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Abstract
Linear discriminant analysis (LDA) is a classical method for dimensionality reduction,
where discriminant vectors are sought to project data to a lower dimensional space for
optimal separability of classes. Several recent papers have outlined strategies, based
on exploiting sparsity of the discriminant vectors, for performing LDA in the high-
dimensional setting where the number of features exceeds the number of observations
in the data. However, many of these proposed methods lack scalable methods for solu-
tion of the underlying optimization problems. We consider an optimization scheme
for solving the sparse optimal scoring formulation of LDA based on block coordinate
descent. Each iteration of this algorithm requires an update of a scoring vector, which
admits an analytic formula, and an update of the corresponding discriminant vector,
which requires solution of a convex subproblem; we will propose several variants of
this algorithmwhere the proximal gradient method or the alternating direction method
of multipliers is used to solve this subproblem. We show that the per-iteration cost of
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these methods scales linearly in the dimension of the data provided restricted regu-
larization terms are employed, and cubically in the dimension of the data in the worst
case. Furthermore, we establish that when this block coordinate descent framework
generates convergent subsequences of iterates, then these subsequences converge to
the stationary points of the sparse optimal scoring problem.We demonstrate the effec-
tiveness of our new methods with empirical results for classification of Gaussian data
and data sets drawn from benchmarking repositories, including time-series and multi-
spectral X-ray data, and provide Matlab and R implementations of our optimization
schemes.

Keywords Sparse discriminant analysis · Optimal scoring · Proximal gradient
method · Alternating direction method of multipliers

Mathematics Subject Classification 62H30 · 62J12 · 90C26

1 Introduction

Sparse discriminant techniques have become popular in the last decade due to their
ability to provide increased interpretation as well as predictive performance for high-
dimensional problemswhere few observations are present. These approaches typically
build upon successes from sparse linear regression, in particular the LASSO and its
variants [see (Hastie et al. 2013), Section 3.4.2 and Hastie et al. (2012)), by augment-
ing existing schemes for linear discriminant analysis (LDA) with sparsity-inducing
regularization terms, such as the �1-norm and elastic net.

Thus far, little focus has been put on the optimization strategies of these sparse
discriminant methods, nor their computational cost. We propose three novel optimiza-
tion strategies to obtain discriminant directions in the high-dimensional setting where
the number of observations n is much smaller than the ambient dimension p or when
features are highly correlated, and analyze the convergence properties of these meth-
ods. The methods are proposed for multi-class sparse discriminant analysis using the
sparse optimal scoring formulation with elastic net penalty proposed in Clemmensen
et al. (2011); adding both the �1- and �2-norm penalties gives sparse solutions which,
in particular, are competitive when high correlations exist in feature space due to
the grouping behaviour of the �2-norm. The first two strategies are proximal gradi-
ent methods based on modification of the (fast) iterative shrinkage algorithm Beck
and Teboulle (2009) for linear inverse problems. The third method uses a variant of
the alternating direction method of multipliers similar to that proposed in Ames and
Hong (2016). We will formally define each of these terms and discuss them in greater
detail in Sect. 2. We will see that these heuristics allow efficient classification of high-
dimensional data, which was previously impractical using the current state of the art
for sparse discriminant analysis. For example, if a diagonal or low-rank Tikhonov
regularization term is used and the number of observations is very small relative to p,
then the per-iteration cost of each of our algorithms is O(p); that is, the per-iteration
cost of our approach scales linearly with the number of features of our data. Finally, we
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provide implementations of our algorithms in the form of the R package accSDA(see
Einarsson et al. (2017)) and Matlab software.1

1.1 Existing approaches for sparse LDA

We begin with a brief overview of existing sparse discriminant analysis techniques.
Methods such as Witten and Tibshirani (2011), Tibshirani et al. (2003), Fan and Fan
(2008) assume independence between the features in the given data. This can lead to
poor performance in terms of feature selection aswell as predictions, in particularwhen
high correlations exist. Thresholding methods such as Shao et al. (2011), although
proven to be asymptotically optimal, ignore the existingmulti-linear correlationswhen
thresholding low correlation estimates. Thresholding, furthermore, does not guarantee
an invertible correlation matrix, and often pseudo-inverses must be utilized.

For two-class problems, the analysis of Mai and Zou (2013) established an equiv-
alence between the three methods described in Wu et al. (2008), Clemmensen et al.
(2011),Maet al. (2012). These three approaches are formulated as constrained versions
of Fisher’s discriminant problem, the optimal scoring problem, and a least squares
formulation of linear discriminant analysis, respectively. For scaled regularization
parameters, Mai and Zou (2013) showed that they all behave asymptotically as Bayes
rules. Another two-class sparse linear discriminant method is the linear programming
discriminant method proposed in Cai and Liu (2011), which finds an �1-norm penal-
ized estimate of the product between covariance matrix and difference in means.

The sparse optimal scoring (SOS) problem was originally formulated in Clem-
mensen et al. (2011) as a multi-class problem seeking at most K − 1 sparse
discriminating directions, where K is the number of classes present, whereas Mai
and Zou (2013) was formulated for binary problems. This approach builds on earlier
work by Hastie et al. (1994, 1995). Mai and Zou later proposed a multi-class sparse
discriminant analysis (MSDA) based on the Bayes rule formulation of linear discrim-
inant analysis in Mai et al. (2019). It imposes only the �1-norm penalty, whereas
the SOS imposes an elastic net penalty (�1- plus �2-norm). Adding the �2-norm can
give better predictive performance, in particular when very high correlations exist in
data. MSDA, furthermore, finds all discriminative directions at once, whereas SOS
finds them sequentially via deflation. A sequential solution can be an advantage if the
number of classes is high, and a solution involving only a few directions (the most
discriminating ones) is needed. On the other hand, if K is small, finding all directions
at once may be advantageous, in order to not propagate errors in a sequential manner.
Sparse optimal scoring models based on the group-LASSO are considered in Mer-
chante et al. (2012), Roth and Fischer (2008), while sparse optimal scoring and sparse
discriminant analysis has become a popular tool in cognitive neuroscience Grosenick
et al. (2008), among many other domains.

Finally, the zero-variance sparse discriminant analysis approach of Ames and Hong
(2016) reformulates the sparse discriminant analysis problem as an �1-penalized non-
convex optimization problem in order to sequentially identify discriminative directions
in the null-space of the pooled within-class scatter matrix. Most relevant for our dis-

1 Available at http://bpames.people.ua.edu/software.
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cussion here is the use of proximal methods to approximately solve the nonconvex
optimization problems in Ames and Hong (2016); we will adopt a similar approach
for solving the SOS problem.

1.2 Contributions

The proposed optimization algorithms are not inherently novel, as they are specializa-
tions of existing algorithmic frameworks widely used in sparse regression. However,
the application of these proximal algorithms to solve the sparse optimal scoring prob-
lem is novel. Moreover, this specialization highlights the strong relationship between
the optimal scoring and regression: optimal scoring generalizes regression, in the
sense that optimal scoring simultaneously fits both a linear model and a quantitative
encoding of categorical class labels.

Further, the proposed sparse optimal scoring heuristics offer a substantial improve-
ment upon the current state of the art for optimal scoring in terms of computational
efficiency when the number of predictor variables is large and dense discriminant vec-
tors are desired. Specifically, we show that the computation required for each iteration
of the proposed algorithms scales linearly with the number of predictor variables,
which yields a potential significant improvement upon the cubic scaling of the least
angle regression-based algorithm initially adopted in Clemmensen et al. (2011); our
comparison of computational complexity can be found in Sect. 3.4 and “Appendix A”.

We performed a detailed empirical analysis of our proposed heuristics for sparse
optimal scoring, including comparisons of classification accuracy and computational
complexity for simulated data and real-world data sets drawn from the UC Riverside
Time Series Archive (Dau et al. 2018, 2019), investigation of convergence phenom-
ena, and scaling tests. These empirical results agree with our theoretical analyses of
computational complexity (Sect. 3.4, App. A) and convergence (Sect. 2.2).

1.3 Notation

Before we proceed, we first summarize the notation that is used throughout the text.
We denote the space of p-dimensional vectors by Rp and the space of m by n real
matrices byRm×n . Bold capital letters, e.g., X , will be used to denote matrices, lower-
case bold letters, e.g., x, β, denote vectors, and unbolded letters will denote scalars
(unless otherwise noted).

We denote the p-dimensional all-zeros and all-ones vectors by 0p and 1p; we omit
the subscript p when the dimension is clear by context. We denote the transpose of a
matrix X by XT and the inverse of (nonsingular) X by X−1. On the other hand, we use
lower-case superscripts to indicate the indices of elements of sequences of vectors,
e.g., {xi }∞i=0 = x0, x1, . . . and use subscripts to denote the indices of elements of
sequences of scalars, e.g., {αi }∞i=0 = α0, α1, . . . . Subscripts will also indicate indices
of entries of vectors and matrices; for example, the value in the first row and second
column of matrix X will be denoted by x12. We will reserve the character L to denote
the Lipschitz constant of a given Lipschitz continuous operator g : Rp �→ Rm .
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Conversely, we will use the notation Lμ to denote the augmented Lagrangian with
respect to parameter μ of a given equally constrained optimization problem; we will
also use L to denote the (unaugmented) Lagrangian function. Finally, we denote the
subdifferential, i.e., the set of subgradients, of a convex function f : Rn �→ R at
vector x by

∂ f (x) =
{
φ ∈ Rn : f ( y) ≥ f (x) + φT ( y − x) for all y ∈ dom f

}
.

2 An alternating directionmethod for sparse discriminant analysis

In this section, we describe a block coordinate descent approach for approximately
solving the sparse optimal scoring problem for linear discriminant analysis. Proposed
in Hastie et al. (1994), the optimal scoring problem recasts linear discriminant analysis
as a generalization of linear regressionwhere both the response variable, corresponding
to an optimal labeling or scoring of the classes, and linear model parameters, which
yield the discriminant vector, are sought. Specifically, suppose that we have the n× p
data matrix X , where the rows of X correspond to observations in Rp sampled from
one of K classes; we assume that the data has been centered so that the sample mean
is the zero vector 0 ∈ Rp.

Optimal scoring generates a sequence of discriminant vectors and conjugate scoring
vectors as follows. Suppose that we have identified the first j −1 discriminant vectors
β1, . . . ,β j−1 ∈ Rp and scoring vectors θ1, . . . , θ j−1 ∈ RK . To calculate the j th
discriminant vector β j and scoring vector θ j , we solve the optimal scoring criterion
problem

argmin
θ∈RK ,β∈Rp

‖Yθ − Xβ‖2

s.t. 1
n θTY TYθ = 1, θTY TYθ� = 0 ∀� < j,

(1)

whereY denotes then×K indicatormatrix for classmembership, definedby y�m = 1 if
the �th observation belongs to themth class, and y�m = 0 otherwise, and‖·‖ : Rn → R

denotes the vector �2-norm on Rn defined by ‖ y‖ =
√
y21 + y22 + · · · + y2n for all

y ∈ Rn . We direct the reader to Hastie et al. (1994) for further details regarding the
derivation of (1).

A variant of the optimal scoring problem called sparse discriminant analysis or
sparse optimal scoring, which employs regularization via the elastic net penalty func-
tion is proposed in Clemmensen et al. (2011). As before, suppose that we have
identified the first j − 1 discriminant vectors β1, . . . ,β j−1 and scoring vectors
θ1, . . . , θ j−1. We calculate the j th sparse discriminant vector β j and scoring vec-
tor θ j as the optimal solutions of the optimal scoring criterion problem

argmin
θ∈RK ,β∈Rp

‖Yθ − Xβ‖2 + γβTΩβ + λ‖β‖1
s.t. 1

n θTY TYθ = 1, θTY TYθ� = 0 ∀� < j,
(2)
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where ‖ · ‖1 : Rp → R denotes the vector �1-norm on Rp defined by ‖x‖1 =
|x1| + |x2| + · · · + |xp| for all x ∈ Rp, Y ∈ Rn×K is again the indicator matrix
for class membership, λ and γ are nonnegative tuning parameters, and Ω is a p × p
positive definite matrix. That is, (2) is the result of adding regularization to the optimal
scoring problem using a linear combination of the Tikhonov penalty term βTΩβ and
the �1-norm penalty ‖β‖1; we will provide further discussion regarding the choice
of Ω in Sect. 3.4. The optimization problem (2) is nonconvex, due to the presence of
nonconvex spherical constraints. As such, we do not expect to find a globally optimal
solution of (2) using iterative methods.

2.1 Block coordinate descent for sparse optimal scoring

Clemmensen et al. propose a block coordinate descent method to solve (2) in Clem-
mensen et al. (2011). This approach has beenwidely adopted, with nearly 600 citations
according to Google Scholar,2 and over 119000 downloads of the R implementation
sparseLDA from the Comprehensive R Archive Network (CRAN).3 This approach
can be described as follows. Suppose that we have an estimate (θ i ,β i ) of (θ j ,β j )

after i iterations. To update θ i , we fix β = β i and solve the optimization problem

θ i+1 = argmin
θ∈RK

‖Yθ − Xβ i‖2

s.t. 1
n θTY TYθ = 1, θTY TYθ� = 0 ∀� < j .

(3)

The subproblem (3) is nonconvex in θ , however, it is known that (3) admits an analytic
solution and can be solved exactly in polynomial time. Indeed, we have the following
lemma providing an analytic update formula for θ . Note that this update requires
O(K 3 + pn) floating point operations to perform the necessary matrix products. For
completeness, we provide a proof of Lemma 1 in “Appendix B”. See (Clemmensen
et al. 2011, Section 2.2) for more details.

Lemma 1 The problem (3) has optimal solution

θ i+1 = s

(
I − 1

n
Q j Q

T
j Y

TY
)

(Y TY)−1Y T Xβ i , (4)

where Q j is the K × j matrix with columns consisting of the j − 1 scoring vectors
θ1, . . . , θ j−1 and the all-ones vector 1 ∈ RK , and s is a proportionality constant
ensuring that (θ i+1)TY TYθ i+1 = n. In particular, θ i+1 is given by

w =
(
I − 1

n
Q j Q

T
j Y

TY
)

(Y TY)−1Y T Xβ i , θ i+1 =
√
nw

‖Yw‖ . (5)

2 Citation count available from scholar.google.com accessed November 11, 2021.
3 Download count available from cranlogs.r-pkg.org/badges/grand-total/sparseLDA accessed November
11, 2021.
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After we have updated θ i+1, we obtain β i+1 by solving the unconstrained opti-
mization problem

β i+1 = argmin
β∈Rp

‖Yθ i+1 − Xβ‖2 + γβTΩβ + λ‖β‖1. (6)

That is, we update β i+1 by solving the generalized elastic net problem (6). We stop
this block update scheme if the relative change in consecutive iterates is smaller than
a desired tolerance. Specifically, we stop the algorithm if

max

{
‖θ i+1 − θ i‖

‖θ i+1‖ ,
‖β i+1 − β i‖

‖β i+1‖

}
≤ ε

for stopping tolerance ε > 0. We delay discussion of strategies until after a discussion
of the convergene properties of this alternating minimization scheme. Specifically, we
discuss an algorithm based on least-angle regression (LARS) for solving (6) suggested
in Clemmensen et al. (2011) in Sect. 2.3 and our proposed improvements in Sect. 3.

2.2 Convergence of the block coordinate descent algorithm

Before we proceed to the statement of our algorithms for updating β, we investigate
the convergence properties of the block coordinate descent method given by Algo-
rithm 1. Our two main results, Theorems 1 and 2, are specializations of standard
results for alternating minimization algorithms; we provide proofs of these results as
appendices. We should note that these two theorems establish convergence properties
of Algorithm 1 that are independent of the algorithm used to solve Subproblem (6).
In particular, these convergence theorems hold if we use any of the iterative methods
suggested in the following section for solving (6), as well as the LARS Algorithm for
solving (6) suggested in Clemmensen et al. (2011).

We first note that the Lagrangian L : RK × Rp × R × R j−1 → R of (2) is given
by

L(θ ,β, ψ, v) =‖Yθ − Xβ‖2 + γβTΩβ + λ‖β‖1
+ ψ(θTY TYθ − n) + vTUθ ,

whereUT = (Y TYθ1,Y TYθ2, . . . ,Y TYθ j−1).Note that theLagrangian isnot a con-
vex function in general. However, L is the sum of the (possibly) nonconvex quadratic
‖Yθ − Xβ‖2 + ψ(θTY TYθ − n) + γβTΩβ + vTUθ and the convex nonsmooth
function λ‖β‖1; therefore, L is subdifferentiable, with subdifferential at (β, θ) given
by the sum of the gradient of the smooth term at (β, θ) and the subdifferential of the
convex nonsmooth term at (β, θ).

Wenowprovide our first convergence result, specifically, thatAlgorithm1generates
a convergent sequence of function values.
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Theorem 1 Suppose that the sequence of iterates {(θ i ,β i )}∞i=0 is generated by Algo-
rithm 1. Then the sequence of objective function values {F(θ i ,β i )}∞i=0 defined by
F(θ,β) := ‖Yθ − Xβ‖2 + γβTΩβ + λ‖β‖1 is convergent.
We include a proof of Theorem 1 in “Appendix C”.

We also have the following theorem, which establishes that every convergent sub-
sequence of {(θ i ,β i )}∞i=1 converges to a stationary point of (2).

Theorem 2 Let {(θ i ,β i )}∞i=1 be the sequence of points generated by Algorithm 1. If
{(θ i� ,β i� )}∞�=1 is a convergent subsequence of {(θ i ,β i )}∞i=1 with limit (θ∗,β∗) then
(θ∗,β∗) is a stationary point of (2): (θ∗,β∗) is feasible for (2) and there existsψ∗ ∈ R
and v∗ ∈ R j−1 such that 0 ∈ ∂L(θ∗,β∗, ψ∗, v∗), where ∂L(θ ,β, ψ, v) denotes the
subdifferential of theLagrangian functionLwith respect to the primal variables (θ ,β).

A proof of Theorem 2 can be found in “Appendix D”.
We conclude this section by noting that we expect the block coordinate descent

method to converge after exactly one full iteration in the absence of rounding error in
the two-class case, i.e., K = 2. In this case, the optimal solution of (3) is given by the
projection of any vector θ not in the span of the all-ones vector 1 onto the set

{
θ ∈ Rk : θTY TYθ = n, θTY TY1 = 0

}
;

this is equivalent to the optimal solution given by Lemma 1. This solution is uniquely
defined (up to sign) and is obtained after the initial θ update if the initial solution θ is
not a scalar multiple of 1. This suggests that Algorithm 1 will converge after exactly
one iteration if we solve (6) exactly. In practice, we may require multiple iterations
of Algorithm 1 depending on the relative stopping tolerances of Algorithm 1 and the
method used to solve (6).

2.3 The least angle regression algorithm

It is suggested in Clemmensen et al. (2011) that (6) can be solved using the least
angle regression (LARS-EN) algorithm proposed in Zou and Hastie (2005) for solving
elastic net regularized linear inverse problems, which in turn generalizes the LARS
algorithm for �1 regularized linear inverse problems proposed in Efron et al. (2004).
This method sequentially updates elastic net estimates of the solution of (6). The main
computational step of the i th iteration is the inversion of a coefficient matrix of the
form XT

Ai
X Ai + γΩ , where Ai is the active variable set, i.e, the indices of nonzero

entries of the i th iterate β i . To minimize computational costs, a low-rank dow- ndating
procedure is used to update the Cholesky factorization of XT

Ai−1
X Ai−1 +γΩ and only

nonzero-cofficients and active variable sets are stored each iteration. The specialization
of the LARS algorithm for solution of (6) is included in the Matlab and R package
sparseLDA Clemmensen (2008).

It is known that the number of iterations of the LARS algorithm acts as a tuning
parameter for sparsity of solution (induced by the �1 penalty in (6)). That is, the
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Algorithm 1: Block Coordinate Descent for SDA (2)
Data: Given stopping tolerance ε, and maximum number of iterations N .
Result: Discriminant vectors (θ∗

1, β
∗
1), (θ

∗
2,β

∗
2), …, (θ∗

K−1, β
∗
K−1) calculated as approximate

solutions of (2).
for j = 1, 2, . . . , K − 1

Initialize θ0j as the projection of K -dimensional vector z with entries sampled uniformly at
random from the interval [0, 1] onto the feasible region using the identity

θ0j =
(
I − 1

n
Q j Q

T
j Y

T Y
)

(YT Y)−1 z, θ0j =
√
nθ0j

‖Yθ0j‖
;

Calculate the j th scoring and discriminant vector pair (θ∗
j ,β

∗
j ) as the limit point of the sequence

{(θ ij , βi
j )}∞i=0 as follows:

for i = 0, 1, 2 . . . N
Update βi

j as the solution of (6) with θ = θ ij using the solution returned by one of (2), (4),

(6), and (5);

Update θ i+1
j by

w =
(
I − 1

n
Q j Q

T
j Y

T Y
)

(YT Y)−1YT Xβi
j , θ i+1 =

√
nw

‖Yw‖ ;

Declare convergence if the residual between consecutive iterates is smaller than desired
tolerance:

if max

{
‖θ i+1−θ i ‖

‖θ i+1‖ ,
‖βi+1−βi ‖

‖βi+1‖

}
< ε

The algorithm has converged;
break;

end
end

end

sequence of iterates generated by the LARS algorithm is equivalent to set of solutions
of (6) for a particular sequence of choices of regularization parameter λ. This yields
two potential improvements over other candidate methods for solving (6). First, we
do not need to repeatedly solve (6) to tune the parameter λ, e.g., as part of a cross
validation or boosting scheme. Instead, we can obtain a full regularization path with a
single call to the LARS algorithm. Second, in many applications, it is more natural to
seek a solution with a specific maximum cardinality, rather than some desired value
of �1 penalty; the LARS algorithm allows the use of this more natural interpretation
of the regularization process as a stopping criterion. We direct the reader to (Zou and
Hastie 2005, Section 3.5) for further details.

This approach carries a computational cost on the order of O(mnp + m3), where
m is the desired number of nonzero coefficients at termination, which is prohibitively
expensive if both p and m are large. For example, if m = cp for some constant
c ∈ (0, 1), then the per-iteration cost scales cubically with p. Moreover, we should
note that we solve a different instance of (6) during each iteration of Algorithm 1,
since the value of θ changes each iteration. Thus, we are required to compute the full
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regularization path during each iteration of Algorithm 1. We should also note that the
solutions given by LARS-based algorithms are not directly comparable to those given
by proximal gradient methods since they do not correspond to the same optimization
problem. Generally, the deflationary process for calculating discriminant-scoring vec-
tor pairs leads to different optimization problems for calculating (θk,βk) for k > 1,
due to differences in results of solving the prior subproblems between heuristics. This
phenomena is especially pronounced when using LARS-based algorithms, compared
to our proposed proximal methods, since the LARS-based algorithms implicitly use
dynamically updated regularization parameters λi , which inherently depend on the
choice of discriminant and scoring vectors chosen in earlier steps of Algorithm 1.

Here, we must be careful to note that the optimization problem is well-defined
in the form (1) for each step of Algorithm 1 in the absence of error. That is, if we
solve each subproblem for (θ∗

i ,β
∗
i ), i = 1, 2, . . . , K − 1 exactly, then we should

obtain the same set of scoring-discriminant vector pairs (θ∗
i ,β

∗
i ), i = 1, 2, . . . , K −1

regardless of which method we use to solve (1). However, in practice, we terminate
our heuristics for solving the subproblem (1) for calculating (θ∗

i ,β
∗
i ) after a desired

level of suboptimality is met, which results in different approximate solutions using
different heuristics for solving (1). This, in turn, gives different instances of (1) for
calculating (θ∗

i+1,β
∗
i+1), which is compounded as we solve each subproblem for

i = 1, 2, . . . , K − 1.
Finally, we note that coordinate descent methods have been widely adopted for

calculation of elastic net regularized generalized linear models; see Friedman et al.
(2010) for further details. However, we are unaware of any application of coordinate
descentmethods for solution of the elastic net regularized optimal scoring problem (2).

3 Proximal methods for updatingˇ

Our primary contribution is a collection of algorithms for solving the β-update sub-
problem (6). Specifically, we specialize three classical algorithms, each based on the
evaluation of proximal operators, to obtain novel numerical methods for solution of the
sparse optimal scoring problem.Wewill see that these algorithms require significantly
fewer computational resources than least angle regression if we exploit structure in
the regularization parameter Ω .

3.1 The proximal gradient algorithm

Given a convex function f : Rp → R, the proximal operator prox f : Rp → Rp of
f is defined by

prox
f

( y) = argmin
x∈Rp

{
f (x) + 1

2
‖x − y‖2

}
,

which yields a point that balances the competing objectives of being near y while
simultaneously minimizing f . The use of proximal operators is a classical technique
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in optimization, particularly as surrogates for gradient descent steps for minimization
of nonsmooth functions. For example, consider the optimization problem

min
x∈Rp

f (x) + g(x), (7)

where f : Rp → R is differentiable and g : Rp → R is potentially nonsmooth. That
is, (7) minimizes an objective that can be decomposed as the sum of a differentiable
function f and nonsmooth function g. To solve (7), the proximal gradient method
performs iterations consisting of a step in the direction of the negative gradient −∇ f
of the smooth part f followed by evaluation of the proximal operator of g: given iterate
xi , we obtain the updated iterate xi+1 by

xi+1 = prox
αi g

(xi − αi∇ f (xi )), (8)

where αi is a step length parameter. If both f and g are differentiable and the step
size αi is small, then this approach reduces to the classical gradient descent iteration:
xi+1 ≈ xi −αi∇ f (xi )−αi∇g(xi ). We direct the reader to Beck and Teboulle (2009),
Parikh and Boyd (2014) for more details regarding the proximal gradient method.

Expanding the residual norm term ‖Yθ −Xβ‖2 in the objective of (6) and dropping
the constant term shows that (6) is equivalent to minimizing

F(β) = 1

2
βT Aβ + dTβ + λ‖β‖1, (9)

where A = 2(XT X + γΩ) and d = −2XTYθ i+1. We can decompose F as F(β) =
f (β) + g(β), where f (β) = 1

2β
T Aβ + dTβ and g(β) = λ‖β‖1. Note that F

is strongly convex if the penalty matrix Ω is positive definite; in this case (9) has
a unique minimizer. Note further that f is differentiable with ∇ f (β) = Aβ + d.

Moreover, the proximal operator of the �1-norm term g(β) = λ‖β‖1 is given by

prox
λ‖·‖1

( y) = sign( y)max{| y| − λ1, 0} =: Sλ( y);

see (Parikh and Boyd 2014, Section 6.5.2). The proximal operator Sλ = proxλ‖·‖1
is often called the soft thresholding operator (with respect to the threshold λ) and
sign : Rp → Rp and max : Rp ×Rp → Rp are the element-wise sign and maximum
mappings defined by

[sign( y)]i = sign(yi ) =
⎧⎨
⎩

+1, if yi > 0
0, if yi = 0

−1, if yi < 0

and [max(x, y)]i = max(xi , yi ).Using this decomposition,we can apply the proximal
gradient method to generate a sequence of iterates {β i } by

β i+1 = sign( pi )max{| pi | − λαi1, 0}, (10)
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Algorithm 2: Proximal gradient method for solving (6)

Data: Given initial iterate β0, sequence of step sizes {αi }∞i=0, stopping tolerance ε, and maximum
number of iterations N .

Result: Solution β∗ of (6).
for i = 0, 1, 2 . . . N

Update gradient term by (11):
pi = βi − αi (Aβi + d);

Update iterate using proximal gradient step (10):

βi+1 = sign( pi )max{| pi | − λαi1, 0};

Terminate if current iterate is approximately stationary:
if ‖Aβi+1 + d + λ sign(βi+1)‖∞ < pε:

The algorithm has converged;
break;

end
end

where

pi = β i − αi∇ f (β i ) = β i − αi (Aβ i + d); (11)

here, 1 and 0 denote the all-ones and all-zeros vectors in Rp, respectively. This prox-
imal gradient algorithm with constant step lengths is summarized in Algorithm 2;
Algorithm 3 can be modified to obtain a variant of Algorithm 2 that employs a
backtracking line search. It is important to note that this update scheme is virtu-
ally identical to the iterative soft thresholding algorithm (ISTA) proposed in Beck and
Teboulle (2009) for solving �1 regularized linear inverse problems. Specifically, our
problem and update formula differs only from that typically associated with ISTA in
the presence of the Tikhonov regression term βTΩβ in our model. As an immediate
consequence, we can specialize the known convergence properties of ISTA (Beck and
Teboulle 2009, Theorem 3.1) to show that the sequence of function values {F(β i )}
generated by Algorithm 2 converges sublinearly to the optimal function value of (9)
at a rate no worse than O(1/i) for a certain choice of step lengths {αi }.

Theorem 3 (Specialization of (Beck and Teboulle 2009, Theorem 3.1)) Let {β i } be
generated by Algorithm 2 with initial iterate β0 and constant step size αi = α ∈
(0, 1/‖A‖) or step sizes chosen using the backtracking scheme given by Algorithm 3,
where ‖A‖ = λmax(A) denotes the largest eigenvalue of the positive semidefinite
matrix A. Suppose that β∗ is a minimizer of F. Then there exists a constant c such
that

F(β i ) − F(β∗) ≤ c‖A‖‖β0 − β∗‖2
i

(12)

for any i ≥ 1.
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Algorithm 3: Proximal gradient method for solving (6) with back tracking line
search
Data: Given initial iterate β0, sequence of step sizes {αi }∞i=0, stopping tolerance ε, and maximum

number of iterations N .
Result: Solution β∗ of (6).
for i = 0, 1, 2 . . . N

Update iterate using proximal gradient step (10) and backtracking line search:
for k = 0, 1, 2 . . . until step size accepted

Update step length:

L̄ = ηk Li , α = 1

L̄
;

Update iterate using proximal gradient step (10):

pi = βi − αi (Aβi + d);
βi+1 = sign( pi+1)max{| pi+1| − λα1, 0};

Determine whether to accept update or increment step length:

if (βi+1 − yi+1)T
(
L̄
2 I − A

)
(βi+1 − yi+1) ≥ 0

Accept update: set Li+1 = L̄ and αi = ᾱ;
break;

end
end
Terminate if current iterate is approximately stationary:
if ‖Aβi+1 + d + λ sign(βi+1)‖∞ < pε:

The algorithm has converged;
break;

end
end

Note that Theorem 3 implies that Algorithms 2 and 3 yield ε-suboptimal solutions
for (6) within O(1/ε) iterations. Here, we say that a vector β̃ is ε-suboptimal for (6)
if F(β̃) − F(β∗) ≤ ε, for each ε > 0. It is known that ISTA converges linearly when
the objective function F is strongly convex (see (Beck 2017, Chapter 10)). We will
see that the strong convexity of the objective of (2) depends on the structure of the
regularization term Ω . When Ω is full rank, then F is strongly convex. Therefore, the
sequence of iterates generated by Algorithm 2 converges to the unique minimizer of
(6) if the penalty parameter Ω is chosen to be positive definite. If we choose Ω to
be positive semidefinite but not full rank, then F may not be strongly convex. In this
case, Theorem 3 establishes that the sequence of iterates generated by Algorithm 2
converges sublinearly to the minimum value of (6) and any limit point of this sequence
is a minimizer of (6). We will see that using such a matrix may have attractive com-
putational advantages despite this loss of uniqueness.

It is reasonably easy to see that the quadratic term of F in (9) is differentiable and
has Lipschitz continuous gradient with constant L = ‖A‖; this is the significance
of the ‖A‖ term in (12). In order to ensure convergence in our proximal gradient
method, we need to estimate ‖A‖ to choose a sufficiently small step size α. Computing
this Lipschitz constant may be prohibitively expensive for large p; one can typically
calculate ‖A‖ to arbitrary precision using variants of the PowerMethod (seeGolub and
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Van Loan 2013, Sections 7.3.1, 8.2) at a cost ofO(p2 log p) floating point operations.
Instead, we could use an upper bound L̃ ≥ L to compute our constant step size
α = 1/L̃ ≤ 1/L . For example, when Ω is a diagonal matrix, we estimate ‖A‖ by

‖A‖ = 2‖γΩ + XT X‖ ≤ 2γ ‖diag(Ω)‖∞ + 2‖X‖2F ≈ 1

α
,

where diag(M) ∈ Rp is the vector of diagonal entries of the matrix M ∈ Rp×p.
Here, we used the triangle inequality and the identity ‖XT X‖ ≤ ‖X‖2F , where ‖X‖F
denotes the Frobenius norm of X defined by ‖X‖2F = ∑n

i=1
∑p

j=1 x
2
i j . The Frobenius

norm and, hence, this estimate of ‖A‖ can be computed using only O(np) floating
point operations.

In practice, we stop Algorithm 2 after a maximum number of iterations are per-
formed or a sufficiently suboptimal solution is identified. Recall, that β∗ minimizes
F(β) if 0 ∈ ∂F(β). On the other hand, we know that Aβ∗+d+λ sign(β∗) ∈ ∂F(β∗)
by the structure of the subgradients of ‖β‖1. This implies that we can terminate our
proximal gradient update scheme if we find β∗ such that Aβ∗ + d + λ sign(β∗) is
close to 0. Specifically, we stop the iterative scheme after the i th iteration if

‖Aβ i + d + λ sign(β i )‖∞ = max
j

|(Aβ i + d + λ sign(β i )) j | ≤ pε

for given stopping tolerance ε > 0.

3.2 The accelerated proximal gradient method

The similarity of our method to iterative soft thresholding and, more generally, our
use of proximal gradient steps to mimic the gradient method for minimization of
our nonsmooth objective suggests that we may be able to use momentum terms to
accelerate convergence of our iterates. In particular, we modify the fast iterative soft
thresholding algorithm (FISTA) described in Beck and Teboulle (2009), Section 4 to
solve our subproblem. This approach extends a variety of accelerated gradient descent
methods, most notably those of Nesterov (1983, 2005, 2013), to minimization of
composite convex functions; for further details regarding the acceleration process and
motivation for why such acceleration is possible, we direct the reader to the references
(Allen-Zhu and Orecchia 2017; Bubeck et al. 2015; Flammarion and Bach 2015;
Lessard et al. 2016; O’Donoghue and Candes 2015; Su et al. 2014; Tseng 2008).

We accelerate convergence of our iterates by taking a proximal gradient step from an
extrapolation of the last two iterates. Applied to (7), the accelerated proximal gradient
method features updates of the form

yi+1 = xi + ωi (xi − xi−1) (13)

xi+1 = prox
αg

( yi+1 − α∇ f ( yi+1)), (14)

where ωi ∈ [0, 1) is an extrapolation parameter, a standard choice of this parameter
is i/(i + 3). Applying this modification to our original proximal gradient algorithm
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Algorithm 4:Accelerated proximal gradient method for solving (6) with constant
step size

Data: Given initial iterates β0 = β1, step length α, sequence of extrapolation parameters {ωi }∞i=0,
stopping tolerance ε, and maximum number of iterations N .

Result: Solution β∗ of (6).
for i = 1, 2 . . . , N

Update momentum term by (13):

yi+1 = βi + ωi (β
i − βt−1);

Update gradient term by (11):

pi+1 = yi+1 − α(Ayi+1 + d);

Update iterate using proximal gradient step (10):

βi+1 = sign( pi+1)max{| pi+1| − λα1, 0};

Terminate if current iterate is approximately stationary:
if ‖Aβi+1 + d + λ sign(βi+1)‖∞ < pε:

The algorithm has converged;
break;

end
end

yields Algorithm 4. Modifying the backtracking line search of Algorithm 3 to use
the accelerated proximal gradient update yields Algorithm 5. It can be shown that the
sequence of iterates generated by either of these algorithms converges in value to the
optimal solution of (6) at rate O(1/i2).

Theorem 4 (Specialization of Beck and Teboulle 2009, Theorem 4.4) Let {β i } be
generated by Algorithm 4 and constant step size αi = α ∈ (0, 1/‖A‖) or generated
using backtracking line search by Algorithm 5 with initial iterate β0. Then there exists
constant c > 0 such that

F(β i ) − F(β∗) ≤ c‖A‖‖β0 − β∗‖2
i2

(15)

for any i ≥ 1 and minimizer β∗ of F.

3.3 The alternating directionmethod of multipliers

We conclude by proposing a third algorithm forminimization of (9) based on the alter-
nating direction method of multipliers (ADMM). The ADMM is designed tominimize
separable objective functions under linear coupling constraints, i.e., problems of the
form

min
x∈Rp,y∈Rm

{
f (x) + g( y) : Ax + B y = c

}
, (16)
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Algorithm 5: Accelerated proximal gradient method for solving (6) with back-
tracking line search

Data: Initial iterates β0 = β1, initial Lipschitz constant L0 > 0, scaling parameter η > 1, sequence
of extrapolation parameters {ωi }∞i=0, stopping tolerance ε, and maximum number of iterations
N .

Result: Solution β∗ of (6).
for i = 0, 1, 2 . . . N

Update βi+1 using accelerated proximal gradient step and backtracking line search:
for k = 0, 1, 2 . . . until step size accepted

Update step length:

L̄ = ηk Li , α = 1

L̄
;

Update iterate using accelerated proximal gradient step (13), (14):

yi+1 = βi + ωi (β
i − βt−1)

pi+1 = yi+1 − α(Ayi+1 + d)

βi+1 = sign( pi+1)max{| pi+1| − λα1, 0};

Determine whether to accept update or increment step length:

if (βi+1 − yi+1)T
(
L̄
2 I − A

)
(βi+1 − yi+1) ≥ 0

Accept update: set Li+1 = L̄ and αi = ᾱ;
break;

end
end
Terminate if current iterate is approximately stationary:
if ‖Aβi+1 + d + λ sign(βi+1)‖∞ < pε:

The algorithm has converged;
break;

end
end

via an approximate dual gradient ascent, where f : Rp → R, g : Rm → R, A ∈
Rr×p, B ∈ Rr×m, and c ∈ Rr ; we direct the reader to the survey Boyd et al. (2011)
for more details regarding the ADMM.

The minimization of the composite function F defined in (9) can be written as the
unconstrained optimization problem

min
β∈Rp

F(β) = min
β∈Rp

1

2
βT Aβ + dTβ + λ‖β‖1. (17)

We can rewrite (17) in an equivalent form appropriate for the ADMM by splitting the
decision variable β ∈ Rp as two new variables x, y ∈ Rp with an accompanying
linear coupling constraint x = y. Following this change of variables, we can express
(17) as

min
x, y∈Rp

1
2 x

T Ax + dT x + λ‖ y‖1
s.t. x − y = 0.

(18)
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The ADMM generates a sequence of iterates using approximate dual gradient ascent
as follows. The augmented Lagrangian of (18) is defined by

Lμ(x, y, z) = 1

2
xT Ax + dT x + λ‖ y‖1 + zT (x − y) + μ

2
‖x − y‖2

for all x, y, z ∈ Rp; here, μ > 0 is a penalty parameter controlling the emphasis on
enforcing feasibility of the primal iterates x and y. To approximate the gradient of
the dual functional of (18), we alternately minimize the augmented Lagrangian with
respect to x and y. We then update the dual variable z using a dual ascent step using
this approximate gradient.

Suppose that we have the iterates (xi , yi , zi ) after i iterations. To update x, we take

xi+1 = argmin
x∈Rp

Lμ(x, yi , zi ) = argmin
x∈Rp

1

2
xT (μI + A)x − xT (−d + μ yi − zi ).

Applying the first order necessary and sufficient conditions for optimality, we see that
xi+1 must satisfy

(μI + A)xi+1 = −d + μ yi − zi . (19)

Thus, xi+1 is obtained as the solution of a linear system.Note that the coefficientmatrix
μI + A is independent of the iteration number i ; we take the Cholesky decomposition
of μI + A = BBT during a preprocessing step and obtain xi+1 by solving the two
triangular systems given by

BBT xi+1 = −d + μ yi − zi .

When the generalized elastic netmatrixΩ is diagonal, orM := μI+2γΩ is otherwise
easy to invert, we can invoke the Sherman-Morrison-Woodbury formula (see Golub
and Van Loan 2013, Section 2.1.4) to solve this linear system more efficiently; more
details will be provided in Sect. 3.4. In particular, we see that

(μI + 2γΩ + 2XT X)−1 = M−1 − 2M−1XT (I + 2XM−1XT )−1XM−1;

computing this inverse only requires computing the inverse of M and the inverse of
the n × n matrix I + 2XM−1XT .

Next y is updated by

yi+1 = argmin
y∈Rp

Lμ(xi+1, y, zi ) = argmin
y

λ‖ y‖1 + μ

2
‖ y − xi+1 − zi/μ‖2.

That is, yi+1 is updated as the value of the soft thresholding operator of the �1-norm
at zi/μ + xi+1:

yi+1 = Sλ/μ(xi+1 + zi/μ). (20)
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Finally, the dual variable z is updated using the approximate dual ascent step

zi+1 = zi + μ(xi+1 − yi+1). (21)

Following each iteration, we check that the Karush-Kuhn-Tucker conditions for (16)
have been approximately satisfied as a stopping criterion. Specifically, we check if the
updated iterates (xi+1, yi+1, zi+1) have satisfied primal and dual feasibility within
relative tolerance of ε by checking if the inequalities

‖xi+1 − yi+1‖ ≤ ε max{‖xi+1‖, ‖ yi+1‖}
μ‖ yi+1 − yi‖ ≤ ε ‖ yi+1‖,

respectively, are satisfied. This approach is summarized in Algorithm 6.
It is well-known that the ADMM generates a sequence of iterates which converge

linearly to an optimal solution of (16) under certain strong convexity assumptions on
f and g and rank assumptions on A and B, all of which are satisfied by our problem
(18) when Ω is positive definite (see, for example, Deng and Yin (2012), Goldfarb
et al. (2013), Nishihara et al. (2015), He and Yuan (2012)). It follows that the sequence
of iterates {xi , yi , zi } generated by Algorithm 6 converges to a minimizer of F(β);
that is, xi − yi → 0 and F(xi ), F( yi ) converge linearly to the minimum value of F .
The following theorem gives a worst-case convergence rate for Algorithm 6.

Theorem 5 (Specialization of He and Yuan 2012, Theorem 4.1) Suppose (xi , yi , zi )
is generated by Algorithm 6. Suppose further that the objective function of (16),
F(x, y) = 1

2 x
T Ax + dT x +λ‖ y‖1, is strongly convex. Then the sequence of iterates

satisfies xi − yi → 0 and

F(xi , yi ) − F(x∗, y∗) ≤ C‖A‖‖x0 − x∗‖2
i

(22)

for some constant C > 0, where (x∗, y∗) is a minimizer of (16).

If F is not strongly convex, then we should expect Algorithm 6 to generate a
sequence of iterates that converges sublinearly in value to the optimal value of (6).

3.4 Computational requirements

To motivate the use of our proposed proximal methods for the minimization of (6),
we briefly sketch the computational costs of each of our methods. We will see that for
certain choices of regularization parameters, the number of floating point operations
needed scales linearly with the size of the data.

We begin by with the computational costs of the proximal gradient method (Algo-
rithms 2 and 3). The computational requirements for the accelerated proximal gradient
(Algorithms 4 and 5) and alternating directionmethod ofmultipliers (Algorithm 6) can
be calculated in a similar fashion; a full calculation of the complexity of each iteration
of each method can be found in “Appendix A”. The most expensive operation of each
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Algorithm 6: Alternating direction method of multipliers for solving (18)

Data: Given initial iterates x0 = y0, step length μ, stopping tolerance ε, and maximum number of
iterations N .

Result: Solution β∗ = x∗ = y∗ of (6).
for i = 0, 1, 2 . . . , N

Update x by (19):
(μI + A)xi+1 = −d + μ yi − zi ;

Update y using soft thresholding (20):

yi+1 = Sλ/μ(xi+1 + zi /μ);

Update z using approximate dual ascent (21):

zi+1 = zi + μ(xi+1 − yi+1);

Test stopping criterion:
if ‖xi+1 − yi+1‖ ≤ ε max{‖xi+1‖, ‖ yi+1‖} and μ‖ yi+1 − yi‖ ≤ ε‖ yi+1‖

The algorithm has converged;
break;

end
end

Table 1 Upper bounds on total number of floating point operations required to calculate an ε-suboptimal
solution (PG, APG, ADMM) or solution containing m nonzero entries (LARS) using of (6) diagonal
regularization matrix Ω and dense, unstructured Ω

Method PG APG ADMM LARS

Diagonal Ω O(np/ε) O(np/
√

ε) O(n2 p/ε) O(mnp + m3)

Dense Ω O(p2/ε) O(p2/
√

ε) O(p3 + p2/ε) O(mnp + m3)

iteration of Algorithm 2 is the calculation of the gradient:∇ f (β) = Aβ. This requires
O(np) floating point operations (flops) if the regularization matrix Ω is a diagonal
matrix (and O(p2) flops for unstructured Ω). On the other hand, Theorem 3 implies
that Algorithms 2 and 3 generate an ε-suboptimal solution of (6) withinO(1/ε) itera-
tions. Putting everything together, we see that Algorithms 2 and 3 yield ε-suboptimal
solutions using at most O(np/ε) flops if Ω is a diagonal matrix. Performing similar
calculations for Algorithms 4, 5, and 6 yields the total complexity estimates for each
method, found in Table 1.We remind the reader that the flop counts given in Table 1 are
restricted to the case when Ω is diagonal or easy to invert; all methods scale cubically
in p if Ω is unstructured and/or difficult to invert.

The complexity estimates found in Table 1 establish that the accelerated proximal
gradient method is more efficient for solution of (6) than least angle regression if

np√
ε

<< mnp + m3, (23)
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where m is the number of nonzero entries of the optimal solution β∗ when Ω is
a diagonal matrix. In particular, if m is moderately large, e.g., m = c(np)1/3 for
sufficiently large c, APG is significantly more efficient for solution of (6) than LARS.
In practice, this improvement in computational complexity is large when p is large
(e.g., p > 1000).

In the case that n is large (or both n and p are large), Table 1 suggests that ADMM
should be prohibitively expensive, relative to the other methods considered.We should
note that our implementation of the ADMM for solving (6) is optimized for the case
when n is much smaller than p. In particular, our use of the Sherman-Morrison-
Woodbury formula to update x in Algorithm 6 explicitly relies on the assumption that
n < p.

Section 4 provides a detailed empirical analysis of the computational complexity
of these algorithms for solving (6).

4 Numerical analysis

We next compare the performance of our proposed approaches with standard methods
for penalized discriminant analysis in several numerical experiments. In particular, we
compare the implementations of the block coordinate descent method Algorithm 1,
where each discriminant direction β is updated using either the proximal gradient
method with constant step size, Algorithm 2 (PG), the proximal gradient method with
backtracking line search, Algorithm 3 (PGB), the accelerated proximal method with
constant step size, Algorithm 4 (APG), the accelerated proximal method with back-
tracking, Algorithm 5 (APGB), and the alternating direction method of multipliers,
Algorithm 6, (ADMM), with the least angle regression based algorithm (LARS) for
solving the sparse optimal scoring problem proposed in Clemmensen et al. (2011).
We choose LARS as our baseline for comparison due to its popular use as a heuristic
for the sparse optimal scoring problem and due to the ease of its application in our
numerical trials using the sparseLDA package Clemmensen (2008) in Matlab and
R.

4.1 Gaussian data

We first perform simulations investigating efficacy of our heuristics for classification
of Gaussian data. In each experiment, we generate data consisting of p-dimensional
vectors from one of K multivariate normal distributions. Specifically, we obtain train-
ing observations corresponding to the i th class, i = 1, 2, . . . , K , by sampling 25
observations from the multivariate normal distribution with mean μi ∈ Rp satisfying

[μi ] j =
{
0.7, if 100(i − 1) < j ≤ 100i

0, otherwise,
(24)

for all j = 1, 2, . . . , p, and covariance matrix Σ ∈ Rp×p chosen so that all features
are correlated with Σi j = r for all i �= j and Σi i = 1 for all i . We conduct the
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experiment for all K ∈ {2, 4}, r ∈ {0, 0.1, 0.5, 0.9}. For each experiment, we sample
250 testing observations from each class in the same manner as the training data. We
set p = 1500 in each simulation. For each (K , r) pair, we generate 20 data sets and use
nearest centroid classification following projection onto the span of the discriminant
directions calculated usingAlgorithm1 andPG, PGB,APG,APGB,ADMM,orLARS
to solve (6), or SZVD.

The sparse discriminant analysis heuristics require training of the regularization
parameters γ , Ω , and λ. In all experiments, we set γ = 10−3 and Ω to be the
p × p identity matrix Ω = I . We train the remaining parameter λ using 5 fold cross
validation. Specifically, we choose λ from a set of potential λ of the form λ̄/2c for
c = 3, 2, . . . , 0,−1, and λ̄ chosen so that the problem has nontrivial solution for all
considered λ. Note that (9) has optimal solution given by β∗ = A−1d if we set λ = 0;
this implies that choosing

λ̄ = (β∗)T d − 1
2 (β

∗)T Aβ∗

‖β∗‖1 (25)

ensures that there exists at least one solution β∗ with value strictly less than zero.
We choose the value of λ with fewest average number of misclassification errors over
training-validation splits amongst all λ which yield discriminant vectors containing
at most 25% nonzero entries; in the event of a tie, we select the value of λ which
yields discriminant vectors with smallest average cardinality among all withminimum
validation score. Note that we could have applied other resampling methods, e.g., boot
strapping, to train the regularization parameter using the same criteria with minimal
changes to the experiment. To reduce computation time, we use less conservative
stopping criteria during the cross validation procedure. We terminate each proximal
algorithm in the inner loop after 1000 iterations or a 10−4 suboptimal solution is
obtained. We perform exactly one iteration of the outer block coordinate descent loop
if K = 2 and the outer loop is stopped after a maximum number of 250 iterations or
a 10−3 suboptimal solution has been found if K = 4. After the optimal value of λ is
determined using cross validation, we train using the full training set; we terminate
the algorithm after 1000 iterations or a 10−5 suboptimal solution is obtained. The
augmented Lagrangian parameter μ = 2 was used for the ADMM method in all
experiments. We use the value of L̄ = 0.25 for the initial estimate of the Lipschitz
constant and η = 1.25 for the scalar multiplier in the backtracking line search.

The LARS algorithm for updating β was terminated after the convergence criterion
is met with tolerance 10−3 or an iterate with more than 0.25p nonzero entries was
found. As with the other methods, we perform either one outer iteration (K = 2)
or at most 250 outer iterations, stopping when a 10−3 suboptimal solution is found
(K = 4). Since LARS generates the full regularization path for each value of θ , we
do not need to perform cross validation to tune the parameter λ. Instead, we choose
the value of β with minimum classification error on the training set as our optimal
discriminant value at termination.

These stopping criteria and parameter choices were chosen empirically in order to
yield accurate classifiers using a minimal number of iterations; in particular, using
modest stopping tolerances limits the number of iterations performed, which tends to
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limit overfitting in practice. Indeed, we should carefully note that the sparse optimal
scoring problem acts as a proxy for the classification task, but does not explicitly
optimize classification accuracy.We often observe better classification rates in practice
using modest stopping tolerances than we do when solving (1) to high precision;
solutions obtained using modest stopping criteria also tend to generalize better to out-
of-sample classification. We should also note that the set of (approximate) solutions
(θ∗

i ,β
∗
i ), i = 1, 2, . . . , K − 1 generated by each heuristic is feasible for (2) and (1)

regardless of heuristic used (up to small rounding errors), sincewemaintain a sequence
of feasible iterates at each step of Algorithm 1.

We also include the Sparse Zero-Variance Discriminant Analysis (SZVD) method
proposed in Ames and Hong (2016) in our comparisons. We train the regularization
parameter γ in SZVD in a fashion similar to that above. We set the maximum value
of the regularization parameter γ to

γ̄ = β̂
T
Bβ̂

‖β̂‖1
, (26)

where β̂ is the optimal solution of the unpenalized SZVD problem and B is the
sample between-class covariance matrix of the training data. We choose γ from the
exponentially spaced grid γ̄ /2c for c = 3, 2, 1, 0,−1 using 5 fold cross-validation;
this approach is consistent with that in Ames and Hong (2016). We select the value
of γ which minimizes misclassification error amongst all sets of discriminant vec-
tors with at most 35% nonzero entries; this acceptable sparsity threshold is chosen
to be higher than that in the SOS experiments, due to the tendency of SZVD to mis-
converge to the trivial all-zero solution for large values of γ . We stop SZVD after a
maximum of 1000 iterations or a solution satisfying the stopping tolerance of 10−5

is obtained. We use the augmented Lagrangian penalty parameter β = 1.25 in SZVD
in all experiments. All simulations and experiments in the following sections were
performed using Matlab 2019b on a standard node of the high performance com-
puting system at the Alabama Supercomputer Center. The Matlab implementation
of Algorithm 1 can be obtained from https://github.com/gumeo/accSDA_matlab. We
use theMatlab package sparseLDAClemmensen (2008) with modification to return
the full optimization path to solve (6) using the LARS algorithm.

Figures 1, 2, 3, 4, 5, and 6 summarize the results of these experiments; complete
tables of numerical results can be found in the electronic supplemental materials
Online Resource 1 and Online Resource 2. The run-times in Figs. 5 and 6 are reported
in seconds (s) and reflect the total computation time required for each method to
perform cross validation to tune regularization parameters and train optimal scor-
ing and discriminant vector pairs using the optimized regularization parameters. The
number of nonzero features reported for all methods except SZVD was the count of
discriminant vector elements with value not identical to 0. SZVD does not use the
same soft thresholding step as the other methods and returns approximately sparse
solutions with entries close to zero, but not exactly zero; we round entries with mag-
nitude at most 10−5 when reporting cardinality of discriminant vectors obtained using
SZVD.
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Fig. 1 Box plot of out-of-sample misclassification rate for 2-class Gaussian data with class means defined
by (24) and covariance vector Σ for given values of r . For each data set, we use nearest centroid classifi-
cation following projection onto discriminant vectors given by the sparse zero variance method (SZVD) or
optimal scoring vectors calculated using the proximal gradient method with constant stepsize (PG), with
backtracking line search (PGB), accelerated proximal method with constant stepsize (APG) and backtrack-
ing line search (APGB), alternating direction method of multipliers (ADMM), and least angle regression
(LARS). In all experiments, ntrain = 50 and ntest = 500

Fig. 2 Box plot of out-of-sample misclassification rate using discriminant vectors calculated using APG,
APGB, PG, PGB, ADMM, SZVD, and LARS for 4-class Gaussian data with class means defined by (24)
and covariance vector Σ for given values of r . In all experiments, ntrain = 100 and ntest = 1000
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Fig. 3 Box plot of number of nonzero entries of discriminant vectors and optimal scoring vectors calculated
using APG, APGB, PG, PGB, ADMM, SZVD, and LARS for classifying 2-class Gaussian data with mean-
vectors defined by (24) and covariance vector Σ for given values of r

Fig. 4 Box plot of number of nonzero entries of discriminant vectors and optimal scoring vectors calculated
using APG, APGB, PG, PGB, ADMM, SZVD, and LARS for classifying 4-class Gaussian data with mean-
vectors defined by (24) and covariance vector Σ for given values of r

From these simulations, we see that the the classical solution of the SOS problem
usingLARS tends to yield fewer nonzero predictor variables than theAPGandADMM
proximal methods (see Fig. 3 and 4), while requiring comparable computation (see
Fig. 5 and 6); we note that the average cardinality and run-times observed are typically
within one standard deviation of each other (as indicated by the error bars in the plots).
On the other hand, the classifiers provided theLARSheuristic tend to have significantly
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Fig. 5 Box plots of run-time in seconds (s) for calculation of discriminant vectors and optimal scoring
vectors (with error bars of length one standard deviation) using APG, APGB, PG, PGB, ADMM, SZVD,
and LARS for classifying 2-class Gaussian data with mean-vectors defined by (24) and covariance vector
Σ for given values of r

Fig. 6 Box plots of run-time in seconds (s) for calculation of discriminant vectors and optimal scoring
vectors (with error bars of length one standard deviation) using APG, APGB, PG, PGB, ADMM, SZVD,
and LARS for classifying 4-class Gaussian data with mean-vectors defined by (24) and covariance vector
Σ for given values of r
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higher misclassification rate than the proposed proximal methods (see Fig. 1 and 2).
We suspect that this is due to our method for choosing the regularization parameter
λ. Here, we choose the value of λ that minimizes in-sample classification accuracy,
and break any ties by choosing the value of λ which yields the sparsest classifier. This
appears to cause some overfitting of the classifier to the training data, where the in-
sample high accuracy does not generalize to high out-of-sample accuracy. In an earlier
draft of this manuscript, we considered training λ via cross-validation in a manner
similar to that used for PG, PGB, APG, APGB, and ADMM; this produced a far lower
classification rate, comparable to the other methods, although at a significantly higher
computational cost, as were required to calculate the full regularization path for each
fold and each choice of λ. In another previous draft, we chose λ in our LARS-based
analysis to minimize out-of-sample error. Again, this leads to a significant decrease in
misclassification rate, although it is unfair to compare this approach to other methods
which do not use this information to choose λ, and may not be used in practical
applications where an out-of-sample ground truth is unavailable.

In all experiments, the sparse zero-variance discriminant analysis (SZVD) heuris-
tic performed poorly in terms of computation, sparsity, and accuracy. The observed
increased run-times agree with that predicted in Table 1. On the other hand, the rel-
atively high density and misclassification rate can be explained by the tendency of
SZVD to misconverge to an all-zeros solution when λ is large. We observe a moderate
number of trials where SZVD yields an all-zero solution (with high error rate), and
remaining trials generating discriminant vectors with many nonzero entries (corre-
sponding to relatively small λ).

We further investigate this phenomena in the following sections.

4.2 Convergence experiments

The empirical results of Sect. 4.1 suggest that the use of our proposed proximal meth-
ods (PG, PGB, APG, APGB, ADMM) for solution of subproblem (6) can lead to
improvement in terms of classification accuracy and overall run-time over the least
angle regression algorithm in certain settings. To further illustrate this improvement,
we performed a series of experiments investigating the behaviour of the objective
function of (2) during each iteration of these methods.

We generated random data sets with observations sampled from one of two normal
distributions, N (μ1,Σ) or N (μ2,Σ). Specifically, we sampled n = 200 training
observations from each of the p-dimensional multivariate Gaussian distributions for
p = 2000 with mean vectors μ1 and μ2 ∈ Rp, respectively, satisfying

[μi ] j =
{
0.7, if �p/3� (i − 1) < j ≤ �p/3� i
0, otherwise,

(27)

for all j = 1, 2, . . . , p, and covariance matrix Σ ∈ Rp×p constructed as Section 4.1
with r = 0.75. For each data set, we train nearest centroid classifiers using discrim-
inant vectors obtained by approximately solving (2) with each method used above
(PG, PGB, APG, APGB, ADMM, LARS) to solve (6). We stop each method after
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Fig. 7 Absolute value of optimality gap, cardinality of iterate, and iteration run-time averaged over 50 calls
to solve (6) for 25 different Gaussian data sets. We note that LARS terminates in the fewest number of
iterations, followed by ADMM

either 10000 iterations have been performed or the stopping condition is met with
tolerance 10−8. We use regularization parameters γ = 10−3, Ω = I and we set
λ = 0.25λ̄, where λ̄ is given by (25); we stop LARS when a solution with cardinality
0.25p = 500 is found. We use augmented Lagrangian parameter μ = 2 in ADMM.
We use the parameters L̄ = 0.25 and η = 1.25 in the back tracking line search. Note
that these stopping conditions are more strict than those used in the previous section
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(Sect. 4.1); we use these stopping criteria to ensure that a large number of iterations
are performed in order to obtain a clearer picture of the convergence properties of
the various algorithms. We generate 25 problem instances and solve each problem 50
times using each method to control for natural variation in computation time and prob-
lem instances; each algorithm will generate the same sequence of iterates and solution
each time called for each problem (up to sign changes due to random initialization
of θ ). We validate performance of our classifiers using balanced sets of 200 testing
observations sampled from N (μ1,Σ) or N (μ2,Σ).

We chose these data sets to isolate the relationship between the performance of
our proposed algorithms for solving (6) and the overall performance of the proposed
block coordinate descent method and nearest centroid classification. Recall that, in
the K = 2 class case, we calculate exactly one discriminant and scoring vector pair
(β, θ) before Algorithm 1 converges. By restricting our focus to a case where we solve
exactly one instance of subproblem (6) using each method during each trial, we can
directly compare the behavior of algorithms for solving (6).

We recorded the objective value of (6) and the cardinality of the current iterate β i

following the i th iteration of each algorithm for each method and data set, as well as
the run-time of the i th iteration. We recorded the value of the augmented Lagrangian
function for the ADMM, instead of the objective function value, to indicate the trade-
off between optimizing the objective and forcing feasibility (x = y = β) of the split
decision variables x and y. The results of these experiments are summarized in Fig. 7
and Table 2.

It is apparent from the results of these simulations that iterations of LARS are more
expensive than those of the proximal methods APG and ADMM, especially when the
cardinality of the iterate is relatively large. The per-iteration cost of LARS tends to
increase since LARS is an active set method and gradually adds elements to the active
set each iteration; the computational complexity is an increasing function of iteration
number due to this corresponding increase in cardinality each iteration.We should also
note that LARS tended to terminate more quickly (in terms of number of iterations)
than the other methods, but that this is largely a consequence of the more conservative
stopping criteria for the proximal methods. In particular, APG, APGB, ADMM all
generate iterates with smaller optimality gap than the suboptimality at termination
of LARS iterates, within fewer iterations. On the other hand, the per-iteration cost
of each proximal method is largely consistent across iterations. The ADMM tended
to terminate in fewer iterations and yield sparser solutions than the other proximal
methods; the per-iteration cost of the ADMM is also less than (or comparable to) the
other proximal methods in all trials. The cardinality of iterates generated by ADMM
also decreasedmuchmore quickly than those generated by the other proximalmethods;
this may be due to the fact that the soft thresholding operator is applied directly to
the iterate yi , rather than following a gradient step applied to the previous iterate
or a weighted average of the previous two iterates as in the proximal gradient and
accelerated gradient methods. The trajectory of suboptimality of ADMM iterates is
not a smooth descent like the other proximal methods since we plot the absolute
value of the gap between the augmented Lagrangian value and the average optimal
value. Here, the augmented Lagrangian value of the ADMM iterates tend to initially
increase followed by a several iterates of sharp decrease (with value typically less
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Table 2 Average run-time, cardinality of solution, and number of iterations before termination averaged
over 25 Gaussian data sets, solved 50 times using each method.

Method Run-times (s) Cardinality Iterations

PG 43.38 151.92 10000

PGB 63.98 141.52 1000

APG 28.79 100.88 10000

APGB 33.87 100.92 6633.92

ADMM 1.43 79.6 484.4

LARS 0.21 145.88 195.72

Nomethods returned classifiers yielding out-of-sample classification error in any trial. PG, PGB,APG failed
to return a 10−8 suboptimal solutionwithin 10000 iterations, whileADMMandLARSboth convergewithin
500 iterations on average

than the optimal value), followed by gradual increase to the optimal value; plotting the
absolute value of the optimality gap allows us plot using logarithmic scale. Similarly,
the value of LARS iterates tends to decrease, and then increase prior to termination.
This is a consequence of the stopping criteria, i.e., terminating when a sufficiently
dense solution is found; here, we use the iterate at termination rather than the iterate
withminimumvalue amongLARS iterates as our discriminant vectorwhen calculating
misclassification rates and cardinality in Table 2.

These trials also suggest somemodest value in the use of back tracking line searches.
In each set of trials, the proximal gradient methods with back tracking line search ter-
minated in fewer iterations than with a constant step size. However, the additional cost
of performing the line search frequently caused the overall computational time of the
back trackingmethods to exceed that of the constant step sizemethods. This additional
cost observed here is more dramatic than that observed in Sect. 4.1. We remind the
reader that the reported computation time for the experiments of Sect. 4.1 includes
all computation to perform cross validation to train the regularization parameter λ;
the discrepancy between the timing results in Sect. 4.1 and here highlights a potential
sensitivity of Algorithm 1 to choice of λ, and variation in training data (in this case
with respect to training and validation splits in the cross validation scheme).

4.3 Differences between discriminant vectors due to algorithm choice

At this point, we should note that Subproblem (6) is strongly convex by the choice
of regularization parameter Ω = I in all experiments considered so far. As a conse-
quence, (6) has a unique solution. One would naively expect Algorithm 1 to generate
the same discriminant vector regardless of choice of algorithm for solving (6) if all
other input parameters are chosen consistently. However, this is not observed in prac-
tice.We can see from Fig. 7 that the compared algorithms generate different sequences
of iterates whose limit is the unique optimal solution of (6). We terminate each algo-
rithm prematurely at a suboptimal solution, which varies based on our choice of
algorithm.

123



S. Atkins et al.

Table 3 Norm difference
‖βi

APG − βi
ADMM‖, and

cardinality of βi
APG and

βi
ADMM for i = 10, 50, 100,

500, 1000, 2500, 5000, 7500,
10000. No iterates produced
out-of-sample classification
error for nearest centroid
classification following
projection onto βi

APG and

βi
ADMM

Iteration Norm Cardinality

Difference APG ADMM

10 0.1462 248 119

50 0.2468 240 78

100 0.2854 217 65

500 0.2414 103 51

1000 0.1464 70 49

2500 0.0187 52 49

5000 0.0103 49 47

7500 0.0062 49 47

10000 0.0027 48 47

To illustrate this phenomena, we recorded the iterates generated by Algorithm 1
using APG and ADMM with μ = 2; we restricted our analyses to these methods to
simplify our figures and similar behaviour would be observed using other algorithms
for solving (6).We sampled balanced training and testing sets of n = 200 observations
of dimension p = 250 from N (μ1,Σ) and N (μ2,Σ), where μi is defined according
to (27) and Σ is constructed as in the previous sections. We recorded the iterates
β i
APG,β i

ADMM generated by each of APG and ADMM (with μ = 2) following
i = 10, 50, 100, 500, 1000, 2500, 5000, 7500, 10000 iterations for solving (6) with
regularization parameters γ = 10−3, Ω = I , and λ = 0.05λ̄. We report the norm
difference ‖β i

APG − β i
ADMM‖, cardinality of β i

APG and β i
ADMM , and out-of-sample

classification error for nearest centroid classification following projection onto β i
APG

and β i
ADMM for each value of i in Table 3.We round any entry of a discriminant vector

with magnitude less than 10−8 to 0 for the purposes of calculating cardinality. The
calculated discriminant vectors are qualitatively similar but still differ significantly,
particularly in cardinality. Specifically, the discriminant vectors generated by ADMM
are much sparser than those calculated by APG, particularly early in the iterative
process. This suggests that ADMM is converging to the unique optimal solution of (6)
more quickly thanAPG for this particular data set and choice of augmentedLagrangian
penalty parameter μ; we investigate the sensitivity of ADMM to the choice of μ

further in Sect. 4.7.1. However, we should also note that both methods converge to
essentially identical solutions within 10000 iterations. We should also note that all of
the discriminant vectors yield classifiers with zero out-of-sample classification errors.

4.4 Scaling experiments

We next performed a series of simulations to investigate the relationship between the
performance of our algorithms and the number of features in the underlying data set.
For each

p ∈ {250, 300, . . . , 500, 600, . . . , 1000, 1250, . . . , 2500, 3000, 3500},
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we sample 50 data sets, containing two classes drawn from the Gaussian distributions
as described in Sect. 4.1. For each value of p, we sample �p/10� training and testing
observations from each class. Items in each class are sampled from a multivariate
Gaussian distribution with means μ1,μ2 ∈ Rp defined by (27). Both class distribu-
tions have covariance matrix Σ having diagonal entries equal to 1 and off-diagonal
entries equal to 0.75.

We apply nearest centroid classification following projection onto the approximate
solution of (2) given by the proximal gradient method, accelerated proximal gradi-
ent method (with and without backtracking line search) (PG, PGB, APG, APGB),
alternating direction method of multipliers (ADMM), and least angle regression
method (LARS).We perform exactly one full iteration of the block coordinate descent
method (Algorithm 1) for each β-subproblem solver; as before, we should expect
Algorithm 1 to terminate after one full iteration, since the optimal choice of θ is
obtained in the first iteration (in the absence of numerical error). We choose the reg-
ularization parameters in (2) to be γ = 10−3, Ω = I , and choose λ from λ̄/2c,
c ∈ {3, 2, 1, 0,−1}, where λ̄ is defined as in (25) using 5 fold cross validation. We
choose the value of λ with minimum number of classification errors among those
which generated discriminant vectors with at most 0.025p nonzero features. We used
the augmented Lagrangian penalty parameter μ = 2 in ADMM. We use the stopping
tolerance 10−4 and a maximum of 1000 iterations during the cross validation phase.
We used backtracking parameters L̄ = 0.25 and η = 1.25 in each run. After λ is
chosen via cross validation, we solved (2) using the full training set. We terminated
the proximal methods when their stopping condition is met with tolerance 10−4/

√
p

or 5000 subproblem iterations have been performed. We use a less strict stopping
tolerance than earlier analyses to minimize the number of iterations performed when
p is large, and, thus, decreasing overall run-time of the experiment.

The LARS heuristic was terminated after a solution was obtained containing 0.25p
nonzero features or the convergence criterion is satisfied with tolerance 10−4/

√
p.

The decision to choose λ via cross validation rather than a specific value (as in the
previous section) was made to account for the fact that each call of the LARS heuristic
calculates a full regularization path for (2). We perform cross validation to choose λ

to more accurately compare the computational resources needed by PG, PGB, APG,
APGB, ADMM, and LARS to calculate a full regularization path.

Figure 8 summarizes the results of these simulations. We note that the accelerated
proximal gradient and alternating direction method of multipliers consistently out-
perform the traditional LARS method in terms of run-time and number of iterations
performed with p is large. In particular, these methods require significantly fewer
iterations and terminate in less time than LARS for p > 1000. The approximate
slopes of the plots of average run-times indicate that this phenomena will only be
amplified as we increase p further, since the slope of the curve for LARS exceeds that
of APG, APGB, and ADMM. This largely agrees with the phenomena predicted by
the operation counts discussed in Sect. 3.4. On the other hand, the proximal gradient
methods (PG, PGB) typically do not converge within the maximum number of itera-
tions, which undermines any improvements to computational complexity due to their
relatively inexpensive iterations.
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Fig. 8 Average run-time (in seconds), number of iterations performed, and cardinality of returned solution
plotted as a function of number of features p; values of each statistic were averaged across 50 trials. All
axes use logarithmic scale

We should note that we expect the cardinality of our obtained discriminant vectors
to increase as a function of p, since the size of the blocks of entries with elevated
values in the class-means μ1 and μ2 grows linearly with p. This agrees with the
plotted curves in Fig. 8c. This also explains the linear increase in number of iterations
before termination of the LARSmethod, since the number of iterations depends on the
desired number of nonzero entries; in turn, this, along with increase in per-iteration
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cost as p increases, explains the increase in total run-time of LARS as p increases.
Finally, the cardinality of returned discriminant vectors scales similarly for the four
proximal gradient methods (PG, PGB, APG, APGB) and LARS. The discriminant
vectors returned by ADMM consistently contain fewer nonzero entries than the four
other methods, which agrees with the behaviour observed in the Sect. 4.2.

This comparison is somewhat unfair to the LARS heuristic since the number of
nonzero discriminant vector features, which should correlate with the number of large
magnitude entries of the difference of means μ1 − μ2, is increasing linearly with p.
Thus, we seek relatively dense discriminant vectors, scaling linearly with p. This is
exactly the situation where we should expect ADMM and APG to be more efficient
than LARS according to (23).

However, if the number of nonzero predictor variables is constant or grows rela-
tively slowly as p increases, we should expect LARS to bemore efficient thanAPGand
ADMM (again, according (23)). To confirm this empirically, we repeated this exper-
iment but chose the mean vectors μ1 and μ2 to differ from zero in the first 100 and
second 100 features, respectively, for all values of p. We stopped the LARS algorithm
when an iterate with at least 200 nonzero features was found or stopping tolerance
10−4/

√
p is met; we then chose the iterate with minimum out-of-sample classification

rate for our discriminant vector. All other experimental settings were kept identical to
that in the previous discussion. We omit the unaccelerated proximal gradient methods
PG/PGB since the previous analysis established that they are significantly less than
the other methods under comparison.

The results of this trial can be found in Fig. 9. As expected, LARS tends to more
efficient than APG and ADMM in this setting. This suggests that one must be careful
to consider problem dimension and the underlying properties of the desired classifiers
(e.g., sparsity) when choosing a heuristic for solving (6). Specifically, if p is small
or we seek a sparse discriminant vector with relatively few nonzero entries, then we
should use LARS to solve (6); otherwise, we should favor APG or ADMM.

4.5 Classification of real-world data

We performed similar analyses using data sets drawn from the UC Riverside Time-
Series Clustering and Classification data repository Dau et al. (2018) to verify that
the behaviour observed with synthetic data is also observed when classifying real-
world data. We applied each of the methods APG, ADMM, SZVD, and LARS to
learn classification rules for each of the data sets in the UCR repository with number
of training samples n less than the number of predictive features p; this yielded a
collection of 63 data sets to analyze. We omit PG and the backtracking methods from
this analysis because our analysis of synthetic data established that these methods are
typically less effective than the remaining approaches. We use each remaining sparse
discriminant analysis heuristic to obtain q = K − 1 sparse discriminant vectors and
then perform nearest-centroid classification after projection onto the subspace spanned
by these discriminant vectors.

In all experiments, we set γ = 10−3 and Ω to be the p × p identity matrix
Ω = I . We choose λ using 5 fold cross validation from the set of potential λ of the
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Fig. 9 Average run-time (in seconds), number of iterations performed, and cardinality of returned solution
for SOS problem with fixed number of nonzero entries of μ1 − μ2 (200) plotted as a function of number
of features p. Values of each statistic were averaged across 50 trials. All axes use logarithmic scale

form λ̄/2c for c = 3, 2, 1, 0,−1 with λ̄ defined by (25) to be the value of λwith fewest
average number of misclassification errors over training-validation splits amongst all
λ which yield discriminant vectors containing at most 25% nonzero entries. During
the cross validation stage, we terminate each proximal algorithm in the inner loop after
1500 iterations or a 10−4 suboptimal solution is obtained. After λ is chosen via cross
validationwe solve (2) using the full training data set. Herewe terminate each proximal
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algorithm in the inner loop after 2000 iterations or a 10−6 suboptimal solution is found
and the outer loop is stopped after one iteration if K = 2 or a maximum number of 250
iterations or a 10−3 suboptimal solution has been found otherwise. The augmented
Lagrangian parameter μ = 2 was used in ADMM.

We calculate the full regularization path for λ using the LARS algorithm, choosing
the set of discriminant vectors from the full path with maximum in-sample classifica-
tion accuracy.4 We terminate each call to LARS in the inner loop after a solution with
0.25p nonzero entries is found, or stopping tolerance 10−6 is met, or 3000 iterations
are performed.

We use the augmented Lagrangian parameter β = 5 and choose the regularization
parameter γ in SZVD from the exponentially spaced grid γ̄ /2c for c = 3, 2, 1, 0,−1,
with γ̄ defined by (26) using 5 fold cross-validation; γ is chosen to minimize average
validation set misclassification error amongst all sets of discriminant vectors with at
most 35% nonzero entries. We stop SZVD after a maximum of 250 iterations or a
solution satisfying the stopping tolerance of 10−5 is obtained. These parameters were
chosen experimentally to ensure that all methods converge for each data set in the
benchmarking set. It is likely that some variation in performance of the heuristics
across data sets could be eliminated by more carefully tuning parameters for each
individual data set. We assigned the same choice of parameters for each experiment
to avoid having to tune parameters separately for all 63 data sets.

4.5.1 Comparison of classification accuracy

To empirically test accuracy of each proposed classification heuristic, we calculated
the out-of-sample misclassification rate for each data set in the UCR repository. We
include baseline accuracies based on the classification results of 1-Nearest Neighbor
classifiers: each test observation was assigned the class label of its nearest training
observation. As a measure of similarity, we use both Euclidean distance (ED) and
dynamic time warping distance with fixed warping window width w = 100 (DTW)
and learned windowwidth (DTWL). The out-of-sample misclassification rate for each
of these classifiers is provided by the UCR Time Series Archive; we direct the reader
to refer to (Dau et al. 2019, Section II) for further details.

For each ordered pair of classification heuristics, we perform a one-sidedWilcoxon
signed-rank test. Specifically, for each pair of classification heuristics (i, j) we per-
form a one-sided Wilcoxon test to test the null hypothesis H0 : err(i) = err( j)
against the alternative hypothesis Ha : err(i) < err( j), where err(x) denotes the
population average misclassification error rate for classifier x . Figure12 provides a
box plot visualizing average misclassification rate for each method, as well as a table
of p-values for the one-sided Wilcoxon significance tests. We observe a significant
difference between our APG and ADMM classifiers and nearest neighbors classifiers
using dynamic time warping distance with learned window width (DTWL) and fixed

4 This choice of method of tuning λ differs from that used in earlier versions of this manuscript, where we
chose λ via cross-validation or based on out-of-sample classification rate. The results of this set of analyses
largely agree with those of the earlier manuscripts, except with significantly decreased run-times for LARS
when compared to the approach applying cross-validation, and modestly increased misclassification error
when compared to those trained using out-of-sample accuracy.
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Fig. 10 Plot of run-time in seconds of each sparse discriminant heuristic as a function of the total number
of predictive features (p times number of discriminant vectors). We also fit a line to the set of run-times for
each method and 95%-confidence intervals for these linear models. Both axes use logarithmic scale

length. We also observe evidence that APG and ADMM are, on average, less accurate
than the LARS classifier (p-values 0.048 and 0.026, respectively). On the other hand,
the results of these hypothesis tests suggests a significant improvement in accuracy
when using the DTWL classifier over all classifiers except the DTW classifier, and all
methods provide improved accuracy over SZVD.

The observed differences between the accuracy of nearest neighbors classifiers,
particularly those using dynamic time warping distances, and SOS classifiers can be
partially explained by the extremely poor accuracy of SOS classifiers for a limited
number of data sets. Linear discriminant analysis-based classifiers are only applicable
under the assumption that data is linearly separable following projection onto a lower
dimensional subspace and that data from all classes are sampled from distributions
with shared covariance matrix. The poor accuracy of the SOS classifiers suggest that
these assumptions are not satisfied by this subset of the benchmarking repository. If
we omit the data sets in the UCR repository for which the APG classifier yields a
misclassification rate of at least 60%, we obtain the average misclassification rates
and attained significance visualized in Fig. 13. After restricting the benchmarking
data set in this way, we observe no significant difference between the APG-trained
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Fig. 11 Plots of run-time for small-scale (total number of features less than 3000) and larger-scale data
(total number of features exceeding 3000) included in the UCR benchmarking repository. We also include
the results of from one-sided Wilcoxon signed-rank tests comparing computational efficiency of each pair
of sparse discriminant analysis heuristics for each subset of benchmarking data. The (i, j) box represents
the observed p-value for the test with null hypothesis H0 : time(i) ≥ time( j) and alternative hypothesis
Ha : time(i) < time( j) where time(x) denotes the expected total run-time of heuristic x on a given data
set; darker colors correspond to smaller p-values or higher significance

classifiers and the nearest neighbor classifier DTWL or the LARS-trained classifier at
a significance level of p < 0.05.

We note that we do not consider this reduced benchmarking set in an attempt to
overstate the classification accuracyof the proposedmethodsAPGandADMMrelative
to DTW-based nearest neighbors methods. Instead, we want to emphasize that the
average difference in accuracy is due to the relatively poor performance of SOSmodels
for a modest number of problems, for which linear classifiers are possibly ill-suited,
rather than the SOS models performing poorly on average over all benchmarking
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Fig. 12 Box plots of out-of-sample misclassification rates. We also include box plots for misclassification
rate for nearest neighbor classification using Euclidean distance (ED) and Dynamic TimeWarping distance
with fixed warping constraint parameter w = 100 (DTW), and learned w (DTWL). We also plot results of
one-sided Wilcoxon signed-rank tests for misclassification rate. The (i, j) box represents the observed p-
value for the test with null hypothesis H0 : err(i) ≥ err( j) and alternative hypothesis Ha : err(i) < err( j)
where err(x) denotes the expected fraction of misclassified test observations by classification heuristic x

Fig. 13 Box plots and attained significance/p-values of out-of-sample misclassification rates with data sets
with error at least 70% omitted. Here, we observe no significance difference in classification error (p-value
less than 0.05) between APG/ADMM classifiers and DTWL

data sets. This suggests that SOS classifiers, including those trained using the LARS
algorithm, exhibit comparable classification performance to the baseline provided by
nearest neighbors classifierswhen restricted to instanceswhere their use is appropriate,
i.e., their underlying statistical assumptions are met.

4.5.2 Comparison of run-times

In terms of computational complexity, we can observe two general trends: LARS is
consistently more efficient than APG and ADMMwhen the total number of predictor
variables, qp, is small (say, qp < 1000), and APG/ADMM are significantly more
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efficient than LARS when the number of features is moderate to large (qp ≥ ‘000).
Figure10 plots the total run-time of each sparse discriminant heuristic (including
training of parameters by cross-validation), along with linear models fit to observed
run-times. There are clear bifurcation points between 500 < qp < 1000, where the
linear models for run-time of APG and ADMMcross that of LARS. To investigate this
phenomena further, we isolated run-times for data setswith qp < 3000 and qp ≥ 3000
and performed one-sided Wilcoxon tests for the null hypothesis H0 : time(i) =
time( j) and alternative hypothesis Ha : time(i) < time( j) under both settings. The
results of these significance tests can be found in Fig. 11, along with plots of run-
times. These tests strongly suggest that both APG and ADMM require significantly
less computation than LARS when the total number of predictor variables is greater
than 3000: we observe p values on the order of 10−4 when testing H0 : time(APG) =
time(LARS) and H0 : time(ADMM) = time(LARS). On the other hand, we see
modest evidence that LARS is more efficient than both ADMM and APG when the
total number of predictor variables is less than 3000, but not at a statistically significant
level. We should also note that the computational cost of the LARS algorithm is at
least partially inflated by the fact that we seek somewhat dense discriminant vectors
(with terminating cardinality 0.25p), although LARS regularly terminated with sparse
optimal solutions, obtained in fewer than 0.25p iterations. Finally, all methods were
more efficient than the SZVD method. This scaling of computational cost largely
agrees with that observed for synthetic data in Sect. 4.4 and predicted by (23).

We should note that we do not include nearest neighbor classifiers in this discus-
sion of computational efficiency, although we used these methods to obtain a baseline
accuracy to benchmark our proposed methods against. The accuracies of these clas-
sifiers were provided with the UCR repository and, thus, did not require retraining of
the classifiers. Naive implementation of nearest neighbors methods requires at least
O(n2 p) operations to calculate pairwise Euclidean distances and O(n2 p2) flops to
calculate DTW distances (plus additional operations for training the window width
w); optimized methods for DTW reduce this computational cost to O(n2 p) flops.
Therefore, we expect our methods to scale at least as well as these nearest neighbors
methods.

4.6 Multispectral X-ray images andÄ of varying rank

To demonstrate the improvement in run-time obtained by using a low-rank Ω in the
elastic-net penalty, we perform pixelwise classification onmultispectral X-ray images,
as presented in Einarsson et al. (2017). The multispectral X-ray images are scans of
food items, where each pixel contains 128 measurements (channels) corresponding to
attenuation ofX-rays emitted at differentwavelengths (see Fig. 14). Themeasurements
in each pixel thus give us a profile for the material positioned at that pixel’s location
(see Fig. 15).

We start by preprocessing the scans as in Einarsson et al. (2017) in order to remove
scanning artifacts and normalize the intensities between scans. We scale the mea-
surements in each pixel by the 95% quantile of the corresponding 128 measurements
instead of themaximum. This scaling approach is more robust in the sense that it is less
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Fig. 14 Grayscale images of different channels from a minced meat sample generated with a multispectral
X-ray scanner after all preprocessing. From left to right are channels 2, 20, 50 and 100. The contrast
decreases the higher we go in the channels and the variation in the measurements increases. Some foreign
objects can be seen as small black dots
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Fig. 15 Profiles of materials seen in Fig. 14 over the 128 channels. The profile for each type of material,
displayed here, is averaged over 500 pixels

sensitive to outliers compared to using the maximum. We create our training data by
manually selecting rectangular patches from six scans. We have three classes, namely
background, minced meat and foreign objects. We further subsample the observations
to have balanced number of observations, where the class foreign objects was under
represented. In the end we have 521 observations per class, where each observation
corresponds to a single pixel. This data was used to generate Fig. 15. For training we
use 100 samples per class, and the rest is allocated to a final test set. This process
yields 128 variables per observation, but in order to get more spatially consistent clas-
sification, we also include data from the pixels located above, to the right, below and
to the left of the observed pixel. Thus we have p = 5 · 128 = 640 variables per
observation. The measurements corresponding to our observation are thus indexed
according to spatial and spectral position, i.e., observation xi has measurements xi jk ,
where j ∈ {0, 1, 2, 3, 4} indicates which pixel the measurement belongs to (center,
above, right, bottom, left), and k ∈ {1, 2, ..., 128} indicates which channel.
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We can impose priors according to these relationships of the measurements in the
Ω regularization matrix. We assume that the errors should vary smoothly in space and
thus impose a Matérn covariance structure on Ω−1 Matérn (2013):

Cν(d) = σ 2 2
1−v

Γ (ν)

(√
2ν

d

ρ

)ν

Kν

(√
2ν

d

ρ

)
. (28)

The Matérn covariance structure (28) is governed by the distance d between mea-
surements. In (28), Γ refers to the gamma function and Kν is the modified Bessel
function of the second kind. For this example we assume that all parameters are 1,
except that ν is 0.5. We further assume that the distance between measurements xi jk
and xi j ′k′ from observation i is the Euclidean distance between the points (x j , y j , zk)
and (x j ′ , y j ′ , zk′), where x j , y j , x j ′ , y j ′ ∈ {−1, 0, 1} and zk, zk′ ∈ {1, 2, ..., 128}.
The distance is thus the same as in the image grid (center, top, bottom, left, right pixel
location), and z-dimension corresponds to the channel.

We use a stopping tolerance of 10−5 and a maximum of 1000 iterations for the
inner loop using the accelerated proximal algorithm, and a stopping tolerance of 10−4

and maximum 1000 iterations for the outer block-coordinate loop. The regularization
parameter for the l1-norm is selected as λ = 10−3 and γ = 10−1 for the Tikhonov
regularizer. We present the run-time for varying r in Fig. 16 and the accuracy with
respect to varying r in Fig. 17. There is a clear linear trend in rank r for the increase in
run-time; this agrees with the analysis of Sect. 3.4. We also estimate the accuracy for
a identity regularization matrix, i.e., Ω = I , with the same regularization parameters
γ and λ and achieve accuracy of 0.948, which is approximately the same accuracy as
when using Ω400. To demonstrate the effect that the rank of Ω has on computational
complexity, we obtain the singular value decomposition of Ω = ∑p

i=1 σiuivTi , and
construct a low-rank approximation toΩ using the first r singular vectors and singular
values: Ω r = ∑r

i=1 σiuivTi . We supplied the same parameters to the function sda
from the library sparseLDA; sda required 267s to run and achieved an accuracy of
0.949. The maximum accuracy is achieved with the full regularization matrix, which
is 0.957.

4.7 Summary

Our proposed proximal methods for sparse discriminant analysis provide a decrease
in classification error over the existing LARS approach in almost all experiments.
Moreover, we see a significant improvement in terms of computational resources used
by the accelerated proximal gradient method (APG and APGB) and alternating direc-
tion method of multipliers (ADMM) over LARS in medium to large-scale problem
instances, i.e., when the number of predictor variables p exceeds 1000, without sig-
nificant loss of classification accuracy when compared to standard nearest neighbors
classifiers (ED, DTW); we remind the reader that SOS with APG and ADMM does
not match the classification accuracy of the nearest neighbor classifier using dynamic
time wapring distance with learned window width (DTWL) due to poor classification
performance of SDA for a small number of data sets for which SDA does not seem
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Fig. 16 Run-time as function of rank(Ω). The run-time also includes the creation of the low-rank approx-
imated Ω matrix
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Fig. 17 Test accuracy as function of rank(Ω)

applicable, and that our methods are more efficient than DTWL, offer an element of
feature selection via sparsity, and are amenable to learning tasks other than classifica-
tion as a general dimension reduction tool. We should note that this agrees with the
theoretical estimates of computational cost of these methods given in Sect. 3.4 and
“AppendixA”. Specifically, bothAPGandADMMconverge linearlywith per-iteration
complexity on the order ofO(p) floating point operations per-iteration, which leads to
overall computation time, as measured in floating point operations, to be far less than
the O(p3) flops of the classical LARS method. In our experiments, the decrease in
run-time is most significant when p is large, where the cost ofO(p3) flops for LARS
becomes prohibitive.

It is important to note that the slow convergence of the proximal gradient method
(PG/PGB) without acceleration yields significantly longer run-times despite the
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decreased per-iteration cost. Finally, we note that there appears to be limited ben-
efit from the use of backtracking line search, when compared to a constant step size
given by the Frobenius norm estimate ‖A‖F of the Lipschitz constant. Specifically,
the results of these experiments indicate that using a constant step length yields simi-
lar classification performance to the backtracking approach, but without a significant
increase in run-time due to repeated calculation of ∇ f .

4.7.1 Comparison of ADMM and APG

The results of our empirical analysis suggest that the use of either APG and ADMM to
solve (6) may yield a significant improvement over the classical LARS-EN heuristic,
particularly when p is large and we seek dense discriminant vectors. However, which
of these two methods is most efficient seems to vary under different experimental con-
ditions. Specifically, APG generally requires less overall run-time than ADMMwhen
analyzing data sets from the UCR benchmarking repository considered in Sect. 4.5.
On the other hand, ADMM tends to converge more quickly and require less compu-
tation than APG when analyzing synthetic data, particularly in our convergence tests
(Sect. 4.2) and scaling tests (Sect. 4.4). This suggests that performance of the ADMM
heuristic is sensitive to the choice of the augmented Lagrangian parameter μ, as this
is the only parameter that varies between these different analyses.

Weperformed the following analysis to further illustrate this sensitivity to the choice
of μ. We generated 100 different data sets containing n = 200 training observations
sampled from each of the p = 2000 dimensional Gaussian distributions N (μ1,Σ) and
N (μ2,Σ) as in Sect. 4.2. For each problem instance, we (approximately) solved (2)
using APG and ADMM with μ ∈ {1/25, 1/5, 1, 5, 25, 125} to solve (6). We set
γ = 10−3, Ω = I , λ = 0.05λ̄ and terminate APG or ADMM if their respective
stopping criteria are met with tolerance 10−4/

√
p. For each data set, we record the

objective function value of (6) at each iteration, as well as cardinality of the obtained
discriminant vector, number of iterations performed before termination, total run-
time, and out-of-sample classification accuracy for a testing set of 200 observations
drawn from each of N (μ1,Σ) and N (μ2,Σ). Note that we are essentially repeating
our analysis from Sect. 4.2, except this time we focus only APG and ADMM under
varying choices of μ.

Figure 18 and Table 4 summarize the results of this analysis. Recall that ADMM
follows an (approximate) dual ascent applied to the dual functional of (16). The aug-
mented Lagrangian parameter μ controls emphasis between the objective function
of (16) and the quadratic penalty function ‖x − y‖22. When μ is large, iterations of
ADMM generally decrease disagreement between x and y while making only modest
decreases, or even increases, in the objective 1

2 x
T Ax+dT x+λ‖ y‖1; this corresponds

to the slow convergence observed when μ = 125. On the other hand, when μ is very
small, we have significant decrease in the objective function each iteration, but many
iterations are required before disagreement between x and y is small. We observe a
two-stage phenomena in our experiments, where early iterations of ADMM feature
slow decrease or increase in objective value while the gap between x and y decreases,
followed by sharp descent in objective value; this initial period is longest when μ is
small. This provides empirical evidence that we need to carefully choose the penalty
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Fig. 18 Difference of objective value and optimal value of each iterate averaged across 100 Gaussian data
sets. We note that ADMM converges in fewer iterations than APG for all choices of μ except μ = 125

Table 4 Average number of nonzero entries (of p = 2000), average run-time in seconds, and average
number of iterations performed before termination, with standard deviation in parentheses

Method Cardinality Run-Time Number of Iterations

APG 536.1 (92) 2.902 (0.531) 766 (136.9)

μ = 1/25 280.4 (7.2) 0.941 (0.066) 248.7 (3.4)

μ = 1/5 291.3 (8.7) 0.29 (0.022) 55.9 (0.7)

μ = 1 410.1 (12.7) 0.171 (0.013) 20.7 (0.6)

μ = 5 426.6 (12.8) 0.33 (0.026) 67.5 (2.9)

μ = 25 428.4 (12.3) 1.212 (0.1) 328.6 (14.6)

μ = 125 428.7 (12.3) 5.63 (0.475) 1639.7 (73.4)

We see that ADMM yields sparser solutions than APG for all choices of μ and is more efficient than APG
for all μ except μ = 125, in terms of both total run time and number of iterations performed. All methods
achieved 100% out-of-sample classification rate for all 100 training/testing data sets

parameter μ in order to optimize convergence of our ADMM heuristic, and partially
explains the gap in efficiency between APG and ADMMobserved in our experiments.
Specifically, ADMM is more efficient than APG only if a suitable choice of μ is used;
if we do not carefully tune this penalty parameter, APG can be significantly more
efficient than ADMM.

5 Conclusion

We have proposed new algorithms for solving the sparse optimal scoring problem for
high-dimensional linear discriminant analysis based on block coordinate descent and
proximal operator evaluations. We observe that these algorithms provide significant
improvement over existing approaches for solving the SOS problem in terms of effi-
ciency and scalability. These improvements are most acute in the case that specially
structured Tikhonov regularization is employed in the SOS formulation; for exam-
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ple, the computational resources required for each iteration scale linearly with the
dimension of the data if either a diagonal or low-rank matrix is used.

Moreover, we establish that any convergent subsequence of iterates generated by
one of our algorithms converges to a stationary point. Finally, numerical simulation
establishes that our approach provides an improvement over existing methods for
sparse discriminant analysis, particularly when the number of nonzero predictor vari-
ables in the discriminant vectors is relatively large.

These results present several exciting avenues for future research. Although we
focus primarily on the solution of the optimal scoring problem under regularization in
the formof a generalized elastic net penalty, our approach should translate immediately
to formulations with any nonsmooth convex penalty function. That is, the framework
provided by Algorithm 1 can be applied to solve the SOS problem (2) obtained by
applying an arbitrary convex penalty to the objective of the optimal scoring problem
(1). The resulting optimization problem can be approximately solved by alternately
minimizing with respect to the score vector θ using the formula (4) and with respect to
the discriminant vector β by solving a modified version of (6). The proximal methods
outlined in this paper can be applied to minimize with respect to β if the regularization
function is convex; however it is unlikely that the computational resources necessary
for this minimization will scale as favorably as with the generalized elastic net penalty.
On the other hand, the convergence analysis presented in Sect. 2.2 extends immedi-
ately to this more general framework. Of particular interest is the modification of this
approach to provide means of learning discriminant vectors for data containing ordi-
nal labels, data containing corrupted or missing observations, and semi-supervised
settings.

Finally, the results found in Sect. 2.2, as well as Appendices C and D establish that
any convergent subsequence of iterates generated by our block coordinate descent
approach must converge to a stationary point. However, it is still unclear when this
sequence of iterates is convergent, or at what rate these subsequences converge; further
study is required to better understand the convergence properties of these algorithms.

Similarly, despite the empirical evidence provided in Sect. 4, it is unknown what
conditions ensure that data is classifiable using sparse optimal scoring and, more
generally, linear discriminant analysis. Extensive consistency analysis is needed to
determine theoretical error rates for distinguishing random variables drawn from dis-
tinct distributions.
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org/10.1007/s11634-022-00530-6.
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Appendix A: Detailed calculation of per-iteration complexity

The most expensive step of both the proximal gradient method (Algorithm 2) and the
accelerated proximal gradient method (Algorithm 4) is the evaluation of the gradient
∇ f . Given a vector β ∈ Rp, the gradient at β is given by

∇ f (β) = Aβ = 2
(
XT X + γΩ

)
β = 2XT Xβ + 2γΩβ.

The product XT Xβ can be computed using O(np) floating point operations (flops)
by computing y = Xβ and then XT y. On the other hand, the product Ωβ requires
O(p2) flops for unstructuredΩ . However, if we use a structured regularization param-
eter Ω we can significantly decrease this computational cost. Consider the following
examples:

– Suppose thatΩ is a diagonal matrix:Ω = Diag(u) for some vector u ∈ Rp
+. Then

the product Ωβ can be computed using O(p) flops:
(Ωβ)i = uiβi .
Moreover, we can estimate the Lipschitz constant ‖A‖ for use in choosing the step
size α by ‖A‖ ≤ 2γ ‖Ω‖+ 2‖X‖2F = 2γ ‖u‖∞ + 2‖X‖2F , which requiresO(np)
flops, primarily to compute the norm ‖X‖2F .

– If the use of diagonal Ω is inappropriate, we could store Ω in factored form
Ω = RRT where R ∈ Rp×r , and r is the rank of Ω . In this case, we have
Ωβ = R(RTβ), which can be computed at a cost ofO(rp) flops. Thus, if we use
a low-rank parameterΩ , say r ≤ O(n), we can compute the gradient usingO(np)
flops. Similarly, we can estimate the step size α using ‖A‖ ≤ 2‖R‖2F + 2‖X‖2F
(computed at a cost of O(rp + np) flops).

In either case, using a diagonalΩ or low-rank factoredΩ , each iteration of the proximal
gradient method or the accelerated proximal gradient method requires O(np) flops.
Similar improvements can be made if Ω is tridiagonal, banded, sparse, or otherwise
nicely structured.

Similarly, the use of structured Ω can lead to significant improvements in compu-
tational efficiency in our ADMM algorithm. The main computational bottleneck of
this method is the solution of the linear system in the update of x:

(μI + A)xi+1 = d + μ yi − zi .

Without taking advantage of the structure of A, we can solve this system using a
Cholesky factorization preprocessing step (at a cost ofO(p3) flops) and substitution to
solve the resulting triangular systems (at a cost ofO(p2) flops per-iteration). However,
we can often use the Sherman-Morrison-Woodbury Lemma to solve this system more
efficiently using the structure of A. Indeed, fix t and let b = d + μ yi − zi . Then we
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Table 5 Upper bounds on floating point operation counts for most time consuming steps of each algorithm

Diagonal Ω Rank r Ω Full rank Ω

Proximal Gradient ∇ f O(np) O(rp + np) O(p2)

Bound on ‖A‖ O(np) O(rp + np) O(p2 log p)

ADMM (μI + A)x = b O(n3 + n2 p) O(n3 + n2 p + r2 p) O(p3)

update x by x = (μI + A)−1b. If M = μI + 2γΩ then we have

(μI + A)−1 =
(
μI + 2γΩ + 2XT X

)−1 =
(
M + 2XT X

)−1

= M−1 − 2M−1XT
(
I + 2XM−1XT

)−1
XM−1.

The matrix I + 2XM−1XT is n × n, so we may solve any linear system with this
coefficient matrix usingO(n3) flops; a furtherO(n2 p) flops are needed to compute the
coefficient matrix if given M−1. Thus, the main computational burden of this update
step is the inversion of the matrix M. As before, we want to choose Ω so that we can
exploit its structure. Consider the following cases.

– If Ω = Diag(u) is diagonal, then M is also diagonal with

[M−1]i i = 1

μ + 2γ ui
.

Thus, we require O(p) flops to compute M−1v for any vector v ∈ Rp.
– On the other hand, ifΩ = RRT , where R ∈ Rp×r , then wemay use the Sherman-
Morrison-Woodbury identity to compute M−1:

M−1 = 1

μ
I − 2γ

μ2 R
(
I + 2γ

μ
RT R

)−1

RT .

Therefore, we can solve any linear system with coefficient matrix M at a cost of
O(r2 p) flops (for the formation and solution of the system with coefficient matrix
I + 2γ

μ
RT R).

In either case, we never actually compute thematricesM−1 and (μI+A)−1 explicitly.
Instead, we update x as the solution of a sequence of linear systems and matrix–vector
multiplications, at a total cost ofO(n2 p) flops (in the diagonal case) orO((r2+n2)p)
flops (in the factored case). Thus, if the number of observations n is much smaller than
the number of features p, then the per-iteration computation scales roughly linearly
with p. Table 5 summarizes these estimates of per-iteration computational costs for
each proposed algorithm. Further, we should note that these bounds on per-iteration
cost assume that the iterates β and x are dense; the soft-thresholding step of the
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proximal gradient algorithm typically induces β containing many zeros, suggesting
that further improvements can be made by using sparse arithmetic.

Appendix B: Proof of Lemma 1

We note that (3) has trivial solution θ = 1k for every β = β i ∈ Rp and j = 1.
Indeed, Y1k = 1n by the structure of the indicator matrix Y and

∑n
i=1 xi j = 0 for all

j = 1, 2, . . . , p because our data has been centered to have sample mean equal to 0.
Therefore, we may reformulate (3) as

min
θ∈RK

‖Yθ − Xβ‖2
s.t. θTY TYθ = n,

θTY TY1 = 0,
θTY TYθ� = 0 � < j,

(29)

to avoid this trivial solution. We wish to show that (29) has optimal solution θ̂ given
by

θ̂ =
√
nw√

wTY TYw
, (30)

where w = (I − 1
n Q j Q

T
j Y

TY)(Y TY)−1Y T Xβ.
To do so, note that (29) satisfies the linear independence constraint qualification

because the set of constraint function gradients

{2Y TYθ ,Y TY1,Y TYθ1, . . . ,Y TYθ j−1}

is linearly independent. Moreover, the optimal value of (29) is bounded below by 0.
Therefore, (29) has global minimizer, θ̂ , which must satisfy the Karush-Kuhn-Tucker
conditions, i.e., there exists v ∈ R j , ψ ∈ R such that

Y TY θ̂ − Y T Xβ + ψY TY θ̂ + Y TY Q jv = 0, (31)

where Q j = [1, θ1, θ2, . . . , θ j−1]. We consider the following two cases.
First, suppose that Y T Xβ /∈ range

(
Y TY Q j

)
. Rearranging (31) yields

θ̂ = 1

1 + ψ

(
Y TY

)−1 (
Y T Xβ − Y TY Q jv

)
. (32)

We choose the dual variablesψ and v so that θ̂ is feasible for (29). It is easy to see that
the conjugacy constraints are equivalent to QT

j Y
TY θ̂ = 0, which holds if and only if
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0 = QT
j (Y

T Xβ − Y TY Q jv) = QT
j Y

T Xβ − QT
j Y

TY Q jv

= QT
j Y

T Xβ − nv,

where the last equality follows from the fact that 1TY TY1 = θTi Y
TYθ i = n for all

i = 1, 2, . . . , j − 1. It follows immediately that

v = 1

n
QT

j Y
T Xβ. (33)

Substituting (33) into (32) yields

θ̂ = 1

1 + ψ

(
(Y TY)−1Y T Xβ − 1

n
Q j Q

T
j Y

T Xβ

)

= 1

1 + ψ

(
I − 1

n
Q j Q

T
j Y

TY
)

(Y TY)−1Y T Xβ

= 1

1 + ψ
w, (34)

where we choose ψ ∈ R so that θ̂
T
Y TY θ̂ = n:

√
n(1 + ψ) = ±

√
wTY TYw = ±‖Yw‖. (35)

To complete the argument, note that

‖Y θ̂ − Xβ‖2 = n ∓ 2
√
n

‖Yw‖βT XT
(
I − 1

n
Q j Q

T
j Y

TY
)

(Y TY)−1Y T Xβ

+ ‖Xβ‖2.

Note further that the matrix Y Q j Q
T
j Y

T has decomposition

Y Q j Q
T
j Y

T = Y11TY T+Yθ1θ
T
1 Y

T + · · · + Yθ j−1θ
T
j−1Y

T .

The conjugacy of the columns of Q j implies that eigenvectors of Y Q j Q
T
j Y

T are

Yθ1, . . . , Yθ j−1, and Y1, each with eigenvalue n; since Y Q j Q
T
j Y

T has rank equal

to k, all remaining eigenvalues of Y Q j Q
T
j Y

T must be equal to 0. Moreover, for any
z = Yθ i , i = 1, 2, . . . , j − 1, or z = Y1, we have

Y
(

(Y TY)−1 − 1

n
Q j Q

T
j

)
Y T z = z − z = 0.

The matrix (Y TY)−1 is a positive definite diagonal matrix, with i th diagonal entry
1/|Ci |, where |Ci | denotes the number of observations belonging to class i ; this implies
that

Y(Y TY)−1Y T

123



S. Atkins et al.

is positive semidefinite. This establishes that the matrix Y((Y TY)−1 − 1
n Q j Q

T
j )Y

T

is positive semidefinite and, thus, ‖Yθ − Xβ‖2 is minimized by θ̂ with ψ =
+‖Yw‖/√n − 1.

Second, suppose that Y T Xβ ∈ range
(
Y TY Q j

)
. This implies that there exists

some v ∈ RK such that

Y T Xβ = Y TY Q jv.

Substituting into the objective of (29), we see that

‖Yθ − Xβ‖2 = θTY TYθ − 2θTY T Xβ + βT XT Xβ

= n − 2θTY TY Q jv + βT XT Xβ

= n + βT XT Xβ

for every feasible solution θ of (29). This implies that every feasible solution of (29)
is also optimal in this case. In particular, θ̂ given by (34) is feasible for (29) and,
therefore, optimal. ��

Appendix C: Proof of Theorem 1

We next prove Theorem 1, which establishes that Algorithm 1 converges in function
value.

Proof Suppose that, after t iterations, we have iterates (θ i ,β i )with objective function
value F(θ i ,β i ). Recall that we obtain β i+1 as the solution of (6). Moreover, note that
β i is also feasible for (6). This immediately implies that

F(θ i ,β i ) ≥ F(θ i ,β i+1).

On the other hand, θ i+1 is the solution of (3) with β = β i+1. Therefore, we have

F(θ i ,β i ) ≥ F(θ i ,β i+1) ≥ F(θ i+1,β i+1).

It follows that the sequence of function values {F(θ i ,β i )}∞i=1 is nonincreasing.
Moreover, the objective function F(θ,β) is nonnegative for all θ and β. Therefore,
{F(θ i ,β i )}∞i=1 is convergent as a monotonic bounded sequence. ��

Appendix D: Proof of Theorem 2

To prove Theorem 2, we first establish the following lemma, which establishes that the
limit point (θ∗,β∗) minimizes F with respect to each primal variable with the other
fixed; that is, θ∗ minimizes F(·,β∗) and β∗ minimizes F(θ∗, ·).
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Lemma 2 Let {(θ i ,β i )}∞i=1 be the sequence of points generated by Algorithm 1.
Suppose that {(θ t j ,β t j )}∞j=1 is a convergent subsequence of {(θ i ,β i )}∞i=1 with limit
(θ∗,β∗). Then

F(θ,β∗) ≥ F(θ∗,β∗) (36)

F(θ∗,β) ≥ F(θ∗,β∗) (37)

for all feasible θ ∈ Rk and β ∈ Rp.

Proof We first establish (37). Consider (θ t j ,β t j ). By our update step for β, we note
that

β t j = argmin
β∈Rp

F(θ t j ,β).

Thus, for all j = 1, 2, . . . , we have F(θ t j ,β) ≥ F(θ t j ,β t j ) for all β ∈ Rp. Taking
the limit as j → ∞ and using the continuity of F establishes (37).

Next, note that, for every j = 1, 2, . . . , we have

θ t j+1 = argmin
θ∈RK

F(θ ,β t j )

s.t. θTY TYθ = n, θTY TYθ� = 0 ∀� < k.

This implies that

F(θ ,β t j ) ≥ F(θ t j+1,β t j ) ≥ F(θ t j+1,β t j+1) ≥ F(θ t j+1 ,β t j+1)

by the monotonicity of the sequence of function values and the fact that t j < t j + 1 ≤
t j+1. Taking the limit as j → ∞ and using the continuity of F establishes (36).

This completes the proof of Lemma 2. ��
We are now ready to prove Theorem 2.

Proof of Theorem 2 The form of the subdifferential of L implies that (gθ , gβ) belongs
to the subdifferential ∂L(θ ,β, ψ, v) if and only if

gθ = 2(1 + ψ)Y TYθ − 2Y T Xβ + UT v (38)

gβ ∈ 2(XT X + γΩ)β − 2XTYθ + λ∂‖β‖1 (39)

for all v ∈ R j−1 and ψ ∈ R.
It is easy to see from (37) that β∗ = argminβ∈Rp F(θ∗,β). Thus, by the first order

necessary conditions for unconstrained convex optimization, we must have

0 ∈ ∂

(
1

2
(β∗)T Aβ∗ + dTβ∗ + λ‖β∗‖1

)

= 2(XT X + γΩ)β∗ − 2XTYθ∗ + λ∂‖β∗‖1; (40)
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here ∂‖β‖1 denotes the subdifferential of the �1-norm at the point β.
On the other hand, (36) implies

θ∗ = argmin
θ∈RK

‖Yθ − Xβ∗‖2

s.t. θTY TYθ = n, 2θTY TYθ� = 0, ∀ � < j .
(41)

Moreover, the problem (41) satisfies the linear independence constraint qualifica-
tion. Indeed, the set of active constraint gradients
{2Y TYθ, 2Y TYθ1, . . . , 2Y TYθ j−1} is linearly independent for any feasible θ ∈ RK

by the Y TY -conjugacy of {θ , θ1, . . . , θ j−1}. Therefore, there exist Lagrange multi-
pliers ψ∗, v∗ such that

0 = 2(1 + ψ∗)Y TYθ∗ − 2Y T Xβ∗ + UT v∗ (42)

by the first-order necessary conditions for optimality (see Nocedal and Wright 2006,
Theorem 12.1).

We see that 0 ∈ ∂L(θ∗,β∗, ψ∗, v∗) by combining (40) and (42). This completes
the proof. ��
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