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Abstract—Frequency-bin qubits possess unique synergies with 
wavelength-multiplexed lightwave communications, suggesting 
valuable opportunities for quantum networking with the existing 
Hber-optic infrastructure. Although the coherent manipulation of 
frequency-bin states requires highly controllable multi-spectral- 
mode interference, the quantum frequency processor (QFP) 
provides a scalable path for gate synthesis leveraging standard 
telecom components. Here we summarize the state of the art 
in experimental QFP characterization. Distinguishing between 
physically motivated “open box” approaches that treat the QFP 
as a multiport interferometer, and “black box” approaches that 
view the QFP as a general quantum operation, we highlight 
the assumptions and results of multiple techniques, including 
quantum process tomography of a tunable beamsplitter—to our 
knowledge the Hrst full process tomography of any frequency- 
bin operation. Our Hndings should inform future characterization 
efforts as the QFP increasingly moves beyond proof-of-principle 
tabletop demonstrations toward integrated devices and deployed 
quantum networking experiments.

Index Terms—Electrooptic modulation, optical pulse shaping, 
quantum theory, inference mechanisms, optical Hber communi­
cation.

I. INTRODUCTION

In modem lightwave communications, the optical and elec­
tronic domains work in concert for the distribution and pro­
cessing of information [1], Light fields carry data streams 
with dense multiplexing down low-loss optical fiber, while 
electronic circuits perform digital processing for logical com­
putations, error correction, and packet switching. The inher­
ently ultrawide bandwidth available to photonic systems— 
along with the potential for greater speed and efficiency 
by avoiding optical-to-electrical conversion—has inspired a 
plethora of research into all-optical processing approaches 
challenging this status quo and aiming to supplant electronic 
digital logic with all-optical interactions [2], And in the case of 
photonic quantum information, all-optical processing is more 
than just a pathway for improved performance: instead, it is a 
prerequisite, since conversion to the digital domain represents 
a measurement that irreversibly collapses the quantum state.
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Remarkably, Knill, Lafiamme, and Milbum (KLM) showed 
in 2001 that the photonic interactions necessary for uni­
versal quantum information processing can be realized with 
multiphoton interference in linear-optical circuits, combined 
with detection and feed-forward [3], Although experimentally 
challenging, the KLM scheme is in principle scalable and 
has stimulated a large body of research on linear-optical 
quantum computing [4], including important developments 
in measurement-based computing approaches—both discrete­
ly] and continuous-variable [6]—that appear promising for 
a large-scale photonic quantum computer [7], Beyond com­
puting alone, KLM concepts form the foundation for all­
photonic quantum repeater designs as well, which could 
eliminate the need for quantum memories and two-way com­
munications [8]—[10]. Although originally proposed for spatio- 
polarization encodings, KLM approaches have been extended 
into a variety of nontraditional degrees of freedom, including 
time bins [11] and pulsed modes [12].

Mandatory to any KLM-like scheme is the ability to 
construct arbitrary unitary transformations. In the case of 
frequency-bin encoding—intriguing for its compatibility with 
wavelength-multiplexing in optical fiber, on-chip photon 
sources, and frequency-disparate quantum interconnects—it 
was unclear whether arbitrary unitaries could be synthesized 
with standard fiber-optic components, until the quantum fre­
quency processor (QFP) was introduced and analyzed in 
2017 [13]. Based on an alternating series of electro-optic phase 
modulators (EOMs) and Fourier-transfonn pulse shapers, the 
QFP realizes frequency-bin transformations through what can 
conceptually be viewed as successive phase-only filters in the 
time and frequency domains. In [13], explicit designs for a 
universal gate set (single-qubit phase and Hadamard //, and 
two-qubit controlled-^) were discovered, supported further 
by an argument for linear scaling of resources (EOMs and 
pulse shapers) with the number of modes. In the intervening 
years, many experiments have been performed demonstrating 
basic QFP gates, on both single- [14]—[16] and two-photon 
states [17]—[19]. As with any experimental demonstration, it 
has been critical to confirm the degree of agreement between 
the realized QFP operation and that expected from theory, 
for which a variety of probes have been enlisted, including 
bright frequency combs, weak coherent states, and entangled 
photons.

In this article, we present an introduction and overview of 
the techniques currently available for QFP characterization, 
complementing previous high-level reviews [20], [21] with a 
much more thorough focus on the underlying assumptions and 
information provided by various characterization approaches. 
Following background on the theory and implementation in 
Sec. II, Secs. Ill and IV summarize QFP characterization
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Fig. 1. QFP characterization concepts, (a) Physically, a QFP consists of an 
alternating series of EOMs and pulse shapers, here shown in a three-element 
instantiation (EOM/pulse shaper/EOM) flanked by spectral multiplexers, (b) In 
the open box viewpoint, the output frequency-bin operators are assumed 
to follow from the input through a linear transformation V, which can be 
characterized by measuring the output spectrum of superposition probe states, 
(c) In the black box viewpoint, the QFP is treated as a generic quantum 
channel to be analyzed by quantum state or process tomography, returning 
output state p or process matrix %, respectively. The examples in (b) match 
the mode transformation of a Bell state analyzer [19], while those in (c) 
correspond to an ideal Hadamard gate [14],

experiments organized in terms of successively fewer as­
sumptions, including an entirely new experiment performing 
Bayesian quantum process tomography (QPT) of the tunable 
beamsplitter—the first QPT characterization of a frequency- 
bin gate. Throughout, we find it useful to frame the discussion 
around “open box” and “black box” techniques, distinguished 
by their treatment of the QFP’s inner workings. In addition 
to furnishing an organized introduction to this important sub­
field of time-frequency quantum information, our QPT results 
open the door for impartial characterization of emerging 
QFP designs—e.g., photonic integrated circuits—comprised 
of EOMs and pulse shapers whose properties may deviate 
strongly from ideal models previously assumed for discrete 
devices.

II. QFP BACKGROUND

A. Theory
As noted above, the distinction between open box and black 

box characterization provides a useful framework through 
which to view previous and current QFP experiments. The 
notion of a black box in engineering contexts is simple to 
define: a device to which one has access only to the inputs 
and outputs, making the system opaque from the perspective

of the outside world. The opposite of such a system has been 
dubbed, e.g., an “open box” or “white box” in the literature, 
defined as device for which at least some of the internals 
are known to the tester; in computer science, both open [22] 
and black box [23] software testing are common. Yet while 
black box concepts have a long history in quantum information 
processing—indeed the original proposal for QPT used the 
term explicitly [24]—open box terminology has not taken 
hold in this held, at least in our experience. Nevertheless, 
for the QFP the distinction seems particularly apt, given the 
gradual increase in complexity of characterization approaches 
which have been demonstrated over the past few years. As will 
be defined mathematically below, open box QFP approaches 
are distinguished by assuming the QFP is a true multiport 
frequency-bin interferometer, per its design; black box QFP 
approaches make no assumptions about the QFP’s insides 
beyond the minimum for an arbitrary quantum channel.

Fundamentally, the goal of the QFP is to controllably 
transform quantum states of light populating a comb of dis­
crete frequency modes, or bins. Consider M bins centered at 
frequencies cvm = cv0 + mQ (in e {0,1,..., M - 1}), with Q 
a fixed spacing typically in the radio-frequency (RF) domain. 
Each of these bins possesses an annihilation (creation) operator 
am (a';n) that subtracts (adds) single photons to mode m when 
applied to any quantum state. For notational convenience, we 
utilize bm (b]n) to denote the same operations but referenced 
to the output side of the quantum transformation of interest, 
so that the input (output) bins are associated with am/a)m

The spectral shape of these bins can in principle be of 
any form, provided they are bandlimited to cvm ± §. For 
the QFP to function as designed, these bins should possess 
identical lineshapes and be easily distinguished within the 
resolution of the pulse shapers used for line-by-line phase 
control [25]. We do note that in the general quantum black 
box formalism, these additional assumptions are not strictly 
required for the QFP, but only for the system used to measure 
these bins at the output. Although typically based on the same 
technology as the QFP, the measurement system need not have 
the same spectral resolution as the QFP under test. Indeed, 
emerging QFPs based on integrated photonic circuits [26], 
[27] will likely first be tested with well-characterized discrete 
fiber-optic components, so the distinction between QFP and 
measurement spectral resolutions is practically as well as 
theoretically significant.

Each Fock basis state—i.e., a quantum state with a specified 
number of photons in each mode—can be described for the 
input Hilbert space by a length-M vector of photon occupancy 
numbers n = (n'0,..., n'M_ 1), defined as

M-l

i11') = n
k=0

|vac), (1)

where |vac) denotes the vacuum state over all M modes. Simi­
larly, the output is spanned by basis states n = (n0,..., nM-1):

M-1
in) = n

fc=0
|vac). (2)
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(As a means to aid in distinguishing between input and output, 
we use primed vectors n' for the former and n for the latter.)

The QFP transforms between these spaces via an alter­
nating series of (i) pulse shapers, which apply the phase 
filters bn = el^n an, and (ii) EOMs, which apply a temporal 
phase ip(t) periodic at frequency fi, leading to the discrete 
convolution bn = Yn' cn_n'an' where e'^(t) = Yk c&e-ik^t. 
Figure 1 offers a schematic of the physical hardware for 
a three-element QFP, with input and output multiplexers to 
facilitate characterization; three-element QFPs have been the 
focus of experiments so far, although deeper QFP circuits 
remain of interest for future research. The total effect of an 
ideal QFP with any number of elements can be summarized 
as a multiport frequency-bin interferometer:

M-1

bm 'y ] am' • (3)
m' =0

It is important to note that the Fourier series expansion 
of the phase modulation in general is unbounded in fre­
quency; thus, even with the input modes restricted to a 
finite number M, a countably infinite number of output 
bins can be populated within and after the interferome­
ter. Indeed, it is over this infinite set that V is unitary:
Yfc=-TO VkmVk m' = Y fc=-ro Vm k Vm> k = $mm’. Although 
the intrinsically infinite-dimensional space produces interest­
ing challenges conceptually, it can be accurately approximated 
by truncating to a value of M sufficiently large to encompass 
all nonnegligible probability amplitudes excited by the input 
states of interest [13]. In practice, the sufficiency of any 
truncation M can be validated ex post facto by ensuring the 
calculated probability amplitudes decay to zero (to within 
some desired precision) at the edges of the domain following 
each EOM in the QFP circuit.

Because the QFP operates on frequency modes irrespective 
of the photons populating them, it can be applied to a variety of 
information processing scenarios, including classical lightwave 
communications [25], [28] and continuous-variable quantum 
frequency combs [29], which have emerged as an exciting 
platform for quantum computing [30], [31]. Nonetheless, we 
focus on discrete-variable encoding in this paper, the dominant 
paradigm in QFP characterization experiments so far. In this 
case, each logical basis state is associated with a specific Fock 
state; under dual-rail encoding, for example, a qubit is encoded 
by a single photon populating a superposition of two bins, 
one defined as |0) and the other as |1). Experimentally, we 
always consider the postselected regime, where all photons of 
the input are successfully passed through the system. Therefore 
any insertion loss (absent in the ideal model above) leads to a 
lower throughput without inherently degrading state fidelity.

In the Heisenberg picture, a fixed quantum state |fi) with N 
total photons can be represented in either the input or output 
basis: |fi) = Yn fin ln) = Yn' ln'), where each sum 
considers only terms with YEg nm = YEo n'm = N. 
Solving for fin using Eqs. (1-3) then leads to the simple vector

expression fin = Yn' Wnn'an, where

Wnn' = E
np=0 np!n'p! k'eperms(m')

Vmi kl • • • Vmn kN

(4)
This equation corresponds to the famous “permanents” ex­
pression for N bosons traversing an interferometer [32], [33]. 
With each Fock vector n [n'] we define a length-N mode 
assignment vector m = (mi,...,mN) [m' = (m[,...,m'N)] 
that lists the modes occupied by each photon; the summation 
proceeds over all N! permutations of m'. Although this leads 
to repeated terms when multiple photons populate the same 
mode, we have found it useful numerically, as it treats mode 
vectors with repeated indices the same as those without. (Re­
moving repeated terms simply changes the factorial prefactor, 
as in the formulation of [32].)

The matrix W completely describes the QFP operation, 
and can be compared to some target D x D'-dimensional 
matrix T with elements Tnn', where D (D') denotes the 
dimension of the output (input) subspace of interest. Both
D, D' < Dmax, where Dn ( N+M-1'

M-1 denotes the Hilbert
space dimension of N photons populating M modes; D and 
D' in practice are often much smaller than Dmax since they 
can be limited to only the states of interest in a given problem. 
W computed for the same set of states can then be compared 
to T via matrix fidelity

-Tiw =
1

Pw

Tr WtT
Tr TtT

(5)
2

describing the closeness of the operation to the ideal, and 
success

Pw
Tr WtW
Tr TtT , (6)

providing the probability that all input photons exit in the bins 
of interest [33]. This number encompasses both probabilistic 
multiphoton interference effects and any residual mode scat­
tering from the EOMs. In practice, the observed count rates 
will also depend on insertion loss; for example, for a total 
system efficiency n (assumed uniform for all bins), the net 
probability of detecting all N input photons concurrently with 
a successful operation equals nNPw .

At this stage, it is important to observe that the Fock 
state transformation matrix W—and hence FW and PW —are 
completely determined by the mode transformation matrix V 
[Eq. (4)]. This assumption underpins the “open box” approach 
to QFP characterization, as summarized in Fig. 1(b); if Eq. (3) 
holds, one can probe the QFP fully by sending in two-bin 
superposition states and measuring the output probabilities. A 
powerful technique first introduced in the spatial domain [34], 
the amplitudes |Vmm' | can be recovered from single-bin tests, 
while arg(Vmm') can be obtained by scanning the relative 
phase between two-bin superpositions. Significantly, even clas­
sically bright coherent states can be used, eliminating the 
need for single-photon detection altogether [35], [36]. This 
method has been shown to be highly effective in characterizing 
linear-optical networks, including large-scale boson sampling 
circuits [37], [38].
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This open box viewpoint was adopted to characterize the 
first experimental QFP [14] and has been widely deployed 
since, with remarkably good agreement with theory: experi­
mental fidelities up to Tw = 1 — 10-6 have been obtained 
for the frequency-bin Hadamard [39]. Coupled with our un­
derstanding of the physical processes involved, there is little 
reason to question the validity of Eq. (3) in most situations. 
Nevertheless, the theory of quantum processes permits much 
more general models, allowing for QFP characterization in 
which its inner mechanisms are completely arbitrary.

Considering any D' x ZT-dimensional mixed input p', the 
D x D output p follows as [40]

DD'
p = £{p') = ^2 Akp'Al, (7)

fc=i

where for trace preservation the D / D' Kraus operators 
resolve the identity = 1 d'xD'—a condition fol­
lowing from postselecting N photons at the output. The open 
box picture represents the special case of this black box model 
when A\ <x. W and A/,^ = 0. By preparing known inputs 
p' and performing quantum state tomography (QST) [41] of 
the output p, insight into the operation £{■) can be obtained 
without any reference to a multiport interferometer. For a 
single output p, agreement with theoretical expectations can 
be quantified through the state fidelity

?p = ^ \JVPtPVPt^J , (8)

where pT oc Tp'Tt is the output corresponding to the ideal 
target operation. For the entire channel, the process fidelity

serves this purpose, where the DD' x DD' density matrix <3? 
($>t) is obtained by the Choi-Jamiolkowski isomorphism and 
completely specifies the measured (target) channel [42].

Unlike the open box case, we do not define a success 
probability V. For whereas the open box mapping can dis­
tinguish between output states in the targeted subspace (suc­
cesses) and those outside of this space (failures), the black 
box model is intentionally oblivious to all subspaces apart 
from the 79-dimensional output of interest. Considering non­
trace-preserving operations could enable a meaningful success 
probability definition, but due to the experimental difficulty 
of distinguishing between failure and insertion loss—at least 
without introducing modes outside of the quantum channel’s 
purview—we concentrate on fidelity for the black box exam­
ples below.

Figure 1(c) highlights these concepts for a black box 
frequency-bin Hadamard. One state from a set of inputs is sent 
into the system and measured; in the example shown, the zero 
logical input p' = |0) (0| produces the superposition output 
p = |+) (+|. With many such input/output tests, the full pro­
cess can be reconstructed; shown is the ideal Hadamard pro­
cess matrix % expressed in the Pauli basis (/rlh cr \. a->. u:!) = 
(/, X, Y, Z)\ i.e., £(p ) = Xq=o Sfc=o XjkVjP

Fig. 2. Photograph of QFP used to demonstrate a frequency-bin fritter [14]. 
The setup combines a commercial pulse shaper with two ROMs, each driven 
by a superposition of two microwave tones. The profusion of RF cables and 
optical fibers highlights the mutual importance of electrical and optical facets 
of the QFP. Image credit: Jason Richards, Oak Ridge National Laboratory.

To conclude this subsection, then, a QFP used to transform 
Fock states in frequency-bin encoding can be characterized 
according to either (i) an open box viewpoint in which the 
system is modeled as a multiport interferometer [Eq. (3)] 
or (ii) a black box viewpoint in which the QFP is treated 
as an arbitrary quantum channel [Eq. (7)]. Both approaches 
possess advantages and disadvantages, trading off between 
physical insight and generality. In the remainder of the paper, 
we discuss the findings of QFP experiments applying each 
technique.

B. Experimental Setup
Figure 2 depicts an exemplary tabletop QFP consisting of 

two EOMs (EOSpace) and one pulse shaper (Finisar Wave- 
shaper 1000S), which was experimentally leveraged to realize 
a balanced frequency fritter—a three-dimensional extension of 
the frequency beamsplitter [14]. In addition to the optical com­
ponents labeled in the setup, several RF components, including 
oscillator, frequency doubler, power splitters, amplifiers, atten­
uators, phase shifters, and cables, are employed to synthesize 
the drive signals for the EOMs. The spectral resolution of the 
pulse shaper (typically >10 GHz) determines how tight the 
frequency bins can be packed, the acceptance bandwidths of 
the RF components limit the maximum frequency separation, 
and component insertion losses set the total count rates ob­
served at the output for a given input. In this example, the 
mode spacing is chosen as Q/2n = 18.1 GHz, while the 
total QFP insertion loss is 12.5 dB [14]. Our frequency fritter 
design is based on both the fundamental tone f2 and the second 
harmonic 2f2 in the EOM drive signals: the former with a peak 
amplitude of 1.06 rad, and the latter with 0.409 rad [14], [16]). 
To produce the necessary second harmonic, we split a portion 
of the 18.1 GHz sinewave from the oscillator and double its 
frequency to 36.2 GHz. We then use RF amplifiers, attenuators, 
and phase shifters to set the correct amplitude and phase for
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each RF tone before recombining them in an RF power coupler 
connected to the EOM.

Applying spectral phase modulation via the commercial 
pulse shaper is comparatively simple—in the line-by-line 
shaping regime [43], [44], we can program the target phase 
functions onto the pulse shaper without causing any distortions 
in the phase mask. Since EOMs naturally couple a single input 
frequency mode to many output modes, the pulse shaper must 
be able to address a larger number of modes than the input. For 
the tritter, the pulse shaper must shape a total of 12 frequency 
bins to reach FW > 1 - 10-4, a small fraction of its total 
40 nm (5 THz) bandwidth. In [16], we show numerically 
that the same three-element (EOM/shaper/EOM) QFP can 
implement d-dimensional discrete Fourier transform (DFT) 
gates up to d =10 (d =3 for the frequency tritter here) with 
near-unity fidelity, when d - 1 RF harmonics drive the EOMs 
and the pulse shaper applies phase shifts to a total of ^4d 
channels. This approach allows for the scalable construction of 
high-dimensional frequency-bin quantum operations that will 
be valuable for tasks such as entanglement verification [45], 
[46] and high-dimensional quantum key distribution [47], [48].

III. Open Box Characterization

A. Pure Multiport
Figure 3 illustrates three representative operations realized 

on the QFP so far. In the first experimental example [Fig. 3(a)], 
the QFP was configured to operate as a Hadamard gate, also 
known as a balanced frequency beamsplitter [14]. Mathemat­
ically the ideal transformation matrix can be written as

Th =
-f1 1
-A1 -i (10)

To characterize the mode matrix V via the open box approach, 
we first generated an electro-optic frequency comb at the 
QFP mode spacing of 25 GHz and utilized an additional 
pulse shaper to adjust the amplitude and phase of each 
frequency mode. This enabled the preparation of either single­
bin or superposition states. By probing the QFP with a 
single optical frequency mode (|1W00W1) or |0W01U1)), the 
modulus of every matrix element in V can be obtained by 
measuring the output optical spectra, as discussed in Sec. II-A. 
To determine the unknown phase terms in V, we probed 
the QFP with equal superpositions of two frequency modes 
(|1w00w1 )+ei0 |0w01U1)), scanning ^ E [0,2n) 1. We extracted 
the power on specific modes from a series of optical spectra 
and observed the resulting interference patterns as a function 
of <$>. We then used these patterns to determine the unknown 
phase terms by fitting them to sinusoidal curves.

Figure 3(a) shows an experimentally obtained mode trans­
formation for the beamsplitter, which corresponds to PW = 
0.9739 and FW = 0.9999 when compared to the ideal Th. 
To verify accuracy at the single-photon level, we attenuated 
the input state to ^0.1 photons per detection gate window, and

1Even though the probes for extracting V are bright coherent states [34], 
the mathematical expressions are the same as if each photon is viewed 
independently as a Fock state. To keep the notation simple, we describe both 
bright and single-photon-level states as N =1 Fock states.

again scanned phase ^. At each setting, a wavelength-selective 
switch (WSS) routed the output modes to an InGaAs single­
photon detector. The resulting interference patterns [Qubit 
Probe in Fig. 3(a)] show the expected sinuosidal oscillations 
with fitted visibilities exceeding 97%, which is primarily 
limited by the detector noise.

By incorporating an additional harmonic to the EOM drives, 
as discussed in Sec. II-B, we experimentally reconfigured the 
QFP into a tritter in which the transformation matrix is a 3d 
DFT given by [14], [16]

1 Z1 1 1 \
Ttr = — I 1 e2ni/3 e4ni/3 I . (11)

V3 y 1 e4ni/3 e2ni/3 I

We again applied the coherent-state-based gate characteriza­
tion technique, now with a 18.1 GHz electro-optic frequency 
comb as the probe, and measured the 3 x 3 mode matrix V as 
depicted in Fig 3(b). The moduli and phases match those of Ttr 
well, with an associated success probability of PW = 0.9731 
and fidelity of FW = 0.9992. Again, to gain insight into 
the tritter for single-photon states, we attenuated a three­
mode superposition state (|1W00W10W2) + e-i0 |Q^01U10U2) + 
e-2i0 |0w00w11w2)) to the single-photon level and measured 
the counts in bins 0, 1 and 2 at the output. The interference 
patterns, now tracing a sum of two sines with respective peaks 
at ^ E {0,2n/3,4n/3}, again show excellent visibilities of 
over 97%. The reduced flux in bin 1 is primarily due to 
the mismatch between the mode spacing (18.1 GHz) and the 
12.5 GHz passbands on the WSS.

The previous two examples are one-photon gates, for which 
the the mode V and Hilbert space W transformations are 
identical; Eq. (4) reduces to one term with a single fac­
tor. Two-qubit gates are also required for universal com­
puting [49] which, following KLM [3], can be realized via 
quantum interference and single-photon detection. Controlled- 
phase (CPhase) and controlled-NOT (CNOT) gates were first 
demonstrated in polarization/spatial encodings using a network 
of spatial beamsplitters [50]-[52], where the gate success is 
postselected by coincidence events between the desired output 
ports. Mathematically, the ideal CNOT can be described in the 
computational basis as

Tcnot

/1 0 0 0\
0 10 0 
0 0 0 1 , 
0010

(12)

which flips the state of the target qubit if the control qubit 
is in state |1). Similarly, this coincidence-basis CNOT gate 
can be implemented in the spectral domain with a QFP [18]. 
Numerically, we identified a set of EOM/shaper modulation 
functions for the three-element QFP that results in theoretical 
fidelity FW = 0.9999 and success probability PW = 0.0445, 
slightly below the optimal success for a coincidence-basis 
CNOT of Pw = 1/9 [50], [51]; simulations show the 
attainability of PW = 1/9 with a deeper QFP (three EOMs 
and two pulse shapers) [18]. For our implementation, the 
indices for the logical bins are as follows: (Co, Ci, To, Ti) = 
(0,6,7, 8), where we use the notation Co (To) and Ci (Ti)
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Fig. 3. Open box QFP characterization results. Each example shows a mode matrix V recovered from bright coherent state probes, followed by photon counting 
results for quantum inputs, (a) Frequency-bin Hadamard and (b) tritter. For these two gates, the Hilbert space transformation W and mode transformation V 
are equal, (c) Coincidence-basis CNOT. Here the two-photon transformation W is calculated from the experimentally measured V, revealing a conditional bit 
flip as designed. For all matrix plots in (a-c), the color of each circle denotes the amplitude, and the radial line, the phase, of the relevant element; undefined 
phases (due to low amplitude) are depicted as dotted circles. Interferograms in (a,b) reprinted with permission from [14]. Images in (c) adapted from [18] 
under a Creative Commons Attribution 4.0 International License.

to denote the frequency bin index m for the logical zero 
and one mode, respectively, of the control (target) qubit. 
Thus the four logical states can be defined in the Fock 
basis as |00) = |1co0ci1to0ti), 101) = |1co0ci0to1ti),
110) = |0co1ci1to0ti), and 111) = |0co1ci0to1ti)-

Standard procedures for characterizing a photonic CNOT 
gate often involve preparing a set of input states that span 
the entire two-photon state space and then performing state 
tomography for each of these states at the output [53], which 
exceeded our resources (number of ROMs and pulse shapers) 
available at the time of the experiment. While the use of high- 
flux coherent states in the aforementioned characterization 
procedures cannot reveal the two-photon interference effects 
underlying the CNOT gate, it is still useful in characterizing 
the mode transformation V. Experimentally, we configured 
the QFP to realize the frequency-bin CNOT and measured 
the mode matrix V shown in Fig. 3(c). As expected from the 
design, coupling between mode C0 and {Ci, T0, Ti} was neg­
ligible, since C0 is spectrally isolated from the target modes (to 
preserve the state of the target upon the presence of a photon 
in mode Co). In contrast, bin C\ is close to both target bins, 
allowing it to be strongly coupled to both T0 and with equal 
strength. With the mode transformation V at our disposal, the

equivalent two-photon state transformation W was computed 
from Eq. (4), which shows all four of the large elements of 
W to be in-phase and in good agreement with the theory. 
We calculated an inferred fidelity of = 0.995 and
coincidence-basis success probability of = 0.0460—
an indirect estimate that suggested our frequency-bin CNOT 
was operating correctly.

To test our gate with truly quantum states, we generated 
a two-photon frequency comb—namely, entangled photons 
spanning discrete pairs of phase-coherent energy-matched 
comb lines—by pumping a periodically poled lithium niobate 
(PPLN) waveguide with a continuous-wave Ti:sapphire laser 
and filtering the broadband emission with an etalon to produce 
frequency bins. We then prepared all four computational-basis 
states by translating the pump frequency to four different val­
ues and using an additional shaper (prior to QFP) to filter out 
specific modes. After the gate operation, the output photons 
were frequency-demultiplexed and coincidences measured for 
600 s for all 16 combinations of input/output states [plotted in 
Fig. 3(c)], showing a total of four distinct, significant peaks 
as well as a number of smaller bars. When an input photon is 
present in mode C0, the quantum state is maintained, but when 
a photon is present in mode C%, the target qubit is flipped.
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B. Physically Motivated Noise Model

Logical-basis measurements in the case of CNOT charac­
terization, such as the one presented in Fig. 3(c), can only 
reveal the amplitude of the state transformation W; to access 
the phase information in W, measurements of superposition 
state inputs (for example, (|0) — |1)) 0 |0)) are essential [52]. 
However, we have found that by constructing a physical 
model that takes into account both single-detector events and 
coincidence counts, logical-basis measurements can provide 
more information than typically considered. In other words, 
by augmenting the multiport model in the open box viewpoint 
with physically motivated noise processes, it is possible to es­
timate the transformation W without reference to the classical 
characterization in Fig. 3(c), but rather from the quantum data 
alone.

Specifically, we considered a model [Fig. 4(a)] where logi­
cal input photon states |kl) (k, l G {0,1}) are processed by a 
linear-optical frequency multiport fully described by a mode 
matrix V (thus falling under the open box umbrella), and 
coincidences between output modes Cr and Ts (r, s G {0,1}) 
are registered at detectors A and B, respectively. We also 
accounted for nonideal effects in our model, including the 
pathway efficiency t]a (tjb) from photon-pair generation to 
detector A (B) and the dark count probability dA (dg). For 
each set of {k, Z, r, s}, we derived the marginal probabilities 
for clicks on detector A or B, denoted as pa and ps, 
respectively, defined within a detection frame r (~1.5 ns in our 
case). The clicks can occur either due to the arrival of a photon 
from an entangled pair (with pair generation probability p) at 
the monitored output modes or due to random background 
or dark count noise (dA and dg); under the assumption 
p, r]A, t)B-> dA-> dB < 1, we found the marginal probabilities to 
be simply the summation of pair and dark-count contributions 
(see [18] for detailed derivation).

The coincidence probability between detectors A and B 
(Pab) also contains two terms—the correlated coincidences 
between two photons from the same entangled photon pair, 
and the accidental coincidences from two random clicks 
within the detection frame r. The latter term, represented 
by 2paPb [54], [55], encompasses the noise coincidences 
from multipair emission or between a photon and dark count. 
Together, these equations show that the probability of detecting 
a single photon (pa and pg) is determined solely by the 
magnitude of the elements in the V matrix, whereas the 
coincidence probability (pab) also depends on the relative 
phase of these matrix elements. Consequentially, our goal was 
to devise a method to estimate the model parameters of interest 
f3 = {V, p,t]a,Vb} from the measured datasets in Fig. 3(c).

The leading approach in modern quantum tomography, 
maximum likelihood estimation (MLE) is typically utilized 
to find a single set of f3 values that maximizes the likeli­
hood function [41], [56]. However, we employed Bayesian 
inference to sample from a complete posterior distribution 
P(/3|X>), the probability density of the parameters f3 given the 
observed data X>. While more computationally intensive than 
MLE, Bayesian methods have the advantage of automatically 
quantifying uncertainties, and the Bayesian mean estimator

photon loss
PA = PVA (IVcrCk |2 + |VcrTt |2) + dA 

Pb = pr]B (|Vrsck I2 + \ VtsTj, |2) + dB 

Pab = prjArjB\VcrckVTsTi + VcvtjVtscJ2 + 2paPb

Output 
■ 00 
■ 01

Input State

Fig. 4. Incorporating noise into the open box CNOT model, (a) Contri­
butions to single and coincidence detection probabilities including effects 
such as probabilistic pair generation (g), nonunity efficiency (r]A, Vb), back­
ground/dark counts (dA,d,B), and uncorrelated events (2pApB). (b) Transi­
tion probabilities recovered through Bayesian inference of this model with the 
two-photon results in Fig. 3(c). Panel (b) reprinted from [18] under a Creative 
Commons Attribution 4.0 International License.

attains the minimum squared error on average [57]. Although 
a detailed discussion of Bayesian techniques is beyond the 
scope of the present review, we direct the interested reader to 
the proposal and motivation for Bayesian QST from Blume- 
Kohout [58], as well as several papers describing specific 
Bayesian tomography models and algorithms [59]—[67]. In­
cidentally, experimental Bayesian QST has been performed 
on mixed states in Hilbert spaces up to 64 dimensions [66]. 
These calculations required almost one week to complete 
on a desktop computer, inspiring ongoing investigations into 
parallelizable techniques [68], [69] to reduce total wall clock 
time and expand the reach of Bayesian methods to even larger 
Hilbert spaces.

For the considered CNOT experiment, we leveraged the 
Markov chain Monte Carlo (MCMC) algorithm known as slice 
sampling [63], [70] to obtain Bayesian samples numerically, 
ultimately arriving at the fidelity estimate Tw = 0.91 ± 0.01. 
Figure 4(b) illustrates how this Tw translates into the output 
state probabilities for logical-basis inputs. Significantly, these 
results show the informative power of the open box QFP 
viewpoint: with Eq. (3) combined with a reasonable noise 
model, truth table measurements alone [Fig. 3(c)] were in fact 
sufficient to estimate even the phases of the matrix V.

IV. Black Box Characterization

In the previous section, we discussed experimental examples 
of the open box approach for characterizing the QFP. With the 
black box approach, Eqs. (3,4) are no longer assumed. Instead, 
one intentionally is given access to the input and output ports
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only, without any assumptions regarding the action of the 
QFP. By preparing a known input state and then performing 
measurements of the output state after the operation, the 
quantum process can be fully determined after repeating this 
procedure for a number of different input states in multiple 
bases.

In this section, we will focus on an exemplary class of 
QFP operations, namely, tunable frequency-bin beamsplitters. 
Previously in [15], [17], we discovered that the three-element 
QFP can synthesize tunable frequency beamsplitters simply by 
adjusting the depth of the phase shift a imparted by the QFP 
shaper between frequency bins wo and wi while driving the 
EOMs with n-phase-shifted sinewaves with a fixed modulation 
index ©. Mathematically, the 2 x 2 transformation matrix on 
the qubit Hilbert space is a function of the tunanble phase 
jump a:

Woo(a) Woi(a)X (13)
Wio(a) Wu(a^ , (13)

where each of the matrix elements are

Wio(a) = Woi(a) = (1 - eia) ^ Jk(©) Jfc-i(©)

Woo (a) = Jg(©) + (1 + (14)

Wii(a) = e J(©) + (1 + e-)1 - J0(©),

with Jk(©) the Bessel function of the first kind. The identity 
operation is observed when a = 0, as the two n-phase- 
shifted sinewave cancel each other out. Furthermore, when 
a = n, the reflectivity R = |Woi |2 = |Wio|2 and the 
transmissivity T = |Woo|2 = |Wn|2 are approximately equal; 
the elements {Woo, Woi, Wio} are all real and positive, while 
Wii is real and negative. This results in a Hadamard operation 
with theoretical fidelity FW = 1 - 10-7. Accordingly, the 
designed quantum process transforms any qubit input p' into 
the output pT <x Wp'W f. It is important to emphasize that 
this formula is not assumed in the characterization experiments 
below, but rather is used to compute the ideal output pT and 
process $T against which experimental results are compared.

A. Quantum State Tomography (QST)
As the first experimental foray into black box QFP charac­

terization, we investigated gate performance for converting a 
fixed input frequency-bin qubit to a targeted output state, both 
for arbitrary single-qubit unitaries and the tunable beamsplitter 
of interest here [15]. We performed QST of the output photon 
and compared the recovered state p against the target pT via 
Eq. (8). QST of frequency-bin quantum states can be realized 
with the same elements comprising the QFP itself (EOMs 
and pulse shapers), but with somewhat relaxed requirements. 
Whereas the QFP focuses on implementing quantum gates 
(i.e., matrices) in a specified Hilbert space, QST requires 
only projective single-outcome measurements, a valuable sim­
plification leveraged in many QST experiments on quantum 
frequency combs [71]-[77].

Specifically, we prepared the fixed single-frequency input 
|0) = |1U0 0W1), using the tunable beamsplitter to convert

this state, initially at the north pole of the Bloch sphere, to 
a family of states along a predefined trajectory [dashed line in 
Fig. 5(a)]; in this implementation, we sampled a total of 21 
evenly spaced a e [0,2n).

To perform QST on a single qubit, we measured projections 
onto the eigenvectors of the Pauli basis {X, Y, Z}—namely, 
|0) |1) = Ko 1wiX |±) = ^(|0) ± WX and |±i) = 
^72(|0) ± i |1)). These Pauli measurements are equivalent to 
applying specific quantum gates—1 for Z, H for X, and 
HSf for Y—followed by a measurement in the computational 
basis, where 1 is the identity operation, H is the Hadamard, 
and S = (i °). For the H gate required in both X and 
Y measurements, we opted for an inherently probabilistic 
single-EOM version [78], [79] that is simpler than the QFP 
Hadamard [14]. This method attains a theoretical fidelity of 
FW = 1 and success of PW % 0.6). The Sf gate amounts 
to a phase shift between two frequency modes, which can be 
realized by using an extra pulse shaper, which also blocks any 
residual photons outside of the single-qubit space that may 
occur due to nonunity success of the QFP operations. As the 
final step for all three Pauli measurements, we demultiplex 
the photons by color with a WSS and record the counts over 
1 s with superconducting nanowire single-photon detectors 
(SNSPDs), obtaining the full dataset of counts for all basis 
states.

As with the CNOT in Sec. III-B, we employed Bayesian 
inference to estimate the quantum output state for each beam­
splitter setting, this time leveraging preconditioned Crank- 
Nicolson MCMC sampling [80] after the approach of [64]. 
Figure 5(a) plots the resulting states, where each spot consists 
of a cluster of 1024 samples from the Bayesian posterior 
distribution. The good agreement with the expected trajectory 
is confirmed quantitatively by the fidelity calculations in 
Fig. 5(b), whose means all exceed 0.985.

B. Quantum Process Tomography (QPT)
The previous QST results above are truly “black box” in that 

they make no reference to the inner workings of the QFP. Yet 
strictly speaking, they confirm ideal functioning of the tunable 
beamsplitter for a single input only—namely p' = |0) (0|. To 
fully characterize a quantum process, it is necessary to repeat 
the aforementioned procedure with a variety of input states, 
including frequency-bin superpositions that necessitate an ad­
ditional EOM and pulse shaper beyond what was available to 
us during the original QST experiments [15]. With a sufficient 
number of devices now in hand, however, we proceed with full 
QPT of the tunable beamsplitter—the first QPT experiment of 
a frequency-bin quantum gate.

In standard QPT, a total of d2 states permit an informa­
tionally complete basis for an arbitrary d-dimensional quan­
tum process [24], [49]. A typical approach for single-qubit 
QPT (d = 2) is to prepare {|0), |1), |±)} and perform 
QST on the output state for each. In our frequency-bin 
QPT experiment, we consider an overcomplete set of input 
states, specifically the Pauli eigenstates defined in Sec. IV-A: 
{|0), |1), |±), |±i)}.

Figure 6 provides a schematic of the experimental setup. 
The presence of four EOMs implies the need to precisely
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Fig. 5. Black box QST results for the tunable frequency beamsplitter.
(a) Measured density matrices p for each beamsplitter setting a with fixed 
logical input state |0). Each "cloud" on the Bloch sphere consists of 1024 
discrete samples obtained through Bayesian inference to quantify uncertainty.
(b) State fidelity Tp with respect to ideal output. Reprinted with permission 
from [15].
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electronically: two are tuned by applying a linear phase on 
the first two pulse shapers, and the third is adjusted by setting 
the phase of RF Source 2 relative to RF Source 1, two 
independent synthesizers (Keysight Agilent E8257D) which 
are locked together with a 10 MFlz synchronization signal. To 
prepare the input states we again utilize amplitude and phase 
filtering of a 25 GHz electro-optic frequency comb with a 
state preparation pulse shaper. Prior to the QFP, we reduce 
the input photon flux to approximately 106 counts per second 
(roughly one-tenth of the detector saturation level) with an 
optical attenuator, mimicking the case of having true single 
photons with similar flux at the input.

The central QFP is configured to realize a tunable fre­
quency beamsplitter, in this case, with reflectivities 7Z e 
{0, 0.123, 0.373, 0.5} corresponding to a € {0, tt/3, 2tt/3, tt} 
in Eq. (14). We continue the single-EOM approach for tomo­
graphic projections, but with two slight modifications: (i) a 
dual WSS (Finisar) is utilized to block photons outside the 
computational space after the QFP and frequency-demultiplex 
the photons before the SNSPDs, and (ii) the S1' operation is 
realized by shifting the phase offset of RF Source 2 by 90° 
relative to RF Source 1 (converting from the operation H to 
FfS'i defined in Sec. IV-A) [15]. Insertion losses are —3 dB 
for each EOM and ^4-6 dB for each pulse shaper or WSS. 
Finally, we count photons at the output with 1 s integration 
time, and do not subtract dark counts. The full dataset for 
each QFP setting thus contains 36 numbers: counts for all six 
output projections, repeated for each of the six input states.

For inference, we once again subscribe to a Bayesian 
paradigm, following the QPT procedure introduced in [67] 
which pools all 36 numbers into a single likelihood and 
employs a uniform prior based on a recently proposed Kraus 
operator parametrization that defines Ak = GkH A where 
H = Y,k=i G'kGk automatically ensures Eq. (7) is completely 
positive and trace-preserving for any set of complex matrices 
{Gfc} [40]. The real and imaginary parts of the Bayesian 
mean process matrices ;y follow in Fig. 7, expressed in the 
Pauli basis for convenience. The process for TZ = 0 (a = 0) 
matches the identity as expected, with process fidelity = 
0.9925 ± 0.0002, while that for TZ = 0.5 (a = n) aligns with 
the Hadamard with .7}, = 0.9946 ± 0.0002. The intermediate 
cases reveal a clear transition between the two extremes of 
a single nonzero component for the identity (TZ = 0) and 
four equal components in the X/Z subspace (TZ = 0.5), 
matching theoretical expectations with high fidelity: =
0.9775 d= 0.0009 for % = 0.123 and .7* = 0.9878 d= 0.0009 
for % = 0.373.

Fig. 6. Experimental QPT setup for tunable frequency-bin beamsplitter. 
Single-photon-level inputs traverse the QFP and proceed through a WSS 
(to block bins outside of the computational space), an EOM (to interfere 
frequency bins), and a final WSS to separate computational bins for detection. 
All manual RF phase shifters have been supplanted in favor of electrically 
controlled options, both pulse-shaper-induced delays and direct programming 
of RF Source 2's phase with respect to RF Source 1. RF component labels: 
AMP (amplifier), ATT (attenuator), PS (power splitter).

set three RF delays, and in contrast to previous experiments 
with manual phase shifters, we here control these delays

V. DISCUSSION

The open box and black box approaches for QFP charac­
terization trade off advantages in complementary ways, so the 
method of choice for a given experiment can vary. From a 
design perspective, the QFP is the realization of some desired 
mode transformation matrix through sequential temporal and 
spectral phase modulation. Because this multiport interferom­
eter applies to any optical input, open box approaches are able 
to leverage bright coherent states as probes, enabling extremely
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Fig. 7. Experimental QPT results for tunable frequency-bin beasmplitter with varying reflectivity 7Z. Plotted is the Bayesian mean process matrix % in the 
Pauli basis. As 7Z increases, the initially dominant identity component reduces, while the ideal X and Z contributions for the Hadamard rise. Process fidelities 

with the respect to the designed beasmplitter are (left to right): 0.9925 dh 0.0002, 0.9775 dh 0.009, 0.9878 db 0.0009, and 0.9946 db 0.0002.

precise characterization without the additional complications 
of quantum probes sensitive to statistical noise and background 
light. Accordingly, open box QFP characterization provides 
the most accurate insight into the QFP’s inner workings, and 
therefore is well suited to the engineering phase of quantum 
gate synthesis when the adjustable parameters of each device 
are tuned—e.g., EOM voltages and pulse shaper phases.

On the other hand, the noise effects bypassed by the open 
box formalism cannot be ignored in the quantum domain. 
Thus, after the QFP is tuned and ready for specific quantum 
information processing tasks, more general black box charac­
terization approaches should be preferred, ideally performed at 
whatever flux and statistical properties will be used in the ap­
plication of interest. QPT incorporates all nonidealities present 
in the system, consequently painting the most comprehensive 
picture of the final QFP operation.

Over the short history of the QFP, open box characterization 
has proven highly successful, which can be attributed to 
the fact that experimental implementations with commercially 
available EOMs and pulse shapers have been near-ideal, to an 
extent surpassing even our own original expectations. But this 
situation will likely change significantly as the QFP enters new 
application regimes. For example, fully on-chip QFPs have the 
potential for lower loss, tighter bin spacings, and reduced cost 
compared to tabletop versions, but on-chip components tend 
to deviate from the ideal line-by-line pulse shaper and linear 
EOM models. As explored in [27], microring-based pulse 
shapers lead to matrix transformations V that vary depending 
on spectral location within a bin, while standard silicon phase 
modulators suffer from phase-dependent loss. Similarly, time 
synchronization of QFPs across multiple sites—required for 
applying the QFP to distributed quantum networking—will 
experience at least some level of jitter that, depending on its 
severity, could cause the transformation V to drift noticeably 
in time. It is ultimately the black box viewpoint that possesses 
sufficient generality to integrate all such impairments into in­

formative summaries—not only via QST and QPT as described 
in the experiments above, but also potentially through simpler 
black box approaches such as entanglement witnesses (like 
those recently optimized for time-frequency cluster states [81]) 
or classical shadows (a remarkable technique enabling efficient 
estimation of observables from minimal measurements [82], 
[83]).

Finally, although we have focused on the QFP due to 
the variety of experimental characterization demonstrations so 
far, the techniques described in this paper readily apply to 
other approaches for frequency-bin quantum operations. For 
example, frequency beamsplitters [84] have been realized in 

[85], [86] and [87], [88] nonlinear materials mediated 
by classical pump pulses, as well as in integrated microrings 
with coupling controlled by electro-optic modulation [89]. 
While compatible with single-photon signals, these experimen­
tal frequency-bin gates have yet to be fully characterized in 
either the open box multiport or black box quantum process 
pictures. In the future, it would therefore prove interesting 
to invoke the techniques described here for non-QFP-based 
frequency-bin operations, facilitating a more comprehensive 
and informative understanding of the ever-expanding toolkit 
for frequency-bin quantum information.
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