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K-theory for real k-graph C*-algebras

Jeffrey L. Boersema and Elizabeth Gillaspy

We initiate the study of real C*-algebras associated to higher-rank graphs A, with
a focus on their K-theory. Following Kasparov and Evans, we identify a spectral
sequence which computes the CR K-theory of Ci (A, y) for any involution y
on A, and show that the E? page of this spectral sequence can be straightforwardly
computed from the combinatorial data of the k-graph A and the involution y.
We provide a complete description of K “R(C (A, y)) for several examples of
higher-rank graphs A with involution.

1. Introduction

Using the classification of simple purely infinite real C*-algebras [Boersema 2006;
Boersema et al. 2011], the first author together with Ruiz and Stacey established
in [Boersema et al. 2011, Theorem 11.1] that for odd n, there are two distinct
real C*-algebras (€, and OF) whose complexification is the Cuntz algebra O,.
While OF is easy to describe in terms of generators and relations, the only facts
known about &, (beyond its existence) are its K-theory [Boersema et al. 2011,
Theorem 11.1] and that it cannot arise as the real C*-algebra of any directed graph
[Boersema 2017, Theorem 6.1]. This latter fact is quite surprising, since O, is one
of the most straightforward examples of a graph C*-algebra, and every directed
graph gives rise to many potentially different real C*-algebras. Indeed, [Boersema
2017] showed that any idempotent graph automorphism y on a graph E gives rise
to the real C*-algebra Ci(E, y) (see (2.5) below).

To date, much of the literature on real C*-algebras has focused on their K-theory
(see [Schroder 1993; Boersema 2002; Boersema et al. 2011; Boersema and Loring
2016]), with some attention paid to other structural properties (see [Boersema 2007;
Rosenberg 2016; Stacey 2003; Boersema and Ruiz 2011]). In some sense, the
K-theoretic data is enough: [Boersema 2006] explains how to construct a purely
infinite simple real C*-algebra with any appropriate specified CR K-theory, and
the CR K-theory is known to be a classifying invariant for simple purely infinite
real C*-algebras [Boersema et al. 2011]. However, the construction in [Boersema
2006] is quite layered and obtuse — it allows us to detect the existence of real

MSC2020: 46L80.
Keywords: higher rank graphs, real C*-algebras, K-theory.

395



396 JEFFREY L. BOERSEMA AND ELIZABETH GILLASPY

structures for given complex C*-algebras, but does not otherwise shine a lot of
light. We therefore wish to develop alternative constructions to help us generate
more examples of real C*-algebras in a concrete way. Specifically, as a test piece,
we wish to find a concrete representation of the real C*-algebras &,.

To this end, we introduce in this paper the real C*-algebra Cj;(A, y) associated
to a higher-rank graph A and an involution y on A. Inspired by [Robertson and
Steger 1999], Kumjian and Pask [2000] introduced higher-rank graphs, or k-graphs
as a way to construct combinatorial examples of C*-algebras which are more
general than graph C*-algebras. In addition to their intrinsic links with a variety of
combinatorial structures, such as buildings [Robertson and Steger 1999; Konter and
Vdovina 2015] and ultrametric Cantor sets [Farsi et al. 2020; 2021; Heo et al. 2021],
(complex) k-graph C*-algebras have provided important examples for Elliott’s
classification program [Ruiz et al. 2015] as well as for noncommutative geometry
[Pask et al. 2008; Farsi et al. 2020].

The family of real C*-algebras that arise from higher-rank graphs with involution
is much larger than the family arising from graph algebras. This follows, for
example, from the fact that the K-group of a (complex) graph C*-algebra must
be torsion-free [Raeburn and Szymarnski 2004], a restriction which disappears for
higher-rank graphs. However, in order to answer the question of whether the exotic
Cuntz algebra &, arises from a higher-rank graph, we need to be able to compute the
K-theory of real higher-rank graph C*-algebras, since &, can only be identified by
its K-theory. In this article we develop the methods to carry out the computations of
the K-theory of such algebras and demonstrate these methods with several detailed
computations of interesting examples. However, we have not yet discovered an
example of a higher-rank graph with involution whose associated C*-algebra is &,.
We discuss this, and other open questions, in Section 5.

While the K-theory of a graph C*-algebra can be computed from the adjacency
matrix of the graph using a long exact sequence [Bates et al. 2002; Raeburn and Szy-
manski 2004], the situation is more complicated for a higher-rank graph A. Evans
[2008] identified a spectral sequence which converges to the K-theory of C*(A),
and computed the K-theory explicitly in some low-rank situations. Thus, we first
confirm that given the real C*-algebra of a higher-rank graph, there exists a spectral
sequence which converges to its K-theory. This is the focus of Section 3. For a
real C*-algebra A, the K-theoretic invariant that we consider contains much more
information than does the K-theory of a complex C*-algebra. We consider the
so-called CR K-theory of A, which includes not only the eight real K-groups K, (A),
but also the two K-theory groups K, (Ac) of its complexification, as well as a number
of homomorphisms between the various groups that satisfy certain compatibility
conditions. The CR K-theory that is our focus is a variation of the CRT K-theory
introduced in [Bousfield 1990] in the topological setting and in [Boersema 2002]
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in the C*-algebraic setting. A short introduction is in Section 2B below. The
spectral sequence that we develop is sufficiently functorial that it contains all of
this additional structure. It can be construed as a spectral sequence in the category
of CR-modules or in the category of CR7T -modules.

Thus, the spectral sequence that we develop is simultaneously a generalization
of the spectral sequence of Evans (for a complex higher-rank graph algebra) and the
long exact sequence developed in [Boersema 2017] (for a real algebra from a graph
with involution). Similar to the long exact sequence found in [Boersema 2017], the
building blocks of our spectral sequence consist of direct sums of the K-theory of C
and R, viewed as real C*-algebras. Indeed, we show in Section 3D that the E? page
of the spectral sequence can be computed from a chain complex whose entries are
the aforementioned direct sums of the K-theory of C and R, and whose boundary
maps are determined by the combinatorial structure of the higher-rank graph.

When it comes to computing the CR K-theory of specific examples of real C*-
algebras, the complicated structure of real K-theory is both boon and bane. While
the intricacy of CR K-theory adds many additional steps to certain computations, the
circumscribed relationships between the various groups (described in Section 2B)
mean that often, the entire CR K-theory is completely determined by just a few of
its constituent groups and homomorphisms. Consequently, as we see in Section 4,
a small amount of information frequently enables us to completely describe the CR
K-theory. To be precise, in Section 4, we use both the simplified description of the
E? page of the spectral sequence from Section 3D, and the relationships between
the structure maps of CR K-theory, to completely describe the CR K-theory of
several examples of rank-2 graphs. In particular, for each odd n, we identify in
Section 4B a 2-graph A and an involution y on A such that C*(A) is KK-equivalent
to O, ® O,, but its real structure Cj;(A, y) is not a tensor product of real Cuntz
algebras. In other words, we have discovered new real structures on O, ® O, other
than OF ®g OF.

2. Preliminaries

2A. Higher-rank graphs and their (real) C*-algebras. Higher-rank graphs were
introduced in [Kumjian and Pask 2000] as a higher-dimensional generalization of
directed graphs. To define them, we first specify that throughout this paper, we view
N¥ as a category with one object (namely 0), where composition of morphisms
is given by addition. For consistency with the usual notation n € N¥ to describe
a k-tuple of natural numbers (which, in the category-theoretic perspective, is a
morphism in N¥), we write A € A to denote a morphism in the category A. We
identify a category’s objects with the identity morphisms, so that statements such
as 0 € NF are still allowed.
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Definition 2.1. A higher-rank graph of rank k, or a k-graph, is a countable small
category A equipped with a degree functor d : A — NF such that, whenever a
morphism A € A satisfies d(A) = m + n, there exist unique morphisms @, v € A
such that A = v, d(n) =m, d(v) =n.

Write e; for the standard i-th basis vector of N¥. We usually think of the
morphisms of degree e; as the “edges of color i” in A. With this perspective, if e is
an edge of color i and f is an edge of color j, their composition ef € A satisfies

d(ef) =¢€; +€j =€j+€i,

so there must be an equivalent way of writing ef = f’¢’, where d(f’) = e¢; and
de) =e;.

In other words (cf. [Hazlewood et al. 2013, Theorems 4.3 and 4.4; Eckhardt
et al. 2022, Theorem 2.3]) we can think of a k-graph as consisting of a directed
graph G, with k colors of edges, and a factorization rule, or equivalence relation,
~ on the multicolored paths in G*. For each pair of colors (“red” and “blue” for
this discussion), and each pair of vertices v, w, the factorization rule identifies
each path from v to w which consists of a blue edge followed by a red edge (a
blue-red path) with a unique red-blue path from v to w. The factorization rule must
also satisfy certain consistency conditions which ensure that, for each path in G*,
its equivalence class under ~ corresponds to a k-dimensional hyperrectangle; see
[Eckhardt et al. 2022, Theorem 2.3] for more details. (For ease of readability, we
omit these details here since our work in this paper does not depend on the precise
details of factorization rules.)

Let A be a k-graph. Given objects v, w € A and n € N¥, we write

AN'={reA|d()=n},
vA={reA|r(d) =v}, 2.2)
Nw={reAl|ls(A) =wand d(L) =n},
as well as the obvious variations. Observe that A? is the set of objects of A, which
we also denote as vertices thanks to the graph-theoretic inspiration for k-graphs.

We say that A is row-finite if [vA"| < oo for all n € N¥ and v € A°, and that A is
source-free if, for all n and v, VA" # @.!

Definition 2.3 [Kumjian and Pask 2000]. Given a row-finite source-free k-graph A,
a Cuntz—Krieger A-family is a collection {t; }, < of partial isometries in a C*-algebra
A which satisfy the following conditions:

(CK1) Foreachv e A, 1, is a projection and t,t,, = 8, wty.
(CK2) For each A € A, £t) =t50).

1Equivalently, A is source-free if vA® is nonempty forall 1 <i <k.
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(CK3) Foreach A, u € A, 11, =1y,.
(CK4) For each v € A? and each n € N,

=Y nif.

LEVAT

We define C*(A) to be the universal (complex) C*-algebra generated by a Cuntz—
Krieger family, in the sense that for any Cuntz—Krieger A-family {7, },ca, there is
a canonical surjective x-homomorphism C*(A) — C*({#,.}1)-

We write {s; },ca for the generators of C*(A). One computes easily, using the
Cuntz—Krieger relations, that C*(A) = span {sAsZ |s(A) =s(u)}.

Given a k-graph A, we now describe how to associate a real C*-algebra to it.
We assume that A is row-finite and has no sources. Observe that there is a (unique)
antimultiplicative linear automorphism y of C*(A) which satisfies x (sx) = ;.

Definition 2.4. An involution y on a k-graph A is a degree-preserving functor
y : A — A which satisfies y oy =id,.

The functoriality of y implies that sy = ys and ry = yr for any involution y.

Given an involution y on A, the elements {s, ;) | A € A} form a Cuntz—Krieger A-
family, so the universal property of C*(A) implies the existence of an automorphism
C*(y) on C*(A), given by C*(y)(s3) 1= sy (). Since x commutes with C*(y), the
composition y := x o C*(y) is an antimultiplicative involution of C*(A), which is
determined uniquely by the formula

V(S)\.) = S;(A) .

It follows that (C*(A); ) is a C*"-algebra (this just means exactly that ¥ is an
antiautomorphism of C*(A)). The corresponding real C*-algebra is given by

Cr(A,y):i={aeC*(A)|Y(a) =a"} (2.5)
(see Definition 1.1.4 of [Schroder 1993] and the following remark).
Lemma 2.6. Given an involution y on a row-finite source-free k-graph A,
Cr(A, y) = Spang {zs:5,, —i—Zsy(k)s;'j(M) |z€C, A, u €A}

Proof. Define A to be the right-hand side. We first observe that

(2828, + 28y Sy )" = Z8uSi + 28y (w8 6y
whereas the fact that  is antimultiplicative but linear implies that we also have

V(@sis;, 28y Sy () = 28y Sy + 2SS -

Hence A C C3(A, y).
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To see that A = C;(A, y), we show that A+iA =C*(A). Tothatend, fixx € C
and consider asys;, € C*(A). If we set z = /2, w = —ia/2, a quick computation
reveals that

zs;\sZ + Zs},(k)s;(ﬂ) + i(wsksz + wsy(;\)s;'j(m) = as;\sz.

As the elements sy, densely span C*(A) as a real vector space, we conclude that

A+iA=Cj(A, y) as claimed. O
To each k-graph we can associate k commuting matrices My, ..., My in M o (N):
M;(v, w) := [vA“w]|, 2.7

that is, the (v, w) entry in M; counts the number of color-i edges in A with source w
and range v. We call the matrices M; the incidence matrices or adjacency matrices
of the k-graph. The fact that M; M ; = M ; M; follows from the requirement, imposed
by the factorization rule, that there be an identical number of blue-red and red-blue
paths between any given pair (v, w) of vertices.

Given a k-graph A, we can form the skew product A x 4 Z*, with Obj(A x 4Z*) =
A x 7Z* and Mor(A x4 Z¥) = A x Z¥. We have s(r, n) = (s(A), n +d(})) and
r(x,n)=(r(A), n). Defining d : A x47* — N* by d(x, n) =d()) makes A x4Z* a
k-graph, which is row-finite and source-free whenever A is. Moreover, by [Kumjian
and Pask 2000, Theorem 5.7], the universal property of C*(A x4 75 implies that
C*(A x4 Z%) admits an action of Z¥, given on the generators by s, , - m 1= S m4n.

2B. K-theory for real C*-algebras. The main K-theoretic invariant that we use
in the category of real C*-algebras is CR K-theory, denoted by K “®(A) for a real
C*-algebra A. In this section, we review the definition and the properties of this
invariant, necessary for the rest of this article. CR K-theory derives from CRT
or “united” K-theory; see [Bousfield 1990; Boersema 2002; 2004; Boersema et al.
2011].

For areal C*-algebra A, we define K “®(A) = {KO(A), KU,(A)}, where KO, (A)
is the usual period-8 K-theory of A and KU,(A) := K,(C® A) is the K-theory
of the complexification of A. In addition, KO,(A) has the structure of a graded
module over the ring KO, (R), where the groups of this ring are given by

KO.R)y=2 7, Z, 0 Z 0 0 O

in degrees O through 7.

In particular, multiplication by the nontrivial element 1 of KO (R) = Z, induces
a natural transformation 7 : KO;(A) — KO;11(A). We note that n satisfies the
relations 2 = 0 and > = 0, both as an element of the ring KO, (R) and as a natural
transformation. There is also a nontrivial element & € KO4(R), and corresponding
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natural transformation, that satisfies £2 = 48, where B, is the real Bott periodicity
isomorphism of degree 8.

Complex K-theory KU, (A) has the structure of a module over KU, (R) = K, (C),
but the only natural transformation which arises from this structure is the degree-2
Bott periodicity map 8. There is, however, a natural transformation

Y KUy (A) = KU, (A)

that arises from the conjugation map ¢ : CQ A — C® A defined by a+ib+> a—ib.
In addition, there are natural transformations
¢:KO.(A) - KU.(A),
r:KU,(A) - KO.(A)
which are induced by the natural inclusion maps R < C and C — M, (R), respec-

tively.
Taken together, these natural transformations satisfy the following set of relations:

re=2, cr=1+1, 2n =0,
nr=0, =0, n =0,

) 5 (2.8)
ry =r, ¥ =id, §°=4po,

Yye=c,  YyB=—Puy, £ =rpc.

A pair (G?, GY) of Z-graded abelian groups (G with period 8 and GV with
period 2) together with natural transformations n, 8, ¢, ¥, r, ¢ as above, such that
the equations (2.8) hold, is called a CR-module, and the category of such objects is
the target of the functor K “®(A).

We display the full structure of K“®(R) and K “®(C) in Tables 1 and 2 below.
These are the only two singly generated free CR-modules (up to suspensions) and
all of the relations above are encoded in these two CR-modules. Furthermore, these
CR-modules will be the building blocks of the spectral sequence we will use to
compute K CR(C@(A, ¥)). (See Theorem 3.13 and Section 3D below.)

The natural transformations also combine to form a long exact sequence

r —1
o KOj(A) 5 KO 1 (A) S KU () 25 KO (A) = - . (2.9)

The following theorem summarizes some of the important properties of the invari-
ant KR(A).
Theorem 2.10. (1) If A is a real C*-algebra, then K R(A) is a CR-module.

(2) If A and B are real C*-algebras such that CQ A and C®Q B are in the bootstrap
category N, then A and B are KK-equivalent if and only if K“®(A) = K R(B).
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(3) If A and B are real C*-algebras such that CQ A and C® B are purely infinite
simple Kirchberg algebras, then A and B are stably isomorphic if and only
if KR(A) = KR(B).

(4) If A and B are real C*-algebras such that C® A and C® B are purely infinite
simple unital Kirchberg algebras, then A and B are isomorphic if and only
if (K®(A), [14]) = (K®(B), [18]).

Proof. From [Boersema 2002, Theorem 1.12], we know that K k" (A) is a CRT -
module, from which it follows immediately that K “®(A) is a CR-module. By
[Boersema 2004, Corollary 4.11] and [Boersema et al. 2011, Theorem 10.2],
we know that statements (2), (3), and (4) are true when K () is replaced by
K R () throughout. However, from [Hewitt 1996, Theorem 4.2.1], we know that
KR(A) = K®(B) if and only if KT (A) = KT (B). O

From the point of view of calculations, it is often the case that once KU, (A)
and a few of the KO, (A) groups are known, then the rest can be identified using
the rich structure of a CR-module, specifically the relations among the natural

n o 1 2 3 4 5 6 7
Ko,|\ 7z 7, 7Z, 0 Z 0O 0 O
KUu,\z 0 zZz 0 Z 0 Z 0
Nn 1 1. 0 0 0 0 0 O
Cn 1 0 0 0 2 O O O
I'n 2 0 1 0 1 0 O O
v, |1 0 -1 0 1 0-1 0
Table 1. KR (R).
n 0 1 2 3 4 5 6 7
Ko, Z 0 Z 0 Z 0 Z 0
KU, 77 0 Ze&Z 0 7Ze&Z 0 Z&Z O
Nn 0 0 0 0 0 0 0 0
1 -1 1 —1
Cn (1) 0 ( 1) 0 (1) 0 1) 0
I'n an 0 (=11) O (@1 O (-11) O
01 0-1 01 0-—1
Ua | (Fo) 0 (L77) 0 (o) 0 (i) O

Table 2. K*(C).
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transformations above combined with the long exact sequence. Beatrice Hewitt
[1996] found a way to boil down the information from an acyclic CR-module into
a simpler structure, called the core of the CR-module. We introduce this helpful
structure in Section 4 and use it to facilitate calculations of the K-theory of some
specific higher-rank graph algebras.

3. The spectral sequence

This section, which is the theoretical cornerstone of the paper, takes inspiration
from Evans’ computations [2008] of K-theory for the complex C*-algebras of
higher-rank graphs. Our goal is to obtain a computable description of the spectral
sequence which converges to K “®(C{(A, y)). The spectral sequence in question
was introduced in [Kasparov 1988, 6.10] and applies to crossed product C*-algebras.
Thus, we begin by showing in Theorem 3.1 that C;(A, y) is stably isomorphic to
Cip(A x g Z*, y) X ZF. Next, we establish (see Theorem 3.7) that Kasparov’s spectral
sequence [1988] encodes not only the real and complex K-theory groups, but also
the CR-module structure linking them. Having thus established the relevance
of Kasparov’s spectral sequence to our situation, in Section 3C we combine the
AF structure of CE(A x4 7k, y) (Corollary 3.6) and its Z*-module structure to
provide a more combinatorial description of the E? page of the spectral sequence
in Theorem 3.13. Namely, we identify a chain complex whose homology computes
the E? page of the spectral sequence. Our approach here follows the outline used
in [Evans 2008] for complex C*-algebras, although the intricate structure of real
K-theory necessitates a few detours.

Thanks to the AF structure of Cjt(A X4 7k, ), the building blocks of this chain
complex are direct sums of the K-theory of the two most basic real C*-algebras,
namely R and C. In this situation, Lemma 3.14 establishes that the entire CR-
module structure is dictated by what happens at the level of the complex K-theory.
Combining this insight with Evans’ computations of the K-theory of complex k-
graph C*-algebras, we provide in Section 3D a more explicit description of the E?
page of the spectral sequence for k-graphs with £ < 3 and finitely many vertices.
This description is fundamental to our analysis of the examples in Section 4.

3A. Structure of C;(A, y). Givenak-graph (A, y) with involution, we can extend
y to an involution (also denoted ) on the skew-product k-graph A x4 Z* by the
formula

y (i, n) = (y (w), n).

The involution y thus induces a real structure on the complex C*-algebra B =
C*(A x4 Z%); we write
Bp = Ci(A x4 Z*, y)
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for the associated real C*-algebra. Recall that there is an action 8 of Z* on B, given
by B(1) S m = S, m+n- Using the description of By which arises from Lemma 2.6,
it is easy to see that the action f restricts to an action (also denoted ) of Z¥ on Bg.
We also use the notation 8; = B(e;) fori € {1,2, ..., k}.

Theorem 3.1. There is an isomorphism

By xp ZF = CE(A, y) ®r K
and hence
KR(CH(A, y)) = KR(Bg x5 Z%).

Proof. As in Corollary 5.3 of [Kumjian and Pask 2000], there is an isomorphism
C*(A) X TK = C*(A x4 Z*%) of complex C*-algebras, where « is the gauge action
of T on C*(A). Furthermore, under this isomorphism, the dual action of ZF on
C*(A) x4 Tk corresponds to the action 8 on B = C*(A x4 7%y described above.
By Takai duality (for complex C*-algebras) we then have

BxgZ =C*(A xaZ" xp 7" = (C* (M) %o T xp ZF = C*(A)® K. (3.2)

So far, all of this is exactly as indicated in [Kumjian and Pask 2000].

Now consider the involutions on each of these C*-algebras. We show that the iso-
morphisms all respect the corresponding involutions. Recall from [Boersema 2014,
Section 2] that a real C*-dynamical system consists of a quintuple (A, ~, G, ~, ),
where (A, ) is a complex C*-algebra with conjugate-linear involution, (G, ™) is a
group with involution, and « is an action of G on A intertwining the involutions in

the sense that
a(g)a)=a(g)(a) forallae A, geG.

If (A,~, G,~, a) is areal C*-dynamical system then the crossed product A x, G
inherits a natural conjugate-linear involution [Boersema 2014, Theorem 2].

In our case, it is straightforward to check that the involution ¥ on B commutes
with the action of 8 so that (B, ¥, 7k, id, B) is areal C*-dynamical system. Sim-
ilarly, the gauge action « intertwines with the involution ¥ on C*(A) so that
(C*(AN), Y, T, 7, «) is also a real C*-dynamical system. Here t is the involution
on Tk given by 7(z1,...,2¢) = (21, .-+, Zn)-

Furthermore, as groups with involution, (T*, 1) is dual to (Z¥, id) in the sense
of [Boersema 2014, Section 3]. Therefore, by Takai duality for real C*-algebras
[Boersema 2014, Theorem 9], the isomorphisms of (3.2) are isomorphisms that
respect the real structures, proving the theorem. (]

As in [Evans 2008], for any m € ZF and v € A?, let

B,(v) = Span {Su,mfd(u)s;k,m_d(v) | s(u) =s() =v},

By = Span {Sy.m—d () Sy m—ao) | $() = s(v) = v for some v € AY.
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Then, as in [Evans 2008, Lemma 3.4] or [Kumjian and Pask 2000, Lemma 5.4], we
have B =1lim, B, and there are isomorphisms

Bu() ZKWE (s~ () and By = P B (),
veAl

which describe the structure of B as an AF-algebra. For m < n, the inclusion map

tam © B <> By is determined on s, a8, m—d(v) € B,,(v) by the fact that, by
(CK4),
Spm—dSim—doy = D Suem—d()Ssam—d(v)- 3.3)
r(e)=v
d(a)=n—m

Observe that the terms on the right-hand side all lie in B, as d(ua) +m —d(u) =
d(a) +m = n; however, they generally lie in different summands B, (w).

Now, we consider the real structure on B, and B. The involution ¥ on B =
C*(A x4 7%) induced by y satisfies ¥ (s5.n) = s;‘(/\)’m, so we have Y (B, (v)) =
B, (y (v)) and ¥ (B,,) = B,,. Therefore, y gives a real structure on B, (v) (when
v is a vertex fixed by y) and on B,,(v) @ B,,(y (v)) (when v is not fixed by y).
The following lemma describes the structure of the corresponding real C*-algebras

By, (v)g and (B, (v) @ By (v (v))r.

Lemma 3.4. With notation as above, if y (v) = v, then By, (V)r = Kr(€2(s~ 1 (v))).
If y (v) # v then (B (v) ® By (v (V)R = Ke (2 (s~ ().

Proof. We first consider the case when y (v) = v. Fix j € N and decompose
J=J()={hrehv|dM) =, j - D}

as J = JyuJy U Jo, where vl = id and y (J;) = Jo. We can view elements
of M;(C) as lying in B,,(v) under the identification e, , Su,m—d(u)sj,m_d(u)-
With this identification, the antimultiplicative involution ¥ is given on M, (C) by
Y(euv) = €y().yu- Furthermore, B, (v) = lim, M;(C); the connecting
map M,y — M+ is determined by the inclusions J¢(j) € J7(j + 1) and
Ji() S NG+ D).

It follows that every element in

M;(Cp={aeM;C)|a*=7y(a))}
is of the block form

ala >
oo ®
(wllesIiee]

where A is real valued and B, C, D, E are complex valued matrices.
We claim that M ; (C)g = M;(R). Seth=1|J|, hy =|J¢|, and hy =|J1| =1|J>2| (so
hi+2hy = h). We know that (up to isomorphism) the only real C*-algebras whose
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complexifications are isomorphic to M;(C) = M;(C) are M,(R) and M ;>(H),
and the second possibility can only happen if % is even (see, for example, page 1
of [Schroder 1993]). We show there exists a system of # orthogonal projections
in M ;(C)g, which precludes the existence of an isomorphism M ;(C)g = M), /2(H).
Indeed, there are 4 obvious orthogonal subprojections of

I, 00
p=|0o00],
0 00

and similarly there are /4, orthogonal subprojections of each of

0 O 0 0
31 and ¢»= 10 % =3l
0 —ily, 11y, 0

=
|
(e)
)
=
)

Notice that p 4+ g1 + g» = I;,. It follows that M ;(C)g is isomorphic to My (R).
Moreover, it is evident that this choice of orthogonal subprojections is compatible
with the inclusion maps of the inductive limit B, (v) = lim M,;(C). Hence, if
Y () = v, Byn(V)r = Kg(£2(s~1(v))) as claimed.

Now, suppose y(v) = w # v. For any fixed j € N, y is a bijection from
Jy={reAv|dA) =, j,.... Do Sy i={neAw|dp =, ..., D}
Therefore, for (a,b) € M;,(C) ® M;,(C) < B, (v) ® B, (w), the involution
satisfies

V(a,b)y= (@', a"),

and so the associated real matrix algebra is {M & M|MeM 1, (O} =M, (C). As
Ke(@?(s~'(v)) =1lim,_ __ My (C) = B,,(v) ® B,,(w), the result follows. O

—5j—>o0

As a complement to the abstract reasoning above, and inspired by [Boersema
2017, Theorem 2.5], we now exhibit a choice of basis for C’/ which gives a more
concrete argument for why M;(C)gr = M;(R) when y (v) = v. Fix an arbitrary
neZk. For e Jr we define #), :=s3 ,—q(), and if a € J; set

Iy = %(Sa,n—d(a) + Sy (a)n—d@))-
If B € J> we define 15 := ﬁ(s,,(ﬁ),n,d(ﬂ) —8g.n—d(p))- One easily computes that
y(t) =t
for any A € J, and that for any «, 8 € J we have

t;;to, =118 = Sa,Sv.n-
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It follows that, for any «, 8, A, n € J,
tat;txt; = Sﬂ,xtat;.

In other words, {tatg | o, B € J} is a set of matrix units, which spans M;(C)
since {Sks”—d(k)sz,n—d(u) | A, u € J} does, and which satisfies )7(tat§) = tgt; for
all o, B € J. With this basis, it is evident that M ;(C)r = M;(R).

Remark 3.5. If A is a directed graph (1-graph), the operators {7, | « an edge} were
used in [Boersema 2017, Theorem 2.4] to show that any vertex-fixing involution
y on A gives rise to the same real C*-algebra as the trivial involution. However,
this proof breaks down in the k-graph case for k > 1, because {#, | « € A} need not
satisfy the Cuntz—Krieger relations, even if all vertices are fixed by y. In particular,
if ef ~ f’¢’ we need not have .t f = typty. It remains an open question whether
the conclusion of [Boersema 2017, Theorem 2.4] extends to higher-rank graphs
with involution.

The following corollary is immediate from Lemma 3.4.

Corollary 3.6. For each m € 7*,
B = P ke@G' W) @ P Ke@® s~ ),

veGy veG)
where Gy is the set of vertices of A that are fixed by y and G is a set that
contains exactly one vertex from every y-orbit of cardinality 2. Consequently,
Bp=Ci(A xqZF, y) = lim B,; is an AF real C*-algebra.

3B. The spectral sequence via group homology. The main result of this section is
the following.

Theorem 3.7. There exists a spectral sequence {E", d"} of CR-modules that con-
verges to K®(CE(A, y)) and has

E} = Hy(Z", K (Bw)).

In this spectral sequence, each object E), / is a CR-module and each map d), , is
a CR-module homomorphism. The spectral sequence is defined for all p, g € Z, but
it is periodic in g. (The real part has period 8 and the complex part has period 2.)

Also, El, , =0 for p {0, 1,..., k).

Proof of Theorem 3.7. Let k.(Bg) denote one of the graded functors KO, (Bg)
or KU, (Bg). Applying [Kasparov 1988, 6.10 Theorem] to the setting where & = Z*
and D = By, we obtain a spectral sequence converging to the “y-part” of k. (Br x Z*),
and whose E! and E? pages are given by

E), Zkpiq(Dp/Dp- )= P ke(Ba) and Ej = H,(Z*, ky(Bp)).

m:lgmg(ﬁ;)
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(Here 0 € Dy € Dy C --- C Dy = Dy is afiltration by ideals of a certain fixed-point
algebra Dy, which is Morita equivalent to Bg.) Since the Baum—Connes conjecture
with arbitrary coefficients is true for Z* [Schick 2004], this spectral sequence in fact
converges precisely to k. (Br X 7"y, which equals k. (C%(A, y)) by Theorem 3.1.
Taking both of these spectral sequences together, we have a spectral sequence with
both a real and a complex part that converges to K “®(C(A, y)).

Now, let k. (Bp), Iz*(BR) each independently denote one of the groups KO, (Bg)
or KU,(Bg) and let 6 : k.(Bgr) — Ig*(BR) be one of the natural transformations
r,c,n, B, ¥ of K®(By) = K®(Dy). Any one of these natural transformations can
actually be represented by an element in KK, (C1, C;), where each C; is isomorphic
to R or C. Multiplying by this KK-element induces the map

0" :kpiq(Dp/Dp1) = kpig(Dp/Dp-1).

Thus the E'! page of the spectral sequence also has a natural CR-structure. Fur-
thermore, as observed by Schochet [1981], the spectral sequence construction is
natural not only with respect to filtered homomorphisms of filtered C*-algebras but
also with respect to natural transformations of exact functors (see the comments on
[Schochet 1981, page 207]). As Kasparov’s spectral sequence construction follows
that of Schochet, it follows that ! : E! — E! commutes with the differentials and
converges to the map 0% : k. (Cx(A, y)) — k. (Ci(A, y)) induced by the original
KK-element on the E*° page. Therefore, we can consider the spectral sequence as
a spectral sequence in the category of CR-modules.

At the E? page, we also have another CR-module structure, induced by multiply-
ing k. (Bgr) by the KK-element representing the natural transformation 6. It remains
to show that the isomorphism EZ’ q =H, (Z*, kq(Bgr)) is a CR-module isomor-
phism. Recall from [Kasparov 1988, p. 199] that, under the isomorphism E 11, g =
@, k;(Br), the differential map d' corresponds to the boundary homomorphism
of the simplicial chain complex, yielding the isomorphism EIZ,’ s =Hp (Z*, ky(Bg)).
It then follows immediately that under this isomorphism, the map 6% on E? which
is induced from 6! : kpiq(Dp/Dp_1) — l€p+q (D,/Dj_1) is identical to the map
on H, (Z*, k,(Bg)) which arises from 2% : k. (Bg) — /2* (Bgr) and the naturality of
group homology (see for example Section III.6 of [Brown 1994]). Therefore, the
CR-module structure of H), (7%, ky(Bg)) is the same as that of EIZ7 7 U

3C. A combinatorial description of E f,, ¢~ 1n this section, we use the structure of
Br as an AF algebra (Corollary 3.6) to obtain (in Theorem 3.13) a more explicit
formula for the E? page of our spectral sequence from Theorem 3.7. To be precise,
we identify a chain complex A® whose p-th group AE,O) consists of (2) copies of
a certain CR-module, and whose homology computes EIZ7 4+ In Section 3D below,
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we provide an explicit description of the connecting maps of this chain complex in
terms of the adjacency matrices of A, in the situation where k£ < 3.
Recall that Bg = lim(BR, ,,,,), where (for m € Z*)
= m

By = Span {Su.m—d (St m—aw) | () = s(v) = v for some v € A’}
C Bp = Ci(A x4 7).

and t,, : B < B (for m < n € 7*) are the connecting maps (3.3) of the inductive
system. Let jum = (tum )« : KR(BY) = K (BY) be the induced map on united
K-theory. Partition Al into three disjoint sets, AN =G rUG1UGy, where |G, = id
and y (G1) = G,. With this notation, Corollary 3.6 implies that

BE = P Kp@G~' ) & @ Ke(@®s™ ()

veGy veG

and consequently,
Ay = K%Bj) = K*R)Y & KF(C).
The continuity of K-theory implies that
Aco == 1im(Ap, jum) = K ¥ (Bg).
As in [Evans 2008, Section 3], we define

Np={(ur,....pp) Iy €N T <y <+ <pp <k}

(The authors recognize that u is also a common notation for an element of a k-
graph A. We have chosen to follow Evans’ notation, using ; and p' in reference
to elements of N, for ease of cross-referencing. It should always be clear from
context (and the presence of sub- and super-scripts) whether A or i refers to an
element of N, or of A.)

Observe that [N, | = (f,) If o= (i1, ..., up) € Np then forany 1 <i < p, we
write .
i = (W1s ooy imts Bigls - os p) € Npy if p > 1,
. ifp=1.

Let B denote the chain complex of C/R-modules,

Writing B, := @ N, Acos the differentials 9, : B, — B are defined by

p
Op = @ Z Z(—l)”‘%,w(id—(ﬁﬂi);‘), (3.8)

AENp_| HENy i=1
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where S is the usual action of ZF on Bg given on generators by B(n)s, m = Sy m+n-
We have B8; = B(e;), and we write (B;)4 for the induced map on A.

For an element y € B, we can write y = @MeNp Yu, Where y, € Ay, We
find it convenient to write such an element alternatively as y = > . N, Vil
where ¢, € {0, 1} satisfies e, (1) = §,,.,. Using this notation, we can write the
differentials of the complex B as

p
3y (yueu) = Z(—l)l+1 (id —(Bu)y (e for e Npand y, € As.

i=1

Lemma 3.9. There is a graded isomorphism
Ho(Z*, K™(Bg)) = H.(B).

Proof. This result is proven exactly as in the proof of Lemma 3.12 of [Evans
2008], making use of the Koszul resolution for Z over ZG, where G = 7F and then
tensoring that resolution by k. (Bg), where the functor k,(—) is any of the functors
KO;(-) and KU;(-). O

We now work towards a more concrete description of H,(B). For each m € N¥,
let A" denote the chain complex of CR-modules

AM 0> A, —> o — @Am—»u—>Am—>O,
HEN,

where, we recall, A,, = K“®(BF). The differentials Bém) for A are defined by

p

00" (yuep) = > (=D Gd =g ) (y)e, for e Ny and y, € Ay,
i=1

where ¢/ : K R(B¥)— K®(BY) is the map induced on K “®(-) by the composition

ln+te;.m
B —— B\ te; .
Recall that j,, : Ay — A, is the map induced on K-theory by the inclusion map
tum : Bm — By of (3.3). For each m < n, we extend the map j,;;, : A,y > A, toa

chain map J,, : A™ — A®™ defined by
3}'1!)}11( Z yueu) = Z jnm(yu)eu-
HEN) HEN,

Lemma 3.10. J,,, is a chain map for all m < n. Furthermore, there is an isomor-
phism of chain complexes B = H_r)n(A(m), Jnm)-
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Proof. The claim that J,,,, is a chain map is, by definition, the claim that the diagram

aym

.A(m) .A(m)
l\’inm Jﬁjn"‘l
A 9" A
p

commutes for all p. Focusing on each summand of Af,,m) =@ ueN, Ay, this is
evidently equivalent to the commuting of the diagram

by,
An —— Ap

ljﬂl‘l‘l ljnm
by,

A, —— A,

for all i. On the level of C*-algebras, this follows from the relation

IB(_ej) Oln+tej,m = lnm© ﬂ(_ej) Olm+ej,ms
which holds thanks to the fact that every y € A"~""*¢ can be factored as y = y1y»
for a unique y; € A%,y € A*7™.
Now we prove the second statement. Using the isomorphism lim K R(BR) =

K “R(Bg), we immediately obtain lim .A( m) = BB, for all p. For each m € 7%, let
m - A — B be the map into the hmlt, this can also be described by

35( Z yueu> = Z Im(Yuep),
MEN), HEN,

where j,, : K®(B)) — K®(Bg) is the map induced by the inclusion B} < Bg.
It remains to show that the diagram

a(m)

A(m) A(m)
la)ﬂ J/;}m
3y
B, —— Bp_1
commutes, for which it suffices to show that

o,
Ay — Ay,

ljm l]m
By

oo 7 Ax
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commutes for all i. This follows from the definition of ¢/ and the fact that the
diagram

B, B(—ei) B,

l[m llm—l
B B(—ei) B

e
commutes on the level of C*-algebras. ([

The following lemma is the last key technical result that we need. The proof
of the corresponding statement in the complex case is the bulk of the proof of
Theorem 3.14 of [Evans 2008]. The proof there is quite technical. Our proof is
too, and here we have the additional complication of working in the category of
CR-modules, rather than the category of abelian groups. We mitigate some of this
technicality through the use of the e, notation introduced above, as well as making
explicit use of the concept of a chain homotopy, which Evans did not do.

In addition to the chain map J,, : A — A" we also have the chain map
Bt A — A for m #£n, defined by the action B(n—m), : K ®(B,,) — KR(B,)
extended to A™ = @NP A, = EBN,, KR(B,,). 1t is routine to show that 983,,,, is
a chain map. In fact, since f(n —m) : B, — By, is an isomorphism, B,,, is an
isomorphism of chain complexes.

Lemma 3.11. For all m < n, the chain maps ‘B, and J,, are chain homotopic.
Thus the induced map (Jnm)s : Hi(A"™) — H,(A™) is an isomorphism.

Proof. 1t suffices to prove the claim for %mﬂj, m and 3m+ej,m for arbitrary m, j. We
fix m, j for the remainder of this proof and write J = 3m+e,«,m and B = %,,He/.,m.
For u € N, let k() denote the cardinality of {i € {1, ..., p} | u; < j}. Now let

ol A - Agﬁ[e"  be the map defined by
(=D (B (eauy i j ¢,
0P (yue,) = :() B« (et if; 9; .

This definition of ¢ is inspired by the choice of z in the proof of Theorem 3.14 in
[Evans 2008].
We show that for all y € Aﬁ,m) we have (suppressing the superscripts for d,,)

3107 (») + P18, () = (BP —FP)y,

so that o provides the desired chain homotopy between B and .
It suffices by linearity to assume that y =y, e, for some u € N, and y, € A,.
First we consider the case j € u; s0 p()+1 = j. Then, writing ¢; for qﬁ;?’ and j;
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for jm+ej,m, we have
p+10” (Ve +0 P~y (ypep)
P
=0+o""! (Z(—l)l“ad —¢,,Li><yu>eui)
i=1
=(—1)*WgP=1(({d =) (Yp)e xw+1) since jeu' unless i =k (u)+1
=(=D) W (=DM (B)).((d—9;) (e since k(1T =k (1)
=((B)«—17) u)en since ¢;=(8,); ' (L;))+=(B)):" ()
=(B"—=3") (yuep.
Now, consider the case j ¢ . Then
p .
o719, (yuey) =P <Z(—1)’+1 (id —¢,M)(yu)e,ﬂ->
» 1=.l .
=Y (D=1 (B))wid =) (e
i=1

ap-i—lo'p(y,ueu) = ap-i—l ((_1)K(M) (ﬁj)*yueuu{j})
Pl

=Y (=D (=D = uuiin,) B)x e quug .

i=1
In this last sum, any term with i < k(u) is equal to
(DB (=D (d =) (B« ) epivgjy
= (=DM ) d ) (B (V) epiu)
while any term with i > «(u) + 2 is equal to
(=D (=D (d =gy, ) (B« e 10y
= (=D (1) = B )eu1u)-

As the maps ¢, and ﬂ}k commute for all i, j, in the sum

3p+107 (V) + 07710, (uen),
all these terms cancel out, and the only term that remains is the summand of
dp+107(yuey) corresponding to i = «(u) + 1. Therefore,
0p+107 (uew) +0 P13, (vue) = (=D (D)W id ~¢) (B (y)en
= (1d—¢;)(Bj)«(yuep
= (B =3I wepu- U
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Lemma 3.12. H,(B) = H . (AY).

Proof. From Lemma 3.10 and the continuity of the homology functor, we have
H,.(B) = limy_ o0 (H  (A™), (Jm)+). However, Lemma 3.11 shows that the con-
necting maps of the limit are all isomorphisms. Therefore H,(B) = H.(A®). O

Theorem 3.13. Let (A, y) be a k-graph with involution that is row-finite and
has no sources. Then there exists a spectral sequence {E",d"} converging to
K®(CH(A, y)) such that E5 = H,(A?) and EXT = E.

Proof. Theorem 3.7 gives the existence of the spectral sequence {E", d"}. Lem-
mas 3.9 and 3.12 combine to provide the isomorphism Ef)’ q = Hp (A®). The
isomorphism E"Jrl = EOO results from the fact that E2 =H, (Z*, ky(Bgr)) =0 if
p=>k+1,s0 all of the dlfferentlal maps d, , are zero for r>k+1. U

3D. Notes on computations using the spectral sequence. We say that a k-graph
A is finite if the number of vertices is finite and the number of edges of degree e;
is finite for each i. In this subsection we articulate Theorem 3.13 more precisely
in the specific cases of a finite k-graph A for k = 1, 2, 3. That is, we identify the
boundary maps of the chain complex A®, in order to describe KR(C(A, y)) in
terms of the purely combinatorial data coming from the k-graph and its involution.

Throughout, we assume that A is finite with involution y. We partition A° into
three disjoint sets, A0 = GyuUG1UGy, where ylg, = idand y(G1) =G;. Let A
denote the CR-module

A= KCR(R)Gf oy KCR(C)GI.

Recall that Ag — 7%, Thanks to Theorem 3.13, the E? page of our spectral
sequence for Ci(A, y) is given by the homology of the chain complex A, all of
whose component CR-modules are direct sums of A.

We first establish a handy lemma that will facilitate our description of the
boundary maps of the chain complex A©.

Lemma 3.14. Let M, N be two CR-modules, which are each isomorphic to a
finite direct sum of K®(R) and K®(C). Then any CR-module homomorphism
o : M — N is determined by the complex part ag.

Proof. It suffices to consider the cases that M is isomorphic to either K “®(R) or to
K “R(C). Recall that the CR-module K “®(R) is free with a generator in the real part
in degree 0 and K “®(C) is free with a generator in the complex part in degree 0
[Bousfield 1990, Section 4.7]. Thus the result is immediate in the case M = K ¥ (C).

Now suppose that M = K “®(R) with generator b € MOO . We must show that
af (b) is uniquely determined by «”. We have c(«§ (b)) = o (c(b)), where c is the
complexification map from M9 to MY, or from N to NU. The complexification



K-THEORY FOR REAL k-GRAPH C*-ALGEBRAS 415

map c in degree 0 is injective for both K“®(R) and for K “®(C). Thus, the formula
c(a (b)) = af (c(b)) determines af (b). 0

Recall from (2.7) that M; is the adjacency matrix of A for the edges of degree e;.

Definition 3.15. For 1 <i <k, let p' : A — A be the unique CR-module homo-
morphism such that (pi)g 7N 7N s represented by the matrix B; =id —M.

Remark 3.16. Lemma 3.10 above combines with [Evans 2008, Lemma 3.10] to
reveal that the CR-module homomorphism (,8;1)* used in the definition of 9, (see
(3.8) above) agrees with p.

Lemma 3.14 tells us that (pi)]Q is completely determined by (p’)5. The com-
putation of (p );? from (p' )g follows the same method as indicated in [Boersema
2017, Theorem 4.4]. In particular, if the complex part

(o) € Endz(Z") = Endz (2% @ 7% @ 79%)

is given by the matrix B; = I — M/, then the functoriality of y implies that y
implements a bijection between the edges of color i with source in G; and range
in G, and the edges of color i with source in G; and range in G. Similarly, the
edges with both source and range in G are in bijection with the edges with source
and range in G,. In other words,

Bi1 Bz B
B;i = | By1 Bx» By
By By; By

It now follows that the real part (p')§ € Endz(Z°7 @Z°") is given by the matrix

<B 11 2B >
By1 By +By) '
The other formulas for (,0")3? can be deduced from this easily; they are also given
in [Boersema 2017, Theorem 4.4]. For the convenience of the reader, we reproduce
the relevant table in Table 3.

Once the maps p' are understood, Theorem 3.13 can be applied to develop the
spectral sequence to compute K “®(C%(A, y)). The following theorems articulate

exactly how this looks in the cases k = 1, 2, 3. We note that for the case k =1 we
recover Theorem 4.1 of [Boersema 2017].

Theorem 3.17 (cf. [Boersema 2017, Theorem 4.1]). Let (A, y) be a finite 1-graph
with involution. Then there is a 2-column spectral sequence that converges to
KR(CE(A, y)) with Elzjﬂq equal to the homology of the chain complex AV,

0— A 3—1> A — 0,

where 3 = p.



416 JEFFREY L. BOERSEMA AND ELIZABETH GILLASPY

complex part
Bi1 Bz Bz
0 By, By Bx 7\611 @ 7161l @ 7162l s 7161 gy 71611 g 71Gol
B>y Bz By
1 0 0
real part
Bii 2B G :
7l IG1] Gyl |G
0 (321 By + 323) srert o rnes
1 By leGfl - leGfl
? (B(;l 3223—12323) ZlZGf‘ ®7191 — lecfl @71
3 0 0
By B> G| @ 71Gil G/l @y 71G1l
4 (2321 By + Bz3> srer o el
5 0 0
By — B 71611 _ 716Gl
7 0 0

Table 3. Table for real K-theory.

Proof. As k =1, we have |Ng| = |N| = 1. Therefore, in this case (3.8) simplifies
to d; =id —(B1); ' By Remark 3.16, (,31_])* agrees with the map whose complex
part is represented by the matrix M{. That is, 3; = ol. U

Theorem 3.18. Let (A, y) be a finite 2-graph with involution. Then there is a
3-column spectral sequence that converges to K ®(CE(A, y)) with Ef,, q equal to
the homology of the chain complex AV,

0> A2 A2% 450,

2
on=(p" 0, 822( pl).

where

0

Proof. When k =2, we have |N{| =2 and |N,| = |Ng| = 1. Therefore, (3.8) and
Remark 3.16 tell us that 3; : A> - A and 9, : A — A? are given by

= (=B =(p" p?),
ne{l,2} )

»=(-D3d—(B);Heid—(B);H = (";1). O
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Theorem 3.19. Let (A, y) be a finite 3-graph with involution. Then there is a
4-column spectral sequence that converges to K®(CE(A, y)) with E?, q €qual to
the homology of the chain complex AY,

0—>A8—3>A33—2>A38—1>A—>0,

where
2 —p 0 03
= (p' p* %), h=| o' 0 —p*], »=[-p?
0 ol p? o!

Proof. We justify the formula for 93 and leave the remaining cases to the reader.
As k =3, we have |N3| = 1 and |N,| = 3. Write N3 = {{1, 2, 3}} = {u}. Given
1 <i <3, there is a unique A € N with A = ,ui. Ordering N, ={{1, 2}, {1, 3}, {2, 3}}
lexicographically, (3.8) becomes
3
0
8= (=D (d =B e (=D =B He (=D id (B H = | —p* |. O

!

4. Examples

In this section, we give three families of examples of real C*-algebras that arise from
rank-2 graphs with involution. These examples showcase how one can leverage
the CR-module structure of real K-theory to completely determine K “®(CZ(A, y))
on the basis of a small amount of initial data. In all three examples, our strategy
follows the same general outline. We begin by identifying the chain complex
of Theorem 3.18 and computing its homology, which gives us the E? page of
the spectral sequence. As k = 2 in all of our examples, we have E77 = Ef,q for
all p, ¢; thus, our next step is to identify the differential 4>, which determines the
E3 = E* page. However, knowing the E> page does not completely describe
KR(CE(A, v)); rather, it gives a filtration (of at most 3 levels in the k = 2 case)
of KK(CE(A, v)).

In our chosen examples, the CR-module structure (and in particular the concept
of the core of a CR-module, as introduced in [Hewitt 1996]) enable us to describe
KR(CE(A, y)), up to at most two possibilities, using only the data from the E?
page. As the core is a key tool in all of our computations in this section, we pause
to discuss it in more detail.

To that end, recall that we have an involution ¥ on KU (CE(A, y)) = K« (C*(A))
which comes from the real structure on C*(A). Moreover, since KO.(Cx(A, y)) is
a graded module over KO, (R), for each i we have

Ni—1 : KO;—_1(Cx(A, y)) = KO; (Ci(A, y)),
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which comes from multiplication by the nontrivial element in KO (R) = Z,. Thus,
we can define

MO; =imn;_1 : KO;_1(Ci(A, y)) — KO;(Ci(A, v)),
ker(1 — ;) 4.1)
Cim(+ )
Note that since the MO; groups arise from the map 7, which satisfies 2n = 0, every
MO; group is also 2-torsion. A straightforward computation shows that the MU;
groups are also always 2-torsion.
The maps 7, ¢, r of K¥(C*(A, y)) then naturally induce maps 7', ¢/, ¥’ on the
groups MO; and MU;, and we obtain a long exact sequence

o MO; S MO S MU D MOy = - 4.2)

(see [Hewitt 1996, Section 5.1]). The core of the CR-module K ®(CE(A, y)) is
defined to consist of KU (Ci(A, y)), the map v, and the groups and maps of the
long exact sequence (4.2).

Thus, KU (Cj(A, y)) is retained but KO, (Ci(A, y)) itself is dropped when we
pass to the core; so on the face of it, we lose information. However, it follows from
Theorem 4.2.1 of [Hewitt 1996] that for two real C*-algebras, K R(A|) = KR (A»)
if and only if the cores of K®(A|) and K “R(A,) are isomorphic. Indeed, in our
examples below, we compute some of the groups and maps in K“®(CE(A, y))
by using the spectral sequence, and then compute the core of the CR-module to
complete the identification of K“®(C, &(A, y)). This saves the work of having to
compute all of the groups of KO..(C;(A, y)) directly.

Notably, the factorization rules of the k-graph A are irrelevant to the computations
of the E? page. Thus, the examples in this section support the conjecture [Barlak
et al. 2018, Conjecture 5.11] that the K-theory of a k-graph C*-algebra should be
(largely) independent of the choice of factorization rules.

In cases where we have multiple possibilities for K “®*(C(A, y)), the ambiguity
comes from the fact that we have multiple possibilities for the d> map. In more
complicated examples, it is also possible that the filtration of K “®(C{(A, y)) given
on the E* page might not arise from a unique collection of K-theory groups.
We anticipate that a careful analysis of the impact of the factorization rules on
KR(CE(A, v)) may clarify these questions.

The first family of examples we consider, in Section 4A, are 2-graphs with only
one vertex but an arbitrary number of edges of each type. In the second family of
examples (Section 4B) we consider 2-graphs with exactly three vertices, where the
adjacency matrix is the same for both types of edges. Finally, in Section 4C, we
consider a family of 2-graphs with exactly three vertices but which have two distinct
adjacency matrices. Our computations result in a variety of different CR-modules,
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many of which (but not all) have appeared in the literature before now or are direct
sums of CR-modules that have appeared before.

All of the examples that we present have K-theory that is not consistent with
a 1-graph algebra, since they all have torsion in KU;(C*(A)) [Boersema 2017,
Corollary 4.3]. In fact, in all of our examples, the complex K-theory is consistent
with that of a tensor product O,, ® O, of complex Cuntz algebras. Therefore, in
the case that the resulting real C*-algebra is purely infinite and simple, [Boersema
et al. 2011, Corollary 10.5] implies that they are all real forms of O,, ® O,,.

4A. A 1-vertex 2-graph. Let A be a rank-2 graph with one vertex. Since all of the
edges of degree (1, 0) and (0, 1) are just loops based at the vertex v, an involution
y on A is just an involutive permutation on each of the two sets of loops, with the
constraint that the permutation must be consistent with the factorization rules of A.

In the special case that the factorization rules for A are trivial and the involution
y on A is trivial, C3(A, y) = Cj(A, id) is a tensor product of real Cuntz algebras:

Ca(A,id) = CE(A) = CAh(A1 x A2) = Ci(A1) ®r Cii(A2) = OF ®r O)

by [Kumjian and Pask 2000, Corollary 3.5(iv)]. The K-theory for such tensor
products of real Cuntz algebras is known from [Boersema 2002]. We here compute
KR(CE(A, y)) more generally and find that essentially the same K-theory appears
as in the tensor products, regardless of the factorization rules and the involution y.

We first describe the specific CR-modules that arise, which we denote as R,
for g odd (g > 3) and S, T, for g even (g > 2). The groups in these CR-modules
are given below; in these examples, the natural transformations r, ¢, , @, ¥ which
complete the data of the CR-module are completely determined by the given groups,
and the relations among the homomorphisms mandated by the CR-relations (2.8)
and the long exact sequence (2.9) linking the real and complex parts of a CR-module.
The precise formulas for these natural transformations are recorded in [Boersema
2002, Section 5.2].

godd | 0 1 2 3 4 5 6 7
(R)? | Z, Z, 0 0 Z, Z, 0 0
(Rg)zU Zg Zg Zg Zg Zg Zg Zg Zg

geven| 0 1 2 3 4 5 6 7
(S)? | Zy Zay 75 73 7oy Z, O O
(Sg)lV Zg Zg Zg Zg Zg Zg Zg Zg
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g=0(mod4) | 0 1 2 3 4 5 6 7

(Ty)? Z, T,®Z, 73 75 Th®Z; Zy 0 O

(Tg)zU Zg Zg Zg Zg Zg Zg Zg Zg
g=2(mod4)| O 1 2 3 4 5 6 7
(To)Y Zy, 7:080Z, To®7s Lo®7y 1®Zy Zy 0 O
(Tg)lU Zg Zg Zg Zg Zg Zg Zg Zg

For later reference during the calculations in this section, we also record the
groups MO; and MU; corresponding to the CR-modules S, and Ty in the tables
below. Recall that the core of a CR-module M consists of just the complex part
of M and the groups of MO; and MU, (and the relevant natural transformations).
For R, we do not make use of the core but we note for completeness that MO; =0
and MU; = 0 for all i.

coreof S, forgeven | O 1 2 3 4 5 6 7
MO; 0 Z, 73 75 75 Z, 0 0
MU; ly Ty Xy Zy Zy Zp 7o 7>

coreof T, forgeven| 0 1 2 3 4 5 6 7

MO; 0 Z, 2,737, 7, 0 0
MU; Ty Ty Ty 7y 7y 7y 7y 7>

Given m, n € N>, define g = gcd(m — 1, n — 1). From Section 5.2 of [Boersema
2002] we have
R, if g odd,
KOy @O =1{S, ifm—1=n—1=2 (mod4), (4.3)
T, iftm—1=0o0orn—1=0 (mod4).
In particular, there are isomorphisms R, = K“*(O¢ oy ®r Og11) if g is odd,
Tg = KCR((’)ngl 1) if g=0 (mod4) and S, = K®(OF §+1) if
=2 (mod4).

g+1

Proposition 4.4. Let A be a rank-2 graph with one vertex. Let m be the number of
edges of degree (1, 0) and let n be the number of edges of degree (0, 1). Assume
m,n > 2. Let y be an involution on A, and write g = gcd(m — 1, n — 1). Then

if g is odd,

KR (Ch(A,
(Cr(A y) = {S orT, ifgiseven.
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Before we begin the proof of Proposition 4.4, we pause to make a few comments.
First, note that if g is odd, then K “®(C}(A, y)) depends only on the number of
edges of each color, not on the choice of involution or the factorization rules
defining A. In particular, Proposition 4.4 gives more evidence in support of [Barlak
etal. 2018, Conjecture 5.11], which asserts that the K-theory of a one-vertex k-graph
C*-algebra should be independent of the factorization rules.

We also wish to remark on the uncertainty of the statement of Proposition 4.4
regarding the even case. As O, is the graph C*-algebra of the one-vertex graph E,
with n edges, [Kumjian and Pask 2000, Corollary 3.5] tells us that there exists a
2-graph A = E,, x E,, such that

AT =m,  |AOD|=n, and C*(A)Z0,®O0,.

Therefore, applying (4.3) to Cx(A, id), we see that both S, and 7, can appear as
the K-theory of a 2-graph of the type discussed in Proposition 4.4. However, we
see in the calculation below that in general it is not clear how to determine which
CR-module appears from the spectral sequence.

We also have the following corollary to Proposition 4.4.

Corollary 4.5. Fixm,neNxy, a one-vertex 2-graph A with | A0 | =m, |AOD|=n,
and an involution y on A. If g = gcd(m — 1, n — 1) is odd and C*(A) is simple,
then

Cr(A,y) = Cx(A,id).

Proof. Recall from [Kumjian and Pask 2000, Proposition 4.8] (cf. also [Robertson
and Sims 2007, Lemma 3.2]) that the factorization rules which define A determine
whether C*(A) is simple. When C*(A) is simple, [Brown et al. 2015, Corollary 5.1]
tells us that since m, n > 2, C*(A) is purely infinite. Consequently, by [Boersema
et al. 2011, Theorem 10.2], C3(A, y) is classified by its K-theory.

If g is odd, then Proposition 4.4 tells us that this K-theory is independent of the

involution y, so " "

for any involution y on A. ]
We now undertake the proof of Proposition 4.4.

Proof of Proposition 4.4. The incidence matrices are 1x 1 matrices, so 1—M| =1—n
and 1 — M5 =1—m. As A’ = {v} = G, we have

K®(Bgr) = A = K*R).

Theorem 3.18 therefore tells us that the chain complex A© is

—P) 2(/)/))

0— KE®R) —— KEKR) K®R) — 0. (4.6)
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We now use Table 3 to compute the individual maps ,oj. in each degree j:

complex part

(1) 72 (n 1om)

degree 0 | 0 > Z Z—0

real part

(750 Gon )
degree 0 | 0 >z —5 72— "

(1)

(1) 72 (=n 1om)
2

Z— 0

degree 1 | 0 — 7> 73 (=n 1-m) 7, — 0

degree 2 | 0 > Z» Z, — 0

1-n

m—1
degree4 | 0> Z (1) U g L

(For any degree not shown, the sequence consists of all trivial groups.)

The E? page of the spectral sequence has both a real part and a complex part,
denoted (£ 12 j)o and (E 12 j)U , the groups of which are derived from the chain complex
above. In the case that g = gcd(m — 1, n — 1) is odd, we use the first line of the
table above to compute that
Z, ifi=0,1and j even,

E?Uzm.ﬂqu{
(Eip) (4™ 0  otherwise.

The other lines of the table reveal that

Z, ifi=0,1and j =0 (mod4),

] 4.7
0 otherwise.

w@W=HMw%$={

From this data, we obtain the E* page of the spectral sequence which converges
to KK (Ci(A, v)). The left-hand diagram in Table 4 is the E? page for the real
K-theory and the right-hand diagram is for the complex K-theory. Notice that the
Jj index is vertical and the i index is horizontal. The spectral sequence is O in all
nonpictured columns, and is periodic with period 8 in the vertical direction.

The d? map has degree (—2, 1) and is hence equal to 0 everywhere. It follows
that E2 = E* and that KO, (Cg(A, y)) has a filtration whose factors are the groups
in the rightmost table above whose i and j coordinates sum to ¢g. Since, for each ¢,
there is at most one nonzero such group, we conclude that

Zy ifg=0,1,4,5 (mod8),
0 ifg=2,3,6,7 (mod8).

Similarly, KU, (CE(A, y)) = Z, for all q. Therefore K*(Cj(A, y)) = R, if g is
odd.

KOy (Cg(A, y)) = {
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real part complex part
7170 0 O 7170 0 O
6/ 0 0 0 6|2y Zg O
510 0 0 510 0 0
4|24 Zy O 4|2, Zy O
3/0 0 0 310 0 0
210 0 0 2| Zg Zg O
10 0 O 1{0 0 O
0|Zg Zg O 0|2y Zg O
0 1 2 0 1 2
Table 4. E7  when g is odd.
real part complex part
7170 0 O 710 0 O
6/ 0 0 O 6|Zs Zg O
510 0 O 510 0 0
4|2, Zg O 4|72y 2y, O
310 0 O 3/0 0 0
22, 7% 7, 212, Zy O
1|2, 73 7, 110 00
0|2y Zg O 0|2, Zg O
0 1 2 0 1 2

Table 5. Ez’q when g is even.

Now consider the case that g is even (with m,n > 3). The computations
for KU.(Cgi(A, y)) are the same as in the odd case above. When computing
Hi((A(O))jO) for even g, we obtain nearly the same formulas as we found in (4.7)
for the case that g is odd. The difference arises from the fact that all of the maps
in the real part of the chain complex (4.6) in degrees 1 and 2 are zero if g is even.
Hence, the E? page of the spectral sequence which converges to KO, (CE(A, v))
when g is even is as shown in Table 5.
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case 1: d22,1 =0 case 2: d22,1 #0
710 0 0 710 0 0
6|0 0 0 6/0 0 0
50 0 0 50 0 0
412, 7, O 412, 7, 0
3/0 0 0 3/0 0 0
202, 73 7, 2010 73 7,
1|z, 73 7, 1|2, 75 0
0|2, Z, 0 0|2z, Z, 0
01 2 0 1 2

Table 6. Real part of E° .

The map d? again is equal to 0 everywhere except possibly (d(zz’l))o 1 ly — 7y
from degree (2, 1) to degree (0, 2) — this map may or may not be the zero map.
Then the E? page of the spectral sequence must be as shown in Table 6. The left
version corresponds to the case (d(zz’l))o = 0 and the right version corresponds to
the case (d(zz’l))o # 0. For n > 3 we have d> =0, thus E® = E°.

Once the E* groups are settled, this determines KO, (Cg(A, y)) only “up to
extensions”, meaning that there is a filtration of KO,(Ci(A, y)) in which the
successive subquotients are isomorphic to Ej’j, where i 4+ j = g. However, we
can deduce some specific information from the spectral sequence, namely that
KO, (Ci(A, y)) =0forn=6,7, and that KO5(C;(A, y)) = KOo(Ci(A, v)) =Z,.

To complete the computation of K “®(CE(A, y)), we now consider the core. We
claim that the involution ¥, induced on KU, (Cg;(A, y)) by the real structure of
Ci(A, y) satisfies ¥; =1 for j =0,1,4,5and y; = —1 for j =2,3,6,7. To
prove this claim, we first observe that for the CR-module K “®(R), we have yg = 1
in degree 0. In the complex part

0 7 (1) 72 (oniom)

Z—0 (4.8)

of the chain complex A, each copy of Z represents KUq(R). Thus, ¥ induces
the identity map on the homology groups Hy, H; of the chain complex (4.8). As
Hy=(E§ )V =KUo(Ci(A, y)) and Hy = (E7 )V =KU(C§(A, y)), we conclude
that ¢; = 1 for j =0, 1. The relation v; 28 = — B, then implies that, as claimed,

Yj=1 forj=0,1,4,5 and Yj=—1 forj=2,3,6,7.



K-THEORY FOR REAL k-GRAPH C*-ALGEBRAS 425

Recall that MU; = (ker(1 — v¥;))/(Am(1 + ¥;)). Since g is even, one computes
that MUy = Z4 /224 = Z>, and MU, = {0, g/2}/{0} = Z,. Similar computations
reveal that MU; = Z, for all i. The fact that KO; (C:(A, y)) =01if i =6, 7 implies
that MO; :=imn;_1 : KO;_1 (CE(A, y)) — KO;(Ci (A, y)) is zero for i =0, 6, 7.

The long exact sequence (4.2) implies that r{ and ¢| are both isomorphisms
(thus MOy = MOs = Z) and that r; : MUs — MO3 and r : MUg — MO4 must
be injective. From these observations, we obtain the following two segments of
sequence (4.2):

O—)Zz—>M04—>Zg—)Zz—)MOz—)MO3—>ZQ—>O (49)
0—>Zz—>MO3—>M04—>Zz—>22—>M02—>Zz—>0 (4.10)

Note first that n; must either be the zero map or be onto. In the first case,
since ry is injective, we have MO4 = Z», and ¢ must also be injective (hence an
isomorphism). We therefore have r; = 0, so (4.9) becomes

0— MO, 2 MO; S 7, — 0.

If ), is onto, then c§ must be the zero map. Consequently, MO, = Z3 and (4.9)

becomes r,
0— Z, 2 MOy, — MOz — Z, — 0. 4.11)

Similarly, | must be either injective, or the zero map. In the first case, the fact
that each MO; group is 2-torsion implies that MO, = Z%. Moreover, r; must be the
zero map, so (4.10) becomes

0 — Z» — MO3 225 MOy <> 7, — 0. (4.12)
If 771 =0 then MO, = 7>, r3 =1, and c4 =0, so (4.10) becomes
0— 7y —> MOz — MO4 — 0.

Thus, if 7} =0 and n, = 0, the fact that each MO; group is 2-torsion implies that
MO = Z%. If n{ = 0 and 7, is onto, (4.9) becomes

0—> 2y —> Zy—> MO3 — 7, — 0,

which forces MO3; = Z,. However, (4.10) then implies that MO4 = 0, contradicting
the fact that (as we observed above) in this case we have MO4 = Z%.

If n} is injective and 1, = 0, so that MO4 = Z; and ¢}, = 1, we must have n; =0
and hence MO3 = Z5. In other words, ¢} = 1 and n}, = 0. This forces MO, = 0,
which contradicts the fact that if n] is injective we have MO, = Z%.

Finally, suppose 7] is injective and 7} is onto, so that MO4 = Z% =MO,. We
conclude from (4.11) and (4.12) that MOz =
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In other words, the MO; groups are given by the first of the tables below if
n, = n} =0 and by the second if ), is onto and 7] is injective; no other options are
possible.

01 2 3 4567
0272, 72, 75 7> Z, 0 0

MO

01 2 3 4567
MO;| 0 Z, 75 75 75 Z, 0 0

As we noted at the beginning of this section, the core of the CR-module S,
coincides with the first table above, and the core of the CR-module T, coincides
with the second. Therefore, by [Hewitt 1996, Theorem 4.2.1], KR(C*(A, y)) is
either isomorphic to S, or to 7.

Comparing the cardinality of (Sg)20 , (Tg)20 , and the two options for the E*
page of the spectral sequence converging to KO, (C (A, y)), we see that we have
K®R(C*(A, ) = Sg whendl, |, #0and K®(C*(A, y)) =T, when dy |, =0. O

4B. A 3-vertex rank-2 graph. In this section, we consider a family of rank-2 graphs
A with three vertices and with the adjacency matrices

1 1
0 n-—1

1
Mi=M=|1
1 1 0

n

for n > 2. We also consider an involution y that swaps the second and third vertices.
(By comparison, a rank-1 graph with involution and with the same adjacency
matrix was considered in [Boersema 2017, Example 6.2].) We do not specify the
factorization rules for A, since they do not affect our K-theory calculations. They
may be any factorization rules that are consistent with the involution y. We consider
the real C*-algebra C3(A, y).

Proposition 4.13. The CR K-theory K®(Ck(A, v)) is isomorphic to one of two
CR-modules, Py, or Q»,.

The groups of the CR-modules P,, and Q», are given by the following tables.
Again, we only record the groups, not the natural transformations, as these are
completely determined by the given groups. The structure of Q,, differs somewhat
depending on n being even or odd.

o 1 2 3 4 5 6 7

(Po)?| Zy 73 74y ®Zr 74y ®Zr 73 Zr Z, Z,
(P)! | Zoy Zyn  Zay Zon  Zon Loy 22y Zon
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(neven) | 0 1 2 3 4 5 6 7

() | Zy 7} To®Zoy 72875 73 7o Z, Zy
(QZn),V Zon Zon ZLon Zon Lon Zon Loy Zon
(nodd) | 0 1 2 3 4 5 6 7

(Qw)? | Zn 7y 30Z, 7307, Zs Zr Z, Z,
(QZn)lU Lo Zon ZLon Zon Lon Zon Loy Zon

The cores of these CR-modules include the groups below:

coreof P,b,| 0 1 2 3 4 5 6 7

MO, |0 7, 272757, 0 0 (4.14)
MU, |7y 7, 7,7, 7, 7y 7> T

coreof 0r,| 0 1 2 3 4 5 6 7

MO; |0 Z,Z,737,7, 0 0 (4.15)
MU, |2y 727y 72 75 72 75 7

We note that there is a CR-module isomorphism
Py Z 2K (Epi) ® K X (Eangn),
where &,4 is the exotic Cuntz algebra described in Section 11 of [Boersema et al.
2011]. However, to our knowledge, the CR-modules Q,, have not previously been

discussed in the literature.

Proof. We develop the chain complex, and subsequent spectral sequence, as in
Theorem 3.18 to compute K ¥ (Ci(A, v)). The chain complex is

0> A2 A2 40,

where A = K R(R) @ K“®(C). Using Theorem 3.18 and the fact that fori =1, 2
we have

0 -1 -1
pi=B=L-Mi=|-1 1 1-n|,
1 1-n 1

we can analyze the groups and maps of this chain complex in each grading, complex
and real parts, as below:
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complex part

(B B)

7° 73 -0

0 2

1 n-2

0 -2
-1 2-n

(5)

degree 1 | 0> Z, —> 75 —— 7, — 0

0 1
(8 :ﬁl) 10 -1
0 n (8 _nO_n)

degree2 | 0 = (Z, ®7) —— (2, 92 ——"5 (Z, 7)) — 0

0 1
( 0 z;2> 0 1 o -1
-2 2-n Z4 (—2 2—n =2 2—n)
()

degree 6 O—>Z—>ZZMZ—>O

degree 0 | 0 — 73

real part

S ) R

degree 0 | 0 — 72

degree 4 | 0 — 72 7> -0

The Smith normal form of B is

SNF(B) =

oo -
o - o
oo

From this, it easily follows that
(E§ )V = coker(B B) = Z,,

(E%.O)U =ker(B B) /im(_g) =75,

2 U 1o "B _
(E50) _ker< B =0.

For the real part, we work out the homology of the exact sequences associated
to the “real part” above to obtain (Ei’ q)o (or simply E127, g» as we denote it when
it is clear). We walk through the details of this for the first three rows and leave
the rest to the reader. The Smith normal form of the matrix ((1) nEZ) is ((1) g) for
all n. It follows that in the real part in degree O (that is, when ¢ = 0) we have
Ej,=E} =12 and E5 ,=0.

When ¢ = 1 we have 91 = 9, = 0, so it immediately follows that E&l =75,
E} =73 and E}, =7,.



K-THEORY FOR REAL k-GRAPH C*-ALGEBRAS 429

For the next row (when g = 2), we first observe that

m(0 PO {11, @k+Dn) |k e Z} U{([0], 2kn) |k € Z} S Z, & Z.
0 nO0 n
In particular, the sum ([1], 1) of the two generators ([1], 0) and ([0], 1) of Z, & Z

lies in im() ~} § 7). Consequently,

0-10

E? , = cok
0.2 =CO er(o n 0

")) =l )= 2zs,

To show that £ 12 » = 42 ® Z3,, we note that

0-10 -1

ki =k
er dy er(o n 0 n

)Z{(x’y’z’_y)|xsZ€ZZ’yEZ}

while
imo, = {([x], —nx, [x],nx) |x € Z}.
Consequently, E7, = kerd;/imd, = ([(0,0,1,0)], [(0, 1,0, =1)]) = 7, & 7,
because (0, n, 0, —n) is not in im d, but (0, 2n, 0, —2n) is.
Finally, note that

0 1

2 0 —n
Ej, =ker dp = ker 0 1 ={(x,0) | x € Zy} =7,.

0 n

The Elz7 4 groups of the spectral sequence converging to KO.(Cg(A, y)) are
shown on the left in Table 7. From this and similar calculations for 3 < g <7 we
obtain the E? page of the spectral sequence as shown.

The map d? is forced to be 0 everywhere except possibly the map dé’ 1y L2 —> Lop
from degree (2, 1) to degree (0, 2) in the real case.

The complex spectral sequence (right side of Table 7) gives KU; (Cj (A, y)) =22,
foralli. Thus KUo(Ci(A, v)) =KU(Ci(A, y)) = Z,,. It follows that the complex
C*-algebra C*(A) is KK-equivalent to Oy, 41 ® Ozp41-

With a bit more work, we can identify the maps 1, by tracing the elements
KU, (Cj(A, y)) as they arise from the chain complex through the spectral sequence.
In the i = 0 case we have that KUy (Cg (A, y)) is isomorphic to

AY/im B =7%/im B,

and the generator of KUy(Cg(A, y)) = Zy, is represented by the element (0, 1, 0),
which is equivalent to the element (0, 0, —1) (since (0, —1, —1) is in the image
of B). Similarly, one computes that

ker(B B) = {(x, y, z, —x, —y, —z) € Z°},
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real part complex part

71 0 0 0 7170 0 O
6| Z, Zy 0 6| Zon Zon O
510 0 0 510 0 O
4| 7, 7, 0 4| Zoy 2oy O
310 0 0 310 0 O
2| Zon L2®2on I 2| Zon Zon O
1|z, 75 I, 1{ 0 0 0
0| 7 V&) 0 01| Zy 2y, O
0 1 2 0o 1 2

2
Table 7. Ep,q-

so [(0,1,0,0,—1,0)]=1[(0,0,—1,0,0, 1)] generates
% . —B
KU (CE(A, y)) =ker(B B) /1m< B) )

As AY = KUy(R) @KUy (C), the fact that (rc)o = (! ) on KUp(C) = Z? implies
that (Y4)o(x,y,z) = (x,z,y). Thus, the involution ¥y on KUp(Cx(A, y)) =
Ag/imB = Z3/imB induced by ¥4 satisfies ¥ ([0, 1, 0]) =[O0, O, 1]. It follows
that ¥ is given by multiplication by —1 in KUo(C}(A, y)) = Z3,. A similar
analysis also shows that = —1 in KU (Cj(A, y)) = Z»,. Using the fact that
Y anticommutes with the Bott isomorphism (that is, ¥ = —B1), we find that
Yi=—1fori=0,1,4,5and ; =1fori =2,3,6,7.

In addition to , it would be possible to compute the action of most of the
natural transformations r, c, 1 in this way, based on the corresponding actions in A.
Alternatively, once we have computed a few of these natural transformations, we
can complete the calculation of K “®(C(A, y)) using the long exact sequence (2.9)
and the core exact sequence (4.2).

From the E? page of the spectral sequence for KO, (C(A, y)) we see immedi-
ately that KOo(Cj(A, y)) = Z, and KO, (Cj(A, y)) is either isomorphic to Z4 or
to Z%. Less immediately, we also find that ny and 1, are nontrivial.

To see that 7 is nontrivial, observe that

KOO(CE@(A,V))’E(KOO(R)@KOO(@))/im<_0 -2 0 —2)

1 2—-n -1 2-—n
is generated by [(1,0)]. Since (nr)o([1]) € KO{(R) is the nontrivial element
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of (A1)? = Z,, which is the Eé,l group of the spectral sequence converging
to KO, (C;(A, y)), we find that no([1, 0]) is a nontrivial element of KO (Cj (A, y)).
Therefore, ng # 0. In addition, since (nr); : Z» — Z; is nontrivial and the image in
E%,o = coker(g _i 8 _i) of the generator ([1], 0) of Z, C Z, & Z is nontrivial, we
conclude that n; : KO1(Cx(A, y)) — KO2(Cj(A, y)) is also nontrivial.

Now we claim that r; : KU;(Ci(A, y)) — KO;(Ci(A, y)) is surjective for
i =5,6,7. In degree 6, since A = K®(R) ® K®(C) and (rc)¢ = (—1 1), we
conclude that (r4)¢ : Z° — Z on KO.(A) is given by (x,y,z) — z —y. Now,
recall that the generator of KUg(Ci(A, y)) = coker(B B) = Z», is represented by
(0, 1,0). Thus, re : KUs(CE(A, y)) — KOs(Ci(A, y)) satisfies

r6([0, 1,0]) =[—1] € Z, = KO (Cy (A, ¥)).

Thus rg is onto.
To see that r5 is onto, recall that for i odd

. (—B
KU;(Cg(A, y)) =ker(B B) /lm< B) =2
is generated by g =[(0, 1,0, 0, —1, 0)]. Also, for i =5 we find (referring to the
degree 4 part of the chain complex) that
KOs5(Cgr(A, y)) =ker(d1)4/im(d2)4 = Z

and the nontrivial element can be determined to be represented by 2 =[(0, 1, 0, —1)].
The map rs : KUs(Ci(A, y)) — KOs(Ci(A, y)) is therefore induced by the map
(ra)a:Z%— 7%, which is given by the formula

x,y,z,u,v,w)—=> (x,y+z,u,v+w)

since (r¢)s = (1 1) : 7% — Z. Thus r5(g) =[(0, 1,0, —1)], so rs is surjective.
With a similar argument, we can show that r7: KU7(Ci (A, y)) — KO7(CE (A, y))
is onto. As

. . (—B
KU7(CE(A, y)) =ker(B B) /1m( B) ,

r7 is induced from (7 42)¢ : 7% — 72, and (rp2)e(x,y,z,u,v,w)=(z—y, w—0).
Therefore, using the generator g of KU7(Cj; (A, y)) identified above,

re(g) =[(1, =] € ker(n n) /im<_Z) = KO (Ci(A, ¥)).

As [(1, —1)] generates KOs(Cj; (A, y)), we conclude that r7 is also surjective.
Since r; is surjective for i =35, 6, 7, it immediately follows from (2.8) that n; =0
fori =5,6,7.
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Now we turn to the core of the exact sequence. Given that we’ve already computed
KU;(Ci(A, y)) = Z3, and ¢; = £1, (4.1) implies that MU; (C3 (A, y)) = Z, for
all i. The fact that ; =0 for 5<i <7 implies that MO; (C3(A, y))=0fori =0,6,7.
From this information, the long exact sequence (4.2) relating MO; and MU; can be
used to determine that MO, must be one of the following (using the same argument
as used in the previous section):

012 3 4567
MO; | 0 Z, 75 75 73 7, 0 0

012 3 4567
MO; | 0 Zy, Z, 75 7, Z, 0 0

The former possibility coincides with the core of P,,. Comparing (Pzn)? with
the groups (E O)f,’ , of the spectral sequence converging to KO.(Cg(A, y)) for
p +q = 3, we see that this possibility coincides with the case when d3 | = 0.
Therefore, in that case K“*(Cj(A, y)) = P,. The latter case occurs when dzZ’1 #0

and yields K“®(C%(A, y)) = Qay. See the tables (4.14) and (4.15). O

If the factorization rules of A are such that C*(A) is simple and purely in-
finite, then the complex C*-algebra C*(A) is isomorphic to a matrix algebra
over 0,11 ® Oryi1. A little more work is necessary to track the class of [1]
in KUo(Cj(A, y)) to determine the value of k in the isomorphism C*(A) =
M (02,41 ® Oz,41). The real C*-algebra Cj(A, y) is then a real structure of
M (02, 41®0O2,41) but is not isomorphic (nor stably isomorphic) to 05, | ®=O%, |
or any other tensor product of real Cuntz algebras. This follows, for example, from
the fact that KO7(Cj(A, y)) = Z,, but KO7(—) is trivial for any tensor product
of real Cuntz algebras. Furthermore, C;(A, y) is not isomorphic to any real C*-
algebra arising from a rank-1 graph with involution, as KO7(-) is torsion-free for
such a C*-algebra by Corollary 4.3 of [Boersema 2017].

4C. Another 3-vertex 2-graph. In this section we examine another 2-graph for
which the two adjacency matrices are not the same. Fix an integer n > 2. Let A be
a rank-2 graph with three vertices with adjacency matrices

1 1 1 1 1 1
Mi=|1 0 n-1 and M,=|1n—-1 0
ln—1 0 1 0 n—-1

and with an involution y that swaps the second and third vertices.
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Proposition 4.16. Fix an integer n > 2. If n is odd, then
KRC A, y)ES, or KKC A, y)ED.
If n is even, then
K(CH (A, y) 2 TKTOF) @ 22K H(OF)
=32 TKR(E) @ TKKR(E).
We find it intriguing that for n even, the choice of n has no impact on the CR

K-theory groups of the real C*-algebra. For all odd integers 7, there are only two
possible CR-modules that can be realized by K R(C*(A, y)).

Proof. Again, we use Theorem 3.18. The chain complex A® used to build the
spectral sequence to compute K“®(C*(A, y)) has the components shown in the
table below, based on the matrices

0 -1 -1
p1231=I3—M1= —1 1 1—n ,

-1 1—-n 1

0 -1 -1
,02=32=I3—M2= —1 2—n 0

-1 0 2—n

complex part

(7%) (B By)
7° 73— 0

degree 0 | 0 — 73

real part

2

n—2

2 (0 52 0 -2
degree 0 | 0 — 72 ANy AL R S Ly N

0
degree 1 | 0 — Zp — Z5 —— Z, — 0

0 1
0 n-2
0 -1
0 n

(670 3%)

degree 2 0> (Z,®7) ———— (Z, d7)*? Zry®Z)— 0
0 1
2 n-2
05 (83,85
2 2-n 2 2en —
degree 4 | 0 — 7> A e iy £ RN

(”22) 72 (n2—n)

degree 6 | 0 > Z
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The Smith normal forms of the matrices in the complex part of the chain complex
are

100

100000 S 8(1)(2)
SNF(B;,B)=[010000] and SNF( >=

002000 Bi 000

000

000

Then we have

—B —B
coker(By By) = 75, ker(B; B») /im( 2) =7Z,, and ker( 2) =0.
B B,

Thus, the E2 groups of the chain complex computing KU, (Ci:(A, y)) satisfy

2’ U Z, for p €{0, 1}, g even,
(E2 )V = { N |
otherwise.
Consequently, KUo(Cgi(A, ) = KU (Ci(A, y)) = Z,. It follows that the complex
C*-algebra C*(A) has the same K-theory as O3 ® O3.

From the chain complexes exhibited above, we can compute that the E? page
of the spectral sequence computing KO, (Cy(A, y)) is given as in Table 8. The
left-hand table corresponds to the case where n is odd and the right-hand table
corresponds to the case where 7 is even. It is a remarkable fact that, even though
the matrices p’ look very different when n = 2, the E? page in this case is the same
as for any other even n.

case 1: n is odd case 2: n is even
710 0 O 710 0 O
6,0 0 O 6|7y Zp O
5/0 0 O 50 0 O
417, 7y O 4175 75 O
310 0 O 310 0 O
217, 75 7» 217, 75 7»
1| 2, 75 7, 1|2, 75 7,
0|7y Z, O 0|7y 7y O
01 2 0 1 2

Table 8. Real part of Ef,’ a
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As an illustration of how this spectral sequence was obtained, we explain the
computations of E?) , for p=0,1,2. We have

E&z = coker(d;), = coker (8 _,1 8 2_1 n) =(Z,d2)/G,
where G is the subgroup of Z, ® Z generated by ([1], n) and by ([0], 2). This in
turn is isomorphic to (Z, ®Z,)/G’, where G’ is the subgroup of Z, & Z, generated
by ([1], [#]). Note that in Z, & Z,, ([1], [n]) is equal to ([1], [0]) or ([1], [1]),
depending on whether n is even or odd. In either case, the quotient is isomorphic
to Z5.

To compute E %,2 = ker(d1)2/1m(d2)2, we first compute that

0-10 -1 _ o
ker(o n 0 2_n>I{([X],ya[z],w)ly-l—wzo(modZ),ny_(n 2)w}

={([x], k(n —2), [z], kn) | k € Z}.

Now, observe that

1
n—2
—1

n

0
im(d2)2 =im 8 ={([x], (n = 2)x, [x], nx) | x € Z} S (Z, & 7)*.
0

Thus a generic element in E f , can be written as

[([x], y, [z], w)] = [([x], k(n = 2), [z], kn)] = [([k +x], 0, [k + 2], 0)],

since ([1],n — 2, [1], n) € im(d,), and hence [(0,n — 2,0, n)] = [([1], O, [1], 0)].
It now follows easily that E? , = Z5.

1,2 —
Finally,
0 1
0 n o
E;,=ker() =ker[ . " 7| ={(x].y) |y =0}=12.
0 n

Leaving it to the reader to calculate E) 2 4 for the remaining values of p, ¢, we
turn now to analyzing the spectral sequence from the E? stage. In the case where
n is odd, the spectral sequence is the same as one that we saw in Section 4A,
so, as there, we can conclude that either KR(C*(A, y)) = S, (if d(2 1y # 0) or
KCR(C*(A )/)) =1 (lf d(2 D= )

In the case where n is even, there is some work to do. Observe first that once
again, we have d(zl.’ H= 0 for all (i, j), with the possible exception of dé,]). Thus, for
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all (7, j) €{(0,2), (2, 1)} we have Elzl = Efjo It follows that KO, (C*(A, y)) = 27,
fori =5,6,7,0, and that |KO; (C*(A, y))| =4 fori=1,4.If d(zz,l) = 0 then

|KO»(CE(A, v))| = |KO3(CE(A, y))| =8,
and if a’(zz,l) # 0 then
KOy (Ci(A, y)) = KO3(CE(A, y)) = 75.

Now we determine the maps 7, r, and c. We also show that |[KO>(C;(A, y))| =
|KO3(Ci(A, y))| =4 (and hence that d(zz’l) # 0). We start with the following seg-
ments of the long exact sequence (2.9) relating KO..(C; (A, y)) and KU (Ci(A, v)):

KOy (CE(A, y)) > KO1(CE(A, y)) <> KU (CA(A, v)),
KU4(CE(A, v)) = KO4(CE(A, y)) 25 KOs(CL(A, ).

Since |KO1(Ci (A, y))| =4 and KOo(Cj(A, v)) =KU2(C*(A, y)) = 2>, it follows
that no must be injective and ¢; must be surjective. Similarly, r4 must be injective
and 14 must be surjective.

Since 7y is injective, ro = 0 and ¢, is surjective. Since c) is surjective, r7 must
be 0. Continuing to use the long exact sequence (2.9), we find that

r7=0, m=1, ¢c=0, re=1, ns=0, c;=1, rs=0, ns=1, c=0.

Also, since ng4 is surjective, we know that c5 = 0.
Now 57 and 7ng are both injective. It follows that

1 : KO1(CR(A, ) = KO2(Cg(A, )

cannot be injective also, due to the relation n3 = 0. So |ker ;| is either equal
to 2 or to 4. But |kern;| = |imr;| and the latter cannot be equal to 4, since
KU (Ci(A, y) = Z>. Thus |ker n| = 2. Then the exact sequence

0 — KO (CE(A, )/ ker g 25 KOy (Ci(A, y)) <> KU2(CE(A, ¥)) — 0

implies that |[KO>(Cj(A, y))| = 4 (since the groups on the left and the right
each have order 2). Thus, r; is an injection and c¢3 = 0. Moreover, the fact
that |[KO»(Cj(A, y))| # 8 implies that d(zz’l) # (0 and consequently

KO»(CE(A, y)) =75 = KO3(CL(A, v)).

As ¢z = 0, we must have n, : KO>(Ci(A, y)) — KO3(Cgi(A, y)) onto, which
implies that 7, is an isomorphism and consequently 7, = 0 and ¢4 is onto.

Now, because 7, and 74 are both surjective, the relation 773 = 0 implies that
n3: Z% — KO4(Cj(A, y)) cannot be surjective. So [im 73] is equal to O or to 2.
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But if [im 3| = 0, then c4 : KO4(CE(A, y)) = KU4(CE(A, y)) = Z, would be
injective, which is not possible. Therefore |im 13| = |kerc4| = 2.

We have now calculated all of the groups KO..(Ci(A, y)), at least up to order,
and the action of the maps n, r, c. This enables us to compute the core of the
CR-module K “R(CE(A, y)).

Recall from (2.8) that v : KU (Cj(A, y)) — KU.(Ci(A, y)) satisfies vi=1.
As KU, (Cj(A, y)) = Z, for each i, we may conclude that ¢ = 1 for all i in this
case. It follows that MU; = (ker(1 — v;))/(im(1 +v;)) = KU;(Ci(A, y)) = 2>
for all i.

Furthermore, our descriptions of the maps n; above reveal that the groups MO; =
im n;_; are as follows:

01 23 456 7
MO; | Zy Zr 7, 75 7, 7, 7, O

Now from the K-theory calculations in [Boersema 2002, Section 5.1, Table 5] and
[Boersema et al. 2011, Section 11, Table 2], we find the core of K “®(OF) = K % (&3)
is given by

01 2 3 4567

MO;| 0 7, Z, Z, Z, 0 0 0O
MU;\Z, 0 Z, 0 Z, 0 Z, 0O

By comparing cores, we conclude that
KT(CR(A, ) = 2KHOF) @ 52K T(0F)
=32 TKRE) @ T KKR(E).
That is,

01 2 3 4 5 6 7

KO;(Ci(A, ) | Zy Zys 75 73 74 7> 7, 7
KU{((CR(N,¥) | 2oy 2o 7o 7o 2o 7o 7o 7o

5. Questions

Our investigation has highlighted many unanswered questions about higher-rank
graph C*-algebras and about the spectral sequence of Theorem 3.7 that computes
KER(CE(A, v)). First of all, Theorem 3.7 gives no information about the differential
d" of the spectral sequence. How is this map determined by the higher-rank graph
with involution (A, y)? Can we compute d” from the combinatorial data— the
adjacency matrices, the factorization rule, the involution —of (A, y)?
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A related question is to better understand the role that y plays in these construc-
tions. In setting up the spectral sequence, it is important to know which vertices are
fixed and which are not fixed by y. But beyond that, the action of y on the edges
does not seem to play a role (unless it plays a role in determining the differential
maps d” in a way that we are not aware of — see the previous paragraph).

In fact, we know from [Boersema 2017, Theorem 2.4] that in the case of a
1-graph the isomorphism class of the real C*-algebra C;(A, y) may depend on the
action of y on the vertices of A but not on the way y acts on the edges of A. We
found that the proof of this theorem does not extend in an obvious way to the case
of k-graphs with k > 2, but on the other hand we have no counterexamples to the
analogous statement. How does y affect the K-theory of C;(A, y) and indeed how
does y affect the isomorphism class of Cg(A, y)?

Another question concerns the functoriality of the spectral sequence. Specifically,
suppose that (A, y) is a rank-k graph with involution. Then for any 0 < £ < k, there
is an obvious rank-£ graph (A’, y’) with involution:

A ={eAldnr) eN ={(x1,....x0,0,...,0) | x; € N} € NFK}.

We define y’ to be the restriction of y. There is an obvious corresponding map
i:CH(A',y") = CE(A, y), which induces a map on K-theory:

it KT(CRA', y) = KF(CR(A, ).

On the purely algebraic level, there is consequently a homomorphism from the chain
complex associated to Ci(A’, ') to that associated to C(A, y) that commutes
with the differentials 0. We conjecture that this map on the level of the chain
complexes induces a map on the level of spectral sequences which commutes with
the differentials d”, and that it converges in the appropriate sense to the map i, on
K-theory.

In particular, taking ¢ = 0, this conjecture would provide a way to identify the
class of any projection [p,] in KOo(Cx(A, y)) when v is a vertex in A fixed by y,
or the class of [p, + py ] when v is not fixed by y. It would also provide a way
to identify the class of the identity in KOo(Cj(A, y)) when A is finite, which is
part of the Elliot invariant when Cj(A, y)) is simple and purely infinite. Such a
result would be a direct generalization of Theorem 4.5 of [Boersema 2017] and
Theorem 3.2 of [Raeburn and Szymanski 2004].

Finally, we wonder if our spectral sequence can be used to characterize the
CR-modules that can arise as KCR(C,];?(A, y)), where (A, y) is a rank k-graph.
Corollary 4.3 of [Boersema 2017] gives a necessary condition for a given CR-module
to be isomorphic to K“®(C(A, y)), but we do not have a complete characterization,
even when A is a rank-1 graph. Which real Kirchberg algebras can be realized as
Ci(A, y) for some directed graph with involution (A, y)? More generally, which



K-THEORY FOR REAL k-GRAPH C*-ALGEBRAS 439

real Kirchberg algebras can be realized as Cj;(A, y) for some higher-rank graph
with involution (A, y)? In particular, the original question that motivated this work
is still unanswered: can we find concrete representations of the exotic real Cuntz
algebras &, using a family of higher-rank graphs with involution?
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