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ABSTRACT

Continuous renewal of the product portfolio through product transitions is crucial to semiconductor man-
ufacturing firms. These decisions take place in a decentralized environment, where decisions by different
functional units must be coordinated to optimize corporate performance. Starting from a centralized opti-
mization model, we obtain decentralized models using Lagrangian relaxation, and explore the challenges
encountered in formulating and solving these decentralized models. Although the Lagrangian approaches
yield tight upper bounds on the optimal solution value, the structure of the dual solution renders the con-
struction of a near-optimal feasible solution difficult, and fully separable decentralized models encounter
significant problems in achieving convergence due to scaling issues. We present computational experiments
that illustrate the difficulties involved, and discuss directions for future work.

1 INTRODUCTION

Semiconductor firms must continuously introduce new products and retire older ones in a process known
as product transitions or product rollovers. These firms are generally organized into Product Divisions
(PD), each of which manages the product portfolio for a market segment. Each PD must forecast their
market’s demand so that the firm’s Manufacturing organization (MFG) can produce the units to meet it, with
revenues credited to the PD. Each PD receives an operating budget from Corporate Management (CORP),
from which it compensates MFG for the production of its products for sale in the market. A product can
only be manufactured for sale if its development has been completed by the firm’s Product Engineering
Group (PEG). The PD develops specifications for new products and a target date for its introduction into
the market, by which its development must be completed, paying PEG for development work out of its
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operating budget. PEG then develops a design that is later transformed into a saleable product ready to be
manufactured for sale.

A centralized approach is impractical due to the firm’s decentralized structure in which each unit
makes its decisions based on its own resource availability and objective. The resources available to each
agent depend on other agents’ decisions; a product produced for sale will compete for MFG capacity
with products sold by other PDs and with other PDs’ products in development. Efficient management of
product transitions thus requires coordination between the different units of the firm. Due to the presence
of uncertainty in the production, development and demand processes, any plan agreed to between agents is
constantly evolving over time horizon. However, in this initial work we focus on deterministic problems
to develop insight and solution techniques.

An initial centralized model (Leca et al. 2021) captured the complex interactions between different
units of the firm pursuing different objectives but mutually dependent due to their dependence on shared
resources. This paper presents a family of decentralized models derived from this initial centralized model.
We first present a decentralized model based on Lagrangian relaxation, solved using a pure subgradient
algorithm and, later, a deflected subgradient method. These solution approaches allow a complete separation
of the agents’ subproblems, allowing a completely decentralized solution using the Lagrange multipliers in
a price-driven coordination scheme. However, the convergence of these methods was inconsistent. These
convergence issues were solved using an Augmented Lagrangian approach, which yielded tight upper
bounds on the optimal value of the centralized problem. However, the Augmented Lagrangian model is no
longer completely separable, and the interpretation of the Lagrange Multipliers as transfer prices is more
difficult. Computational experiments find that the Augmented Lagrangian approach, despite producing
tight upper bounds, produces essentially uncoordinated, primal infeasible solutions from which it is hard
to obtain near-optimal feasible solutions.

2 LITERATURE REVIEW

Several authors have addressed the problem of managing product transitions from different perspectives.
Billington et al. (1998) assess two primary product transition strategies: a solo-product rollover where a
new product is introduced only after its predecessor is taken out of the market, and a dual-rollover strategy
where the new product shares the market with the older one. The solo-product rollover represents a riskier
strategy since any disruption in the development of the new product will leave the firm with no product in
the market. Dual-rollover strategies, on the other hand, require efficient coordination of the manufacturing,
distribution, and marketing of both products. Erhun et al. (2007) emphasize the importance of assessing the
product driver and risk factors to determine the right rollover strategy, and suggest determining a transition
strategy over several generations.

A key element of a successful transition strategy is accurately predicting the new product’s demand.
The most common approach to modelling the demand for a new product is diffusion models Bass (1969).
which use differential equation to simulate the market traction of the product based on the rate of its
adoption by innovators and imitators. Norton and Bass (1987) extended the original Bass model to multiple
product generations. Robinson and Lakhani (1975) incorporate prices into the diffusion model such that
product prices affect the adoption rate in any period, but do not affect the potential demand. Dockner and
Jorgensen (1988) introduce competition into the Bass model. Padmanabhan and Bass (1993) extend the
Norton and Bass (1987) model by introducing prices, deriving the optimal pricing policy of a monopolistic
firm marketing successive product generations. In this paper we use the model of Bass (1969) to generate
demand scenarios in our computational experiments. However, we do not consider the effects of the pricing
strategy on the transition rates.

Product transitions often lead to increased uncertainty in the firm’s supply chain due to the possibility
of severe demand and supply mismatches, resulting in capacity shortages. From the production side,
the increased frequency of adverse events induced by the new product can negatively affect the delivery
of both the newly developed products and others that share capacity with it (Manda and Uzsoy 2020).
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Therefore, the firm must decide how much production capacity to allocate to each product at different
points in its life cycle, specifically when to initiate production and when to terminate it. Carrillo and Franza
(2006) study the relation between time-to-market and ramp-up time decisions. Shen et al. (2014) consider
how a capacity-constrained firm prices products during new product introductions using a control-theory
framework to model integrated optimal pricing, production and inventory decisions. Schwarz and Tan
(2021) explored how limited production capacity affects the optimal unconstrained decision modifying
the rollover strategy. They examined the decision between single and dual rollover strategies proposing
two levels of recourse in case of capacity shortage: 1) increasing the prices, 2) changing the sales and/or
production rollover strategies and preproduction and adjusting the prices accordingly.

The papers discussed above treat the product transition using a centralized framework. However,
the information and operational capabilities required for its execution lie within different units of the firm
such as PDs, MFG and PEG and are not easily available outside the unit. Hence the agents (units) make
decisions individually, potentially emphasizing their local objectives over corporate profit and raising the
question of how to best coordinate independent agents to best serve corporate objectives. Karabuk and
Wu (2002) developed a coordination scheme for a semiconductor firm involving two different agents,
marketing and manufacturing, where the firm’s objective is the sum of the agents’ objectives. They propose
a decentralized coordination scheme based on transfer prices that are updated iteratively until the decisions
made by the different agents are consistent. Karabuk and Wu (2005) design an incentive scheme using
bonus payments and participation charges that elicits private demand information from the agents without
requiring external transfers to reach equilibrium. The mechanism also guarantees voluntary participation by
the agents. Kutanoglu and Wu (2006) present a similar approach for a production scheduling problem that
arises when schedulers must coordinate their schedules with internal or external customers. They design a
schedule selection auction where all participating agents state their preferences via a valuation scheme, and
the mechanism selects a final schedule based on the collective input. They show that this scheme is a direct
revelation mechanism that implements the optimal schedule selection under agents’ dominant strategies.

These papers treat one agent as an auctioneer who tries to coordinate operations by allocating the
resources among the other agents, the bidders, who reveal their valuation of the resource bundle that is
being offered. In our problem agents can act as buyers of some resources and sellers of others. Bansal et al.
(2020) approach the problem of effective coordination between manufacturing and product development
activities, with MFG acting as auctioneer. Since the product development teams request production capacity
from MFG for capacity allocation, MFG is not a simple auctioneer, since it also requires the use of some
of the resource that is offering. The product development groups, in turn, offer MFG dates by which new
products will complete development and be ready for production. They propose an iterative combinatorial
auction that seeks to maximize the firm’s profit while motivating all units to share information truthfully. In
a subsequent paper (Bansal et al. 2022) they consider a single PD as auctioneer coordinating the activities
of MFG and several PDGs, proposing a decentralized approach based on subadditive duality.

Most of the studies cited above approach the problem of managing product transitions from a strategic
perspective, using simplified models that do not consider the complex technological and resource constraints
affecting the production and development processes. Our model expands the number of agent types by
including the budget allocation decisions that allow CORP to subsidize a PD that is temporarily unprofitable.
We also allow more complex relationships among the agents, instead of treating one agent as an auctioneer
coordinating resource allocation among other agents. The inclusion of separate PDs for different market
segments, each of which must interact with MFG, CORP and PEG to fulfill their demand, represents a
significant extension of previous work.

3 CENTRALIZED MODEL

We first review the centralized model which allows us to describe the constraints and decision variables
involved in the different agents’ decisions, and provides a mathematical point of departure from which
alternative decentralized models can be derived. The centralized formulation, whose notation is defined
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in Appendix A, seeks to maximize corporate profit shown in (1) subject to constraints describing the
capabilities of each agent (CORP, PD, MFG or PE) and can be stated as follows:

maximize :

{
∑

∀p∈P
∑
∀i∈I

∑
∀t∈T

ρpitxpit − hmtl
pit Ipit − htr

pitwpit − cM
pitmpit − cD

pit(z
tr
pit + zmtl

pit + zdbg
pit )

}
(1)

subject to

Corporate Constraints:

Bcorp
t = Bcorp

t−1 − ∑
∀i∈I

OCit + ∑
∀i∈I

∑
∀p∈P

ρpitxpit ∀t ∈ T (2)

Bcorp
t ≥ 0 ; 0 ≤ xpit ≤ dpit ∀i ∈ I;∀p ∈ P;∀t ∈ T (3)

CORP assigns an operating budget to each PD at the start of each planning period, and receives the revenue
they generate in the market place at its end. This allows CORP to subsidize temporarily unprofitable PDs
to obtain increased revenues in the future. Constraints (2) ensure that the firm’s expenditures do not exceed
its revenues, capturing CORP’s principal role of allocating resources among the different units. Constraints
(3) guarantee that the corporation budget must remain positive at all periods.

Product Division Constraints:

Bdiv
it = OCit − [ ∑

∀p∈P
cM

pitmpit + cD
pit(z

tr
pit + zmtl

pit + zdbg
pit )] ∀i ∈ I;∀t ∈ T (4)

Ipit = Ip,i,t−1 +mpit − xpit ∀t ∈ T (5)

Bdiv
it ≥ ; Ipit ≥ 0 ∀i ∈ I;∀p ∈ P;∀t ∈ T (6)

At the beginning of each period each PD receives its operating budget from CORP. From this budget
it must pay MFG for its products produced for sale, and PEG for any development work requested per the
constraints (4). Each PD is responsible for its products’ finished goods inventory holding costs, since it
provides demand forecasts to MFG. Constraints (5) define each PD’s finished goods inventory. Constraints
(6) prohibits a deficitary budget in any period for all divisions.

Manufacturing Constraints:

∑
∀p∈P

∑
∀i∈I

τ
tr
pitwpit + ∑

∀p∈P
∑
∀i∈I

ntr
piω

tr
pitz

tr
pit ≤Ctr

t ∀t ∈ T (7)

∑
∀p∈P

∑
∀i∈I

τ
mtl
pit mpit + ∑

∀p∈P
∑
∀i∈I

nmtl
pi ω

mtl
pit zmtl

pit ≤Cmtl
t ∀t ∈ T (8)

mpit ≤ Imtl
pit ∀i ∈ I;∀p ∈ P;∀t ∈ T (9)

Imtl
p,i,t−1 +wpit −mpit = Imtl

pit ∀i ∈ I;∀p ∈ P;∀t ∈ T (10)

M[
tp=t

∑
tp=0

Rpitp ]≥ wpit ∀i ∈ I;∀p ∈ P;∀t ∈ T (11)

At the beginning of each period MFG receives payment for production activities, which is used to pay
for their own operations. The production process for high-volume units comprises two stages, transistor
fabrication and metal fabrication, each requiring one planning period to complete. The primary constraints
for MFG are capacity constraints for each processing stage (7) and (8), consistency of shipments with



Leca, Kempf, and Uzsoy

available material (9), and material balance constraints across planning periods defined by (10). The
constraints (11), ensure that MFG can only produce a product for sale if it has completed development.

Product Engineering Constraints:

∑
∀p∈P

∑
∀i∈I

ε
tr
pitz

tr
pit + ∑

∀p∈P
∑
∀i∈I

ε
mtl
pit zmtl

pit + ∑
∀p∈P

∑
∀i∈I

ε
dbg
pit zdbg

pit ≤ Et ∀t ∈ T (12)

tp=t

∑
tp=0

zdbg
pitp

≥ rpiRpit ∀i ∈ I;∀p ∈ P;∀t ∈ T (13)

ztr
pit + zmtl

pit + zdbg
pit ≤ 1 ∀i ∈ I;∀p ∈ P;∀t ∈ T (14)

ztr
pit + ztr

p,i,t+1 + zmtl
p,i,t+1 + zmtl

p,i,t+2 + zdbg
p,i,t+2 + zdbg

p,i,t+3 = 3 ∀i ∈ I;∀p ∈ P;∀t ∈ T (15)

zmtl
p,i,t+1 + zmtl

p,i,t+2 ≥ ztr
pit ∀i ∈ I;∀p ∈ P;∀t ∈ T (16)

zdbg
p,i,t+1 + zdbg

p,i,t+2 ≥ zmtl
pit ∀i ∈ I;∀p ∈ P;∀t ∈ T (17)

tp=t

∑
tp=0

ztr
pitp

≥ zmtl
pit ∀i ∈ I;∀p ∈ P;∀t ∈ T (18)

tp=t

∑
tp=0

zmtl
pitp

≥ zdbg
pit ∀i ∈ I;∀p ∈ P;∀t ∈ T (19)

tp=t

∑
tp=0

Rp−1,i,tp ≥ ztr
pit ∀i ∈ I;∀p ∈ P;∀t ∈ T (20)

At the beginning of each period PEG receives payment from each PD for the development work on its
products in the current period. The development process for a semiconductor comprises three design-test-
fabricate cycles, each involving three different steps. The first step is transistor design and fabrication, which
requires capacity from both MFG and PEG for one planning period. The second step, metal design and
fabrication, also consumes MFG and PEG capacity for one planning period. The development cycle ends
with a debugging process requiring only PEG resources for one planning period. Constraints (13) ensure
that a new product can only be produced for sale after rpi cycles, while (12) represents resource capacity.
(14) ensures that PEG can only work on one type of development stage per product during a given period.
Constraints (15) forces the PEG to keep working on the product development project on the next consecutive
cycles, allowing only one period break between the transistors and the metal process, or between the metal
and the debugging process. Constraints (16) - (19) define precedence between development stages of each
product, while (20) allows PEG to develop a product only if the previous generation has been developed
(although it may not have been introduced into the market).

4 DECENTRALIZED MODELS

The centralized formulation has two key elements: the objective function is completely separable between
agents. However, some variables appear in constraints related to different agents. For example, OCit
appears in constraints 2 which is associated with CORP, and also in 4 which involves the PDs. Our first
step towards decentralization was to identify all variables shared by more than one agent and create a copy
of each variable for each of the agents involved, adding constraints requiring their values to be consistent.
For example, the variable OCit in the centralized model is replaced by OCCorp

it in constraint set 2, and by
OCDiv

it in 4, together with a linking constraint OCDiv
it ≤ OCCorp

it ∀i ∈ I;∀t ∈ T ensuring that PD i cannot
exceed the operating budget allotted by CORP. The same procedure was performed on the other eight
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Table 1: Variable separation, linking constraints and Lagrange Multipliers.

Original Variables New Variables Linking Constraints Lagrange Multipliers

OCit OCCorp
it ; OCDiv

it OCDiv
it ≤ OCCorp

it αit

xpit xCorp
pit ; xDiv

pit xCorp
pit ≤ xDiv

pit βpit

mpit mM f g
pit ; mDiv

pit mDiv
pit ≤ mM f g

pit γpit

ztr
pit ztr

pit(Div) ; ztr
pit(Eng) ztr

pit(Div)≤ ztr
pit(Eng) θpit

ztr
pit ztr

pit(M f g) ; ztr
pit(Eng) ztr

pit(Eng)≤ ztr
pit(M f g) ηpit

zmtl
pit zmtl

pit (Div) ; zmtl
pit (Eng) zmtl

pit (Div)≤ zmtl
pit (Eng) λpi

zmtl
pit zmtl

pit (M f g) ; zmtl
pit (Eng) zmtl

pit (Eng)≤ zmtl
pit (M f g) σpit

zdbg
pit zdbg

pit (Div) ; zdbg
pit (Eng) zdbg

pit (Div)≤ zdbg
pit (Eng) δpit

Rpit REng
pit ; RM f g

pit RM f g
pit ≤ REng

pit ψpit

variables shared by two or more agents as shown in Table 1, rendering each agent’s problem completely
independent of all others once the linking constraints are relaxed. The duplication of variables and the
corresponding linking constraints are summarized in Table 1. This variable duplication approach is known
as Lagrangian Decomposition (Guignard and Kim 1987).

Relaxing the linking constraints with associated Lagrange multipliers yields the Lagrangian function

max :

{
∑

∀p∈P
∑
∀i∈I

∑
∀t∈T

ρpitx
Corp
pit −hmtl

pit Ipit −htr
pitwpit − cM

pitm
M f g
pit

− cD
pit(z

tr
pit(M f g)+ zmtl

pit (M f g)+ zdbg
pit (Eng))− ∑

∀p∈P
∑
∀i∈I

αit(OCDiv
it −OCCorp

it )

− ∑
∀p∈P

∑
∀i∈I

∑
∀t∈T

βpit(x
Corp
pit − xDiv

pit )− ∑
∀p∈P

∑
∀i∈I

∑
∀t∈T

γpit(mDiv
pit −mM f g

pit )

− ∑
∀p∈P

∑
∀i∈I

∑
∀t∈T

θpit(ztr
pit(Div)− ztr

pit(Eng))− ∑
∀p∈P

∑
∀i∈I

∑
∀t∈T

ηpit(ztr
pit(Eng)− ztr

pit(M f g))

− ∑
∀p∈P

∑
∀i∈I

∑
∀t∈T

λpit(zmtl
pit (Div)− zmtl

pit (Eng))−σpit(zmtl
pit (Eng)− zmtl

pit (M f g))

− ∑
∀p∈P

∑
∀i∈I

∑
∀t∈T

δpit(z
dbg
pit (Div)− zdbg

pit (Eng))− ∑
∀p∈P

∑
∀i∈I

∑
∀t∈T

ψpit(R
M f ct
pit −REng

pit )

}
(21)

The first five terms of (21) inside the triple summation represent the total revenue, minus the finished goods
inventory cost, the inventory cost of intermediate inventory held between the transistor and metal stages,
the manufacturing cost, and the cost of development. The remaining elements of the objective function are
the Lagrange multipliers penalizing violations of the linking constraints.

We attempted to solve this formulation using a pure subgradient algorithm and a deflected subgradient
method (Guta 2003) that reduces the zigzagging of the objective value from iteration to iteration, without
achieving satisfactory convergence. These observations revealed the significant scaling problem embedded
in this model. The Lagrange multipliers are updated using the subgradients. However, the magnitude of the
subgradient element linking two continuous variables can be of the order of the thousands or the millions.
Hence the Lagrange multipliers related to the continuous variables will be adjusted relatively rapidly across
iterations. However, the magnitude of the subgradient elements relating to two binary variables is at most
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one, causing the associated Lagrange multipliers to be updated slowly, requiring many iterations to reach
values high enough to prevent violation of the linking constraints.

We implemented an Augmented Lagrangian approach to improve convergence using a decentralized
procedure. For this, we augmented 21 with the sum of the squared subgradients multiplied by a step size
µ that starts with a value between 1 and 2 and increases by 10% on each iteration as proposed by Nocedal
and Wright (2006). The resulting objective function is shown in (22). Even though consistency between
the binary variables was not easily achieved due to scaling challenges, this solution approach yielded
duality gaps of between 0.6% and 17%. While in this solution approach all the constraints are directly
related to one type of agent, the objective function is no longer separable due to the quadratic subgradient
terms. Nevertheless, this problem can be solved by developing equivalent objective functions through the
Auxiliary Problem principle (Cohen 1980).

maximize :

{
∑

∀p∈P
∑
∀i∈I

∑
∀t∈T

ρpitx
Corp
pit −hmtl

pit Ipit −htr
pitwpit − cM

pitm
M f g
pit

− cD
pit(z

tr
pit(M f g)+ zmtl

pit (M f g)+ zdbg
pit (Eng))− ∑

∀p∈P
∑
∀i∈I

αit(OCDiv
it −OCCorp

it )

− ∑
∀p∈P

∑
∀i∈I

∑
∀t∈T

βpit(x
Corp
pit − xDiv

pit )− ∑
∀p∈P

∑
∀i∈I

∑
∀t∈T

γpit(mDiv
pit −mM f g

pit )

− ∑
∀p∈P

∑
∀i∈I

∑
∀t∈T

θpit(ztr
pit(Div)− ztr

pit(Eng))− ∑
∀p∈P

∑
∀i∈I

∑
∀t∈T

ηpit(ztr
pit(Eng)− ztr

pit(M f g))

− ∑
∀p∈P

∑
∀i∈I

∑
∀t∈T

λpit(zmtl
pit (Div)− zmtl

pit (Eng))−σpit(zmtl
pit (Eng)− zmtl

pit (M f g))

− ∑
∀p∈P

∑
∀i∈I

∑
∀t∈T

δpit(z
dbg
pit − zDivdbg

pit )− ∑
∀p∈P

∑
∀i∈I

∑
∀t∈T

ψpit(Rpit −REng
pit )

− ∑
∀p∈P

∑
∀i∈I

µ(OCDiv
it −OCCorp

it )2

− ∑
∀p∈P

∑
∀i∈I

∑
∀t∈T

µ(xCorp
pit − xDiv

pit )
2 − ∑

∀p∈P
∑
∀i∈I

∑
∀t∈T

µ(mDiv
pit −mM f g

pit )2

− ∑
∀p∈P

∑
∀i∈I

∑
∀t∈T

µ(ztr
pit(Div)− ztr

pit(Eng))2 − ∑
∀p∈P

∑
∀i∈I

∑
∀t∈T

µ(ztr
pit(Eng)− ztr

pit(M f g))2

− ∑
∀p∈P

∑
∀i∈I

∑
∀t∈T

µ(zmtl
pit (Div)− zmtl

pit (Eng))2 −µ(zmtl
pit (Eng)− zmtl

pit (M f g))2

− ∑
∀p∈P

∑
∀i∈I

∑
∀t∈T

µ(zdbg
pit (Div)− zdbg

pit (Eng))2 − ∑
∀p∈P

∑
∀i∈I

∑
∀t∈T

µ(RM f ct
pit −REng

pit )2

}
(22)

5 EXPERIMENTAL RESULTS

We compare the results of a set of experiments using three solution approaches; the centralized model,
the dual-feasible solution obtained by the augmented Lagrangian approach, and a primal feasible solution
constructed from that of the augmented Lagrangian. We created two demand patterns for a firm with
three divisions, each launching three generations, over 63 periods. Under the first demand pattern the life
cycle events of the products (introduction and retirement from the market) of the same generation happen
simultaneously; this is the synchronous demand pattern. In the second demand pattern, one of the product
life cycle events was designed to occur between the introduction and retirement of the other products
of the same generation, giving an asynchronous demand pattern. For each demand class, we randomly
generate five independent realizations and solve the problem by varying the manufacturing capacity, the
product engineering capacity, and the product development complexity, as shown in Table 2, for a total of
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16 instance configurations and 80 total instances. For the Augmented Lagrangian procedures we allow a
maximum of 100 iterations and 400 seconds per iteration. The results are summarized in Table 1.

Table 2: Experimental design.

Factors Levels

Solution Centralized; Augmented Lagrangian

Product Life Cycle Timing Synchronous ; Asynchronous

Manufacturing Capacity 80% ; 100%

Product Development Teams 2; 6

Product Development Complexity [3 cycles; 4 cycles]

Our first observation is that the Augmented Lagrangian procedure consistently obtains dual-feasible
solutions whose objective function value is close to those of the Centralized model, with an average gap
of 6.01%, a maximum gap of 16.67%, and a minimum gap of 0.29%. The solutions’ gaps are mainly
explained by the violations of the linking constraints involving the binary variables in the augmented
Lagrangian. However, it is here that the consequences of the scaling issues are seen. As seen in Table 1,
the decentralized approach produces solutions where no development takes place, and MFG produces as
much as it can given its capacity constraints. This is clearly unrealistic, and results from the violation of
the linking constraints involving binary variables. Unless the values of the Lagrange multipliers associated
with these constraints are extremely high, they can be violated with little impact on the optimal value of
the Lagrangian function. For the case of the Lagrange multipliers relating the binary variables that dictate
if a product is ready to be manufactured in high volumes because the whole development process finishes
(ψpit), the values should go higher. We found consistent solution structures when the initial value of ψpit
was around one-third of the total cost of the development project. Thus the task of obtaining a feasible
solution from that generated by the Augmented Lagrangian, a common approach known as a Lagrangian
heuristic, appears to be difficult for this problem.

The computation times for the centralized and decentralized models were roughly comparable, with an
average of 216 seconds for the former and 168 seconds for the latter. Instances with asynchronous rollover
and plentiful capacity could be solved faster on average.

6 CONCLUSION

This paper discusses our attempts to develop decentralized solution approaches from a previously
developed centralized model (Leca, Kempf, and Uzsoy 2021). Our Augmented Lagrangian procedure
always yields an upper bound on the value of the centralized solution with a gap ranging from 0.29% to
16.67%. Nevertheless, the structure of these solutions renders it difficult to construct a near-optimal feasible
solution using these solutions. This is because the Augmented Lagrangian solutions consistently violate
the constraints coordinating development and manufacturing activities, precluding any simple procedures
that allow decisions from one agent to dictate the actions of others.

In order to find appropriate solution structures, the initial values of the Lagrange multipliers must be set
accordingly to the constraint they are associated with. In this regard, the penalty for violating the linking
constraints between the binaries that define if a product is ready for high-volume production becomes
critical. When the solution structure resulting from the augmented Lagrangian does not show consistency
between MFG and PEG, there is a conflict of interest within the agents. In this case, finding a feasible
solution by only taking into account one agent’s decisions may result in very poor solutions. Our future
work will be directed towards addressing the scaling issues leading to these difficulties, and using this
solution to develop both a fully decentralized solution approach and a consistent, systematic approach to
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Figure 1: Summary of the experimental results.

constructing feasible solutions from the results of the decentralized approaches that can be interpreted in
terms of information sharing and decision hierarchies between different agents.

ACKNOWLEDGMENTS

This research was supported by the National Science Foundation (NSF) under Grant No. CMMI-1824744.
Any opinions stated are those of the authors, and do not necessarily reflect the position of NSF.

A Appendix: Set, parameter and variables definitions

Sets:

T: Set of periods in the planning horizon of hour problem.
P: Set of all generations that each product PD will introduce in the problem time horizon.
I: Set of all Product Divisions, each one in charge of managing one product type line.

Parameters:

ρpit : Unit selling price of product p of PD i in period t.
cM

pit : Unit production cost of product p of PD i in period t.
cD

pit : Cost of one development stage of product p from PD i at period t.
τ tr

pit : Transistor production capacity required to process one unit of product p for PD i in period t.
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τmtl
pit : Metal capacity require to process one unit of product p for PD i in period t.

ω tr
pit : Transistor capacity required to process one unit of product (p, i, t) in the transistor’s development

stage.
ωmtl

pit : Capacity require to process one unit of product (p, i, t) in the metal’s development stage.
Ctr

t : Total capacity of transistor manufacturing process.
Cmtl

t : Total capacity of the metal manufacturing process.
ε tr

pit : Total engineering capacity that product (p, i, t) needs in the transistor’s development stage.
εmtl

pit : Total engineering capacity that product (p, i, t) needs in the metal’s development stage.

ε
dbg
pit : Total engineering capacity that product (p, i, t) needs in the debugging development stage.

ntr
pi: Number of units used in the transistor development stage.

nmtl
pi : Number of units used in the metal development stage.

Et : Total amount of engineering capacity to work on any of the development stages.
rpi: Number of development cycles require by product p for PD i to complete development.
S: Initial budget available for the corporation at the beginning of the time-horizon.
dpit : Demand for product p of PDi in period t.
hmtl

pit : Inventory holding cost of one unit of final product.
hmtl

pit : Inventory holding cost of one work in process unit.

Decision Variables:

OCit : Operation budget allocated by the corporation to PD i in period t.
Bcorp

t : Available budget at the corporation at period t.
Bdiv

it : Available budget at PD i in period t.
xpit : Number of units of final product p from PD i sold to the market at period t.
mpit : Number of units of final product p from PD i produced at period t.
wtr

pit : Number of units of product p for PD i processed at the transistor process in period t.
Ipit : Inventory of final product (p, i, t) on inventory at the beginning of period t.
Imtl
pit : Number of WIP units of product (p, i, t) between transistors and metal process.

ztr
pit : Binary variable that takes the value of one if the transistor development stage of product (p, i)

was performed during period t.
zmtl

pit : Binary variable that takes the value of one if the metal development stage of product (p, i) was
performed during period t.

zdbg
pit : Binary variable that takes the value of one if the debugging development stage of product (p, i)

was performed during period t.
Rpit : Binary variable that takes the value of one indicating that one entire cycle of the development

process of product p from PD i has finished at the end of period t.
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Erhun, F., P. Gonçalves, and J. Hopman. 2007, Spring. “The Art of Managing New Product Transitions”. MIT Sloan Management
Review 48(3):73.

Guignard, M., and S. Kim. 1987. “Lagrangian Decomposition: A Model Yielding Stronger Lagrangian Bounds”. Mathematical
Programming 39(6):215–228.

Guta, B. 2003. Subgradient Optimization Methods in Integer Programming with an Application to a Radiation Therapy Problem.
Ph.d. thesis, Technische Universität Kaiserslautern. http://nbn-resolving.de/urn:nbn:de:bsz:386-kluedo-16224. Accessed 20th
April.

Karabuk, S., and S. D. Wu. 2002. “Decentralizing Semiconductor Capacity Planning Via Internal Market Coordination”. IIE
Transactions 34(9):743–759.

Karabuk, S., and S. D. Wu. 2005. “Incentive Schemes for Semiconductor Capacity Allocation: A Game Theoretic Analysis”.
Production and Operations Management 14(2):175–188.

Kutanoglu, E., and S. D. Wu. 2006. “Incentive Compatible, Collaborative Production Scheduling with Simple Communication
Among Distributed Agents”. International Journal of Production Research 44(3):421–446.

Leca, C., K. Kempf, and R. Uzsoy. 2021. “An Optimization Framework for Managing Product Transitions in Semiconductor
Manufacturing”. In Proceedings of the 2021 Winter Simulation Conference, edited by S. Kim, B. Feng, K. Smith, S.
Masoud, Z. Zheng, C. Szabo, and M. Loper, 1-12. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers,
Inc.

Manda, A. B., and R. Uzsoy. 2020. “A Simple Model of Capacity Contention During New Product Introductions”. IEEE
Transactions on Semiconductor Manufacturing 33(2):240–251.

Nocedal, J., and S. J. Wright. 2006. Numerical Optimization. 2e ed. New York, NY, USA: Springer.
Norton, J. A., and F. M. Bass. 1987. “A Diffusion Theory Model of Adoption and Substitution for Successive Generations of

High-Technology Products”. Management Science 33(9):1069–1086.
Padmanabhan, V., and F. M. Bass. 1993. “Optimal Pricing of Successive Generations of Product Advances”. International

Journal of Research in Marketing 10(2):185–207.
Robinson, B., and C. Lakhani. 1975. “Dynamic Price Models for New-Product Planning”. Management Science 21(10):1113–1122.
Schwarz, J. A., and B. Tan. 2021. “Optimal sales and production rollover strategies under capacity constraints”. European

Journal of Operational Research 294(2):507–524.
Shen, W., I. Duenyas, and R. Kapuscinski. 2014. “Optimal Pricing, Production, and Inventory for New Product Diffusion Under

Supply Constraints”. Manufacturing & Service Operations Management 16(1):28–45.

AUTHOR BIOGRAPHIES
CARLOS LECA is a PhD student in the Edward P. Fitts Dept. of Industrial and Systems Engineering at North Carolina State
University from where he also earned a Master degree. He holds a BS degree in Industrial Engineering from the Universidad
Catolica Andres Bello in Caracas, Venezuela. His research interests include production scheduling, supply chain management,
decentralized decision-making and mechanism design. His email address is clecape@ncsu.edu.

DR. KARL KEMPF is a Senior Fellow and Director of Decision Engineering at Intel Corporation. Since joining Intel in
1987 he has lead a team of decision scientists charged with building decision-support processes and tools focused on faster
better decision making across the corporation. Kempf has co-edited three books and published more than 175 contributions
in decision science. He has been a research adjunct at Missouri State, Arizona State, North Carolina State and Stanford
Universities. He is a member of the National Academy of Engineering (NAE), a Fellow of the IEEE, and an INFORMS Fellow.
His team at Intel has won the INFORMS Prize, the Wagner Prize, and the Edelman Award. Prior to joining Intel he was
involved in motor racing, movie special effects, and aerospace factory automation. His e-mail address is karl.g.kempf@intel.com.

DR. REHA UZSOY is Clifton A. Anderson Distinguished Professor in the Edward P. Fitts Department of Industrial and Systems
Engineering at North Carolina State University. He holds BS degrees in Industrial Engineering and Mathematics and an MS in
Industrial Engineering from Bogazici University, Istanbul, Turkey. He received his Ph.D in Industrial and Systems Engineering
in 1990 from the University of Florida, and held faculty positions in Industrial Engineering at Purdue University prior to joining
North Carolina State University in 2007. His teaching and research interests are in production planning and supply chain man-
agement. He was named Outstanding Young Industrial Engineer in Education in 1997 and a Fellow of the Institute of Industrial
Engineers in 2005, and has received awards for both undergraduate and graduate teaching. His email address is ruzsoy@ncsu.edu.

http://nbn-resolving.de/urn:nbn:de:bsz:386-kluedo-16224
mailto://clecape@ncsu.edu
mailto://karl.g.kempf@intel.com
mailto://ruzsoy@ncsu.edu

	INTRODUCTION
	LITERATURE REVIEW
	CENTRALIZED MODEL
	DECENTRALIZED MODELS
	EXPERIMENTAL RESULTS
	CONCLUSION
	Appendix: Set, parameter and variables definitions

