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Abstract

Automated individual tree crown (ITC) delineation plays an important role in forest remote sensing.
Accurate ITC delineation benefits biomass estimation, allometry estimation, and species classification
among other forest related tasks, all of which are used to monitor forest health and make important
decisions in forest management. In this paper, we introduce Neuro-Symbolic DeepForest, a convolutional
neural network (CNN) based ITC delineation algorithm that uses a neuro-symbolic framework to inject
domain knowledge (represented as rules written in probabilistic soft logic) into a CNN. We create rules
that encode concepts for competition, allometry, constrained growth, mean ITC area, and crown color.
Our results show that the delineation model learns from the annotated training data as well as the rules
and that under some conditions, the injection of rules improves model performance and affects model

bias. We then analyze the effects of each rule on its related aspects of model performance.

Index Terms
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I. INTRODUCTION

Remote sensing often uses aerial platforms to efficiently capture data from large geographic
regions. Commonly collected data includes hyperspectral imagery covering the visible and near
infrared wavelengths, LiDAR data, and synthetic aperture radar imagery [1], [2]. Forest ecologists
use remote sensing data to monitor forest health and make predictions of biomass and other forest
properties. This is usually done by integrating remote sensing data with allometric relationships
[3], [4]. One important metric used in allometric predictions is individual tree crown (ITC)

area, which can be estimated from remote sensing based crown delineation [5], [6]. Remote



sensing based crown delineation, particularly for closed canopy forests, remains an open area of
research [7]-[9]. The challenges of crown delineation result from the properties of trees as well
as limitations in remote sensing technology.

In densely forested areas neighboring tree crowns tend to overlap, may be similar in appear-
ance, and are often multi-storied, making it difficult to tell where one tree ends and another
begins. This is further complicated by the unpredictable growth patterns of trees; in short, tree
crowns grow in irregular shapes [10]. Adding to this, optical remote sensing technology, which
is commonly used for forest remote sensing, can suffer from limited pixel resolution and noise.
A typical resolution for visible wavelength optical remotely sensed data is on the order of 1m
per pixel or less [5]. Therefore, one pixel may contain the edge of one or more tree crowns or
may contain the edge of a tree crown as well as foreign objects.

Manual crown delineation is impractical as some forests have stand densities on the order
of hundreds of trees per hectare and remote sensing data can cover thousands of hectares thus
capturing millions of trees [3]. The problem of ITC delineation can be approached as a two step
process: tree detection followed by crown delineation. From a computer vision perspective, both
object detection and delineation are well researched, however, the application of each process
to forest remote sensing is nuanced. ITC delineation can be considered a specialized case of
image segmentation, where the goal is to group image pixels belonging to the same object
[11]. Automated approaches to crown delineation can be categorized into three groups by their
modality: those based on LiDAR, those based on optical imagery (HSI or RGB), and those based
on the fusion of both LiDAR and imagery. These categories can be further differentiated by type
of algorithm: non-neural [12], [13] and deep learning based [14], [15]. Non-neural algorithms
tend to borrow heavily from image analysis techniques, usually using LiDAR or pixel intensity to
find local peaks that are assumed to be crown centers, followed by the application of segmentation
algorithms, such as the watershed algorithm, to identify ITCs. Other non-neural algorithms apply
simpler statistical machine learning models, such as decision trees to identify crown boundaries.
Deep learning based methods, such as DeepForest [12], apply convolutional neural networks
(CNNs) to imagery to identify ITCs [8], [16].

In the past, an accurate comparison of algorithm performance was difficult due to lack
of benchmark datasets and closed-source algorithms, but recent studies suggest deep learning
methods outperform non-neural methods by as much as 54% in precision and 39% in recall

[7]. However, deep learning based methods are not without problems. They can require large



amounts of annotated data to train, suffer from dataset bias, and are difficult to tweak in cases
where patterns in the dataset are obfuscated by noise or redundancy.

We propose augmenting deep learning crown delineation models with a student-teacher net-
work (STN) capable of incorporating expert knowledge as a set of rules. Using probabilistic
soft logic (PSL), ecologists can encode their expert knowledge about a region. Because of
the powerful representational abilities of PSL, this knowledge could be anything from average
tree heights to leaf color constraints. The only limitation on the encoded rules is that the data
associated with those rules must also be represented within the dataset.

The STN is composed of two networks, one that acts as a student and one that acts as a
teacher. Using the encoded rules, the teacher-network guides the student-network’s training so
the student model encodes the rules as well as the information it learns from the dataset. With
this technique ITC delineation performance is improved and dataset biases can be induced or
removed.

In the remainder of this work we look at related works in section II, describe our data, method-
ology, and experiments in sections III and IV, and finally discuss our results and conclusions in

sections V and VL

II. RELATED WORK

The availability of aerial imagery along with the impracticality of manual analysis, has spurred
forest inventory algorithm research, including algorithms assessing forest structural properties,
forest type, and forest biophysical and biochemical properties [17]. Many of these algorithms,
and those that perform species classification in particular, require accurate ITC detection and
delineation in order to be useful. Non-neural crown delineation algorithms can be classified into 3
categories: valley-following, region-growth, and watershed. One of the earliest approaches to ITC
delineation that relied on knowledge formulated as a distinct set of rules within the framework
of a larger algorithm was proposed by Gougeon et al. in 1995 [18], [19]. Their valley-following
algorithm worked on the premise that there is variation in shading between canopies — in short
a gap. A set of rules was followed to trace out the pixel intensity valleys between canopies and
thus segment crowns. Gougen’s rules primarily use low level visual concepts and do not directly
incorporate any high level ecological abstractions. Despite its simplicity, the valley-following
algorithm had a reported accuracy of 81% when used with resolutions of 0.3m per pixel or

better. As noted by the paper’s author, the algorithm’s greatest shortcoming was its underlying



assumption that there are bands of shade between crowns. This limits the algorithm to low to
moderate density forest stands.

Valley-following algorithms were superseded by region-growing algorithms, which are com-
monly used in image segmentation [20]. Region-growing algorithms start with a seed pixel
whose properties are assumed to be prototypical of the region. Starting from the seed pixel,
neighboring pixels are examined in succession and added to the region if they are similar
to the seed. The process ends when boundary pixels reach a dissimilarity threshold. Region
growing algorithms were first used for image segmentation in the 1990’s and algorithms such
as Culvenor’s TIDA, became popular for ITC delineation in the early 2000’s [21]. Erickson
created a region-growth algorithm that incorporates fuzzy thresholding and a set of rules to
guide region growing, however, like the valley-following algorithm, the rules do not incorporate
high level ecological concepts [20]. Erickson’s algorithm achieved an overall accuracy of 73%.
A common problem with these algorithms comes from their method of choosing seed points.
TIDA and similar algorithms use local maxima in pixel intensity to choose seeds. These points
are assumed to be crown centers, however this may not always be the case [22].

ITC delineation algorithms based on variations of the watershed algorithm also became in-
creasingly researched in the early 2000’s [23]. Starting from a gray-scale image, the watershed
algorithm treats pixel intensities as if they were elevations on a topographical map. Following this
analogy, if the object were slowly submerged in water, the water would pool in regions of low
pixel intensity first. As the object is further submerged the pools of water collected would begin
to merge. The boundaries marked by the edge of each pool can be considered a segment. Wang
et al. used the watershed algorithm to segment aerial imagery into ITCs [24]. Wang’s algorithm
had an accuracy of 75.6%. Watershed segmentation ITC algorithms are subject to errors caused
by inconsistencies between gray-scale boundaries and tree crown boundaries. Error can also be
introduced into the algorithm when treetops deviate from the crown center. This is common
when tree growth is not vertical.

More recent approaches to ITC delineation often combine RGB or hyperspectral imaging
with point cloud data generated via LiDAR. Many of these algorithms, such as Dalponte’s
itcSegment, incorporate machine learning models [25]. Sackov et al. developed a purely LiDAR
based algorithm for ITC delineation using what they called a point-based approach [26]. Their
method uses allometric rules to improve the likelihood of crown detection. Their results showed

that their algorithm was reliable only under specific conditions. Kientz et al. give a comparison



of segmentation based ITC delineation algorithms in [27].

Though CNNs were developed in the 1990’s they have only recently been applied to crown
delineation [28]. Weinstein et al. show CNNs are a viable method for ITC delineation on a
range of forest types using a RetinaNet based model in their work [7], [29]. Braga et al. use
Mask-RCNN for crown delineation [8]. Though both models are similar, Mask-RCNN segments
detected objects allowing for the creation of irregularly shaped boundaries [30]. Weinstein’s
model, tested on various forest types, averages a F1 of 68%. Braga’s model has a global accuracy
of 91% but has more limited testing.

Neuro-symbolics is the branch of artificial intelligence concerned with bridging the gap
between learning and reasoning [31]. Connectionist machine learning models, such as neural
networks, excel at learning from experience but lack the ability to reason (in a way that’s
understandable to humans) about what they learned. On the other hand, symbolic representations
of knowledge, such as those that incorporate propositional or first order logic (FOL) are useful for
reasoning and readily understood by humans, but ill fitted for learning. In learning applications,
rule based models generally perform poorly compared to connectionist models. The goal of
neuro-symbolics is to combine learning with reasoning ability, usually representing domain
knowledge as a set of rules, a knowledge base, or a knowledge graph that allows a connectionist
model to benefit from the symbolic representation of domain knowledge that is related to the
dataset.

Several recent works have applied neuro-symbolics to vision intensive ecological tasks, such
as the use of fine grained image classification (FGIC) for species classification in plants and
animals [32]-[34]. Xu et al. use a two level object detection model based on R-CNN for FGIC
of bird species [32]. The model uses species specific domain knowledge from a knowledge base
and relevant text to boost CNN performance by projecting the CNN predictions into the same
semantic embedding space as the knowledge base and text. Using this approach their model can
reason about which species is most likely in an image by measuring the similarity between the
projected CNN prediction and the embedded species descriptions from the knowledge base and
text. Xu et al.’s model was able to surpass the state of the art on the Cal-tech UCSD Bird dataset
[35].

Sumbul et al. use a similar approach for FGIC of tree species classification from remote sensing
imagery [34]. They add to the difficulty by testing their model in a zero shot learning scenario.

Their model consists of a combination of CNN and 3 separate sources of domain knowledge:



manually annotated attributes, relevant text corpora, and a hierarchical representation of the
species taxonomy. The CNN is used to create visual embeddings of images. The 3 auxiliary
data sources are also embedded or encoded before further processing. The model feeds the
visual and auxiliary data embeddings into a learned bilinear compatibility function that returns a
scalar value representing how closely the image matches a particular class. The results for each
class are fed into a softmax function to make a prediction. Using their model, Sumbul et al.
achieved an average accuracy of 14%, which is reasonable for zero shot learning.

CNN based models have several drawbacks. They require datasets on the order of thousands
of images or more to get reasonable results. Training CNNs is also computationally intensive,
requiring thousands of giga-flops to train [36]. The combination of large datasets and computa-
tional intensiveness makes working with CNN based models impractical without access to high
powered computing hardware such as GPUs or TPUs.

Our approach to neuro-symbolics uses CNNs and high level ecological concepts encoded as
a rule to improve ITC delineation performance. To the best of our knowledge we are the first

to apply neuro-symbolics to ITC delineation.

III. DATA AND METHODOLOGY

Though our methods can theoretically be applied to any machine learning RGB ITC delineation
model, our work is based on DeepForest. DeepForest is built around RetinaNet, a CNN with
31.9M trainable parameters, used to drive crown detection [29]. Like all deep CNNs, DeepForest
requires thousands of annotated images to train. DeepForest was trained using data from the
National Ecological Observatory Network (NEON), which annually collects remote sensing data
from 81 sites across the continental United States, Alaska, and Puerto Rico. LiDAR, RGB, and
hyperspectral imagery data are categorized by site and year, and are available for download
from the NEON website at no charge [37]. Weinstein et al. used 2018 NEON data products to
train DeepForest and create a benchmark dataset for ITC delineation [38]. The dataset consists of
annotated images divided into training and evaluation sets and further divided by site. Annotations
in the evaluation dataset are verified against field measured crowns when possible. To reduce the
burden of manually annotating large numbers of images, DeepForest uses a three step training
process consisting of self-supervised and supervised algorithms to generate a training set. The
backbone of the ITC delineation model is pre-trained on ImageNet. Then, a large weakly labeled

training set from a variety of forest-types is generated based on an unsupervised crown delineation



algorithm to create a set of transferable weights. Using transfer learning [39], these generalized
weights are used as starting points to retrain the model on smaller more region specific datasets

based on human labeled training data.

A. Knowledge Distillation and Posterior Regularization

A STN is an architecture that uses one or more teacher networks to guide the training of a
second network, the student [40]. This technique was proposed by Bucilua et al. as a means
of compressing a large or complex model into a smaller model [41]. It was later modified and
popularized by Hinton et al. to transfer knowledge from one model to another in a process
he named knowledge distillation [42]. In Gou’s taxonomy of knowledge distillation strategies,
Hinton’s method falls into the response-based knowledge distillation category where knowledge
is transferred through the response of the output layer of the teacher model [40].

Let the training set, D, consist of a set of points, X, where X € {z1,x9,...,x,} and a set
of labels, Y, where Y € {y1,¥s, ..., yn}. Each point x; € X is paired with its label y; € Y to
create D, where D = {(x1,x2), (€2,92), --., (Tn, y») }. In this example we focus on classification,
so let y be a 1-hot encoding such that y € {0,1}* and k is the number of classes. Using
response-based knowledge distillation, the student-network learns from both the training data
and the teacher-network through its loss function, which is a function of the teacher output,
student output, and ground-truth labels or prior distributions. In Hinton’s parlance, after the the
logits from the output layer of the teacher and student network are passed through a soft-max
layer, they are called soft-targets, z. Fig. 1 shows a generic student teacher network that uses
response-based knowledge distillation. 2z, and z; are the soft-targets from the student and teacher
networks respectively. The loss function for the entire network is composed of two losses, the
student-loss and the distillation-loss. The student-loss measures the student-network’s inference
skill relative to ground-truth labels. The distillation-loss measures the student network’s skill at
imitating the predictions of the teacher-network. Basing our example on a classification model
acting as the student in a STN, we can use cross-entropy loss to measure the student’s inference

skill relative to ground-truth as shown in (1).

Ls = Leop(y, z) (D

The distillation loss is a function of z; and z, as shown in (2). Treating the soft-targets as

distributions, a divergence measure such as Kullback-Leibler is commonly used as the distillation



4 L 4
¢ Distillation s Student

Loss Loss

-

Fig. 1. A generic response-based knowledge distillation student-teacher network and its loss functions.
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loss function [40].
Lp = L(z, ) ()

Thus, the response-loss is a function of Lp and Lg, £(Ls, Lp), commonly a linear combination
of the two. Models trained using knowledge distillation are shown to outperform the same model
trained on a dataset alone [42].

Prior to Hinton’s work Ganchev et al. produced a similar result using posterior regularization
[43]. Posterior regularization (PR) is similar to the STN concept. The loss function of a model
trained with PR includes a regularization term that essentially functions as the distillation loss.
To align Ganchev’s work with Gou’s terminology, let py be the student model with parameters

*

6. The divergence between an optimal distribution, ¢*, and the model’s posterior distribution,
po(y|z), are used as arguments in what is equivalent to a distillation-loss term. Distribution ¢*
is then equivalent to z; in that knowledge is passed from the teacher to the student through ¢*.

As originally formulated in [43], distributions () are constrained based on prior knowledge:

Q={q(Y) : Ej[o(X,Y)] < b}. )

In (3) @ is the set of distributions that satisfy a constraint. In this case, () contains distributions
where the expected value of the constraint feature, ¢, is bounded by b. In [43] the loss function

for model py is given as

L(0) = log(pe(Y[X)) + log(p(0)), 4)



where the first term is the log-loss of the model’s posterior and the second term is a prior on the
model’s parameters. Using Gou’s terminology, £(#) is the student-loss. Finally, Ganchev creates

the posterior regularized likelihood as

Jo(0) = L(0) — KL(Q|lps(Y|X)) ©)
where
KL(Q|lpo(Y]X)) = min K L(g(Y) [po(¥]X). ©®

The divergence term penalizes py for failing to match distribution ¢, making the divergence term
equivalent to the distillation loss and Jg the response loss. To train py, Jg is optimized with
respect to the bounded expected value of the constraint features. Ganchev shows that the primal

has closed form solution

= pe(Y]X) - 6905({;;\* - O(X,Y)} @)

where ¢* is the optimal distribution from set (), \* is a real number > 0, and

Z(\) = po(Y[X) - exp{—A"- (X, Y)} (8)

serves to normalize ¢*. See [43] for proof. Equation (7) can be geometrically interpreted as the
projection of py(Y|X) into a subspace constrained by ¢(X,Y") [43].

We have shown that elements of a response-based knowledge distillation STN are present
in PR. The next step is to build a framework to formalize the symbolic expression of domain
knowledge as a set of constraints and a means to inject that knowledge into neural models.
These concepts were incorporated into a single machine learning paradigm by Hu et al. [44].
Hu’s work builds on Ganchev’s by encoding constraints, ¢(X,Y’), in PSL and augmenting a
student-loss function with a distillation-loss term to transfer knowledge from a teacher-network.

PSL is framework for probabilistic reasoning built on FOL and fuzzy logic [45]. See section
III-B for more information. As in PR, [44] uses the projection of the student-network into a
rule regularized subspace to obtain z;. Because Hu’s framework can be applied to any neural
model and the domain knowledge is encoded in PSL, Hu uses the term logic harness rather than
student-teacher network. Using Hu’s framework, we modified DeepForest to have the architecture
shown in Fig 2. DeepForest is built around RetinaNet [29]. As shown in Fig. 5 RetinaNet has

classification and regression heads. The classification heads are used to predict object class while
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Fig. 2. Network architecture. The student-network (right side of the blue dotted line) is trained using annotated RGB images.
The annotations are shown in orange and predictions in dark green. The student-network is projected into a rule-regularized
subspace (blue arrow) to create the teacher-network (left side of the dashed blue line). The student-network is penalized for
failing to imitate the predictions of the teacher-network as well as incorrect inferences relative to ground-truth. The combined

loss is used to update the student-network through backpropagation.

regression heads are used to predict object location. As such, its loss function is composed of two
parts, one representing the classification loss and a second representing bounding box regression
loss. We call the loss from the classification heads L., and the loss from the regression heads
Lycq. We use the unmodified loss from RetinaNet as the student-loss and implement PR by
adding a distillation-loss term [44]. Because the student network generates two predictions, a
class and location, we modify our notation. We introduce location vectors. Location vectors
are 4-vectors, with elements representing the upper-left corner and the lower-right corner of a

bounding box:

2f_):<xmin7 Ymins Tmaz, ymax>- 9

We now represent the soft-targets, z, (10) and z; (11), as tuples composed of a class prediction
and a location vector. The class prediction is as a k-dimensional probability simplex and the

location vector is formatted as previously described.
2 = (§,1) (10)
2 = (s,v) (11

The response-loss is shown in (12) where N is the number of instances in a batch and 7 is a

function of step number with range [0, 1]. The parameter 7 is used to linearly blend the student-



loss with the distillation-loss and set how strongly the student-network imitates the teacher. Pi
is termed the imitation parameter in [44].
N
L= > (1= (Lan(®is ) + Leeglti85) ) + 7 L (21, 2) (12)

=1

LD = Lcln(sv @) + Lreg(v; i) (13)

For classification, L., is cross-entropy loss, in the case of DeepForest, which only has two
classes, binary cross entropy loss. For bounding box regression, L1 loss is used. As in [43],
the student-network is projected to create the teacher-network. For constraints that only affect
classification the teacher-network uses the same location predictions as the student-network,
v = t. Similarly, for constraints that only affect bounding box predictions, the teacher-network
uses the same classification predictions as the student-network, s = . Hu modifies (7) to work
with constraints written in PSL. The framework allows for the incorporation of multiple rules. In
(14) constraint function ¢(X,Y') is replaced with a set of rules written in PSL, but the projection
paradigm is the same. See [44] for a proof.

¢* o po(Y|X) - eg;p{ - Y Nl Y))} (14)

leL,g€G

In (14) ¢* is projection of py(Y|X) into a subspace constrained by the rules, where L is the set
of rules and Gj is the set of groundings for each rule. Each rule is paired with a constant, A,
where

R ={(R;,\)} where \; € [0,00). (15)

A represents the subjective confidence of the rule. C is a regularization parameter. In Hu’s
framework, ¢* is passed through a soft-max function prior to use as the prediction of the teacher-
network.

The resulting network is trained with standard optimization algorithms such as stochastic
gradient descent [46]. We develop the objective function, (16), from (12). In (16) 7 is the iteration
number and ¢ the student-network parameters. At the start of a training iteration, the network
weights, rules, 7, and C' are initialized. One batch of the training data is sampled. The training

data is forward-propagated through the student-network. Using (14) the teacher predictions are



computed. Using Equation (16) the error is back-propagated through the student-network and 6
is updated. The process is then repeated. The algorithm is summarized below.

1 N

(r4+1) _ in _ ). i —
9 arg Iglgél N Z(l 7T) (Lcln<y17 y2> + Lreg<t17 tz))

=1

+7-Lp(zf,2s) (16)

Algorithm 1 Logic Harness Training

INPUT:
D, dataset of images (X) and annotations (Y)
Rule set R = {(R1, \1), (R2, \2), ..., (R, A\p)}
Parameters: m, C, numEpochs
OUTPUT:
Trained network, py
METHOD:
Initialize weights, 6
for 1 to numEpochs:
for batch (X,Y) C D
25 < po(X)
2 < Eqn.(14)
0+ < Eqn.(16)

return py

B. Probabilistic Soft Logic

Rules are written using a relaxed version of probabilistic soft logic (PSL), a combination of
FOL and Lukasiewicz logic. FOL is a powerful and highly expressive framework where logical
expressions are composed of constants, variables, predicates, and functions linked by logical
operators “and”, “or”, “if”, and “not” [47], [48]. Predicates take a set of arguments as input
and return a value of true or false. When soft-logical operations are used they return a value
between 0 and 1 [49]. Functions accept arguments and return a constant of any kind. When used
with soft-logic function range is also limited to [0,1]. An atom is a predicate and its arguments.

A literal is an atom or a negated atom. A PSL rule can be weighted or unweighted. In our



framework the weight of a rule is represented by the rule’s A. Each rule has a precondition
and post condition, referred to as the body and head, respectively. In strict PSL a rule’s body
consists of a conjunction of literals and the head consists of a single literal or a disjunction of
literals. Being continuous, these expressions can be evaluated algebraically. Examples are shown

in equations (17) - (20).

A & B =max(A+ B —1,0) (17)
A

ANA N NAy =) (18)

AV B =min(A+ B, 1) (19)

-A=1-A (20)

PSL also allows for rules written in terms of arithmetic, using arithmetic operators. Arithmetic
rules constrain linear combinations of atoms with an equality or an inequality. Kimmig et al.
provide a good introduction to PSL [45]. We motivate an example of a simple set of rules
written in PSL with a potential use case of logic-harness augmented DeepForest. Assume that
we have a large image of trees in profile and we want to write rules to detect trees, by examining

rectangular subsections of the image. Given the two rules,

0.3 : hasLeaves(X) NisWoody(X) = isTree(X) (21)

0.8 : hasLeaves(X) A isWoody(X) A isTall(X)

= isTree(X), (22)

let X be a variable representing a subsection of the image. The rule predicates are hasLeaves,
1sWoody, isTall, and isTree. The atoms to the left of the arrows represent the body of the rule
and the atom to the right, the head of the rule. Expressed in natural language rule 1 reads, “if x
has leaves and is woody then there is a chance x is a tree”. Rule 2 reads, “if x has leaves and is
woody and tall then there is a chance that x is a tree”. The weights, 0.3 and 0.8, signify that the
second rule is more likely to be true than the first. A rule is evaluated by mapping each atom to
a soft truth value. This is called an interpretation, /. A rule, r, is satisfied if I(7poay) < I("head)-
Each rule can be expressed algebraically by evaluating the atoms and substituting the equations

for the operators listed in (17) - (20). Using (24), the first rule is expressed algebraically as



hasLeaves(X) + isWoody(X)
2

+isTree(X),1}. (23)

min{1 —

A= B=-AVDEB (24)

Encoded rules can be evaluated by simplifying expressions and transforming them into their

algebraic equivalents.

C. Data

We used data from 4 NEON sites: Niwot Ridge (NIWO), Teakettle Experimental Forest
(TEAK), San Joaquin Experimental Range (SJER), and Mountain Lake Biological Station (MLBS).
NIWO is an alpine forest in the Rocky Mountains of Niwot, Colorado, located at 40°03’N
latitude and 105°36°’W longitude [50], [51]. Its elevation is between 3,000-3,500 m. The mean
temperature is 1.5°C and its annual precipitation is 800 mm per year. The primary tree species are
lodgepole pine, subalpine fir, and Englemann spruce. The mean canopy height is 0.2 m [51] (all
canopy height values listed here include bare ground and the prevalence of bare ground at NIWO
is why this value is so small). The tree density is 1,726 stems per hectare. The NIWO dataset,
the largest of all datasets, contained 10,757 training annotations, 1,655 validation annotations,
and 1,624 testing annotations. The average ITC area for the NIWO training set was 4.12 m?.

TEAK is a coniferous forest located in California’s Sierra National Forest at 36°58” N latitude
and 119°1’ W longitude [52], [53]. Its elevation is between 1,900 and 2,300 m and the mean
annual temperature is 8°C. It receives an average of 1,222.5 mm precipitation per year. The
primary vegetation consists of Jeffrey pine, red fir, white fir, and lodgepole pine. The mean canopy
height is 35 m [52]. The TEAK dataset contained 4,514 training annotations, 885 validation
annotations, and 734 testing annotations. The average training set ITC area was 24.8 m?.

SJER is an oak savanna located at the foot of the Sierra Nevada Mountains in California at
37°5°45” N latitude and 119°43°45” W longitude [47], [48] [54], [55]. Its elevation is between
213 - 518 m and the mean annual temperature is 16.4°C. The mean annual precipitation is
539.6 mm. The predominant vegetation is blue oak, interior live oak, and foothill pine. The
mean canopy height is 21 m [54]. The SJER dataset contained 2,824 training annotations, 223
validation annotations, and 255 testing annotations. The average training set ITC area was 59.9

m2.
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Fig. 3. Example training images of sites from left to right: MLBS , NIWO, SJER, TEAK. Ground truth annotations are shown

in orange.

MLBS is a deciduous forest in the Appalachia Mountains of Virginia located at 37°22° 42”
N latitude and 80°31° 29.4492” W longitude [56]. Its elevation is 1,170 - 1,320 m and the
mean annual temperature is 8.8°C. The mean annual precipitation is 1,227mm. The primary tree
species are red maple and white oak. The mean canopy height is 18 m [56]. The MLBS dataset
contained 2,349 training annotations, 372 validation annotations, and 481 testing annotations.
The average training set ITC area was 24.0 m?.

The data was collected via NEON’s airborne observation platform (AOP), an array of remote
sensing instruments installed on a light aircraft. The instruments include a discrete and full-
waveform LiDAR, a digital camera, an imaging spectrometer, a GPS antenna, and an inertial
measurement unit (IMU) [57]. Data is collected from an above ground altitude of 1000 m. The
flights occur annually over all NEON sites during each forests’ peak greenness and occur in
conjunction with field surveys.

The RGB imagery has a resolution of 0.1 m per pixel. The resolution of the LiDAR point
cloud data varies, but averages 2 - 8 points per square meter [58]. The lidar point clouds are
used to generate canopy height model (CHM) rasters with a resolution of 1 m? per pixel. For
our experiments we used NEON’s L3 RGB and CHM data products which are 1 km? mosaiced
tiles stored separately in a co-registered geotiff format.

For training, model rasters larger than 500 pixels in either dimension were decomposed into
multiple rasters of 400 x 400 square pixels or less with 5% overlap. The train-test-split used
followed that used by [38], however for rule 3, we only used RGB rasters that also had a
corresponding canopy height model raster available. The validation datasets were created to be

similar in size to the test set. More information on the creation of the dataset can be found



in [38]. The annotation count and ITC area distributions for each dataset are summarized in
Table I and Fig. 4 respectively. Examples of images from each site are shown in Fig. 3. The

ground-truth tree crown annotations are shown in orange.

TABLE I

THE NUMBER OF ANNOTATED TREES COMPOSING THE TRAINING, VALIDATION, AND TEST SETS BY SITE.

Site Training Validation Testing
Annotations Annotations Annotations
NIWO 10,757 1,655 1,624
TEAK 4,514 885 734
SJER 2,824 223 254

MLBS 2,349 372 481

To support the incorporation of the ecology of competition, for each annotated tree in the
training set we measure the number of other annotated trees that touch or intersect its bounding
box. We use this metric as a measure of competition at each site. Tree functional traits are
highly dependent on species, but also influenced by environment. During growth, there is a
trade-off between vertical growth and horizontal growth. Dense stands limit crown expansion
due to mechanical interaction with neighboring crowns, while encouraging vertical growth. On
the other hand, lateral space promotes horizontal expansion: open-grown trees are shorter with
larger crowns throughout their life [59], [60]. Table II shows the number of trees in competition at
each site. MLBS has the most trees in competition with almost 100% of its population, followed
by NIWO, TEAK, and SJER. Table II also summarizes the percentage of trees that support
the assertion that competing trees have smaller than average crowns while non-competing have

larger than average crowns.
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Fig. 4. Box plot of the crown area distribution for each site.

D. Model

Deep Forest is built around Retinanet [29]. Retinet is a deep convolutional neural network
(CNN) for object detection. The network architecture is shown in Fig 5. The network consists
of a backbone, feature pyramid network (FPN) [61], and classification and regression heads.
The backbone is built from ResNet-50 using ImageNet pre-trained weights [62]. The backbone
provides the primary feature extraction. The FPN provides scale invariant feature detection.
The classification heads classify candidate objects. The classification heads use a version of
cross entropy loss. The regression heads localize candidate objects by generating bounding box

coordinates. The regression heads use F1 loss.
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Fig. 5. RetinaNet architecture. The ResNet backbone generates feature maps that are combined at different scales in the feature

pyramid network. Classification and regression heads perform detection and localization respectively.

Object detection networks come in two flavors, single stage and two-stage [29], [63]. Both
use the concept of anchor boxes [61]. Anchor boxes are a predefined set of bounding boxes of
a particular size and aspect ratio. Two stage networks use a region proposal network (RPN) to
reduce the number of candidate objects sent to classification and regression heads and are thus
bounding box sparse. Single stage networks lack a RPN and thus send thousands of times more
candidate objects to the classification and regression heads and are anchor box dense. RetinaNet
can produce 100K anchor boxes per feature map or more.

Single stage networks tend to have faster inference, while 2 stage networks have more accurate
classification and localization [29]. RetinaNet’s innovation was its ability to outperform two stage
models by employing focal loss. The poor performance of single stage object detection models
stemmed from the class imbalance between foreground and background candidate objects with
background candidate objects being in the majority. Focal loss reduces the loss contribution from
background objects by reducing the loss contribution from high confidence classifications like
background and increasing the loss contribution from low confidence foreground objects that the
model is intended to detect. With Focal-loss, RetinaNet outperforms two-stage models. Its fast
inference and high performance make it a popular choice for remote sensing applications.

The prediction process for RetinaNet occurs as follows: The convolutions are performed by
the ResNet backbone to produce feature maps at different scales. These are passed to the FPN.
The anchor boxes associated with each candidate object are in 3 aspect ratios, {1:2, 1:1, 2:1}
and each of those aspect ratios are at 3 scales {20,2%, 2%}.Only the top 1K predictions per
FPN level are passed to classification and regression heads. These top predictions are merged

and non-maximal suppression (NMS) is performed, removing any candidate objects with a class
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probability of less than 0.5. Each classification is assigned to 1 ground-truth object if it has an
intersection over union (IoU) > 0.5. If the IoU is between 0 and 0.4 the candidate object is

assigned to the background class.

E. Metrics

The ToU, also known as the Jaccard Index, is used to measure the overlap between predicted

and ground-truth bounding boxes. Given two bounding boxes A and B their IoU is given by

Aa'rea m B(l’f’@(l
Aarea U Barea 7

where A,c, and By, are the areas of box A and B respectively.

IoU = (25)

The primary metrics used to measure model performance are precision, recall, and macro-
F1. When a predicted bounding box has an IoU > 0.5 with a ground-truth bounding box it is
considered a true positive. If the IoU is less than 0.5 or it does not intersect with a ground-truth
bounding box it is considered a false positive. A ground-truth bounding box without a matching
prediction is a false negative.

Precision is defined as

TP
Precision = ———— 26
recision TP L FD’ (26)
where T'P is the number of true positives, and F'P is the number of false positives. Recall is
TP
- - 2
Recall TP+ FN 27

where T'P is the same as previously defined and F'N is the number of false negatives. The
equation used for macro-F1 is
2. Pr- Rec

F="—"_""" 28
! Pr + Rec (28)

where Pr is the precision, as defined in (26) and Rec is recall as defined in (27).
The root mean square error (RMSE) is used to measure the cumulative error between predicted

values and the ground-truth values. The RMSE is given by

1 i
RMSE = \| =D (i = 4:)", (29)

i=1
where y is the ground-truth value and  is the predicted value. The mean absolute error measures

the same concept, but is less sensitive to outliers than the RMSE. The MAE is given by the

equation

1 N
& 2 v =il (30)
=1
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Both RMSE and MAE are used to measure the cumulative difference between the predicted and
ground-truth ITC areas.

The Kullback-Leibler Divergence (KL-Divergence) is used to measure the difference between
two probability distributions. The output is a scalar value given by the equation

Dir(PIQ) = 3 Pla)log( L)

zeX )

where P(X) and (X ) are probability distributions. KL-divergence is not a true metric as it

P(x

( ) (1)
Qz
is not commutative. We use it to measure the difference between predicted and actual ITC area
distributions.

To measure rule enforcement we use the verification ratio as in [64]. Given a set of predictions,
)A/, let YR be the subset of Y that satisfies rule R. Then the verification ratio is defined as

_ Y,
ver. ratio = | AR|. (32)

Y|

IV. EXPERIMENTS

We develop 4 rules to demonstrate a variety of approaches to the injection of domain knowl-
edge into a crown delineation CNN. Rules 1 - 3 are designed to improve performance, while rule
4 is designed to alter model behavior without changing the dataset at the expense of performance.
This allows the model to be trained on the same dataset, but accomplish two different tasks.
Rules can be further subdivided based on the strength of their grounding in ecological domain
knowledge. Rules 1 and 4 have the weakest ecological basis and are more oriented towards
correcting or inducing bias in the model, whereas rules 2 and 3 have a stronger ecological
foundation. Rule 2 is designed to only operate in some contexts. Furthermore, rules 1, 3, and
4 feed into the model through the classification heads. Rule 2 feeds into the model using the
regression heads.

Much of ecology domain knowledge is site and species specific. Concepts that apply to one
site may need modification to be applied to another site or may not be applicable at all. There is
a great body of research on site and species specific allometry [59], [60], [65], [66]. Of particular
interest to this work is crown allometry. Stem diameter breast height (DBH) and stem height
are frequently studied in relation to crown area. These studies include modeling the crown area
distribution as well as fitting log-linear models for height crown area allometry. For the 4 sites
in this work, despite the canopies being composed of multiple species, the data does not include

species identities, therefore the rules applied are not species specific.
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A. Rule ]

For rule 1 we measure the mean area of the annotated crowns in the training set and use this
knowledge to improve test set performance. As shown in Fig. 4 crown area varies significantly
among sites. For example, the average crown area for trees at NIWO is an order of magnitude
less than the average crown area for trees at SJER. Since tree size distributions are highly right-
skewed most trees at a site will be smaller than the mean. In addition, in some cases DeepForest
produces size measurements that are somewhat larger than field measurements [67]. Therefore,
we use the following rule to incorporate mean ITC area into our model while acknowledging

the shape of the size distribution and potential overestimates of crown size by the model:

For all predictions, if the ITC area of a predicted tree is less than the site’s average ITC area,

it is probably a tree.

To encode this rule into PSL we create a function of ITC area whose range is (0, 1). We use the
sigmoid function as a soft unit step function flipped about the y-axis. We set the site average
crown area at the inflection point thus py(y|z) for crowns that are greater than average are

reduced. We call this function bboxSize. The equation for the function is

. 1
bboxSize(A) = 1 1 o—Fueia-Gtarea—A) 53

where kg, is a constant, fige, 15 the mean ITC area for the site, and “A” is the area of the
bounding box. We formulate Rule 1 in relaxed PSL as follows
g (1@ = 1) = bboxSize(Ames(?))+
A bboxSize(Apoy () s = 1(y:—i—)>. (34)

Using the notation from [44], 1 is an indicator function that returns 1 when its argument is true

and O otherwise. The “+” represents the positive class,
bboxSize(a), = bboxSize(a), (35)
and
bboxSize(a)- = 1 — bboxSize(a), (36)

Apor() is a function that takes a predicted bounding box vector and returns its area in pix-
els. Replacing “A” with the equation for “&” given in 17, the PSL for rule 1 simplifies to
bboxSize( Ao (1)) when y = 4 and 1 — bboxSize( Ay, (t)) otherwise.
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B. Rule 2

Rule 2 addresses the challenge of excessively large trees more directly by decreasing the
dimensions of the predicted bounding box for ITCs that are in the extreme tail of the empirical
size distribution. It does this while accounting for an additional piece of ecological knowledge,
which is that trees with very large canopy areas may occur naturally when there is no competition
from surrounding trees, and inversely, trees are likely to have a smaller canopy areas when there
is competition from surrounding trees. We do this by applying the domain knowledge as a PSL
statement, but we wanted to see if we could inject this knowledge through the regression heads
rather than the classification heads like rules 1, 3, and 4. We implement the output of the rule as a
vector and deviate from strict PSL by changing the range of the predicate to the reals. Changing
the output range to the reals allowed for finer control. The predicate used can be easily returned
to strict PSL by passing the real output through a sigmoid function. We use clipping to avoid
underflow and overflow from exponentiation. We assume that for a value of 0 the expression is
satisfied and the expression’s distance from 0 is used to measure distance from satisfaction.

First, for each site, we create a distribution of the bounding box widths and lengths from the
training set data. Like the area, this distribution is modeled as a Weibull distribution. We want
to reduce the size of bounding boxes with a width or length that falls outside of 98% of the
distribution on the right tail. By constructing separate tests of each dimension, we can control
for bounding box aspect ratio. Let # be a predicted bounding box of class tree for prediction 7.
As described in section III-A, ¢ has the form given in (9).

Let’s assume the optimum aspect ratio for bounding boxes at this site is 1:1. Thus the optimum

width and height, w* and h* respectively, are the same. We define width as

W = tymaz — temin (37)
and height as

h = tymax - tymin- (38)
Then let function d, be defined as

07 * - lwalrw
P CACARSOE (N o

w* — w, otherwise
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and d, be defined as

0,(h* — h) € [l 1,
0, - ( ) € [lins Lrn] “0)

h* — h, otherwise

where I}, U, lin, and [, are the right and left limits representing the cutoffs for the width and

height bounding box distributions respectively. We define function constrained as
constrained : t — (d,(w),d,(h)) 41)

To avoid applying this rule in contexts where trees with very large crown areas are expected to
occur, we incorporate the ecological concept of competition as defined in section III-C. The rule

can be interpreted in natural language as

If a prediction is in competition then there is a chance its corresponding bounding box should

be constrained.

We write this in PSL as
Y(g,t) isComp((9,t)) = constrained(t)) (42)

where isC'omp is true if 3 intersects another prediction’s bounding box and false otherwise. The
coordinates of ¢ are converted to homogeneous coordinates. We use the components ¢* from
(14) as the scaling coefficients of an affine transformation that scales prediction ¢ while keeping

its original center [68].

C. Rule 3

Rule 3 imposes the well established ecological pattern of an allometry between tree height and
crown area on the model [69], [70]. For each site the co-registered RGB images are combined
with the LIDAR-based CHM to provide data on tree height for training and testing. The CHM
is used to create a log-linear model of height to crown area. Following the method given in
[51] ordinary least squares on log-transformed data is employed for fitting the regression model.

Crown area as a function of height is given by the power function

Aie=b-h° 43)
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where a and b are constants that can vary by forest type, A;;. is the ITC area, and h is maximum
height detected within the ITC bounding box. The function bboxSize is modified, replacing the
constant, i, With the fitted function (43):

1
1 T ¢ Fsig (bho—A)

bbox HC A(A) (44)

Because we have access to the CHM in this context it is also used to encode ecological knowledge
about minimum tree height. This is done by creating a mask that has the same dimensions as the
CHM and RGB image. The value of the mask is set to zero where the CHM height is less than 2
m and 1 everywhere else. Heights of 2-3 m are typically considered reasonable approximations
for the minimum height of trees that can be detected in remote sensing data. Morphological
dilation is applied to the mask with a 7x7 kernel [58] [68]. The mask is then multiplied by the
RGB image, effectively removing areas that are unlikely to have trees. Rule 3 is then applied
using the same PSL in Rule 1, but with the modified bboxSize function, bbox HC' A, describing
the ecological allometry. This combination of mask and rule provides integrated information of
two sources of ecological knowledge about how tree crowns are related to tree height.
Because DeepForest is designed purely for RGB imagery, we incorporate the CHM into the
RGB rasters as a 4th channel and modify the dataset object to apply the mask and remove the
4th channel prior to passing the RGB raster to RetinaNet. Then RetinaNet receives the masked
raster and the CHM as separate tensors. In this way, RetinaNet is able to incorporate the CHM
model without major changes to its architecture allowing for better comparisons to the original
model. We also alter the baseline for rule 3. The rule 3 augmented version of DeepForest is

compared to the predictions of plain DeepForest on the masked RGB rasters.

D. Rule 4

Rule 4 is used to demonstrate that in addition to improving model performance neuro-symbolic
approaches can be used to modify what models can do. This is different from the other rules in
that it changes the general behavior of the model. This rule modifies the basic DeepForest model
to ignore dead trees. While identification of dead trees from remote sensing is challenging, it
is generally associated with a lack of green coloration during the growing seasons [71]-[73].
Traditional approaches to this would use different training data with alive and dead labels. Instead

we add an additional rule without relabeling the data.
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For this experiment we concentrate on TEAK, as it is the dataset with the largest number
of easily identifiable dead trees. The TEAK test set is composed of 734 annotated trees. To
determine if we could qualitatively adjust the behavior of the model we used a rule based on the
appearance of alive vs. dead trees, with alive trees having a reasonable amount of green foliage
(NEON imagery is collected during the growing season) and dead trees having little to no green
and lots of brown. For analysis, we placed each tree in 1 of 3 categories: trees composed only
of > 20% green pixels, trees composed only of > 20% brown pixels. And trees composed of
both > 20% green and > 20% brown pixels. We consider the trees with > 20% green to be
living regardless of their brown composition. Twenty percent was empirically determined to give
observably differentiable results between a tree that appears living and dead. Table IV gives the
count for each category of tree.

After converting training images to the hue, saturation, and value (HSV) color space, values
for the three components were chosen that include the majority of the green trees in the training
set. Unlike RGB, HSV is a non-linear color space that better matches human intuition regarding
colors [68]. In the HSV space it is easier to select for color due to the arrangement of hue on
the color cylinder [74]. We chose the values of HSV between (18, 47, 0) and (44, 161, 227),
representing the green color found in living trees at the site. For brown we use HSV values
between (2, 68, 224) and (20, 132, 255). The brown color limits were only used to categorize
the trees for analysis purposes.

We create a function named isGreen to represent the probability a prediction is a tree based
on the percentage of green pixels it contains. We measure the percentage of green pixels in a
predicted bounding box by first converting the sub-image within the bounding box to the HSV
color space and then counting the number of green pixels. Let A, be the set of pixels in the

bounding box defined by . Then the cardinality of set A, is given by
|Ab’ = Abboz (tA) (45)

Then for pixels in set A, let A, be the pixels that are within the HSV green color boundaries
defined above such that A, C A,. Let function inRange count the number of pixels within t on

image [ that are within the HSV green color limits such that

|A,| = inRange(1,1). (46)
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Then let

|‘ 19'
=7 47
by | Ab| ( )
Again using the sigmoid, we create the function isGreen as

1

1+ c(100pg—t) (48)

isGreen(p,) =

where, ¢, is between [0, 100] representing the threshold between the color composition for living
and dead trees.

Rule 4 uses a PSL statement similar to rule 1 (see III), but replaces the function bboxSize
with the function 7sGreen. Unlike rule 1, during training, rule 4 is only applied to predictions
that match ground-truth trees using the is7'ree function. This was found to boost performance.
Ground-truth is not needed to make predictions once the model is trained. The PSL for rule 4

can be interpreted in natural language as

For all predictions that match ground truth trees, if the ITC color composition is more than

20% green pixels, it is probably a tree.

Table III summarizes each rule, its PSL, and the domain knowledge it incorporates.

E. Hyperparameters

After initializing the model with pre-trained weights, rules 1 - 3 were trained for a fixed
number of epochs depending on the training site. The number of epochs for each site was
determined empirically. Because the performance of the teacher-network is dependent on the
student-network’s skill, performance is usually best when a rule is applied in the latter epochs of
the training process. Therefore, there is an inherent trade-off between not over-fitting the model
and training for enough epochs to allow the rule to take effect, but not so many epochs that the
rule causes an imbalance between what is learned from the training set and what is learned from
the rules. Continued application of the rule beyond some point degrades performance. Adding to
this, the lengthy hyperparameter tuning process, we erred on the side of fewer training epochs.
Fig. 6 shows the training and validation loss for the baseline model at each site. Models trained
on NIWO were trained for 7 epochs and the remaining sites were trained for 5 epochs. The use
of transfer learning causes the initial inversion of the validation and training curves. Rule 4 was

trained for 6 epochs. As shown in Fig. 6 none of the models suffered from over-fitting. We use
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Fig. 6. The training and validation loss at each site for plain DeepForest using pre-trained weights.

a version of the function used in [44] as the imitation parameter, 7. In (49) ¢ is the training step

number, « is a constant < 1, and 7 is a constant < 1 that limits the growth of the function.

1.0 — max{my, o'}, t > m,
7(t) = tmo, oy (49)

0, otherwise

The baseline and experiment models shared the same non-rule related hyperparameters in each
experiment. The only difference between the baseline and experimental models for rules 1, 2,
and 4 were within the logic harness and the modification of the loss function. For rule 3, the
DeepForest data pipeline was modified to accommodate the addition of the CHM.
Hyperparameters related to the rules were optimized using a combination of automated and
manual tuning. The recommended manual tuning process for rules is discussed in section IV-F.
For rules 1 - 3 site specific hyperparameters were chosen to optimize performance as measured
by F1. Rule 4 hyperparameters were selected to minimize the percentage of dead trees detected.

The hyperparameters for each experiment are summarized in table V - VIIL.
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DeepForest shows a large model variance. We found that the variance varies by site. The sites
in order of decreasing variance are SJER, MLBS, TEAK, and NIWO. After removing all other
sources of variation, it was found that weight initialization, and thus random number generator
(RNG) initialization, is a factor in the final performance of the trained model. Therefore, to make
accurate comparisons between baselines and experiments, we chose to train and test the baseline
model and experiments across a randomly selected set of RNG initial values. To calculate the
change in performance between the baseline and experiment we make a 1-to-1 comparison for
each RNG seed and take the average. We report the mean and 95% confidence intervals for F1,
bounding box precision, and bounding box recall.

A A, of 100 was used for each rule. Each rule was trained with a batch size of 1 and a
learning rate of 0.0018 using stochastic gradient descent. The experiments were performed on a
high performance computing cluster using a NVIDIA A100 GPU with 80 GB of GPU memory,
20GB of RAM, and a single processor.

F. Creating Rules

We show that rules can be created from a variety of domain knowledge and used to constrain
the neural network training process. There are no limitations on the domain knowledge that can
be used, but [44] suggests logic harnessing works best when the domain knowledge is also well
represented in the training set data. Once this requirement is met, the next hurdle is the PSL
formulation of rules. The most straightforward formulations come from the creation of a set of
predicates that map an attribute of interest to a real number in [0, 1], where the range of the
output can be interpreted as the probability that attribute is in agreement with the metric it is
intended to measure.

Hyperparameter tuning is one of the most time consuming parts of the training process. We
recommend using an automated tuner when possible. When tuning by hand these are the steps
we followed.

1) Determine the number of epochs that give the best model performance without the harness,

let this be e,. Let the number of training epochs where 7 begins to be incremented be 7.

2) Set the parameters of 7 for a low rate of growth, we recommend starting with o = 0.95

and T = 0.

3) With the harnessed model and modified loss function, set 7, = e;, — 1 and train the model.
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4) If the model’s performance improves versus the baseline, repeat step 3 decrementing 7,
by 1. If the model’s performance does not improve, the rule may not be useful for the
dataset. Otherwise, repeat step 3 until the model’s performance decreases relative to the
previous value of 7.

5) Set 74 to the value that gave the best performance. Decrement « in increments of 0.05 -
0.10 until a value is found that worsens performance. Note the final value of 7.

6) Set o to 0.5 to 0.10 less than the value that gave the best performance in step 5. Try setting
o to the value that allows the maximum value of 7 found in step 5. Retrain the network.
If this step improves performance, then try decreasing 7, by 1. Keep the parameters that

give the best performance.

V. RESULTS
A. Ablation Study of

Before delving into a site by site analysis of the results, we explore the effect of variation in
7 on F1 and the verification ratio of each rule. For each sample point, the value of 7 is fixed
and the model is trained for the number of epochs associated with each rule. The top row of
Fig. 7 shows the average F1 score versus 7 across all sites. The bottom row shows the average
verification ratio versus 7 across all sites. The results suggest the model pays a high cost in F1
for enforcing rules 1 and 3, and a much lower cost for rules 2 and 4. For rule 2, the marginal
change in F1 is likely the result of the limited number of crowns the rule is designed to affect.
Similarly, rule 4 only affects a fraction of trees. Rules 1 and 3 affect all predictions, a significant
proportion of which are larger than the mean, as shown in Fig. 4. Therefore, increasing the
verification ratio for rules 1 and 3 has ramifications for globally affecting what features are
recognized as trees in addition to reducing IoU scores. This negatively impacts F1.

On average rule 2 and 4 are least likely to produce an increase in F1 versus the baseline.
Because rule 4 is designed to induce a bias that causes DeepForest to ignore certain trees, the
drop in F1 with increasing rule verification is a logical outcome. For all rules, 7 is positively
correlated with the verification ratio. We leave the ablation study needed to determine how the

dataset features effect curve structure to future works.
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Fig. 7. A plot of F1 and verification ratio versus 7 averaged over 4 samples. For each sample point, the value of 7 is fixed

and the model is trained for the number of epochs associated with its rule.

B. Rules 1 - 3

Next we look at the effect of rules 1 - 3 on each site. Rule 1 was the most effective. It
improved the F1 score for every site. It was most impactful on SJER, increasing its F1 by 4.01
F1 points. It was least effective on MLBS, increasing its F1 by 0.708 F1 points.

Of the rules, rule 2 had the poorest showing, definitively improving F1 only for TEAK. Rule
2 appears to have no effect on NIWO and a negative effect on MLBS and SJER. It decreased
the F1 score at MLBS by 2.09 F1 points and at SJER by 1.31 F1 points.

Rule 3 had a net positive effect at 3 of the 4 sites: MLBS, NIWO, and TEAK. It was most
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Fig. 8. The average change in F1 for each site-rule combination with 95% confidence interval error bars.

effective at TEAK, increasing its F1 by 3.12 F1 points. Its effect on SJER was not definitively
negative, but on average its net result was a decrease in F1 by 0.61 F1 points. Fig.8 gives a
per-site breakdown of rule performance.

The effect on F1 for each rule came as a result of changes to both precision and recall. Rule 1
improved precision for all sites, but had a net negative effect on recall for MLBS and SJER. Rule
2 increased precision for NIWO and TEAK and decreased precision for MLBS and SJER. It had
a negative effect on recall for all sites except TEAK. Rule 3 had a positive effect on precision
for all sites except NIWO. It had a negative effect on recall for every site except NIWO. Table
IX summarizes the effect of each rule on precision, recall, and F1.

Averaged across all sites, rule 1 decreased the number of predictions by 6.34%. Rule 2 reduced
the number of predictions by 3.88% and rule 3 by 7.75%. On a per-site basis, each rule caused a
reduction in the number of predictions except for rule 1 and rule 3 on NIWO. Rule 1 increased
the number of predictions on NIWO by 1.72% and rule 3 increased the number of predictions
on NIWO by 3.08%.

To try to understand how application of the rules produces its effect on models we examined
IoU for predictions that matched a ground-truth bounding box. Fig. 9 shows the distribution of
IoUs for the baseline in yellow and the experiments in green. The vertical line represents the

mean of the respective distribution. Every rule, even in cases where the rule did not improve
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F1, shifted the distribution of IoU’s to the left. The number of predictions with IoU’s between
50 - 60% increases while predictions with IoU’s > 70% shrank. Furthermore, for all sites
except MLBS, the baseline model predictions show a positive correlation between the size of a
predicted bounding box and IoU. Application of the harness preserved this trend when it existed,
but reduced the slope of the regression line for IoU versus predicted bounding box area (See

Appendix Fig. 14).
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Fig. 9. The distribution of IoU values for predictions that were matched with ground-truth bounding boxes. The vertical lines

represent the mean of their respective distribution.

Next we looked at how well predicted bounding box area matched with ground-truth area. Fig.
10 shows a scatter plot of predicted area to ground truth area for predictions that matched with a
ground truth bounding box. The baseline predictions are in yellow and experimental predictions
in green. The change in RMSE and MAE for each site is listed in the upper right hand corner.
On average, the rules had the following effect on RMSE: rule 1 reduced the RMSE by 83.6, rule
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2 reduced it by 99.3, and rule 3 increased RMSE by 41.7. A similar effect was seen with MAE.
Rule 1 decreased MAE by 36.2, rule 2 decreased MAE by 43.7, and rule 3 increased MAE by
33.6. Change in RMSE and MAE was most pronounced for SJER for both positive and negative
change. NIWO generated the smallest changes in RMSE and MAE. Reduction in RMSE and
MAE were consistently negatively correlated with improvement in F1. Some sites where the F1
worsened with application of a rule, such as rule 2 on MLBS still showed an improvement in
RMSE. Inversely, there were sites such as rule 1 on NIWO, where F1 improved, but RMSE was
slightly worse.

It can also be seen from Fig. 10 that the application of the logic harness tends to reduce the
size of the area of the predictions. In the majority of the cases, the regression line for the harness
falls below the baseline regression line. And in most cases the maximum predicted area for the
harness is less than the maximum predicted area for the baseline.

We also examined how well baseline and experiment models matched the distribution of the
ground-truth bounding box areas for each test set. In Fig. 11, the baseline distribution is shown
in yellow, the experiment distribution is shown in green, and the ground-truth distribution for the
test set is shown in orange. We measured the KL-divergence between the baseline and the test
set as well as between the experiment and the test set. The difference between the baseline and
experiment KL-divergence is in the upper right corner of each graph. The color coded vertical
lines represent the mean of their respective distributions. On average, each rule decreased the
KL-divergence. Rule 1 decreased KL-divergence by 0.028, rule 2 by 0.005, and rule 3 by 0.0428.
On a per site basis the KL-divergence was reduced most on NIWO by rule 3. There was an
increase in KL-divergence for 3 out of the 12 rule-site combinations: rule 1 on TEAK, rule 2
on NIWO, and rule 3 on TEAK. For 7 out of the 8 rule-site combinations that resulted in an
increase in F1 there was a decrease in KL-divergence.

We examined the ratio of the two terms of the loss function to understand how the interplay
of the loss terms may affect model performance. In Fig. 12, we show the average loss versus
epochs during training. The distillation-loss is in green, the student-loss is in orange, and 7 is
in black. The graphs show that as 7 increases the loss contributed by the distillation term tends
to decrease. The enforcement of the rule causes predictions to be more in line with the teacher
reducing the distillation-loss. This trend is most easily observed in the TEAK-R3 and TEAK-R4
graphs. For the majority of the graphs, the reduction in the student-loss is not proportional to

the reduction in distillation-loss as 7 increases. However, in some cases there is an increase in
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Predicted vs. Ground-Truth Area
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Fig. 10. The scatter plot of the predicted bounding box area versus the ground-truth bounding box area for predictions that
were matched with ground-truth boxes. The change in RMSE and MAE for each site-rule combination is shown in the upper

right corner.

the student-loss as the distillation-loss decreases. This suggests there may be a conflict between
the rules and the dataset annotations. This is most visible in TEAK-R3 and SJER-R3 at the end

of their last epoch.

C. Rule 4

Of the rules, the results from rule 4 are the easiest to observe. Rule 4 was designed to bias the
model to ignore dead trees, where we define a dead tree to be a tree whose pixel composition
is less than 20% green. We only applied this rule to TEAK. In the images of Fig. 13 the orange
boxes are ground-truth annotated trees. The green boxes are predictions. In the first image,

the ground-truth annotations are shown with the percentage of green pixels that compose each
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Bounding Box Area Distribution
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Fig. 11. The distribution of prediction bounding box areas for each site-rule combination. The predictions for plain DeepForest
are shown in yellow, DeepForest+Rule in green, and the distribution from the test set in orange. The change in the KL-divergence

between the baseline and the experiment for each site-rule combination is given in the upper right corner.

bounding box. Many of the brown trees have a pixel composition of less than 20% and are
thus considered dead. The second image shows the predictions from the baseline model after
being trained on the dataset. Both living and dead trees are detected. The third image shows the
predictions from the model after being trained on the same dataset with rule 4. The majority of
the dead trees are ignored.

On average, application of rule 4 decreased the percentage of dead trees detected by 52
percentage points compared to the baseline. The detection of trees that had a composition of >
20% green pixels was reduced by 2.5 percentage points compared to the baseline. The detection of
trees composed of > 20% green pixels and > 20% brown pixels were decreased by 6.2 percentage

points compared to the baseline model. The application of rule 4 increased the bounding box
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Loss vs Epoch
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Fig. 12. The average of the terms of the loss function for each site-rule combination. The distillation-loss in green represents
the loss from the logic harness, the student-loss in orange represents the sum of the loss terms from the original model. The

value of 7 is shown in black.

precision by 8.85 percentage points and reduced the recall by 9.82 percentage points. This
resulted in a drop in F1 of 1.34 F1 points. The detailed results of rule 4 are listed in Table X.

As indicated by the reduction in green trees detected and the slight increase in the student-loss
with an increase in 7 (see Fig. 12), the enforcement of rule 4 causes contradictions with the
annotated training data. The reason there is not a larger drop in F1 is likely the small number

of dead trees within the test set.

VI. CONCLUSION

Neuro-symbolics is a means of incorporating domain knowledge into neural networks. To

the best of our knowledge, this work is the first to attempt applying neuro-symbolics to CNN
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B 3 W

Percent Green Pixels

Fig. 13. Each image is based on the same RGB raster from the TEAK test set. The left image shows the ground-truth annotations
with the percentage of green pixels found in each bounding box. The middle image shows the predictions from plain DeepForest

in green with the ground-truth annotations in orange. The right image shows the predictions from DeepForest with rule 4 applied.

based ITC delineation. Current ITC delineation models, both non-neural and machine learning
based, have no standardized way of ensuring domain knowledge is absorbed into their models.
Nor is there a standardized method of formulating the knowledge. Using our method, ecologists
can ensure that high level ecological concepts like competition, allometries, and even specific
visual features are baked into their models and that the domain knowledge can be formulaically
represented as a rule. Though it can be argued that similar results can be obtained using the
traditional method of creating datasets specifically for a task, a neuro-symbolic approach has
several benefits by comparison. Foremost, neuro-symbolics guarantee some level of explainabil-
ity. Being able to formulate a rule and constrain the model to obey the rule during inference
creates a more trustworthy model and provides some guarantee as to what features the model
will use to make its inference. Secondly, neuro-symbolics can ensure that a model will learn the
desired concept. If there is a contradiction between the concept captured in the training data and
the concept represented as a rule, it is usually discernible from the model’s reduced performance.
Finally, neuro-symbolics can provide a means of creating multi-use datasets. By changing a rule,
a model can be trained to perform different tasks using the same dataset.

In this study we implemented a neuro-symbolic CNN ITC delineation model that uses domain
knowledge encoded as rules written in PSL. We tested 4 rules that were based on different aspects
of forest ecology expert knowledge, including competition, constrained growth, allometry, and

average ITC areas.
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We found that ecologically sound and seemingly applicable rules do not always boost model
performance. The rules can have unpredictable effects on other aspects of model inference, but
with careful tuning useful parameters can sometimes be found. The degree to which a rule
enhances or degrades the target metric is highly dependent on parameter tuning.

While at the time of writing, the authors know of no other study that applies neuro-symbolics
to ITC delineation, some of our more generalizable findings are in line with other neuro-symbolic
research that has examined the effects the degree of rule enforcement has on model skill,
particularly, the work of Seo et al, where it is shown that for an applicable rule, increasing
the imitation parameter improves the target metric rapidly in the low to mid range values, but

have decreasing or negative returns for increasingly higher settings [64].

A. Limitations

Our study had three notable limitations. 1. We only used NEON data. 2. The annotations were
all generated by our group using rectangular bounding boxes. 3. We only tested the harness
framework on a single ITC delineation model.

DeepForest alone has been shown to work on other remote sensing datasets, so theoretically,
the framework should perform comparably, but this has not been shown empirically. The anno-
tations in our dataset were created all in our group using only airborne imagery for annotation.
As such, it is not known how mixing datasets annotated using different methods would affect
the performance and enforcement of rules. Similarly, while the logic harness is model agnostic,
and should be applicable to other ITC delineation models, we do not know how the use of a
different model affects the framework overall.

Of minor note, the rules we implemented all focused on shrinking the bounding boxes, but
the framework is not limited to rules that shrink area. We found rules that shrink the bounding
box area were most likely to improve F1 and focused on these for our work. However, rules can
be applied to perform any number of operations to predictions including expansion, rotation,

and altering aspect ratio.

B. Future Work

We believe we have only scratched the surface of what can be done with neuro-symbolics
in this area. Neuro-symbolics is known to be capable of reducing the size of a dataset required

to train models, and is therefore sometimes used in few shot and zero shot learning [34], [44].
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In future works we would like to examine the applicability of this property to ITC delineation.
We would also like to perform a study to determine how features in remote sensing datasets

influence verification ratio curves and other inference parameters.

C. Conclusion

Neuro-symbolics can be successfully applied to ITC delineation and build upon a wide range
of ecology domain knowledge, but results are highly rule and site dependent. Even when a rule
and annotated data seem to be compatible there may be issues that limit the effectiveness of
the pairing. Applying rules can have unintended effects, if the rule and training data are not in

agreement; the rule is enforced at the expense of general model performance.
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loU vs. Predicted Bounding Box Area
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Fig. 14. A scatter plot of IoU vs predicted area for each site-rule combination. Predictions for plain DeepForest are in yellow.

Predictions using the logic harness are in green.
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TABLE I

48

THE COUNT OF COMPETING TREES (CMP) AND NON-COMPETING TREES (NCMP) FOR EACH SITE’S TRAINING SET.

FREQUENCY RELATIVE TO THE SITE SAMPLE SIZE IS IN PARENTHESES.

NIWO TEAK MLBS SJER

5,590 2,243 1,408 720
cmp < mean

(0.520) (0.497) (0.599) (0.255)

4,108 1,272 934 451
cmp > mean

(0.382) (0.282) (0.398) (0.160)

9,698 3,515 2,342 1,171
tot. cmp

(0.902) (0.779) (0.997) (0.415)

840 688 7 999

ncmp < mean

(0.078)  (0.152) (0.003) (0.354)

219 311 0 654

ncmp >mean

(0.020) (0.069) (0.000) (0.232)

1,059 999 7 1,653
tot. ncmp

(0.098) (0.221) (0.003) (0.585)

10,757 4,514 2,349 2,824
tot. trees

(1.000) (1.000) (1.000) (1.000)
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TABLE III

A SUMMARY OF EACH RULE’S FUNCTION WRITTEN IN NATURAL LANGUAGE AND PSL ALONG WITH THE DOMAIN

KNOWLEDGE IT INCORPORATES. THE RULES ARE GROUPED BY THE INTEGRATION INTO RETINANET. RULES 1, 3, AND 4

HOOK INTO THE NETWORK USING THE CLASSIFICATION HEAD, WHILE RULE 2 USES THE REGRESSION HEAD.

Rule

Natural Language

PSL Domain Knowledge Incorporated

For all predictions, if the ITC
area of a predicted tree is less
than the site’s average ITC area,
it is probably a tree.

For all predictions, if the ITC
area is less than or equal to the
area predicted from the H-CA
allometry, then it’s probably a
tree.

For all predictions that match
ground truth trees, if the ITC
color composition is more than
20% green pixels, it is probably
a tree.

If the predicted ITC is in com-
petition then its area is probably

constrained.

vy (l(y = +) = bboxSize(Appor(f))+ A bboxSize(Appor(t))+ = 1(y = +)) Site mean ITC area

vy (l(y =+4) = bboxHC A(Appor(t))+ A bbox HCA(Appor(f))+ = 1(y = +)) CHM, height-crown allometry

isTree()) = (l(y =+) = isGreen(py)+ NisGreen(pg)+ = 1(y = +)) Crown color

Y(4,1) isComp(§,1) = constrained(t) Crown area distribution

TABLE 1V

THE NUMBER OF TREES IN THE TEAK TEST SET BROKEN DOWN BY HSV COLOR COMPOSITION. TREES COMPOSED OF

MORE THAN 20% GREEN PIXELS ARE CONSIDERED LIVING. FOR RULE 4, TREES WITH LESS THAN 20% GREEN PIXELS ARE

CONSIDERED DEAD.

both green &

only green >20% only brown >20% Total

brown >20%

Count

589 47 634 734




TABLE V

RULE | HYPERPARAMETERS.
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MLBS 5 1.25¢-4 1 2304 0.5 088 04
NIWO 7 1.25¢-4 5 400 0.5 095 0.5
SJER 5 1.25¢-4 3 5184 0.5 0.80 0.5
TEAK 5 0.01 4 2304 le-6 095 0.5
TABLE VI
RULE 2 HYPERPARAMETERS.
Site Epochs C 7w w h' Ly Ly | R T @«
MLBS 5 1 3 48 48 0 82.6 0 855 095 0.5
NIWO 7 1 3 20 20 O 36 0 360 095 05
SJER 5 1 1 72 72 0 1463 0 1495 095 05
TEAK 5 1 1 46 46 0 96.1 0 977 095 0.5
TABLE VII
RULE 3 HYPERPARAMETERS.
Site Epochs C Ts a b kig 7o o
MLBS 5 1.25¢-4 1 1.40645 0.33549 0.5 0.88 04
NIWO 7 1.24e-4 6 0.87992 0.32658 0.5 095 0.9
SJER 5 1.25¢-4 3 1.22315 3.32067 0.5 0.80 0.5
TEAK 5 0.01 2 0.83606 1.28339 le-6 0.80 0.5




TABLE VIII

RULE 4 HYPERPARAMETERS
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green

Site Epochs C w5 t, green lower limit upper kig 7o «
limit

TEAK 6 1 3 20 (18,47, 0) (44, 161, 227) 1 06 0.1




TABLE IX
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THE AVERAGE CHANGE IN BOUNDING BOX PRECISION, BOUNDING BOX RECALL, AND F1 FOR EACH SITE-RULE

COMBINATION WITH 95% CONFIDENCE INTERVALS (i &= CT). n VARIED BY SITE AND RULE.

Site Metric DF+Harness DF+Harness  DF+Harness
Rule 1 Rule 2 Rule 3

MLBS ABboxprec. 3.55+0.23 —0.174+£0.23 2.714+0.25
A Bboxrec. —2.01+0.33 —-4.00£0.34 —-2.43+£0.35
AF1 0.708 £0.23 —2.094+0.25 0.11 +0.25
n 300 300 300

NIWO ABboxprec. 0.344+0.21 0.72 £ 0.22 —0.12 £ 0.27
A Bboxrec. 1.37 £ 0.52 —0.514+0.48 0.794+0.35
AF1 1.01 +0.35 —0.03+£0.32 0.51£0.26
n 101 101 101

SJER  ABboxprec. 8.874+1.02 —1.64+£1.56 1.96+1.00
A Bboxrec. —6.32+£090 —-1.17x£1.02 —4.42+0.87
AF1 4.01 +£0.93 —1.31+1.23 —-0.61+£0.86
n 301 76 222

TEAK ABboxprec. 3.3740.47 2.73£0.44 11.81 £0.72
ABboxrec. 0.61 4+ 0.61 1.34 £0.61 —4.28 £0.93
AF1 2.04 £0.38 2.09 £0.39 3.12 £0.52
n 101 101 90
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TABLE X
THE AVERAGE CHANGE IN DETECTION RATE FOR TREES OF EACH COLOR COMPOSITION WITH 95% CONFIDENCE
INTERVALS (= C'I; n = 101). TREES WITH >20% GREEN PIXELS AND >20% BROWN PIXELS SHOWED THE LARGEST

DECREASE. SEE SECTION IV-D FOR A DESCRIPTION OF EACH CATEGORY.

A % brn A Bbox A Bbox
A % only grn detected A % only brn detected A F1

& grn detected Prec. Rec.
DF+R4 -2.5£0.76 -52.1£2.17 -6.2+0.78 8.85£0.57 -9.82+0.90 -1.3440.52




