyoto (http://
wdc.kugi.kyoto-u.ac.jp/wdc/Sec3.html) and were obtained from the WDC Kyoto interface (Dst: https://wdc.kugi.
kyoto-u.ac.jp/dstae/index.html), (SYM-H: https://wdc.kugi.kyoto-u.ac.jp/aeasy/index.html). The SMR index was 
retrieved from the SuperMAG interface (https://supermag.jhuapl.edu/indices/). The download date was 6 Decem-
ber 2022.
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