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ABSTRACT

Investigating relationships between response variables and covari-
ates in areas such as environmental science, geoscience, and public
health is an important endeavor. Based on a Bayesian mixture of
finite mixtures model, we present a novel spatially clustered co-
efficients regression model for count value data. The proposed
method detects the spatial homogeneity of the Poisson regression
coefficients. A Markov random field constrained mixture of finite
mixtures prior provides a regularized estimator of the number of
clusters of regression coefficients with geographical neighborhood
information. As a by-product, we also provide the theoretical prop-
erties of our proposed method when the Markov random field is
exchangeable. An efficient Markov chain Monte Carlo algorithm
is developed by using the multivariate log gamma distribution as
a base distribution. Simulation studies are carried out to examine
the empirical performance of the proposed method. Additionally,
we analyze Georgia’s premature death data as an illustration of the
effectiveness of our approach. The supplementary materials are pro-
vided on GitHub at https://github.com/pengzhaostat/MLG_MFM.
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1 INTRODUCTION

Spatial regression models have been widely used in various fields,
such as environmental science [16, 38, 39], biological science [41],
and econometrics [5, 40], to explore the relationship between a
response variable and a set of predictors over a region. One of the
key objectives of spatial regression models is to capture the spa-
tial dependence structure of the response variable. Spatial random
effects are typically incorporated through intercepts, while the re-
gression coefficients are assumed to be constant over space in both
linear models [7] and generalized linear models [11]. To capture
spatially varying patterns in regression coefficients, [5] proposed
geographically weighted regression (GWR). This idea has been fur-
ther extended in subsequent works by [17, 27, 37]. Additionally,
[14] incorporated spatial Gaussian processes into linear regressions
to construct a spatially varying coefficients regression model. How-
ever, these approaches assume that each location has its own set
of regression parameters, which can sometimes lead to overfitting.
The detection of clustered covariate effects has significant benefits
in various fields, including environmental science, spatial econo-
metrics, and disease mapping. For example, different regions of a
country may exhibit distinct economic conditions and development
patterns. From a modeling perspective, grouping more advanced
regions and less developed regions into separate clusters can lead
to a more parsimonious model.

1.1 Related Work and Challenges

Spatial cluster detection methods, such as the scan statistic-based
method [19, 20], provide a solution for detecting spatial heterogene-
ity. Another important approach for spatial heterogeneity detec-
tion is to utilize the Bayesian framework to identify spatial clusters
[6, 25]. These two approaches primarily focus on estimating cluster
configurations of spatial responses. Recently, methods for detecting
clusters of spatial regression coefficients have been proposed to as-
sess the homogeneity of covariate effects among sub-areas [22, 23]
using spatial scan statistics. From a graph theory perspective, [24]
incorporated spatial neighborhood information based on minimum
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spanning trees into a penalized approach to identify spatially clus-
tered coefficients. However, the existing literature mainly focuses
on Gaussian data within the linear model framework. In many so-
cial and environmental applications, Poisson regression for count
responses plays a crucial role [4].

Developing clustering algorithms for regression coefficients un-
der Poisson models presents several significant challenges. First,
specific spatial contiguity constraints need to be imposed on the
clustering configuration to facilitate interpretations in the spatially
clustered coefficients regression. Additionally, in many regional
science applications, spatially contiguous constraints should not
dominate the overall clustering configuration. In other words, the
clustering results should include both spatially contiguous and spa-
tially disconnected patterns. While the aforementioned methods
[22-24] guarantee spatial contiguity, they fail to obtain globally dis-
contiguous clusters that allow two clusters with long geographical
distances to be considered part of the same cluster. Furthermore,
[1] discusses Poisson regression with spatially clustered intercepts
and slopes but does not impose a spatial contiguity constraint.

Another crucial consideration in clustering algorithms is the
estimation of the number of clusters. Bayesian inference provides
a probabilistic framework for simultaneous inference of the num-
ber of clusters and the clustering configurations. Nonparametric
Bayesian approaches, such as the Dirichlet process mixture (DPM)
model [12], offer choices to estimate the number of clusters and
the clustering configurations simultaneously. However, the Dirich-
let process mixture model suffers from inconsistency issues [28],
which leads to challenges in obtaining a consistent estimator of the
number of clusters. To address the problem of over-clustering in
the DPM, several approaches in the literature [26, 29, 36] propose
different ideas to obtain consistent estimators of the number of
clusters. However, these existing methods do not utilize spatial
information, such as neighborhood relationships, despite the po-
tential to enhance clustering performance. According to Tobler’s
first law of geography [33], "Everything is related to everything
else, but near things are more related than distant things"" Consid-
ering a similar pattern in the data due to similar environmental
circumstances is reasonable. Although it may be challenging to
incorporate arbitrary types of spatial information with consistent
guarantees on the number of clusters, exploring specific types of
dependency structures without compromising consistency is still
of interest.

1.2 Contributions

To address these challenges, we propose a novel approach called the
Markov random field (MRF) constrained Mixture of Finite Mixtures
(MFM) model (MRF-MFM) to capture the spatial homogeneity in re-
gression coefficients for Poisson models. Our Bayesian method for
spatially clustered coefficients Poisson regression incorporates geo-
graphical information using the MRF constrained MFM model. This
enables us to capture both locally spatially contiguous and globally
discontiguous clusters simultaneously. We develop a Gibbs sampler
that facilitates efficient full Bayesian inference on the number of
clusters, mixture probabilities, and other modeling parameters for
Poisson regression, leveraging the multivariate log gamma (MLG)
process [4]. Through simulations and an analysis of premature
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deaths data in the state of Georgia, we demonstrate the excellent
numerical performance of our proposed mixture models. Addition-
ally, we establish a consistency result for the posterior estimates of
the cluster number and associated modeling parameters when the
Markov random field is assumed to be exchangeable.

Our proposed method has several unique aspects. First, the in-
troduction of the Markov random field into the mixture of finite
mixtures model for spatial cluster coefficients regression is a novel
idea. This approach has wide applicability in spatial statistics appli-
cations, such as environmental science and geographical analysis,
providing a valuable alternative to existing literature that primar-
ily relies on penalized regression or scan statistics. We provide a
detailed comparison with related literature (e.g., [1, 24]) in Section
D of the supplement. Second, by adopting a full Bayesian frame-
work, our clustering results offer useful probabilistic interpretations.
Moreover, our developed posterior sampling scheme ensures effi-
cient computation. Third, our theoretical result is among the first
of its kind for mixture models under the exchangeable assumption.
The posterior consistency result not only justifies the excellent
empirical performance (e.g., regularization on the number of clus-
ters) but also connects with existing theoretical findings on mixture
models in general.

2 METHODOLOGY

2.1 Clustered Poisson Regression and Mixture
of Finite Mixtures

Consider a Poisson regression model with spatially varying coeffi-
cients as follows
y(s;) ~ Poisson(exp(X(s;)fz;)), i=1,---,n, (1)

where X (s;) is a n X p covariates matrix, z; € {1, - -, k} are labels
of clusters, B, = B(s;) is a p dimensional regression coefficients at
location s;. From [14], a Gaussian process prior can be assigned on
regression coefficients to obtain spatially varying patterns. Com-
pared with spatially varying patterns, the heterogeneity pattern of
covariate effects over subareas is also universally discussed in many
different fields, such as real estate applications, spatial econometrics,
and environmental science.

In the popular Chinese restaurant process, z;, i = 2,...,n are
defined through the following conditional distribution [12]:

P(zi=c|z,...,zi-1)

lc|, atan existing table labeled ¢ (2)

[
Y

where |c| is the size of cluster ¢, and y is a concentration parameter
of Dirichlet Process.

While CRP has a very attractive feature of simultaneous esti-
mation on the number of clusters and the cluster configuration,
a striking consequence of this has been recently discovered [28]
where it is shown that the CRP produces extraneous clusters in the
posterior, leading to inconsistent estimation of the number of clus-
ters even when the sample size grows to infinity. A modification of
the CRP called Mixture of finite mixtures (MFM) model is proposed

if cis a new table
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to circumvent this issue [29]:

k~p(), (m,...,m) | k~Dir(y,...,y),
k
3
Z,'|k,7l’~Zﬂh5h, i=1,...,n, ®)
h=1
where p(-) is a proper probability mass functionon {1,2,...,},yisa

concentration parameter of Dirichlet Process and §y, is a point-mass
at h. Compared to the CRP, the introduction of new tables is slowed
down by the factor V,(t + 1)/V;,(¢), which allows a model-based
pruning of the tiny extraneous clusters.

The coefficient V;,(t) is precomputed as:

+00
ko)
Va(t) = k), 4
(1) ; Gom?® @
where k(;) = k(k—1) ... (k—t+1),and (yk)(") =yk(yk+1) ... (yk+
n—1).z;,i =2,...,nunder (3) can be defined in a P6lya urn scheme
similar to CRP:
P(zi=clz,...,2i-1)
le| +y, atan existing table labeled c. (5)
oC
YVa(t +1)/Vu(t), ifcisanew table.
where t is the number of existing clusters.
2.2 Introducing Dependency on the Base
Measure
Recall that the full model for MFM is
K ~ pk, where pg isa p.m.f. on{1,2,...}
(m1,...,m.) ~ Dirichletg (y,...,y)
iid .
Z1,.-.,2Zn ~ 7, given (6)

Bi...., Br iy given K = k
yj ~ fﬁzJ- independently for j =1,...,n,

where H is the base distribution for f. The main insight of MFM is
introducing a prior on the length of the Dirichlet distribution, and
thus renders some regularization on the number of clusters created.
However, the fourth step in the model, where i.i.d. samples are
obtained from a base measure, fails to incorporate any dependency
structure.

Inspired by [31], we apply the pairwise MRF in the level of
coefficients to bring in interactions. With the assistance of Markov
random field modeling, our MRF-MFM can incorporate more broad
types of base measures. Consider an undirected random graph
G = (V,E,W), where V = {uv1,...,0,} is the vertex set while E
is the set of graph edges, with weights W on the corresponding
edges. Each vertex v; is associated with a random variable f; for
i=1,2,...,k. The pairwise MRF model is defined as

(B, B) = exp ) Hi (Bi) +

i€eE

> Hiy(BiB))

(i,j)eE,j#i
—A(W)} = %exp (H (Brr.... ).

where Zp is the normalizing constant. For example, for a Gaussian
MREF, Hi(ﬂi) = —VViiﬂiz/Z and Hij(ﬂiﬂj) = —VVijﬂiﬁj/Z; while for

™
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a binary MREF, i.e., the celebrated Ising model, H;(f;) = W;; fi and
H;j(BiB;j) = W;;BiB;. We can then decompose the pairwise MRF
into a vertex-wise term P and an interaction term M, then

T (Br.... Bk) < P (i, ) M(Bu,.... Br), with
exp {Z H; (ﬁo} :

M (BB = 5= et Y Ho (o) f

M CeC,
where C; := {C € C | s.t. : |C| = 2} and C is the set of all cliques
for the random graph (V, E, W). For the spatial clustered coeffi-
cient regression, we study the component P defined in equation (8)
with a MFM prior. Our next theorem provides the generalized urn-
model induced by MRF-MFM, thus a collapsed Gibbs sampler can
be applied.

P(Br.... ) :=Zip

®)

Theorem 2.1. Suppose the data generating process follows equa-
tion (6) with H replaced by the Markov random field I1(f1, ..., Br)
in equation (8). If P is a continuous distribution and ng > 1, the
distributions of Bn, given B, ..., Pn,—1 is proportional to
Vi (£ + 1)y
Vi (1)

S0)
Vag (1) =
" ,;(ykwo)

Hy_; (Bi | B-i) =

t
P(B)+ ) exp (Hyi (Bi | B-) (ni+1) 8,
i=1

with

K (k);

{j:(i,j)ZeE,j;ti}
where B7, ..., B}, t < no—1 are the distinct values taken by f1, . . ., Bny—1
andn; = #{j € {1,2,...,ng—1} : B; = Bi 1, x™ =x(x+1) -+ (x+
m=—1) and x(py =x(x —1)--- (x —m+1).

)
H;j(BiB;),

This theorem shows how the MRF constraints directly affect
the urn sampling scheme compared with MFM. Considering the
pairwise interactions, we model the conditional cost functions as

Hy—i(Bil B-) =2 . 1(Bi=B)), (10)
{jea(d}
where A is the smoothness parameter, d(i) denotes the set of the
neighbors of observation i. The spatial smoothness can be con-
trolled by the magnitude of A. When A = 0, the MRF-MFM reduces
to MFM [29]. The conditional cost function in (10) is used in the
data analysis of the paper.

2.3 Spatial Clustered Coefficient Regression for
Count Value Data

In the MRF-MFM, the multivariate normal distribution is a natu-
ral choice for the base distribution of 1, - -, Br. However, since
the multivariate normal distribution is not a conjugate prior for
Poisson regression, if it is used as the base distribution, it must be
updated with Metropolis-Hastings or auxiliary parameters, such
as those proposed by [30], in Gibbs sampling algorithms. Addi-
tionally, the multivariate normal distribution has a thin tail, which
is not suitable for estimating long-tail probabilities, such as the
Poisson distribution. To address these limitations, [4] introduced
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the multivariate log-gamma distribution (MLG), which is conjugate
with the Poisson distribution. The MLG distribution was derived
from the multivariate gamma distribution formulated by [10] and
transformed to the log-scale. However, this transformation compli-
cates Gibbs sampling, as it requires component-wise updating to
obtain known full-conditional distributions. Instead, the approach
proposed by [4] allows for block-wise full-conditional distributions
that are easier to simulate from. Furthermore, the MLG distribution
exhibits asymptotic properties with respect to the multivariate nor-
mal distribution. A brief review of the MLG distribution is provided
in the next section, and interested readers can refer to [4] for more
details. In [16], it is demonstrated that the MLG distribution has
better long-tail probability properties compared to the multivariate
normal distribution. In other words, the MLG distribution not only
serves as a conjugate prior for the Poisson distribution but also has
the ability to handle long-tailed probabilities. The ultimate goal
is to propose an MRF-MFM for spatially clustered coefficients in
Poisson regression based on the MLG prior.

2.4 Probability Density Function for
Multivariate Log-Gamma Distribution

We first review the multivariate log-gamma distribution from [4].
We define the n-dimensional random vector ¢ = (¢4, ..., ¢»)’, which
consists of n mutually independent log-gamma random variables
with shape and scale parameters organized into the n-dimensional
vectors & = (ay, ...,an)’, and k¥ = (k1, ...,kp)’, respectively. Then
define the n-dimensional random vector q as follows

(11)

where the matrix V. € R" x R" and y € R"™. [4] called q the
multivariate log-gamma random vector. The random vector q has
the following probability density function:
X
(12)

expla’V (g —p) -« exp{V (g - p)}]; qeR",

q=p+Ve,

n K;Zi
[

i=1

flgleV,ex) =

1
det(V)

where “det” represents the determinant function. As a shorthand,
we use the notation, MLG (u, V, «, k), for the probability density
function in (12).

2.5 Conditional Distributions for Multivariate
Log-Gamma Random Vectors

Gibbs sampling from full-conditional distributions requires simulat-
ing from the conditional distributions of multivariate log-gamma
random vectors. In this section, we provide a review of the technical
results necessary for simulating from these conditional distribu-
tions.

We first look at Proposition 1 from [4]. Let ¢ ~ MLG (¢, V, , k),
and let ¢ = (g7, q5)’, where q; is g-dimensional and g3 is (n - g)-
dimensional. In a similar manner, partition V=! = [H B] into an
m x g matrix H and an m X (m — ¢g) matrix B. Then, the conditional
pdf of ¢ is given by

f(q11q2=d.c.a.x) = Mexp(a'Hqy - k] ; exp(Hqy)). (13)
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where x; 2 = exp(Bd — V¢ — log(x)) and the normalizeing con-

stant M is
1 L expa’Bd — a’V7lc
Nz i1 L@ | [[flgleV,ax)dg]
det(VV’)z \jo; L (@i qleV.ax)dqi], _,

so the cMLG(H, &, k1 2) is equal to the pdf in equation (17), where
“cMLG” stands for “conditional multivariate log-gamma.” In [4], it
indicates that cMLG does not fall within the same class of pdfs
given in (13). This is primarily due to the fact that the real-valued
matrix H, within the expression of cMLG, is not square. Thus, we
require an additional result that allows us to simulate from cMLG.
Next, we look at the Theorem 2 from [4]. Letqg ~ MLG (0., V, «, ),
and partition this n-dimensional random vector so that g = (q/.¢q5)’,
where q; is g-dimensional and q; is (n — g)-dimensional. Addition-
ally, consider the class of MLG random vectors that satisfy the
following:

M=

. (14)

_ Ry 0g,n—
V1=[Q1Qz][0 f}’g]
n-9.9 o, "9
where in general 0;; is an r X t matrix of zeros; In—g is an (n — g) X
(n — g) identity matrix;

H=[Q1 Q2] [Ofgg]

is the QR decomposition of the n X g matrix H; the n X g matrix Q1
satisfies Q7101 = I, the n x (n — g) matrix Qj satisfies Q702 = Iy,
and Q701 = 0p—g4; Ry is a g X g upper triangular matrix; and
o2 > 0. Hence, the marginal distribution of the g-dimensional
random vector q; is given by

(15)

(16)

f(q1| H,a,x) = My exp(a’Hq1 — x" exp(Hq1)).  (17)
where the normalizing constant M; is
noo%i
— 1
My =det([H Q2]) (ﬂ F(a,-))x
i=1 (18)

1
[f(@10nV=[HQ]™" a.x)dgs
And, the g-dimensional random vector q; is equal in distribution
to (H'H)"'H'w, where the n-dimensional random vector & ~
MLG(0y, I, @, k).

In [4], it is evident that this particular class of marginal distri-
butions (defined in Theorem 2 in [4]) falls into the same class of
distributions as the conditional distribution of q; given q2. And
Theorem 2 in [4] provides a way to simulate from cMLG. Further-
more, it shows that it is (computationally) easy to simulate from
c¢MLG provided that g < n. Recall that H is nx g, which implies that
computing the g X g matrix (H’H)~! is computationally feasible
when g is “small” We refer the readers to [4] for a comprehensive
discussion.

3 FULL CONDITIONAL DISTRIBUTIONS AND
ALGORITHM

We adapt the MRF-MFM in conjunction with MLG to a spatial
Poisson regression setting, focusing on the clustering of spatially-
varying coefficients f(s1), - - - , B(sp), where f(s;) is the p-dimensional
coefficient vector for location s;. In our setting, we assume that the
n parameter vectors can be clustered into k groups, i.e., f(s;) =
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Table 1: Parameters of the full conditional distribution

Parameter Form
V—l

H
p lX (si)

o a
p Dizi=r Y(si)

. K
P Sl

Bz € {B1.- -+, B }. Hence, the hierarchical model can be expressed

as follows
Data Model: y(s;) | f(si) ~ Poisson(exp (X(s;)B(si)))

MRE: (B(s1),- -+, B(sn)) ~ M(B(s1),-- -, B(sn)) HG(ﬂ(Si))
i=1

MLG: B1,..., Br ~ MLG(i,V, at, k)

k
MEM: G(B(s;)) = Z 7iBj 71, ... mi | k ~ Dirichlet(y, ..., y),
j=1
k ~ p(-),where p(-) isapm.fon{1,2,...}.

The full conditional distributions in Markov chain Monte Carlo
(MCMC) sampling of MRF-MFM are given in Algorithm 1 and
Table 1 where the detailed derivations are given in Section A in the
supplement.

Algorithm 1 Collapsed sampler for MRF-MFM

Initialize: z = (z1,...,2z,) and B = (B1,. .., Br)
for each iteration = 1 to B do
Update f = (1, ..., Br) conditional on z in a closed form as

f(Br|=) ~ cMLG(Hg, g, xp)

where,
= e | =[5, o 5, o)

p X(si) b Dz=r Y(si) p Yzi=r L(zi=r)
Update z = (z1,...,25n) conditional on g = (f,..., B) for
eachiin (1,...,n), we can get closed form expression for P(z; =
clz—i, p):

P(zi = ¢ | z—;)dPoisson(y(s;), exp(X(si) c)),
o at an existing table labeled ¢
Ll ym(y (i),

where C_; denotes the partition obtained by removing z; and

if c is a new table

(v(s0) [ ) 1
m Si = 1 _
! det(vv’)z \iop D) | My
where,
My = det([H Q])(ﬁ K"al) !
=de
1 g ’ i=1 C) ff(y(si) [0,V = [Hﬁ, Qz]_l,a, )
end for
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3.1 Theoretical Properties under the
Exchangeable Structure

In this section, we assume the covariates X(s;) are generated from
random homogenous distribution so it is marginalized. The incorpo-
ration of proper dependency structures into the estimation process
and assessing uncertainty is always an interesting subject. How-
ever, complex dependency structures may destroy the consistency
of MFM. Therefore, to maintain theoretical consistency, this paper
considers the case in which samples from the base measure are a
subset of an infinite sequence of exchangeable variables.

In Bayesian Statistics, the infinite sequence of exchangeable
random variables is an important concept. When g, . . . are infinite
exchangeable, for any finite k,

D
Pi..... i = ﬁﬂ(l)""’ﬁﬂ'(k) for all € S(k), (19)

where S(k) is the set of all permutations for the index set {1, ..., k}.
If p1, ... are ii.d. sampled from a distribution P(f), then they are
exchangeable, but the reverse is not always true. Some widely
used models are based on exchangeable random variables that are
not independent, like the Pdlya’s Urn [3] and Gaussian random
variables that have the same marginal distribution and the same
correlation between any two of them.

The famous de Finetti’s Theorem [9] reveals the intrinsic char-
acterization of exchangeable random variables: there is a latent
random variable 0, such that f,..., B, are a subset of a infinite
sequence of exchangeable variables sampled from II(f,...). It is
summarized into the following sampling procedure:

ii.d.

0~0, pui....p "< T(AIO), (20)
where © only depends on II(f,...). In other words, a subset of
an infinite sequence of exchangeable variables is conditionally i.i.d.
given their latent labels. We refer to [2] for more details on ex-
changeable sequences.

Theorem 3.1. Suppose the data-generating process follows equa-
tion (6) with H replaced by the hierarchical distribution in equa-
tion (20), and the distribution is correctly specified. If px (1), . . ., px (k)
0, denote T as the random variable for the number of clusters and t is
all the possible values T will take in the true data generating process.
Then we have

p(T=tly)-p(K=k|y)|—0 (21)

asn — oo,

Theorem 3.1 provides some insight into our proposed MRF-MFM,
compared to a Dirichlet process mixture model with the above
Markov random fields [DP-MREF; 31]. For DP-MREF, there could be a
lot of small spurious clusters due to inconsistency of the Dirichlet
process mixture even in the ii.d. case [28]. Due to the fact that
we specify a prior distribution for the number of components, the
number of components in the posterior is appropriately regularized.
Even though the consistency result only holds for the exchangeable
structure, we believe that the regularization effect holds for all types
of structures. Theorem 3.1 is an extension of Theorem 5.2 in [29]
to the case of an exchangeable base measure. The limitation of the
above theorem is that it does not explore the frequentist property
of the posterior, where the number of clusters is assumed to be a
fixed truth.
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4 SIMULATION
4.1 Settings

Our goal is to sample from the posterior distribution of the unknown
parameters k, z = (z1,....zp) € {1,....k} and B = (B1,..., fr). We
choose k — 1 ~ Poisson(1) and y = 1, g = 0,, V = 100I, and
a = k = 100001, for all the simulations and real data analysis,
where 0,, is an n-dimensional vector with 0, 1, is an n-dimensional
vector of 1’s, and I, is an n-dimensional identity matrix. The com-
puting algorithm and full conditional distributions are presented in
Appendix 3, which efficiently cycles through the full conditional dis-
tributions of z;|z—; for i = 1,2,...,n and §, where z_; = z \ z;. The
marginalization over k avoids the need for complicated reversible
jump MCMC algorithms or allocation samplers. The posterior sam-
pling algorithm is provided in Algorithm 1 in Appendix 3. Detailed
deviations of the full conditional distributions are also outlined
in Appendix 3. Using the posterior mean or median of clustering
configurations z alone is not appropriate. Dahl’s method [8] offers
a remedy for posterior inference of clustering configurations based
on the squared error loss. Additionally, alternative loss functions
that do not rely on squared errors, such as those proposed in [34],
can be considered. The Rand Index (RI) [32] is used to measure
the accuracy of clustering. The tuning parameter in the Markov
random fields requires careful selection in our proposed model. We
utilize the Logarithm of the Pseudo-Marginal Likelihood (LPML)
[18] for tuning parameter selection, where a model with a larger
LPML value is preferred.

4.2 Simulation Setting and Evaluation Metrics

Our analysis is based on the spatial structure of the state of Georgia,
which contains 159 counties. Using the county-level data, we build
the graph using an adjacency matrix among different counties. 159
counties represent 159 vertices in this graph, and if a county shares
a boundary with another county, then v; and v; are connected. This
graph is used for both simulation studies and real data analysis. We
consider two different spatial cluster designs shown in Figure 1.
The first design consists of two disjoint parts located in the top and
bottom parts of Georgia. A second cluster comprises the counties
in the middle. The second design comprises three major spatial
clusters. It is designed to mimic a common premature death pattern
in which geographically distant areas can share a similar distribu-
tion pattern, and geographical proximity is not considered the only
factor responsible for homogeneity in premature death rates.

Two different scenarios are considered for each design. The
first scenario does not take into account spatial random effects,
while in the second scenario, spatial random effects are included
for each design. The spatial random effects are assumed to follow a
multivariate normal distribution with a mean zero and exponential
covariogram. Our simulation study consists of four scenarios in
total. The details of the data generation process are given as

(1) y(si) ~ Poisson(X; (i) frz,+Xa(s1)faz;), where Xy (1), Xz (s;) "
Ul’lif(l, 2),i =1,...,n, (ﬁ]],ﬁzl) = (1, 1), (ﬁ]z,ﬁzz) = (1.5, 1.5).

(2) y(si) ~ Poisson(X1(si)f1z; + X2(si)Pfoz; + w(si)), where

Xl(si),Xz(Si) ir'lvd Unif(l, 2), i=1,...,n, (ﬁ11,ﬂ21) = (1, 1),
(P12, f22) = (1.5,1.5). @ ~ N(0,05,H(¢)), where H(¢) =
exp (=¢llsi —sjll), we set o2 =0.3and ¢ = 0.05.
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Figure 1: Simulation design with two and three cluster as-
signments

(3) y(si) ~ Poisson(X1(si)f1z;+X2(si)f2z;), where X1 (s;), X2 (s:)
Unif(1,2), i = 1,...,n, (B11,B21) = (0.5,0.5), (B12, f22) =
(1,1), (B13, B23) = (1.5,1.5).

(4) y(si) ~ Poisson(X1(si)P1z; + X2(si)foz; + w(si)), where
Xi(s1), Xa(s1) 2 Unif(1,2),i = 1,....n (Bi1, fo1) = (0.5,0.5),
(Brz, Pz2) = (1,1), (Br3, f3) = (1.5,1.5). 0 ~ N(0, 02 H(9)),
where H(¢) = exp (—¢llsi —s;ll), we set o2 = 0.3 and
¢ = 0.05.

The four scenarios are for two cluster design without spatial random
effect, two cluster design with spatial random effect, three cluster
design without spatial random effect, and three cluster design with
spatial random effect, respectively. In the three clusters design, the
original regression coefficients are set to be 0.5, 1 and 1.5 for each
cluster correspondingly. On the other hand, in two clusters design,
the original regression coefficient is set to be 1 and 1.5 for each
cluster, respectively. For each case, we add the spatial random effect
with the intensity. We use the centroid coordinate in each county
to represent that county and then construct the spatial random
effect. Also, the range parameter and spatial variance parameter
are both fixed in each simulation. In each case, we avoid the zero
count value to prevent numerical instability. Based on the estimated
number of clusters and Rand Index (RI), the clustering performance
is evaluated. Each replicate is also used to calculate the final number
of clusters estimated. A total of 100 sets of data are generated under
different scenarios. We run 5000 iterations of the MCMC chain and
burn-in the first 1000 for each replicate.

4.3 Simulation Results

For each replicated data set, we fit MFM and MRF-MFM with differ-
ent values of the smoothness parameter and select the best smooth-
ness parameter for each replicate based on LPML. We see that our
model outperforms the MFM model in terms of LPML in all four
different scenarios. We also evaluate the performance in terms of
estimation results of the number of clusters. We report the propor-
tion of times the true cluster recovered among the 100 replicates.
For the two-cluster without spatial random effect design, we find
out our model can recover the true number of clusters 100% of the

ind
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replicates. And the MFM model can recover 85% of the replicates.
In this case, both models perform well in the number of clusters
estimation. But our model outperforms the MFM model in terms of
LPML value. For the two-cluster design with spatial random effects,
we see that our model can recover the true number of clusters 97%
of the replicates, but the MFM model did not recover the true clus-
ter for any replicates. For the three-cluster without spatial random
effect design, we find out our model can recover the true number of
clusters 88% of the replicates. On the other hand, MFM recovers 62%
of the replicates. Finally, for the three-cluster design with spatial
random effects, we find out our model can recover the true number
of clusters 73% of the replicates. However, MFM did not recover the
true cluster for all replicates.

The results of the comparison of LPML, Rand index, and esti-
mation of the number of clusters for each design can be found in
Table 2. Our method can effectively estimate the true number of
clusters based on the results shown in Table 2. However, if spa-
tial random effects exist, MFM will overestimate the number of
clusters. Our proposed method also outperforms vanilla MFM with
respect to model fitness and clustering, as demonstrated by the
LPML values and Rand index.

Table 2: Simulation Results for Four Scenarios including
LPML, Rand Index (RI), and number of true cluster cover
rate by MRF-MFM (optimal) model and MFM model. We pro-
vide mean and standard deviation for both LPML and RI.

Scenario ~ Method LPML RI Cover Rate
Scenario 1 Optimal  -544.29 0.9970 100%
(12.06)  (0.0062)
MFM -1146.32 0.9901 85%
(593.33)  (0.0233)
Scenario 2 Optimal  -690.91 0.9875 97%
(34.36)  (0.0129)
MFM -7632.18 0.8348 0%
(1947.31)  (0.0597)
Scenario 3 Optimal  -752.76 0.9470 88%
(235.91)  0.0389
MFM -2201.69  0.9570 62%
(830.66)  (0.0231)
Scenario 4 Optimal -1297.58  0.8469 73%
(278.33)  0.0434
MFM -8890.92 0.8350 0%
(2028.92)  (0.0431)

Furthermore, we show the average mean square error (AMSE)
of our proposed method and MFM in Table 3. We see that in all
four different scenarios, our proposed method outperforms MFM in
terms of coefficient estimations. The improvement of our proposed
methods is evident in the data generated from the model with
spatial random effect.
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Table 3: AMSE for § Estimation under All Scenarios

Method No Spatial Random effect

Two Clusters Three Clusters

MRF-MFM-MLG  f; 0.0848 0.2508
o 0.0839 0.2435
MFM-MLG b1 0.1170 0.2841
o 0.1164 0.2781
With Spatial Random effect
Two Clusters Three Clusters
MRF-MFM-MLG ~ f; 0.0966 0.3918
o 0.0967 0.3814
MFM-MLG b 0.3675 0.6996
o 0.3668 0.6898

5 ILLUSTRATION: PREMATURE DEATHS IN
GEORGIA

5.1 Data Description

In this study, the proposed methods are used to analyze the fac-
tors that influence the number of premature deaths in Georgia.
The objective of this study is to investigate the relationship be-
tween premature deaths and environmental factors such as PM
2.5 and the food environment index. The dataset is available at
www.countyhealthrankings.org with 159 observations correspond-
ing to the 159 counties in state of Georgia in 2015. For each county,
the dependent variable is the number of the premature death in
each county. The premature death is the death that occurs before
the average age of death in a certain population. In the United
States, the average age of death is about 75 years. The dependent
variable is the number of lives lost per 100,000 population before
age 75 in each county. The two covariates we consider in this paper
are PM 2.5 (X1) and food environment index (X3). PM 2.5 is the
average daily density of fine particulate matter in micrograms per
cubic meter. The food environment index is the index of factors
that contribute to a healthy food environment, 0 (worst) to 10 (best).
Figures 2a and 2b present a visualization of the response and two
covariates on the Georgia map.

5.2 Data Analysis

In this section, we apply the proposed methodology to present a
detailed analysis of premature death data in the state of Georgia.
First, we rescale the data to a decent range as the variance in the
Poisson distribution is equal to the mean. The count of the prema-
ture death is scaled to hundreds. We run 25,000 MCMC iterations
and burn-in the first 15,000 iterations. The smoothing parameter is
tuned over the grid {0.1,0.2, ..., 1}. All other parameters are set to
be consistent with the simulation study. The final clustering result
corresponds to the largest LPML [18], hence we choose the smooth-
ing parameter equal to 0.3. The 159 counties turned out to be put
into four clusters as illustrated in Figure 3. The number of the coun-
ties in each cluster is 150, 3, 5 and 1, respectively. We also compare
our model with the best LPML to vanilla MFM, Latent Gaussian
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Table 4: Dahl’s method estimates for the four clusters of
Georgia Data

Cluster /3}) ,31 /3A2
1 -1.134 0.077 0.209
2 -3.644 0.060 1.222
3 -1.325 0.476 -0.249
4 -0.188 1.446 -2.093

Process (LGP) [15], conditional autoregressive (CAR) [21] models
and Bayesian spatially varying coefficient models (SVC) [13, 14, 35].
The LPML values for candidate models are -2221.45 (MRF-MFM),
-3614.38 (MFM), -2461.31 (LGP), -5015.93 (CAR), -3123.47 (SVC).
Based on the LPML results, our proposed model outperforms other
models. In contrast, there are 15 different clusters identified by
vanilla MFM. From the estimation results shown in Table 4, we see
that all the counties with higher PM 2.5 will have higher premature
deaths. For Cobb County, PM 2.5 has the largest effect on premature
death. An extensive analysis could be conducted to investigate why
the majority of counties are grouped into one cluster while the
other three clusters only contain a couple of counties. For instance,
one possible approach is to use log-likelihood ratio test (LRT) to
detect spatial cluster signals.
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Figure 3: Top: Illustration of 4 clusters identified by the pro-
posed method for counties. Bottom: Illustration of 15 clus-
ters identified by vanilla MFM for counties.

6 DISCUSSIONS

There are several topics beyond the scope of this paper that merit
further investigation. Firstly, in our MCMC algorithm, a numerical
integration is required for Gibbs sampling. Developing an efficient
calculation algorithm for numerical integration would expand the
applicability of our proposed methods. Additionally, the proposed
algorithm encounters numerical instability when zero counts are
observed, which should be addressed in future research. Moreover,
different clusters may exhibit distinct sparsity patterns in the co-
variates. Incorporating spatially clustered sparsity structures of
regression coefficients into the model would allow for the selection
and identification of the most important covariates. The selection
of a tuning parameter for the Markov random field is also necessary.
Proposing a hierarchical model for the tuning parameter would be
an interesting avenue for future work. Furthermore, exploring the
frequentist properties of the posterior distribution is also an area
that can be investigated in future research.
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7 SUPPLEMENTARY MATERIALS

The supplementary materials, including a detailed comparison with
related literature such as [24] and [1], proofs of the main theorems,
derivations of full conditional distributions and MCMC algorithms,
additional simulations using data from the states of Georgia and
Mississippi, and reproducing codes for data analysis, are available
on GitHub at https://github.com/pengzhaostat/MLG_MFM.
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