
Darwin: Flexible Learning-based CDN Caching
Jiayi Chen1, Nihal Sharma1, Tarannum Khan1, Shu Liu2, Brian Chang1, Aditya Akella1,

Sanjay Shakkottai1, Ramesh K. Sitaraman3
1The University of Texas at Austin, 2UC Berkeley, 3UMass Amherst & Akamai Tech

ABSTRACT
Cachemanagement is critical for Content DeliveryNetworks (CDNs),
impacting their performance and operational costs. Most produc-
tion CDNs apply static, hand-tuned caching policy parameters at
cache servers, such as admission frequency or size thresholds for
the Hot Object Caches (HOC) of their system. However, these static
policies fall short when a server is faced with unpredictable tra�c
pattern changes, even when policies employ multiple control pa-
rameters/knobs. Recent approaches have proposed learning-based
solutions to dynamically adjust policy parameters, but they are
limited in action space, caching objectives, or impose high over-
head. We propose Darwin, a CDN cache management system that is
robust to tra�c pattern changes and can �exibly optimize di�erent
caching objectives with unrestricted action spaces. Darwin employs
a three-stage pipeline involving tra�c pattern feature collection,
unsupervised clustering for classi�cation, and neural bandit expert
selection to choose the optimal caching policy. Through extensive
simulations, experiments using an Apache Tra�c Server (ATS)-
based prototype, and theoretical analysis, we show that Darwin
achieves signi�cant performance gain w.r.t. di�erent objectives
such as maximizing object hit rates and minimizing disk writes,
while simultaneously adapting to tra�c pattern shifts. Darwin im-
poses negligible overhead and achieves high throughput compared
to the state-of-the-art.

CCS CONCEPTS
• Computer systems organization → Processors and mem-
ory architectures; • Computing methodologies → Machine
learning approaches;

KEYWORDS
Content Delivery Networks, CacheManagement, Machine Learning

ACM Reference Format:
Jiayi Chen, Nihal Sharma, Tarannum Khan, Shu Liu, Brian Chang, Aditya
Akella, Sanjay Shakkottai, Ramesh K. Sitaraman. 2023. Darwin: Flexible
Learning-based CDN Caching. In ACM SIGCOMM 2023 Conference (ACM
SIGCOMM ’23), September 10–14, 2023, New York, NY, USA. ACM, New York,
NY, USA, 19 pages. https://doi.org/10.1145/3603269.3604863

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA
© 2023 Association for Computing Machinery.
ACM ISBN 979-8-4007-0236-5/23/09. . . $15.00
https://doi.org/10.1145/3603269.3604863

1 INTRODUCTION
Content Delivery Networks (CDNs) [14, 31] serve most of the Inter-
net tra�c today. They enhance the user experience by deploying a
large number of edge servers that can cache content close to the
clients (i.e., users). A large production CDN, such as Akamai’s, may
deploy more than 350,000 servers across 1400+ networks in 100+
countries [3].

A CDN server has a hierarchical structure with the Hot Object
Cache (HOC) comprising in-memory storage for fast access, and
the Disk Cache (DC) which has much more storage, but with slower
access. An incoming request to the CDN is served from the HOC if
the object exists there, else it is served from the DC. If the object is
unavailable at the DC as well, it is retrieved from the origin site of
the content provider. Cache management policies that determine
which objects to hold versus evict in the HOC or DC play a key
role in improving user-perceived latencies.

CDNs employ multi-level load balancing to determine how CDN
servers cache and serve content (Section 2.1). These load balancing
policiesmay conspire to impose signi�cant tra�c pattern changes at
a given CDN server; over time, a server may see requests for objects
from di�erent "tra�c classes" (e.g., images or video segments or
web pages or software downloads; Section 3), causing signi�cant
changes in key request attributes such as the request frequency,
object size, and recency distributions [10, 42].

Unfortunately, this variability has a signi�cant impact on the
e�ectiveness of CDN caching and renders widely-used cache man-
agement policies ine�ective [10, 39]. This makes it challenging to
design cache management policies that adapt to observed tra�c
patterns.

We consider the problem of cache management policy design in
the context of admission policies that determine when/which objects
are stored in the limited-capacity HOC. We �nd that an admission
policy cannot simply consider a single knob, e.g., a threshold 5 on
the frequency of requests, to determine whether to cache in the
HOC. Furthermore, multi-knob static policies (for example, caching
objects of size  B that have been requested � 5 times) also fall
short (Section 3).

Learning-based approaches that avoid the pitfall of static choices
have been considered for cache management in general [2, 39, 44]
and HOC admission in particular [10]. However, prior learned ap-
proaches su�er from one or more key drawbacks rendering them
impractical (Section 3): they consider a single knob and cannot be
easily extended to several; their algorithms target a speci�c objec-
tive, such as object hit rate, and cannot be easily applied to others
that combine hit rates with operational costs; and, their approaches
induce high overhead due to having to look up complex inference
models for every request. Furthermore, many of the approaches
lack sound theoretical backing.

981

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3603269.3604863
https://doi.org/10.1145/3603269.3604863
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3603269.3604863&domain=pdf&date_stamp=2023-09-01

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA J. Chen, et al.

We develop Darwin, a practical and provably e�ective approach
to adaptive learning-based HOC admission that addresses the above
issues. At its core, Darwin is based on a novel approach to neural-
aided bandit selection. Using this approach, Darwinmakes an online
selection of the "best-expert" HOC admission policy, where experts are
de�ned by thresholds on the aforementioned knobs. The number
of experts can be large depending on the number of knobs and the
values they can take, and evaluating them to make an informed
runtime choice can be prohibitive. Darwin scales the problem down
by using two ideas that work o�ine: (1) performing unsupervised
clustering of workloads and associating with each cluster a small
subset of experts o�ering good performance with respect to the
chosen objective; and (2) training cross-expert prediction neural nets
that eliminate the need for direct evaluation of expert performance
by enabling prediction of the runtime performance of an expert
based on a di�erent expert that is currently running. Our online
bandit selection algorithm uses the above steps as sources of side
information – it maps incoming tra�c to a cluster and uses the
prediction networks to select the best expert from among the ones
corresponding to the cluster. We prove that with high probability
our algorithm identi�es the best expert in a �nite amount of time
that is constant with respect to the number of experts.

A key advantage of Darwin over existing caching approaches
is that it can be used to optimize for di�erent types of metrics. In
particular, most prior literature on caching focuses on optimizing
hardware-independentmetrics like hit rate. This is because the prior
algorithms use a hardware-independent model for a cache; e.g.,
Belady’s algorithm [8] has an optimal hit rate independent of the
hardware it runs on. As a result, prior approaches do not apply to
hardware-dependent (resource-related) metrics such as writes to
storage that are very important in practice. In contrast, an appealing
aspect of Darwin’s approach is that it is based on actually running
experts on the given hardware. Thus, it can optimize both types
of metrics. For the same tra�c, Darwin can pick di�erent experts
for di�erent hardware con�gurations given the necessary o�ine
training.

Overall, Darwin’s design allows it to be highly customizable.
CDN operators can use the same framework for di�erent tra�c
features that can be collected, di�erent objectives that combine
cache performance with costs, and di�erent knob choices that are
viable in a given deployment.

We build a prototype of Darwin that uses experts parameter-
ized by two knobs <5 , B>, atop the Apache Tra�c Server [18]. We
conduct an extensive evaluation using both simulations and real
deployment, and both synthetic and real traces derived from a pro-
duction CDN server. Some highlights from our �ndings include:
(1) Darwin improves the object hit rate (OHR) by 3-43% compared
to static baselines and state-of-the-art HOC admission policies. (2)
We show that Darwin can be used to improve other metrics, e.g.,
a linear combination of OHR and disk writes improves by up to
97% and byte miss ratio by 11% compared to static approaches. (3)
Darwin imposes minimal CPU overhead and achieves a throughput
of up to 10.4Gbps, outperforming static experts due to its higher
hit rates.

2 BACKGROUND
We now describe CDNs, the cache management system utilized by
CDN servers (alternately, CDN cache), and the main metrics used
to evaluate a CDN cache.

2.1 Content Delivery Networks
The �rst point-of-contact for any client request is the closest CDN
server, which probes its local cache for the object. On a cache
hit (when the object is found in cache), the server retrieves this
content from memory and delivers it to the client, thus minimizing
download times which leads to better performance. In contrast, on
a cache miss, the server must source this object from the origin
server over the Wide Area Network (WAN) before it can relay it to
the client. This additional e�ort translates to higher latency at the
client, thus degrading performance. Additionally, on a cache miss,
the server also decides whether or not to place this retrieved object
in its cache to serve future requests. Besides worse performance, a
cache miss also results in extra bandwidth usage due to “midgress”
tra�c between the CDN server and the origin [42, 50]. Hence,
increasing cache hits (and decreasing cache misses) is the holy grail
for CDN operators.

A tra�c class [41, 42] is a set of domain names with a particular
content type such as images or text from a content provider(s) (such
as a social media site) with similar access characteristics. A CDN
server serves requests from highly diverse sets of tra�c classes. Due
to the di�erences in the content they represent, these classes also
display a large variety in access frequency and size statistics. Two
levels of load balancers [12, 27] work in tandem to choose a speci�c
CDN server to serve each request. The �rst of these, the global load
balancer, performs inter-cluster distribution, while a second local
load balancer dispenses tra�c between servers within a cluster. The
goal of CDN load balancing is to e�ciently route client requests to
servers that are most likely to contain the requested content in their
local cache. CDN load balancing is often performed via DNS with
TTLs that are set to be small [36]. This allows the load balancer to
react quickly to changes in tra�c demand, server state, and network
state. Akamai, for example, employs a TTL of about 20s to help
the load balancer modulate tra�c mixes to its servers. As access
patterns, network conditions, and server states change rapidly,
these load balancers continually adjust the tra�c class mixes of
each CDN server to meet availability, performance, and capacity
constraints. For instance, a CDN server that is serving mostly small
objects from a Web tra�c class may start to serve larger objects
from a software download class when an important iOS update is
released. The volume and mix of tra�c classes assigned to a CDN
server can change rapidly requiring a �exible cache management
system that adapts to the change without a deterioration in cost and
performance, designing such as system is the main focus of our work.

2.2 Cache Management System
A CDN server has a hierarchical structure with a Hot Object Cache
(HOC) and a Disk Cache (DC) as shown in Figure 1 [10]. HOC is a
fast but small �rst-level cache that resides in main memory and is
used to store frequently requested objects so that the objects can be
accessed quickly. In contrast, the DC is high-capacity, with slower
access time.

982

Darwin: Flexible Learning-based CDN Caching ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Figure 1: A two-level CDN cache serves requests with Hot Object Cache (HOC)
andDiskCache (DC). It can deploy various combinations of admission/eviction
policies to optimize cache usage.

The CDN server’s cache management system decides which
objects to admit in each of its caches and which to evict when the
cache is full as shown in Figure 1. Upon a cache miss (the object is
not present in the HOC or DC and is fetched from the origin), the
cache management system determines whether or not the object
can be admitted into the DC. With a cache hit (object is already
present in the DC), the object may also be admitted (i.e., promoted)
into the HOC. The decision to admit an object into either cache is
made in accordance with the admission policy of that cache. If the
DC or the HOC is full, one or more objects will need to be evicted
to make room for the newly-admitted object. The decision of which
object(s) to evict from either cache is determined by the eviction
policy of the respective cache.

Caching Policies. There is a vast literature on eviction policies
[2, 7, 13, 32, 44]. These generally rely on object metrics such as
recency and frequency of access, size, and cost of a cache miss [21].
The most commonly deployed policies are based on the Least Re-
cently Used (LRU) strategy (evict objects not requested for the
longest interval).

In contrast, admission policies have received much less attention.
Nearly 70% of the unique objects accessed from a CDN cache are
“one-hit wonders”, i.e., objects that are only accessed once [27].
Admitting one-hit wonders into the DC is a waste of disk resources
since they are never accessed again. Thus, a common admission
policy is to only admit objects into the DC when it is requested for
a second time by recording (but not admitting) the �rst request in
a bloom �lter [27]. Unlike the DC, the HOC has limited capacity.
So, attributes such as frequency f [17, 40] and size s [10] are often
also considered for HOC admissions. For example, the HOC may
admit an object if it has a size smaller than a threshold s or when
the requested object has been accessed with a frequency more than
a threshold f.

CDN Caching Objectives: A cache management system is
designed to optimize several objective metrics, each metric signi�-
cantly impacting either the performance (e.g., latency) or cost (e.g.,
bandwidth cost).
Hit-rate metrics: A metric that directly measures caching perfor-
mance is the object hit rate (OHR, or simply, hit rate), i.e., the ratio
of the number of cache hits to the total number of requests served.
Each cache hit saves bandwidth and time to fetch the object over
the WAN. High OHRs improve object retrieval latencies, and con-
sequently the client-perceived response times. A related metric of
byte miss rate (BMR), i.e., the ratio of bytes served during cache
misses to the total number of bytes served, is also tracked and mini-
mized. The midgress tra�c from the CDN servers to the origin due
to cache misses is directly proportional to BMR. The bandwidth

cost of midgress tra�c is a signi�cant portion of the operating ex-
penditures (OPEX) of a CDN [42], requiring the minimization of
BMR.
Resource-related metrics: In addition to the hit-rate related metrics,
cache management systems also optimize resource-related metrics
such as disk operations needed to serve the content. Primary among
them is SSD writes that impact both the SSD utilization and lifetimes.
Notably, excessive SSD writes can cause the disk to reach its write
endurance limit, requiring additional capital expenditures (CAPEX)
for replacing the disks or the servers [35, 50, 52].

A variety of heuristic policies have been explored for cache
management systems that optimize one or the other of the above
hit-rate metrics [5, 17, 20, 47]. In contrast, limited attention has
been paid to policies for resource-related metrics (see, e.g., [28])
which are also important in practice. Irrespective, these heuristics
operate one or more decision knobs each taking a range of values.
Together, they lead to a huge space of tunable parameters for CDN
cache management.

3 MOTIVATION
The problem of eviction is well-studied, with classical results dat-
ing back decades [7, 13, 32] to more recent work on data-driven
approaches [2, 44]. Our work, in contrast, focuses on admission
policies, which are less well-studied. As recent studies have ob-
served [10], HOC admission policies play a crucial role in overall
CDN caching performance and client-perceived response times.

In this section, we argue that admission policies need multi-
ple control knobs – simply admitting based on frequency or size
threshold, for example, is insu�cient. More importantly, we show
that static admission policies are rather sub-optimal – even when
considering multiple knobs. This makes a case for learning-based
admission policies, but we �nd that current approaches su�er from
fundamental drawbacks.

3.1 Drawbacks of Static Policies
As mentioned in Sec. 2.1, the load balancer of a CDN can rapidly
vary both the tra�c volumes and tra�c classes that are assigned
to a CDN server. Since di�erent tra�c classes have widely varying
characteristics (e.g. di�erent object size and popularity distributions
and patterns of access), a CDN server must alter its caching strategy
in a dynamic fashion to adapt to changes in the tra�c mix.

In production settings, CDN HOC admission typically relies on
hand-tuned parameters, such as predetermined frequency (f) and
size (s) thresholds. Unfortunately, there is no one-size-�ts-all policy;
di�erent tra�c mixtures lead to di�erent settings of the control
knobs (controlling either one or multiple parameters) being optimal.
Example with a real trace. We simulate a CDN cache server’s
behavior using real traces collected from a production CDN server.
We simulate a 100MB HOC (with a bloom �lter for one-hit wonders)
and a 10GB DC on these traces, using LRU as our eviction algorithm.
Figure 2a and 2b show the HOC OHR under various static f and s
thresholds for two randomly-picked time windows, each with 2M
requests, in a CDN production subtrace from two distinct media
tra�c classes in Europe.

983

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA J. Chen, et al.

From Figure 2a, we see that simply controlling one knob – e.g.,
�xing 5 and ignoring B – is not su�cient.1 For a given choice of 5
(likewise B) a speci�c non-trivial choice of B (5) is needed to opti-
mize OHR. While our analysis here considers just two knobs, HOC
policies could use additional knobs (e.g., recency and frequency
per-unit size) that can play a crucial role in caching alongside 5
and B . We study a third dimension (recency) in Section 6.

Furthermore, we see that sticking to the best parameters for
window 1 (f =3, s=7MB) causes the window 2 requests to perform
1.19% worse than optimal (f =1, s=7MB), while keeping window 2’s
best parameters (f =1, s=7MB) degrades window 1’s HOC hit rate
by 7.83%.2

We posit that an underlying reason for these observations is a
shift in workload – either in the mixes between di�erent tra�c
classes or in the size/frequency distribution of objects. To under-
stand the impact of and dependence on tra�c composition, we
consider an extreme case where objects are from just one tra�c
class as seen at the CDN server. Speci�cally, we examine the Image
(Figure 2c) and Download tra�c (Figure 2d, 2e) class subsets of a
production server trace.

The Image class has many requests for infrequently accessed
objects and 71.9% of the requests are for objects whose sizes are
smaller than 20KB. The best HOC admission parameters for the
Image class are f =5 and s=20KB, as shown in Figure 2c. Larger
frequency thresholds prevent those two-hit/three-hit/four-hit won-
ders from entering the HOC, and therefore better utilize the limited
memory space with the more popular objects. On the other hand,
the size threshold of 20KB gives most of the objects a chance to
reside in the HOC, while preventing the few large objects from
taking up the space that can serve more objects.

However, we can see from Figure 2d that for Download requests,
the previous hand-tuned admission thresholds (f =5, s=20KB) be-
come suboptimal. Choosing another parameter set (f =1, s=5MB) for
the Download class can reach a 71.39% higher HOC hit rate. This
is because the Download class objects are more popular. Increas-
ing the frequency threshold doesn’t have a large e�ect on which
objects get admitted to HOC as these objects all have more than 7
requests. A larger frequency threshold slightly hurts the HOC OHR
performance because the HOC admission of each object takes more
requests. On the other hand, the subset of common media objects
have much larger object sizes and only 21.5% of the requests are
for objects below 50KB. They need a larger size threshold to keep
the most common but reasonably-sized objects in the HOC cache.

3.2 Learning the Admission Decisions
Monitoring tra�c properties and tuning policies manually is di�-
cult. One might ask if the optimal admission decisions are learnable.
Indeed, CDN caches have key properties that are bene�cial for
learning: (1) Diverse CDN servers produce large amounts of logs
every day, creating a large and diverse dataset that can be used
to learn from. (2) It is easy to obtain the cache performance repre-
sentation (footprint descriptor), even from completely anonymized

1Note that because of the use of the bloom �lter, a particular value of 5 implies that
an object is let into the HOC upon the (1 + 5)BC request.
2Compared to these randomly chosen windows, in our end-to-end evaluation in
Section 6 we observe much more signi�cant di�erences between static expert choices
and experts chosen in an adaptive manner.

Name Year Many
Knobs

Diverse
Goals

Low
Overhead

Theoretical
Guarantees

Darwin 2023 3 3 3 3
LHR [49] 2021 3 7 7 7
RL-Cache [22] 2019 3 3 7 7
AdaptSize [10] 2017 7 7 3 7
Hill Climbing [10] 2017 3 3 7 7
Percentile [10] 2017 3 3 3 7

Table 1: Learned cache admission schemes (Percentile and Hill Climbing
discussed in Section 6)

logs [41] of CDN requests – this is strongly correlated with the
tra�c’s cache performance. (3) The best caching behaviors are de-
terministic for a given request sequence, and therefore learnable
by considering prior traces. (4) CDN cache servers in general are
not CPU-bound[39], and can leverage available compute toward
learning-based decisions.

Next, we describe the requirements for caching with learned
HOC admission and describe where prior art falls short.

3.2.1 Requirements, and Issues with Prior Schemes.
Adaptation. The primary requirement of a learned admission scheme
is that as tra�c mixtures of di�erent tra�c classes expected at a
CDN server change, the cache management policy should be able
to (R1) adapt to best suit the current tra�c. In particular, the policy
should o�er performance very close (e.g., within, say 1% in terms of
the OHR) to the "hindsight optimal" policy, since directly matching
the performance of an oracle is impossible.
Multiple decision knobs. Decision knobs such as 5 and B are the
parameters that a learning-based approach uses in its decision-
making and de�ne the approach’s action spaces. Restricting the
knobs restrains the possible action space that the admission poli-
cies can work with. AdaptSize, for example, learns the probabilistic
size threshold (B) for HOC admission. It develops a Markov chain
model that estimates OHR as a function of the object size thresh-
old. However, with the same input features and models, AdaptSize
cannot extend its model to other admission heuristics that also
involve other knobs, e.g., 5 and B . This can be problematic: e.g.,
when a subset of popular objects is mixed with a cache scan [33],
AdaptSize’s size-based policy is suboptimal as it doesn’t consider
object frequency and admits objects with low popularity. Similar
issues arise with admission rules based on frequency alone [17, 27].
Thus, (R2) learning-based approaches should accommodate multiple
decision knobs to cover more advanced admission policies.
CDN optimization goal. This refers to the metric that the learning
approach optimizes for. Cache servers can have diverse goals. For
example, a server with SSD as the disk cache may want to opti-
mize disk writes while maintaining high OHR. Most approaches
today employ algorithms that target a speci�c goal, which is of-
ten hardware-independent (e.g., OHR). This can cause highly sub-
optimal behavior with respect to other goals; for example, as shown
in Figure 2d and 2e, the static frequency and size thresholds that
achieve the highest OHR for the Download trace o�ers the second
highest SSD writes. The underlying algorithms cannot be easily
extended to other goals, especially hardware-dependent ones. For
example, we cannot easily adapt AdaptSize’s approach, which re-
lates OHR to a probabilistic size admission threshold model, to
optimize SSD writes due to the complexity of modeling hardware
behavior. Other cache management approaches, such as those based

984

Darwin: Flexible Learning-based CDN Caching ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

(a) Production (Win1) OHR (b) Production (Win2) OHR (c) Image OHR (d) Download OHR (e) Download Disk Write

Figure 2: (a) (b): HOC OHR results for two windows in a CDN production trace with di�erent frequency and size thresholds. (c) (d) (e): The optimal parameters
change with di�erent traces and evaluation metrics. (c) HOC OHR for the Image trace is optimal with (f =5, s=20KB). (d) HOC OHR for the Download trace is
optimal with (f =1, s=5MB). (e) Disk write for the Download trace is optimal with (f =1, s=10MB).

on Hill Climbing [10] face similar issues. Ideally, (R3) the cache man-
agement policy should be easily customized to all types of di�erent
objectives, avoiding baking the objective into the design.
Overhead. A learning-based cache management approach should
(R4) impose low overhead on the system overall. Some approaches, e.g.,
RL-Cache [22] and LHR [49] learn the features of multiple objects
using which they predict the current object’s decision (object-based
learning). However, such prediction-per-request is signi�cantly
more expensive than approaches that, by design, invoke learning
for every time interval or once every several requests. Additionally,
learning approaches like hill climbing [10] require simultaneous
runs of shadow caches to report online statistics of the policies in
comparison, which induces high memory overhead.

Table 1 compares learning-based mechanisms explored in prior
work that can be applied to tune CDN cache admission policies.
All proposals attempt to meet R1, although to di�erent levels of
e�ectiveness (Section 6), but fail on one or more of the other re-
quirements. None of the approaches have theoretical backing either.

4 DARWIN DESIGN
We present Darwin in the context of admission policies that maxi-
mize the HOC hit rate in a CDN server. We show how it extends to
other practical objectives in Section 6. There are several possibili-
ties for applying learning to this problem. We initially considered
training a learning algorithm to make per-object admission pre-
dictions, but this has a high overhead violating R4. Furthermore,
speaking to CDN operators highlighted hesitation in deploying this
approach due to the black-box nature of predictions and di�culty
with interpreting decisions.

We then considered a more practical approach that maps features
of arriving tra�c directly to the available knobs of a HOC admission
policy (e.g., 5 or B or jointly predict both). This ensures better
interpretability, but we found that its OHR performance is poor
(Section 6) mainly because there was no way to control the inherent
error in the approach’s parameter prediction. Also, predicting the
best joint parameter choice is challenging when the number of
knobs is large.

Darwin’s approach is to use learning to "test" and select among
a set of "known good experts". This preserves interpretability while
avoiding the pitfalls of direct prediction. In Darwin, each expert
is characterized by a tuple (5 , B) of frequency and size thresholds,
and promotes to HOC all objects that occur more than 5 times
and request objects of size lesser than B . Darwin learns to associate

tra�c patterns in the arriving workload to the best-performing
expert (one with the largest hit rate) in the given set. Darwin can
be trivially extended to include other knobs.

Our approach is summarized in Figure 3 and is split into two
steps: o�ine training, and online selection.
1. O�line training (Section 4.1, Appendix A.1) :
1a. O�ine clustering and expert set association: We collect histor-
ical tra�c traces of CDN server operation. Each trace could span a
speci�c (large) number of requests or time and could be collected
at a single server or could combine data across many servers. For
the collected traces, we extract features, which include average
requested object sizes, vector of inter-arrival times, and vector of
stack distances [46]. We then form clusters of traces based on their
features. Next, we associate an expert with a trace if its hit rate is
within \% of that of its best-performing expert. Cycling over each
trace in each cluster gives us a map between features of a trace
to a corresponding set of experts that are promising. This process
aids the online operation of Darwin by potentially reducing the
number of experts to be considered. Further, the \ threshold can
help capture the best experts of similar traces that were not covered
in the logs.
1b. O�ine cross-expert predictors: We �nd that the performance of
multiple experts that map to a cluster are correlated (as we explain
later in Figure 5c), implying that we can predict the performance
of an expert given that of another. To this end, we train neural
networks for each ordered pair of experts – each one accepts trace
features as input and outputs the conditional probability of hits
of one expert given hits/misses of the other. These cross-expert
neural predictors are used in the online phase below to predict the
performance of all non-deployed experts using only the samples
collected from the deployed expert (Section 4.1).

These o�ine steps are repeated periodically as more trace data
is collected, resulting in more re�ned/new clusters and improved
cross-expert prediction.
2. Online selection (Section 4.2): The online step proceeds over
epochs of #4 requests each and consists of two phases: feature
estimation, and best-expert identi�cation and deployment.(Feature
Estimation) The �rst #F0A<�D? requests are used to estimate the
features of the current tra�c and thus associate the incoming tra�c
with a learned cluster (step 1a). (Best-Expert Identi�cation and De-
ployment) From the corresponding set of experts with the learned
cluster, we select a single best expert using a novel best-arm iden-
ti�cation algorithm (Algorithm 1) with side information provided

985

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA J. Chen, et al.

Offline traces
Compute Expert

Hit Rates
Compute
Features

Form
Clusters

Form Expert
Sets

Step 1a. Offline Clustering and Expert Sets

Mi,j

Trace
features

Size
distribution

Step 1b. Cross-Expert Prediction Networks

Time

Requests

Nwarm-up Nround Nround Nround

One Epoch: Ne requests

Feature
Estimation

Best-expert
Identification

Step 2. Online Selection

Identified expert
is deployed

Figure 3: Darwin Work�ow

by the cross-expert predictors (step 1b). The learned expert is then
deployed for the remainder of the epoch.

4.1 O�line Training
The o�ine clustering and expert set association process is straight-
forward and we defer its description to Appendix A.1. We now
discuss the cross-expert predictors.

The experts in Darwin share a structure: they promote all objects
that occur with more than a threshold frequency and have a size
smaller than a threshold in order to maximize HOC hit rates over
a series of requests (traces). This structure can be leveraged in
selecting experts.

To see why, let ⇢1 and ⇢2 be two experts characterized by tuples
(51, B1), (52, B2) respectively. In any �xed trace, requests can be: (a)
promoted by both ⇢1 and ⇢2, (b) promoted by only one of the
two experts, or (c) never promoted by either expert. Speci�cally,
objects that are requested at least max{51, 52} times with size at
mostmin{B1, B2} are of the type (a), type (c) consists of requests with
object size over max{B1, B2} or frequency lesser than min{51, 52};
the remainder are type (b).

This suggests that the performance of these experts on a �xed
trace is not independent of one another. It is thus reasonable to
estimate the hit rate of one expert by observing the behavior of
another on a �xed set of requests; we show empirical evidence in
Figure 5c (Section 6).

Building on this idea, we train a 1-layer fully connected neural
network"8, 9 for each ordered pair of experts ⇢8 and ⇢ 9 that belong
to the same cluster-level best expert set. To train this network, we
�rst extend the set of features associated with each trace with a
bucketized version of its size distribution. This extended feature
set is then used as a training point to train "8, 9 , which predicts
the conditional probabilities P(⇢ 9 hit|⇢8 miss) and P(⇢ 9 hit|⇢8 hit)
over this trace. Adding the size distribution to the features helps
provide sharper estimates of these conditional probabilities; the
number of buckets to use can be chosen as necessary.

These conditional probability estimates also lead to estimates on
variances: Let P(⇢8hit), P(⇢8 miss) denote the cache hit andmiss fre-
quencies of a �xed expert 8 on a given trace. For all experts 9 < 8 the
networks"8, 9 can be used to compute +⌘8C (8, 9)=P(⇢ 9 hit |⇢8 hit) · (1�
P(⇢ 9 hit |⇢8 hit)), the estimated variance of ⇢ 9 hits given an ⇢8 hit. Sim-
ilarly, we can also compute+<8BB (8, 9) =P(⇢ 9hit |⇢8 miss) ·(1�P(⇢ 9hit |⇢8 miss))
the estimated variance under ⇢8 misses. Together, these can be com-
bined to provide an estimate of the variance of hits of expert 9

given the performance of expert 8 using f28 9 := P(⇢8 hit)+⌘8C (8, 9) +
P(⇢8 miss)+<8BB (8, 9). These variance computations will �nd use in
the online expert identi�cation stage below.

4.2 Online Expert Identi�cation
We now move to the online deployment step of Darwin.
Feature Estimation. For the �rst #F0A<�D? requests of an epoch
of #4 requests, the user deploys an arbitrary expert (or one from
the previous epoch) to instruct HOC admissions. It then computes
the empirical features for this epoch based on the warm-up requests
and then selects a small set of experts (Appendix A.1).
Best-Expert Identi�cation and Deployment. Next, our (ban-
dit) algorithm sequentially deploys di�erent experts (from the set
identi�ed through feature learning) and collects rewards (HOC hit
rates) from each expert. Using these collected rewards and �ctitious
reward samples generated using the cross-expert predictors (Sec-
tion 4.1), the algorithm determines a single best expert at the end of
"best-expert identi�cation", and deploys this selected expert. There
are two things to note: First, each expert deployment is over a series
of #A>D=3 consecutive requests (termed as a round). At the end of a
round, the next expert is deployed, and so on over rounds, until the
end of the best-expert identi�cation phase. The number of requests
in a round, #A>D=3 is chosen to be su�ciently long such that the
state of the cache (which has been determined by previously de-
ployed experts) su�ciently de-correlates over time, and the reward
estimates at the end of the round are representative of the currently
deployed expert. Second, the number of rounds (equivalently, the
number of experts) that are deployed in this phase is adaptively
chosen online, to ensure that the expert chosen at the end of the
phase is truly the best expert with a probability � (1 � X), where,
X is an operator speci�ed failure probability. This expert is then
deployed for the remainder of the epoch.
From Experts to Bandits. The problem of expert selection is
closely related to the Multi-armed Bandit problem with experts
as arms and hit rates as rewards. In contrast to standard bandit
feedback models where only rewards of experts deployed for HOC
admissions can be observed, we can gather hit rate estimates for
all experts using our cross-expert prediction models. There are,
however, two things to note: (a). The estimates of the non-deployed
experts are only accurate if the networks predict the conditional
hit rates reliably, (b). Due to the randomness in the performance of
the deployed expert, the reward estimates from the non-deployed
experts are also random, with variances that depend on the de-
ployed expert. This problem is one formulation of the Multi-armed
bandit problem with Side Information; this form was introduced by
[48], where the selected arm-dependent variances are encoded as
a known side information matrix. Further, this information struc-
ture generalizes various structures studied in bandits including
graph-based and full feedback; we refer to [4, 48] for details. How-
ever these works have focused on cumulative regret, whereas our
objective is that of best-arm identi�cation, which is quite di�erent3.

3Broadly, there are two bandit settings: (a) cumulative regret, where the objective is to
continuously trade-o� between exploration and exploitation of learned information
throughout the deployment, and (b) best arm identi�cation/pure exploration, where
the goal is to determine the best expert at the end of a learning phase. The algorithms
for these two settings can be quite di�erent; we refer to [24] for additional discussion.

986

Darwin: Flexible Learning-based CDN Caching ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

To the best of our knowledge, our work is the �rst to consider the
best-arm identi�cation setting with this richer feedback structure.
This additional structure is utilized by our algorithm to identify the
best expert in a �nite expected time, whose scaling is constant with
respect to the number of experts. This is in contrast to the classical
setting, where the learning time typically grows with the number
of experts.
Best Expert Identi�cation with Side Information. We now
make our setting formal: Let the cluster-level set identi�ed af-
ter #F0A<�D? samples have experts indexed by the set [] =
{1, 2, ..., }. For any expert 8 2 [], let `8 2 [0, 1] denote its mean
hit rate (reward) and ` 2 R be the vector of mean rewards. We
denote the variance of rewards observed from expert 9 when expert
8 is deployed (or played) by f28 9 and encode these variances in the
matrix ⌃ 2 R ⇥ .

The learner �rst infers the side information matrix ⌃ by de-
ploying each expert over a series of #A>D=3 requests using the
performance prediction networks"8, 9 (see variance computation
discussions in Section 4.1). Thereafter, in each round C , an expert
⇢C is chosen to be deployed in the HOC over #A>D=3 requests. At
the end of the round, the learner computes the observed hit rate
of expert ⇢C in this round and uses "⇢C , 9 for all 9 < ⇢C to form
the vector of rewards .C = (.1 (C),.2 (C), . . . ,. (C)). Here, .⇢C (C)
is the true observed hit rate, while .9 (C), 9 < ⇢C are all �ctitious
samples generated by the prediction networks. We assume that for
any expert 8 and any round C , .8 (C) is an independent Gaussian
random variable with mean `8 and variance f2⇢C 8 .

The learner maintains an estimate ˆ̀C of the mean rewards of
each expert at the end of round C to instruct its future deployed
experts. As in the standard best-arm identi�cation problem of [19],
we seek to design a triple (c, g,k) of an expert sequence selection
policy c , a stopping time g and a recommendation rulek such that:
P`,⌃,c (k (ˆ̀g) < 8⇤ (`))  X . In words, the expert recommended
using the rulek after g rounds of running the policy c is the best
expert 8⇤ (`) = argmax:2 [] `: with a high probability of 1�X . Let
E(⌃) be the set of all mean reward vectors ` with Side information
matrix ⌃. Then, any triple (c, g,k) satisfying the above condition
for all ` 2 E(⌃) is said to be X�sound [19, 24].
Track and Stop with Side Information.We propose the Track
and Stop with Side Information algorithm (Algorithm 1) which
builds on the well-known Track and Stop strategy [19] for best-arm
identi�cation with standard bandit feedback. It deploys experts to
instruct HOC admissions sequentially over rounds and terminates
once it has identi�ed the best expert with a high probability �

1 � X . This termination time is random and depends on the request
sequence and statistics. Below, the algorithm estimates hit rates for
each expert, determines the sequence in which experts are deployed
our rounds, and stops when it is con�dent that it has identi�ed the
best expert.
Hit rate estimators: At each round C , the estimate ˆ̀8 (C) for the mean
reward of expert 8 2 [] is given by

ˆ̀8 (C) =
1

d8 (C)

C’
==1

.8 (=)

f2⇢=,8
, d8 (C) =

C’
==1

1
f2⇢=,8

(1)

Algorithm 1 Track and Stop with Side Information
1: Inputs: Side Information matrix ⌃, failure probability X > 0, a function VC (X, ⌃) .
2: Choose each expert once and set C = ,)8 () = 1.
3: while /C < VC (X, ⌃) , do
4: Compute U⇤ (ˆ̀C , ⌃) de�ned in Equation (3).
5: Deploy ⇢C+1 = argmax82 [] CU

⇤
8 (ˆ̀ (C), ⌃) �)8 (C) .

6: Observe the reward vector .C .
7: Update estimates ˆ̀8 (C + 1) using Equation (1).
8: Increment the counter of expert plays)⇢C+1 .
9: Compute /C+1 = �(ˆ̀C ,) (C + 1)) , � as in Equation (2).
10: end while
11: returnk (ˆ̀ (C)) = argmax82 [] ˆ̀8 (C)

The above is simply a modi�cation to the standard empirical mean
and is obtained by re-weighting each sample according to its corre-
sponding variance and then normalizing the estimate using d8 (C).
It was previously used by [4] to design asymptotically optimal algo-
rithms for the cumulative regret setting of [48] when the rewards
are Gaussian.
Expert sequence selection policy c : To determine the sequence of
experts to deploy, the learner repeatedly (at the beginning of each
round) solves the optimization problem:

�(a,U) = inf
a0 2E0;C (a)

 ’
8=1

U8

 ’
9=1

(a 9 � a 09)
2

2f28, 9
(2)

U⇤ (a, ⌃) = argmax
U 2P �1

�(a,U) . (3)

The cost function in � is derived from a KL divergence between
two Gaussian distributions. Intuitively, if a 9 is replaced with the
empirically learned mean, this cost quanti�es the most likely Gauss-
ian distribution from among the alternate environments that could
have resulted in the observed samples. Thus, in some sense, this
measures the distance to the ‘most likely’ wrong expert that we
could end up with. Here, P �1 is the probability simplex in di-
mensions and E0;C (a) = {a 0 2 E(⌃) : 8⇤ (a) \ 8⇤ (a 0) = ;} is the set
of alternate environments. Recall that E(⌃) is the collection of all
possible environments; for each ` in this set, E0;C (`) is the subset of
environments that do not share the same index for the best expert.
For a given mean vector a and a side information matrix ⌃, the
solution U⇤ (a, ⌃) is a probability distribution over experts. In each
round C , the learner solves for U⇤ (ˆ̀C , ⌃). Intuitively, U⇤ corresponds
to the optimal fraction of rounds that each expert should have been
deployed until now, assuming that the current empirical estimates
are correct. Thus, in the current round, the algorithm deploys that
expert which is the most under-deployed expert with respect to
this estimated distribution (Line 5, Algorithm 1).
Stopping time g : The algorithm computes the ‘information level’
/C = �(ˆ̀C ,) (C)). Here,)8 (C) is the number of times that expert
8 has been deployed up to time C , and) (C) is the vector of these
deployment counts. At the beginning of each round, if this informa-
tion level exceeds the given threshold function VC (X, ⌃) (speci�ed
in Theorem 1), the algorithm terminates (thus de�ning the stopping
time).
Expert recommendation rulek : The returned expert is simply the
most empirically promising one at the time of stopping. Formally,
k (ˆ̀g) = argmax82 [] ˆ̀8 (g)

987

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA J. Chen, et al.

Theoretical Results. Our setting di�ers from the standard bandit
feedback due to the �ctitious samples we gather from the cross-
expert predictors. These are explicitly used in our estimators in
Equation (1) and in order to guarantee that Algorithm 1 is X�sound,
we require concentration bounds on the performance of these es-
timators. The di�culty is that the series of expert deployments is
random due to the expert sequence selection policy c . To overcome
this, we develop anytime concentration bounds for these scaled em-
pirical estimators that do not depend on the selection strategy used
to pick experts. For this, we analyze a martingale process, both
over time and experts. Beyond proving soundness, the martingale
evolution over the pair (experts, time) – as opposed to only time – is
crucial to show that the stopping time of our algorithm is bounded
by a quantity that does not scale with the number of experts . As
observed before, this is an expected, yet interesting artifact of the
increased feedback due to correlation across experts.

We now state our theoretical guarantees. The �rst result shows
that the proposed policy, stopping criterion and expert recommen-
dation rule form a X�sound triple.

T������ 1. Let f2<8=,f
2
<0G be the minimum and maximum vari-

ances in ⌃ respectively. Let " be such that the rewards .8 (C) 2

[�","] with probability at least 1 � X/2 for all 8 2 [], C 2 N.

Using ^ =
f2
<8=

f2
<0G

and VC (X, ⌃) = C
2^ +

 "2

2f2
<8=^

p
⇠

p
C log(2/X) for a

constant ⇠ , the triple (c, g,k) suggested by Algorithm 1 is X�sound.

The next result characterizes the expected stopping time.

T������ 2. Let a be any environment with a unique best expert.
Then, with expert sequence selection policy c and stopping time g as
in Algorithm 1, it holds that

lim
X!0

Eac [g]

log(1/X)
=

"

f2<8=
·

2^�(a,U⇤ (a, ⌃)) �

!2
.

We recall that �(`,U),U⇤ (a, ⌃) are de�ned in Equations (2) and (3)
respectively.

Complete proofs of both these theorems can be found in Appen-
dix A.2. The key observation here is that the limit in Theorem 2 does
not scale in the number of experts , whereas with standard bandit
feedback, the corresponding limit scales linearly in the number of
experts.
Remark:We choose to develop the best expert selection algorithm
for Gaussian rewards to ease presentation. Speci�cally, this assump-
tion allows us to write the quadratic-form inner summations (which
are KL divergences between two Gaussians) in Equation 2 and also
provide a unique closed-form solution to the optimization prob-
lem in Equation 3. This solution is then used to establish Theorem
2. This provides us with intuition on the scaling of the stopping
time with the total number of experts . Note that we do not re-
quire the Gaussian rewards to prove soundness in Theorem 1. With
non-Gaussian rewards, our approach can be used by appropriately
modifying Equation 2 and numerically solving Equation 3.

5 IMPLEMENTATION
We implemented Darwin on top of ATS [18]. The original ATS
consists of a RAM cache and a disk cache. We inject the Darwin
admission policy by modifying the conditions for an object to be

added to the RAM cache to include a frequency and a size threshold
con�gured by the user. We make further modi�cations to support
the online phase of Darwin.

To aid in this, we track the request counts on the cache server.
Once the request count reaches an action point (e.g., the end of the
feature collection stage, or the end of each bandit round), our proto-
type starts a new thread to perform Darwin’s additional operations.
At the end of the feature collection stage (which is lightweight due
to the optimizations discussed in Section 6.4), the thread looks up
the cluster and loads the corresponding best experts into memory.
At the end of each bandit round, we calculate the rewards of this
round and select the next round’s arm (expert) in parallel with
the cache processing. Once the new expert decisions are made, we
change the threshold values of the HOC admission policy.

We also implemented a Darwin simulator based on the LRB sim-
ulator [39] and the feature extraction module [34], which simulates
a two-level cache hierarchy.

6 EVALUATION
We evaluate Darwin using both simulations and prototype experi-
ments. We seek to answer four main questions:
(i) How well can Darwin adapt to tra�c changes and improve CDN
caching OHR performance compared to �xed experts and SOTA
learning-based approaches? (Section 6.1)
(ii) How well do Darwin components of clustering, cross-expert
predictors, and online selection perform? (Section 6.2)
(iii) How well does Darwin work toward optimizing di�erent met-
rics? (Section 6.3)
(iv) What is the overhead of using Darwin, in terms of latency,
throughput, CPU, and memory usage? (Section 6.4)

We now discuss our methodology and setup.
Simulator Setup.We build and run the simulator on a single server.
The server’s HOC size is con�gured to be 100MB, and the disk size
is 10GB. We also experiment with larger cache sizes, speci�cally,
200MB and 500MB. We are limited by our access to computational
resources to explore even larger cache sizes. However, our study
with 100MB, 200MB, and 500MB caches shows that Darwin’s per-
formance bene�ts hold for servers equipped with larger caches.
Testbed Setup.We set up the client, proxy (CDN server), and origin
servers in Cloudlab [16]. Each node has a 16-core AMD 7302P @
3.00GHz, 128GB ECC Memory (8x 16 GB 3200MT/s RDIMMs), two
480 GB 6G SATA SSD, and two dual-port Mellanox ConnectX-5
25Gb GB NIC (PCIe v4.0). Each node pair of client-proxy and proxy-
origin is connected with a 20Gbps bandwidth link. We inject a
latency of 10ms between the client and proxy and 100ms between
the proxy and origin. By default, we set the cache RAM size to
100MB, and disk size to 1024GB.
CDN Traces. We �rst describe how we generate traces to study
Darwin’s bene�ts for a 100MB cache size. We then describe how
we "scale" these traces to study the bene�ts for CDN servers using
larger cache sizes of 200MB and 500MB.

We employ two sets of CDN traces in the experiments: an o�ine
training set used to train the cross-expert prediction models and a
testing set for online testing. To create a large and diverse dataset,
we generate synthetic traces based on the Download and Image
traces with various mixed ratios using Tragen [34]. The sum of the

988

Darwin: Flexible Learning-based CDN Caching ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

request rates for the two tra�c classes in the production trace is
265.9 req/s. We vary the proportion of these two tra�c classes, from
100:0 to 0:100, creating 100 mixed request rate con�gurations in to-
tal. We generate 10 traces with 10M requests for each con�guration.
7 of these are added to the training set (o�ine train trace), and the
rest 3 traces are used for model testing (o�ine test trace). We also
create one trace for each con�guration that contains 100M requests
to be used for the end-to-end evaluations (online test trace). For
all the traces, the �rst 1M of requests are used as "cache warmup"
requests in the trace, and the statistics of these requests are not
counted in the �nal results.

For 200MB and 500MB cache sizes, instead of using the same
traces as above, we scale up the object sizes of the 100MB traces
by 2⇥ and 5⇥, respectively, and additionally perturb each object’s
size randomly by ±20% to synthetically generate “new” traces. Our
rationale for scaling the traces is that in a production setting, the
load balancer of the CDN would assign more tra�c to servers with
larger caches. For example, servers equipped with larger caches
will typically serve larger volumes of tra�c with higher request
rates and/or larger objects.
Baselines. In the simulation experiments, we compare with Stat-
icExpert(s), AdaptSize (AS) (Section 3.2.1), DirectMapping (Direct)
(Section 4), Percentile (P), and HillClimbing (HC-�B). Each Stat-
icExpert is a combination of a frequency threshold (f =2-7) and a
size threshold (s=10, 20, 50, 100, 500, 1000kB). We scale up the size
thresholds for the larger cache sizes.

Percentile (P) works as follows: In # -request windows, we up-
date the empirical distributions of frequencies and sizes of incoming
requests. For the next # requests, it deploys the expert (5 , B) with
5 , B closest to the 60C⌘, 90C⌘ percentiles (respectively) of the em-
pirical distribution hitherto. We use # = 100 requests and the
percentile values are picked to be the best-performing ones for this
window size.

For HillClimbing, the learner deploys an expert (5 , B) in the main
cache for # requests and concurrently runs two shadow caches;
one each for experts (5 + �5 , B), (5 , B + �B). It then updates the
main cache with the best-performing expert of the three. When the
expert deployed in the main cache does not change, the shadow
caches are updated to run (5 ��5 , B), (5 , B��B). In the above we use,
�5 = 1 and �B = {1 ⌫, 10 ⌫} and # = 0.5" in our evaluation.

In the prototype experiments, we compare with the same set of
static experts on ATS. Unless otherwise stated, we con�gure Darwin
with \ = 1%, #4 = 100" , #F0A<D? = 3" and #A>D=3 = 0.5" .
Metrics. For simulation, we consider the $�', the linear combi-
nation $�' + : ⇤ 38B:_FA8C4B , and byte miss ratio (BMR) as the
objectives for HOC admissions. For the prototype, we also measure
the request �rst-byte latency, server throughput, CPU and memory
use, and network throughput.

6.1 Robustness to Tra�c Changes
We evaluate the OHR of Darwin and multiple baselines in the
simulator using our online test trace set. We �nd that Darwin out-
performs baselines by 3%-43%. While the lower-range improvement
numbers seem unimpressive at face value, we remind the reader
that even minor improvements in hit rates translate to signi�cant
reductions in network bandwidth usage that leads to improvements.

Since a large CDN could incur a midgress of tens of Tbps at a cost
of tens of millions of dollars per year, even a small midgress band-
width reduction due to improved hit rates translates into large cost
savings for the CDN [42].
Comparison with static baselines. To illustrate the performance
of Darwin and the baseline algorithms against changing tra�c,
we pick an ensemble set made up of traces with a variety of best
static experts. We group the online test traces by their best static
experts and randomly pick one trace from each group to add to the
ensemble set. Figure 4a shows the distribution of Darwin’s HOC
OHR improvement rates against each baseline (more complete
baseline results in Appendix A.3). Note that each trace is with a
stable tra�c mixture, and therefore a suitable static expert can
outperform Darwin in one trace as Darwin runs with a suboptimal
expert in a proportion of the requests when learning. But no static
expert works well in all traces.
Comparison with adaptive methods. Darwin adapts to tra�c
changes better than the previous state-of-the-art adaptive methods
described below.
Percentile: Fixed percentile thresholds are non-optimal for a pro-
portion of the traces and therefore have worse hit rates for those
traces. In our experiments, Percentile is 10% worse on average than
Darwin.
HillClimbing: In our experiments, HillClimbing has access to a
larger slew of experts (e.g., all experts with frequency thresholds
that are multiples of �5) than Darwin (limited to the given expert
set). Further, HillClimbing is provided with additional computa-
tional resources in the form of two shadow caches which are used
to determine the expert swaps (one each for size and frequency).
However, even with these signi�cant advantages, it under-performs
Darwin by � 3% on average. Further, HillClimbing also requires
careful tuning of the jump sizes (�5 , �B), as well as the number
of requests after which experts are switched. And, it also su�ers
from the pitfall of displaying suboptimal performance due to the
presence of local optima.
AdaptSize: As noted previously, AdaptSize examines only one di-
mension for HOC admissions, the size, which is insu�cient as the
cache can be polluted by, e.g., many infrequently requested objects
(it is 20% worse than Darwin on average).
DirectMapping: Direct mapping from tra�c features to the single
best (5 , B) threshold con�gurations also performs 7% worse than
Darwin on average. This is because it is not robust to errors in
feature collection or in the process of learning the mapping; Darwin,
due to directly testing and then selecting among multiple good
candidates can better accommodate any potential errors in feature
collection, clustering, etc.

We observe similar results with a larger cache size (Figure 4b) as
well as in our prototype with a subset of static experts (Figure 4c).

6.2 E�ectiveness of Darwin Components
How quickly can the features reach reliable values? The fea-
ture estimation phase at the beginning of each epoch in Darwin’s
online step is crucial as it decides the expert set to be considered;
errors here impact performance signi�cantly. To choose the num-
ber of requests used in this phase (#F0A<�D?) appropriately, we
study the convergence of empirical features to their true values. We

989

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA J. Chen, et al.

(a) Simulation (100MB) (b) Simulation (500MB) (c) Prototype
Figure 4: OHR for Darwin vs. Baselines (P = Percentile, HC = HillClimbing, Direct = DirectMapping, AS = Adaptsize). (a) Simulation results with 100MB HOC size.
(b) Simulation results with 500MB HOC size. We observed similar results with a 200MB cache size. We omit the results for brevity. (c) Prototype results with low
concurrency.

use average size (size_avg), the �rst 7 average inter-arrival times
(iat_avg’s), and stack distances (sd_avg’s) as features. Figure 5a uses
the 10M length o�ine traces and computes the true features using
all 10M requests. We compare these true features with the �rst GM
requests of the trace (G varies as in the legend) and plot the %-age
di�erence in absolute value. We see that feature values converge
to within a 10% error margin using only the �rst 3M requests. Im-
portantly, this trend – of needing 3M requests – also holds for the
100M length online test traces. We use this value for #F0A<�D?
from here on. #F0A<�D? for the online test trace thus is just 3% of
the total number of requests (complete result in Appendix A.3).
Does clustering and expert set formation help? We present
evidence of our o�ine clustering leading to a reduction in the
number of considered experts. We begin with 36 experts and use
the o�ine traces to perform clustering (into 52 clusters) and expert
set association. Recall that the threshold \ induces diversity by
considering all experts within \% of the best-performing expert of
an o�ine training trace to be part of its promising experts set. We
observe that for every o�ine test trace and our online test traces,
at least one of the trace’s best experts is always included in its
corresponding expert set for varying thresholds \ (detailed result in
Appendix A.3). With \ = 1 (our default choice), we observe an 82%
reduction in the number of experts on average; even with \ = 5,
we can extract a 35% reduction. The CDF of the number of experts
that remain after clustering is in Figure 5b.

We also created experts with three decision knobs: frequency,
size, and recency, and formed clusters and expert sets using the
o�ine training traces. Here too, we saw a 90% reduction in the
number of experts using a \ = 1% threshold, resulting in only a few
experts that Darwin’s online algorithm needs to work with (results
deferred to Appendix A.3).
How accurate are the cross-expert predictors? For our online
identi�cation process, it is su�cient for our prediction networks
to accurately estimate the ordering of expert hit rates. We say two
experts are ‘:% proximal’ on a trace if their hit rates on this trace
are less than :% apart. For each predictor "8, 9 , we compute the
fraction of traces on which the experts 8, 9 are either proximal or
"8, 9 predicts the same ordering between hit rates of experts 8 and 9
as the ground truth. We refer to this fraction as the order prediction
accuracy and its CDF over all 1260 cross-expert predictors (formed

using the 36 experts) versus proximity : is shown in Figure 5c. Even
with the strictest 1% proximality, more than 90% of the predictors
reach > 80% order prediction accuracy (across our test data points).
In Appendix A.3, we show that our cross-expert predictors also
work well with test traces drawn from a di�erent distribution than
the one they were trained on.
How many rounds for online expert identi�cation? We ob-
serve that the average hit rates for the candidate experts converge
fast for most of the traces in the online identi�cation stage, and
we can quickly identify a consistent best expert from them. For a
trace running the online expert identi�cation, we say that it has
found the best expert if either the bandit algorithm terminates or
an expert is consistently selected by the bandit for 5 consecutive
rounds. We track the number of rounds from the start of the bandit
stage until the best expert is found. Figure 5d illustrates that start-
ing from the 12th round onwards, � 80% of our online test traces
achieve stability with the best expert (requiring 5.5M requests for
convergence). The worst-case scenario for convergence spans 21
rounds (equivalent to 10M requests, constituting 10% of the trace).

6.3 Support for Other Goals
We show that Darwin can be easily customized to other objectives.
For a new optimization metric, we need two slight modi�cations: 1.
retrain the cluster best expert mapping based on the new metric
results of the experts; 2. use the new metric as the reward in the
online phase.

We �rst target minimizing the BMR of the HOC to reduce the
bytes written to the DC or to the origin server. To estimate the
unobserved experts’ BMR performance, we perform a simple calcu-
lation based on the observed bucketized size distribution and the
output of the existing OHR cross-expert predictors. Figure 6a shows
that Darwin reduces the HOC Byte Miss Ratio by 0.37%-11.28%.

Another objective that we experiment with is a combination of
HOC OHR and disk writes. We seek to maximize$�' � ⇡8B:,A8C4

#'4@D4BCB .
We approximate the disk write bytes to be the bytes missed in HOC.
With that, we can calculate HOC OHR and disk writes respectively
with the existing OHR cross-experts and the bucketized size dis-
tribution. Figure 6b shows that Darwin improves the metric by
7.47%-96.67%.

990

Darwin: Flexible Learning-based CDN Caching ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

(a) Feature Convergence (b) Improvement from Clustering (c) Cross-expert Prediction Accuracy (d) Bandit Rounds for Identi�cation
Figure 5: E�ectiveness of Darwin Components: (a) Feature convergence using �rst GM requests; (b) CDF of the number of remaining experts after clustering for
di�erent \ ; (c) Order prediction accuracy for our cross-expert predictors; (d) Number of rounds required for best expert-identi�cation.

(a) HOC BMR (b) HOC OHR-Disk Write/#Request
Figure 6: Darwin for other objectives.

As we have alluded to before, existing baselines such as Hill
Climbing and AdaptSize cannot readily adapt to objectives such as
disk writes that are hardware-dependent and are therefore complex
to model and simulate. Hill Climbing uses the notion of a shadow
cache to simulate and derive the hit rate of an incrementally larger
cache. Likewise, AdaptSize uses a Markov chain model to simulate
object accesses and derive OHR as a function of the size threshold.
The models simulated in both the above approaches are explicitly
tailored to deriving hit rates. It is not clear how these models can be
extended to other more complex hardware-dependent objectives.
In contrast, Darwin does not rely on a speci�c modeling and simu-
lation approach for cache performance and can work for objective
functions that are hard to explicitly model and simulate.

6.4 Overhead
In our prototype, we conduct measurements of performance and
resource usage overheads. We demonstrate the positive impact of
Darwin on throughput and latency through the increased rate of
cache hits. Additionally, we �nd that Darwin’s implementation
minimally impacts CPU and memory utilization.
Response Latency. Figure 7a shows the latency CDF for a con-
catenated trace that consists of four 100M online test traces with
di�erent best experts. We observe that Darwin doesn’t impose ad-
ditional latency overhead, and improves the �rst-byte latency by
reducing the requests forwarded to the origin server (on account of
its better OHR). All the Darwin components – e.g., feature collec-
tion, cluster lookup, and looking up prediction networks – create
a new thread to perform the work in parallel. Thus, the learning
logic is not in the critical path of cache processing.

(a) First Byte Latency (b) Throughput
Figure 7: Darwin prototype’s latency and throughput performance

Throughput. Figure 7b shows the peak of the application through-
put of Darwin across multiple concurrency levels. Higher concur-
rency can increase throughput but also increases synchronization
costs (lock contention for the HOC). We compare Darwin with
the static (5 = 2, B = 2) expert. In both cases, the sweet spot for
throughput vs synchronization overhead is around 200 requests.
Darwin is able to reach an average throughput of 10.4Gbps for 200
client threads (static expert reaches 9.3Gbps).

For low concurrency levels, Darwin’s throughput is comparable
to the static expert, but Darwin’s OHR (which stays una�ected at
these concurrency levels, but isn’t shown) is signi�cantly better as
shown in Figure 4c. At higher concurrency, Darwin’s hit rates are
inferior to that at low concurrency (this trade-o� has been observed
in prior works [10]), as are the static experts’. But Darwin o�ers
better throughput – this is because, on account of its better OHR,
Darwin is able to skip round trips to the origin server.
CPU and Memory. Without Darwin, the average CPU usage is
2% to process the requests in real-time. The peak CPU usage with
Darwin can reach 99.2%. But this only happens instantaneously in
two speci�c steps: 1. when Darwin classi�es the features and does
cluster lookup at the end of the feature collection stage; 2. when
Darwin infers from the cross-expert predictors at the beginning of
each round. The instances of high CPU use are infrequent relative
to overall request processing at the cache and are amortized out; as
such, we see no perceptible increase in average CPU use.

Darwin’s memory overhead is also reasonable, with a peak of
4GB. During the feature collection stage, we create a tree structure
to extract the stack distances and inter-arrival times of the objects.
This tree is deleted at the end of the stage, and we only store a

991

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA J. Chen, et al.

single feature vector with 15 entries. During the online selection
stage, the largest memory usage is for the cross-expert prediction
networks. To avoid the performance overhead of loading the predic-
tion networks repeatedly, we keep them in memory for the whole
online selection stage, which contributes to the 4GB memory use.
The other data structures stored include the following, and they
also pose minimal overhead: (1) bucketized size distribution, whose
entry number is the same as the size threshold selection range; (2)
model variance matrix, whose entry number is the number of ex-
pert pairs; (3) reward vector, whose entry number is the number of
experts. For 2 and 3, we only consider the experts from the cluster
outputs, so it’s signi�cantly smaller than the original expert space.

7 RELATEDWORK
Section 2 discussed related work on heuristic-based policies for
HOC admission and eviction, as well as learned HOC admission
policies. Here, we cover other related works, spanning bandit algo-
rithms and learned cache eviction.
Bandit Algorithms. Prior work on bandits studied several types
of side information by imposing additional structure on the space
of actions. These include graph-structured actions [1, 11, 43], latent
causal confounding [25, 38, 51], and noisy side observations [4, 48]
among others. These are mostly in the setting of cumulative regret.
Best-arm identi�cation with side information has been considered
for the causal confounding case in [23, 37], and more recently for
linear bandits in [26]. Our setting in Section 4.2 is that of best-arm
identi�cation with noisy side observations as in [4, 48].
Learned Cache Eviction. Recent works have proposed learning-
based CDN cache eviction policies. LFO [9], LRB [39], CACHEUS
[33], LeCaR [45], LHD [6], and DeepCache [30] all use learning
or prediction models to decide object eviction. Almost all of these
approaches are designed to optimize a single performance objective
like OHR. While Darwin focuses on studying HOC admissions, we
argue that our approach can be �exibly extended to learn CDN
eviction decisions with multiple objectives; we leave a systematic
exploration for future work.

8 CONCLUSION
We presented Darwin, a CDN cache management system that uses a
novel cache admission approach. Darwin is robust to tra�c pattern
changes, can optimize di�erent caching objectives, and accommo-
dates unrestricted action spaces. Darwin’s o�ine clustering and
expert prediction approaches provide crucial side information to
its online phase, where a bandit selection algorithm quickly selects
the right admission policy to use for the currently observed tra�c
pattern. Our evaluation shows that Darwin is highly e�ective at
adaptation and at optimizing both hit rates and operational costs
(such as disk writes and BMR) while o�ering high throughput at low
overhead. Besides cache management, our novel learning paradigm
of o�ine clustering and online expert selection is likely applicable
to auto-tuning other system components and is the subject of future
research.
Ethics Statement: Our work uses synthetic traces or anonymized
production CDN traces and raises no ethical concerns.

ACKNOWLEDGEMENT
We would like to thank our shepherd, Katerina Argyraki, and the
anonymous SIGCOMM reviewers for their invaluable feedback.
This work was supported in part by the National Science Foun-
dation under Grants CCF-2019844, CNS-2207317, CNS-2112471,
CNS-2106299, CNS-1763617, and the Machine Learning Lab (MLL)
at UT Austin.

REFERENCES
[1] A���, K., K�����, M., ��� S���, U. Graphical models for bandit problems. arXiv

preprint arXiv:1202.3782 (2012).
[2] A��, I., A���, A., G������, R. B., M�����, E. L., B�����, S. A., ��� L���,

D. D. Acme: Adaptive caching using multiple experts. In WDAS (2002), vol. 2,
pp. 143–158.

[3] A����. Overview of the cdn akamai. https://www.asioso.com/en/blog/
overview-of-the-cdn-akamai-b520, Feb 2021.

[4] A��������, A., P���������������, O., C��������, C., S�������, S., ���
S���������, S. Asymptotically-optimal gaussian bandits with side observations.
In International Conference on Machine Learning (2022), PMLR, pp. 1057–1077.

[5] B����, R. B., E�������, G., F�������, R., ��� K������, Y. Randomized admission
policy for e�cient top-k and frequency estimation. In IEEE INFOCOM 2017-IEEE
Conference on Computer Communications (2017), IEEE, pp. 1–9.

[6] B�������, N., C���, H., ��� C����, A. LHD: improving cache hit rate by max-
imizing hit density. In 15th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2018, Renton, WA, USA, April 9-11, 2018 (2018), S. Banerjee
and S. Seshan, Eds., USENIX Association, pp. 389–403.

[7] B�����, L. A. A study of replacement algorithms for a virtual-storage computer.
IBM Systems journal 5, 2 (1966), 78–101.

[8] B�����, L. A. A study of replacement algorithms for a virtual-storage computer.
In IBM Systems journal (1996), vol. 5, pp. 78–101.

[9] B�����, D. S. Towards lightweight and robust machine learning for CDN caching.
In Proceedings of the 17th ACM Workshop on Hot Topics in Networks, HotNets 2018,
Redmond, WA, USA, November 15-16, 2018 (2018), ACM, pp. 134–140.

[10] B�����, D. S., S��������, R. K., ��� H�������B�����, M. Adaptsize: Orches-
trating the hot object memory cache in a content delivery network. In 14th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 17)
(2017), pp. 483–498.

[11] B����������, S., E�������, A., ��� S�����, N. B. Stochastic bandits with
side observations on networks. In The 2014 ACM international conference on
Measurement and modeling of computer systems (2014), pp. 289–300.

[12] C���, F., S��������, R. K., ��� T�����, M. End-user mapping: Next generation
request routing for content delivery. InACMSIGCOMMComputer Communication
Review (2015), vol. 45, ACM, pp. 167–181.

[13] C���������, L., ��� C�����, G. Role of aging, frequency, and size in web
cache replacement policies. In High-Performance Computing and Networking: 9th
International Conference, HPCN Europe 2001 Amsterdam, The Netherlands, June
25–27, 2001 Proceedings 9 (2001), Springer, pp. 114–123.

[14] D�����, J., M����, B. M., P�����, J., P�����, H., S��������, R. K., ���W����,
W. E. Globally distributed content delivery. IEEE Internet Computing 6, 5 (2002),
50–58.

[15] D�������, D. P., ��� P��������, A. Concentration of measure for the analysis of
randomized algorithms. Cambridge University Press, 2009.

[16] D��������, D., R����, R., M�����, A., W���, G., D�����, J., E���, E., S������, L.,
H�����, M., J������, D., W���, K., �� ��. The design and operation of cloudlab.
In USENIX Annual Technical Conference (2019), pp. 1–14.

[17] E�������, G., F�������, R., ��� M����, B. Tinylfu: A highly e�cient cache
admission policy. ACM Transactions on Storage (ToS) 13, 4 (2017), 1–31.

[18] F���������, T. A. S. Apache tra�c server. https://tra�cserver.apache.org/,
2018. Accessed: 2023-01-30.

[19] G�������, A., ��� K�������, E. Optimal best arm identi�cation with �xed
con�dence. In Conference on Learning Theory (2016), PMLR, pp. 998–1027.

[20] G���, Y., Z����, X., ��� G��, Z. Caca: Learning-based content-aware cache
admission for video content in edge caching. In Proceedings of the 27th ACM
International Conference on Multimedia (2019), pp. 456–464.

[21] J����, J., ��� D�����, M. Cost-sensitive cache replacement algorithms. In The
Ninth International Symposium on High-Performance Computer Architecture, 2003.
HPCA-9 2003. Proceedings. (2003), IEEE, pp. 327–337.

[22] K������, V., S����������, A., G�������, S., ��� S��������, R. K. Rl-cache:
Learning-based cache admission for content delivery. In Proceedings of the 2019
Workshop on Network Meets AI & ML (2019), pp. 57–63.

[23] L��������, F., L��������, T., ��� R���, M. D. Causal bandits: Learning good
interventions via causal inference. In Advances in Neural Information Processing
Systems (2016), pp. 1181–1189.

[24] L��������, T., ��� S���������, C. Bandit algorithms. Cambridge University

992

https://www.asioso.com/en/blog/overview-of-the-cdn-akamai-b520
https://www.asioso.com/en/blog/overview-of-the-cdn-akamai-b520
https://trafficserver.apache.org/

Darwin: Flexible Learning-based CDN Caching ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Press, 2020.
[25] L�, L., C��,W., L�������, J., ��� S�������, R. E. A contextual-bandit approach to

personalized news article recommendation. In Proceedings of the 19th international
conference on World wide web (2010), pp. 661–670.

[26] L�, Z., R������, L., N�����, H., J�������, K., ��� J���, L. Instance-optimal pac
algorithms for contextual bandits. arXiv preprint arXiv:2207.02357 (2022).

[27] M����, B. M., ��� S��������, R. K. Algorithmic nuggets in content delivery.
ACM SIGCOMM Computer Communication Review 45, 3 (2015), 52–66.

[28] M�A�������, S., B���, B., T�������M�����, J., Y���, J., G��������, S., L�, J.,
B�����, D. S., B�������, N., ��� G�����, G. R. Kangaroo: Theory and practice
of caching billions of tiny objects on �ash. ACM Trans. Storage 18, 3 (2022),
21:1–21:33.

[29] M�D������, C. Concentration. Probabilistic methods for algorithmic discrete
mathematics (1998), 195–248.

[30] N��������, A., V����, S., R������, E., B�����, P., ��� Z����, Z. Deepcache:
A deep learning based framework for content caching. In Proceedings of the 2018
Workshop on Network Meets AI & ML, NetAI@SIGCOMM 2018, Budapest, Hungary,
August 24, 2018 (2018), ACM, pp. 48–53.

[31] N�����, E., S��������, R. K., ��� S��, J. The Akamai Network: A platform for
high-performance Internet applications. ACM SIGOPS Operating Systems Review
44, 3 (2010), 2–19.

[32] R����, L., ��� V�������, L. Replacement policies for a proxy cache. IEEE/ACM
Transactions on networking 8, 2 (2000), 158–170.

[33] R��������, L. V., Y����, F. B., L����, S., P��, E., R���������, R., L��, J., Z���,
M., ��� N���������, G. Learning cache replacement with cacheus. In FAST
(2021), pp. 341–354.

[34] S�����, A., ��� S��������, R. K. Tragen: a synthetic trace generator for realistic
cache simulations. In Proceedings of the 21st ACM Internet Measurement Conference
(2021), pp. 366–379.

[35] S������, F. B., C���������, B. B., O����, R., A���������, I. S., ��� U�����, Ö.
A �nancial cost metric for result caching. In Proceedings of the 36th international
ACM SIGIR conference on Research and development in information retrieval (2013),
pp. 873–876.

[36] S�����, K., B�������, O., K�������, E., M�������, M., ��� S��������,
R. K. Akamai dns: Providing authoritative answers to the world’s queries. In
Proceedings of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and protocols for
computer communication (2020), pp. 465–478.

[37] S��, R., S��������, K., K�������, M., D������, A., ��� S���������, S. Con-
textual bandits with latent confounders: An nmf approach. In Proceedings of
the 20th International Conference on Arti�cial Intelligence and Statistics (2017),
pp. 518–527.

[38] S�����, N., B���, S., S��������, K., ��� S���������, S. On under-
exploration in bandits with mean bounds from confounded data. arXiv preprint
arXiv:2002.08405 (2020).

[39] S���, Z., B�����, D. S., L�, K., ��� L����, W. Learning relaxed belady for content
distribution network caching. In 17th USENIX Symposium on Networked Systems
Design and Implementation (2020).

[40] S���������, K., T�����, S., J�, Y., K�������, M., F�����, K., A��, S., M�������,
N., A���, M., U���������, S., ��� Y�����, S. Popcache: Cache more or less
based on content popularity for information-centric networking. In 38th Annual
IEEE conference on local computer networks (2013), IEEE, pp. 236–243.

[41] S����������, A., F���, M., K�������, M., ��� S��������, R. K. Footprint
descriptors: Theory and practice of cache provisioning in a global cdn. In Pro-
ceedings of the 13th International Conference on emerging Networking EXperiments
and Technologies (2017), pp. 55–67.

[42] S����������, A., K�������, M., S��������, R. K., ��� S�����, S. Midgress-
aware tra�c provisioning for content delivery. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20) (July 2020), USENIX Association, pp. 543–557.

[43] V����, M., M����, R., K�����, B., ��� K����, T. Spectral bandits for smooth
graph functions. In International Conference on Machine Learning (2014), pp. 46–
54.

[44] V�����, G., R��������, L. V., M�������, W. A., L����, S., L��, J., R���������,
R., Z���, M., ��� N���������, G. Driving cache replacement with ml-based
lecar. In HotStorage (2018), pp. 928–936.

[45] V�����, G., R��������, L. V., M�������, W. A., L����, S., L��, J., R���������, R.,
Z���, M., ��� N���������, G. Driving cache replacement with ml-based lecar.
In 10th USENIX Workshop on Hot Topics in Storage and File Systems, HotStorage
2018, Boston, MA, USA, July 9-10, 2018 (2018), A. Goel and N. Talagala, Eds.,
USENIX Association.

[46] W��������. Stack distance, 2023. https://en.wikipedia.org/wiki/Cache_
performance_measurement_and_metric.

[47] W�, K.�L., Y�, P. S., ���W���, J. L. Segment-based proxy caching of multimedia
streams. In Proceedings of the 10th international conference on World Wide Web
(2001), pp. 36–44.

[48] W�, Y., G�����, A., ��� S���������, C. Online learning with gaussian payo�s
and side observations. Advances in Neural Information Processing Systems 28
(2015).

[49] Y��, G., L�, J., ��� T������, D. Learning from optimal caching for content
delivery. InCoNEXT ’21: The 17th International Conference on emerging Networking
EXperiments and Technologies, Virtual Event, Munich, Germany, December 7 - 10,
2021 (2021), G. Carle and J. Ott, Eds., ACM, pp. 344–358.

[50] Y���, J., S�����, A., B�����, D. S., R�����, K., ��� S��������, R. K. C2dn:
How to harness erasure codes at the edge for e�cient content delivery. In 19th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 22)
(2022), pp. 1159–1177.

[51] Z����, J., ��� B���������, E. Transfer learning in multi-armed bandit: A
causal approach. In Proceedings of the 16th Conference on Autonomous Agents and
MultiAgent Systems (2017), pp. 1778–1780.

[52] Z����, Q., X����, Z., Z��, W., ��� G��, L. Cost-based cache replacement and
server selection for multimedia proxy across wireless internet. IEEE Transactions
on Multimedia 6, 4 (2004), 587–598.

A APPENDIX
Appendices are supportingmaterial that has not been peer-reviewed.

A.1 O�line Clustering and Expert Sets
We assume that each o�ine-collected tra�c trace contains se-
quences of requests indexed by a triple of the ID, size, and time-
stamp associated with the requested object.
Forming the clusters: For each trace, we compute a variety of sta-
tistics to use in clustering. In our setting, we found the following
statistics to serve as useful features; we note Darwin allows the
CDN server operators to use other features, too. The features are:
(a). Average request size, (b). Vector of �rst = average inter-arrival
times: The =C⌘ inter-arrival time is the time elapsed between = + 1
successive requests with the same ID, and (c). Vector of �rst< aver-
age stack distances; the<C⌘ stack distance measures the cumulative
size of all requests received between< + 1 successive requests with
the same ID. The averages above are over all the choices of object
IDs; =,< are hyperparameters. Together, these statistics summarize
the trace and serve as features to cluster traces using the -means
clustering algorithm. The total number of clusters #2;DBC4AB to be
formed can also be tuned as necessary.
Clusters to experts sets: We evaluate the HOC hit rate of each ex-
pert over all the traces o�ine. For each trace, we collect experts
that achieve hit rates within \ = 1% of its best-performing expert
to form the trace-level "best expert set". We then take the union of
the trace-level best expert sets of all traces in a cluster to form the
cluster-level best expert set.

This o�ine process results in a map from the features to a set of
experts that are best suited for these features. There are two reasons
that motivate the association process: (a). The cluster-level best
expert sets can potentially be much smaller than the total number
of available experts, (b). The \ = 1% threshold above potentially
captures the true best experts of the traces with similar features that
were not present in the logs. Both these reasons will help accelerate
learning in the online phase of the caching process.

A.2 Proofs of Theorems in Section 4.2
In our analysis, we assume that rewards are sampled from Gauss-
ian distributions of known means, whereas in the experiments,
the rewards (e.g., hit rates) are bounded over [0, 1]. The choice of
Gaussian rewards is intentional because it leads to closed-form ex-
pressions and thus provides greater insight into the bene�ts of the
algorithm (e.g., $ (1) with respect to , the number of experts, as
opposed to linear dependence without our approach). Our methods

993

https://en.wikipedia.org/wiki/Cache_performance_measurement_and_metric
https://en.wikipedia.org/wiki/Cache_performance_measurement_and_metric

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA J. Chen, et al.

apply with more generality (and can be numerically evaluated) and
readers can replace the Gaussian-speci�c quantities we use with
their respective counterparts and deploy the strategy we develop.

We present the proofs of our theoretical results and some dis-
cussions around the same here. Our analysis follows similar ar-
guments to that of the Track and Stop algorithm of [19] for stan-
dard bandit feedback (We also refer to Chapter 33 in [24] for more
discussions). Owing to our increased feedback through the cross-
expert prediction networks and our modi�ed estimators in Equa-
tion 1, we require novel concentrations inequalities to establish the
soundness of Algorithm 1 as in Theorem 1. Recall that any triple
(c, g,k) of expert sequence selection policy, stopping time and ex-
pert recommendation rule (respectively) is said to be X�sound if
P`,⌃,c (k (ˆ̀g) < 8⇤ (`))  X .

We will �rst establish any-time concentration bounds on the
estimators ˆ̀8 (C) around their mean `8 that do not depend on the
policy used to design the expert selection sequence. These will
instruct our design for the threshold function VC (X, ⌃).

A.2.1 Concentration Bounds for Estimators in Equation 1.

L���� 3. Let f<8=,f<0G ," and ^ be as de�ned in Theorem 1.
Then, for some constant ⇠ , we have that for any time C ,

P

 ’
8=1

(ˆ̀8 (C) � `8)2 � f2<0G +
 "2

2^

r
log(2/X)
⇠C

!
 X .

Proof: In order to prove these results, we will use a variant of
McDiarmid’s inequality with bad events as in [29]; speci�cally,
we apply Theorem 7.8 of [15]. To this end, we de�ne the event
E = {8C,88,.8 (C) 2 [�","]} (E⇠ is our ‘bad event’). We assume
E holds (and suppress the conditioning notation to ease presenta-
tion) until otherwise mentioned. We de�ne the function

5 (⇢1, {.8 (1)}, ..., ⇢C , {.8 (C)}) =
 ’
8=1

©≠≠
´

ÕC
==1

.8 (=)
f2
⇢= ,8ÕC

==1
1

f2
⇢= ,8

� `8
™ÆÆ
¨

2

.

Note that the arguments of this function are random variables:
.8 (C) is the reward obtained from expert 8 in round C and ⇢C is the
deployed expert in this round. To apply Theorem 7.8 of [15], we need
to show that the expected value of this function is bounded and that
the function satis�es the bounded di�erence criteria therein. The
former is guaranteed as since the expected value of the 5 (·) is only
a function of {`8 } 8=1 and {f 9,8 }

8, 9=1. By assumption,max82 [] `8 <

1 and max8, 9 2 [] f 9,8 < 1 and thus, the expected value is �nite.
We are only left to set up the bounded di�erences appropriately. For
this, we will treat the changes in ⇢= and those in .8 (C) separately.
Case 1: .8 (<) ! . 0

8 (<)

5 (⇢1, {.8 (1)}, ...,.8 (<), ..., ⇢C , {.8 (C)})

� 5 (⇢1, {.8 (1)}, ...,. 0
8 (<), ..., ⇢C , {.8 (C)})

=
©≠≠
´

Õ
=<<

.8 (=)
f2
⇢= ,8

+
.8 (<)

f2
⇢< ,8

d8 (C)
� `8

™ÆÆ
¨

2

�
©≠≠
´

Õ
=<<

.8 (=)
f2
⇢< ,8

+
. 0

8 (<)

f2
⇢= ,8

d8 (C)
� `8

™ÆÆ
¨

2

=

.8 (<)

f2⇢<,8d8 (C)

!2
�

. 0
8 (<)

f2⇢<,8d8 (C)

!2

+ 2 ·
✓

.8 (<)

f2⇢< ,8 d8 (C)
�

. 08 (<)

f2⇢< ,8 d8 (C)

◆
·
©≠≠
´

Õ
=<<

.8 (=)
f2
⇢= ,8

d8 (C)
� `8

™ÆÆ
¨

Treating the two parts separately, we have that������

.8 (<)

f2⇢<,8d8 (C)

!2
�

. 0
8 (<)

f2⇢<,8d8 (C)

!2������ 
�����
.8 (<)

2
� . 0

8 (<)
2

d8 (C)2f4⇢<,8

�����

"2f4<0G
C2f4<8=

=
"2

C2^2
,

2

�������
.8 (<) � . 0

8 (<)

f2⇢<,8d8 (C)

©≠≠
´

Õ
=<<

.8 (=)
f2
⇢= ,8

d8 (C)
� `8

™ÆÆ
¨

�������


4"f2<0G
Cf2<8=

�������

Õ
=<<

.8 (=)
f2
�= ,8

d8 (C)
� `8

�������


4"
C^

✓
" (C � 1)

C^
+ 1

◆
.

Combining these, we get

|5 (⇢1, {.8 (1)}, ..., ⇢<,.1 (<), ...,.8 (<), (<), ..., ⇢C , {.8 (C)})

� 5 (⇢1, {.8 (1)}, ..., ⇢<,.1 (<), ...,. 0
8 (<), (<), ..., ⇢C , {.8 (C)}) |


4" (" � ^)

C^2
+ >

✓
1
C

◆
(4)

Case 2: ⇢< ! ⇢ 0<

5 (⇢1, {.8 (1)}, ..., ⇢<, {.8 (<)}, ..., ⇢C , {.8 (C)})

� 5 (⇢1, {.8 (1)}, ..., ⇢ 0<, {.8 (<)}, ..., ⇢C , {.8 (C)})

=
 ’
8=1

26666664
©≠≠
´

Õ
=<<

.8 (=)
f2
⇢= ,8

+
.8 (<)

f2
⇢< ,8Õ

=<< f
�2
⇢=,8

+ f�2⇢<,8

� `8
™ÆÆ
¨

2

�

©≠≠≠
´

Õ
=<<

.8 (=)
f2
⇢= ,8

+
.8 (<)

f2
⇢0< ,8Õ

=<< f
�2
⇢=,8

+ f�2⇢0<,8

� `8
™ÆÆÆ
¨

237777775
=

 ’
8=1

(�2
8 ��

02
8) + (⌫28 + ⌫

02
8)

� 2` (�8 + ⌫8 ��0
8 � ⌫

0
8) + 2(�8⌫8 ��0

8⌫
0
8)

where

�8 =
1

d8 (C)

’
=<<

.8 (=)

f2⇢=,8
, �0

8 =
1

d 08 (C)

’
=<<

.8 (=)

f2⇢=,8

994

Darwin: Flexible Learning-based CDN Caching ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

⌫8 =
1

d8 (C)

.8 (<)

f2⇢<,8

, ⌫08 =
1

d 08 (C)

.8 (<)

f2⇢0<,8

d 08 (C) =
’
=<<

f�2⇢=,8 + f
�2
⇢0<,8 .

First, we have

|�2
8 ��

02
8 | =

 ’
=<<

.8 (=)

f2⇢=,8

!2
·

1

d8 (C)2
�

1
d 028 (C)

!

 "2⇠2
·

�����
1

(⇠ + f�2⇢<,8)
2 �

1
(⇠ + f�2⇢0<,8)

2

�����
In the above, ⇠ =

Õ
=<< f

�2
⇢=,8

. We can bound the second term
as: �����

1
(⇠ + f�2⇢<,8)

2 �
1

(⇠ + f�2⇢0<,8)
2

�����
=

�����
f4⇢<,8 (1 +⇠f

2
⇢0<,8)

2
� f4⇢< ;,8 (1 +⇠f

2
⇢<,8)

2

(1 +⇠f2⇢<,8)
2 (1 +⇠f2⇢0<,8)

2

�����


1
(1 +⇠f2<8=)

4

���f4
⇢< ,8�f

4
⇢0< ,8

+2⇠f2
⇢< ,8f

2
⇢0< ,8

(f2
⇢< ,8�f

2
⇢0< ,8

)

���

=
f2⇢<,8 + f

2
⇢0<,8 + 2⇠f2⇢<,8f

2
⇢0<,8

(1 +⇠f2<8=)
4

���f2⇢<,8 � f
2
⇢0<,8

���


(f2<0G � f2<8=) (f

2
<8= + f2<0G + 2⇠f2<8=f

2
<0G)

(1 +⇠f2<8=)
4

Therefore,

|�2
8 ��

02
8 |


"2⇠2

(f2<0G � f2<8=) (f
2
<8= + f2<0G + 2⇠f2<8=f

2
<0G)

(1 +⇠f2<8=)
4


"2

(C � 1)2 (1 + ^ + 2(C � 1)^) (1 � ^)
(1 + ^ (C � 1))4

=
2"2^ (1 � ^)C3

(1 + ^ (C � 1))4
+ >

✓
1
C

◆
(5)

Next, we have

|⌫28 � ⌫
02
8 |



�����.8 (<)

1

f4⇢<,8 (⇠ + f�2⇢<,8)
2 �

1
f4⇢0<,8 (⇠ + f�2⇢0<,8)

2

!�����
 "2

�����
1

(1 + f2⇢<,8⇠)
2 �

1
(1 + f2⇢0<,8⇠)

2

�����
 "2

�����
(f4⇢0<,8 � f

4
⇢<,8)⇠

2
+ 2⇠ (f2⇢0<,8 � f

2
⇢<,8)

(1 + f2⇢<,8⇠)
2 (1 + f2⇢0<,8⇠)

2

�����


"2

(1 + f2<8=⇠)
4 ·

���(f4⇢0<,8 � f
4
⇢<,8)⇠

2
+ 2⇠ (f2⇢0<,8 � f

2
⇢<,8)

���


"2

(f2<0G � f2<8=)
�
(f2<0G + f<8=2)⇠

2
+ 2⇠

�
(1 + f2<8=⇠)

4



"2
(C � 1) (f2<0G � f2<8=)

⇣
2 + (f2<8= + f2<0G)

C�1
f2
<0G

⌘
f<0G2 (1 + ^ (C � 1))4

=
"2

(C � 1) (1 � ^) (2 + (^ + 1) (C � 1))
(1 + ^ (C � 1))4

= O

✓
1
C2

◆
(6)

Next, we consider

�8 + ⌫8 ��
0
8 � ⌫

0
8 =

Õ
=<<

.8 (=)
f2
⇢= ,8

+
.8 (<)

f2
⇢< ,8

d8 (C)
�

Õ
=<<

.8 (=)
f2
⇢= ,8

+
.8 (<)

f2
⇢0< ,8

d 08 (C)

=
U + V

W + X
�
U + V 0

W + X 0

where

U =
’
=<<

.8 (=)

f2�⇢ ,8
, W =

’
=<<

1
f2⇢=,8

V =
.8 (<)

f2⇢<,8

, V 0 =
.8 (<)

f 02⇢<,8

X =
1

f2⇢<,8

, X 0 =
1

f 02⇢<,8

.

Thus,

�8 + ⌫8 ��
0
8 � ⌫

0
8

=
U (X 0 � X) + W (V � V 0) + VX 0 � V 0X

(W + X) (W + X 0)

=

 ’
=<<

.8 (=)

f2⇢=,8
� .8 (<)

’
=<<

1
f2⇢=,8

!

⇥

f2⇢<,8 � f

2
⇢0<,8

f2⇢<,8f
2
⇢0<,8

!
·

1
(W + X) (W + X 0)

=

 ’
=<<

.8 (=)

f2⇢=,8
� .8 (<)

’
=<<

1
f2⇢=,8

!

⇥

f2⇢<,8 � f
2
⇢0<,8

(1 +⇠f2⇢<,8) (1 +⇠f
2
⇢0<,8)



 ’
=<<

.8 (=)

f2⇢=,8
� .8 (<)

’
=<<

1
f2⇢=,8

!
·

f2⇢<,8 � f
2
⇢0<,8

(1 +⇠f2<8=)
2

=) |�8 + ⌫8 ��
0
8 � ⌫

0
8 | 

2"⇠ (f2<0G � f2<8=)

(1 +⇠f2<8=)
2


2" (C � 1) (1 � ^)
(1 + (C � 1)^)2

=
2"C (1 � ^)

(1 + (C � 1)^)2
+ >

✓
1
C

◆
(7)

And �nally,

|�8⌫8 ��
0
8⌫

0
8 |

=

�������
.8 (<)

Õ
=<<

.8 (=)
f2
⇢= ,8

f2⇢<,8d
2
8 (C)

�

.8 (<)
Õ
=<<

.8 (=)
f2
⇢= ,8

f2⇢0<,8d
02
8 (C)

�������
 "2⇠

�����
1

f2⇢<,8 (⇠ + f�2⇢<,8)
2 �

1
f2⇢0<,8 (⇠ + f�2⇢0<,8)

2

�����

995

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA J. Chen, et al.

= "2⇠

�����
f2⇢<,8

(1 +⇠f2⇢<,8)
2 �

f2⇢0<,8

(1 +⇠f2⇢0<,8)
2

�����

= "2⇠

�������
f2⇢<,8 � f

2
⇢0<,8 +⇠

2f2⇢<,8f
2
⇢0<,8 (f

2
⇢0<,8 � f

2
⇢<,8)⇣

(1 +⇠f2⇢<,8) (1 +⇠f
2
⇢0<,8)

⌘2
�������


"2⇠⇣

1 +⇠f2<8=
⌘4

⇥

���f2⇢<,8 � f
2
⇢0<,8 +⇠

2f2⇢<,8f
2
⇢0<,8 (f

2
⇢0<,8 � f

2
⇢<,8)

���

"2⇠ (f2<0G � f2<8=) (⇠

2f2<8=f
2
<0G � 1)⇣

1 +⇠f2<8=
⌘4


"2

(C � 1) (1 � ^) ((C � 1)2^ � 1)
(1 + (C � 1)^)4

=
"2^ (1 � ^)C3

(1 + (C � 1)^)4
+ >

✓
1
C

◆
(8)

Combinging Equations (5), (6), (7) and (8), we get:

|5 (⇢1, {.8 (1)}, ..., ⇢<, {.8 (<)}, ..., ⇢C , {.8 (C)})

5 (⇢1, {.8 (1)}, ..., ⇢ 0<, {.8 (<)}, ..., ⇢C , {.8 (C)}) |



✓
3^ (1 � ^)C3

(1 + (C � 1)^)4
+

4"C (1 � ^)
(1 + (C � 1)^)2

◆
+ >

✓
1
C

◆


" ^ (1 � ^) (3" + 4^)C3

(1 + (C � 1)^)4
+ >

✓
1
C

◆


" (1 � ^) (3" + 4^)

16^3C
+ >

✓
1
C

◆
. (9)

Therefore, we canwrite that the function 5 (·) follows the bounded
di�erence condition of Theorem 7.8 in [15] using Equations 4 and
9 with

28 =(
⇠1 " (1�^) (3"+4^)

16^3C ; for changes in expert choices
⇠2" ("�^)

C^2 ; for changes in reward samples

Note that there are C random variables of the �rst type and C
random variables of the second. This leads to

(+1)C’
8=1

228 = C
✓
⇠1 " (1 � ^) (3" + 4^)

16^3C

◆2

+ C

✓
⇠2" (" � ^)

C^2

◆2

 O

✓
 2"4

^2C

◆

Applying McDiarmid’s inequality with ⇠ large, we get

P

 ’
8=1

(ˆ̀8 (C) � `8)2 � f2<0G + n

!

 P

 ’
8=1

(ˆ̀8 (C) � `8)2 � E

"
 ’
8=1

(ˆ̀8 (C) � `8)2
#
+ n

!

 exp
✓
�
2n2^2C
⇠ 2"4

◆

We can re-write this as

P

 ’
8=1

(ˆ̀8 (C) � `8)2 � f2<0G + n

!
 exp

✓
�

2n2^2C
⇠3 2"4

◆

() P

 ’
8=1

(ˆ̀8 (C) � `8)2 � f2<0G + "2
2^

q
log(2/X)
⇠3C

!

X

2
.

Recall that all arguments hitherto were under the event E =
{8C,88,.8 (C) 2 [�","]} with P(E⇠) 

X
2 by de�nition of " .

Thus, we get:

P

 ’
8=1

(ˆ̀8 (C) � `8)2 � f2<0G + "2
2^

q
log(2/X)
⇠3C

!

= P

 ’
8=1

(ˆ̀8 (C) � `8)2 � f2<0G + "2
2^

q
log(2/X)
⇠3C

, E

!

+ P

 ’
8=1

(ˆ̀8 (C) � `8)2 � f2<0G + "2
2^

q
log(2/X)
⇠3C

, E⇠
!

 P

 ’
8=1

(ˆ̀8 (C) � `8)2 � f2<0G + "2
2^

q
log(2/X)
⇠3C

����E
!

+ P(E⇠)

 X .

This completes the proof. ⌅

A.2.2 Proof of Theorem 1. We are now ready to prove our sound-
ness result. The analysis here is similar to that in Proposition 12
of [19] and Lemma 33.7 in [24]. The key di�erence being that we
leverage Lemma 3 in place of standard concentrations on empirical
estimators.
Proof: [Proof of Theorem 1] By de�nition of g,/C , we have that

{a 2 E0;C (â)} ✓

8>><
>>:
 ’
8=1

)8 (g)
 ’
9=1

(ˆ̀9 (C) � `8)2

2f28, 9
� Vg (X, ⌃)

9>>=
>>;

Without loss of generality, let 8⇤ (a) = 1. Thus, we have

P(1 < k (â (g)))
 P(a 2 E0;C (â (g)))

 P
©≠
´
 ’
8=1

)8 (g)
 ’
9=1

(ˆ̀9 (g) � ` 9)2

2f28, 9
� Vg (X, ⌃)

™Æ
¨

 P
©≠
´
 ’
9=1

(ˆ̀9 (g) � ` 9)2

2

 ’
8=1

)8 (g)

f28, 9
� Vg (X, ⌃)

™Æ
¨

 P
©≠
´

g

2f2<8=

 ’
9=1

(ˆ̀9 (g) � ` 9)2 � Vg (X, ⌃)
™Æ
¨

 P

 ’
8=1

(ˆ̀8 (C) � `8)2 � f2<0G +
 "2

2^

r
log(1/X)
⇠g

!

 X .

996

Darwin: Flexible Learning-based CDN Caching ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Where the �nal inequality follows from Lemma 3. ⌅

A.2.3 Proof of Theorem 2. We now move on to the proof of our
stopping time scaling. This follows the sequence of arguments used
in proving Theorem 33.6 in [24]. The key di�erences here are due
to the modi�ed de�nition of �(a,U) in Equation (2). Further, the
lack of explicit exploration in Algorithm 1 also changes how we
bound the average stopping time.
Proof:[Proof of Theorem 2] For an environment a , we have

�(a,U) = inf
a0 2E0;C (a)

 ’
8=1

U8

 ’
9=1

(` 9 � ` 09)
2

2f28 9

=
1
2
min
:<:⇤

F:⇤ ·F: · �2
:

F:⇤ +F:
:=

1
2
min
:<:⇤

5: (F:⇤ ,F:)

Here, we have :⇤ = 8⇤ (a) and F: =
Õ
8=1

U8
f2
8:
. Note that we have

/C = �(âC ,)8 (C)). We also de�ne

U⇤ (a) = argmax
U 2P �1

�(a,U),
1

2⇤ (a)
= �(a,U⇤ (a)).

Wenow study the quantityU⇤ (a), the optimal proportion of plays
for environmenta . SinceF: are a�ne inU8 and�(a, ·) is a minimum
of concave functions in F8 , �(a, ·) is thus concave in its second
argument. U⇤ (a) are to be chosen such that the correspondingF⇤

:
equalize the functions 5: (F⇤

:⇤ ,F
⇤

:) for all : < :⇤ to a constant.

Therefore, letting �(a) =
F⇤

:⇤
F⇤

:�
2
:

2(F⇤

:⇤
+F⇤

:)
, we have that the optimal

U⇤ (a) are solutions to the system of equations given by
 ’
8=1

U⇤8 (a) = 1, F⇤

: =
 ’
8=1

U⇤8 (a)

f2
8:

, F⇤

: =
2F⇤

:⇤�(a)

�2
:
F⇤

:⇤
� 2�(a)

.

The solutions are roots of some polynomial, and thus are �nite
in number. Further, due to concavity of �(a, ·), there are either
in�nitely many maxima or just one. Combining these two facts we
get that U⇤ (a) is unique.

We de�ne the metric 3 (a1,a2) = k` (a1) � ` (a2)k1 and note that
under this metric on the space of environments, the function U⇤ (a)
is continuous at every a .

We now establish the �niteness of the mean of 3 random times
that will help in establishing our results.
1. Consider the random time ga (n) = 1 + max{C : 3 (âC ,a) � n}.
We show that E[ga (n)] < 1 for any n > 0. For this, we de�ne the
following random variable:

⇤ = max
8>><
>>:
_ � 1 : 8C,3 (âC ,a) 

s
2f2<0G log (_ C (C+1))

C

9>>=
>>;

Since all rewards have variance upper bounded by f2<0G , union
bounding and Gaussian concentrations give that P(⇤ � G)  1

G .
Additionally, we have

E[log2 ⇤] =
π

1

0
P(_ � exp(

p
G))3G



π
1

0
exp(�

p
G)3G = 2.

Therefore, by de�nition, we have

ga (n)  1 +max
8>><
>>:
C :

s
2f2<0G log(⇤ C (C + 1))

C
> n

9>>=
>>;

=) E[ga (n)]  O(E[log2 ⇤]) = O(1) .

2. Consider the random time gU (n) = 1 + max{C : kU⇤ (âC) �
U⇤ (a)k1 � n}. Let F (n) = inf{G : 3 (F ,a)  G =) kU⇤ (F) �

U⇤ (a)k1  n}. By continuity of U⇤ satis�es that 8n > 0,F (n) > 0.
Therefore, E[gU (n)]  E[ga (F (n))] < 1.
3.De�ne the random time g) (n) = 1+max{C : k) (C)/C�U⇤ (a)k1 �

n}, where) (C) = {)1 (C), ...,) (C)} is the vector of the number of
arm plays. Using the de�nition ⇢C , for C � 2 gU (n/2)

n , we have

)8 (C)  max{)8 (gU (n/2)), 1 + C (U⇤8 (a) + n/2)}

 C
⇣
U⇤8 (a) +

n

⌘

=)
)8 (C)

C
� U⇤8 (a) 

n

.

Therefore, E[g) (n)]  E
h
2 gU (n/2)

n

i
< 1 for any n > 0 due to

�niteness of E[gU (n)] .
Finally, we now de�ne

gV (n) = 1 +max{C : C�(a,U⇤ (a)) < VC (X) + nC},

D (n) = sup
l,U

{�(l,U) : 3 (l,a)  n, kU � U⇤ (a)k1  n}

For any C � max{g=D (n), g) (n), gV (D (n))}, we have

C/C = C�(âC ,) (C)/))

� C
�
q (a,U⇤ (a)) � D (n)

�
� VC (X)

=) g  max{ga (n), g) (n), gV (D (n))}
=) E[g]  E[ga (n)] + E[g) (n)] + E[gV (D (n)]

=) lim sup
X!0

E[g]

log(1/X)
 lim sup

X!0

gV (D (n))

log(1/X)

Where the �nal inequality follows since ga (n), g) (n) do not depend
on X and gV (n) is deterministic.

Finally, with ⇠1 =
2^ ,⇠2 =

"2
2f2
<8=^

, we have the chain

C�(a,U⇤ (a)) < VC (X) + D (n)C

=) C
�
�(a,U⇤ (a)) � D (n)

�
< C ·⇠1 +⇠2 ·

p
C log(1/X)

=)
C

log(1/X)
<

✓
⇠2

�(a,U⇤ (a)) � D (n) �⇠1

◆2

Taking n ! 0, we have D (n) ! 0 and thus,

lim
X!1

E[g]

log(1/X)
=

✓
⇠2

�(a,U⇤ (a)) �⇠1

◆2
.

The result follows by substituting the values of ⇠1 and ⇠2. ⌅

997

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA J. Chen, et al.

Baseline Avg.Improvement Rate
f2s10 15.67
f2s20 4.84
f2s50 10.59
f2s100 19.21
f2s500 25.39
f2s1000 26.49
f3s10 22.10
f3s20 9.03
f3s50 7.17
f3s100 12.00
f3s500 17.05
f3s1000 18.09
f4s10 20.75
f4s20 14.76
f4s50 10.04
f4s100 12.10
f4s500 15.75
f4s1000 16.63
f5s10 34.45
f5s20 19.87
f5s50 13.78
f5s100 14.46
f5s500 16.94
f5s1000 17.68
f6s10 39.12
f6s20 24.28
f6s50 17.31
f6s100 17.21
f6s500 19.10
f6s1000 19.72
f7s10 43.07
f7s20 28.16
f7s50 20.65
f7s100 20.13
f7s500 21.63
f7s1000 22.20
Percentile 18.91
HillClimbing-�B = 10 8.00
HillClimbing-�B = 20 3.00
DirectMapping 7.21
AdaptSize 19.96

Table 2: "A Comparison of Average Improvement Rate of Darwin Relative to
Baselines"

(a) 100M Request Traces

Figure 8: Convergence of features over 100M-length online test traces: Cor-
responding plot to Figure 5a. Empirical features are within 10% of their true
values using #F0A<�D? = 3" .

A.3 Additional Results from Section 6
We present additional results from our evaluations.

(a) Expert Reduced Rate (b) Expert within \%

Figure 9: Expert number reduction after clustering: Figure 9a presents the
average reduction % of experts for di�erent values of cluster threshold \ .
Figure 9b displays the average fraction of experts in the expert sets within \%
of each other after clustering.

Figure 10: Out of Distribution performance of cross-expert neural network
predictors, in addition to in-distribution performance: Corresponding �gure
to Figure 5c

We summarize the full set of average rate of improvement re-
sults comparing Darwin against baselines (other static experts,
various con�gurations of HillClimbing, Percentile, AdaptSize and
Directmapping) in Table 2.

Figure 8a con�rms our claim that empirical features converge to
within a 10% threshold with just the �rst 3" requests.

Figure 9 presents additional data on how o�ine clustering and
expert set formation aids in reducing the number of experts under
consideration.

Figure 10 illustrates the generalization performance of the cross-
expert prediction networks by testing on mixtures that were not
trained on.

Figure 11 shows the result for the reduction in the number of ex-
perts when we consider a third dimension of recency in addition to
frequency and size. The original expert set size is 36 (6 frequencies,
2 sizes, 3 recencies) .

998

Darwin: Flexible Learning-based CDN Caching ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Figure 11: Expert reduction number after cluster experts, where experts use
three knobs

999

	Abstract
	1 Introduction
	2 Background
	2.1 Content Delivery Networks
	2.2 Cache Management System

	3 Motivation
	3.1 Drawbacks of Static Policies
	3.2 Learning the Admission Decisions

	4 Darwin Design
	4.1 Offline Training
	4.2 Online Expert Identification

	5 Implementation
	6 Evaluation
	6.1 Robustness to Traffic Changes
	6.2 Effectiveness of Darwin Components
	6.3 Support for Other Goals
	6.4 Overhead

	7 Related work
	8 Conclusion
	References
	A Appendix
	A.1 Offline Clustering and Expert Sets
	A.2 Proofs of Theorems in Section 4.2
	A.3 Additional Results from Section 6

