
Breaking AES-128: Machine Learning-Based SCA
under Different Scenarios and Devices

Sara Tehranipoor and Nima Karimian
Lane Department of Computer Science and Electrical Engineering

West Virginia University
West Virginia, USA 26506-6109

Email: sara.tehranipoor, nima.karimian@mail.wvu.edu

Jack Edmonds
Department of Electrical and Computer Engineering

Santa Clara University
Santa Clara, USA

Email: jsedmonds@alumni.scu.edu

Abstract—Machine learning-based side-channel attacks
(MLSCAs) have demonstrated the capability to extract secret
keys from AES by learning the correlation between leakages
from power traces or timing of AES execution. Previous work
has focused on unmasked AES, the captured power traces for
profiling and testing have been collected from the same device,
and they are primarily implemented on microcontrollers. In this
paper, we present a comprehensive MLSCA that considers both
masked and unmasked AES running on software and hardware
with a side-channel leakage model under four scenarios involving
two target boards (Artix-7 XC7A100T FPGAs and STM32F415
microcontrollers) and different keys for training and testing the
model. Our implementation results indicate that support vector
machines outperformed other machine learning techniques
on masked software and unmasked software AES with only
4 traces. Long short-term memory networks were found to
outperform other techniques on unmasked hardware AES
(FPGA) with only 283 power traces.

Index Terms—Side-channel analysis, machine learning, AES-
128, Cryptography, FPGA.

I. INTRODUCTION AND RELATED WORKS

Some of the cryptographic algorithms unintentionally leak
information about the processed data and such attacks that
exploit such knowledge in order to recover cryptographic
secrets are called side-channel attacks (SCAs). SCAs extract
secrets from physical devices by exploiting vulnerabilities in
the implementation by finding the correlation between the
physical measurements (power consumption, electromagnetic
leaks, timing information, etc.) taken at various points during
the computation and the internal state of the processing device.
An attacker can deduce the internal state of a device and then
retrieve the related sensitive information.

AES-128 algorithm is a symmetric encryption algorithm
that has been shown to be vulnerable against SCAs. In pub-
lications including [11], [10], [17], and [1], studies involving
machine/deep learning classifiers are discussed in the context
of attacking AES, and the authors of [1] have provided AES-
128 side-channel data collected from a microcontroller in their
ASCAD database. In [5] and [6], cross-device attack results
using deep neural networks are presented for AES-128 on
microcontrollers. In [18], the authors “apply Deep Learning
techniques in a Non-Profiled context, where an attacker can
only collect a limited number of side-channel traces for a
fixed unknown key value from a closed device.” In [4],

the authors use a “supervised learning-based approach for
inferring applications executing on an android platform based
on features extracted from EM side-channel emissions and
software exposed dynamic voltage frequency scaling (DVFS)
states.” In [20], instead of using a convolutional neural network
purely as an attacking algorithm, the authors present results
of a side-channel attack on an FPGA-based convolutional
neural network to recover images. In [12], machine learning
based side-channel attack (MLSCA) is applied to evaluate the
elliptic-curve cryptography algorithm, and in [2] to evaluate
RSA. Other papers provide overviews of the topic include [16]
and [7]. However, the majority of previous work considered
breaking AES-128 using same key where the power traces
collected in the same device during profiling and tested on
same key using same device. While in the ideal scenario, the
device that has been used for profiling phase should not be
considered in testing phase. Additionally, most of the literature
works do not consider different key and different devices with
both unmasked/masked software/hardware. In this work, we
will expand upon existing works such as these by providing
a single set of experimental results of cross-device attacks
(involving 2 keys) on 3 different implementations of AES-
128 (unmasked software, masked software, and unmasked
hardware) across two device types (MCU and FPGA) with
8 different machine learning classifiers.

To summarize our work, we evaluated the resistance of
AES-128 implemented on a pair of STM32F415 MCUs
and XC7A100T FPGAs in four different scenarios against
MLSCA, i.e. profiling one target and key and attacking the
same target and key, profiling one target and key and attacking
a different target with the same key, profiling one target
and key and attacking a different target with the same key,
and profiling one target and key and attacking a different
target with a different key. Eight machine learning classifiers
including both classical and deep learning algorithms were
used in combination with a side-channel leakage model to
do this. We found that without implementing SCA-specific
countermeasures (such as masking in our case), secret encryp-
tion keys can be vulnerable to this form of attack. Our main
contributions are summarized as follows:
(1). Experimental results of MLSCA attacks on the
STM32F415 running AES-128 in four scenarios involving two



MCUs and two keys, showing that unmasked software AES-
128 is extremely vulnerable to attacks with the 8 machine
learning classifiers used, but that masked software AES-128
can prevent a successful attack when the attacked key is
different than the profiled key.
(2). Our experimental results on the FPGA XC7A100T run-
ning AES in four scenarios involving two FPGAs and two
keys, showing that while not as vulnerable as unmasked
software AES-128 on the MCUs (as more traces were required
for a correct prediction), a successful attack can still be
performed in all four scenarios evaluated with 8 machine
learning classifiers used.
(3). We collected new power traces using both XC7A100T
FPGA and STM32F415 microcontroller for both masked and
unmasked AES-128. The database along with a machine
learning code on Jupyter Notebook will be publicly available
to allow for reproducibility and expansion upon our work
hosted on GitHub.

The rest of the paper is organized as follows. In section II,
we provide background information on side-channel analysis,
machine learning, and AES-128, In section III, we provide an
overview of our evaluation methodology, and in IV we discuss
our results. In section V, we conclude the paper.

II. BACKGROUND

A. The Advanced Encryption Standard

The Advanced Encryption Standard (AES) is currently one
of the most extensively utilized symmetric-key algorithms.
It is widely used in the private sector and is also the pri-
mary encryption and decryption method employed by the US
government for sensitive data. AES can operate with 128,
192, or 256-bit keys, which is a significant step up from
what is commonly regarded as its predecessor, DES (the Data
Encryption Standard), which was developed by IBM in the
1970s. AES is a block cipher that processes chunks of bits
together instead of processing each bit separately. It works on
16-byte blocks of data (128 bits in total) regardless of the key
size. A set of operations is carried out on the 4x4 state array
of this data for a specific number of rounds, depending on the
key size. Specifically, AES-128 has 10 rounds, AES-192 has
12 rounds, and AES-256 has 14 rounds as shown in Figure 1.

During the “add round key” operation, the state array bytes
(which hold the plaintext byte values along with any required
padding) are XORed with the corresponding round key bytes.
The “substitute bytes” or S-box operation substitutes each of
the 16 bytes in the state array with a value in the Rijndael S-
box. The values of the bytes prior to the substitution are used
as indices to determine what values to substitute them with
from the S-box lookup table [1]. The table itself is static across
AES implementations and there are 256 values in it because
a byte has 2 to the 8 = 256 possible values, thus allowing for
indices from 0 to 255. One countermeasure commonly used
to protect cryptographic algorithms against SCA is masking,
and this technique was applied in one of the two AES-128

Fig. 1. Encryption flow of AES-128.

implementations we evaluated. Specifically, the masked AES-
128 implementation XORed each of the S-box output bytes
with an additional mask value in an attempt to disrupt the
first-order relationship between the power consumption spike
resulting from this operation and the S-box output byte values.
XOR is invertible, and the mask can later be removed so
long as its value can be recalled. The “shift rows” operation
involves circularly shifting the rows of the state array to the
left. The first row remains unshifted, the second row is shifted
once to the left, the third row is shifted twice to the left, and
the fourth row is shifted three times to the left. Because it is
circular, a value on the far left of a given row will become the
value on the far right after the next shift. The “mix columns”
operation involves computing the matrix-vector product of an
MDS (Maximum Distance Separable) circulant matrix and
each column of the state array. A circulant matrix that is
MDS is intentionally constructed to conceal the relationship
between the plaintext and ciphertext. It should be noted that
this operation does not show up in the final round, as it was
determined when the algorithm was developed that including
it would not significantly add to the algorithm’s security in the
final round.

To create “round keys” AES employs a key schedule
routine that expands the primary key into 10 additional 128-
bit subkeys. To obtain the first column of the first round
key’s array, the far-right column of the original key array is
taken, shifted upward by one, and then subjected to an S-box
substitution of the bytes. The resulting column is XORed with
the first column of the key array, and then XORed with a 4x1
vector that has a predefined constant for its first value, which
depends on the round number and can be found in the AES
round constant table, and zero for its second, third, and fourth
values. The result of the second XOR is the first column of
the first round key’s array, which can be envisioned as being
placed in a new fifth column of the key array. The next three
columns that make up the remainder of the first round key’s
array are generated similarly, but the column to the right of
the first column of the original array plays the role that the
first column played in generating the second column of the
first round key’s array, and the newly generated column takes



the place of the far-right column of the original key array in
its generation. In short, the index of the columns used in the
subkey column generation routine will continue to increment
by one until all four columns of all round key arrays have
been generated. Note that there are actually 11 instances of
the “add round key” operation in AES-128, or the number of
rounds plus one in general. The first of these “add round key”
operations typically use the original key itself, which is often
referred to as the zeroth round key.

B. Side-Channel Analysis

Side-channel analysis (SCA) is a method of attacking
cryptographic algorithms that involves exploiting hardware
vulnerabilities by analyzing device information associated with
the internal workings of the algorithm. This involves analyzing
things like device power consumption, electromagnetic radia-
tion, timing, and sound to learn information about a system
and reveal information that was intended to remain unknown to
unauthorized parties. Side-channel information can be thought
of as the side effects of a device’s operation. While SCA
has been around for several years, only in the past couple
of decades has there been a surge of interest in its potential as
a cheap, non-invasive, or semi-invasive method of attack. Our
research has focused on pairing SCA with machine learning,
specifically using device power consumption as our chosen
type of side-channel information. Our approach, which is
based on machine learning, belongs to the subcategory of side-
channel template attacks. In this type of attack, the attacker
creates a ”profile” of a device they have full control over, and
then uses the information obtained from that device to attack
other similar devices [3].

III. METHODOLOGY

A. Experimental Setup

In order to capture power traces from the target board, a
shunt resistor was installed in the power supply rail of each
target board (XC7A100T FPGAs and STM32F415 MCUs) to
monitor and record voltage readings. The primary interface
connection between the target devices and the workstation
consisted of the CW1173 ChipWhisperer-Lite and the CW308
UFO Board. The collected data pertained to the encryption
executed by the two target devices, as documented in the
reference [13]. Our hardware setups have been depicted Fig-
ures 2 and 3. We also employed various Python packages such
as ChipWhisperer, Keras/TensorFlow, Scikit-learn, NumPy,
Pandas, and Matplotlib libraries for data evaluation. For both
MCU and FPGA devices, we conducted evaluations in four
scenarios. These scenarios involved profiling a single target
and key, and subsequently attacking the same target using
the same key. Additionally, we profiled a single target and
key, and then attacked the same target using a different
key. Furthermore, we profiled a single target and key, and
performed an attack on a different target using the same key.
Lastly, we profiled a single target and key, and carried out an
attack on a different target using a different key.

Fig. 2. Hardware setup: recording power traces from STM32F415 microcon-
troller board using CW308 UFO board.

Fig. 3. Hardware setup: recording power traces from XC7A100T FPGA board
using ChipWhisperer-Lite

B. Evaluation Procedure

1) STM32F415 MCU: To assess the machine learning-
based side-channel analysis (SCA), we initially focused on the
STM32F415 MCU. For this evaluation, we gathered a dataset
of 2,000 samples, representing 60,000 distinct encryptions
performed on randomly generated 128-bit plaintext using a
fixed 128-bit key. These encryptions were triggered by a
sequence of encryption operations. During our investigation,
we discovered that a dataset of 2,000 samples adequately
captured the operation of interest to us in the initial round
of encryption. In order to conduct the evaluation tests, we
collected an additional set of 10,000 power traces from the
same target devices. These power traces were obtained after
profiling the target devices with one set of encryptions using
the same key as the profiling set, and another set using a
different key. To ensure a fair evaluation, we incorporated the
concept of unseen board and unseen key during the attack
phase. This means that we conducted attacks using a different
board and a different key than those used during the profiling
phase. By employing different boards and keys in the profiling
and attack stages, we aimed to assess the robustness and
generalization capabilities of our approach. After collecting
the data, we proceeded to analyze the profiling set using a
side-channel leakage model. This model helped us identify
the samples within our collected traces that corresponded to
the operation of interest as attackers. Specifically, for both the



unmasked and masked software implementations of AES-128
on the MCUs, the operation we focused on was the ”substitute
bytes” or S-box operation in the first round. Studies have
demonstrated that the power consumption associated with the
S-box operation exhibits a correlation with its output values.
If an attacker can accurately predict these values, it becomes
feasible to reverse-engineer the secret key that was employed
in the encryption process. However, this assumption relies on
the attacker having knowledge of the specific random plaintext
used for each encryption. In reality, there is only one value
out of 256 possible values for the first key byte that, when
XORed with the first plaintext byte, will yield the predicted
first output byte of the S-box operation. This pattern continues
for subsequent bytes of the key and plaintext. Figure 5 shows
a general flow of the AES operations involved in this leakage
model.

We also performed a signal-to-noise ratio (SNR) calculation
on information from the profiling set to identify the samples
of interest to us that corresponded to the processing of the 16
bytes. Figure 4 (a) displays the result of the SNR calculation
for the unmasked software profiling set. The peaks in the
bottom plot indicate which samples are related to the 16 S-box
output bytes in the first round, while the top plot shows one
of the 60,000 collected power consumption traces. Figure 4
(b) shows the result of the masked implementation.

After identifying the 16 sample values of interest based on
the peaks found with our leakage model’s SNR calculation, we
created 16 different training and test sets from our profiling
and attack sets, which were examined by 12 different machine
learning classifiers. For the first byte’s training set, we zoomed
in on the sample of interest in each of the 60,000 profiling
traces (or in some cases several samples centered around the
peak SNR index) and used that voltage value or group of
voltage values as the predictor in the training set for each
observation, with each predictor labeled with the correct S-
box output value. In the corresponding test set, the predictor
was also the voltage value(s) associated with the first S-
box output byte in each of the 10,000 attack traces. While
we labeled each of them to check our classifiers’ prediction
accuracy for evaluation purposes, in reality, we would assume
an attack set would not be labeled as we wouldn’t know the
key ahead of time to check our test predictions against. For the
masked software implementation of AES-128, there are only
two key differences in the process described above. Firstly,
3,000 samples were collected per trace to capture all S-box
substitutions in the first round. Secondly, an additional mask
value was XORed with the S-box output bytes to disrupt any
first-order relationship between the measured voltage value
associated with the S-box operation and the values trained
by our machine learning classifiers.

2) XC7A100T FPGA: When evaluating the FPGAs, we
obtained an equivalent number of traces for both the profiling
and attack sets, matching the number used for the MCUs.
However, due to the faster execution speed of the hardware
implementation of AES-128 on the FPGAs, we only captured
100 samples per trace. This was sufficient to capture the

entirety of full encryption. Despite our initial efforts to focus
on the S-box operation in the first round, similar to what we
did for the MCUs, we encountered greater difficulty in estab-
lishing a correlation between the measured voltage and the
S-box output values when targeting the FPGAs. Although we
achieved partial key recovery in certain cases, our attempts to
retrieve complete keys using our machine learning classifiers
through this approach were unsuccessful. Moreover, unlike the
software implementations on the MCUs, the S-box outputs
were not stored in memory on the FPGAs, leading to less
detail in each collected power trace in terms of identifiable
patterns and certain operations being performed. Therefore,
we ended up using a different leakage model for the FPGAs,
targeting the end of the AES-128 encryption process instead.
Specifically, our chosen model attempted to find a correlation
between the voltage measurements and the difference between
the input and output of the last round, where ”difference”
referred to the result of the XOR between the two states.

C. Machine Learning Classifiers

We employed 8 distinct machine learning classification
algorithms along with a side-channel leakage model to classify
power traces in this study.

Convolutional Neural Network: We employed the Con-
volutional Neural Network (ConvNet/CNN) algorithm, a deep
learning technique capable of recognizing and assigning sig-
nificance to various objects or features within an input image
using learnable weights and biases. For our implementation,
we utilized Keras/TensorFlow’s built-in CNN. Our model was
comprised of a 1D convolutional layer featuring 64 filters, an
11-unit kernel size, a Rectified Linear Unit (ReLU) activation
function, and ‘same’ padding; a 1D average pooling layer with
a 2-unit pool size and 2-unit stride; a flatten layer; a dense layer
with 256 units and a ReLU activation; a batch normalization;
a 0.2 dropout rate; and an output layer with 256 units and
a softmax activation. We compiled the model using Adam
optimization with a learning rate of 0.001 and a categorical
cross-entropy loss function, trained with a batch size of 100
across 5 epochs. Gaussian Naive Bayes: We employed the
Gaussian Naive Bayes (GNB) classifier, which is a supervised
learning algorithm based on the assumption of conditional
independence between every pair of features given the value
of the class variable, using a Gaussian likelihood function. To
implement the GNB classifier, we used the implementation
provided by sklearn with a variance smoothing value of 1e-
09. K-Nearest Neighbors: Neighbors-based classification is
a non-generalizing learning method that relies on instance-
based learning. It does not try to build a general model but
rather stores instances of training data. The classification is
based on the majority vote of the nearest neighbors of each
point: the class with the highest number of representatives
among the nearest neighbors is assigned to a query point.
For our KNN classifier, we utilized sklearn’s implementation
with 1024 neighbors, uniform’ weights, and the minkowski’
distance metric. Linear Discriminant Analysis: We employed



(a) (b)
Fig. 4. (a) Result of a leakage model SNR calculation for revealing samples associated with the processing of the 16 S-box output bytes on the (a) unmasked
software AES-128 profiling set and (b) masked software AES-128 profiling set.

Fig. 5. Flow of the “add round key” and “substitute bytes” operations in the
first round of unmasked AES-128.

a linear discriminant analysis (LDA) classifier, which gener-
ates a linear decision boundary by fitting class conditional
densities to the data and applying Bayes’ rule. In this model,
a Gaussian density is fitted to each class, with the assump-
tion that all classes share the same covariance matrix. We
used the ‘svd’ solver implementation provided by sklearn.
Logistic Regression: Logistic regression is a type of linear
model used for classification tasks instead of regression. It
can also be referred to as logit regression, maximum-entropy
classification, or the log-linear classifier. In this model, a
logistic function is used to model the probabilities of the
potential outcomes of a single trial. We utilized sklearn’s
implementation of logistic regression (LR) with an l2’ penalty,
lbfgs’ solver, and an inverse regularization strength of 4096.
Long Short-Term Memory Network: Our LSTM model used

Keras/TensorFlow’s implementation. The model comprised of
two initial LSTM layers with 10 units each that were set to
return sequences. Each layer was followed by a dropout of 0.2.
We added one more LSTM layer with 10 units that were not set
to return sequences, followed by another dropout of 0.2, and an
output dense layer of 256 units with a softmax activation. We
compiled the model using Adam optimization with a learning
rate of 0.001 and a categorical cross-entropy loss function. The
training was performed with a batch size of 100 in 10 epochs.
LSTM networks are a type of recurrent neural network that
can learn order dependence in sequence prediction problems.
Multilayer Perceptron Network: A multilayer perceptron
(MLP) is an artificial neural network (ANN) that consists
of three or more layers of nodes: an input layer, a hidden
layer, and an output layer. Each node, except the input nodes,
is a neuron that employs a nonlinear activation function.
We utilized Keras/TensorFlow’s implementation for our MLP,
which began with a dense layer of 256 units and ReLU
activation. It was followed by batch normalization and dropout
of 0.2. The output layer also had 256 units with a softmax
activation. We compiled the model using Adam optimization
with a learning rate of 0.001 and a categorical cross-entropy
loss function. We trained the model with a batch size of 100
in 5 epochs. Support Vector Machine: Our SVM classifier



Fig. 6. Byte rank plot showing a successful attack, as all 16 bytes converge
to a rank of 0 before running out of attack traces.

Fig. 7. Byte rank plot showing a failed attack, as all 16 bytes do not converge
to a rank of 0 before running out of attack traces.

was implemented using sklearn. The SVM algorithm aims to
identify a hyperplane in an N-dimensional space (where N
is the number of features) that can effectively separate data
points into distinct classes. We used sklearn’s implementation
with a regularization strength of 1, an ‘rbf’ kernel, a degree
of 3, and default parameters for all other settings.

D. Rank Metric
To assess the effectiveness of our machine learning classifier

in predicting the desired key, we employed the rank or byte
rank metric. This metric served as a measure of success in our
evaluation process. Like our evaluation of MCUs, assigning
the correct S-box output bytes for each encryption to the
training and test sets for the 16 bytes did not lead to reliable
predictions based on a single trace. However, we observed
that incorporating predictions from multiple traces enhanced
our ability to determine the correct key.

To ascertain the correct key byte value associated with each
potential S-box value for a byte, we utilized machine learning

classifiers that produced a probability array of 256 values.
We iterated through the probability arrays of all traces and
calculated the probability for each of the 256 possible key
byte values corresponding to the S-box value, using the cor-
responding plaintext value for each trace. These probabilities
were then accumulated in a sums array, which represented the
probabilities for each key byte value. The primary goal as an
attacker was to aggregate the probabilities across all traces
and identify the key byte with the highest cumulative value.
Additionally, throughout this process, we maintained the rank
of the correct value relative to the 255 incorrect values. We
visualized the changes in rank over time and the number of
trace predictions required to achieve the top rank or highest
likelihood.We designated the highest rank as 0 and the lowest
rank as 255. Figures 6 and 7 illustrate example results of rank
calculations for a successful and failed attack, presented in a
plot format. We employed the rank metric in a similar manner
for the FPGAs, where the labels for both the profiling and test
sets were the last round state difference values.

IV. EXPERIMENTAL RESULTS

A. Software based AES-128 on STM32F415
During the evaluation of the unmasked software implemen-

tation of AES-128 on the MCUs, we made an interesting
observation. In all four attack scenarios, which involved two
targets and two keys, we discovered that all eight of our
selected machine learning classifiers, when combined with a
first-round S-box leakage model, successfully recovered the
complete encryption key. Remarkably, this achievement was
attained with minimal or no tuning, indicating that this specific
combination of device and AES variant is highly vulnerable to
this type of attack. Our investigation of the masked software
implementation yielded intriguing findings. In two out of the
four attack scenarios, the machine learning classifiers, when
coupled with the same leakage model, successfully recovered
the secret key. However, in the remaining two scenarios that
involved a different attack key from the profiling key, the
classifiers were unable to predict the key. Although we occa-
sionally managed to retrieve partial keys, we never achieved
complete recovery of all 16 bytes. Notably, these two scenar-
ios, which involved attacking a different target with a different
key or the same target with a different key, are considered to
be the most realistic scenarios. Consequently, we concluded
that masking serves as an effective countermeasure against
machine learning-based side-channel attacks (MLSCA).

B. Hardware based AES-128 on XC7A100T
we were able to accurately recovering the complete hard-

ware based AES-128 XC7A100T FPGA using machine learn-
ing classifiers, with one notable exception. We found that
the four bytes comprising the first column of the AES state
array displayed a higher level of predictability compared to
the remaining bytes, although the exact reason for this phe-
nomenon remains elusive. However, we effectively resolved
this issue by utilizing a single model that accurately pre-
dicted the corresponding byte, thereby allowing us to predict



Fig. 8. For the MCUs, the average byte rank 0 convergence was observed when using classifiers trained with 20,000 profiling traces and tested with 1,000
attack traces. Similarly, for the FPGAs, the convergence occurred with classifiers trained on 60,000 profiling traces and tested with 10,000 attack traces. The
abbreviations SD, SK, DD, and DK represent the following scenarios: SD (same device/target profiled with same key), SK (same key profiled with same
device/target), DD (different device/target profiled with same key), and DK (different key profiled with different device/target).

Fig. 9. Partial key recovery for the XC7A100T FPGA in a differing profiling
and attack key scenario, with separate machine learning classifiers used for
each byte.

the remaining 15 bytes as well. This finding suggested that
training separate models for each byte was unnecessary and
potentially impeded the attack process. Although utilizing a
single model necessitated an increased number of traces during
the prediction stage for the 15 untrained bytes, it ultimately
resulted in a faster evaluation process.

C. Classifier Comparison

The average number of attack traces required per byte before
reaching a rank of 0 for all 8 machine learning classifiers
in various scenarios is shown in the table in Figure 8. It is
essential to emphasize that the performance of a classifier
can vary depending on the specific circumstances. Therefore,
these tables should not be considered definitive in determining
the optimal classifier for machine learning-based side-channel
attacks (MLSCA). When evaluating the STM32F415, we ob-
served that the long short-term memory, K-nearest neighbors,
and support vector machine classifiers tended to require the
fewest number of traces to accurately rank the correct key byte
values as the most probable. In the case of the XC7A100T,

the convolutional neural network, linear discriminant analysis,
logistic regression, long short-term memory, and support vec-
tor machine classifiers exhibited similar performance levels.
However, the support-vector machine classifier took consider-
ably longer to run than the others, so while it produced low-
rank convergence, it was not as time-efficient. Additionally,
the ensemble/tree-based machine learning algorithms failed to
predict keys for the FPGAs, as did the restricted Boltzmann
machine classifier.

For the successful attacks on masked software AES-128
on the STM32F415, the average rank 0 convergence was
lower when the attacked target was not the same as what was
profiled, which was unexpected. This could be attributed to
process variation, as each device behaves differently and may
generate noise that affects the collected power traces. Inves-
tigating why some devices are more vulnerable to MLSCA
even with the same scenario could be a topic for future work.

D. Comparison with Existing Works
Table I compares our work to several prior studies [19], [9],

[11], [14], [8], [15] in terms of experimental scenarios and
key rank results. It is noteworthy that most previous studies
only used the same device and key for profiling and testing,
whereas our work demonstrated the feasibility of retrieving
keys under four scenarios. Additionally, most studies in the
existing literature only considered masked software, unmasked
software, or unmasked hardware, while we analyzed all sce-
narios, including masked/unmasked software and unmasked
hardware, for both FPGAs and microcontrollers.

V. CONCLUSIONS AND FUTURE WORKS

This paper presents our research on evaluating the resistance
of unmasked and masked software AES-128 implemented
on STM32F415 MCUs and unmasked hardware AES-128
on XC7A100T FPGAs against machine learning-based side-
channel attacks. We used a side-channel leakage model target-
ing either the first round S-box operation or the last round state
difference in combination with 8 machine learning classifiers.
Our evaluation revealed that unmasked software AES-128 on



Work Hardware AES-128
Implementation Scenario ML Algorithm(s) Number

Traces

This work
STM32F415 MCU
and
XC7A100T FPGA

Unmasked Software
Masked Software
Unmasked Hardware

SD & SK
SD & DK
DD & SK
DD & DK

CNN, GNB, KNN
LR, LDA, LSTM
MLP, SVM

16, 18, 5
10, 8, 20
692, 792

[37] ATXmega Unmasked Software SD & DK
DD & DK CNN 160, 400

[20] ASIC Unmasked Hardware SD & DK CNN 1300

[22] Virtex-5 FPGA Unmasked Hardware
and Masked Software SD & DK AE (autoencoder)

CNN, MLP, LSTM 200, 500

[25] Virtex-5 FPGA Unmasked Hardware SD & DK MLP, CNN 2500

[18] Atmel AVR
ASCAD database

Unmasked Hardware
and Masked Software

SD & DK
SD & SK CNN 10, 25000

3, 300
[26] Artix-7 FGA Unmasked Hardware SD & DK LSTM-AE 3700

TABLE I
RELATED WORKS COMPARISON (SD = SAME DEVICE/TARGET THAT WAS PROFILED, SK = SAME KEY THAT WAS PROFILED, DD = DIFFERENT

DEVICE/TARGET THAN WHAT WAS PROFILED, DK = DIFFERENT KEY THAN WHAT WAS PROFILED).

the MCUs was highly susceptible to attack, but masking can
protect against it when the attacked key is different than the
profiled one. We also found that while all 8 machine learning
classifiers were capable of predicting the secret key when at
least one of them was successful, some required more power
consumption traces than others to do so. Further investigation
could focus on optimizing the machine learning classifiers,
exploring alternate forms of attack on the power consumption
data, and better understanding the factors affecting rank 0
convergence for unmasked AES-128 when attacking a second
MCU that was not profiled as compared to attacking the same
MCU that was profiled.

REFERENCES

[1] R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and C. Dumas, “Study
of deep learning techniques for side-channel analysis and introduction
to ascad database,” ANSSI, France & CEA, LETI, MINATEC Campus,
France. Online verfügbar unter https://eprint. iacr. org/2018/053. pdf,
zuletzt geprüft am, vol. 22, p. 2018, 2018.

[2] M. Carbone, V. Conin, M.-A. Cornelie, F. Dassance, G. Dufresne,
C. Dumas, E. Prouff, and A. Venelli, “Deep learning to evaluate secure
rsa implementations,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, pp. 132–161, 2019.

[3] S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems.
Springer, 2002, pp. 13–28.

[4] N. Chawla, A. Singh, M. Kar, and S. Mukhopadhyay, “Application
inference using machine learning based side channel analysis,” in 2019
International Joint Conference on Neural Networks (IJCNN). IEEE,
2019, pp. 1–8.

[5] D. Das, A. Golder, J. Danial, S. Ghosh, A. Raychowdhury, and S. Sen,
“X-deepsca: Cross-device deep learning side channel attack,” in Pro-
ceedings of the 56th Annual Design Automation Conference 2019, 2019,
pp. 1–6.

[6] A. Golder, D. Das, J. Danial, S. Ghosh, S. Sen, and A. Raychowdhury,
“Practical approaches toward deep-learning-based cross-device power
side-channel attack,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 27, no. 12, pp. 2720–2733, 2019.

[7] S. Jin, S. Kim, H. Kim, and S. Hong, “Recent advances in deep learning-
based side-channel analysis,” ETRI Journal, vol. 42, no. 2, pp. 292–304,
2020.

[8] J. Kim, S. Picek, A. Heuser, S. Bhasin, and A. Hanjalic, “Make some
noise. unleashing the power of convolutional neural networks for profiled
side-channel analysis,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, pp. 148–179, 2019.

[9] T. Kubota, K. Yoshida, M. Shiozaki, and T. Fujino, “Deep learning
side-channel attack against hardware implementations of aes,” Micro-
processors and Microsystems, p. 103383, 2020.

[10] H. Maghrebi, “Deep learning based side channel attacks in practice.”
IACR Cryptol. ePrint Arch., vol. 2019, p. 578, 2019.

[11] H. Maghrebi, T. Portigliatti, and E. Prouff, “Breaking cryptographic
implementations using deep learning techniques,” in International Con-
ference on Security, Privacy, and Applied Cryptography Engineering.
Springer, 2016, pp. 3–26.

[12] N. Mukhtar, M. A. Mehrabi, Y. Kong, and A. Anjum, “Machine-
learning-based side-channel evaluation of elliptic-curve cryptographic
fpga processor,” Applied Sciences, vol. 9, no. 1, p. 64, 2019.

[13] C. O’flynn and Z. D. Chen, “Chipwhisperer: An open-source platform
for hardware embedded security research,” in International Workshop
on Constructive Side-Channel Analysis and Secure Design. Springer,
2014, pp. 243–260.

[14] S. Picek, I. P. Samiotis, J. Kim, A. Heuser, S. Bhasin, and A. Legay,
“On the performance of convolutional neural networks for side-channel
analysis,” in International Conference on Security, Privacy, and Applied
Cryptography Engineering. Springer, 2018, pp. 157–176.

[15] K. Ramezanpour, P. Ampadu, and W. Diehl, “Scaul: Power side-channel
analysis with unsupervised learning,” IEEE Transactions on Computers,
vol. 69, no. 11, pp. 1626–1638, 2020.

[16] S. Song, K. Chen, and Y. Zhang, “Overview of side channel cipher
analysis based on deep learning,” in Journal of Physics: Conference
Series, vol. 1213, no. 2. IOP Publishing, 2019, p. 022013.

[17] B. Sönmez, A. A. Sarıkaya, and Ş. Bahtiyar, “Machine learning based
side channel selection for time-driven cache attacks on aes,” in 2019
4th International Conference on Computer Science and Engineering
(UBMK). IEEE, 2019, pp. 1–5.

[18] B. Timon, “Non-profiled deep learning-based side-channel attacks with
sensitivity analysis,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, pp. 107–131, 2019.

[19] H. Wang, “Side-channel analysis of aes based on deep learning,” 2019.
[20] L. Wei, B. Luo, Y. Li, Y. Liu, and Q. Xu, “I know what you see:

Power side-channel attack on convolutional neural network accelerators,”
in Proceedings of the 34th Annual Computer Security Applications
Conference, 2018, pp. 393–406.


