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Abstract—Frequency-bin qubits possess unique synergies with
wavelength-multiplexed lightwave communications, suggesting
valuable opportunities for quantum networking with the existing
Hber-optic infrastructure. Although the coherent manipulation of
frequency-bin states requires highly controllable multi-spectral-
mode interference, the quantum frequency processor (QFP)
provides a scalable path for gate synthesis leveraging standard
telecom components. Here we summarize the state of the art
in experimental QFP characterization. Distinguishing between
physically motivated “open box” approaches that treat the QFP
as a multiport interferometer, and “black box” approaches that
view the QFP as a general quantum operation, we highlight
the assumptions and results of multiple techniques, including
quantum process tomography of a tunable beamsplitter—to our
knowledge the Hrst full process tomography of any frequency-
bin operation. Our Hndings should inform future characterization
efforts as the QFP increasingly moves beyond proof-of-principle
tabletop demonstrations toward integrated devices and deployed
quantum networking experiments.

Index Terms—Electrooptic modulation, optical pulse shaping,
quantum theory, inference mechanisms, optical Hber communi-
cation.

I. INTRODUCTION

In modem lightwave communications, the optical and elec-
tronic domains work in concert for the distribution and pro-
cessing of information [1], Light fields carry data streams
with dense multiplexing down low-loss optical fiber, while
electronic circuits perform digital processing for logical com-
putations, error correction, and packet switching. The inher-
ently ultrawide bandwidth available to photonic systems—
along with the potential for greater speed and efficiency
by avoiding optical-to-electrical conversion—has inspired a
plethora of research into all-optical processing approaches
challenging this status quo and aiming to supplant electronic
digital logic with all-optical interactions [2], And in the case of
photonic quantum information, all-optical processing is more
than just a pathway for improved performance: instead, it is a
prerequisite, since conversion to the digital domain represents
a measurement that irreversibly collapses the quantum state.
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Remarkably, Knill, Lafiamme, and Milbum (KLM) showed
in 2001 that the photonic interactions necessary for uni-
versal quantum information processing can be realized with
multiphoton interference in linear-optical circuits, combined
with detection and feed-forward [3], Although experimentally
challenging, the KLM scheme is in principle scalable and
has stimulated a large body of research on linear-optical
quantum computing [4], including important developments
in measurement-based computing approaches—both discrete-
ly] and continuous-variable [6]—that appear promising for
a large-scale photonic quantum computer [7], Beyond com-
puting alone, KLM concepts form the foundation for all-
photonic quantum repeater designs as well, which could
eliminate the need for quantum memories and two-way com-
munications [8]—[10]. Although originally proposed for spatio-
polarization encodings, KLM approaches have been extended
into a variety of nontraditional degrees of freedom, including
time bins [11] and pulsed modes [12].

Mandatory to any KLM-like scheme is the ability to
construct arbitrary unitary transformations. In the case of
frequency-bin encoding—intriguing for its compatibility with
wavelength-multiplexing in optical fiber, on-chip photon
sources, and frequency-disparate quantum interconnects—it
was unclear whether arbitrary unitaries could be synthesized
with standard fiber-optic components, until the quantum fre-
quency processor (QFP) was introduced and analyzed in
2017 [13]. Based on an alternating series of electro-optic phase
modulators (EOMs) and Fourier-transfonn pulse shapers, the
QFP realizes frequency-bin transformations through what can
conceptually be viewed as successive phase-only filters in the
time and frequency domains. In [13], explicit designs for a
universal gate set (single-qubit phase and Hadamard //, and
two-qubit controlled-") were discovered, supported further
by an argument for linear scaling of resources (EOMs and
pulse shapers) with the number of modes. In the intervening
years, many experiments have been performed demonstrating
basic QFP gates, on both single- [14]—[16] and two-photon
states [17]—[19]. As with any experimental demonstration, it
has been critical to confirm the degree of agreement between
the realized QFP operation and that expected from theory,
for which a variety of probes have been enlisted, including
bright frequency combs, weak coherent states, and entangled
photons.

In this article, we present an introduction and overview of
the techniques currently available for QFP characterization,
complementing previous high-level reviews [20], [21] with a
much more thorough focus on the underlying assumptions and
information provided by various characterization approaches.
Following background on the theory and implementation in
Sec. II, Secs. Ill and IV summarize QFP characterization
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Fig. 1. QFP characterization concepts, (a) Physically, a QFP consists of an

alternating series of EOMs and pulse shapers, here shown in a three-element
instantiation (EOM/pulse shaper/EOM) flanked by spectral multiplexers, (b) In
the open box viewpoint, the output frequency-bin operators are assumed
to follow from the input through a linear transformation ¥, which can be
characterized by measuring the output spectrum of superposition probe states,
(c) In the black box viewpoint, the QFP is treated as a generic quantum
channel to be analyzed by quantum state or process tomography, returning
output state p or process matrix %, respectively. The examples in (b) match
the mode transformation of a Bell state analyzer [19], while those in (c)
correspond to an ideal Hadamard gate [14],

experiments organized in terms of successively fewer as-
sumptions, including an entirely new experiment performing
Bayesian quantum process tomography (QPT) of the tunable
beamsplitter—the first QPT characterization of a frequency-
bin gate. Throughout, we find it useful to frame the discussion
around “open box” and “black box” techniques, distinguished
by their treatment of the QFP’s inner workings. In addition
to furnishing an organized introduction to this important sub-
field of time-frequency quantum information, our QPT results
open the door for impartial characterization of emerging
QFP designs—e.g., photonic integrated circuits—comprised
of EOMs and pulse shapers whose properties may deviate
strongly from ideal models previously assumed for discrete
devices.

1I. QFP BACKGROUND
A. Theory

As noted above, the distinction between open box and black
box characterization provides a useful framework through
which to view previous and current QFP experiments. The
notion of a black box in engineering contexts is simple to
define: a device to which one has access only to the inputs
and outputs, making the system opaque from the perspective

of the outside world. The opposite of such a system has been
dubbed, e.g., an “open box” or “white box” in the literature,
defined as device for which at least some of the internals
are known to the tester; in computer science, both open [22]
and black box [23] software testing are common. Yet while
black box concepts have a long history in quantum information
processing—indeed the original proposal for QPT used the
term explicitly [24]—open box terminology has not taken
hold in this held, at least in our experience. Nevertheless,
for the QFP the distinction seems particularly apt, given the
gradual increase in complexity of characterization approaches
which have been demonstrated over the past few years. As will
be defined mathematically below, open box QFP approaches
are distinguished by assuming the QFP is a true multiport
frequency-bin interferometer, per its design; black box QFP
approaches make no assumptions about the QFP’s insides
beyond the minimum for an arbitrary quantum channel.
Fundamentally, the goal of the QFP is to controllably
transform quantum states of light populating a comb of dis-
crete frequency modes, or bins. Consider M bins centered at
frequencies cvm = o0 + mQ (in e {0,1,..., M — 1}), with Q
a fixed spacing typically in the radio-frequency (RF) domain.
Each of these bins possesses an annihilation (creation) operator
am (a‘n) that subtracts (adds) single photons to mode m when
applied to any quantum state. For notational convenience, we
utilize bm (b/n) to denote the same operations but referenced
to the output side of the quantum transformation of interest,
so that the input (output) bins are associated with am/a)m

The spectral shape of these bins can in principle be of
any form, provided they are bandlimited to cvm + §. For
the QFP to function as designed, these bins should possess
identical lineshapes and be easily distinguished within the
resolution of the pulse shapers used for line-by-line phase
control [25]. We do note that in the general quantum black
box formalism, these additional assumptions are not strictly
required for the QFP, but only for the system used to measure
these bins at the output. Although typically based on the same
technology as the QFP, the measurement system need not have
the same spectral resolution as the QFP under test. Indeed,
emerging QFPs based on integrated photonic circuits [26],
[27] will likely first be tested with well-characterized discrete
fiber-optic components, so the distinction between QFP and
measurement spectral resolutions is practically as well as
theoretically significant.

Each Fock basis state—i.e., a quantum state with a specified
number of photons in each mode—can be described for the
input Hilbert space by a length-M vector of photon occupancy
numbers n = (no...., n'M 1), defined as

M1y

. a k

i) = Ilrg—ﬁlr;lvaC) 0
=0 V'

where |vac) denotes the vacuum state over all A/ modes. Simi-
larly, the output is spanned by basis states n = (n0,..., nM-):
M—1 1ty

in) = N (b

fc=0

|vac). 2
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(As a means to aid in distinguishing between input and output,
we use primed vectors n’ for the former and n for the latter.)

The QFP transforms between these spaces via an alter-
nating series of (i) pulse shapers, which apply the phase
filters b,, = ¢'®~a,, and (ii) EOMs, which apply a temporal
phase (¢) periodic at frequency €2, leading to the discrete
convolution b, = 3", ¢, nray, where e#(t) =37, cpe 0t
Figure 1 offers a schematic of the physical hardware for
a three-element QFP, with input and output multiplexers to
facilitate characterization; three-element QFPs have been the
focus of experiments so far, although deeper QFP circuits
remain of interest for future research. The total effect of an
ideal QFP with any number of elements can be summarized
as a multiport frequency-bin interferometer:

M-—1
bm - Z me/am/~ (3)

m’=0

It is important to note that the Fourier series expansion
of the phase modulation in general is unbounded in fre-
quency; thus, even with the input modes restricted to a
finite number M, a countably infinite number of output
bins can be populated within and after the interferome-
ter. Indeed, it is over this infinite set that V' is unitary:
Z;:;ioo V,ijkm/ = Z;:;ioo mGvﬁﬂk = - Although
the intrinsically infinite-dimensional space produces interest-
ing challenges conceptually, it can be accurately approximated
by truncating to a value of M sufficiently large to encompass
all nonnegligible probability amplitudes excited by the input
states of interest [13]. In practice, the sufficiency of any
truncation M can be validated ex post facto by ensuring the
calculated probability amplitudes decay to zero (to within
some desired precision) at the edges of the domain following
each EOM in the QFP circuit.

Because the QFP operates on frequency modes irrespective
of the photons populating them, it can be applied to a variety of
information processing scenarios, including classical lightwave
communications [25], [28] and continuous-variable quantum
frequency combs [29], which have emerged as an exciting
platform for quantum computing [30], [31]. Nonetheless, we
focus on discrete-variable encoding in this paper, the dominant
paradigm in QFP characterization experiments so far. In this
case, each logical basis state is associated with a specific Fock
state; under dual-rail encoding, for example, a qubit is encoded
by a single photon populating a superposition of two bins,
one defined as |0) and the other as |1). Experimentally, we
always consider the postselected regime, where all photons of
the input are successfully passed through the system. Therefore
any insertion loss (absent in the ideal model above) leads to a
lower throughput without inherently degrading state fidelity.

In the Heisenberg picture, a fixed quantum state |¢) with N
total photons can be represented in either the input or output
basis: [¢0) = >, Baln) = >, an |n’), where each sum
considers only terms with Zf\nto Ny, = Zf\n{;% nl, = N.
Solving for 3, using Eqgs. (1-3) then Ieads to the simple vector

expression 8, = Y, Wy oy, where

1
Wnn/ -

1 lek/l Vme}]
Hp:O np'n;,' k’Eperms(m’)

@
This equation corresponds to the famous “permanents” ex-
pression for N bosons traversing an interferometer [32], [33].
With each Fock vector n [n'] we define a length-N mode
assignment vector m = (mq,...,my) [m' = (m}, ..., my)l
that lists the modes occupied by each photon; the summation
proceeds over all N'! permutations of m’. Although this leads
to repeated terms when multiple photons populate the same
mode, we have found it useful numerically, as it treats mode
vectors with repeated indices the same as those without. (Re-
moving repeated terms simply changes the factorial prefactor,
as in the formulation of [32].)

The matrix W completely describes the QFP operation,
and can be compared to some target D x D’-dimensional
matrix 7" with elements T,,, where D (D’) denotes the
dimension of the output (input) subspace of interest. Both
D, D" < Dinax, Where Diax = (V11 denotes the Hilbert
space dimension of N photons populating A modes; D and
D’ in practice are often much smaller than D, since they
can be limited to only the states of interest in a given problem.
W computed for the same set of states can then be compared
to T' via matrix fidelity

2

; ®)

1 |Te wiT

W= By T

describing the closeness of the operation to the ideal, and

success .
Tr WTW

Pw =i ©
providing the probability that all input photons exit in the bins
of interest [33]. This number encompasses both probabilistic
multiphoton interference effects and any residual mode scat-
tering from the EOMs. In practice, the observed count rates
will also depend on insertion loss; for example, for a total
system efficiency 7 (assumed uniform for all bins), the net
probability of detecting all NV input photons concurrently with
a successful operation equals 7™ Py .

At this stage, it is important to observe that the Fock
state transformation matrix W —and hence Fy and Py —are
completely determined by the mode transformation matrix V'
[Eq. (4)]. This assumption underpins the “open box” approach
to QFP characterization, as summarized in Fig. 1(b); if Eq. (3)
holds, one can probe the QFP fully by sending in two-bin
superposition states and measuring the output probabilitics. A
powerful technique first introduced in the spatial domain [34],
the amplitudes |V,,,.,/ | can be recovered from single-bin tests,
while arg(V,,.,/) can be obtained by scanning the relative
phase between two-bin superpositions. Significantly, even clas-
sically bright coherent states can be used, eliminating the
need for single-photon detection altogether [35], [36]. This
method has been shown to be highly effective in characterizing
linear-optical networks, including large-scale boson sampling
circuits [37], [38].
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This open box viewpoint was adopted to characterize the
first experimental QFP [14] and has been widely deployed
since, with remarkably good agreement with theory: experi-
mental fidelities up to 7w = 1 — 10-6 have been obtained
for the frequency-bin Hadamard [39]. Coupled with our un-
derstanding of the physical processes involved, there is little
reason to question the validity of Eq. (3) in most situations.
Nevertheless, the theory of quantum processes permits much
more general models, allowing for QFP characterization in
which its inner mechanisms are completely arbitrary.

Considering any D’ x ZT-dimensional mixed input p’, the
D x D output p follows as [40]

DD'
p = £(p) = "2 Akp'Al
fe=i

™

where for trace preservation the D / D' Kraus operators
resolve the identity = 1D"xD'—a condition fol-
lowing from postselecting /V photons at the output. The open
box picture represents the special case of this black box model
when 4\ <« W and A/, = 0. By preparing known inputs
p' and performing quantum state tomography (QST) [41] of
the output p, insight into the operation £{m) can be obtained
without any reference to a multiport interferometer. For a
single output p, agreement with theoretical expectations can
be quantified through the state fidelity

2p = — \JVPTPVPT] |, )

where pT oc 7p'Tt is the output corresponding to the ideal
target operation. For the entire channel, the process fidelity

Fo = (n \/<IT,~¢>\/<I>T~>

serves this purpose, where the DD’ X DD’ density matrix <!
$>7) is obtained by the Choi-Jamiolkowski isomorphism and
completely specifies the measured (target) channel [42].

Unlike the open box case, we do not define a success
probability V. For whereas the open box mapping can dis-
tinguish between output states in the targeted subspace (suc-
cesses) and those outside of this space (failures), the black
box model is intentionally oblivious to all subspaces apart
from the 79-dimensional output of interest. Considering non-
trace-preserving operations could enable a meaningful success
probability definition, but due to the experimental difficulty
of distinguishing between failure and insertion loss—at least
without introducing modes outside of the quantum channel’s
purview—we concentrate on fidelity for the black box exam-
ples below.

Figure 1(c) highlights these concepts for a black box
frequency-bin Hadamard. One state from a set of inputs is sent
into the system and measured; in the example shown, the zero
logical input p’ = |0) (0] produces the superposition output
p = [t) (+|. With many such input/output tests, the full pro-
cess can be reconstructed; shown is the ideal Hadamard pro-
cess matrix % expressed in the Pauli basis (/7lh o\ ¢-> wl) =
(/,X Y, 2)\ ie., £(p ) = XQ=0 Sfc=o0 XjkVjP

2

®

Fig. 2. Photograph of QFP used to demonstrate a frequency-bin fritter [14].
The setup combines a commercial pulse shaper with two ROMs, each driven
by a superposition of two microwave tones. The profusion of RF cables and
optical fibers highlights the mutual importance of electrical and optical facets
of the QFP. Image credit: Jason Richards, Oak Ridge National Laboratory.

To conclude this subsection, then, a QFP used to transform
Fock states in frequency-bin encoding can be characterized
according to either (i) an open box viewpoint in which the
system is modeled as a multiport interferometer [Eq. (3)]
or (ii) a black box viewpoint in which the QFP is treated
as an arbitrary quantum channel [Eq. (7)]. Both approaches
possess advantages and disadvantages, trading off between
physical insight and generality. In the remainder of the paper,
we discuss the findings of QFP experiments applying each
technique.

B. Experimental Setup

Figure 2 depicts an exemplary tabletop QFP consisting of
two EOMs (EOSpace) and one pulse shaper (Finisar Wave-
shaper 1000S), which was experimentally leveraged to realize
a balanced frequency fritter—a three-dimensional extension of
the frequency beamsplitter [14]. In addition to the optical com-
ponents labeled in the setup, several RF components, including
oscillator, frequency doubler, power splitters, amplifiers, atten-
uators, phase shifters, and cables, are employed to synthesize
the drive signals for the EOMs. The spectral resolution of the
pulse shaper (typically >10 GHz) determines how tight the
frequency bins can be packed, the acceptance bandwidths of
the RF components limit the maximum frequency separation,
and component insertion losses set the total count rates ob-
served at the output for a given input. In this example, the
mode spacing is chosen as O/2n = 18.1 GHz, while the
total QFP insertion loss is 12.5 dB [14]. Our frequency fritter
design is based on both the fundamental tone f2 and the second
harmonic 2f2 in the EOM drive signals: the former with a peak
amplitude of 1.06 rad, and the latter with 0.409 rad [14], [16]).
To produce the necessary second harmonic, we split a portion
of the 18.1 GHz sinewave from the oscillator and double its
frequency to 36.2 GHz. We then use RF amplifiers, attenuators,
and phase shifters to set the correct amplitude and phase for
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each RF tone before recombining them in an RF power coupler
connected to the EOM.

Applying spectral phase modulation via the commercial
pulse shaper is comparatively simple—in the line-by-line
shaping regime [43], [44], we can program the target phase
functions onto the pulse shaper without causing any distortions
in the phase mask. Since EOMs naturally couple a single input
frequency mode to many output modes, the pulse shaper must
be able to address a larger number of modes than the input. For
the tritter, the pulse shaper must shape a total of 12 frequency
bins to reach Fyr > 1 — 10%, a small fraction of its total
40 nm (5 THz) bandwidth. In [16], we show numerically
that the same three-element (EOM/shapet/EOM) QFP can
implement d-dimensional discrete Fourier transform (DFT)
gates up to d = 10 (d = 3 for the frequency tritter here) with
near-unity fidelity, when d — 1 RF harmonics drive the EOMs
and the pulse shaper applies phase shifts to a total of ~4d
channels. This approach allows for the scalable construction of
high-dimensional frequency-bin quantum operations that will
be valuable for tasks such as entanglement verification [45],
[46] and high-dimensional quantum key distribution [47], [48].

III. OPEN BOX CHARACTERIZATION
A. Pure Multiport

Figure 3 illustrates three representative operations realized
on the QFP so far. In the first experimental example [Fig. 3(a)],
the QFP was configured to operate as a Hadamard gate, also
known as a balanced frequency beamsplitter [14]. Mathemat-
ically the ideal transformation matrix can be written as

A0

To characterize the mode matrix V' via the open box approach,
we first generated an electro-optic frequency comb at the
QFP mode spacing of 25 GHz and utilized an additional
pulse shaper to adjust the amplitude and phase of each
frequency mode. This enabled the preparation of cither single-
bin or superposition states. By probing the QFP with a
single optical frequency mode (|1.,0.,) or [0,,1.,)), the
modulus of every matrix element in V' can be obtained by
measuring the output optical spectra, as discussed in Sec. II-A.
To determine the unknown phase terms in V, we probed
the QFP with equal superpositions of two frequency modes
(|14, 00, ) +€2 0., 1., ), scanning ¢ € [0,27) L. We extracted
the power on specific modes from a series of optical spectra
and observed the resulting interference patterns as a function
of ¢. We then used these patterns to determine the unknown
phase terms by fitting them to sinusoidal curves.

Figure 3(a) shows an experimentally obtained mode trans-
formation for the beamsplitter, which corresponds to Py =
0.9739 and Fir = 0.9999 when compared to the ideal T4.
To verity accuracy at the single-photon level, we attenuated
the input state to ~0.1 photons per detection gate window, and

Ty = (10)

TEven though the probes for extracting V' are bright coherent states [34],
the mathematical expressions are the same as if each photon is viewed
independently as a Fock state. To keep the notation simple, we describe both
bright and single-photon-level states as N = 1 Fock states.

again scanned phase ¢. At each setting, a wavelength-selective
switch (WSS) routed the output modes to an InGaAs single-
photon detector. The resulting interference patterns [Qubit
Probe in Fig. 3(a)] show the expected sinuosidal oscillations
with fitted visibilities exceeding 97%, which is primarily
limited by the detector noise.

By incorporating an additional harmonic to the EOM drives,
as discussed in Sec. II-B, we experimentally reconfigured the
QFP into a tritter in which the transformation matrix is a 3d
DFT given by [14], [16]

1 1 1 1
T, =— |1 627ri/3 64‘/1'1'/3 (11)
V3 1 edmi/3 2mi/3

We again applied the coherent-state-based gate characteriza-
tion technique, now with a 18.1 GHz electro-optic frequency
comb as the probe, and measured the 3 x 3 mode matrix V' as
depicted in Fig 3(b). The moduli and phases match those of T3,
well, with an associated success probability of Py = 0.9731
and fidelity of Fy = 0.9992. Again, to gain insight into
the tritter for single-photon states, we attenuated a three-
mode superposition state (|1,,0,,0.,) + e *? 04, 10,00, +
e %%10,,0,,1.,)) to the single-photon level and measured
the counts in bins 0, 1 and 2 at the output. The interference
patterns, now tracing a sum of two sines with respective peaks
at ¢ € {0,27/3,4xn/3}, again show excellent visibilities of
over 97%. The reduced flux in bin 1 is primarily due to
the mismatch between the mode spacing (18.1 GHz) and the
12.5 GHz passbands on the WSS.

The previous two examples are one-photon gates, for which
the the mode V and Hilbert space W transformations are
identical; Eq. (4) reduces to one term with a single fac-
tor. Two-qubit gates are also required for unmiversal com-
puting [49] which, following KILM [3], can be realized via
quantum interference and single-photon detection. Controlled-
phase (CPhase) and controlled-NOT (CNOT) gates were first
demonstrated in polarization/spatial encodings using a network
of spatial beamsplitters [50]-[52], where the gate success is
postselected by coincidence events between the desired output
ports. Mathematically, the ideal CNOT can be described in the
computational basis as

1 0 0 0
01 0 0

Tenor = 00 o0 1l (12)
0 0 1 0

which flips the state of the target qubit if the control qubit
is in state |1). Similarly, this coincidence-basis CNOT gate
can be implemented in the spectral domain with a QFP [18].
Numerically, we identified a set of EOM/shaper modulation
functions for the three-element QFP that results in theoretical
fidelity Fy = 0.9999 and success probability Py = 0.0445,
slightly below the optimal success for a coincidence-basis
CNOT of Py = 1/9 [50], [51]; simulations show the
attainability of Py = 1/9 with a deeper QFP (three EOMs
and two pulse shapers) [18]. For our implementation, the
indices for the logical bins are as follows: (Cq, C1,To,T1) =
(0,6,7,8), where we use the notation Cy (1p) and Cy (T4)
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Fig. 3. Open box QFP characterization results. Each example shows a mode matrix #» recovered from bright coherent state probes, followed by photon counting
results for quantum inputs, (a) Frequency-bin Hadamard and (b) tritter. For these two gates, the Hilbert space transformation #” and mode transformation »~
are equal, (c) Coincidence-basis CNOT. Here the two-photon transformation ¥ is calculated from the experimentally measured V, revealing a conditional bit
flip as designed. For all matrix plots in (a-c), the color of each circle denotes the amplitude, and the radial line, the phase, of the relevant element; undefined
phases (due to low amplitude) are depicted as dotted circles. Interferograms in (a,b) reprinted with permission from [14]. Images in (c) adapted from [18]

under a Creative Commons Attribution 4.0 International License.

to denote the frequency bin index m for the logical zero
and one mode, respectively, of the control (target) qubit.
Thus the four logical states can be defined in the Fock
basis as [00) = |lcoOc1lTo0TI), 101) = [1CO0CIOTOITI),
110) = |0colcIlTo0TY), and 111) = |0cO1CI0TOITI)-

Standard procedures for characterizing a photonic CNOT
gate often involve preparing a set of input states that span
the entire two-photon state space and then performing state
tomography for each of these states at the output [53], which
exceeded our resources (number of ROMs and pulse shapers)
available at the time of the experiment. While the use of high-
flux coherent states in the aforementioned characterization
procedures cannot reveal the two-photon interference effects
underlying the CNOT gate, it is still useful in characterizing
the mode transformation V. Experimentally, we configured
the QFP to realize the frequency-bin CNOT and measured
the mode matrix 7 shown in Fig. 3(c). As expected from the
design, coupling between mode C0 and {Ci, TO, Ti} was neg-
ligible, since C0 is spectrally isolated from the target modes (to
preserve the state of the target upon the presence of a photon
in mode Co). In contrast, bin C\ is close to both target bins,
allowing it to be strongly coupled to both T0 and  with equal
strength. With the mode transformation 7~ at our disposal, the

equivalent two-photon state transformation W was computed
from Eq. (4), which shows all four of the large elements of
W to be in-phase and in good agreement with the theory.
We calculated an inferred fidelity of = 0.995 and
coincidence-basis success probability of = 0.0460—
an indirect estimate that suggested our frequency-bin CNOT
was operating correctly.

To test our gate with truly quantum states, we generated
a two-photon frequency comb—namely, entangled photons
spanning discrete pairs of phase-coherent energy-matched
comb lines—by pumping a periodically poled lithium niobate
(PPLN) waveguide with a continuous-wave Ti:sapphire laser
and filtering the broadband emission with an etalon to produce
frequency bins. We then prepared all four computational-basis
states by translating the pump frequency to four different val-
ues and using an additional shaper (prior to QFP) to filter out
specific modes. After the gate operation, the output photons
were frequency-demultiplexed and coincidences measured for
600 s for all 16 combinations of input/output states [plotted in
Fig. 3(c)], showing a total of four distinct, significant peaks
as well as a number of smaller bars. When an input photon is
present in mode CO0, the quantum state is maintained, but when
a photon is present in mode C%, the target qubit is flipped.
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B. Physically Motivated Noise Model

Logical-basis measurements in the case of CNOT charac-
terization, such as the one presented in Fig. 3(c), can only
reveal the amplitude of the state transformation W to access
the phase information in W, measurements of superposition
state inputs (for example, (J0) — |1)) O |0)) are essential [52].
However, we have found that by constructing a physical
model that takes into account both single-detector events and
coincidence counts, logical-basis measurements can provide
more information than typically considered. In other words,
by augmenting the multiport model in the open box viewpoint
with physically motivated noise processes, it is possible to es-
timate the transformation # without reference to the classical
characterization in Fig. 3(c), but rather from the quantum data
alone.

Specifically, we considered a model [Fig. 4(a)] where logi-
cal input photon states |k/) (k, | G {0,1}) are processed by a
linear-optical frequency multiport fully described by a mode
matrix V (thus falling under the open box umbrella), and
coincidences between output modes Cr and 75 (r,s G {0,1})
are registered at detectors 4 and B, respectively. We also
accounted for nonideal effects in our model, including the
pathway efficiency 17/4 (7/B) from photon-pair generation to
detector 4 (B) and the dark count probability d4 (dg). For
each set of {k, Z,r, s}, we derived the marginal probabilities
for clicks on detector 4 or B, denoted as P4 and ps,
respectively, defined within a detection frame r (~1.5 ns in our
case). The clicks can occur either due to the arrival of a photon
from an entangled pair (with pair generation probability p) at
the monitored output modes or due to random background
or dark count noise (d4 and dg); under the assumption
p, 14, 8-> d4-> dB << 1, we found the marginal probabilities to
be simply the summation of pair and dark-count contributions
(see [18] for detailed derivation).

The coincidence probability between detectors 4 and B
(PAB) also contains two terms—the correlated coincidences
between two photons from the same entangled photon pair,
and the accidental coincidences from two random clicks
within the detection frame r. The latter term, represented
by 2P4PB [54], [55], encompasses the noise coincidences
from multipair emission or between a photon and dark count.
Together, these equations show that the probability of detecting
a single photon (P4 and pg) is determined solely by the
magnitude of the elements in the J” matrix, whereas the
coincidence probability (P4B) also depends on the relative
phase of these matrix elements. Consequentially, our goal was
to devise a method to estimate the model parameters of interest
f3={V, P,14,VB} from the measured datasets in Fig. 3(c).

The leading approach in modern quantum tomography,
maximum likelihood estimation (MLE) is typically utilized
to find a single set of f3 values that maximizes the likeli-
hood function [41], [56]. However, we employed Bayesian
inference to sample from a complete posterior distribution
P(/3|]X>), the probability density of the parameters f3 given the
observed data X>. While more computationally intensive than
MLE, Bayesian methods have the advantage of automatically
quantifying uncertainties, and the Bayesian mean estimator

photon loss
PA = PVA (IVerCk 2 + |vertt 2) + dA
PB = pr]B (|Vrsck > + |VTsT, |2) + dB
PAB = prjArjB\VcrckVTsTi + VCVTIVTSCJ2 + 2PAPB

Output
= 00

m 01

Input State

Fig. 4. Incorporating noise into the open box CNOT model, (a) Contri-
butions to single and coincidence detection probabilities including effects
such as probabilistic pair generation (g), nonunity efficiency (F]A, VB), back-
ground/dark counts (dA4,d,B), and uncorrelated events (ZpApB). (b) Transi-
tion probabilities recovered through Bayesian inference of this model with the
two-photon results in Fig. 3(c). Panel (b) reprinted from [18] under a Creative
Commons Attribution 4.0 International License.

attains the minimum squared error on average [57]. Although
a detailed discussion of Bayesian techniques is beyond the
scope of the present review, we direct the interested reader to
the proposal and motivation for Bayesian QST from Blume-
Kohout [58], as well as several papers describing specific
Bayesian tomography models and algorithms [59]-[67]. In-
cidentally, experimental Bayesian QST has been performed
on mixed states in Hilbert spaces up to 64 dimensions [66].
These calculations required almost one week to complete
on a desktop computer, inspiring ongoing investigations into
parallelizable techniques [68], [69] to reduce total wall clock
time and expand the reach of Bayesian methods to even larger
Hilbert spaces.

For the considered CNOT experiment, we leveraged the
Markov chain Monte Carlo (MCMC) algorithm known as slice
sampling [63], [70] to obtain Bayesian samples numerically,
ultimately arriving at the fidelity estimate 7w = 0.91 £ 0.01.
Figure 4(b) illustrates how this 7w translates into the output
state probabilities for logical-basis inputs. Significantly, these
results show the informative power of the open box QFP
viewpoint: with Eq. (3) combined with a reasonable noise
model, truth table measurements alone [Fig. 3(c)] were in fact
sufficient to estimate even the phases of the matrix V.

IV. BLAck Box CHARACTERIZATION

In the previous section, we discussed experimental examples
of the open box approach for characterizing the QFP. With the
black box approach, Egs. (3,4) are no longer assumed. Instead,
one intentionally is given access to the input and output ports
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only, without any assumptions regarding the action of the
QFP. By preparing a known input state and then performing
measurements of the output state after the operation, the
quantum process can be fully determined after repeating this
procedure for a number of different input states in multiple
bases.

In this section, we will focus on an exemplary class of
QFP operations, namely, tunable frequency-bin beamsplitters.
Previously in [15], [17], we discovered that the three-clement
QFP can synthesize tunable frequency beamsplitters simply by
adjusting the depth of the phase shift o imparted by the QFP
shaper between frequency bins wp and wq while driving the
EOMs with 7-phase-shifted sinewaves with a fixed modulation
index ©. Mathematically, the 2 x 2 transformation matrix on
the qubit Hilbert space is a function of the tunanble phase
jump o

Woo(a) W01(a)
W = 13
(Wlo(a) Wll(a) ( )
where each of the matrix elements are
Wlo(a):W(n( 1—6 ij Jk 1 )
1= J2 e) 14
Wio(e) = J3(0) 1 (1 +em>—;( : 9
) 1= J2%e
Wi () = e J2(0) + (1 + em)%7
with J;(©) the Bessel function of the first kind. The identity
operation is observed when o = 0, as the two w-phase-
shifted sinewave cancel each other out. Furthermore, when
a = m, the reflectivity R = |Woi1|? = |Wiol? and the

transmissivity 7 = |Woo|? = |W11|2 are approximately equal;
the elements {Woo, Wy, Wig} are all real and positive, while
Wi is real and negative. This results in a Hadamard operation
with theoretical fidelity Fy = 1 — 10~7. Accordingly, the
designed quantum process transforms any qubit input o' into
the output pr o W /W', It is important to emphasize that
this formula is not assumed in the characterization experiments
below, but rather is used to compute the ideal output pr and
process ¢ against which experimental results are compared.

A. Quantum State Tomography (QST)

As the first experimental foray into black box QFP charac-
terization, we investigated gate performance for converting a
fixed input frequency-bin qubit to a targeted output state, both
for arbitrary single-qubit unitaries and the tunable beamsplitter
of interest here [15]. We performed QST of the output photon
and compared the recovered state p against the target pr via
Eq. (8). QST of frequency-bin quantum states can be realized
with the same elements comprising the QFP itself (EOMs
and pulse shapers), but with somewhat relaxed requirements.
Whereas the QFP focuses on implementing quantum gates
(i.e., matrices) in a specified Hilbert space, QST requires
only projective single-outcome measurements, a valuable sim-
plification leveraged in many QST experiments on quantum
frequency combs [71]-[77].

Specifically, we prepared the fixed single-frequency input
|0} = |1.,0.,), using the tunable beamsplitter to convert

this state, initially at the north pole of the Bloch sphere, to
a family of states along a predefined trajectory [dashed line in
Fig. 5(a)]; in this implementation, we sampled a total of 21
evenly spaced « € [0, 27).

To perform QST on a single qubit, we measured projections
onto the eigenvectors of the Pauli basis {X, Y, Z}—namely,
|0> 1) = 0w L), [£) = 55(0) £ 1)), and |£i) =

(|O> + 4|1)). These Pauli measurements are equivalent (o
applymg specific quantum gates—1 for Z, H for X, and
HST for Y—followed by a measurement in the computational
basis, where 1 is the identity operation, H is the Hadamard,
and S = (}9). For the H gate required in both X and
Y measurements, we opted for an inherently probabilistic
single-EOM version [78], [79] that is simpler than the QFP
Hadamard [14]. This method attains a theoretical fidelity of
Fw = 1 and success of Py =~ 0.6). The St gate amounts
to a phase shift between two frequency modes, which can be
realized by using an extra pulse shaper, which also blocks any
residual photons outside of the single-qubit space that may
occur due to nonunity success of the QFP operations. As the
final step for all three Pauli measurements, we demultiplex
the photons by color with a WSS and record the counts over
1 s with superconducting nanowire single-photon detectors
(SNSPDs), obtaining the full dataset of counts for all basis
states.

As with the CNOT in Sec. III-B, we employed Bayesian
inference to estimate the quantum output state for each beam-
splitter setting, this time leveraging preconditioned Crank—
Nicolson MCMC sampling [80] after the approach of [64].
Figure 5(a) plots the resulting states, where each spot consists
of a cluster of 1024 samples from the Bayesian posterior
distribution. The good agreement with the expected trajectory
is confirmed quantitatively by the fidelity calculations in
Fig. 5(b), whose means all exceed 0.985.

B. Quantum Process Tomography (QPT)

The previous QST results above are truly “black box” in that
they make no reference to the inner workings of the QFP. Yet
strictly speaking, they confirm ideal functioning of the tunable
beamsplitter for a single input only—namely p’ = |0) (0. To
fully characterize a quantum process, it is necessary to repeat
the aforementioned procedure with a variety of input states,
including frequency-bin superpositions that necessitate an ad-
ditional EOM and pulse shaper beyond what was available to
us during the original QST experiments [15]. With a sufficient
number of devices now in hand, however, we proceed with full
QPT of the tunable beamsplitter—the first QPT experiment of
a frequency-bin quantum gate.

In standard QPT, a total of d? states permit an informa-
tionally complete basis for an arbitrary d-dimensional quan-
tum process [24], [49]. A typical approach for single-qubit
QPT (d = 2) is to prepare {|0),|1),|£)} and perform
QST on the output state for each. In our frequency-bin
QPT experiment, we consider an overcomplete set of input
states, specifically the Pauli eigenstates defined in Sec. TV-A:
{10), 1, %) , [£0)}.

Figure 6 provides a schematic of the experimental setup.
The presence of four EOMs implies the need to precisely
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a =027

1.000

fcS 0.995 -
0.990 -
0.985 -

0.980
a [rad]

Fig. 5. Black box QST results for the tunable frequency beamsplitter.
(a) Measured density matrices p for each beamsplitter setting a with fixed
logical input state |0). Each "cloud" on the Bloch sphere consists of 1024
discrete samples obtained through Bayesian inference to quantify uncertainty.
(b) State fidelity 7p with respect to ideal output. Reprinted with permission
from [15].

Quantum Frequency Processor

Optical Shaper
Attenuator EOM EOM
H
B L —— r
3 N
p——
ATT ATT
mm” S
AMP A
ATT
) A
“+  oMHzSye o os
RF Source 1 RF Source 2
o
Optical Path
State State
Preparation RF Path (25 GHz) Tomography

Fig. 6. Experimental QPT setup for tunable frequency-bin beamsplitter.
Single-photon-level inputs traverse the QFP and proceed through a WSS
(to block bins outside of the computational space), an EOM (to interfere
frequency bins), and a final WSS to separate computational bins for detection.
All manual RF phase shifters have been supplanted in favor of electrically
controlled options, both pulse-shaper-induced delays and direct programming
of RF Source 2's phase with respect to RF Source 1. RF component labels:
AMP (amplifier), ATT (attenuator), PS (power splitter).

set three RF delays, and in contrast to previous experiments
with manual phase shifters, we here control these delays

electronically: two are tuned by applying a linear phase on
the first two pulse shapers, and the third is adjusted by setting
the phase of RF Source 2 relative to RF Source 1, two
independent synthesizers (Keysight Agilent E8257D) which
are locked together with a 10 MFlz synchronization signal. To
prepare the input states we again utilize amplitude and phase
filtering of a 25 GHz electro-optic frequency comb with a
state preparation pulse shaper. Prior to the QFP, we reduce
the input photon flux to approximately 106 counts per second
(roughly one-tenth of the detector saturation level) with an
optical attenuator, mimicking the case of having true single
photons with similar flux at the input.

The central QFP is configured to realize a tunable fre-
quency beamsplitter, in this case, with reflectivities 7Z e
{0, 0.123, 0.373, 0.5} corresponding to a € {0, 11/3, 211/3, 1T}
in Eq. (14). We continue the single-EOM approach for tomo-
graphic projections, but with two slight modifications: (i) a
dual WSS (Finisar) is utilized to block photons outside the
computational space after the QFP and frequency-demultiplex
the photons before the SNSPDs, and (ii) the SI' operation is
realized by shifting the phase offset of RF Source 2 by 90°
relative to RF Source | (converting from the operation H to
FfS'i defined in Sec. IV-A) [15]. Insertion losses are —3 dB
for each EOM and ~4-6 dB for each pulse shaper or WSS.
Finally, we count photons at the output with | s integration
time, and do not subtract dark counts. The full dataset for
each QFP setting thus contains 36 numbers: counts for all six
output projections, repeated for each of the six input states.

For inference, we once again subscribe to a Bayesian
paradigm, following the QPT procedure introduced in [67]
which pools all 36 numbers into a single likelihood and
employs a uniform prior based on a recently proposed Kraus
operator parametrization that defines 4k = GKkH A where
H = Y k=i G'kGk automatically ensures Eq. (7) is completely
positive and trace-preserving for any set of complex matrices
{Gfc} [40]. The real and imaginary parts of the Bayesian
mean process matrices ;y follow in Fig. 7, expressed in the
Pauli basis for convenience. The process for 7Z = 0 (a = 0)
matches the identity as expected, with process fidelity =
0.9925 + 0.0002, while that for 7Z = 0.5 (a = n) aligns with
the Hadamard with .7}, = 0.9946 + 0.0002. The intermediate
cases reveal a clear transition between the two extremes of
a single nonzero component for the identity (7Z = 0) and
four equal components in the X/Z subspace (TZ = 0.5),
matching theoretical expectations with high fidelity: =
0.9775 d=0.0009 for % = 0.123 and .7* = 0.9878 d= 0.0009
for % = 0.373.

V. DISCUSSION

The open box and black box approaches for QFP charac-
terization trade off advantages in complementary ways, so the
method of choice for a given experiment can vary. From a
design perspective, the QFP is the realization of some desired
mode transformation matrix through sequential temporal and
spectral phase modulation. Because this multiport interferom-
eter applies to any optical input, open box approaches are able
to leverage bright coherent states as probes, enabling extremely
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Fig. 7. Experimental QPT results for tunable frequency-bin beasmplitter with varying reflectivity 7Z. Plotted is the Bayesian mean process matrix % in the
Pauli basis. As 77 increases, the initially dominant identity component reduces, while the ideal X and Z contributions for the Hadamard rise. Process fidelities
with the respect to the designed beasmplitter are (left to right): 0.9925 dh 0.0002, 0.9775 dh 0.009, 0.9878 db 0.0009, and 0.9946 db 0.0002.

precise characterization without the additional complications
of quantum probes sensitive to statistical noise and background
light. Accordingly, open box QFP characterization provides
the most accurate insight into the QFP’s inner workings, and
therefore is well suited to the engineering phase of quantum
gate synthesis when the adjustable parameters of each device
are tuned—e.g., EOM voltages and pulse shaper phases.

On the other hand, the noise effects bypassed by the open
box formalism cannot be ignored in the quantum domain.
Thus, after the QFP is tuned and ready for specific quantum
information processing tasks, more general black box charac-
terization approaches should be preferred, ideally performed at
whatever flux and statistical properties will be used in the ap-
plication of interest. QPT incorporates all nonidealities present
in the system, consequently painting the most comprehensive
picture of the final QFP operation.

Over the short history of the QFP, open box characterization
has proven highly successful, which can be attributed to
the fact that experimental implementations with commercially
available EOMs and pulse shapers have been near-ideal, to an
extent surpassing even our own original expectations. But this
situation will likely change significantly as the QFP enters new
application regimes. For example, fully on-chip QFPs have the
potential for lower loss, tighter bin spacings, and reduced cost
compared to tabletop versions, but on-chip components tend
to deviate from the ideal line-by-line pulse shaper and linear
EOM models. As explored in [27], microring-based pulse
shapers lead to matrix transformations } that vary depending
on spectral location within a bin, while standard silicon phase
modulators suffer from phase-dependent loss. Similarly, time
synchronization of QFPs across multiple sites—required for
applying the QFP to distributed quantum networking—will
experience at least some level of jitter that, depending on its
severity, could cause the transformation } to drift noticeably
in time. It is ultimately the black box viewpoint that possesses
sufficient generality to integrate all such impairments into in-

formative summaries—not only via QST and QPT as described
in the experiments above, but also potentially through simpler
black box approaches such as entanglement witnesses (like
those recently optimized for time-frequency cluster states [81])
or classical shadows (a remarkable technique enabling efficient
estimation of observables from minimal measurements [82],
(83]).

Finally, although we have focused on the QFP due to
the variety of experimental characterization demonstrations so
far, the techniques described in this paper readily apply to
other approaches for frequency-bin quantum operations. For
example, frequency beamsplitters [84] have been realized in

[85], [86] and [87], [88] nonlinear materials mediated
by classical pump pulses, as well as in integrated microrings
with coupling controlled by electro-optic modulation [89].
While compatible with single-photon signals, these experimen-
tal frequency-bin gates have yet to be fully characterized in
either the open box multiport or black box quantum process
pictures. In the future, it would therefore prove interesting
to invoke the techniques described here for non-QFP-based
frequency-bin operations, facilitating a more comprehensive
and informative understanding of the ever-expanding toolkit
for frequency-bin quantum information.
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