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K-theory for real k-graph C∗-algebras

Jeffrey L. Boersema and Elizabeth Gillaspy

We initiate the study of real C∗-algebras associated to higher-rank graphs3, with

a focus on their K-theory. Following Kasparov and Evans, we identify a spectral

sequence which computes the CR K-theory of C∗
R
(3, γ ) for any involution γ

on3, and show that the E2 page of this spectral sequence can be straightforwardly

computed from the combinatorial data of the k-graph 3 and the involution γ .

We provide a complete description of K CR(C∗
R
(3, γ )) for several examples of

higher-rank graphs 3 with involution.

1. Introduction

Using the classification of simple purely infinite real C∗-algebras [Boersema 2006;

Boersema et al. 2011], the first author together with Ruiz and Stacey established

in [Boersema et al. 2011, Theorem 11.1] that for odd n, there are two distinct

real C∗-algebras (En and OR

n ) whose complexification is the Cuntz algebra On .

While OR

n is easy to describe in terms of generators and relations, the only facts

known about En (beyond its existence) are its K-theory [Boersema et al. 2011,

Theorem 11.1] and that it cannot arise as the real C∗-algebra of any directed graph

[Boersema 2017, Theorem 6.1]. This latter fact is quite surprising, since On is one

of the most straightforward examples of a graph C∗-algebra, and every directed

graph gives rise to many potentially different real C∗-algebras. Indeed, [Boersema

2017] showed that any idempotent graph automorphism γ on a graph E gives rise

to the real C∗-algebra C∗
R
(E, γ ) (see (2.5) below).

To date, much of the literature on real C∗-algebras has focused on their K-theory

(see [Schröder 1993; Boersema 2002; Boersema et al. 2011; Boersema and Loring

2016]), with some attention paid to other structural properties (see [Boersema 2007;

Rosenberg 2016; Stacey 2003; Boersema and Ruiz 2011]). In some sense, the

K-theoretic data is enough: [Boersema 2006] explains how to construct a purely

infinite simple real C∗-algebra with any appropriate specified CR K-theory, and

the CR K-theory is known to be a classifying invariant for simple purely infinite

real C∗-algebras [Boersema et al. 2011]. However, the construction in [Boersema

2006] is quite layered and obtuse Ð it allows us to detect the existence of real
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structures for given complex C∗-algebras, but does not otherwise shine a lot of

light. We therefore wish to develop alternative constructions to help us generate

more examples of real C∗-algebras in a concrete way. Specifically, as a test piece,

we wish to find a concrete representation of the real C∗-algebras En .

To this end, we introduce in this paper the real C∗-algebra C∗
R
(3, γ ) associated

to a higher-rank graph 3 and an involution γ on 3. Inspired by [Robertson and

Steger 1999], Kumjian and Pask [2000] introduced higher-rank graphs, or k-graphs

as a way to construct combinatorial examples of C∗-algebras which are more

general than graph C∗-algebras. In addition to their intrinsic links with a variety of

combinatorial structures, such as buildings [Robertson and Steger 1999; Konter and

Vdovina 2015] and ultrametric Cantor sets [Farsi et al. 2020; 2021; Heo et al. 2021],

(complex) k-graph C∗-algebras have provided important examples for Elliott’s

classification program [Ruiz et al. 2015] as well as for noncommutative geometry

[Pask et al. 2008; Farsi et al. 2020].

The family of real C∗-algebras that arise from higher-rank graphs with involution

is much larger than the family arising from graph algebras. This follows, for

example, from the fact that the K1-group of a (complex) graph C∗-algebra must

be torsion-free [Raeburn and SzymaÂnski 2004], a restriction which disappears for

higher-rank graphs. However, in order to answer the question of whether the exotic

Cuntz algebra En arises from a higher-rank graph, we need to be able to compute the

K-theory of real higher-rank graph C∗-algebras, since En can only be identified by

its K-theory. In this article we develop the methods to carry out the computations of

the K-theory of such algebras and demonstrate these methods with several detailed

computations of interesting examples. However, we have not yet discovered an

example of a higher-rank graph with involution whose associated C∗-algebra is En .

We discuss this, and other open questions, in Section 5.

While the K-theory of a graph C∗-algebra can be computed from the adjacency

matrix of the graph using a long exact sequence [Bates et al. 2002; Raeburn and Szy-

maÂnski 2004], the situation is more complicated for a higher-rank graph 3. Evans

[2008] identified a spectral sequence which converges to the K-theory of C∗(3),
and computed the K-theory explicitly in some low-rank situations. Thus, we first

confirm that given the real C∗-algebra of a higher-rank graph, there exists a spectral

sequence which converges to its K-theory. This is the focus of Section 3. For a

real C∗-algebra A, the K-theoretic invariant that we consider contains much more

information than does the K-theory of a complex C∗-algebra. We consider the

so-called CR K-theory of A, which includes not only the eight real K-groups K∗(A),
but also the two K-theory groups K∗(AC) of its complexification, as well as a number

of homomorphisms between the various groups that satisfy certain compatibility

conditions. The CR K-theory that is our focus is a variation of the CRT K-theory

introduced in [Bousfield 1990] in the topological setting and in [Boersema 2002]
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in the C∗-algebraic setting. A short introduction is in Section 2B below. The

spectral sequence that we develop is sufficiently functorial that it contains all of

this additional structure. It can be construed as a spectral sequence in the category

of CR-modules or in the category of CRT -modules.

Thus, the spectral sequence that we develop is simultaneously a generalization

of the spectral sequence of Evans (for a complex higher-rank graph algebra) and the

long exact sequence developed in [Boersema 2017] (for a real algebra from a graph

with involution). Similar to the long exact sequence found in [Boersema 2017], the

building blocks of our spectral sequence consist of direct sums of the K-theory of C

and R, viewed as real C∗-algebras. Indeed, we show in Section 3D that the E2 page

of the spectral sequence can be computed from a chain complex whose entries are

the aforementioned direct sums of the K-theory of C and R, and whose boundary

maps are determined by the combinatorial structure of the higher-rank graph.

When it comes to computing the CR K-theory of specific examples of real C∗-

algebras, the complicated structure of real K-theory is both boon and bane. While

the intricacy of CR K-theory adds many additional steps to certain computations, the

circumscribed relationships between the various groups (described in Section 2B)

mean that often, the entire CR K-theory is completely determined by just a few of

its constituent groups and homomorphisms. Consequently, as we see in Section 4,

a small amount of information frequently enables us to completely describe the CR

K-theory. To be precise, in Section 4, we use both the simplified description of the

E2 page of the spectral sequence from Section 3D, and the relationships between

the structure maps of CR K-theory, to completely describe the CR K-theory of

several examples of rank-2 graphs. In particular, for each odd n, we identify in

Section 4B a 2-graph3 and an involution γ on3 such that C∗(3) is KK-equivalent

to On ⊗On , but its real structure C∗
R
(3, γ ) is not a tensor product of real Cuntz

algebras. In other words, we have discovered new real structures on On ⊗On , other

than OR

n ⊗R OR

n .

2. Preliminaries

2A. Higher-rank graphs and their (real) C∗-algebras. Higher-rank graphs were

introduced in [Kumjian and Pask 2000] as a higher-dimensional generalization of

directed graphs. To define them, we first specify that throughout this paper, we view

N
k as a category with one object (namely 0), where composition of morphisms

is given by addition. For consistency with the usual notation n ∈ N
k to describe

a k-tuple of natural numbers (which, in the category-theoretic perspective, is a

morphism in N
k), we write λ ∈ 3 to denote a morphism in the category 3. We

identify a category’s objects with the identity morphisms, so that statements such

as 0 ∈ N
k are still allowed.
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Definition 2.1. A higher-rank graph of rank k, or a k-graph, is a countable small

category 3 equipped with a degree functor d : 3 → N
k such that, whenever a

morphism λ ∈ 3 satisfies d(λ) = m + n, there exist unique morphisms µ, ν ∈ 3
such that λ= µν, d(µ)= m, d(ν)= n.

Write ei for the standard i-th basis vector of N
k . We usually think of the

morphisms of degree ei as the ªedges of color iº in 3. With this perspective, if e is

an edge of color i and f is an edge of color j , their composition e f ∈3 satisfies

d(e f )= ei + e j = e j + ei ,

so there must be an equivalent way of writing e f = f ′e′, where d( f ′) = e j and

d(e′)= ei .

In other words (cf. [Hazlewood et al. 2013, Theorems 4.3 and 4.4; Eckhardt

et al. 2022, Theorem 2.3]) we can think of a k-graph as consisting of a directed

graph G, with k colors of edges, and a factorization rule, or equivalence relation,

∼ on the multicolored paths in G∗. For each pair of colors (ªredº and ªblueº for

this discussion), and each pair of vertices v,w, the factorization rule identifies

each path from v to w which consists of a blue edge followed by a red edge (a

blue-red path) with a unique red-blue path from v to w. The factorization rule must

also satisfy certain consistency conditions which ensure that, for each path in G∗,

its equivalence class under ∼ corresponds to a k-dimensional hyperrectangle; see

[Eckhardt et al. 2022, Theorem 2.3] for more details. (For ease of readability, we

omit these details here since our work in this paper does not depend on the precise

details of factorization rules.)

Let 3 be a k-graph. Given objects v,w ∈3 and n ∈ N
k , we write

3n = {λ ∈3 | d(λ)= n},
v3= {λ ∈3 | r(λ)= v},
3nw = {λ ∈3 | s(λ)= w and d(λ)= n},

(2.2)

as well as the obvious variations. Observe that 30 is the set of objects of 3, which

we also denote as vertices thanks to the graph-theoretic inspiration for k-graphs.

We say that 3 is row-finite if |v3n|<∞ for all n ∈ N
k and v ∈30, and that 3 is

source-free if, for all n and v, v3n ̸= ∅.1

Definition 2.3 [Kumjian and Pask 2000]. Given a row-finite source-free k-graph 3,

a Cuntz±Krieger3-family is a collection {tλ}λ∈3 of partial isometries in a C∗-algebra

A which satisfy the following conditions:

(CK1) For each v ∈30, tv is a projection and tvtw = δv,wtv.

(CK2) For each λ ∈3, t∗
λ tλ = ts(λ).

1Equivalently, 3 is source-free if v3ei is nonempty for all 1 ≤ i ≤ k.
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(CK3) For each λ,µ ∈3, tλtµ = tλµ.

(CK4) For each v ∈30 and each n ∈ N
k ,

tv =
∑

λ∈v3n

tλt∗
λ .

We define C∗(3) to be the universal (complex) C∗-algebra generated by a Cuntz±

Krieger family, in the sense that for any Cuntz±Krieger 3-family {tλ}λ∈3, there is

a canonical surjective ∗-homomorphism C∗(3)→ C∗({tλ}λ).

We write {sλ}λ∈3 for the generators of C∗(3). One computes easily, using the

Cuntz±Krieger relations, that C∗(3)= span {sλs∗
µ | s(λ)= s(µ)}.

Given a k-graph 3, we now describe how to associate a real C∗-algebra to it.

We assume that 3 is row-finite and has no sources. Observe that there is a (unique)

antimultiplicative linear automorphism χ of C∗(3) which satisfies χ(sλ)= s∗
λ .

Definition 2.4. An involution γ on a k-graph 3 is a degree-preserving functor

γ :3→3 which satisfies γ ◦ γ = id3.

The functoriality of γ implies that sγ = γ s and rγ = γ r for any involution γ .

Given an involution γ on3, the elements {sγ (λ) |λ∈3} form a Cuntz±Krieger3-

family, so the universal property of C∗(3) implies the existence of an automorphism

C∗(γ ) on C∗(3), given by C∗(γ )(sλ) := sγ (λ). Since χ commutes with C∗(γ ), the

composition γ̃ := χ ◦ C∗(γ ) is an antimultiplicative involution of C∗(3), which is

determined uniquely by the formula

γ̃ (sλ)= s∗
γ (λ).

It follows that (C∗(3); γ̃ ) is a C∗,τ -algebra (this just means exactly that γ̃ is an

antiautomorphism of C∗(3)). The corresponding real C∗-algebra is given by

C∗
R
(3, γ ) := {a ∈ C∗(3) | γ̃ (a)= a∗} (2.5)

(see Definition 1.1.4 of [Schröder 1993] and the following remark).

Lemma 2.6. Given an involution γ on a row-finite source-free k-graph 3,

C∗
R
(3, γ )= spanR {zsλs∗

µ + z̄sγ (λ)s
∗
γ (µ) | z ∈ C, λ, µ ∈3}.

Proof. Define A to be the right-hand side. We first observe that

(zsλs∗
µ + z̄sγ (λ)s

∗
γ (µ))

∗ = z̄sµs∗
λ + zsγ (µ)s

∗
γ (λ),

whereas the fact that γ̃ is antimultiplicative but linear implies that we also have

γ̃ (zsλs∗
µ + z̄sγ (λ)s

∗
γ (µ))= zsγ (µ)s

∗
γ (λ) + z̄sµs∗

λ .

Hence A ⊆ C∗
R
(3, γ ).
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To see that A ∼= C∗
R
(3, γ ), we show that A+ i A = C∗(3). To that end, fix α ∈ C

and consider αsλs∗
µ ∈ C∗(3). If we set z = α/2, w = −iα/2, a quick computation

reveals that

zsλs∗
µ + z̄sγ (λ)s

∗
γ (µ) + i(wsλs∗

µ +wsγ (λ)s
∗
γ (µ))= αsλs∗

µ.

As the elements αsλs∗
µ densely span C∗(3) as a real vector space, we conclude that

A + i A = C∗
R
(3, γ ) as claimed. □

To each k-graph we can associate k commuting matrices M1, . . . ,Mk in M30(N):

Mi (v,w) := |v3eiw|, (2.7)

that is, the (v,w) entry in Mi counts the number of color-i edges in3 with sourcew

and range v. We call the matrices Mi the incidence matrices or adjacency matrices

of the k-graph. The fact that Mi M j = M j Mi follows from the requirement, imposed

by the factorization rule, that there be an identical number of blue-red and red-blue

paths between any given pair (v,w) of vertices.

Given a k-graph3, we can form the skew product3×d Z
k , with Obj(3×d Z

k)=
30 × Z

k and Mor(3×d Z
k) = 3× Z

k . We have s(λ, n) = (s(λ), n + d(λ)) and

r(λ, n)= (r(λ), n). Defining d :3×d Z
k → N

k by d(λ, n)= d(λ)makes3×d Z
k a

k-graph, which is row-finite and source-free whenever3 is. Moreover, by [Kumjian

and Pask 2000, Theorem 5.7], the universal property of C∗(3×d Z
k) implies that

C∗(3×d Z
k) admits an action of Z

k , given on the generators by sλ,n · m := sλ,m+n .

2B. K-theory for real C∗-algebras. The main K-theoretic invariant that we use

in the category of real C∗-algebras is CR K-theory, denoted by K CR(A) for a real

C∗-algebra A. In this section, we review the definition and the properties of this

invariant, necessary for the rest of this article. CR K-theory derives from CRT

or ªunitedº K-theory; see [Bousfield 1990; Boersema 2002; 2004; Boersema et al.

2011].

For a real C∗-algebra A, we define K CR(A)={KO∗(A),KU∗(A)}, where KO∗(A)
is the usual period-8 K-theory of A and KU∗(A) := K∗(C ⊗ A) is the K-theory

of the complexification of A. In addition, KO∗(A) has the structure of a graded

module over the ring KO∗(R), where the groups of this ring are given by

KO∗(R)= Z Z2 Z2 0 Z 0 0 0

in degrees 0 through 7.

In particular, multiplication by the nontrivial element η of KO1(R)∼= Z2 induces

a natural transformation η : KOi (A) → KOi+1(A). We note that η satisfies the

relations 2η= 0 and η3 = 0, both as an element of the ring KO∗(R) and as a natural

transformation. There is also a nontrivial element ξ ∈ KO4(R), and corresponding
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natural transformation, that satisfies ξ 2 = 4βO , where βO is the real Bott periodicity

isomorphism of degree 8.

Complex K-theory KU∗(A) has the structure of a module over KU∗(R)= K∗(C),
but the only natural transformation which arises from this structure is the degree-2

Bott periodicity map β. There is, however, a natural transformation

ψ : KU∗(A)→ KU∗(A)

that arises from the conjugation map ψ : C⊗ A → C⊗ A defined by a+ib 7→ a−ib.

In addition, there are natural transformations

c : KO∗(A)→ KU∗(A),

r : KU∗(A)→ KO∗(A)

which are induced by the natural inclusion maps R →֒ C and C →֒ M2(R), respec-

tively.

Taken together, these natural transformations satisfy the following set of relations:

rc = 2, cr = 1 +ψ, 2η = 0,

ηr = 0, cη = 0, η3 = 0,

rψ = r, ψ2 = id, ξ 2 = 4βO,

ψc = c, ψβ = −βUψ, ξ = rβ2c.

(2.8)

A pair (G O ,GU ) of Z-graded abelian groups (G O with period 8 and GU with

period 2) together with natural transformations η, β, ζ, ψ, r, c as above, such that

the equations (2.8) hold, is called a CR-module, and the category of such objects is

the target of the functor K CR(A).

We display the full structure of K CR(R) and K CR(C) in Tables 1 and 2 below.

These are the only two singly generated free CR-modules (up to suspensions) and

all of the relations above are encoded in these two CR-modules. Furthermore, these

CR-modules will be the building blocks of the spectral sequence we will use to

compute K CR(C∗
R
(3, γ )). (See Theorem 3.13 and Section 3D below.)

The natural transformations also combine to form a long exact sequence

· · · → KOi (A)
η−→ KOi+1(A)

c−→ KUi+1(A)
rβ−1

−−→ KOi−1(A)→ · · · . (2.9)

The following theorem summarizes some of the important properties of the invari-

ant K CR(A).

Theorem 2.10. (1) If A is a real C∗-algebra, then K CR(A) is a CR-module.

(2) If A and B are real C∗-algebras such that C⊗ A and C⊗B are in the bootstrap

category N , then A and B are KK-equivalent if and only if K CR(A)∼= K CR(B).
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(3) If A and B are real C∗-algebras such that C ⊗ A and C ⊗ B are purely infinite

simple Kirchberg algebras, then A and B are stably isomorphic if and only

if K CR(A)∼= K CR(B).

(4) If A and B are real C∗-algebras such that C ⊗ A and C ⊗ B are purely infinite

simple unital Kirchberg algebras, then A and B are isomorphic if and only

if (K CR(A), [1A])∼= (K CR(B), [1B]).

Proof. From [Boersema 2002, Theorem 1.12], we know that K CRT(A) is a CRT -

module, from which it follows immediately that K CR(A) is a CR-module. By

[Boersema 2004, Corollary 4.11] and [Boersema et al. 2011, Theorem 10.2],

we know that statements (2), (3), and (4) are true when K CR( ± ) is replaced by

K CRT( ± ) throughout. However, from [Hewitt 1996, Theorem 4.2.1], we know that

K CR(A)∼= K CR(B) if and only if K CRT(A)∼= K CRT(B). □

From the point of view of calculations, it is often the case that once KU∗(A)
and a few of the KO∗(A) groups are known, then the rest can be identified using

the rich structure of a CR-module, specifically the relations among the natural

n 0 1 2 3 4 5 6 7

KOn Z Z2 Z2 0 Z 0 0 0

KUn Z 0 Z 0 Z 0 Z 0

ηn 1 1 0 0 0 0 0 0

cn 1 0 0 0 2 0 0 0

rn 2 0 1 0 1 0 0 0

ψn 1 0 −1 0 1 0 −1 0

Table 1. K CR(R).

n 0 1 2 3 4 5 6 7

KOn Z 0 Z 0 Z 0 Z 0

KUn Z ⊕ Z 0 Z ⊕ Z 0 Z ⊕ Z 0 Z ⊕ Z 0

ηn 0 0 0 0 0 0 0 0

cn

(
1
1

)
0

(−1
1

)
0

(
1
1

)
0

(−1
1

)
0

rn (1 1) 0 (−1 1) 0 (1 1) 0 (−1 1) 0

ψn

(
0
1

1
0

)
0

(
0

−1
−1

0

)
0

(
0
1

1
0

)
0

(
0

−1
−1

0

)
0

Table 2. K CR(C).
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transformations above combined with the long exact sequence. Beatrice Hewitt

[1996] found a way to boil down the information from an acyclic CR-module into

a simpler structure, called the core of the CR-module. We introduce this helpful

structure in Section 4 and use it to facilitate calculations of the K-theory of some

specific higher-rank graph algebras.

3. The spectral sequence

This section, which is the theoretical cornerstone of the paper, takes inspiration

from Evans’ computations [2008] of K-theory for the complex C∗-algebras of

higher-rank graphs. Our goal is to obtain a computable description of the spectral

sequence which converges to K CR(C∗
R
(3, γ )). The spectral sequence in question

was introduced in [Kasparov 1988, 6.10] and applies to crossed product C∗-algebras.

Thus, we begin by showing in Theorem 3.1 that C∗
R
(3, γ ) is stably isomorphic to

C∗
R
(3×d Z

k, γ )⋊Z
k . Next, we establish (see Theorem 3.7) that Kasparov’s spectral

sequence [1988] encodes not only the real and complex K-theory groups, but also

the CR-module structure linking them. Having thus established the relevance

of Kasparov’s spectral sequence to our situation, in Section 3C we combine the

AF structure of C∗
R
(3×d Z

k, γ ) (Corollary 3.6) and its Z
k-module structure to

provide a more combinatorial description of the E2 page of the spectral sequence

in Theorem 3.13. Namely, we identify a chain complex whose homology computes

the E2 page of the spectral sequence. Our approach here follows the outline used

in [Evans 2008] for complex C∗-algebras, although the intricate structure of real

K-theory necessitates a few detours.

Thanks to the AF structure of C∗
R
(3×d Z

k, γ ), the building blocks of this chain

complex are direct sums of the K-theory of the two most basic real C∗-algebras,

namely R and C. In this situation, Lemma 3.14 establishes that the entire CR-

module structure is dictated by what happens at the level of the complex K-theory.

Combining this insight with Evans’ computations of the K-theory of complex k-

graph C∗-algebras, we provide in Section 3D a more explicit description of the E2

page of the spectral sequence for k-graphs with k ≤ 3 and finitely many vertices.

This description is fundamental to our analysis of the examples in Section 4.

3A. Structure of C∗

R
(3, γ ). Given a k-graph (3, γ )with involution, we can extend

γ to an involution (also denoted γ ) on the skew-product k-graph 3×d Z
k by the

formula

γ (µ, n)= (γ (µ), n).

The involution γ thus induces a real structure on the complex C∗-algebra B =
C∗(3×d Z

k); we write

BR = C∗
R
(3×d Z

k, γ )
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for the associated real C∗-algebra. Recall that there is an action β of Z
k on B, given

by β(n) · sµ,m = sµ,m+n . Using the description of BR which arises from Lemma 2.6,

it is easy to see that the action β restricts to an action (also denoted β) of Z
k on BR.

We also use the notation βi = β(ei ) for i ∈ {1, 2, . . . , k}.

Theorem 3.1. There is an isomorphism

BR ⋊β Z
k ∼= C∗

R
(3, γ )⊗R KR

and hence

K CR(C∗
R
(3, γ ))∼= K CR(BR ⋊β Z

k).

Proof. As in Corollary 5.3 of [Kumjian and Pask 2000], there is an isomorphism

C∗(3)⋊α T
k ∼= C∗(3×d Z

k) of complex C∗-algebras, where α is the gauge action

of T
k on C∗(3). Furthermore, under this isomorphism, the dual action of Z

k on

C∗(3)⋊α T
k corresponds to the action β on B = C∗(3×d Z

k) described above.

By Takai duality (for complex C∗-algebras) we then have

B ⋊β Z
k = C∗(3×d Z

k)⋊β Z
k ∼= (C∗(3)⋊α T

k)⋊β Z
k ∼= C∗(3)⊗K. (3.2)

So far, all of this is exactly as indicated in [Kumjian and Pask 2000].

Now consider the involutions on each of these C∗-algebras. We show that the iso-

morphisms all respect the corresponding involutions. Recall from [Boersema 2014,

Section 2] that a real C∗-dynamical system consists of a quintuple (A, · ,G, · , α),
where (A, · ) is a complex C∗-algebra with conjugate-linear involution, (G, · ) is a

group with involution, and α is an action of G on A intertwining the involutions in

the sense that
α(g)(a)= α(ḡ)(ā) for all a ∈ A, g ∈ G.

If (A, · ,G, · , α) is a real C∗-dynamical system then the crossed product A⋊α G

inherits a natural conjugate-linear involution [Boersema 2014, Theorem 2].

In our case, it is straightforward to check that the involution γ̃ on B commutes

with the action of β so that (B, γ̃ ,Z
k, id, β) is a real C∗-dynamical system. Sim-

ilarly, the gauge action α intertwines with the involution γ̃ on C∗(3) so that

(C∗(3), γ̃ ,T
k, τ, α) is also a real C∗-dynamical system. Here τ is the involution

on T
k given by τ(z1, . . . , zk)= (z1, . . . , zn).

Furthermore, as groups with involution, (Tk, τ ) is dual to (Zk, id) in the sense

of [Boersema 2014, Section 3]. Therefore, by Takai duality for real C∗-algebras

[Boersema 2014, Theorem 9], the isomorphisms of (3.2) are isomorphisms that

respect the real structures, proving the theorem. □

As in [Evans 2008], for any m ∈ Z
k and v ∈30, let

Bm(v)= span {sµ,m−d(µ)s
∗
ν,m−d(ν) | s(µ)= s(ν)= v},

Bm = span {sµ,m−d(µ)s
∗
ν,m−d(ν) | s(µ)= s(ν)= v for some v ∈30 }.
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Then, as in [Evans 2008, Lemma 3.4] or [Kumjian and Pask 2000, Lemma 5.4], we

have B = lim−−→m→∞ Bm and there are isomorphisms

Bm(v)∼= K(ℓ2(s−1(v))) and Bm
∼=
⊕

v∈30

Bm(v),

which describe the structure of B as an AF-algebra. For m ≤ n, the inclusion map

ιnm : Bm →֒ Bn is determined on sµ,m−d(µ)s
∗
ν,m−d(ν) ∈ Bm(v) by the fact that, by

(CK4),
sµ,m−d(µ)s

∗
ν,m−d(ν) =

∑

r(α)=v
d(α)=n−m

sµα,m−d(µ)s
∗
να,m−d(ν). (3.3)

Observe that the terms on the right-hand side all lie in Bn , as d(µα)+ m − d(µ)=
d(α)+ m = n; however, they generally lie in different summands Bn(w).

Now, we consider the real structure on Bm and B. The involution γ̃ on B =
C∗(3×d Z

k) induced by γ satisfies γ̃ (sλ,m) = s∗
γ (λ),m , so we have γ̃ (Bm(v)) =

Bm(γ (v)) and γ̃ (Bm)= Bm . Therefore, γ̃ gives a real structure on Bm(v) (when

v is a vertex fixed by γ ) and on Bm(v)⊕ Bm(γ (v)) (when v is not fixed by γ ).

The following lemma describes the structure of the corresponding real C∗-algebras

Bm(v)R and (Bm(v)⊕ Bm(γ (v)))R.

Lemma 3.4. With notation as above, if γ (v)= v, then Bm(v)R ∼= KR(ℓ
2(s−1(v))).

If γ (v) ̸= v then (Bm(v)⊕ Bm(γ (v)))R ∼= KC(ℓ
2(s−1(v))).

Proof. We first consider the case when γ (v)= v. Fix j ∈ N and decompose

J = J ( j) := {λ ∈3v | d(λ)≤ ( j, j, . . . , j)}

as J = J f ⊔ J1 ⊔ J2, where γ |J f
= id and γ (J1) = J2. We can view elements

of MJ (C) as lying in Bm(v) under the identification eµ,ν 7→ sµ,m−d(µ)s
∗
ν,m−d(ν).

With this identification, the antimultiplicative involution γ̃ is given on MJ (C) by

γ̃ (eµ,ν) = eγ (ν),γ (µ). Furthermore, Bm(v) = lim−−→ j→∞ MJ ( j)(C); the connecting

map MJ ( j) → MJ ( j+1) is determined by the inclusions J f ( j) ⊆ J f ( j + 1) and

J1( j)⊆ J1( j + 1).

It follows that every element in

MJ (C)R = {a ∈ MJ (C) | a∗ = γ̃ (a)}
is of the block form 


A B B

C D E

C E D


 ,

where A is real valued and B,C, D, E are complex valued matrices.

We claim that MJ (C)R
∼= MJ (R). Set h = |J |, h1 = |J f |, and h2 = |J1| = |J2| (so

h1 + 2h2 = h). We know that (up to isomorphism) the only real C∗-algebras whose
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complexifications are isomorphic to MJ (C) = Mh(C) are Mh(R) and Mh/2(H),

and the second possibility can only happen if h is even (see, for example, page 1

of [Schröder 1993]). We show there exists a system of h orthogonal projections

in MJ (C)R, which precludes the existence of an isomorphism MJ (C)R
∼= Mh/2(H).

Indeed, there are h1 obvious orthogonal subprojections of

p =




Ih1
0 0

0 0 0

0 0 0


 ,

and similarly there are h2 orthogonal subprojections of each of

q1 =




0 0 0

0 1
2

Ih2

i
2

Ih2

0 − i
2

Ih2

1
2

Ih2


 and q2 =




0 0 0

0 1
2

Ih2
− i

2
Ih2

0 i
2

Ih2

1
2

Ih2


 .

Notice that p + q1 + q2 = Ih . It follows that MJ (C)R is isomorphic to Mh(R).

Moreover, it is evident that this choice of orthogonal subprojections is compatible

with the inclusion maps of the inductive limit Bm(v) ∼= lim−−→ MJ (C). Hence, if

γ (v)= v, Bm(v)R
∼= KR(ℓ

2(s−1(v))) as claimed.

Now, suppose γ (v) = w ̸= v. For any fixed j ∈ N, γ is a bijection from

Jv := {λ ∈ 3v | d(λ) ≤ ( j, j, . . . , j)} to Jw := {µ ∈ 3w | d(µ) ≤ ( j, . . . , j)}.
Therefore, for (a, b) ∈ MJv (C)⊕ MJw(C) ⊆ Bm(v)⊕ Bm(w), the involution γ̃

satisfies

γ̃ (a, b)= (bt , at),

and so the associated real matrix algebra is {M ⊕ M | M ∈ MJv (C)} ∼= MJv (C). As

KC(ℓ
2(s−1(v)))= lim−−→ j→∞ MJv (C)

∼= Bm(v)⊕ Bm(w), the result follows. □

As a complement to the abstract reasoning above, and inspired by [Boersema

2017, Theorem 2.5], we now exhibit a choice of basis for C
J which gives a more

concrete argument for why MJ (C)R
∼= MJ (R) when γ (v) = v. Fix an arbitrary

n ∈ Z
k . For λ ∈ J f we define tλ := sλ,n−d(λ), and if α ∈ J1 set

tα := 1√
2
(sα,n−d(α) + sγ (α),n−d(α)).

If β ∈ J2 we define tβ := i√
2
(sγ (β),n−d(β) − sβ,n−d(β)). One easily computes that

γ̃ (tλ)= t∗
λ

for any λ ∈ J , and that for any α, β ∈ J we have

t∗
β tα = t∗

α tβ = δα,βsv,n.
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It follows that, for any α, β, λ, η ∈ J ,

tαt∗
β tλt∗

η = δβ,λtαt∗
η .

In other words, {tαt∗
β | α, β ∈ J } is a set of matrix units, which spans MJ (C)

since {sλ,n−d(λ)s
∗
µ,n−d(µ) | λ,µ ∈ J } does, and which satisfies γ̃ (tαt∗

β) = tβ t∗
α for

all α, β ∈ J . With this basis, it is evident that MJ (C)R = MJ (R).

Remark 3.5. If 3 is a directed graph (1-graph), the operators {tα | α an edge} were

used in [Boersema 2017, Theorem 2.4] to show that any vertex-fixing involution

γ on 3 gives rise to the same real C∗-algebra as the trivial involution. However,

this proof breaks down in the k-graph case for k > 1, because {tα | α ∈3} need not

satisfy the Cuntz±Krieger relations, even if all vertices are fixed by γ . In particular,

if e f ∼ f ′e′ we need not have tet f = t f ′ te′ . It remains an open question whether

the conclusion of [Boersema 2017, Theorem 2.4] extends to higher-rank graphs

with involution.

The following corollary is immediate from Lemma 3.4.

Corollary 3.6. For each m ∈ Z
k ,

BR

m
∼=
⊕

v∈G f

KR(ℓ
2(s−1(v)))⊕

⊕

v∈G1

KC(ℓ
2(s−1(v))),

where G f is the set of vertices of 3 that are fixed by γ and G1 is a set that

contains exactly one vertex from every γ -orbit of cardinality 2. Consequently,

BR = C∗
R
(3×d Z

k, γ )= lim−−→ BR

m is an AF real C∗-algebra.

3B. The spectral sequence via group homology. The main result of this section is

the following.

Theorem 3.7. There exists a spectral sequence {Er , dr } of CR-modules that con-

verges to K CR(C∗
R
(3, γ )) and has

E2
p,q = Hp(Z

k, K CR(BR)).

In this spectral sequence, each object Er
p,q is a CR-module and each map dr

p,q is

a CR-module homomorphism. The spectral sequence is defined for all p, q ∈ Z, but

it is periodic in q. (The real part has period 8 and the complex part has period 2.)

Also, Er
p,q = 0 for p /∈ {0, 1, . . . , k}.

Proof of Theorem 3.7. Let k∗(BR) denote one of the graded functors KO∗(BR)

or KU∗(BR). Applying [Kasparov 1988, 6.10 Theorem] to the setting where π = Z
k

and D = BR, we obtain a spectral sequence converging to the ªγ -partº of k∗(BR⋊Z
k),

and whose E1 and E2 pages are given by

E1
p,q

∼= kp+q(Dp/Dp−1)∼=
⊕

m:1≤m≤(k
p)

kq(BR) and E2
p,q

∼= Hp(Z
k, kq(BR)).
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(Here 0 ⊆ D0 ⊆ D1 ⊆ · · · ⊆ Dk = DX is a filtration by ideals of a certain fixed-point

algebra DX , which is Morita equivalent to BR.) Since the Baum±Connes conjecture

with arbitrary coefficients is true for Z
k [Schick 2004], this spectral sequence in fact

converges precisely to k∗(BR ⋊Z
k), which equals k∗(C

∗
R
(3, γ )) by Theorem 3.1.

Taking both of these spectral sequences together, we have a spectral sequence with

both a real and a complex part that converges to K CR(C∗
R
(3, γ )).

Now, let k∗(BR), k̃∗(BR) each independently denote one of the groups KO∗(BR)

or KU∗(BR) and let θ : k∗(BR) → k̃∗(BR) be one of the natural transformations

r, c, η, β, ψ of K CR(BR)= K CR(DX ). Any one of these natural transformations can

actually be represented by an element in KK∗(C1,C2), where each Ci is isomorphic

to R or C. Multiplying by this KK-element induces the map

θ1 : kp+q(Dp/Dp−1)→ k̃p+q(Dp/Dp−1).

Thus the E1 page of the spectral sequence also has a natural CR-structure. Fur-

thermore, as observed by Schochet [1981], the spectral sequence construction is

natural not only with respect to filtered homomorphisms of filtered C∗-algebras but

also with respect to natural transformations of exact functors (see the comments on

[Schochet 1981, page 207]). As Kasparov’s spectral sequence construction follows

that of Schochet, it follows that θ1 : E1
∗ → E1

∗ commutes with the differentials and

converges to the map θ∞ : k∗(C
∗
R
(3, γ ))→ k̃∗(C

∗
R
(3, γ )) induced by the original

KK-element on the E∞ page. Therefore, we can consider the spectral sequence as

a spectral sequence in the category of CR-modules.

At the E2 page, we also have another CR-module structure, induced by multiply-

ing k∗(BR) by the KK-element representing the natural transformation θ . It remains

to show that the isomorphism E2
p,q

∼= Hp(Z
k, kq(BR)) is a CR-module isomor-

phism. Recall from [Kasparov 1988, p. 199] that, under the isomorphism E1
p,q

∼=⊕
m kq(BR), the differential map d1 corresponds to the boundary homomorphism

of the simplicial chain complex, yielding the isomorphism E2
p,q

∼= Hp(Z
k, k∗(BR)).

It then follows immediately that under this isomorphism, the map θ2 on E2 which

is induced from θ1 : kp+q(Dp/Dp−1)→ k̃p+q(Dp/Dp−1) is identical to the map

on Hp(Z
k, k∗(BR)) which arises from θ BR : k∗(BR)→ k̃∗(BR) and the naturality of

group homology (see for example Section III.6 of [Brown 1994]). Therefore, the

CR-module structure of Hp(Z
k, kq(BR)) is the same as that of E2

p,q . □

3C. A combinatorial description of E2
p,q . In this section, we use the structure of

BR as an AF algebra (Corollary 3.6) to obtain (in Theorem 3.13) a more explicit

formula for the E2 page of our spectral sequence from Theorem 3.7. To be precise,

we identify a chain complex A(0) whose p-th group A
(0)
p consists of

(
k
p

)
copies of

a certain CR-module, and whose homology computes E2
p,q . In Section 3D below,
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we provide an explicit description of the connecting maps of this chain complex in

terms of the adjacency matrices of 3, in the situation where k ≤ 3.

Recall that BR = lim−−→(B
R

m, ιnm), where (for m ∈ Z
k)

BR

m = span {sµ,m−d(µ)s
∗
ν,m−d(ν) | s(µ)= s(ν)= v for some v ∈30}

⊆ BR = C∗
R
(3×d Z

k),

and ιnm : BR

m →֒ BR

n (for m ≤ n ∈ Z
k) are the connecting maps (3.3) of the inductive

system. Let jnm := (ιnm)∗ : K CR(BR

m)→ K CR(BR

n ) be the induced map on united

K-theory. Partition 30 into three disjoint sets, 30 = G f ⊔G1 ⊔G2, where γ |G f
= id

and γ (G1)= G2. With this notation, Corollary 3.6 implies that

BR

m
∼=
⊕

v∈G f

KR(ℓ
2(s−1(v)))⊕

⊕

v∈G1

KC(ℓ
2(s−1(v)))

and consequently,

Am := K CR(BR

m)= K CR(R)G f ⊕ K CR(C)G1 .

The continuity of K-theory implies that

A∞ := lim−−→(Am, jnm)∼= K CR(BR).

As in [Evans 2008, Section 3], we define

Np = {(µ1, . . . , µp) | µi ∈ N, 1 ≤ µ1 < · · ·< µp ≤ k}.

(The authors recognize that µ is also a common notation for an element of a k-

graph 3. We have chosen to follow Evans’ notation, using µi and µi in reference

to elements of Np, for ease of cross-referencing. It should always be clear from

context (and the presence of sub- and super-scripts) whether λ or µ refers to an

element of Np or of 3.)

Observe that |Np| =
(

k
p

)
. If µ= (µ1, . . . , µp) ∈ Np then for any 1 ≤ i ≤ p, we

write

µi =
{
(µ1, . . . , µi−1, µi+1, . . . , µp) ∈ Np−1 if p > 1,

⋆ if p = 1.

Let B denote the chain complex of CR-modules,

B : 0 → A∞ → · · · →
⊕

Np

A∞ → · · · → A∞ → 0.

Writing Bp :=
⊕

Np
A∞, the differentials ∂p : Bp → Bp−1 are defined by

∂p =
⊕

λ∈Np−1

∑

µ∈Np

p∑

i=1

(−1)i+1δλ,µi (id −(βµi
)−1
∗ ), (3.8)
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where β is the usual action of Z
k on BR given on generators by β(n)sµ,m = sµ,m+n .

We have β j = β(e j ), and we write (β j )∗ for the induced map on A∞.

For an element y ∈ Bp, we can write y =
⊕

µ∈Np
yµ, where yµ ∈ A∞. We

find it convenient to write such an element alternatively as y =
∑

µ∈Np
yµeµ,

where eµ ∈ {0, 1}Np satisfies eµ(λ) = δµ,λ. Using this notation, we can write the

differentials of the complex B as

∂p(yµeµ)=
p∑

i=1

(−1)i+1(id −(βµi
)−1
∗ )(yµ)eµi for µ ∈ Np and yµ ∈ A∞.

Lemma 3.9. There is a graded isomorphism

H∗(Z
k, K CR(BR))∼= H∗(B).

Proof. This result is proven exactly as in the proof of Lemma 3.12 of [Evans

2008], making use of the Koszul resolution for Z over ZG, where G = Z
k and then

tensoring that resolution by k∗(BR), where the functor k∗( ± ) is any of the functors

KOi ( ± ) and KUi ( ± ). □

We now work towards a more concrete description of H∗(B). For each m ∈ N
k ,

let A(m) denote the chain complex of CR-modules

A
(m) : 0 → Am → · · · →

⊕

µ∈Np

Am → · · · → Am → 0,

where, we recall, Am = K CR(BR

m). The differentials ∂
(m)
p for A(m) are defined by

∂(m)p (yµeµ)=
p∑

i=1

(−1)i+1(id −φm
µi
)(yµ)eµi for µ ∈ Np and yµ ∈ Am,

where φm
j : K CR(BR

m)→ K CR(BR

m) is the map induced on K CR(±) by the composition

BR

m

ιm+e j ,m−−−−→ BR

m+e j

β(−e j )−−−−→ BR

m .

Recall that jnm : Am → An is the map induced on K-theory by the inclusion map

ιnm : Bm → Bn of (3.3). For each m ≤ n, we extend the map jnm : Am → An to a

chain map Jnm : A(m) → A(n) defined by

Jp
nm

( ∑

µ∈Np

yµeµ

)
=
∑

µ∈Np

jnm(yµ)eµ.

Lemma 3.10. Jnm is a chain map for all m ≤ n. Furthermore, there is an isomor-

phism of chain complexes B ∼= lim−−→(A
(m), Jnm).
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Proof. The claim that Jnm is a chain map is, by definition, the claim that the diagram

A
(m)
p

∂
(m)
p

//

Jnm

��

A
(m)
p−1

Jnm

��

A
(n)
p

∂
(n)
p

// A
(n)
p−1

commutes for all p. Focusing on each summand of A
(m)
p =

⊕
µ∈Np

Am , this is

evidently equivalent to the commuting of the diagram

Am

φm
µi

//

jnm

��

Am

jnm

��

An

φn
µi

// An

for all i . On the level of C∗-algebras, this follows from the relation

β(−e j ) ◦ ιn+e j ,m = ιn,m ◦β(−e j ) ◦ ιm+e j ,m,

which holds thanks to the fact that every γ ∈3n−m+e j can be factored as γ = γ1γ2

for a unique γ1 ∈3e j , γ2 ∈3n−m .

Now we prove the second statement. Using the isomorphism lim−−→ K CR(BR

m) =
K CR(BR), we immediately obtain lim−−→A

(m)
p = Bp for all p. For each m ∈ Z

k , let

Jm : A(m) → B be the map into the limit; this can also be described by

Jp
m

( ∑

µ∈Np

yµeµ

)
=
∑

µ∈Np

jm(yµeµ),

where jm : K CR(BR

m)→ K CR(BR) is the map induced by the inclusion BR

m →֒ BR.

It remains to show that the diagram

A
(m)
p

∂
(m)
p

//

Jm

��

A
(m)
p−1

Jm

��

Bp

∂p
// Bp−1

commutes, for which it suffices to show that

Am

φm
µi

//

jm
��

Am

jm
��

A∞
(βµi

)−1
∗

// A∞
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commutes for all i . This follows from the definition of φm
µi

and the fact that the

diagram

Bm

ιm

��

β(−ei )
// Bm−1

ιm−1

��

B
β(−ei )

// B

commutes on the level of C∗-algebras. □

The following lemma is the last key technical result that we need. The proof

of the corresponding statement in the complex case is the bulk of the proof of

Theorem 3.14 of [Evans 2008]. The proof there is quite technical. Our proof is

too, and here we have the additional complication of working in the category of

CR-modules, rather than the category of abelian groups. We mitigate some of this

technicality through the use of the eµ notation introduced above, as well as making

explicit use of the concept of a chain homotopy, which Evans did not do.

In addition to the chain map Jnm : A(m) → A(n) we also have the chain map

Bnm :A(m)→A(n) for m ̸=n, defined by the action β(n−m)∗ : K CR(Bm)→K CR(Bn)

extended to A(m) =
⊕

Np
Am =

⊕
Np

K CR(Bm). It is routine to show that Bnm is

a chain map. In fact, since β(n − m) : Bn → Bm is an isomorphism, Bnm is an

isomorphism of chain complexes.

Lemma 3.11. For all m ≤ n, the chain maps Bnm and Jnm are chain homotopic.

Thus the induced map (Jnm)∗ : H∗(A
(m))→ H∗(A

(n)) is an isomorphism.

Proof. It suffices to prove the claim for Bm+e j ,m and Jm+e j ,m for arbitrary m, j . We

fix m, j for the remainder of this proof and write J = Jm+e j ,m and B = Bm+e j ,m .

For µ ∈ Np, let κ(µ) denote the cardinality of {i ∈ {1, . . . , p} | µi < j}. Now let

σ p : A(m)p → A
(m+e j )

p+1 be the map defined by

σ p(yµeµ)=
{
(−1)κ(µ)(β j )∗(yµ)eµ∪{ j} if j /∈ µ,
0 if j ∈ µ.

This definition of σ is inspired by the choice of z in the proof of Theorem 3.14 in

[Evans 2008].

We show that for all y ∈ A
(m)
p we have (suppressing the superscripts for ∂p)

∂p+1σ
p(y)+ σ p−1∂p(y)= (Bp − Jp)y,

so that σ provides the desired chain homotopy between B and J.

It suffices by linearity to assume that y = yµeµ for some µ ∈ Np and yµ ∈ Am .

First we consider the case j ∈ µ; so µκ(µ)+1 = j . Then, writing φ j for φm
j and j j
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for jm+e j ,m , we have

∂p+1σ
p(yµeµ)+σ p−1∂p(yµeµ)

=0+σ p−1

( p∑

i=1

(−1)i+1(id −φµi
)(yµ)eµi

)

=(−1)κ(µ)σ p−1((id −φ j )(yµ)eµκ(µ)+1) since j ∈µi unless i =κ(µ)+1

=(−1)κ(µ)(−1)κ(µ)(β j )∗(id −φ j )(yµ)eµ since κ(µκ(µ)+1)=κ(µ)
=((β j )∗−j j )(yµ)eµ since φ j =(β j )

−1
∗ (ι j )∗=(β j )

−1
∗ (j j )

=(Bp−Jp)(yµ)eµ.

Now, consider the case j /∈ µ. Then

σ p−1∂p(yµeµ)= σ p−1

( p∑

i=1

(−1)i+1(id −φµi
)(yµ)eµi

)

=
p∑

i=1

(−1)i+1(−1)κ(µ
i )(β j )∗(id −φµi

)(yµ)eµi ∪{ j},

∂p+1σ
p(yµeµ)= ∂p+1((−1)κ(µ)(β j )∗yµeµ∪{ j})

=
p+1∑

i=1

(−1)κ(µ)(−1)i+1(id −φ(µ∪{ j})i )(β j )∗(yµ)e(µ∪{ j})i .

In this last sum, any term with i ≤ κ(µ) is equal to

(−1)κ(µ)(−1)i+1(id −φµi
)(β j )∗(yµ)eµi ∪{ j}

= (−1)κ(µ
i )+1(−1)i+1(id −φµi

)(β j )∗(yµ)eµi ∪{ j}

while any term with i ≥ κ(µ)+ 2 is equal to

(−1)κ(µ)(−1)i+1(id −φµi−1
)(β j )∗(yµ)eµi−1∪{ j}

= (−1)κ(µ
i−1)(−1)i−1(id −φµi−1

)(β j )∗(yµ)eµi−1∪{ j}.

As the maps φµi
and β∗

j commute for all i, j , in the sum

∂p+1σ
p(yµeµ)+ σ p−1∂p(yµeµ),

all these terms cancel out, and the only term that remains is the summand of

∂p+1σ
p(yµeµ) corresponding to i = κ(µ)+ 1. Therefore,

∂p+1σ
p(yµeµ)+ σ p−1∂p(yµeµ)= (−1)κ(µ)(−1)κ(µ)+2(id −φ j )(β j )∗(yµ)eµ

= (id −φ j )(β j )∗(yµ)eµ

= (Bp − Jp)(yµ)eµ. □
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Lemma 3.12. H∗(B)∼= H∗(A
(0)).

Proof. From Lemma 3.10 and the continuity of the homology functor, we have

H∗(B)= limm→∞(H∗(A
(m)), (Jnm)∗). However, Lemma 3.11 shows that the con-

necting maps of the limit are all isomorphisms. Therefore H∗(B)∼= H∗(A
(0)). □

Theorem 3.13. Let (3, γ ) be a k-graph with involution that is row-finite and

has no sources. Then there exists a spectral sequence {Er , dr } converging to

K CR(C∗
R
(3, γ )) such that E2

p,q
∼= Hp(A

(0)) and Ek+1
p,q

∼= E∞
p,q .

Proof. Theorem 3.7 gives the existence of the spectral sequence {Er , dr }. Lem-

mas 3.9 and 3.12 combine to provide the isomorphism E2
p,q = Hp(A

(0)). The

isomorphism Ek+1
p,q

∼= E∞
p,q results from the fact that E2

p,q = Hp(Z
k, kq(BR))= 0 if

p ≥ k + 1, so all of the differential maps dr
p,q are zero for r ≥ k + 1. □

3D. Notes on computations using the spectral sequence. We say that a k-graph

3 is finite if the number of vertices is finite and the number of edges of degree ei

is finite for each i . In this subsection we articulate Theorem 3.13 more precisely

in the specific cases of a finite k-graph 3 for k = 1, 2, 3. That is, we identify the

boundary maps of the chain complex A(0), in order to describe K CR(C∗
R
(3, γ )) in

terms of the purely combinatorial data coming from the k-graph and its involution.

Throughout, we assume that 3 is finite with involution γ . We partition 30 into

three disjoint sets, 30 = G f ⊔ G1 ⊔ G2, where γ |G f
= id and γ (G1)= G2. Let A

denote the CR-module

A := K CR(R)G f ⊕ K CR(C)G1 .

Recall that AU
0 = Z

30

. Thanks to Theorem 3.13, the E2 page of our spectral

sequence for C∗
R
(3, γ ) is given by the homology of the chain complex A(0), all of

whose component CR-modules are direct sums of A.

We first establish a handy lemma that will facilitate our description of the

boundary maps of the chain complex A(0).

Lemma 3.14. Let M, N be two CR-modules, which are each isomorphic to a

finite direct sum of K CR(R) and K CR(C). Then any CR-module homomorphism

α : M → N is determined by the complex part αU
0 .

Proof. It suffices to consider the cases that M is isomorphic to either K CR(R) or to

K CR(C). Recall that the CR-module K CR(R) is free with a generator in the real part

in degree 0 and K CR(C) is free with a generator in the complex part in degree 0

[Bousfield 1990, Section 4.7]. Thus the result is immediate in the case M = K CR(C).

Now suppose that M = K CR(R) with generator b ∈ M O
0 . We must show that

αO
0 (b) is uniquely determined by αU . We have c(αO

0 (b))= αU
0 (c(b)), where c is the

complexification map from M O to MU , or from N O to N U . The complexification
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map c in degree 0 is injective for both K CR(R) and for K CR(C). Thus, the formula

c(αO
0 (b))= αU

0 (c(b)) determines αO
0 (b). □

Recall from (2.7) that Mi is the adjacency matrix of 3 for the edges of degree ei .

Definition 3.15. For 1 ≤ i ≤ k, let ρi : A → A be the unique CR-module homo-

morphism such that (ρi )U0 : Z
30 → Z

30

is represented by the matrix Bi = id −M t
i .

Remark 3.16. Lemma 3.10 above combines with [Evans 2008, Lemma 3.10] to

reveal that the CR-module homomorphism (β−1
i )∗ used in the definition of ∂p (see

(3.8) above) agrees with ρi .

Lemma 3.14 tells us that (ρi )O
j is completely determined by (ρi )U0 . The com-

putation of (ρi )O
j from (ρi )U0 follows the same method as indicated in [Boersema

2017, Theorem 4.4]. In particular, if the complex part

(ρi )U0 ∈ EndZ(Z
30

)= EndZ(Z
G f ⊕ Z

G1 ⊕ Z
G2)

is given by the matrix Bi = I − M t
i , then the functoriality of γ implies that γ

implements a bijection between the edges of color i with source in G1 and range

in G2, and the edges of color i with source in G2 and range in G1. Similarly, the

edges with both source and range in G1 are in bijection with the edges with source

and range in G2. In other words,

Bi =




B11 B12 B12

B21 B22 B23

B21 B23 B22


 .

It now follows that the real part (ρi )O
0 ∈ EndZ(Z

G f ⊕Z
G1) is given by the matrix

(
B11 2B12

B21 B22 + B23

)
.

The other formulas for (ρi )O
j can be deduced from this easily; they are also given

in [Boersema 2017, Theorem 4.4]. For the convenience of the reader, we reproduce

the relevant table in Table 3.

Once the maps ρi are understood, Theorem 3.13 can be applied to develop the

spectral sequence to compute K CR(C∗
R
(3, γ )). The following theorems articulate

exactly how this looks in the cases k = 1, 2, 3. We note that for the case k = 1 we

recover Theorem 4.1 of [Boersema 2017].

Theorem 3.17 (cf. [Boersema 2017, Theorem 4.1]). Let (3, γ ) be a finite 1-graph

with involution. Then there is a 2-column spectral sequence that converges to

K CR(C∗
R
(3, γ )) with E2

p,q equal to the homology of the chain complex A(0),

0 → A
∂1−→ A → 0,

where ∂1 = ρ1.
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complex part

0




B11 B12 B12

B21 B22 B23

B21 B23 B22


 Z

|G f | ⊕ Z
|G1| ⊕ Z

|G2| → Z
|G f | ⊕ Z

|G1| ⊕ Z
|G2|

1 0 0

real part

0

(
B11 2B12

B21 B22 + B23

)
Z

|G f | ⊕ Z
|G1| → Z

|G f | ⊕ Z
|G1|

1 B11 Z
|G f |
2 → Z

|G f |
2

2

(
B11 B12

0 B22 − B23

)
Z

|G f |
2 ⊕ Z

|G1| → Z
|G f |
2 ⊕ Z

|G1|

3 0 0

4

(
B11 B12

2B21 B22 + B23

)
Z

|G f | ⊕ Z
|G1| → Z

|G f | ⊕ Z
|G1|

5 0 0

6 B22 − B23 Z
|G1| → Z

|G1|

7 0 0

Table 3. Table for real K-theory.

Proof. As k = 1, we have |N0| = |N1| = 1. Therefore, in this case (3.8) simplifies

to ∂1 = id −(β1)
−1
∗ By Remark 3.16, (β−1

1 )∗ agrees with the map whose complex

part is represented by the matrix M t
1. That is, ∂1 = ρ1. □

Theorem 3.18. Let (3, γ ) be a finite 2-graph with involution. Then there is a

3-column spectral sequence that converges to K CR(C∗
R
(3, γ )) with E2

p,q equal to

the homology of the chain complex A(0),

0 → A
∂2−→ A2 ∂1−→ A → 0,

where

∂1 =
(
ρ1 ρ2

)
, ∂2 =

(
−ρ2

ρ1

)
.

Proof. When k = 2, we have |N1| = 2 and |N2| = |N0| = 1. Therefore, (3.8) and

Remark 3.16 tell us that ∂1 : A2 → A and ∂2 : A → A2 are given by

∂1 =
∑

µ∈{1,2}
(id −(βµ)−1

∗ )=
(
ρ1 ρ2

)
,

∂2 = (−1)(id −(β2)
−1
∗ )⊕ (id −(β1)

−1
∗ )=

(
−ρ2

ρ1

)
. □
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Theorem 3.19. Let (3, γ ) be a finite 3-graph with involution. Then there is a

4-column spectral sequence that converges to K CR(C∗
R
(3, γ )) with E2

p,q equal to

the homology of the chain complex A(0),

0 → A
∂3−→ A3 ∂2−→ A3 ∂1−→ A → 0,

where

∂1 =
(
ρ1 ρ2 ρ3

)
, ∂2 =




−ρ2 −ρ3 0

ρ1 0 −ρ3

0 ρ1 ρ2


 , ∂3 =




ρ3

−ρ2

ρ1


 .

Proof. We justify the formula for ∂3 and leave the remaining cases to the reader.

As k = 3, we have |N3| = 1 and |N2| = 3. Write N3 = {{1, 2, 3}} = {µ}. Given

1 ≤ i ≤ 3, there is a unique λ∈ N2 with λ=µi . Ordering N2 ={{1, 2}, {1, 3}, {2, 3}}
lexicographically, (3.8) becomes

∂3 = (−1)3+1(id −(β3)
−1
∗ )⊕(−1)2+1(id −(β2)

−1
∗ )⊕(−1)1+1(id −(β1)

−1
∗ )=




ρ3

−ρ2

ρ1


. □

4. Examples

In this section, we give three families of examples of real C∗-algebras that arise from

rank-2 graphs with involution. These examples showcase how one can leverage

the CR-module structure of real K-theory to completely determine K CR(C∗
R
(3, γ ))

on the basis of a small amount of initial data. In all three examples, our strategy

follows the same general outline. We begin by identifying the chain complex

of Theorem 3.18 and computing its homology, which gives us the E2 page of

the spectral sequence. As k = 2 in all of our examples, we have E∞
pq = E3

pq for

all p, q; thus, our next step is to identify the differential d2, which determines the

E3 = E∞ page. However, knowing the E∞ page does not completely describe

K CR(C∗
R
(3, γ )); rather, it gives a filtration (of at most 3 levels in the k = 2 case)

of K CR(C∗
R
(3, γ )).

In our chosen examples, the CR-module structure (and in particular the concept

of the core of a CR-module, as introduced in [Hewitt 1996]) enable us to describe

K CR(C∗
R
(3, γ )), up to at most two possibilities, using only the data from the E2

page. As the core is a key tool in all of our computations in this section, we pause

to discuss it in more detail.

To that end, recall that we have an involutionψ on KU∗(C
∗
R
(3, γ ))= K∗(C

∗(3))

which comes from the real structure on C∗(3). Moreover, since KO∗(C
∗
R
(3, γ )) is

a graded module over KO∗(R), for each i we have

ηi−1 : KOi−1(C
∗
R
(3, γ ))→ KOi (C

∗
R
(3, γ )),
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which comes from multiplication by the nontrivial element in KO1(R)= Z2. Thus,

we can define

MOi = im ηi−1 : KOi−1(C
∗
R
(3, γ ))→ KOi (C

∗
R
(3, γ )),

MUi =
ker(1 −ψi )

im(1 +ψi )
.

(4.1)

Note that since the MOi groups arise from the map η, which satisfies 2η = 0, every

MOi group is also 2-torsion. A straightforward computation shows that the MUi

groups are also always 2-torsion.

The maps η, c, r of K CR
∗ (C∗(3, γ )) then naturally induce maps η′, c′, r ′ on the

groups MOi and MUi , and we obtain a long exact sequence

· · · → MOi
η′
−→ MOi+1

c′
−→ MUi

r ′
−→ MOi−2 → · · · (4.2)

(see [Hewitt 1996, Section 5.1]). The core of the CR-module K CR(C∗
R
(3, γ )) is

defined to consist of KU∗(C
∗
R
(3, γ )), the map ψ , and the groups and maps of the

long exact sequence (4.2).

Thus, KU∗(C
∗
R
(3, γ )) is retained but KO∗(C

∗
R
(3, γ )) itself is dropped when we

pass to the core; so on the face of it, we lose information. However, it follows from

Theorem 4.2.1 of [Hewitt 1996] that for two real C∗-algebras, K CR(A1)∼= K CR(A2)

if and only if the cores of K CR(A1) and K CR(A2) are isomorphic. Indeed, in our

examples below, we compute some of the groups and maps in K CR(C∗
R
(3, γ ))

by using the spectral sequence, and then compute the core of the CR-module to

complete the identification of K CR(C∗
R
(3, γ )). This saves the work of having to

compute all of the groups of KO∗(C
∗
R
(3, γ )) directly.

Notably, the factorization rules of the k-graph3 are irrelevant to the computations

of the E2 page. Thus, the examples in this section support the conjecture [Barlak

et al. 2018, Conjecture 5.11] that the K-theory of a k-graph C∗-algebra should be

(largely) independent of the choice of factorization rules.

In cases where we have multiple possibilities for K CR(C∗
R
(3, γ )), the ambiguity

comes from the fact that we have multiple possibilities for the d2 map. In more

complicated examples, it is also possible that the filtration of K CR(C∗
R
(3, γ )) given

on the E∞ page might not arise from a unique collection of K-theory groups.

We anticipate that a careful analysis of the impact of the factorization rules on

K CR(C∗
R
(3, γ )) may clarify these questions.

The first family of examples we consider, in Section 4A, are 2-graphs with only

one vertex but an arbitrary number of edges of each type. In the second family of

examples (Section 4B) we consider 2-graphs with exactly three vertices, where the

adjacency matrix is the same for both types of edges. Finally, in Section 4C, we

consider a family of 2-graphs with exactly three vertices but which have two distinct

adjacency matrices. Our computations result in a variety of different CR-modules,
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many of which (but not all) have appeared in the literature before now or are direct

sums of CR-modules that have appeared before.

All of the examples that we present have K-theory that is not consistent with

a 1-graph algebra, since they all have torsion in KU1(C
∗(3)) [Boersema 2017,

Corollary 4.3]. In fact, in all of our examples, the complex K-theory is consistent

with that of a tensor product Om ⊗On of complex Cuntz algebras. Therefore, in

the case that the resulting real C∗-algebra is purely infinite and simple, [Boersema

et al. 2011, Corollary 10.5] implies that they are all real forms of Om ⊗On .

4A. A 1-vertex 2-graph. Let 3 be a rank-2 graph with one vertex. Since all of the

edges of degree (1, 0) and (0, 1) are just loops based at the vertex v, an involution

γ on 3 is just an involutive permutation on each of the two sets of loops, with the

constraint that the permutation must be consistent with the factorization rules of 3.

In the special case that the factorization rules for 3 are trivial and the involution

γ on 3 is trivial, C∗
R
(3, γ )= C∗

R
(3, id) is a tensor product of real Cuntz algebras:

C∗
R
(3, id)= C∗

R
(3)∼= C∗

R
(31 ×32)= C∗

R
(31)⊗R C∗

R
(32)∼= O

R

m ⊗R O
R

n

by [Kumjian and Pask 2000, Corollary 3.5(iv)]. The K-theory for such tensor

products of real Cuntz algebras is known from [Boersema 2002]. We here compute

K CR(C∗
R
(3, γ )) more generally and find that essentially the same K-theory appears

as in the tensor products, regardless of the factorization rules and the involution γ .

We first describe the specific CR-modules that arise, which we denote as Rg

for g odd (g ≥ 3) and Sg, Tg for g even (g ≥ 2). The groups in these CR-modules

are given below; in these examples, the natural transformations r, c, η, ω,ψ which

complete the data of the CR-module are completely determined by the given groups,

and the relations among the homomorphisms mandated by the CR-relations (2.8)

and the long exact sequence (2.9) linking the real and complex parts of a CR-module.

The precise formulas for these natural transformations are recorded in [Boersema

2002, Section 5.2].

g odd 0 1 2 3 4 5 6 7

(Rg)
O
i Zg Zg 0 0 Zg Zg 0 0

(Rg)
U
i Zg Zg Zg Zg Zg Zg Zg Zg

g even 0 1 2 3 4 5 6 7

(Sg)
O
i Zg Z2g Z

2
2 Z

2
2 Z2g Zg 0 0

(Sg)
U
i Zg Zg Zg Zg Zg Zg Zg Zg
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g ≡ 0 (mod 4) 0 1 2 3 4 5 6 7

(Tg)
O
i Zg Z2 ⊕ Zg Z

3
2 Z

3
2 Z2 ⊕ Zg Zg 0 0

(Tg)
U
i Zg Zg Zg Zg Zg Zg Zg Zg

g ≡ 2 (mod 4) 0 1 2 3 4 5 6 7

(Tg)
O
i Zg Z2 ⊕ Zg Z2 ⊕ Z4 Z2 ⊕ Z4 Z2 ⊕ Zg Zg 0 0

(Tg)
U
i Zg Zg Zg Zg Zg Zg Zg Zg

For later reference during the calculations in this section, we also record the

groups MOi and MUi corresponding to the CR-modules Sg and Tg in the tables

below. Recall that the core of a CR-module M consists of just the complex part

of M and the groups of MOi and MUi (and the relevant natural transformations).

For Rg, we do not make use of the core but we note for completeness that MOi = 0

and MUi = 0 for all i .

core of Sg for g even 0 1 2 3 4 5 6 7

MOi 0 Z2 Z
2
2 Z

2
2 Z

2
2 Z2 0 0

MUi Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2

core of Tg for g even 0 1 2 3 4 5 6 7

MOi 0 Z2 Z2 Z
2
2 Z2 Z2 0 0

MUi Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2

Given m, n ∈ N≥2, define g = gcd(m −1, n −1). From Section 5.2 of [Boersema

2002] we have

K CR(OR

m ⊗R O
R

n )
∼=





Rg if g odd,

Sg if m − 1 ≡ n − 1 ≡ 2 (mod 4),

Tg if m − 1 ≡ 0 or n − 1 ≡ 0 (mod 4).

(4.3)

In particular, there are isomorphisms Rg
∼= K CR(OR

g+1 ⊗R OR

g+1) if g is odd,

Tg
∼= K CR(OR

g+1 ⊗R OR

g+1) if g ≡ 0 (mod 4), and Sg
∼= K CR(OR

g+1 ⊗R OR

g+1) if

g ≡ 2 (mod 4).

Proposition 4.4. Let 3 be a rank-2 graph with one vertex. Let m be the number of

edges of degree (1, 0) and let n be the number of edges of degree (0, 1). Assume

m, n ≥ 2. Let γ be an involution on 3, and write g = gcd(m − 1, n − 1). Then

K CR(C∗
R
(3, γ ))∼=

{
Rg if g is odd,

Sg or Tg if g is even.
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Before we begin the proof of Proposition 4.4, we pause to make a few comments.

First, note that if g is odd, then K CR(C∗
R
(3, γ )) depends only on the number of

edges of each color, not on the choice of involution or the factorization rules

defining 3. In particular, Proposition 4.4 gives more evidence in support of [Barlak

et al. 2018, Conjecture 5.11], which asserts that the K-theory of a one-vertex k-graph

C∗-algebra should be independent of the factorization rules.

We also wish to remark on the uncertainty of the statement of Proposition 4.4

regarding the even case. As On is the graph C∗-algebra of the one-vertex graph En

with n edges, [Kumjian and Pask 2000, Corollary 3.5] tells us that there exists a

2-graph 3= En × Em such that

|3(1,0)| = m, |3(0,1)| = n, and C∗(3)∼= On ⊗Om .

Therefore, applying (4.3) to C∗
R
(3, id), we see that both Sg and Tg can appear as

the K-theory of a 2-graph of the type discussed in Proposition 4.4. However, we

see in the calculation below that in general it is not clear how to determine which

CR-module appears from the spectral sequence.

We also have the following corollary to Proposition 4.4.

Corollary 4.5. Fix m,n∈N≥2, a one-vertex 2-graph3with |3(1,0)|=m, |3(0,1)|=n,

and an involution γ on 3. If g = gcd(m − 1, n − 1) is odd and C∗(3) is simple,

then
C∗

R
(3, γ )∼= C∗

R
(3, id).

Proof. Recall from [Kumjian and Pask 2000, Proposition 4.8] (cf. also [Robertson

and Sims 2007, Lemma 3.2]) that the factorization rules which define 3 determine

whether C∗(3) is simple. When C∗(3) is simple, [Brown et al. 2015, Corollary 5.1]

tells us that since m, n ≥ 2, C∗(3) is purely infinite. Consequently, by [Boersema

et al. 2011, Theorem 10.2], C∗
R
(3, γ ) is classified by its K-theory.

If g is odd, then Proposition 4.4 tells us that this K-theory is independent of the

involution γ , so
C∗

R
(3, γ )∼= C∗

R
(3, γtriv)∼= O

R

m ⊗O
R

n

for any involution γ on 3. □

We now undertake the proof of Proposition 4.4.

Proof of Proposition 4.4. The incidence matrices are 1×1 matrices, so 1−M t
1 =1−n

and 1 − M t
2 = 1 − m. As 30 = {v} = G f , we have

K CR(BR)= A = K CR(R).

Theorem 3.18 therefore tells us that the chain complex A(0) is

0 → K CR(R)

(−ρ2

ρ1

)
−−−−→ K CR(R)2

(ρ1 ρ2)−−−−→ K CR(R)→ 0. (4.6)
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We now use Table 3 to compute the individual maps ρi
j in each degree j :

complex part

degree 0 0 → Z

(
m−1
1−n

)
−−−−→ Z

2 ( 1−n 1−m )−−−−−−−→ Z → 0

real part

degree 0 0 → Z

(
m−1
1−n

)
−−−−→ Z

2 ( 1−n 1−m )−−−−−−−→ Z → 0

degree 1 0 → Z2

(
m−1
1−n

)
−−−−→ Z

2
2

( 1−n 1−m )−−−−−−−→ Z2 → 0

degree 2 0 → Z2

(
m−1
1−n

)
−−−−→ Z

2
2

( 1−n 1−m )−−−−−−−→ Z2 → 0

degree 4 0 → Z

(
m−1
1−n

)
−−−−→ Z

2 ( 1−n 1−m )−−−−−−−→ Z → 0

(For any degree not shown, the sequence consists of all trivial groups.)

The E2 page of the spectral sequence has both a real part and a complex part,

denoted (E2
i, j )

O and (E2
i, j )

U , the groups of which are derived from the chain complex

above. In the case that g = gcd(m − 1, n − 1) is odd, we use the first line of the

table above to compute that

(E2
i, j )

U = Hi ((A
(0))Uj )=

{
Zg if i = 0, 1 and j even,

0 otherwise.

The other lines of the table reveal that

(E2
i, j )

O = Hi ((A
(0))O

j )=
{

Zg if i = 0, 1 and j ≡ 0 (mod 4),

0 otherwise.
(4.7)

From this data, we obtain the E2 page of the spectral sequence which converges

to K CR(C∗
R
(3, γ )). The left-hand diagram in Table 4 is the E2 page for the real

K-theory and the right-hand diagram is for the complex K-theory. Notice that the

j index is vertical and the i index is horizontal. The spectral sequence is 0 in all

nonpictured columns, and is periodic with period 8 in the vertical direction.

The d2 map has degree (−2, 1) and is hence equal to 0 everywhere. It follows

that E2 = E∞ and that KOq(C
∗
R
(3, γ )) has a filtration whose factors are the groups

in the rightmost table above whose i and j coordinates sum to q . Since, for each q ,

there is at most one nonzero such group, we conclude that

KOq(C
∗
R
(3, γ ))=

{
Zg if q ≡ 0, 1, 4, 5 (mod 8),

0 if q ≡ 2, 3, 6, 7 (mod 8).

Similarly, KUq(C
∗
R
(3, γ ))= Zg for all q. Therefore K CR(C∗

R
(3, γ ))∼= Rg if g is

odd.
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real part

...
...

...

7 0 0 0

6 0 0 0

5 0 0 0

4 Zg Zg 0

3 0 0 0

2 0 0 0

1 0 0 0

0 Zg Zg 0

0 1 2

complex part

...
...

...

7 0 0 0

6 Zg Zg 0

5 0 0 0

4 Zg Zg 0

3 0 0 0

2 Zg Zg 0

1 0 0 0

0 Zg Zg 0

0 1 2

Table 4. E2
p,q when g is odd.

real part

...
...

...

7 0 0 0

6 0 0 0

5 0 0 0

4 Zg Zg 0

3 0 0 0

2 Z2 Z
2
2 Z2

1 Z2 Z
2
2 Z2

0 Zg Zg 0

0 1 2

complex part

...
...

...

7 0 0 0

6 Zg Zg 0

5 0 0 0

4 Zg Zg 0

3 0 0 0

2 Zg Zg 0

1 0 0 0

0 Zg Zg 0

0 1 2

Table 5. E2
p,q when g is even.

Now consider the case that g is even (with m, n ≥ 3). The computations

for KU∗(C
∗
R
(3, γ )) are the same as in the odd case above. When computing

Hi ((A
(0))O

j ) for even g, we obtain nearly the same formulas as we found in (4.7)

for the case that g is odd. The difference arises from the fact that all of the maps

in the real part of the chain complex (4.6) in degrees 1 and 2 are zero if g is even.

Hence, the E2 page of the spectral sequence which converges to KO∗(C
∗
R
(3, γ ))

when g is even is as shown in Table 5.
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case 1: d2
2,1= 0

...
...

...

7 0 0 0

6 0 0 0

5 0 0 0

4 Zg Zg 0

3 0 0 0

2 Z2 Z
2
2 Z2

1 Z2 Z
2
2 Z2

0 Zg Zg 0

0 1 2

case 2: d2
2,1 ̸= 0

...
...

...

7 0 0 0

6 0 0 0

5 0 0 0

4 Zg Zg 0

3 0 0 0

2 0 Z
2
2 Z2

1 Z2 Z
2
2 0

0 Zg Zg 0

0 1 2

Table 6. Real part of E∞
p,q .

The map d2 again is equal to 0 everywhere except possibly (d2
(2,1))

O : Z2 → Z2

from degree (2, 1) to degree (0, 2)Ð this map may or may not be the zero map.

Then the E3 page of the spectral sequence must be as shown in Table 6. The left

version corresponds to the case (d2
(2,1))

O = 0 and the right version corresponds to

the case (d2
(2,1))

O ̸= 0. For n ≥ 3 we have d3 = 0, thus E∞ = E3.

Once the E∞ groups are settled, this determines KOq(C
∗
R
(3, γ )) only ªup to

extensionsº, meaning that there is a filtration of KOq(C
∗
R
(3, γ )) in which the

successive subquotients are isomorphic to E∞
i, j , where i + j = q. However, we

can deduce some specific information from the spectral sequence, namely that

KOn(C
∗
R
(3, γ ))= 0 for n = 6, 7, and that KO5(C

∗
R
(3, γ ))= KO0(C

∗
R
(3, γ ))= Zg.

To complete the computation of K CR(C∗
R
(3, γ )), we now consider the core. We

claim that the involution ψ∗ induced on KU∗(C
∗
R
(3, γ )) by the real structure of

C∗
R
(3, γ ) satisfies ψ j = 1 for j = 0, 1, 4, 5 and ψ j = −1 for j = 2, 3, 6, 7. To

prove this claim, we first observe that for the CR-module K CR(R), we have ψR = 1

in degree 0. In the complex part

0 → Z

(
m−1
1−n

)
−−−−→ Z

2 ( 1−n 1−m )−−−−−−−→ Z → 0 (4.8)

of the chain complex A(0), each copy of Z represents KU0(R). Thus, ψR induces

the identity map on the homology groups H0, H1 of the chain complex (4.8). As

H0 = (E2
0,0)

U =KU0(C
∗
R
(3, γ )) and H1 = (E2

1,0)
U =KU1(C

∗
R
(3, γ )), we conclude

that ψ j = 1 for j = 0, 1. The relation ψ j+2β = −βψ j then implies that, as claimed,

ψ j = 1 for j = 0, 1, 4, 5 and ψ j = −1 for j = 2, 3, 6, 7.
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Recall that MUi = (ker(1 −ψi ))/(im(1 +ψi )). Since g is even, one computes

that MU0 = Zg/2Zg
∼= Z2, and MU2 = {0, g/2}/{0} ∼= Z2. Similar computations

reveal that MUi
∼= Z2 for all i . The fact that KOi (C

∗
R
(3, γ ))= 0 if i = 6, 7 implies

that MOi := im ηi−1 : KOi−1(C
∗
R
(3, γ ))→ KOi (C

∗
R
(3, γ )) is zero for i = 0, 6, 7.

The long exact sequence (4.2) implies that r ′
6 and c′

1 are both isomorphisms

(thus MO1 = MO5 = Z2) and that r ′
5 : MU5 → MO3 and r ′

6 : MU6 → MO4 must

be injective. From these observations, we obtain the following two segments of

sequence (4.2):

0 → Z2 → MO4
η′

4−→ Z2
c′

5−→ Z2
r ′

4−→ MO2 → MO3 → Z2 → 0, (4.9)

0 → Z2 → MO3 → MO4
c′

4−→ Z2
r ′

3−→ Z2
η′

1−→ MO2 → Z2 → 0. (4.10)

Note first that η′
4 must either be the zero map or be onto. In the first case,

since r ′
6 is injective, we have MO4 = Z2, and c′

5 must also be injective (hence an

isomorphism). We therefore have r ′
4 = 0, so (4.9) becomes

0 → MO2
η′

2−→ MO3
c′

3−→ Z2 → 0.

If η′
4 is onto, then c′

5 must be the zero map. Consequently, MO4 = Z
2
2 and (4.9)

becomes
0 → Z2

r ′
4−→ MO2 → MO3 → Z2 → 0. (4.11)

Similarly, η′
1 must be either injective, or the zero map. In the first case, the fact

that each MOi group is 2-torsion implies that MO2 = Z
2
2. Moreover, r ′

3 must be the

zero map, so (4.10) becomes

0 → Z2 → MO3
η′

3−→ MO4
c′

4−→ Z2 → 0. (4.12)

If η′
1 = 0 then MO2 = Z2, r ′

3 = 1, and c′
4 = 0, so (4.10) becomes

0 → Z2 → MO3 → MO4 → 0.

Thus, if η′
1 = 0 and η′

4 = 0, the fact that each MOi group is 2-torsion implies that

MO3 = Z
2
2. If η′

1 = 0 and η′
4 is onto, (4.9) becomes

0 → Z2 → Z2 → MO3 → Z2 → 0,

which forces MO3 = Z2. However, (4.10) then implies that MO4 = 0, contradicting

the fact that (as we observed above) in this case we have MO4 = Z
2
2.

If η′
1 is injective and η′

4 = 0, so that MO4 = Z2 and c′
4 = 1, we must have η′

3 = 0

and hence MO3 = Z2. In other words, c′
3 = 1 and η′

2 = 0. This forces MO2 = 0,

which contradicts the fact that if η′
1 is injective we have MO2 = Z

2
2.

Finally, suppose η′
1 is injective and η′

4 is onto, so that MO4 = Z
2
2 = MO2. We

conclude from (4.11) and (4.12) that MO3 = Z
2
2.
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In other words, the MOi groups are given by the first of the tables below if

η′
4 = η′

1 = 0 and by the second if η′
4 is onto and η′

1 is injective; no other options are

possible.

0 1 2 3 4 5 6 7

MOi 0 Z2 Z2 Z
2
2 Z2 Z2 0 0

0 1 2 3 4 5 6 7

MOi 0 Z2 Z
2
2 Z

2
2 Z

2
2 Z2 0 0

As we noted at the beginning of this section, the core of the CR-module Sg

coincides with the first table above, and the core of the CR-module Tg coincides

with the second. Therefore, by [Hewitt 1996, Theorem 4.2.1], K CR(C∗(3, γ )) is

either isomorphic to Sg or to Tg.

Comparing the cardinality of (Sg)
O
2 , (Tg)

O
2 , and the two options for the E∞

page of the spectral sequence converging to KO∗(C
∗
R
(3, γ )), we see that we have

K CR(C∗(3, γ ))∼= Sg when d2
(2,1) ̸= 0 and K CR(C∗(3, γ ))∼= Tg when d2

(2,1) = 0. □

4B. A 3-vertex rank-2 graph. In this section, we consider a family of rank-2 graphs

3 with three vertices and with the adjacency matrices

M1 = M2 =




1 1 1

1 0 n − 1

1 n − 1 0




for n ≥ 2. We also consider an involution γ that swaps the second and third vertices.

(By comparison, a rank-1 graph with involution and with the same adjacency

matrix was considered in [Boersema 2017, Example 6.2].) We do not specify the

factorization rules for 3, since they do not affect our K-theory calculations. They

may be any factorization rules that are consistent with the involution γ . We consider

the real C∗-algebra C∗
R
(3, γ ).

Proposition 4.13. The CR K-theory K CR(C∗
R
(3, γ )) is isomorphic to one of two

CR-modules, P2n or Q2n .

The groups of the CR-modules P2n and Q2n are given by the following tables.

Again, we only record the groups, not the natural transformations, as these are

completely determined by the given groups. The structure of Q2n differs somewhat

depending on n being even or odd.

0 1 2 3 4 5 6 7

(P2n)
O
i Z2 Z

2
2 Z4n ⊕ Z2 Z4n ⊕ Z2 Z

2
2 Z2 Zn Zn

(P2n)
U
i Z2n Z2n Z2n Z2n Z2n Z2n Z2n Z2n
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(n even) 0 1 2 3 4 5 6 7

(Q2n)
O
i Z2 Z

2
2 Z2 ⊕ Z2n Z2 ⊕ Z2n Z

2
2 Z2 Zn Zn

(Q2n)
U
i Z2n Z2n Z2n Z2n Z2n Z2n Z2n Z2n

(n odd) 0 1 2 3 4 5 6 7

(Q2n)
O
i Z2 Z4 Z

2
2 ⊕ Zn Z

2
2 ⊕ Zn Z4 Z2 Zn Zn

(Q2n)
U
i Z2n Z2n Z2n Z2n Z2n Z2n Z2n Z2n

The cores of these CR-modules include the groups below:

core of P2n 0 1 2 3 4 5 6 7

MOi 0 Z2 Z
2
2 Z

2
2 Z

2
2 Z2 0 0

MUi Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2

(4.14)

core of Q2n 0 1 2 3 4 5 6 7

MOi 0 Z2 Z2 Z
2
2 Z2 Z2 0 0

MUi Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2

(4.15)

We note that there is a CR-module isomorphism

P2n
∼=6−2K CR(E2n+1)⊕6−3K CR(E2n+1),

where E2n+1 is the exotic Cuntz algebra described in Section 11 of [Boersema et al.

2011]. However, to our knowledge, the CR-modules Q2n have not previously been

discussed in the literature.

Proof. We develop the chain complex, and subsequent spectral sequence, as in

Theorem 3.18 to compute K CR(C∗
R
(3, γ )). The chain complex is

0 → A
∂2−→ A2 ∂1−→ A → 0,

where A = K CR(R)⊕ K CR(C). Using Theorem 3.18 and the fact that for i = 1, 2

we have

ρi = B = I3 − Mi =




0 −1 −1

−1 1 1 − n

−1 1 − n 1


 ,

we can analyze the groups and maps of this chain complex in each grading, complex

and real parts, as below:
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complex part

degree 0 0 → Z
3

(−B
B

)
−−−→ Z

6 ( B B )−−−→ Z
3 → 0

real part

degree 0 0 → Z
2

(
0 2
1 n−2
0 −2

−1 2−n

)

−−−−−−−−→ Z
4

(
0 −2 0 −2

−1 2−n −1 2−n

)
−−−−−−−−−−−−−→ Z

2 → 0

degree 1 0 → Z2

(
0
0

)
−−→ Z

2
2

( 0 0 )−−−→ Z2 → 0

degree 2 0 → (Z2 ⊕ Z)

(
0 1
0 −n
0 −1
0 n

)

−−−−−→ (Z2 ⊕ Z)2

(
0 −1 0 −1
0 n 0 n

)
−−−−−−−−→ (Z2 ⊕ Z)→ 0

degree 4 0 → Z
2

(
0 1
2 n−2
0 −1

−2 2−n

)

−−−−−−−−→ Z
4

(
0 −1 0 −1

−2 2−n −2 2−n

)
−−−−−−−−−−−−−→ Z

2 → 0

degree 6 0 → Z

(−n
n

)
−−−→ Z

2 ( n n )−−−→ Z → 0

The Smith normal form of B is

SNF(B)=




1 0 0

0 1 0

0 0 2n


 .

From this, it easily follows that

(E2
0,0)

U = coker(B B)∼= Z2n,

(E2
1,0)

U = ker(B B)
/

im

(
−B

B

)
∼= Z2n,

(E2
2,0)

U = ker

(
−B

B

)
= 0.

For the real part, we work out the homology of the exact sequences associated

to the ªreal partº above to obtain (E2
p,q)

O (or simply E2
p,q , as we denote it when

it is clear). We walk through the details of this for the first three rows and leave

the rest to the reader. The Smith normal form of the matrix
(

0
1

2
n−2

)
is
(

1
0

0
2

)
for

all n. It follows that in the real part in degree 0 (that is, when q = 0) we have

E2
0,0 = E2

1,0 = Z2, and E2
2,0 = 0.

When q = 1 we have ∂1 = ∂2 = 0, so it immediately follows that E2
0,1 = Z2,

E2
1,1 = Z

2
2, and E2

1,2 = Z2.
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For the next row (when q = 2), we first observe that

im

(
0 −1 0 −1

0 n 0 n

)
=
{
([1], (2k + 1)n) | k ∈ Z

}
∪
{
([0], 2kn) | k ∈ Z

}
⊆ Z2 ⊕ Z.

In particular, the sum ([1], 1) of the two generators ([1], 0) and ([0], 1) of Z2 ⊕ Z

lies in im
(

0
0

−1
n

0
0

−1
n

)
. Consequently,

E2
0,2 = coker

(
0 −1 0 −1

0 n 0 n

)
=
〈
[([0], 1)]

〉
= Z2n.

To show that E2
1,2 = Z2 ⊕ Z2n , we note that

ker ∂1 = ker

(
0 −1 0 −1

0 n 0 n

)
= {(x, y, z,−y) | x, z ∈ Z2, y ∈ Z}

while
im ∂2 =

{
([x],−nx, [x], nx) | x ∈ Z

}
.

Consequently, E2
1,2 = ker ∂1/ im ∂2 =

〈
[(0, 0, 1, 0)], [(0, 1, 0,−1)]

〉 ∼= Z2 ⊕ Z2n

because (0, n, 0,−n) is not in im ∂2 but (0, 2n, 0,−2n) is.

Finally, note that

E2
0,2 = ker ∂2 = ker




0 1

0 −n

0 1

0 n


= {(x, 0) | x ∈ Z2} = Z2.

The E2
p,q groups of the spectral sequence converging to KO∗(C

∗
R
(3, γ )) are

shown on the left in Table 7. From this and similar calculations for 3 ≤ q ≤ 7 we

obtain the E2 page of the spectral sequence as shown.

The map d2 is forced to be 0 everywhere except possibly the map d2
(2,1) :Z2 →Z2n

from degree (2, 1) to degree (0, 2) in the real case.

The complex spectral sequence (right side of Table 7) gives KUi (C
∗
R
(3, γ ))∼=Z2n

for all i . Thus KU0(C
∗
R
(3, γ ))=KU1(C

∗
R
(3, γ ))∼=Z2n . It follows that the complex

C∗-algebra C∗(3) is KK-equivalent to O2n+1 ⊗O2n+1.

With a bit more work, we can identify the maps ψ , by tracing the elements

KU∗(C
∗
R
(3, γ )) as they arise from the chain complex through the spectral sequence.

In the i = 0 case we have that KU0(C
∗
R
(3, γ )) is isomorphic to

AU
0 / im B = Z

3/ im B,

and the generator of KU0(C
∗
R
(3, γ ))∼= Z2n is represented by the element (0, 1, 0),

which is equivalent to the element (0, 0,−1) (since (0,−1,−1) is in the image

of B). Similarly, one computes that

ker(B B)= {(x, y, z,−x,−y,−z) ∈ Z
6},
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real part

...
...

...

7 0 0 0

6 Zn Zn 0

5 0 0 0

4 Z2 Z2 0

3 0 0 0

2 Z2n Z2 ⊕ Z2n Z2

1 Z2 Z
2
2 Z2

0 Z2 Z2 0

0 1 2

complex part

...
...

...

7 0 0 0

6 Z2n Z2n 0

5 0 0 0

4 Z2n Z2n 0

3 0 0 0

2 Z2n Z2n 0

1 0 0 0

0 Z2n Z2n 0

0 1 2

Table 7. E2
p,q .

so [(0, 1, 0, 0,−1, 0)] = [(0, 0,−1, 0, 0, 1)] generates

KU1(C
∗
R
(3, γ ))= ker(B B)

/
im

(
−B

B

)
.

As AU
0 = KU0(R)⊕KU0(C), the fact that (ψC)0 =

(
0
1

1
0

)
on KU0(C)= Z

2 implies

that (ψA)0(x, y, z) = (x, z, y). Thus, the involution ψ0 on KU0(C
∗
R
(3, γ )) ∼=

AU
0 / im B ∼= Z

3/ im B induced by ψA satisfies ψ0([0, 1, 0])= [0, 0, 1]. It follows

that ψ0 is given by multiplication by −1 in KU0(C
∗
R
(3, γ )) = Z2n . A similar

analysis also shows that ψ = −1 in KU1(C
∗
R
(3, γ )) = Z2n . Using the fact that

ψ anticommutes with the Bott isomorphism (that is, ψβ = −βψ), we find that

ψi = −1 for i = 0, 1, 4, 5 and ψi = 1 for i = 2, 3, 6, 7.

In addition to ψ , it would be possible to compute the action of most of the

natural transformations r, c, η in this way, based on the corresponding actions in A.

Alternatively, once we have computed a few of these natural transformations, we

can complete the calculation of K CR(C∗
R
(3, γ )) using the long exact sequence (2.9)

and the core exact sequence (4.2).

From the E2 page of the spectral sequence for KO∗(C
∗
R
(3, γ )) we see immedi-

ately that KO0(C
∗
R
(3, γ ))∼= Z2 and KO1(C

∗
R
(3, γ )) is either isomorphic to Z4 or

to Z
2
2. Less immediately, we also find that η0 and η1 are nontrivial.

To see that η0 is nontrivial, observe that

KO0(C
∗
R
(3, γ ))∼= (KO0(R)⊕ KO0(C))

/
im

(
0 −2 0 −2

−1 2 − n −1 2 − n

)

is generated by [(1, 0)]. Since (ηR)0([1]) ∈ KO1(R) is the nontrivial element
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of (A1)
O = Z2, which is the E2

0,1 group of the spectral sequence converging

to KO∗(C
∗
R
(3, γ )), we find that η0([1, 0]) is a nontrivial element of KO1(C

∗
R
(3, γ )).

Therefore, η0 ̸= 0. In addition, since (ηR)1 : Z2 → Z2 is nontrivial and the image in

E2
2,0 = coker

(
0
0

−1
n

0
0

−1
n

)
of the generator ([1], 0) of Z2 ⊆ Z2 ⊕ Z is nontrivial, we

conclude that η1 : KO1(C
∗
R
(3, γ ))→ KO2(C

∗
R
(3, γ )) is also nontrivial.

Now we claim that ri : KUi (C
∗
R
(3, γ )) → KOi (C

∗
R
(3, γ )) is surjective for

i = 5, 6, 7. In degree 6, since A = K CR(R)⊕ K CR(C) and (rC)6 =
(
−1 1

)
, we

conclude that (rA)6 : Z
3 → Z on KO∗(A) is given by (x, y, z) 7→ z − y. Now,

recall that the generator of KU6(C
∗
R
(3, γ ))= coker(B B)= Z2n is represented by

(0, 1, 0). Thus, r6 : KU6(C
∗
R
(3, γ ))→ KO6(C

∗
R
(3, γ )) satisfies

r6([0, 1, 0])= [−1] ∈ Zn
∼= KO6(C

∗
R
(3, γ )).

Thus r6 is onto.

To see that r5 is onto, recall that for i odd

KUi (C
∗
R
(3, γ ))= ker(B B)

/
im

(
−B

B

)
= Z2n

is generated by g = [(0, 1, 0, 0,−1, 0)]. Also, for i = 5 we find (referring to the

degree 4 part of the chain complex) that

KO5(C
∗
R
(3, γ ))= ker(∂1)4/ im(∂2)4 = Z2

and the nontrivial element can be determined to be represented by h =[(0, 1, 0,−1)].
The map r5 : KU5(C

∗
R
(3, γ ))→ KO5(C

∗
R
(3, γ )) is therefore induced by the map

(rA)4 : Z
6 → Z

4, which is given by the formula

(x, y, z, u, v, w) 7→ (x, y + z, u, v+w)

since (rC)4 = (1 1) : Z
2 → Z. Thus r5(g)= [(0, 1, 0,−1)], so r5 is surjective.

With a similar argument, we can show that r7 :KU7(C
∗
R
(3,γ ))→KO7(C

∗
R
(3,γ ))

is onto. As

KU7(C
∗
R
(3, γ ))= ker(B B)

/
im

(
−B

B

)
,

r7 is induced from (rA2)6 : Z
6 → Z

2, and (rA2)6(x, y, z, u, v, w)= (z − y, w− v).
Therefore, using the generator g of KU7(C

∗
R
(3, γ )) identified above,

r6(g)= [(1,−1)] ∈ ker
(
n n

) /
im

(
−n

n

)
= KO6(C

∗
R
(3, γ )).

As [(1,−1)] generates KO6(C
∗
R
(3, γ )), we conclude that r7 is also surjective.

Since ri is surjective for i = 5, 6, 7, it immediately follows from (2.8) that ηi = 0

for i = 5, 6, 7.
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Now we turn to the core of the exact sequence. Given that we’ve already computed

KUi (C
∗
R
(3, γ )) = Z2n and ψi = ±1, (4.1) implies that MUi (C

∗
R
(3, γ )) = Z2 for

all i . The fact that ηi =0 for 5≤ i ≤7 implies that MOi (C
∗
R
(3, γ ))=0 for i =0,6,7.

From this information, the long exact sequence (4.2) relating MOi and MUi can be

used to determine that MO∗ must be one of the following (using the same argument

as used in the previous section):

0 1 2 3 4 5 6 7

MOi 0 Z2 Z
2
2 Z

2
2 Z

2
2 Z2 0 0

0 1 2 3 4 5 6 7

MOi 0 Z2 Z2 Z
2
2 Z2 Z2 0 0

The former possibility coincides with the core of P2n . Comparing (P2n)
O
3 with

the groups (E O)3p,q of the spectral sequence converging to KO∗(C
∗
R
(3, γ )) for

p + q = 3, we see that this possibility coincides with the case when d2
2,1 = 0.

Therefore, in that case K CR(C∗
R
(3, γ ))= P2n . The latter case occurs when d2

2,1 ̸= 0

and yields K CR(C∗
R
(3, γ ))= Q2n . See the tables (4.14) and (4.15). □

If the factorization rules of 3 are such that C∗(3) is simple and purely in-

finite, then the complex C∗-algebra C∗(3) is isomorphic to a matrix algebra

over O2n+1 ⊗ O2n+1. A little more work is necessary to track the class of [1]
in KU0(C

∗
R
(3, γ )) to determine the value of k in the isomorphism C∗(3) ∼=

Mk(O2n+1 ⊗ O2n+1). The real C∗-algebra C∗
R
(3, γ ) is then a real structure of

Mk(O2n+1⊗O2n+1) but is not isomorphic (nor stably isomorphic) to OR

2n+1⊗RO
R

2n+1

or any other tensor product of real Cuntz algebras. This follows, for example, from

the fact that KO7(C
∗
R
(3, γ )) ∼= Z2, but KO7( ± ) is trivial for any tensor product

of real Cuntz algebras. Furthermore, C∗
R
(3, γ ) is not isomorphic to any real C∗-

algebra arising from a rank-1 graph with involution, as KO7( ± ) is torsion-free for

such a C∗-algebra by Corollary 4.3 of [Boersema 2017].

4C. Another 3-vertex 2-graph. In this section we examine another 2-graph for

which the two adjacency matrices are not the same. Fix an integer n ≥ 2. Let 3 be

a rank-2 graph with three vertices with adjacency matrices

M1 =




1 1 1

1 0 n − 1

1 n − 1 0


 and M2 =




1 1 1

1 n − 1 0

1 0 n − 1




and with an involution γ that swaps the second and third vertices.
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Proposition 4.16. Fix an integer n ≥ 2. If n is odd, then

K CR(C∗(3, γ ))∼= S2 or K CR(C∗(3, γ ))∼= T2.

If n is even, then

K CR(C∗(3, γ ))∼=6K CR(OR

3 )⊕6−2K CR(OR

3 )

∼=6−1K CR(E3)⊕64K CR(E3).

We find it intriguing that for n even, the choice of n has no impact on the CR

K-theory groups of the real C∗-algebra. For all odd integers n, there are only two

possible CR-modules that can be realized by K CR(C∗(3, γ )).

Proof. Again, we use Theorem 3.18. The chain complex A(0) used to build the

spectral sequence to compute K CR(C∗(3, γ )) has the components shown in the

table below, based on the matrices

ρ1 = B1 = I3 − M1 =




0 −1 −1

−1 1 1 − n

−1 1 − n 1


 ,

ρ2 = B2 = I3 − M2 =




0 −1 −1

−1 2 − n 0

−1 0 2 − n


 .

complex part

degree 0 0 → Z
3

(−B2

B1

)
−−−−→ Z

6 ( B1 B2 )−−−−→ Z
3 → 0

real part

degree 0 0 → Z
2

(
0 2
1 n−2
0 −2

−1 2−n

)

−−−−−−−−→ Z
4

(
0 −2 0 −2

−1 2−n −1 2−n

)
−−−−−−−−−−−−−→ Z

2 → 0

degree 1 0 → Z2

(
0
0

)
−−→ Z

2
2

( 0 0 )−−−→ Z2 → 0

degree 2 0 → (Z2 ⊕ Z)

(
0 1
0 n−2
0 −1
0 n

)

−−−−−−−→ (Z2 ⊕ Z)2

(
0 −1 0 −1
0 n 0 2−n

)
−−−−−−−−−−→ (Z2 ⊕ Z)→ 0

degree 4 0 → Z
2

(
0 1
2 n−2
0 −1

−2 2−n

)

−−−−−−−−→ Z
4

(
0 −1 0 −1

−2 2−n −2 2−n

)
−−−−−−−−−−−−−→ Z

2 → 0

degree 6 0 → Z

(
n−2

n

)
−−−−→ Z

2 ( n 2−n )−−−−−→ Z → 0
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The Smith normal forms of the matrices in the complex part of the chain complex

are

SNF(B1, B2)=




1 0 0 0 0 0

0 1 0 0 0 0

0 0 2 0 0 0


 and SNF

(
−B2

B1

)
=




1 0 0

0 1 0

0 0 2

0 0 0

0 0 0

0 0 0




.

Then we have

coker(B1 B2)∼= Z2, ker(B1 B2)
/

im

(
−B2

B1

)
∼= Z2, and ker

(
−B2

B1

)
= 0.

Thus, the E2 groups of the chain complex computing KU∗(C
∗
R
(3, γ )) satisfy

(E2
p,q)

U =
{

Z2 for p ∈ {0, 1}, q even,

0 otherwise.

Consequently, KU0(C
∗
R
(3, γ ))∼= KU1(C

∗
R
(3, γ ))∼=Z2. It follows that the complex

C∗-algebra C∗(3) has the same K-theory as O3 ⊗O3.

From the chain complexes exhibited above, we can compute that the E2 page

of the spectral sequence computing KO∗(C
∗
R
(3, γ )) is given as in Table 8. The

left-hand table corresponds to the case where n is odd and the right-hand table

corresponds to the case where n is even. It is a remarkable fact that, even though

the matrices ρi look very different when n = 2, the E2 page in this case is the same

as for any other even n.

case 1: n is odd

...
...

...

7 0 0 0

6 0 0 0

5 0 0 0

4 Z2 Z2 0

3 0 0 0

2 Z2 Z
2
2 Z2

1 Z2 Z
2
2 Z2

0 Z2 Z2 0

0 1 2

case 2: n is even

...
...

...

7 0 0 0

6 Z2 Z2 0

5 0 0 0

4 Z2 Z2 0

3 0 0 0

2 Z2 Z
2
2 Z2

1 Z2 Z
2
2 Z2

0 Z2 Z2 0

0 1 2

Table 8. Real part of E2
p,q .
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As an illustration of how this spectral sequence was obtained, we explain the

computations of E2
p,2 for p = 0, 1, 2. We have

E2
0,2 = coker(∂1)2 = coker

(
0 −1 0 −1

0 n 0 2 − n

)
= (Z2 ⊕ Z)/G,

where G is the subgroup of Z2 ⊕ Z generated by ([1], n) and by ([0], 2). This in

turn is isomorphic to (Z2 ⊕Z2)/G ′, where G ′ is the subgroup of Z2 ⊕Z2 generated

by ([1], [n]). Note that in Z2 ⊕ Z2, ([1], [n]) is equal to ([1], [0]) or ([1], [1]),
depending on whether n is even or odd. In either case, the quotient is isomorphic

to Z2.

To compute E2
1,2 = ker(∂1)2/ im(∂2)2, we first compute that

ker

(
0 −1 0 −1

0 n 0 2 − n

)
= {([x], y, [z], w) | y +w ≡ 0 (mod 2), ny = (n − 2)w}

= {([x], k(n − 2), [z], kn) | k ∈ Z}.
Now, observe that

im(∂2)2 = im




0 1

0 n − 2

0 −1

0 n


= {([x], (n − 2)x, [x], nx) | x ∈ Z} ⊆ (Z2 ⊕ Z)2.

Thus a generic element in E2
1,2 can be written as

[([x], y, [z], w)] = [([x], k(n − 2), [z], kn)] = [([k + x], 0, [k + z], 0)],

since ([1], n − 2, [1], n) ∈ im(∂2)2 and hence [(0, n − 2, 0, n)] = [([1], 0, [1], 0)].
It now follows easily that E2

1,2
∼= Z

2
2.

Finally,

E2
2,2 = ker(∂2)2 = ker




0 1

0 n − 2

0 −1

0 n


= {([x], y) | y = 0} ∼= Z2.

Leaving it to the reader to calculate E2
p,q for the remaining values of p, q, we

turn now to analyzing the spectral sequence from the E2 stage. In the case where

n is odd, the spectral sequence is the same as one that we saw in Section 4A,

so, as there, we can conclude that either K CR(C∗(3, γ )) ∼= S2 (if d2
(2,1) ̸= 0) or

K CR(C∗(3, γ ))∼= T2 (if d2
(2,1) = 0).

In the case where n is even, there is some work to do. Observe first that once

again, we have d2
(i, j)= 0 for all (i, j), with the possible exception of d2

(2,1). Thus, for
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all (i, j) ̸∈ {(0, 2), (2, 1)} we have E2
i j = E∞

i j . It follows that KOi (C
∗(3, γ ))∼= Z2

for i = 5, 6, 7, 0, and that |KOi (C
∗(3, γ ))| = 4 for i = 1, 4. If d2

(2,1) = 0 then

|KO2(C
∗
R
(3, γ ))| = |KO3(C

∗
R
(3, γ ))| = 8,

and if d2
(2,1) ̸= 0 then

KO2(C
∗
R
(3, γ ))∼= KO3(C

∗
R
(3, γ ))∼= Z

2
2.

Now we determine the maps η, r , and c. We also show that |KO2(C
∗
R
(3, γ ))| =

|KO3(C
∗
R
(3, γ ))| = 4 (and hence that d2

(2,1) ̸= 0). We start with the following seg-

ments of the long exact sequence (2.9) relating KO∗(C
∗
R
(3, γ )) and KU∗(C

∗
R
(3, γ )):

KO0(C
∗
R
(3, γ ))

η0−→ KO1(C
∗
R
(3, γ ))

c1−→ KU1(C
∗
R
(3, γ )),

KU4(C
∗
R
(3, γ ))

r4−→ KO4(C
∗
R
(3, γ ))

η4−→ KO5(C
∗
R
(3, γ )).

Since |KO1(C
∗
R
(3, γ ))|=4 and KO0(C

∗
R
(3, γ ))∼=KU2(C

∗(3, γ ))∼= Z2, it follows

that η0 must be injective and c1 must be surjective. Similarly, r4 must be injective

and η4 must be surjective.

Since η0 is injective, r0 = 0 and c2 is surjective. Since c1 is surjective, r7 must

be 0. Continuing to use the long exact sequence (2.9), we find that

r7 = 0, η7 = 1, c0 = 0, r6 = 1, η6 = 0, c7 = 1, r5 = 0, η5 = 1, c6 = 0.

Also, since η4 is surjective, we know that c5 = 0.

Now η7 and η0 are both injective. It follows that

η1 : KO1(C
∗
R
(3, γ ))→ KO2(C

∗
R
(3, γ ))

cannot be injective also, due to the relation η3 = 0. So |ker η1| is either equal

to 2 or to 4. But |ker η1| = |im r1| and the latter cannot be equal to 4, since

KU1(C
∗
R
(3, γ )= Z2. Thus |ker η1| = 2. Then the exact sequence

0 → KO1(C
∗
R
(3, γ ))/ ker η1

η1−→ KO2(C
∗
R
(3, γ ))

c2−→ KU2(C
∗
R
(3, γ ))→ 0

implies that |KO2(C
∗
R
(3, γ ))| = 4 (since the groups on the left and the right

each have order 2). Thus, r1 is an injection and c3 = 0. Moreover, the fact

that |KO2(C
∗
R
(3, γ ))| ̸= 8 implies that d2

(2,1) ̸= 0 and consequently

KO2(C
∗
R
(3, γ ))∼= Z

2
2
∼= KO3(C

∗
R
(3, γ )).

As c3 = 0, we must have η2 : KO2(C
∗
R
(3, γ )) → KO3(C

∗
R
(3, γ )) onto, which

implies that η2 is an isomorphism and consequently r2 = 0 and c4 is onto.

Now, because η2 and η4 are both surjective, the relation η3 = 0 implies that

η3 : Z
2
2 → KO4(C

∗
R
(3, γ )) cannot be surjective. So |im η3| is equal to 0 or to 2.
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But if |im η3| = 0, then c4 : KO4(C
∗
R
(3, γ )) → KU4(C

∗
R
(3, γ )) ∼= Z2 would be

injective, which is not possible. Therefore |im η3| = |ker c4| = 2.

We have now calculated all of the groups KO∗(C
∗
R
(3, γ )), at least up to order,

and the action of the maps η, r, c. This enables us to compute the core of the

CR-module K CR(C∗
R
(3, γ )).

Recall from (2.8) that ψ : KU∗(C
∗
R
(3, γ ))→ KU∗(C

∗
R
(3, γ )) satisfies ψ2 = 1.

As KUi (C
∗
R
(3, γ ))∼= Z2 for each i , we may conclude that ψ = 1 for all i in this

case. It follows that MUi = (ker(1 −ψi ))/(im(1 +ψi )) = KUi (C
∗
R
(3, γ )) ∼= Z2

for all i .

Furthermore, our descriptions of the maps ηi above reveal that the groups MOi =
im ηi−1 are as follows:

0 1 2 3 4 5 6 7

MOi Z2 Z2 Z2 Z
2
2 Z2 Z2 Z2 0

Now from the K-theory calculations in [Boersema 2002, Section 5.1, Table 5] and

[Boersema et al. 2011, Section 11, Table 2], we find the core of K CR(OR

3 )
∼= K CR(E3)

is given by

0 1 2 3 4 5 6 7

MOi 0 Z2 Z2 Z2 Z2 0 0 0

MUi Z2 0 Z2 0 Z2 0 Z2 0

By comparing cores, we conclude that

K CR(C∗
R
(3, γ ))∼=6K CR(OR

3 )⊕6−2K CR(OR

3 )

∼=6−1K CR(E3)⊕64K CR(E3).

That is,

0 1 2 3 4 5 6 7

KOi (C
∗
R
(3, γ )) Z2 Z4 Z

2
2 Z

2
2 Z4 Z2 Z2 Z2

KUi (C
∗
R
(3, γ )) Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2

□

5. Questions

Our investigation has highlighted many unanswered questions about higher-rank

graph C∗-algebras and about the spectral sequence of Theorem 3.7 that computes

K CR
∗ (C∗

R
(3, γ )). First of all, Theorem 3.7 gives no information about the differential

dr of the spectral sequence. How is this map determined by the higher-rank graph

with involution (3, γ )? Can we compute dr from the combinatorial data Ð the

adjacency matrices, the factorization rule, the involution Ð of (3, γ )?
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A related question is to better understand the role that γ plays in these construc-

tions. In setting up the spectral sequence, it is important to know which vertices are

fixed and which are not fixed by γ . But beyond that, the action of γ on the edges

does not seem to play a role (unless it plays a role in determining the differential

maps dr in a way that we are not aware of Ð see the previous paragraph).

In fact, we know from [Boersema 2017, Theorem 2.4] that in the case of a

1-graph the isomorphism class of the real C∗-algebra C∗
R
(3, γ ) may depend on the

action of γ on the vertices of 3 but not on the way γ acts on the edges of 3. We

found that the proof of this theorem does not extend in an obvious way to the case

of k-graphs with k ≥ 2, but on the other hand we have no counterexamples to the

analogous statement. How does γ affect the K-theory of C∗
R
(3, γ ) and indeed how

does γ affect the isomorphism class of C∗
R
(3, γ )?

Another question concerns the functoriality of the spectral sequence. Specifically,

suppose that (3, γ ) is a rank-k graph with involution. Then for any 0 ≤ ℓ≤ k, there

is an obvious rank-ℓ graph (3′, γ ′) with involution:

3′ = {λ ∈3 | d(λ) ∈ N
ℓ = {(x1, . . . , xℓ, 0, . . . , 0) | xi ∈ N} ⊆ N

k}.

We define γ ′ to be the restriction of γ . There is an obvious corresponding map

i : C∗
R
(3′, γ ′)→ C∗

R
(3, γ ), which induces a map on K-theory:

i∗ : K CR(C∗
R
(3′, γ ′))→ K CR(C∗

R
(3, γ )).

On the purely algebraic level, there is consequently a homomorphism from the chain

complex associated to C∗
R
(3′, γ ′) to that associated to C∗

R
(3, γ ) that commutes

with the differentials ∂ . We conjecture that this map on the level of the chain

complexes induces a map on the level of spectral sequences which commutes with

the differentials dr , and that it converges in the appropriate sense to the map i∗ on

K-theory.

In particular, taking ℓ= 0, this conjecture would provide a way to identify the

class of any projection [pv] in KO0(C
∗
R
(3, γ )) when v is a vertex in 3 fixed by γ ,

or the class of [pv + pγ (v)] when v is not fixed by γ . It would also provide a way

to identify the class of the identity in KO0(C
∗
R
(3, γ )) when 3 is finite, which is

part of the Elliot invariant when C∗
R
(3, γ )) is simple and purely infinite. Such a

result would be a direct generalization of Theorem 4.5 of [Boersema 2017] and

Theorem 3.2 of [Raeburn and SzymaÂnski 2004].

Finally, we wonder if our spectral sequence can be used to characterize the

CR-modules that can arise as K CR(C∗
R
(3, γ )), where (3, γ ) is a rank k-graph.

Corollary 4.3 of [Boersema 2017] gives a necessary condition for a given CR-module

to be isomorphic to K CR(C∗
R
(3, γ )), but we do not have a complete characterization,

even when 3 is a rank-1 graph. Which real Kirchberg algebras can be realized as

C∗
R
(3, γ ) for some directed graph with involution (3, γ )? More generally, which
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real Kirchberg algebras can be realized as C∗
R
(3, γ ) for some higher-rank graph

with involution (3, γ )? In particular, the original question that motivated this work

is still unanswered: can we find concrete representations of the exotic real Cuntz

algebras En using a family of higher-rank graphs with involution?
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