Decision Analytics Journal 8 (2023) 100266

Contents lists available at ScienceDirect

D'edsion

Decision Analytics Journal A
Analytics

JOURNAL

journal homepage: www.elsevier.com/locate/dajour

A comparison performance analysis of eight meta-heuristic algorithms for)

Check for

optimal design of truss structures with static constraints
Nima Khodadadi **, Aybike Ozyiiksel Ciftcioglu ®, Seyedali Mirjalili ©*¢, Antonio Nanni

2 The Department of Civil and Architectural Engineering, University of Miami, Coral Gables, FL 33146-0630, USA
b Department of Civil Engineering, Faculty of Engineering, Manisa Celal Bayar University, Turkiye

¢ Centre for Artificial Intelligence Research and Optimization, Torrens University Australia, Australia

d Yonsei Frontier Lab, Yonsei University, Seoul, Republic of Korea

¢ University Research and Innovation Center, Obuda University, 1034 Budapest, Hungary

ARTICLE INFO ABSTRACT

Keywords:

Structural optimization
Meta-heuristic algorithms
Stochastic Paint Optimizer
Truss structures

Static constraints

Metaheuristics have been successfully used for solving complex structural optimization problems. Many
algorithms are proposed for truss structure size and shape optimization under some constraints. This study
considers eight population-based meta-heuristic methods: African Vultures Optimization Algorithm (AVOA),
Flow Direction Algorithm (FDA), Arithmetic Optimization Algorithm (AOA), Generalized Normal Distribution
Optimization (GNDO), Stochastic Paint Optimizer (SPO), Chaos Game Optimizer (CGO), Crystal Structure
Algorithm (CRY) and Material Generation Algorithm (MGO). These meta-heuristics methods are used to
optimize the size of three aluminum truss structures. Optimization aims to reduce the weight of the truss
members while meeting a set of displacement and stress constraints. The performance of these methods is
assessed by solving and optimizing three well-known truss structure benchmarks under some constraints. The
results show that the Stochastic Paint Optimizer (SPO) outperforms the other algorithms in terms of accuracy

and convergence rate.

1. Introduction

Optimization can be defined mathematically as minimizing or max-
imizing a problem-specific objective function while meeting certain
constraints. Optimization algorithms are separated into two classes
deterministic and stochastic. Deterministic methods are also classi-
fied as computational and gradient-based methods [1]. Computational
methods do not need gradient function calculations but are slow and
ineffective. Gradient-based methods use the slope or derivative of the
objective function, yet they do not guarantee convergence to the global
optima when the objective function is not flat and smooth. Solving
high-dimensional, multimodal, or non-differentiable problems with de-
terministic methods is difficult or even impossible. In recent years,
researchers have developed many nature-inspired metaheuristic algo-
rithms for complex optimization problems that cannot be solved with
conventional techniques in a reasonable time or with precision. Meta-
heuristic methods do not need gradient information and seek the global
optimum by repeatedly calling the objective function. Such algorithms
narrow the search space and try to find solutions effectively [2,3].

Many approximate techniques are global search methods called
metaheuristics. These methods are developed to address the weaknesses

* Corresponding author.

of classical approaches. The metaheuristic algorithms can find near-
global or global solutions by employing intelligence of natural phenom-
ena. Various metaheuristic algorithms have been proposed in recent
decades based on natural processes, collective behavior, art, physics, or
mathematics rules. Genetic Algorithm (GA) [4], Differential Evolution
(DE) [5], Ant Colony Optimization (ACO) [5], Particle Swarm Opti-
mization (PSO) [6], Cuckoo Search (CS) [7], Golden Eagle Optimizer
(GEO) [8], Stochastic Paint Optimizer (SPO) [9], Chaos Game Opti-
mizer (CGO) [10], Mountain Gazelle Optimizer (MGO) [11] and Tuni-
cate Swarm Algorithm (TSA) [12]. Many researchers utilized these al-
gorithms for solving different structural optimization problems such as
trusses [13,14], frames [15,16], and other real applications of engineer-
ing problems [17,18]. These studies demonstrate that metaheuristic
algorithms can solve problems with good accuracy in a reasonable time
when employed to deal with complex optimization problems. Ease of
implementation, simple framework, good accuracy, and reasonable exe-
cution time are some advantages of metaheuristic algorithms compared
with analytical techniques. Accordingly, many researchers improved
these metaheuristic algorithms. Metaheuristic algorithms have been
continually improved in order to solve a wider class of optimization

E-mail addresses: Nima.khodadadi@miami.edu (N. Khodadadi), aybike.ozyuksel@cbu.edu.tr (A.0. Ciftcioglu), ali.mirjalili@gmail.com (S. Mirjalili),

nanni@miami.edu (A. Nanni).

https://doi.org/10.1016/j.dajour.2023.100266

Received 20 May 2023; Received in revised form 1 June 2023; Accepted 12 June 2023

Available online 15 June 2023

2772-6622/Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.dajour.2023.100266
https://www.elsevier.com/locate/dajour
http://www.elsevier.com/locate/dajour
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dajour.2023.100266&domain=pdf
mailto:Nima.khodadadi@miami.edu
mailto:aybike.ozyuksel@cbu.edu.tr
mailto:ali.mirjalili@gmail.com
mailto:nanni@miami.edu
https://doi.org/10.1016/j.dajour.2023.100266
http://creativecommons.org/licenses/by/4.0/

N. Khodadadi, A.O. Giftioglu, S. Mirjalili et al.

problems, especially for truss structures. Dynamic Arithmetic Optimiza-
tion Algorithm (DAOA) [19], Improved Symbiotic Organisms Search
(ISOS) [20], Improved Crow Search Algorithm (ICSA) [21], Advanced
Charged System Search (ACSS) [16], Improved Whale Algorithm (IWA),
Dynamic Water Strider Algorithm (DWSA) [22] are applied to truss
structures. In addition, some metaheuristic algorithms are applied
for multi-objective truss problems, such as Multi-objective Teaching—
Learning-Based Optimization (MOTLBO) [23], Multi-Objective Stochas-
tic Paint Optimizer (MOSPO) [24,25], Multi-objective Colliding Bodies
Optimization (MOCBO) [25]

In recent years, the demand for raw materials has been increas-
ing rapidly in the world, whose population is constantly growing
and developing. Aluminum and steel, essential building materials, are
used in many engineering applications [26]. Additionally, trusses are
among the most widely used forms in structural engineering. However,
as the number of members and the number of member groups of
truss structures increases, the design and analysis of these structures
become complex. Therefore, the number of possible solution com-
binations available for these structures also increases. Among these
combinations of solutions, one of the main goals of the engineer is to
design the lightest and, consequently, the most economical structure
that meets the constraints under the given loading conditions. Conse-
quently, unnecessary material waste will be avoided in response to the
increasing need for raw materials by ensuring the optimum design of
truss structures. Many researchers have used metaheuristic algorithms
to overcome the challenge of designing and analyzing truss structures
with many members.

Lingyun et al. [27] employed GA to address truss optimization on
shape and sizing with frequency constraints. Gomes [28] utilized PSO
to optimize planar and spatial truss structure layout. Kaveh et al. [29]
optimized two- and three-dimensional truss structures using a hybrid
of invasive weed optimization with a shuffled frog-Leaping algorithm
(IWO-SFLA).

Tang et al. [30] employed an adaptive 3-stage hybrid teaching-
based differential evolution to optimize truss structures for size and
layout. Khodadadi and Mirjalili [31] employed the generalized normal
distribution optimization (GNDO) for optimal designing truss struc-
tures where minimizing the overall weight is the objective function.
Pierezan et al. [14] performed the trusses with discrete design variables
and focused on minimizing the structure weight under the required
constraints.

Jiang et al. [32] investigated the performance of an improved whale
algorithm (IWA) method using two planar and space truss designs.
Jawad et al. [33] employed an artificial bee colony (ABC) algorithm
to apply the optimum design of members size and layout optimization
of truss with displacement, stress, and buckling constraints. Bekdas
et al. [34] designed optimal truss structures and various benchmark
design examples with six different metaheuristics and the modification
of Leévy flight for three algorithms.

Gholizadeh and Sojoudizadeh [35] performed the discrete design
optimization of truss structures with a modified sine—cosine algorithm
(SCA). Li et al. [36] developed the improved chicken swarm opti-
mization (ICSO) algorithm for the minimal cost truss design. Jawad
et al. [37] optimized five well-known planar and spatial steel trusses
with the dragonfly algorithm (DA) with discrete sizing variables.

Kumar et al. [38] applied the optimal design of truss optimization
problems subjected to multiple fundamental frequency constraints with
shape and size variables. Mashayekhi and Yousefi [21] applied their
proposed hybrid of the crow search algorithm and the cellular automata
(CSA-CA) method to optimize the size and topology of truss structures.
Serpik [39] employed the improved technique to achieve trusses’ dis-
crete size and shape optimization via a job search-inspired strategy
together with genetic operators. Dede et al. [40] tested the efficiency of
the Jaya algorithm (JA) for the design of the braced dome structures.

Altay et al. [41] proposed a novel approach termed the Modi-
fied Salp Swarm Algorithm (MSSA) for design optimization of truss

Decision Analytics Journal 8 (2023) 100266

structures. The study evaluated five truss structures that incorporated
discrete and continuous variables. These structures had been previ-
ously optimized using metaheuristics and were assessed using both
size and size-shape optimization methods. Initially, the SSA showed
poor performance and convergence issues with random solutions. Nev-
ertheless, it ultimately generated outcomes that were comparable to
previously published findings, particularly in the context of continuous
problems. Conversely, the MSSA exhibited superior performance in
discrete problems and attained outcomes that were proximate to the
optimal benchmarks in continuous problems. Furthermore, the con-
vergence curves of the (MSSA) exhibited a moderate enhancement in
convergence rates, particularly for discrete problems. The anticipated
outcome of these discoveries was an improvement in the efficacy,
rapidity of convergence, and dependability of forthcoming practical
implementations.

The advance version of Neural Network Algorithm (ANNA) was
developed by Khodadadi et al. [42]. The algorithm was developed
utilizing the principles of biological nerve structures and artificial
neural networks. The research investigated the efficacy of the sug-
gested approach in the context of engineering design issues. Two
methodologies were investigated to augment the conventional neural
network algorithm. The initial approach entailed an enhanced initial-
ization mechanism that employed opposite-based learning. The second
methodology integrated a set of modifiable parameters to augment
the algorithm’s capacity to explore and exploit, leading to enhanced
solutions while diminishing the requisite structural analyses. The ef-
ficacy of the novel algorithm was assessed through the utilization of
five established constrained benchmarks, wherein its efficiency was
compared to state-of-the-art optimization techniques. The findings of
the conducted case studies indicated that the enhanced iteration of the
algorithm displayed superior efficacy and resilience in comparison to
the initial version and specific alternative approaches.

The novel and enhanced metaheuristic technique to augment the
efficacy of the conventional Bat Algorithm (BA) was proposed by Vu-
Huu et al. [43] in addressing optimization engineering problems and
optimizing the design of truss structures. The BA algorithm, similar
to several other metaheuristic algorithms, presented a straightforward
implementation and the capacity to tackle a diverse array of prob-
lems with adaptability. Nevertheless, a limitation emerged when the
utilization phase of the BA experiences swift fluctuations in volume
and pulse discharge frequency, resulting in a state of inactivity after an
initial stage. As a result, the algorithm’s ability to accurately identified
the optimal solution may be limited. In order to tackle this matter,
a novel loudness function was suggested with the aim of proficiently
adjusting the step size of the random walk. Furthermore, a push-process
methodology was implemented to intervene in the BA algorithm and
accelerate the identification of the true global optimum within a limited
number of generations, as opposed to necessitating a multitude of
computational iterations. The obtained outcomes were subjected to
comparison and validation against established scholarly investigations.
The BA algorithm was utilized to optimize the weight of truss structures
in terms of their structural design.

The Bonobo Optimizer (BO) [44] algorithm was utilized to per-
form sizing optimization of truss structures, while considering both
discrete and continuous variables. The BO algorithm simulates the
social conduct and reproductive patterns exhibited by bonobos, serving
as a source of inspiration. Similar to other primates, bonobos employ
a fission—fusion group tactic, wherein they establish small groups of
varying sizes and navigate autonomously throughout their designated
territory. The primary aim of sizing optimization is to identify the truss
configuration that exhibits the lowest possible weight, while simul-
taneously adhering to various loading conditions and limitations on
member stresses and nodal displacements. In order to evaluate the de-
pendability and resilience of the BO algorithm, it was implemented on
five established truss illustrations with unchanging geometry, spread-
ing from 1 to 160 elements. The findings explicitly indicate that the

N. Khodadadi, A.O. Giftioglu, S. Mirjalili et al.

Decision Analytics Journal 8 (2023) 100266

Fig. 1. Eight metaheuristic algorithms.

BO algorithm is a potent methodology for exploring and enhancing
truss configurations. The method adeptly manages static constraints
pertaining to discrete as well as continuous variables.

A bionic optimization algorithm called the Coronavirus Mask Pro-
tection Algorithm (CMPA), has been proposed in [45], which is inspired
by COVID-19 prevention and based on the virus transmission of COVID-
19 The process of infection and immunity in CMPA is comprised
of three distinct phases, namely the infection stage, diffusion stage,
and immune stage. It is noteworthy that the proper utilization of
masks and adherence to safe social distancing protocols, both cru-
cial elements for human self-preservation, bear a resemblance to the
exploration and exploitation components observed in optimization al-
gorithms. The present study employs mathematical simulation to model
self-protection behavior and proposes an optimization algorithm. The
evaluation and comparison of the performance of the CMPA are con-
ducted in relation to other metaheuristic optimizers currently at the
forefront of the field. This is achieved through three truss design prob-
lems. The statistical findings suggest that the CMPA exhibits greater
competitiveness in comparison to the state-of-the-art algorithms. In
summary, this paper makes the following contributions:

+ The performance of eight metaheuristic algorithms was compared
with each other on three design optimization problems.

+ Three space truss structures are used for evaluating the mentioned
algorithms.

« Statistical results and convergence curves compared different
methods.

+ The proposed SPO algorithm was found to be superior to other
mentioned algorithms.

Metaheuristic algorithms, as many researchers have discovered, are
helpful for designing and analyzing truss structures with many mem-
bers. However, because the effectiveness of optimization algorithms
varies depending on the problem type, not every algorithm performs
efficiently in every case. The effectiveness of recently developed algo-
rithms should be evaluated and compared by applying them to various
real-world engineering problems. As a contribution to the literature,
the most recently described optimization algorithms with state-of-the-
art technology for truss structure optimization are considered in this
study. Furthermore, this study contributes to the literature by compre-
hensively comparing all novel optimization methods utilized to solve
challenging and real-world engineering problems.

The remaining sections of this paper are organized as follows: The
eight meta-heuristic techniques used are briefly described in Section 2.
Section 3 precisely addresses what the optimization problems consist
of. Section 4 offers three examples of benchmark truss constructions.
The paper ends with the final section.

2. Meta-heuristic algorithms

In this paper, eight population-based meta-heuristic optimization
techniques are used to reduce the weight of truss structures. These
algorithms consist of African Vultures Optimization Algorithm (AVOA)
[46], Flow Direction Algorithm (FDA) [47], Arithmetic Optimization
Algorithm (AOA) [48], Generalized Normal Distribution Optimization
(GNDO) [49], Stochastic Paint Optimizer (SPO) [9], Chaos Game Op-
timizer (CGO) [10], Crystal Structure Algorithm (CRY) [50], Mate-
rial Generation Algorithm (MGA) [51]. These algorithms are shown
in Fig. 1. Three well-known benchmark truss structures were opti-
mized using continuous size variables to test the effectiveness of the
mentioned meta-heuristics.

Many algorithms are available for analyzing a specific problem,
and determining which is best suited for the task at hand can be
tricky. We may learn about the strengths and shortcomings of various
algorithms by comparing their solution to a given problem. This in-
formation can guide us in making suitable selections. The motivation
behind optimizing truss structures using new methods lies in the pursuit
of finding more efficient and effective solutions. New optimization
techniques may have limitations in terms of computational complexity,
convergence speed, or solution quality. Therefore, we are motivated to
explore new meta-heuristic algorithms, to overcome these limitations
and improve the optimization process for future application.

Some of the mentioned algorithms are parameter-independent —
this means that they can be applied to a wide range of problems
without being limited by the specific parameters that might be as-
signed. It makes them easy to use and versatile. Additionally, they are
the most recent optimization algorithms presented in the literature. To
ensure a fair comparison, the experiments are conducted on the same
device, and the initial parameters as the number of population and
iterations, are the same for all methods. The algorithm’s parameters
were upgraded and modified based on each example in this work.

2.1. African Vultures Optimization Algorithm

Abdollahzadeh et al. [46] developed African Vultures Optimization
Algorithm (AVOA) in 2021. Because vultures feed on carrion and prefer
dead bodies, which many hunters do not prefer, they are called nature’s
scavengers. Many of their adaptations to life have developed in this
direction. For example, the fact that vultures are hairless or short-
haired serves to stabilize the temperature and an adaptation process
that develops to avoid problems cleaning the feathers due to food
residues on the head. The grasping claw seen in many birds of prey
is differentiated in vultures to make it easier for them to walk on
carrion on the ground. In addition, the low pH value of their stomachs,
reaching up to 1, acts as a barrier that provides many bacteria that can

N. Khodadadi, A.O. Giftioglu, S. Mirjalili et al.

be transmitted from carcasses to die [51]. There are clear differences
between vultures, which are grouped under two groups old and new
world vultures. For instance, old-world vultures spread in Asia, Africa,
and Europe use their sense of sight to search for their food, while new-
world vultures distributed in North and South America use the sense
of smell, which is generally not significantly improved by birds. The
AVOA algorithm, inspired by the feeding strategies of vultures living
in Africa, computes the fitness of all individuals in a population of N
vultures. The fitness values of vultures are denoted by F and express
their saturation rate. The best and second results are considered the
best vultures in the first and second groups, depending on the fitness
values.

Consequently, the vultures are divided into two groups, and the best
vulture (R(i)) is selected for each group. The worst solution belongs
to the vulture, which is the most hungry and weak. Other vultures
in the population try to get closest to the prey (optimal target) by
aiming to get close to the two best vultures and away from the worst
vultures. If the F value indicating the saturation rate of the vultures
is less than 1, the vultures look for food near the solutions, and the
algorithm starts the exploitation stage. If the F value is greater than 1,
the vultures can investigate food in varied fields, and the algorithm
starts the exploration stage. During the iterations, the F value and
position of vultures are updated according to various strategies to find
food. This iterates until the stopping standard is met. The pseudo-code
of the AVOA is introduced below:

Initialization

Set the method parameters N and T Maximum number of iterations.
Initialize the random population P; (i = 1,2,...,N)

Compute the fitness values of vultures

While t (iteration number) < T

Step 1: Set P,y uimre1aS the position of the first best vulture and
P pesivuiiure2as the position of the second best vulture.

Step 2: for each vulture (P;) select R(D).

Step 3: for each vulture, calculate F.

Step 4: If F > 1, start the exploration phase, or if F < 1, start the
exploitation phase.

Step 5: Update the position of the vultures.

Step 6: Update t

Step 7: Return PBe.stVuIturel

End While

2.2. Flow Direction Algorithm

Flow Direction Algorithm (FDA) is an optimization method created
by Karami et al. [47] by imitating water flow direction in a basin.
According to the algorithm, each stream has a position and a height.
The flow moves towards one of its neighbors with a specific elevation
or slope around it. The D8 method is regarded as one of the common
methods for determining the runoff direction. The D8 technique is used
to determine the flow direction in the algorithm. This technique sup-
poses that each flow has eight neighbors around it, and the neighbors’
fitness functions (heights) are measured. If the best neighbor (with the
lowest height) has a better objective function than the current flow, the
flow moves to that neighbor with velocity V. The velocity V increases
or decreases in direct proportion to the slope. The fitness functions of
the current flows are calculated, and if they are better than the earlier
flows, the fitness function and the positions of the flows are updated.
If the best neighbor’s objective function is not better than the current
flow, the flow moves in the direction of the general slope. The flow
location is updated. It proceeds until the termination condition is met.
The pseudo-code of the FDA is introduced below.

Initialization:

Decision Analytics Journal 8 (2023) 100266

Set the method parameters: a (number of population), g (number
of neighbors), 4 (neighborhood radius)

Initialize the random population

The objective function values of the population are computed, and the
best objective function value is assumed as the outlet point.

While iteration number < max. iteration

Step 1: Create neighbors.

Step 2: Compute the fitness values of each neighbor and determine
the best neighbor.

Step 3: If the objective function value of the best neighbor is less than
the current flow, step 4; otherwise, step 5 is performed.

Step 4: Flow velocity is calculated and moves towards the best
neighbor.

Step 5: Flow moves in the direction of the dominant slope.

Step 6: The new flow objective function value is calculated. The flow
objective function and position are updated if it is better than before.
Step 7: Update iteration number

Step 8: Return the position of the best flow

End While

2.3. Arithmetic Optimization Algorithm

Abualigah et al. [48] devised the Arithmetic Optimization Algo-
rithm (AOA), a math-based strategy that emulates the sequence of
operations of mathematical operators. The algorithm expresses it by
division: D, multiplication: M, subtraction: S, and addition: A. The
arithmetic operators are considered from outside to inside (from gen-
eral to specific), D, M, S, and A come in order. The optimization
process begins with the creation of the initial population. The fitness
values of the candidate solutions are computed, and the best result
is determined. Each mathematical operator tries to get closer to the
optimum solution throughout the iterations. The optimum searching
solution consists of two stages: exploration and exploitation. A random
number is compared with the Math Optimizer accelerated function to
decide which phase to choose during iterations in the algorithm. D and
M operators are used in the exploration phase. Since the distributions
of these operators are high, they cannot easily approach the optimum
result. S and A operators are used in the exploitation phase. Since these
operators have low dispersion, they can approach the optimum result
more efficiently. Finally, the algorithm is stopped when the termination
condition is met. The pseudo-code of the AOA is introduced below.

Initialization:

Set the method parameters: a (a parameter that determines the ac-
curacy of exploitation), u (control parameter used in the search
process)

Initialize the candidate solutions

While iteration number < max. iteration

Step 1: Calculate the fitness values

Step 2: Determine the best solution

Step 3: Decide which phase to select based on the value of the Math
Optimizer accelerated function.

Step 4: Approach the optimum result using the D, M, S, or A
operators.

Step 5: Update the locations of the solutions.

Step 6: Update iteration number

Step 7: Return the best solution

End While

2.4. Generalized Normal Distribution Optimization

Zhang et al. [49] developed the Generalized Normal Distribution
Optimization (GNDO), inspired by the normal distribution (Gaussian
distribution) theory. A normal distribution has two parameters, the
position parameter, which expresses the mean value of the random vari-
ables, and the scale parameter, which defines the standard variance. In

N. Khodadadi, A.O. Giftioglu, S. Mirjalili et al.

GNDO, the locations of all individuals are assumed as random variables
to fit the normal distribution criteria. In the beginning iterations, the
average positions of the individuals and the best position are further
apart. In the following iterations, it aims to bring the average position
and best position closer to each other and gradually reduce the standard
variance of the locations of all solutions to the lowest. GNDO consists
of local exploitation and global exploration phases. The possibility of
being selected for both phases is equal. In local exploitation, the best
position in the population (best solution) and the average position of
the population are calculated.

Regarding these, the generalized average positions of each individ-
ual are computed. Once the generalized standard variance and penalty
factor are found, the individuals’ positions are updated depending
on the local exploitation strategy. In local exploitation, the best and
average positions of the population are calculated. The aim is to
move individuals in the population in the direction between these two
positions. Therefore, once calculating the generalized average position,
generalized standard variance, and penalty factor for each individual,
the positions of the individuals are updated according to the local
exploitation strategy. Depending on the standard normal distribution
strategy, solution spaces are investigated globally in the global explo-
ration phase. The positions of individuals are updated to find a better
solution. The pseudo-code of the GNDO is introduced below:

Initialization:

Initialize population (N = number of the population)

Calculate the fitness values of individuals and determine the best
individual.

While iteration number < max. iteration

Step 1: Generate a random value and decide which phase to select
based on the value

Step 2: Update the position of individuals based on the strategy of the
selected stage

Step 3: Update iteration number

Step 4: Return the best solution

End While

2.5. Stochastic Paint Optimizer

Kaveh et al. [9] proposed the Stochastic Paint Optimizer (SPO)
algorithm based on the science of using color. The clustering of colors
in the algorithm is performed according to the color wheel based on
color theory as follows. Primary Colors: these are considered the best
colors and from which all other colors are derived (red, yellow, and
blue). Secondary Colors: the second-best colors (orange, purple, etc.)
are obtained by mixing the primary colors. Tertiary Colors: the worst
colors (yellow-violet, blue-orange, etc.) are formed when primary and
secondary colors are mixed. All paints’ initial colors are randomly
determine in the algorithm’s first step. Here, the objective function
optimizes the beauty index corresponding to the dyes. As mentioned
above, the colors are organized into groups based on their objective
function values. New colors are created using analog, complementary,
triple, or quadruple combination techniques. Among the new colors
created the ones with better objective function values than the previous
colors are selected, and the others are left. This cycle continues until the
termination condition is met. The pseudo-code of the SPO is introduced
below

Initialization:

Initialize colors of all paints

While iteration number < max. iteration
Step 1: Find objective function values of colors
Step 2: Sort paints

Step 3: Create groups

Step 4: Create new colors of paints
Step 5: Evaluate and update new paints
Step 6: Update iteration number

Step 7: Return the best solution

End While

Decision Analytics Journal 8 (2023) 100266
2.6. Chaos Game Optimization

Talatahari and Azizi [10] developed Chaos Game Optimizer (CGO)
inspired by chaos game theory. Chaos, as a word, means complexity
or disorder. Chaos theory is the science of predicting the behavior of
“naturally unpredictable” systems. Chaotic systems are a close mixture
of order and chaos, exhibiting unpredictable and chaotic behavior from
the outside but similar in their inner workings. In mathematics, the
chaos game generates fractals using a polygon form and a random
starting point. Fractal is the common name for complex geometric
shapes that often show similarity within themselves. To create a fractal,
the polygon’s vertices, which will be the principal form of the fractal,
are located, and a random starting point is chosen. The next point to
be created is assigned as a fraction of the length between the starting
point and the randomly selected vertices of the polygon. This process
is repeated in each iteration, creating new points and, thus a fractal.
Suppose this process is performed so that the polygon has three vertices
and a factor of 1/2, a Sierpinski triangle is formed. In the algorithm,
the Sierpinski triangle is determined as the search area, and some
suitable points (initial solution) are randomly located in the search
area. The self-similarity of these solutions can be expressed as fitness.
The points with the best and worst fitness values are the best and
worst solutions, respectively. Once evaluating the suitability of the
initial points in the algorithm, different suitable points are searched
within the search area. For this purpose, temporary triangles are drawn
for each appropriate point. The position of the relevant point forms
the vertices of the triangles, the position of the best point, and the
mean position of some chosen random point that has a probability of
containing the point of interest. Four new points are created for each of
the temporary triangles. It is checked whether the newly created points
are outside the borders, and the fitness values of the new points within
the borders are calculated. New points replace existing points with the
worst fitness values with better fitness values. The pseudo-code of the
CGO is introduced below

Initialization:

Create random positions of initial points

Evaluate the fitness values for each point

While iteration number < max. iteration

Step 1: Create temporary triangles for each point

Step 2: Create four new points from temporary triangles

Step 3: Control the location restraints for new points and change it
Step 4: Evaluate the fitness values of new points

Step 5: If the fitness value of the new points is better than the fitness
value of the previous points, replace the previous points with new ones.
Step 6: Update iteration number

Step 7: Return the best point (solution)

End While

2.7. Crystal Structure Algorithm

Talatahari et al. [50] introduced the Crystal Structure Algorithm
(CRY), inspired by the formation of crystal structures. Depending on
the way the atoms are arranged, the properties of materials change.
The structure formed by the three-dimensional arrangement of the
atoms of solid materials according to a certain geometric order is called
crystal structure. The smallest repeated volumetric unit of the crystal
structure is called the basis. A crystal lattice is formed by arranging
several bases side by side. In the algorithm, each solution is considered
a crystal in space. Primarily, a set of crystals whose initial positions are
randomly determined in the search space is generated. All the crystals
at the corners are considered main crystals in the randomly generated
candidate solution, Cr,,,;,. The fitness value of each of the crystals is
determined. The crystal with the best configuration and the mean value
of the crystals are considered as Cry, and F_, respectively.

New candidate solutions with four types of update operations re-
garding these values are created. It is checked whether the positions

N. Khodadadi, A.O. Giftioglu, S. Mirjalili et al.

of new candidate solutions are within limits. The fitness values of
the new candidate solutions within the bounds are calculated. Global
Best is updated if a better result than previous solutions is found. The
pseudo-code of the CGO is introduced below

Initialization:

Create random positions for initial crystals

Evaluate the fitness values for each crystal

While iteration number < max. iteration

Step 1: Create Cr,,,,and, based on it, create new crystals
Step 2: Create Cryand, based on it, create new crystals
Step 3: Create F .and, based on it, create new crystals

Step 4: Create new crystals based on Cr, and F, values
Step 5: Check the location restraints for new crystals and change it
Step 6: Assess the fitness values for new crystals

Step 7: Replace Global Best if a better fitness value is found
Step 8: Update iteration number

Step 9: Return Global Best

End While

2.8. Material Generation Algorithm

A physical change occurs only in the external appearance without
changing the structure of the products. No new products are formed as
a result of physical changes. Chemical changes are changes that occur
in the internal structure of materials. As a result of chemical changes,
the identity of the material changes, and new materials are formed.
Talatahari et al. [51] developed the Material Generation Algorithm
(MGA) inspired by new material generation. The algorithm determines
initial materials consisting of elements whose positions are randomly
determined in the search space. Fitness values showing the chemical
stability of these materials are calculated. Chemical stability is the
resistance of a material to changes (rusting, deterioration, etc.) due
to internal and external effects. New materials are produced using
the assumptions of chemical compounds and reactions. Once checking
the boundary conditions of new materials are, the fitness values are
calculated. The ones with the worst fitness value are replaced with
new materials with better fitness values from the previous materials.
Global best value is updated accordingly. The pseudo-code of the CGO
is introduced below

Initialization:

Create random positions for initial materials

Evaluate the fitness values for each material

While iteration number < max. iteration

Step 1: Generate new material using the concept of chemical compo-
nents

Step 2: Generate new material using the concept of chemical reaction
Step 3: Check the boundary conditions of new materials

Step 4: Evaluate the fitness values for new materials

Step 5: Replace materials with the worst fitness values with new
materials with better fitness values

Step 6: Replace Global Best if a better fitness value is found

Step 7: Update iteration number

Step 8: Return Global Best

End While

3. Truss structures definition

Mathematical formulas utilized in the size optimization of this study
are found here. It is necessary to achieve ideal member cross-section
(A;) values in order to reduce the structural weight W resulting in
the optimized truss structure size. In addition, this minimal design

Decision Analytics Journal 8 (2023) 100266
must meet the constraints on the size of design variables and structural
reactions. The following is the optimum design problem:

n

Minimize W({A,-}) = Z vi-A;L;

i=1

Subject Omin < 6; < Opnax i=12,....m
Omin < 0; < Opax i=12...n M
of’§a;§0 i=1,2,...,ns
Amin S A; < Apyg i=12..,ng

where the structure’s weight is defined by W({Ai}), n denotes the
number of members, m represents the number of nodes, the number of
compression elements is determined by ns, ng represents the number
of design variables or the number of member groups. Furthermore, the
material density of the member i is defined by y;,, L; denotes to the
length of the member i, A; is the cross-sectional area of the member
i chosen between A, and A,,,, o; and §; are the stress and nodal
deflection, respectively, ai” denotes the allowable buckling stress in
the member i when it is in compression. The following equation is
described as a penalty function:

FoenatiyX) = (1 + £,.v) v=) max[0,v,)

i=1
where v is the total amount of the constraints violated, and constants
e, and ¢, are selected considering the exploration and the exploitation
rate of the search space. In this case, €, is set to 1, ¢, is chosen to
minimize penalties and reduce cross-sections. At the beginning of the
search process, ¢, is set to 1.5 and is subsequently increased to 3.

4. Results and discussion of structural examples

Three truss structural problems with continuous design variables are
optimized in this Section utilizing AVOA [51], FDA [47], AOA [48],
GNDO [49], SPO [9], CGO [10], CRY [50], and MGA [51]. Structure
optimization aims to decrease the weight of the structure by identifying
the optimal element cross-section areas to fulfill the constraints. All
runs were done on a MacBook Pro for truss problems with a CPU
2.3 GHz (8-Core an Intel Core i9 computer platform) and 16 GB RAM on
a Macintosh computer, and the code was written in MATLAB (macOS
Monterey). The truss structures are a 25-member truss structure, a
72-member truss structure, and a 120-member dome structure. This
research aims to compare the algorithms’ susceptibility and robust-
ness regarding convergence and stability. All trusses are subjected
to linear static analysis. Algorithms for each truss structure perform
30 independent runs, and 10,000 analyses are considered a stopping
condition for the algorithms. The beginning population is generated
randomly for each run, and designs are created. Optimized results, con-
vergence curves, displacement ratios, element stresses, average weight,
and standard deviations are provided to compare the performance of
meta-heuristic methods.

4.1. The 25-member truss structure

The 25-member truss structure is the first example of this paper. The
25-member space truss under consideration is depicted in Fig. 2. There
are eight distinct groups of structural components, each with its unique
set of material and cross-sectional properties (See Table 1). Table 2
illustrates the truss’s two different load scenarios.

Groups are based on the number of participants in each group, as
shown in Table 2. Each node was regulated by a maximum displace-
ment restriction of +0.35 in in each direction, and compressive and
tensile stress limitations for each group are shown in Table 3. The
range of cross-sectional areas is from 0.01 to 3.4 in’. The material
(Aluminum) has a modulus of elasticity of 10 000 ksi and a mass density
of 0.1 Ib/in’.

N. Khodadadi, A.O. Giftioglu, S. Mirjalili et al.

100 in

>«

100in

Decision Analytics Journal 8 (2023) 100266

24

Fig. 2. The 25-member truss design structures.

v
'S
Table 1
The 25-member truss group number.
Element group number
1 2 3 4 5 6 7 8
1:(1,2) 2:1,4) 6:(2,4) 10:(6,3) 12:(3,4) 14:3,10) 18:(4,7) 22:(10,6)
3:(2,3) 7:(2,5 11:(54) 13:(6,5 15:(6,7) 19:(3,8) 23:(3,7)
4:(1,5) 8:(1,3) 16:(4,9) 20:(5,10) 24:(4,8)
5:(2,6) 9:(1,6) 17:(5,8) 21:(6,9) 25:(5,9)
Table 2
The loading scenario for 25-member truss.
Node number Load (kips)
Casel Case 2
P, P, P, P, P, P.
1 0 20 -5 1 10 -5
2 0 -20 -5 0 10 -5
3 0 0 0 0.5 0 0
6 0 0 0 0.5 0 0
Table 3

Compressive and tensile stress limitation for 25-member truss.

Element group Compressive stress Tensile stress

limitations limitations

Ksi (MPa) Ksi (MPa)
1 Al 35.092 (241.96) 40.0 (275.80)
2 A,~Ay 11.590 (79.0913) 40.0 (275.80)
3 Ag~Ay 17.305 (119.31) 40.0 (275.80)
4 Ajp~Ay 35.092 (241.96) 40.0 (275.80)
5 Ap~Ag 35.092 (241.96) 40.0 (275.80)
6 A~Ag 6.759 (46.603) 40.0 (275.80)
7 Ag~Ay, 6.959 (47.982) 40.0 (275.80)
8 Ayy~Ass 11.082 (76.410) 40.0 (275.80)

Table 4 shows the optimal designs for the 25-member truss struc-
tures generated by the algorithms. The results indicate that the op-
timum designs of SPO, GNDO, and FDA are incredibly close to each
other, with SPO being the most successful algorithm. AVOA is also

among the highest-performing algorithms, behind them by a slight
margin in terms of best and average weights. AOA, MGA, CRY, and
CGO have yielded design results that are, on average, 0.9%, 5.5%, 6%,
and 7.3% heavier than the optimum design, respectively. In general,
the best performing algorithms are SPO, GNDO, and FDA. Based on
their standard deviations, the best algorithms for stability are SPO and
GNDO.

As illustrated in Fig. 3, where the convergence graphs are compared
for the best run of each algorithm, SPO is the algorithm that can get
the optimal outcome (545.0375 1b); it has designed with the fewest
number of analyzes. In terms of convergence rates, GNDO and FDA
rank second and third, respectively, after SPO. CGO is the algorithm
with the worst convergence performance, needing the most analyses to
identify the best solution among the algorithms.

Fig. 4 illustrates convergence curves that plot the average fitness
of 30 runs versus the number of iterations for all algorithms. Con-
sequently, SPO converges to the optimal outcome first, followed by
GNDO, FDA, and AVOA, in the same order as the best-run curves.
While AOA shows average performance in terms of convergence speed
compared to other algorithms, CRY, MGA, and CGO are the algorithms
that need the most analysis to reach the optimum result.

Fig. 5 illustrates the displacement ratio of the 25-member truss
evaluated at the best design optimized using the SPO algorithm. The
displacement ratio for both load cases is lower than the maximum
ratio. Fig. 6 depicts the element stress of a 25-member truss designed
with the best run of SPO. According to this figure, the stresses of two
elements for both load cases are at the lower limit, while the stresses of
the remaining elements are between the upper and lower limits. This
means that displacement ratio and element stress constraints control
the design of this example.

Fig. 7 depicts the weights, average weights, and best weights ob-
tained by all algorithms in all runs ranging from 1 to 30. According
to the figure, the average and best weights discovered by the SPO
algorithm for the 25-member truss design problem are very close
compared to other algorithms. The standard deviation is the lowest,
and the stability is the highest. In terms of stability, the algorithm that
follows SPO is GNDO, and the best weight it finds after SPO, and its
average weight are the closest to each other.

N. Khodadadi, A.O. Giftioglu, S. Mirjalili et al. Decision Analytics Journal 8 (2023) 100266

Table 4
The results of different methods for 25-member truss structure.
Member group AVOA FDA AOA GNDO SPO CGO CRY MGA
1(A)D 0.0750 0.0101 0.0438 0.0101 0.0101 0.9446 1.1237 1.1384
2 (A, A5) 2.1802 2.0522 2.0874 2.0494 2.0461 2.8865 2.0030 2.3953
3 (Ag.Ay) 2.8366 3.0044 3.1081 2.9964 2.9959 2.4519 3.0834 2.7725
4 (A Ay 0.0100 0.0100 0.0136 0.0100 0.0100 0.0100 0.0293 0.0460
5 (A Ap3) 0.0102 0.0100 0.0100 0.0101 0.0100 1.1425 0.2488 0.1176
6 (A, A7) 0.6640 0.6810 0.7799 0.6837 0.6836 0.6278 0.7281 0.8442
7 (Aig Ay 1.5940 1.6144 1.5679 1.6204 1.6234 1.4653 1.8112 1.7904
8 (A5 Ays) 2.7442 2.6763 2.5909 2.6735 2.6732 2.8828 2.4131 2.4748
Best weight (Ib.) 545.9610 545.0414 550.8519 545.0388 545.0375 585.3567 578.7504 577.4840
Average weight (1b.) 549.3792 545.2373 575.1403 545.0650 545.0625 614.3526 615.8074 610.7876
Standard deviation 4.4424 0.1746 13.3803 0.0281 0.0181 14.3608 20.6859 15.3682
Number of analyses 10000 10000 10000 10000 10000 10000 10000 10000
Best Runs 25 Bar Truss
1000
‘ Algorithms ‘
950 |=—AVOA ——FDA AOA === GNDO === SPO = CGO === CRY = MGA |
900 |
850 I
”
g
2 800
©
S
=]
(7]
-
o
-
K=
2
s L
| |
\ | ‘
' —\ L_
| | | | | | J
80 100 120 140 160 180 200
Number Of Iterations
Fig. 3. The best runs convergence curves for 25-member truss design structures.
950 — Average Runs 25 Bar Truss
‘ Algorithms
|==—AVOA ——FDA ~~~AOA === GNDO === SPQ === CGO === CRY =—MGA |
900 |-
850 |
800 |
e
&
g 750
(2]
&
« 700
<
i=
o
S 650
600
550
500 | | | | | | | | | J

20 40 60 80 100 120 140 160 180 200
Number Of Iterations

Fig. 4. The mean runs convergence curves for 25-member truss design structures.

N. Khodadadi, A.O. Giftioglu, S. Mirjalili et al.

Decision Analytics Journal 8 (2023) 100266

Displacement ratio of best run for 25 bar-truss of SPO algorithm

‘—Max Ratio - Load Case 1 —* Load Case 2

il b
0.8 | | a
.0 | i
® ‘ i1
14 | tod
So6| | .
E | { § 1
H [o
I3) o
8
o4l | [
a8 || . ;
A AN Y, T °
' ! I Vo \] L4 /
020 || ‘ 7o I A A
H \ i i / \ |) N /o
i \ I i \ \ / \ RN
- . A \ : Voo \
L7 Lo \
0 '4‘%—;6—6—0—0—0—0—6—0—0—0—0—6
15 20 25 30
DOF Number

Fig. 5. The displacement ratio of SPO for 25-member truss design structures.

Elements stress of best run for 25 bar-truss of SPO algorithm

\—Upper Bound == Uower Bound Load Case 1 —®Load Case 2
40
30 -
20 -
10 -
m—-m
g . Y . /"\\ o * . N //"\\
g or Ve N AR 7 - W B g P . / | T S
”n w w o -
10 - SN——
-20
-30
-40
1 1 1 1 |
5 10 15 20 25
Elements
Fig. 6. The elements stress of SPO for 25-member truss design structures.
4.2. The 72-member truss structure Table 5
Loading condition for 72-member truss.
An example of a 72-member space truss as the second example is Node number Load (kips)
depicted in Fig. 8. The material has a density of 0.1 Ib/in> and a modu- Casel Case 2
lus of elasticity of 10 000 ksi. This example’s components are organized P, P, P, P, P, P,
into 16 distinct groups. The maximum allowable stress is 25 ksi for 17 5 5 -5 0 0 -5
both the tensile and compressive stress. The top node displacement is 18 0 0 0 0 0 -5
less than 0.25 in in both x and y directions. Each member can have a ;2 g g g g g _g

cross-sectional area between 0.10 in> and 4.00 in” at the most. For the
two alternative space truss load scenarios, the values and directions are
shown in Table 5.

The optimum design results for the 72-member truss structures
provided by the algorithms are shown in Table 6. SPO is the algorithm
from the results that calculates the lowest weight (379.6338 1b), while
the FDA is incredibly near to it. AVOA and GNDO are two other
algorithms that closely follow FDA. AOA, MGA, CGON, and CRY design
structures 34.3%, 80.8%, 81.4%, and 101.58% heavier, respectively,
than the optimum weight. SPO is the algorithm that has exhibited the
best general performance in terms of both best and average weight.

Furthermore, it also has the slightest standard deviation. In contrast,
CRY has the worst performance overall, with both best and average
weight below the rest of the algorithms used. Additionally, CGO and
MGA have the highest standard deviation.

SPO is the most effective at reaching an optimal solution with the
fewest number of analyzes (4150), as shown in Fig. 9 AVOA, GNDO,
and FDA all follow SPO in terms of best runs’ convergence rates. CGO,
CRY, and MGA need more analysis than other algorithms to determine

N. Khodadadi, A.O. Giftioglu, S. Mirjalili et al.

Independent runs for 25 bar-truss of SPO algorithm

Decision Analytics Journal 8 (2023) 100266

Independent runs for 25 bar-truss of FDA algorithm

%570 L .] E545.8¢ 4
(3 (3 [y 4
2 ss0 - | = 545.6 o
© T 5454 ° * e 1
= . o ® . . ® 2 545.2 2 . ° ° o ° e =
35507.0' St L see? T e § Tl o' ® °® ¢ . ° o o
7] 0 545F]
540
5 10 15 20 25 30 5 10 15 20 25 30
No. Runs No. Runs
Independent runs for 25 bar-truss of AOA algorithm Independent runs for 25 bar-truss of GNDO algorithm
E620 4 E 5452 1
= . o .
£ 600 -] £ 54515 -]
5 ot o . » . 5 e
5580 e ° - R ® g 5 5451 A]
o ° o o .
S . LI) ° . i S .
5560 ° . 5545056 o', eene"cees T T
540
5 10 15 20 25 30 5 10 15 20 25 30
No. Runs No. Runs
Independent runs for 25 bar-truss of SPO algorithm 680 Independent runs for 25 bar-truss of CGO algorithm
= s4515] T : T T T 1 = : T T T T
= 2660 - 1
) [®
2 S 6406 o o
T 545.1¢ o] -
g ® . ° o h * 56207. O . e e o.o ‘.'.".. °4
g . ° . °® P o © 600 - . L) o s
2 . . o e . 2 . .
5 10 15 20 25 30 5 10 15 20 25 30
No. Runs No. Runs
Independent runs for 25 bar-truss of CRY algorithm Independent runs for 25 bar-truss of MGA algorithm
=700F T T T T T] - 680 F T T T T T =]
2 2660 [7
] ° (] .
= 650 1 . * i Se40[e]
- - oo ®
£ ¢, *, . T 620 . - o J
2 - o v e - v 36007. . ° . P ee® © -t
Seoot o e, ¢ ot ° 2 ‘. .
2 = L ° J
a L L L L L ﬁ 580 L L L L L
5 10 15 20 25 30 5 10 15 20 25 30
No. Runs No. Runs
—— Best Weight Mean Weight ¢ Weight of Runs
Fig. 7. The 30 independent runs for 25-member truss design structures of all algorithms.
Table 6
The results of different methods for 72-member truss structure.
Member group AVOA FDA AOA GNDO SPO CGO CRY MGA
1(AA) 1.9592 1.9353 1.5500 1.8632 1.8957 1.2740 2.4438 2.4866
2 (A5 A}y) 0.4993 0.5102 0.8425 0.4826 0.5131 1.2747 0.7430 1.0832
3 (A3 Aj) 0.1001 0.1000 0.1000 0.1001 0.1000 0.8114 2.0054 0.1000
4 (A Ag) 0.1000 0.1003 0.1500 0.1004 0.1000 1.3423 1.6212 0.1000
5 (Ajg.Ay) 1.2984 1.2646 3.1108 1.1619 1.2659 0.8551 1.6537 1.3842
6 (Ay; Az 0.5067 0.4932 0.7325 0.5135 0.5094 0.6696 0.4577 0.8587
7 (A3 A3) 0.1000 0.1017 0.1000 0.1000 0.1001 0.7345 0.1331 0.2995
8 (Ass.Azg) 0.1000 0.1000 0.4192 0.1010 0.1000 0.6961 1.0755 1.2563
9 (Az.A4) 0.5601 0.5163 0.3188 0.5322 0.5245 2.2399 0.7833 0.4926
10 (A4 Ag) 0.5208 0.5059 0.6582 0.5263 0.5162 0.3182 0.5435 0.3130
11 (A .Asy) 0.1001 0.1003 0.2142 0.1003 0.1000 0.1000 0.1000 0.2062
12 (As3.Asy) 0.1025 0.1061 0.2332 0.1000 0.1000 1.1225 0.2479 2.8108
13 (Ass.Asg) 0.1556 0.1557 0.6607 0.1546 0.1564 0.5152 2.3697 1.6969
14 (Aso.Agg) 0.5674 0.5512 0.6663 0.5848 0.5486 0.7660 0.6659 0.5794
15 (Ag-Az) 0.3909 0.4273 0.1000 0.4105 0.4094 0.7315 1.0100 1.2147
16 (A7, A7) 0.4922 0.6038 0.3353 0.6168 0.5637 0.7379 2.2596 0.2328
Best weight (Ib.) 380.2781 380.0084 509.8685 380.5450 379.6338 688.7320 765.2620 686.3712
Average weight (Ib.) 383.5203 381.9343 626.4494 388.9339 379.6749 856.2211 873.9106 858.4968
Standard deviation 2.9270 1.2127 57.8632 8.6151 0.0298 78.8107 50.3802 76.0597
Number of analyses 10000 10000 10000 10000 10000 10000 10000 10000

the optimal weight and thus have a bad history of convergence. Fig. 10,
which shows convergence plots of the best run of each algorithm, yields
the same findings as Fig. 11, which shows convergence plots of the
average run. SPO is the most robust algorithm in terms of convergence
performance, while CGO, CRY, and MGA are the worst.

Fig. 11 depicts the displacement ratio of the 72-member truss at
the best design optimized with the SPO method. The displacement
ratio reaches a maximum of 99.96% in the final DOF numbers. The

element stress of a 72-member truss designed with the best run of SPO
is visualized in Fig. 12. The four-element stresses in load case 2 and
two element stress in load case 1 are at the lowest limit, while all other
element stresses are between the boundaries, as shown in this figure.
It is clear that both displacement ratio and element stress constraints
control the design of this example.

Fig. 13 shows the weights, average weights, and best weights
achieved by all algorithms in all runs from 1 to 30. The average

10

N. Khodadadi, A.O. Giftioglu, S. Mirjalili et al. Decision Analytics Journal 8 (2023) 100266

ul 09Xy
e e e

-,
-,
- - N\
~——— ,’/ .Q,Q
120in Se—— »

Fig. 8. The 72-member truss design structures.

Best Runs 72 Bar Truss

1600 —
‘ Algorithms ‘
‘—AVOA ws FDA =« AQA wmmmm GNDQ = SPQ = CGQ mmmmm CRY —MGA‘
1400
1200
]
g
g
S 1000
=
(7]
-
o
£ 800
=
7]
H

600

400

200 1 1 1
20 40 60 80 100 120 140 160 180 200

Number Of Iterations

Fig. 9. The best runs convergence curves for 72-member truss design structures.

11

N. Khodadadi, A.O. Giftioglu, S. Mirjalili et al.

Decision Analytics Journal 8 (2023) 100266

Average Runs 72 Bar Truss

1600 —
\ Algorithms |
|=——AVOA ——FDA AOA === GNDO === SPO CGO === CRY = MGA |
1400
1200
»
<
£
S 1000
=
2 \
-
o
E 800
2
o
H
600 -
400 -
200 | | | | | | | | | J
20 40 60 80 100 120 140 160 180 200
Number Of Iterations
Fig. 10. The mean runs convergence curves for 72-member truss design structures.
Displacement ratio of best run for 72 bar-truss of SPO algorithm
‘— Max Ratio —@--Load Case 1 —=-Load Case 2
1
0.8 - (]
i
T
14
€06
o
£
o
o
o
o
]
004
0.2 - o
T
=—u \i []
°

DOF Number

Fig. 11. The displacement ratio of SPO for 72-member truss design structures.

weight and best weight discovered by the SPO algorithm for the 72-
member truss design problem are quite close when compared to other
algorithms, as seen in this figure, and hence the stability is the highest.

4.3. The 120-member dome structure

The 120-member dome structure was depicted as the third example
of size optimization in this study as Fig. 14. The material has a density
of 0.288 Ib/in® and a modulus of elasticity of 30450 ksi. The yield stress
of steel is taken as 58 ksi. The dome is considered to be subjected to
vertical loading at all the unsupported joints as follows.

I. The load of 13.49 kips was employed at node 1.
II. The load of 6.744 kips was employed at nodes 2 to 14.

12

III. The load of 2.248 kips was employed at the rest of the nodes.

Assuming symmetry about the z-axis, the components are divided
into seven groups. 20 in® is the greatest cross-sectional area, with a
minimum of 0.775 in®. The allowable tensile and compressive stresses
are set according to the AISC ASD code.

Table 7 provides the optimum design results for the 120-member
dome structures. SPO algorithm produces the lightest weight solution,
and GNDO, FDA, and AVOA are the most successful in finding a lighter
structure after SPO. From Table 7, SPO is the best-performing algorithm
in terms of minimum weight (best) or maximum variation between
different designs’ weights (average), meaning it has found at least one
structure with either the smallest best or slightest average difference
in weight compared to other algorithms considered here. MGA has
the worst performance with a design that is 16.99% heavier than SPO
in terms of best weight, and CGO has the worst performance with a

N. Khodadadi, A.O. Giftioglu, S. Mirjalili et al.

Decision Analytics Journal 8 (2023) 100266

Elements stress of best run for 72 bar-truss of SPO algorithm

‘— Upper Bound ====Uower Bound —® -Load Case 1 —B--Load Case 2‘
25
20 -
15—
10 -
5 EEEEE
[] 20 o
"0 ® ° [1] ° : \
» PY / ! o0 oo
g o, ./I—I—lllll—l”"t“\ . ./-]]i.m:'la]\. musmmmEs 00 : e o /,'"“'
17} sltlgio e ¢ e ® e \\ .../P ee o \‘i Y :.'..":. 'Y
P i i
| ! i i
10 - mEmE “ i
i i
15 i !
® !
! !
20 - b
i |
25 A
| | | | | | |]
10 20 30 40 50 60 70 72
Elements

Fig. 12. The element stress of SPO for 72-member truss design structures.

Independent runs for 72 bar-truss of AVOA algorithm

Independent runs for 72 bar-truss of FDA algorithm

388
= = .
& 395 - — =)
° © 386 - B
S 300t . * 4 s
e e ° o * © 384 - ° 7
Zasr ° h ° 1 2 N .
S — e S3g2fe 2 ® e . L g
= . * 4 ° ® oo . ¢ £ e e e e . .
® 380 (] 2.0 o Y n ° ® L] P
. 380
5 10 15 20 25 30 5 10 15 20 25 30
0. Runs o. Runs
800 Independent runs for 72 bar-truss of AOA algorithm Independent runs for 72 bar-truss of GNDO algorithm
T T T T T T T T T T
= R e 420 |- .
@ 700 1 o 1 °
=] o, o ° = b4 o °
- > M ° =
g 600 F o » ° . e ¢ g 400 - ° 7
= e ° . . = . ° . b
S ®e S o - .
= F = = S ® . e® » . e
& 500 & 380 —= . . . o
5 10 15 20 25 30 5 10 15 20 25 30
0. Runs) o. Runs i
Independent runs for 72 bar-truss of SPO algorithm Independent runs for 72 bar-truss of CGO algorithm
. T T T T T - : T T T T
23798 1 210007 . . . 1
= 14 = 900 - ® i [e L4 ° 4
E b ? e E . o
S 379.7 [3ad g S e 0 . e o
° Lo 2 oS —5—e P i] 5 s0p ° ¢ ¢ ° . ¢ . . i . b
,E. ° ®o @ 3 . * . ° .E..
n o 700 & i
3796 & L L L L L E| L L L L L
5 10 15 20 25 30 5 10 15 20 25 30
. Rul . Ru
Independent runs for 72 bar-truss of CRY algorithm Independent runs for 72 bar-truss of MGA algorithm
T T T T T T T T T T
z 1100] g 1100}]
o H 1 ® 1000 | 1
2 1000 R . 2 . . . e
s) . ° T 900 ° ° o°
S o0l e s N 1 £ S A — S e
B N d T Peegge s ° B 800 . o ° 1
S . 4 ° S . .
£ 800 ° — = °®
(7] » 700 = B
5 10 15 20 25 30 5 10 15 20 25 30
No. Runs No. Runs
— Best Weight Mean Weight ¢ Weight of Runs

Fig. 13. The 30 independent runs for 72-member truss design structures of all algorithms.

design that is 34.12% heavier than SPO in terms of average weight.
Furthermore, AOA, CRY, CGO, and MGA have the highest standard
deviation.

Fig. 15 presents the convergence curves of the best algorithm runs,
whereas Fig. 16 displays the average convergence curves of 30 algo-
rithm runs. As shown by the congruent findings in both figures, SPO is

13

the algorithm that achieves the best outcome with the least amount of
analysis. AVOA, FDA, and GNDO are algorithms that follow SPO and
perform similarly to SPO in convergence speed. AOA has an average
convergence rate; however, CGO, MGA, and CRY are algorithms that
require the greatest number of analyses to achieve the best result and
so have relatively low convergence performance.

N. Khodadadi, A.O. Giftioglu, S. Mirjalili et al.

Decision Analytics Journal 8 (2023) 100266

i E
I~
€ A
i & :
i " !
1 | E
! [om
v v v
% 6.94 m 5
12.04 m
- >
. 15.89 m 5
Fig. 14. The 120-member dome design structures.
Table 7
The results of different methods for 120-member dome structures.
Member group AVOA FDA AOA GNDO SPO CGO CRY MGA
1 3.0261 3.0252 3.1850 3.0246 3.0243 3.4806 3.4483 3.0742
2 14.7834 14.7664 18.9905 14.8500 14.7626 13.1129 11.3884 10.6301
3 4.9595 5.1440 5.0804 5.0929 5.0876 6.4437 7.8715 7.1543
4 3.0926 3.1307 2.7501 3.1336 3.1369 4.3015 3.3907 3.4238
5 8.4451 8.4129 6.7730 8.4260 8.4795 9.4229 8.5720 10.7356
6 3.6784 3.3314 7.9835 3.2989 3.2875 4.0022 7.6157 6.6660
7 2.5015 2.4952 2.7326 2.4961 2.4963 3.1130 3.0617 3.3623
Best weight (Ib.) 33299.7891 33253.0103 36548.2763 33250.6747 33249.5608 38263.1107 38341.4169 38897.5332
Average weight (1b.) 33541.5996 33287.1615 41609.2175 33256.3555 33251.0038 44598.0629 43883.3807 44162.8185
Standard deviation 188.5024 30.4286 3117.4733 7.1625 1.9190 2717.4724 3035.5354 2429.5537
Number of analyses 10000 10000 10000 10000 10000 10000 10000 10000

Fig. 17 displays the element stress of a 120-member dome designed
with the best run of SPO. Components are generally stressed between
limitations, as seen in this figure. Fig. 18 displays the displacement ratio
of the 120-member dome at the best SPO-optimized design. When the
DOF number is up to 40, the displacement ratio is near the maximum
limit of 1, and the displacement ratio is within the limitations when

14

the DOF number is between 40 and 110. This means that both dis-
placement ratio and element stress constraints control the design of this
example.

Fig. 19 depicts the weights, average weights, and best weights
obtained by all algorithms in all runs ranging from 1 to 30. This figure
shows that the average weight and best weight discovered by the SPO

N. Khodadadi, A.O. Giftioglu, S. Mirjalili et al.

Decision Analytics Journal 8 (2023) 100266

8 5104 Best Runs 120 Bar Truss
\ Algori |
| === AVOA s FDA AOA === GNDO === SPO CGO s CRY s MGA |
75|
7 {
6.5
e
5 6
2
3]
S
3 | I
P55
[¢]
-
S
.a 5
=
4.5
4 \—_
3.5
3 | | | | | | | | | J
20 40 60 80 100 120 140 160 180 200
Number Of Iterations
Fig. 15. The best runs convergence curves for 120-member dome design structures.
8 x10* Average Runs 120 Bar Truss
‘ Algorithms
‘—AVOA = FDA AOA === GNDQ ====SPO CGQO === CRY —MGA‘
751
71
6.5
0
e
S 6
2
©
2
»
P55
[¢]
-
)
S 5
s
4.5
4
3.5
3 | | | | | | | | J

20 40 60 80

100

120 140 160 180 200

Number Of Iterations

Fig. 16. The mean runs convergence curves for 120-member dome design structures.

algorithm for the 120-member dome design problem are relatively close
to other algorithms. Hence, stability is the highest.

The robustness of SPO is demonstrated by the statistical results
collected from 720 separate runs for all eight mentioned metaheuris-
tic algorithms. A good exploration and exploitation for the SPO are
achieved by four simple color combination rules, eliminating the re-
quirement for any internal parameter. One notable characteristic of
SPO is that it removes the need for preliminary fine-tuning of param-
eters, distinguishing it from many existing meta-heuristic algorithms.
The efficiency of SPO is assessed using three different truss structures,

15

and the results indicate its superior performance in terms of both
efficiency and precision compared to other algorithms.

5. Conclusion and future work

This study investigated the performance of eight different meta-
heuristic algorithms for the continuous size optimization of space truss
structures. The examined algorithms included the African Vultures
Optimization Algorithm, Flow direction algorithm, Arithmetic Opti-
mization Algorithm, Generalized Normal Distribution Optimization,

N. Khodadadi, A.O. Giftioglu, S. Mirjalili et al.

Decision Analytics Journal 8 (2023) 100266

Elements stress of best run for 120 bar-dome of SPO algorithm

40 -
‘— Allowable Stress —e--Load Case ‘
30—
20 -
10 -
0
0
£
n ol oo o
L , o S00c0ccesso eecenccoce | _®eg ase®
-10 -
-20 -
30 T | | | | J
0 20 40 60 80 100 120
Elements
Fig. 17. The element stress of SPO for 120-member design structures.
Displacement ratio of best run for 120 bar-dome of SPO algorithm
‘— Max Ratio —e--Load Case
2
£
©
o
t
o
£
o
o
K]
o
2
=]
| L L

120 140 147

DOF Number

Fig. 18. The displacement ratio of SPO for 120-member dome design structures.

Stochastic Paint Optimizer, Chaos Game Optimizer, Crystal Structure
Algorithm, and Material Generation Algorithm. The objective was to
assess the capabilities and efficiencies of these meta-heuristics by apply-
ing them to the size optimization of three benchmark truss structures.
The optimization process results revealed that the Stochastic Paint Opti-
mizer (SPO) outperformed the other algorithms in size optimization for
space truss structures. A thorough analysis of the optimization results
demonstrated that the SPO achieved the best outcomes in terms of
weight, average weight, and standard deviation.

Additionally, the convergence curves indicated that the SPO had
higher convergence speeds than the other investigated algorithms.
Further evaluation studies are required to explore the applicability of
the SPO algorithm in solving optimization problems related to steel
frame structures and other areas of structural engineering. Further-
more, future works will discuss improved and multi-objective versions

16

of these methods to enhance their performance in frames and larger
truss statures and optimization tasks.

Declaration of competing interest

The authors have declared no conflict of interest.
Data availability

No data was used for the research described in the article.
Acknowledgment

The authors gratefully acknowledge the financial support from the

National Science Foundation I/U-CRC Center for Integration of Com-
posites into Infrastructure (CICI) under grant #1916342.

N. Khodadadi, A.O. Giftioglu, S. Mirjalili et al.

Decision Analytics Journal 8 (2023) 100266

4 X 10* Independent runs for 120 bar-dome of AVOA algorithm x10* Independent runs for 120 bar-dome of FDA algorithm
T T T T T T T T T 7
= . . . o £ 334r . 1
2338 1 g
2 .) 23361 4
T336[e e®e ° o T 533l ee S «%e ¢ . |
% * . . ° '3 . e 0 g L * = ¢ P o
§3.34— Lol o L0 e Bamss - -)
332 332
5 10 15 20 25 30 5 10 15 20 25 30
o. Runs . 0. Runs i
5 X 10* Independent runs for 120 bar-dome of AOA algorithm «10*Independent runs for 120 bar-dome of GNDO algorithm
. ~ T T . T : . T T T T T
) . 5 338]
(3 (3
45 e b . 4
% N * . .. % 3328 h
é 49 ¢ ot ® e — e r -5-
S e ©3.326 |- b o . §
Z ° ° . .o Z P S NS ST P S LS PP
»n o 7]
35 3.324
5 10 15 20 25 30 5 10 15 20 25 30
No. Runs No. Runs .
x10* _Independent runs for 120 bar-dome of SPO algorithm x10* Independent runs_for 120 bar-dome of CGO algorithm
3.3265 F T T T T T 55[T T T T T]
£ £
2 | | 2
2 3326 2 s5¢ . . R J
© hd ¢ © . b e e
533255 1 545%%e"° PN Se N o o
2 [© . . ®
g _— -2 o e T 2 ° ° Yo
& 3.325 S e . o e 2% o0 ® S 547 ® A
. n n n n n
5 10 15 20 25 30 5 10 15 20 25 30
No. Runs 0. Runs
%10 Independent runs for 120 bar-dome of CRY algorithm x 10independent runs for 120 bar-dome of MGA algorithm
- -
:E, 5F * . 1 .-E, 51 * |
< o . . < .
E ° * (] E ° . ° [} o . 2
© 457 hd " at 'y L C45F e o L) s .
% . . ¢ * . ® . % . * o°* oo ce®®
S . ° . . S °
5 ar . 1 5 4¢ 1
]]]
5 10 15 20 25 30 5 10 15 20 25 30
No. Runs No. Runs
—— Best Weight Mean Weight ¢ Weight of Runs

Fig. 19. The 30 independent runs for 120-member dome design structures of all algorithms.

References

[1]

[2]

[3]

[4]
[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Softw. 95
(2016) 51-67.

S. Khalilpourazari, S. Khalilpourazary, An efficient hybrid algorithm based on
water cycle and Moth-Flame optimization algorithms for solving numerical and
constrained engineering optimization problems, Soft Comput. 23 (5) (2019)
1699-1722, http://dx.doi.org/10.1007/500500-017-2894-y.

H. Faris, S. Mirjalili, I. Aljarah, M. Mafarja, A.A. Heidari, Salp swarm algorithm:
Theory, literature review, and application in extreme learning machines, Stud.
Comput. Intell. 811 (January) (2020) 185-199, http://dx.doi.org/10.1007/978-
3-030-12127-3_11.

J.H. Holland, Genetic algorithms, Sci. Am. 267 (1) (1992) 66-73.

K. v Price, Differential evolution, in: Handbook of Optimization, Springer, 2013,
pp. 187-214.

J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of
ICNN’95-International Conference on Neural Networks, IEEE, 1995, pp.
1942-1948.

A.H. Gandomi, X.-S. Yang, A.H. Alavi, Cuckoo search algorithm: a metaheuristic
approach to solve structural optimization problems, Eng. Comput. 29 (1) (2013)
17-35.

A. Mohammadi-Balani, M.D. Nayeri, A. Azar, M. Taghizadeh-Yazdi, Golden eagle
optimizer: A nature-inspired metaheuristic algorithm, Comput. Ind. Eng. 152
(2021) 107050.

A. Kaveh, S. Talatahari, N. Khodadadi, Stochastic paint optimizer: theory and
application in civil engineering, Eng. Comput. (2020) 1-32.

M.-Y. Cheng, D. Prayogo, Symbiotic organisms search: a new metaheuristic
optimization algorithm, Comput. Struct. 139 (2014) 98-112.

J.O. Agushaka, A.E. Ezugwu, L. Abualigah, Dwarf mongoose optimization
algorithm, Comput. Methods Appl. Mech. Engrg. 391 (2022) 114570.

S. Kaur, L.K. Awasthi, A.L. Sangal, G. Dhiman, Tunicate swarm algorithm: A new
bio-inspired based metaheuristic paradigm for global optimization, Eng. Appl.
Artif. Intell. 90 (2020) 103541.

17

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

S.0. Degertekin, G.Y. Bayar, L. Lamberti, Parameter free jaya algorithm for truss
sizing-layout optimization under natural frequency constraints, Comput. Struct.
245 (2021) 106461.

J. Pierezan, L. dos Santos Coelho, V.C. Mariani, E.H. de Vasconcelos Segundo,
D. Prayogo, Chaotic coyote algorithm applied to truss optimization problems,
Comput. Struct. 242 (2021) 106353.

A. Kaveh, N. Khodadadi, S. Talatahari, A comparative study for the optimal
design of steel structures using Css and Acss algorithms, Iran Univ. Sci. Technol.
11 (1) (2021) 31-54.

A. Kaveh, N. Khodadadi, B.F. Azar, S. Talatahari, Optimal design of large-scale
frames with an advanced charged system search algorithm using box-shaped
sections, Eng. Comput. (2020) 1-21.

N. Khodadadi, M. Azizi, S. Talatahari, P. Sareh, Multi-objective crystal structure
algorithm (MOCryStAl): Introduction and performance evaluation, IEEE Access
9 (2021) 117795-117812.

D. Ustun, An enhanced adaptive butterfly optimization algorithm rigorously
verified on engineering problems and implemented to ISAR image motion
compensation, Eng. Comput. (Swansea) (2020).

N. Khodadadi, S. Vaclav, S. Mirjalili, Dynamic arithmetic optimization algorithm
for truss optimization under natural frequency constraints, IEEE Access 10 (2022)
16188-16208.

G.G. Tejani, V.J. Savsani, V.K. Patel, S. Mirjalili, Truss optimization with natural
frequency bounds using improved symbiotic organisms search, Knowl. Based
Syst. 143 (2018) 162-178.

M. Mashayekhi, R. Yousefi, Topology and size optimization of truss structures
using an improved crow search algorithm, Struct. Eng. Mech. Int. J. 77 (6) (2021)
779-795.

A. Kaveh, A.D. Eslamlou, N. Khodadadi, Dynamic water strider algorithm for
optimal design of skeletal structures, Period. Polytech. Civ. Eng. 64 (3) (2020)
904-916.

S. Kumar, G.G. Tejani, N. Pholdee, S. Bureerat, P. Jangir, Multi-objective
teaching-learning-based optimization for structure optimization, Smart Sci. 10
(1) (2022) 56-67.

http://refhub.elsevier.com/S2772-6622(23)00106-6/sb1
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb1
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb1
http://dx.doi.org/10.1007/s00500-017-2894-y
http://dx.doi.org/10.1007/978-3-030-12127-3_11
http://dx.doi.org/10.1007/978-3-030-12127-3_11
http://dx.doi.org/10.1007/978-3-030-12127-3_11
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb4
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb5
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb5
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb5
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb6
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb6
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb6
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb6
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb6
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb7
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb7
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb7
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb7
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb7
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb8
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb8
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb8
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb8
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb8
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb9
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb9
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb9
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb10
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb10
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb10
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb11
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb11
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb11
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb12
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb12
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb12
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb12
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb12
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb13
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb13
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb13
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb13
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb13
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb14
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb14
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb14
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb14
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb14
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb15
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb15
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb15
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb15
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb15
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb16
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb16
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb16
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb16
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb16
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb17
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb17
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb17
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb17
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb17
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb18
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb18
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb18
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb18
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb18
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb19
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb19
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb19
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb19
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb19
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb20
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb20
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb20
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb20
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb20
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb21
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb21
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb21
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb21
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb21
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb22
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb22
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb22
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb22
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb22
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb23
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb23
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb23
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb23
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb23

N. Khodadadi, A.O. Giftioglu, S. Mirjalili et al.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

N. Khodadadi, S. Talatahari, A. Dadras Eslamlou, MOTEO: a novel multi-objective
thermal exchange optimization algorithm for engineering problems, Soft Comput.
(2022) 1-26.

A. Kaveh, V.R. Mahdavi, Multi-objective colliding bodies optimization algorithm
for design of trusses, J. Comput. Des. Eng. 6 (1) (2019) 49-59.

A. Kaveh, S. Talatahari, N. Khodadadi, The hybrid invasive weed optimization-
shuffled frog-leaping algorithm applied to optimal design of frame structures,
Period. Polytech. Civ. Eng. 63 (3) (2019) 882-897.

W. Lingyun, Z. Mei, W. Guangming, M. Guang, Truss optimization on shape and
sizing with frequency constraints based on genetic algorithm, Comput. Mech. 35
(5) (2005) 361-368.

H.M. Gomes, Truss optimization with dynamic constraints using a particle swarm
algorithm, Expert Syst. Appl. 38 (1) (2011) 957-968.

A. Kaveh, S. Talatahari, N. Khodadadi, Hybrid invasive weed optimization-
shuffled frog-leaping algorithm for optimal design of truss structures, Iran. J.
Sci. Technol. Trans. Civ. Eng. 44 (2) (2019) 405-420.

H. Tang, T.N. Huynh, J. Lee, A novel adaptive 3-stage hybrid teaching-based
differential evolution algorithm for frequency-constrained truss designs, in:
Structures, Elsevier, 2022, pp. 934-948.

N. Khodadadi, S. Mirjalili, Truss optimization with natural frequency constraints
using generalized normal distribution optimization, Appl. Intell. (2022) 1-14.
F. Jiang, L. Wang, L. Bai, An improved whale algorithm and its application in
truss optimization, J. Bionic Eng. 18 (3) (2021) 721-732.

F.K.J. Jawad, C. Ozturk, W. Dansheng, M. Mahmood, O. Al-Azzawi, A. Al-Jemely,
Sizing and layout optimization of truss structures with artificial bee colony
algorithm, in: Structures, Elsevier, 2021, pp. 546-559.

G. Bekdas, M. Yucel, S.M. Nigdeli, Evaluation of metaheuristic-based methods
for optimization of truss structures via various algorithms and lévy flight
modification, Buildings 11 (2) (2021) 49.

S. Gholizadeh, R. Sojoudizadeh, Modified sine-cosine algorithm for sizing op-
timization of truss structures with discrete design variables, Iran Univ. Sci.
Technol. 9 (2) (2019) 195-212.

Y. Li, S. Wang, M. Han, Truss structure optimization based on improved chicken
swarm optimization algorithm, Adv. Civ. Eng. 2019 (2019).

F.K.J. Jawad, M. Mahmood, D. Wang, A.-A. Osama, A.-J. Anas, Heuristic
dragonfly algorithm for optimal design of truss structures with discrete variables,
in: Structures, Elsevier, 2021, pp. 843-862.

S. Kumar, G.G. Tejani, S. Mirjalili, Modified symbiotic organisms search for
structural optimization, Eng. Comput. 35 (4) (2019) 1269-1296.

18

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Decision Analytics Journal 8 (2023) 100266

1. Serpik, Discrete size and shape optimization of truss structures based on job
search inspired strategy and genetic operations, Period. Polytech. Civ. Eng. 64
(3) (2020) 801-814.

T. Dede, M. Grzywiriski, R. Venkata Rao, Jaya: A new meta-heuristic algorithm
for the optimization of braced dome structures, in: Advanced Engineering
Optimization Through Intelligent Techniques, Springer, 2020, pp. 13-20.

0. Altay, O. Cetindemir, I. Aydogdu, Size optimization of planar truss systems
using the modified salp swarm algorithm, Eng. Optim. (2023) 1-17.

N. Khodadadi, S. Talatahari, A.H. Gandomi, ANNA: Advanced neural network
algorithm for optimization of structures, Proc. Inst. Civ. Eng. Struct. Build. (2023)
1-59.

T. Vu-Huu, S. Pham-Van, Q.-H. Pham, T. Cuong-Le, An improved bat algorithms
for optimization design of truss structures, in: Structures, Elsevier, 2023, pp.
2240-2258.

V. Goodarzimehr, U. Topal, A.K. Das, T. Vo-Duy, Bonobo optimizer algorithm for
optimum design of truss structures with static constraints, in: Structures, Elsevier,
2023, pp. 400-417.

Y. Yuan, et al., Coronavirus mask protection algorithm: A new bio-inspired
optimization algorithm and its applications, J. Bionic Eng. (2023) 1-19.

B. Abdollahzadeh, F.S. Gharehchopogh, S. Mirjalili, African vultures optimization
algorithm: A new nature-inspired metaheuristic algorithm for global optimization
problems, Comput. Ind. Eng. 158 (2021) 107408.

H. Karami, M.V. Anaraki, S. Farzin, S. Mirjalili, Flow direction algorithm (FDA):
A novel optimization approach for solving optimization problems, Comput. Ind.
Eng. 156 (2021) 107224.

L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz, A.H. Gandomi, The arith-
metic optimization algorithm, Comput. Methods Appl. Mech. Engrg. 376 (2021)
113609.

Y. Zhang, Z. Jin, S. Mirjalili, Generalized normal distribution optimization and
its applications in parameter extraction of photovoltaic models, Energy Convers.
Manag. 224 (2020) 113301.

S. Talatahari, M. Azizi, M. Tolouei, B. Talatahari, P. Sareh, Crystal structure
algorithm (CryStAl): A metaheuristic optimization method, IEEE Access 9 (2021)
71244-71261.

S. Talatahari, M. Azizi, A.-H. Gandomi, Material generation algorithm: A novel
metaheuristic algorithm for optimization of engineering problems, Processes 9
(5) (2021) 859.

http://refhub.elsevier.com/S2772-6622(23)00106-6/sb24
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb24
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb24
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb24
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb24
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb25
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb25
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb25
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb26
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb26
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb26
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb26
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb26
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb27
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb27
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb27
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb27
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb27
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb28
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb28
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb28
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb29
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb29
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb29
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb29
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb29
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb30
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb30
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb30
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb30
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb30
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb31
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb31
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb31
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb32
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb32
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb32
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb33
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb33
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb33
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb33
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb33
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb34
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb34
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb34
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb34
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb34
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb35
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb35
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb35
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb35
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb35
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb36
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb36
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb36
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb37
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb37
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb37
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb37
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb37
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb38
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb38
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb38
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb39
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb39
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb39
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb39
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb39
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb40
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb40
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb40
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb40
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb40
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb41
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb41
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb41
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb42
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb42
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb42
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb42
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb42
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb43
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb43
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb43
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb43
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb43
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb44
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb44
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb44
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb44
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb44
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb45
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb45
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb45
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb46
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb46
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb46
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb46
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb46
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb47
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb47
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb47
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb47
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb47
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb48
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb48
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb48
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb48
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb48
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb49
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb49
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb49
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb49
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb49
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb50
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb50
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb50
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb50
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb50
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb51
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb51
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb51
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb51
http://refhub.elsevier.com/S2772-6622(23)00106-6/sb51

	A comparison performance analysis of eight meta-heuristic algorithms for optimal design of truss structures with static constraints
	Introduction
	Meta-heuristic Algorithms
	African Vultures Optimization Algorithm
	Flow Direction Algorithm
	Arithmetic Optimization Algorithm
	Generalized Normal Distribution Optimization
	Stochastic Paint Optimizer
	Chaos Game Optimization
	Crystal Structure Algorithm
	Material Generation Algorithm

	Truss Structures Definition
	Results and Discussion of Structural Examples
	The 25-member truss structure
	The 72-member truss structure
	The 120-member dome structure

	Conclusion and future work
	Declaration of Competing Interest
	Data availability
	Acknowledgment
	References

