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Abstract: This article highlights the absence of published paradigms hybridized by The Cuckoo
Search (CS) and Stochastic Paint Optimizer (SPO) for optimizing truss structures using composite
materials under natural frequency constraints. The article proposes a novel optimization algorithm
called CSSPO for optimizing truss structures made of composite materials, known as fiber-reinforced
polymer (FRP) composites, to address this gap. Optimization problems of truss structures under
frequency constraints are recognized as challenging due to their non-linear and non-convex search
spaces that contain numerous local optima. The proposed methodology produces high-quality
optimal solutions with less computational effort than the original methods. The aim of this work is to
compare the performance of carbon FRP (CFRP), glass FRP (GFRP), and steel using a novel hybrid
algorithm to provide valuable insights and inform decision-making processes in material selection
and design. Four benchmark structure trusses with natural frequency constraints were utilized to
demonstrate the efficiency and robustness of the CSSPO. The numerical analysis findings indicate
that the CSSPO outperforms the classical SPO and exhibits comparable or superior performance
when compared to the SPO. The study highlights that implementing CFRP and GFRP composites in
truss construction leads to a notable reduction in weight compared to using steel.

Keywords: truss structures; fiber-reinforced polymer; Cuckoo Search; Stochastic Paint Optimizer;
composite materials

1. Introduction

In the last few decades, a plethora of metaheuristic optimization approaches have
been created to address diverse engineering problems. These algorithms explore the search
space pseudo-randomly based on certain guiding principles without requiring gradient
information. Due to their superior performance, lower computational requirements, and
shorter processing times compared to deterministic algorithms, metaheuristic algorithms
have gained popularity in various fields [1–5]. These algorithms rely on simple concepts and
can quickly adapt to different domains. In contrast, deterministic algorithms can become
trapped in local optima, especially if they lack randomness in later stages. Including
random elements in metaheuristic algorithms can help avoid local optima and explore the
search space more effectively. Gradient descent algorithms are generally better suited for
direct and simple problems that require gradient information. However, the convergence
rate of metaheuristic algorithms is often slower than that of gradient descent algorithms,
which can be seen as a drawback [6].

The Genetic Algorithm (GA) [7], Particle Swarm Optimization (PSO) [8], Waterwheel
Plant Algorithm (WWPA) [9], Coati Optimization Algorithm (COA) [10], Grey Wolf Op-
timizer (GWO) [11], Growth Optimizer (GO) [12], Artificial Rabbits Optimization [13],
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Wild Horse Optimizer (WHO) [14], Circle Search Algorithm (CSA) [15], and Mountain
Gazelle Optimizer (MGO) [16] are some of the well-established metaheuristic optimization
algorithms. These algorithms have demonstrated their effectiveness in diverse domains,
efficiently tackling a broad range of problem types.

Optimizing truss structures is a tough challenge that requires the consideration of
multiple design objectives and constraints [17]. One crucial constraint in truss design
is the natural frequency limitation, which limits the maximum allowable frequency of
vibration that a structure can undergo without experiencing significant deformation or
damage. Optimizing trusses while satisfying natural frequency constraints requires a
thorough understanding of the interaction between design parameters and the natural
frequency [18].

Knowledge of structural dynamics has shown that the natural frequency is a crucial
factor that significantly impacts a structure’s performance. The development of optimal
truss designs based on their dynamic behavior has emerged as a complex area of research.
The determination of natural frequencies is a crucial aspect in understanding the dynamic
behavior of a structure. In the last few decades, there has been an upward trend of interest
in truss improvements based on frequency constraints. Controlling the natural frequencies
of a truss is essential to prevent the resonance phenomenon and improve its structural
performance. However, it is also necessary to ensure that engineering structures are as
lightweight as possible, which conflicts with frequency constraints and complicates truss
optimization. It is imperative to employ an efficient optimization technique for these topics
that adheres to primary frequency constraints. Consequently, researchers are dedicating
substantial efforts in this field [19].

Creating truss structures that are both lightweight and high performing is crucial for
numerous engineering applications, such as those found in aerospace, automotive, and civil
engineering. Recently, the use of pultruded fiber-reinforced polymer (FRP) materials in
truss structures has gained significant attention due to their excellent mechanical properties,
including high strength-to-weight ratio, corrosion resistance, and durability. However,
designing an optimal FRP truss that meets various design constraints, such as natural
frequency limitations, can be a novel and challenging task [20].

The generalized normal distribution optimization (GNDO) algorithm was proposed
by Khodadadi and Mirjalili [21] for the optimal weight design of truss structures with
frequency constraints. Due to the abundance of local optima and the non-convex character
of the search space, optimization problems of this kind are well recognized for being
difficult. This study aimed to investigate the efficacy of the GNDO algorithm for addressing
the aforementioned issues. The GNDO algorithm’s performance was evaluated using
three benchmark truss optimization problems that had frequency constraints. The results
obtained from the numerical analysis suggest that the GNDO algorithm exhibits high levels
of dependability, consistency, and effectiveness in the context of structural optimization
problems, surpassing other metaheuristic algorithms in terms of performance.

Tiknov and Safnov [22] addressed the challenge of enhancing the distribution of
carbon fiber in hybrid glass and carbon FRP components that form a statically determinate
regular elastic truss structure for airplanes. The authors suggested a modified genetic
algorithm that integrates with mathematical induction. To ensure the optimality of the
process, the proposed a method that focuses on minimizing structural material costs while
also satisfying the requirements of elastic strength.

Kaveh et al. [23] presented an upgraded version of The Slime Mould Algorithm,
referred to as ISMA, which was designed to optimize truss structure sizes while also taking
into account constraints related to the natural frequency. The algorithm known as Slime
Mould was derived from the study of the morphological transformations exhibited by
the acellular slime mould physarum polycephalum during its foraging activities. This
algorithm has been effectively employed in a range of optimization problems across the
fields of science and industry. The standard Slime Mould Algorithm might exhibit slow
and premature convergence towards suboptimal solutions, particularly when dealing with
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problems of larger scales. In order to address these challenges, the ISMA has proposed
the implementation of two notable enhancements. The efficacy and resilience of the ISMA
has been exhibited through the utilization of three benchmark dome trusses with natural
frequency constraints.

Liu et al. [24] introduced a new approach to enhancing the search capability of The
Fruit Fly Optimization Algorithm (FOA) by implementing a memory-based search strategy.
Additionally, an improved Deb rule (IDeb) was utilized to improve the computational
efficiency of FOAs while dealing with constraints. Instead of a fixed search radius, the
proposed strategy dynamically determined the vision search radius for each fruit fly by
incorporating knowledge from both the swarm and individuals. The IDeb rule was founded
on the principle of FOA elitism and effectively reduces redundant analyses throughout
optimization while maintaining the high quality of the optimal solution. This study offered
four optimization problems for trusses with frequency constraints to assess the effectiveness
of the method. The findings suggested that the integration of standard and proposed
search tactics in funding opportunity announcements (FOAs) yielded the most optimal
outcome. The implementation of the IDeb rule had resulted in a notable enhancement in
the computational efficiency of FOAs utilized in structural optimization.

A study introduced a metaheuristic approach known as The Modified Simulated
Annealing Algorithm (MSAA) [25] to optimize the size and shape of truss structures
while ensuring that they meet frequency constraints. The Modified Simulated Annealing
Algorithm (MSAA) is an upgraded version of The Simulated Annealing Algorithm. It
incorporates three notable modifications, namely preliminary exploration, a search step,
and a new acceptance probability. The efficacy of the MSAA was assessed through the
analysis of six benchmark truss optimization problems that incorporated frequency con-
straints. The computational results indicated that MSAA outperformed other contemporary
metaheuristics approaches to optimization in terms of efficiency, stability, and reliability.

Ho-Huu [26] developed a novel approach to differential evolution (DE) that addresses
truss structures’ shape and size optimization challenges while adhering to frequency
constraints. The new approach, which was suggested, represents a refined version of the
DE algorithm that incorporates two significant enhancements. The roulette wheel selection
was initially employed as a substitute for random selection in the mutation phase, as
observed in the conventional differential evolution approach. Moreover, a technique based
on elitism was used to replace the traditional selection approach during the selection phase
to enhance the convergence rate of the method. The efficacy and reliability of the proposed
approach were demonstrated using five numerical instances. The findings indicated that
the algorithm put forth outperformed several optimization techniques documented in the
existing literature.

The main contribution in [18] was the proposition of an enhanced iteration of The
Symbiotic Organisms Search (ISOS) Algorithm, initially developed to tackle the difficulties
mentioned earlier. The main inspiration for this advancement was to augment the exploita-
tive tendencies of the initial SOS algorithm. Although the original algorithm successfully
stimulated exploration to evade local solutions, it regretfully had an adverse effect on
solution precision. This study analyzed the feasibility and efficiency of ISOS, utilizing
six benchmark planar/space trusses. The results were subsequently compared to those
of other meta-heuristics. According to the experimental findings, the ISOS algorithm ex-
hibited more reliability and efficiency than the conventional SOS algorithm and different
modern algorithms.

In order to enhance the efficacy and efficiency of addressing optimization issues
related to truss shape and size while adhering to frequency constraints, a Niche Hybrid
Parallel Genetic Algorithm (NHPGA) [27] was proposed. The novel methodology was
designed with the objective of reducing the computational cost while simultaneously
enhancing the solution’s accuracy. The NHPGA achieved these objectives by integrating the
advantages of parallel computing, simplex search, and a genetic algorithm with the niche
technique. The efficacy of The Nondominated Sorting Hybrid Pareto Genetic Algorithm
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(NHPGA) in reducing computational time and producing high-quality solutions was
demonstrated through various truss optimization examples. The NHPGA exhibits potential
as an algorithmic framework that integrates the robust and global search characteristics of
The Genetic Algorithm, the powerful exploitation capacity of simplex search, and the rapid
computation capability of parallel computing.

Recently, the study [28] aimed to enhance the efficacy of The Conventional Particle
Swarm Optimization Algorithm by integrating the proficient phasor theory in mathematics
and a comprehensive learning strategy for three-dimensional truss structures. Throughout
the course of optimization, a phase angle was incorporated, which employed periodic sine
and cosine functions to represent the fundamental parameters that define velocities. The
velocities were derived from a designated exemplar’s velocity, which was selected from
the prior optimal positions of all particles. The aforementioned methodology expedited
the acquisition of knowledge pertaining to the collective behavior of the swarm particles.
Furthermore, it enabled the determination of the most secure and advantageous size
distribution of the structural elements, while taking into account the external forces and
inherent frequency conditions. Notably, this was achieved despite the presence of limited
computational resources. The design methodology under consideration effectively resolved
diverse design benchmarks in practical-scale engineering applications that encompassed
three-dimensional space. The findings indicated that the algorithm exhibits high levels of
precision and resilience when compared to a range of contemporary metaheuristic methods
that have emerged in the field.

These studies collectively demonstrated the effectiveness of stochastic optimization
algorithms in resolving various structural design challenges. According to the No-Free
Lunch (NFL) [29] theorem, no optimization algorithm can solve all optimization issues,
allowing scientists to propose new or improve existing algorithms to solve optimization
challenges. The NFL theorem states that while current algorithms in literature can solve a
wide range of optimization problems, they cannot solve all optimization problems. It has
become popular to combine two or more algorithms instead of creating novel optimization
techniques. This approach, known as algorithm hybridization, can overcome the limitations
of one algorithm by leveraging the advantages of another algorithm.

This paper presents a study on optimizing FRP truss structures under natural fre-
quency constraints with the hybridization of CS [30] and SPO [31] as a novel metaheuristic
algorithm. The study’s main objective is to determine the optimal design parameters that
satisfy the natural frequency limitations while minimizing the weight of the truss with
CSSPO. The paper’s novel contributions are as follows:

• The study compared truss structures made of various materials (i.e., CFRP, GFRP,
and steel).

• The study used composite material for the optimization of truss design for the
first time.

• A novel hybrid of the SPO algorithm called the CSSPO was created, and its strength
and robustness were validated by optimizing through the optimization of four different
truss structures.

• The CSSPO algorithm was shown to outperform the original SPO algorithm.
• Truss structures made of composite materials resulted in a lighter weight.

The remaining sections of this paper are organized in the following manner: the
different types of FRPs are briefly described in Section 2. Section 3 explains the terms
related to the definition of truss structures. Section 4 presents the standard SPO and CS
and introduces the CSSPO algorithm. Section 5 discusses the results and evaluations of the
experiments carried out on four structure problems. Section 6 explains the statical results
for all examples. Finally, Section 7 concludes the paper and discusses future work.

2. Composite Materials

Over the past few decades, pultruded fiber-reinforced polymer (FRP) elements have
been widely employed in the construction of civil structures due to their numerous advan-
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tages. These advantages include a higher strength-to-weight ratio, corrosion-free properties,
durability, and lower maintenance. Within the realm of truss structures, FRP materials are
gaining some popularity due to their consideration of sustainability. The main benefits are
their high strength-to-weight ratio, corrosion resistance, and durability [22]. FRP compos-
ites can be created using a variety of fibers, including glass, carbon, aramid, basalt, and
resins such as epoxy, polyester, and vinyl ester. The choice of fibers and resins depends
primarily on the desired outcome and the cost of the FRP products. While FRP composites
possess different mechanical properties, they are often used as replacements for traditional
steel or concrete structures in harsh environments [32]. Carbon and glass fibers are the
most used in civil engineering applications.

2.1. Glass Fiber Reinforced Polymer (GFRP)

Glass fiber, shown in Figure 1, is the most used fiber in FRP composites. Although
it generally possesses lower mechanical properties than carbon and aramid fibers, it is
significantly less expensive than carbon when utilized as a reinforcement in polymer
composites. Glass fibers are offered in different variants, namely the S-type (structural
type), which exhibits superior strength compared to other types, the E-type (electrical type),
which has low alkali material, high mechanical characteristics, and is cost-effective, and
the C-type (chemical resistance type), which demonstrates high resistance to corrosion and
chemicals [33]. Glass fiber is characterized by its anti-corrosion properties, affordability,
and high tensile strength. Nonetheless, it is important to note that the utilization of
glass fibers is subject to certain constraints. These include comparatively inadequate
mechanical properties in comparison to other fibers, such as carbon and aramid fibers, as
well as reduced stiffness, low fatigue resilience, and susceptibility to chemicals in severe
hygrothermal environments.

Buildings 2023, 13, 1551 5 of 40 
 

2. Composite Materials 
Over the past few decades, pultruded fiber-reinforced polymer (FRP) elements have 

been widely employed in the construction of civil structures due to their numerous ad-
vantages. These advantages include a higher strength-to-weight ratio, corrosion-free 
properties, durability, and lower maintenance. Within the realm of truss structures, FRP 
materials are gaining some popularity due to their consideration of sustainability. The 
main benefits are their high strength-to-weight ratio, corrosion resistance, and durability 
[22]. FRP composites can be created using a variety of fibers, including glass, carbon, ara-
mid, basalt, and resins such as epoxy, polyester, and vinyl ester. The choice of fibers and 
resins depends primarily on the desired outcome and the cost of the FRP products. While 
FRP composites possess different mechanical properties, they are often used as replace-
ments for traditional steel or concrete structures in harsh environments [32]. Carbon and 
glass fibers are the most used in civil engineering applications. 

2.1. Glass Fiber Reinforced Polymer (GFRP) 
Glass fiber, shown in Figure 1, is the most used fiber in FRP composites. Although it 

generally possesses lower mechanical properties than carbon and aramid fibers, it is sig-
nificantly less expensive than carbon when utilized as a reinforcement in polymer com-
posites. Glass fibers are offered in different variants, namely the S-type (structural type), 
which exhibits superior strength compared to other types, the E-type (electrical type), 
which has low alkali material, high mechanical characteristics, and is cost-effective, and 
the C-type (chemical resistance type), which demonstrates high resistance to corrosion 
and chemicals [33]. Glass fiber is characterized by its anti-corrosion properties, affordabil-
ity, and high tensile strength. Nonetheless, it is important to note that the utilization of 
glass fibers is subject to certain constraints. These include comparatively inadequate me-
chanical properties in comparison to other fibers, such as carbon and aramid fibers, as 
well as reduced stiffness, low fatigue resilience, and susceptibility to chemicals in severe 
hygrothermal environments. 

 
Figure 1. Glass fabrics. 

2.2. Carbon Fiber Reinforced Polymer (CFRP) 

The utilization of carbon fibers is mainly found in sophisticated composite applica-
tions and aerospace, owing to their exceptional stiffness and strength-to-weight ratio (re-
fer to Figure 2). These materials exhibit resistance to elevated temperatures, fatigue, cor-
rosion, and chemical breakdown. The mechanical characteristics of carbon fibers may ex-
hibit significant variability based on the raw materials utilized in the production process. 
The essential characteristics of carbon fibers include elevated tensile strength-to-weight 
ratio, elevated tensile stiffness-to-weight ratio, improved resistance to fatigue and stress 
rupture, high dimensional stability, low abrasion, a low coefficient of thermal expansion, 
effective vibration damping, high resistance to corrosion, and chemical inertness. While 
carbon fibers possess numerous advantages, they also have some disadvantages, such as 

Figure 1. Glass fabrics.

2.2. Carbon Fiber Reinforced Polymer (CFRP)

The utilization of carbon fibers is mainly found in sophisticated composite applications
and aerospace, owing to their exceptional stiffness and strength-to-weight ratio (refer to
Figure 2). These materials exhibit resistance to elevated temperatures, fatigue, corrosion,
and chemical breakdown. The mechanical characteristics of carbon fibers may exhibit
significant variability based on the raw materials utilized in the production process. The
essential characteristics of carbon fibers include elevated tensile strength-to-weight ratio,
elevated tensile stiffness-to-weight ratio, improved resistance to fatigue and stress rupture,
high dimensional stability, low abrasion, a low coefficient of thermal expansion, effective
vibration damping, high resistance to corrosion, and chemical inertness. While carbon
fibers possess numerous advantages, they also have some disadvantages, such as high
cost, low strain to failure, electrical conductivity, electromagnetic properties, and limited
potential use in specific applications [34].
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The characteristics of FRP materials are subject to considerable variation based on
their distinct formulation, components, and production techniques. Typical and idealized
GFRP, CFRP, and steel stress–strain curves are illustrated in Figure 3, while the density and
modulus of elasticity, as adopted in this study, are shown in Table 1.
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Table 1. Material properties.

Material
Density Modulus of Elasticity

lb/ft3 Kg/m3 GPa Ksi

GFRP 97 1550 55 8000
CFRP 109 1750 160 23,000
Steel 490 7850 207 30,000

2.3. FRP Properties

FRP materials have a low density, resulting in a high strength-to-weight ratio, which
is highly significant in transportation and various structural applications. Compared to
steel, CFRP and GFRP possess strength-to-weight ratios several times higher and are also
lighter. In summary, the distinct characteristics of FRP, including its high strength-to-weight
ratio and low density, offer advantages in handling, transportation, and insulation. These
features play a significant role in reducing the weight of truss structures [33].

Compared to steel structures, FRP composites also have a higher stiffness-to-weight
ratio, making them a preferred material for truss bridge structures [33]. However, deflection
is the main outstanding issue for FRP trusses and space frames that need to withstand
heavy loads.
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Considering aging infrastructure, exploring and implementing innovative materi-
als to extend these structures’ lifespan is crucial. New resin formulations and fibers
are being developed with the aim of creating enhanced materials that can endure chal-
lenging environmental and loading circumstances. Despite the potential benefits of FRP
composites, their limited fire resistance remains a significant concern that hinders their
widespread application.

3. Definition of Truss Structures Optimization

This section describes the development of an optimization formulation for truss
structures with multiple constraints on natural frequencies. Figure 4 presents a flowchart
of the truss optimization problem. Optimizing truss structures involves determining the
optimal cross-sectional (Ai) values to minimize the weight (W) of the structure. The
resulting design must meet the following criteria [35]:

Find
[
x1, x2, . . . , xng

]
(1)

Minimize W({x}) =
nm

∑
i=1

γi·Ai·Li(x) (2)

Subjected to


xmin ≤ xi ≤ xmax

ωj ≤ ω∗j

ωk ≥ ω∗k

(3)

In the above Equation, {X} represents the set of design variables, while ng specifies
the number of design variables and nm indicates the range of structural members. The
structure’s weight is denoted by W({x}), and the members’ material density, length, and
cross-sectional area are represented by γi, Li and xi, respectively. The jth and kth natural
frequencies of the truss are stated as ωj (with an upper bound of ω∗j ) and ωk (with a lower
bound of ω∗k ).

The ideal function for addressing the constraints arising from the fundamental princi-
ple and ease of implementation is commonly known as:

fpenalty(X) = (1 + ε1·ν)ε2 (4)

ν =
n

∑
i=1

max [0, νi] (5)

In the equation, ν denotes the total number of violated constraints, while the constants
ε1 and ε2 are chosen to balance the exploration and exploitation rates of the search space.
In this scenario, ε1 is assigned a value of 1, while ε2 is selected to decrease both penalties
and cross-sections. At the outset of the search process, ε2 is initialized to 1.5 and is then
gradually increased to 3, as described in [36].
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4. Methodology
4.1. Cuckoo Search (CS)

The Cuckoo Search (CS) algorithm is a metaheuristic technique that draws inspiration
from nature. It was originally created by Yang and Deb [30]. The methodology is founded
on the brood parasitic behavior that has been observed in certain species of cuckoos.
Cuckoos are a fascinating avian species, notable not only for their melodious vocalizations
but also for their extremely aggressive reproductive tactics. Certain species, such as the ani
and Guira cuckoos, exhibit communal nesting behavior and may engage in the removal of
foreign eggs to enhance the likelihood of successful hatching. The cuckoo search algorithm
is founded upon three fundamental principles. Initially, it is important to note that each
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individual cuckoo lays a single egg at a time and subsequently places it within a nest at
randomly. Next, the nests containing eggs of superior quality are chosen for the succeeding
generation. The quantity of host nests currently available is established and remains
constant. Figure 5 shows the flowchart of the cuckoo search algorithm. The likelihood of a
host bird discovering a cuckoo’s egg is determined by a probability value that falls within
the range of 0 to 1 [37].
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An initial population of host nest positions, M = [X1; X2; X3; . . . ; Xm], is generated
in a random distribution throughout the multi-dimensional host nest. Each solution X
is represented by a D-dimensional vector. The cuckoo then randomly selects a host nest
position to deposit its egg, using a random walk known as Levy flights. The equations for
this process are given in Equations (6) and (7).

Vt+1
pq = Vt

pq + Spq × Levy(λ)× α (6)
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Levy(λ) =

∣∣∣∣∣ Γ(1 + λ) ∗ sin Π∗λ
2

Γ 1+λ
2 ∗ λ ∗ 2 1−λ

2

∣∣∣∣∣
1
λ

(7)

In the equations given above, p, f , and q are randomly selected indices from the sets
{1, 2, . . . , m}, {1, . . . . . . , m}, and {1, 2, . . . , D}, respectively. Here, D represents the
number of optimized parameters, while m represents the total population of host nest
positions. The constant value, denoted by A, is used where 1 ≤ λ ≤ 3. The current
generation number is represented by t, and a is a randomly generated number that falls
within the range of −1 to 1. Additionally, s > 0 represents the step size. The choice of an
appropriate step size is crucial, as a large value will generate a new solution that is too far
away from the previous solution, while a small value will produce a change that is not
significant enough to improve the search efficiency. Therefore, the step size is calculated
using Equation (8).

Spq = Vt
pq −Vt

f q (8)

The cuckoo uses Equation (8) to determine the appropriate step size and select a host
nest to lay its egg. After the egg is laid, it is evaluated. The host bird then uses Equation (9)
to determine the likelihood of identifying an alien egg based on the quality associated with
that particular egg.

Prop =
0.9 ∗ F(I)
max (Fit)

+ 0.1 (9)

In Equation (9), F(I) represents the fitness value of solution p, which is proportional
to the quality of the egg in the nest position p. The value Prop represents the survival
probability rate of the cuckoo’s egg. If a random probability value P that falls within the
range of [0, 1] is greater than Prop, the host bird identifies the egg as alien and proceeds to
destroy it or abandon the nest. In this case, the cuckoo must find a new host’s nest, located
in a new position, using Equation (10) in order to lay its egg. If the probability value P is
less than or equal to Prop, the egg survives and remains in the nest to contribute to the next
generation based on the fitness function.

Xp = XPmin + rand(0, 1) ∗ (XPmax − XPmin) (10)

XPmin and XPmax refer to the lower and upper boundaries, respectively, of the param-
eters that are being optimized.

4.2. Stochastic Paint Optimizer (SPO)

The Stochastic Paint Optimizer (SPO) [38] is a metaheuristic technique that was first
created in 2020. It leverages color theory to optimize artwork. The algorithm involves
several key steps, including generating initial paints, clustering, merging, and determining
when to stop. The search space in the algorithm is defined as a canvas, with paints serving
as solutions that comprise various colors as design variables. These paints are evaluated
based on their beauty index, which reflects their objective function values. Since colors
significantly impact how viewers perceive artwork, each color is assigned a score or value
based on its position in the color wheel’s primary, secondary, or tertiary categories. These
categories are considered equal; therefore, no additional parameters are necessary for the
algorithm. To create a new population, the SPO algorithm combines stochastic solutions,
where colors are blended to form a new one [38]. The diagram depicted in Figure 6
illustrates four fundamental methods of color combination that are based on the principle
of the color wheel. Each of these techniques has the ability to generate novel colors (Cnew

i ).
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The following sections will provide a description and explanation of the mathematical
concepts employed in the SPO for the purpose of simulating color combination patterns.

4.2.1. Analogous Combination Technique

Mixing of three adjacent colors on the color wheel, as depicted in Figure 6a, is uti-
lized to achieve this color mixing technique. The SPO employs the following equation to
accomplish this:

C1
new = Ci + rand·(Ci+1 − Ci−1) (11)

The variables Ci−1, Ci, and Ci+1 denote three solutions selected from the population,
while rand is a randomly generated vector within the domain of [0, 1].

4.2.2. Complementary Combination Technique

Complementary colors are employed when blending colors using this method, as illus-
trated in Figure 6b. To replicate this process in the SPO, a primary color CP, a tertiary color
(CT), and an already-existing color Ci are randomly selected. Equation (12) is employed to
achieve this outcome.

C2
new = Ci + rand·(CP − CT) (12)

The symbols used in the equation correspond to the following: CP refers to a primary
color, CT signifies a tertiary color, Ci denotes an already existing color, and rand represents
a vector that is randomly generated within the interval of [0, 1].

4.2.3. Triadic Combination Technique

The approach involves producing novel colors by blending the evenly spaced colors
around the color wheel (see Figure 6c). In the SPO, this is accomplished through the
following method:

C3
new = Ci + rand·

(
CP + CS + CT

3

)
(13)

The variables used in the equation correspond to the following: CP signifies a primary
color, CS represents a secondary color, CT denotes a tertiary color, Ci refers to an existing
color, and rand represents a vector that is randomly generated within the range of [0, 1].
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4.2.4. Tetradic Combination Technique

This color blending technique selects four complementary colors from rectangular
arrangements on the color wheel, as shown in Figure 6d. The SPO implements this approach
through the use of Equation (14):

C4
new = Ci +

(
rand1·CP + rand2·CS + rand3·CT + rand4·Crand

4

)
(14)

Crand = LB + rand·(UB− LB) (15)

where LB and UB represent the minimum and maximum bounds of the design variable,
and rand1, rand2, rand3, and rand4 are four random vectors within the range [0, 1]. The
stochastic paint optimizer flowchart algorithm is illustrated in Figure 7.
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4.3. The Hybrid of Cuckoo Search-Stochastic Paint Optimizer (CSSPO)

The CSSPO algorithm uses the SPO method as a starting point for a set number of
iterations. The best solution obtained from SPO is then passed onto the CS algorithm,
which serves as an intensification process to enhance the search and overcome the slow
convergence of SPO. The CSSPO algorithm balances the CS algorithm’s global exploration
and the SPO method’s deep exploitation, improving overall performance. The Levy flight
in CSSPO is more effective in exploring the search space, as it can cover longer distances
than the traditional random searching method. Thus, the Levy flight replaces the random
searching method in the SPO algorithm, resulting in the modified CSSPO algorithm. This
algorithm has two parameters which are set as references (Population Size = 50, Beta = 2/3).
The CSSPO algorithm benefits from the lowest parameter tuning, so the number of pa-
rameters that should be tuned is at the minimum. The CSSPO algorithm follows the same
steps as the standard SPO algorithm until line 9 in Algorithm 1. Then, the CS method in
Algorithm 1 is applied as an intensification process to refine the best solution obtained from
the previous stage in the standard SPO algorithm.

Algorithm 1: Pseudo-code of CSSPO

Inputs: The number of colors (pop size)
Outputs: The best location of colors and their objective values
1. Initialize the random colors
2. Find the objective values
3. For (it<itMax) Do
4. Divide colors into three groups randomly
5. for every color
6. Create new colors (combine colors)
7. Sort the fitness of all colors
8. Find the best colors
9. Build new nests at new locations using Levy flight
10. Retain the best solutions (nests with quality solutions)
11. Rank the solutions and find the current best solution
12. End for
13. End For (Termination criteria are satisfied)
14. Return the best solution

5. Structural Examples

This section demonstrates the effectiveness of FRPs compared with steel for CSSPO
by examining several common structural optimization problems. The results obtained
using CSSPO are compared to those obtained using SPO. Natural frequency is an important
property to consider when optimizing truss structures, as it describes the frequency at
which the structure will vibrate when subjected to external forces or disturbances. In the
context of structural optimization, natural frequency constraints are essential to ensure that
the resulting design is both structurally sound and capable of withstanding the dynamic
loads or vibrations it may experience over its lifespan. The termination criterion that
relied on the maximum count of function evaluations is utilized to guarantee an impartial
comparison. Problems are addressed individually, each undergoing 30 rounds of runs. The
examination is carried out employing the CSSPO, using a similar number of analyses and
representatives to maintain fair competition. In addition, the previously cited references
contribute additional control parameters for the comparative algorithms. To preserve
fairness in the competition, both the CSSPO and SPO are applied over a similar range of
evaluations and representatives. The natural frequency constraints are applied to four truss
designs: a 37-member planar bridge, a 72-member space truss, a 120-member dome truss,
and a 200-member planar truss. These constraints, material properties, and cross-sectional
area constraints are essential parameters that must be considered during optimization to
achieve a design that meets the necessary performance requirements while minimizing
weight or maximizing other design objectives. The constraints of these problems are
shown in Table 2. The algorithm was implemented using MATLAB 2022b software, while
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the trusses were solved using SAP2000 v14.1. The process of optimization entailed the
utilization of the application programming interface (API). A Macintosh machine running
MacOS Big Sur and equipped with an Intel Core i9 processor running at 2.3 GHz, 16 GB
of RAM at 2400 MHz DDR4, and the aforementioned software was used to perform the
optimization calculations.

Table 2. Design constraints for various optimization problems.

Test Problem Cross-Sectional
A (cm2)

Natural Frequency Constraints
ω (Hz)

37-member planar bridge 1 ≤ A ω1 ≥ 20, ω2 ≥ 40, ω3 ≥ 60
72-member space truss 0.645 ≤ A ω1 = 4, ω3 ≥ 6

120-member dome truss 1 ≤ A ≤ 129.3 ω1 ≥ 9, ω2 ≥ 11
200-member planar truss 0.1 ≤ A ω1 ≥ 5, ω2 ≥ 10, ω3 ≥ 15

5.1. A 37-Member Planar Truss

The first instance presented in this subsection is the weight minimization of a planar
37-member truss structure, as depicted in Figure 8. Wang et al. [27] were the first to examine
this case study, and many others have subsequently followed similar methods. Table 1
presents the material properties for this problem, which involves 14 sizes and 5 design
variables. A mass of 10 kg, referred to as the lumped mass, is added to the bottom nodes
of the bridge, the cross-sectional areas of the lower chord members are 0.4 cm2, and the
remaining members are assumed to have a cross-section of 1 cm2. All nodes of the upper
chord can be moved along the y-axis while maintaining the structure’s symmetry. Different
composite materials are used to optimize this structure. In this section, the 37-member
planar bridge under natural frequency constraints is optimized using the SPO and CSSPO
with a population size of 50 and 20,000 function number evaluations.
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The results illustrated in Table 3 indicate that the CSSPO algorithm outperforms the
SPO algorithm for GFRP, CFRP, and steel materials, with the best results achieved with
CSSPO for all materials. The composite materials, GFRP and CFRP, showed competitive
results compared to steel. The optimal weight obtained was 76.3119 kg for GFRP and
76.8983 kg for CFRP using the CSSPO algorithm. The results demonstrate that the CSSPO
algorithm outperforms SPO. The standard deviation for all materials with the CSSPO
was considerably less than with SPO, indicating that CSSPO is more reliable than SPO.
Figure 9 depicts the convergence curve of the best weight for SPO and CSSPO with different
materials. In addition, this figure demonstrates that composite materials were more optimal
in weight than steel. The convergence curve of the best weight for CSSPO was significantly
better than SPO, as shown in Figure 9. According to this figure, CSSPO requires less
function evaluation for reaching the best solution. Moreover, the results of the CSSPO for
all materials are compared in Figure 10. In the rankings, GFRP secured the top spot, with
CFRP achieving a commendable second place. In summary, this figure demonstrates the
superiority of composite materials.
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Table 3. Optimized results of GFRP, CFRP, and steel using SPO and CSSPO for a 37-member bridge.

Materials GFRP CFRP Steel

Member Group SPO CSSPO SPO CSSPO SPO CSSPO

(Y3-Y19) m 1.5184 1.0011 1.0001 1.0000 1.0048 1.0000
(Y5-A17) m 1.8947 1.3657 1.6809 1.3292 1.3652 1.3728
(Y7-A15) m 2.0950 1.5189 1.6850 1.5813 1.5746 1.5405
(Y9-Y13) m 2.2646 1.6556 1.8538 1.7402 1.7213 1.6485
(Y11) m 2.3462 1.7209 1.9387 1.8052 1.8217 1.7231
(A1-A27) cm2 5.0000 4.2428 1.0000 1.0002 3.6223 2.9181
(A2-A26) cm2 1.9234 1.4950 1.0000 1.0000 1.6336 1.0191
(A3-A24) cm2 1.0002 1.2581 1.0000 1.0000 1.0013 1.0009
(A4-A25) cm2 2.0466 3.9872 1.8513 1.0451 3.2354 2.6357
(A5-A23) cm2 1.9483 1.8549 1.0002 1.0001 3.2649 1.2225
(A6-A21) cm2 2.3951 2.0886 1.0000 1.0000 1.0807 1.2106
(A7-A22) cm2 2.3431 3.7248 1.0181 1.1791 1.7398 2.6363
(A8-A20) cm2 2.1990 2.1120 2.0736 1.0000 1.0324 1.4348
(A9-A18) cm2 2.5342 2.2236 1.5062 1.0000 1.2940 1.5293
(A10-A19) cm2 2.0994 3.9553 1.0272 1.2119 2.0527 2.7911
(A11-A17) cm2 4.3423 1.8406 1.0015 1.0000 1.5098 1.2057
(A12-A15) cm2 2.8011 1.9479 1.8380 1.0000 1.4822 1.2726
(A13-A16) cm2 3.1363 3.8760 1.0000 1.2400 3.4292 2.4663
(A14-A16) cm2 1.0045 1.0035 1.0000 1.0000 1.0014 1.0004

Best weight (kg) 80.8917 76.3119 79.0690 76.8983 370.8402 363.2729
Average weight (kg) 140.6229 77.3588 85.0605 76.9032 434.8858 364.4259
Standard deviation 49.6651 1.1125 7.6528 0.0058 57.8664 1.1706
No. Analyses 13,150 10,500 5400 4400 6150 4600

Buildings 2023, 13, 1551 15 of 40 
 

function evaluation for reaching the best solution. Moreover, the results of the CSSPO for 
all materials are compared in Figure 10. In the rankings, GFRP secured the top spot, with 
CFRP achieving a commendable second place. In summary, this figure demonstrates the 
superiority of composite materials. 

 
Figure 9. The best weight convergence curves for SPO and CSSPO with GFRP, CFRP, and steel for 
a 37-member bridge. 

 
Figure 10. Comparison of best weight convergence curves for GFRP, CFRP, and steel using the 
CSSPO algorithm for a 37-member bridge. 

Table 3. Optimized results of GFRP, CFRP, and steel using SPO and CSSPO for a 37-member bridge. 

Materials GFRP CFRP Steel 
Member Group SPO CSSPO SPO CSSPO SPO CSSPO 
(Y3-Y19) m 1.5184 1.0011 1.0001 1.0000 1.0048 1.0000 
(Y5-A17) m 1.8947 1.3657 1.6809 1.3292 1.3652 1.3728 
(Y7-A15) m 2.0950 1.5189 1.6850 1.5813 1.5746 1.5405 
(Y9-Y13) m 2.2646 1.6556 1.8538 1.7402 1.7213 1.6485 

100 200 300 400
Iterations

50

100

150

200 Truss 37-Member with GFRP Materials

CSSPO
SPO

100 200 300 400
Iterations

80

85

90

95

100
Truss 37-Member with CFRP Materials

CSSPO
SPO

100 200 300 400
Iterations

300

400

500

600
Truss 37-Member with Steel Materials

CSSPO
SPO

50 100 150 200 250 300 350 400
Iterations

100

200

300

400

500

600

700
Truss 37-Member with CSSPO

GFRP
CFRP
Steel

Figure 9. The best weight convergence curves for SPO and CSSPO with GFRP, CFRP, and steel for a
37-member bridge.

Figure 11 presents the convergence curve of the mean weight for the SPO and CSSPO
approaches with GFPP, CFRP, and steel materials. The results demonstrate that the CSSPO
outperforms SPO. Figure 12 is given to further demonstrate the performance of the different
materials. This figure displays the mean weight for the CSSPO for all composite materials
across 30 distinct runs. The figure indicates that CFRP and GFRP materials achieved the
best and most competitive results. Figure 13 illustrates the outcomes of 30 distinct runs for
the SPO and CSSPO. In this figure, the minimum achieved result is represented by the blue
line, while the red line represents the average of all 30 runs. The results indicate that the
CSSPO is able to approximate the average weight value closely, and that most of the results
were near the best solution. Table 4 provides the first three natural frequencies obtained
by the SPO and CSSPO algorithms. This table demonstrates that the algorithms met the
satisfactory constraints for this problem.
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Figure 10. Comparison of best weight convergence curves for GFRP, CFRP, and steel using the CSSPO
algorithm for a 37-member bridge.
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Figure 11. The average weight convergence curves for SPO and CSSPO with GFRP, CFRP, and steel
for a 37-member bridge.

Table 4. Natural frequencies (Hz) for the best design of a 37-member bridge.

Materials GFRP CFRP STEEL

Frequency No. SPO CSSPO SPO CSSPO SPO CSSPO

f1 20.000 20.0000 20.0024 20.0001 20.0000 20.0000
f2 42.9544 40.0000 47.3363 42.2966 40.0049 40.0000
f3 60.0000 60.0000 67.8965 66.0972 60.0000 60.0000
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Figure 12. Comparison of average weight convergence curves for GFRP, CFRP, and steel using the
CSSPO algorithm for a 37-member bridge.

5.2. A 72-Member Space Truss

The second example in this section involves the weight minimization of a spatial truss
with 72-members, as illustrated in Figure 14. This problem has 16 sizing variables due to the
structural symmetry, and the material characteristics and boundaries for this case are sum-
marized in Table 2. Four non-structural masses of 10 kg are added to nodes 1–4. The SPO
and CSSPO algorithms are evaluated for this problem with natural frequency constraints.

The optimization results of the SPO and CSSPO were compared using different mate-
rials (GFRP, CFRP, and steel), with a population size of 50 and 20,000 function evaluations.
All statistical results and the number of function evaluations obtained from 30 runs are
presented in Table 5. The outcomes of 30 distinct runs for SPO and CSSPO are shown in
Figure 15. This figure displays the minimum achieved outcome, represented by the blue
line, and the average of all 30 runs, represented by the red line. Therefore, most of the
results are close to each other between the best and mean lines. The figure demonstrates
that the solution obtained using the CSSPO with CFRP was much better than for other
materials. The CSSPO approach yielded the best results, with weights of 227.2641 kg,
94.8585 kg, and 337.7553 kg, while the SPO algorithm produced weights of 236.0334 kg,
103.4361 kg, and 356.0184 kg for GFRP, CFRP, and steel, respectively (refer to Table 5).
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Figure 13. Weights of 30 distinct runs for SPO and CSSPO for a 37-member truss with different
materials.
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Table 5. Optimized results of GFRP, CFRP, and steel using SPO and CSSPO for a 72-member truss.

Materials GFRP CFRP STEEL

Member Group SPO CSSPO SPO CSSPO SPO CSSPO

1 (A1-A4) cm2 13.3972 4.7702 1.4932 1.4932 1.4932 1.1560
2 (A5-A12) cm2 9.4481 9.9981 3.4486 3.4486 3.4486 2.6751
3 (A13-A16) cm2 0.6450 0.6450 0.6450 0.6450 0.6450 0.6450
4 (A17-A18) cm2 0.6724 0.7181 0.6450 0.6450 0.6450 0.6450
5 (A19-A22) cm2 12.0096 10.5253 3.4111 3.4111 3.4111 2.6876
6 (A23-A30) cm2 11.3740 10.0562 3.5042 3.5042 3.5042 2.6555
7 (A31-A34) cm2 0.6450 0.6450 0.6450 0.6450 0.6450 0.6450
8 (A35-A36) cm2 0.6450 0.6450 0.6450 0.6450 0.6450 0.6453
9 (A37-A40) cm2 13.6289 16.9763 5.7274 5.7274 5.7274 4.2783
10 (A41-A48) cm2 8.6208 10.0865 3.5086 3.5086 3.5086 2.6824
11 (A49-A52) cm2 0.6450 0.6450 0.6450 0.6450 0.6450 0.6450
12 (A53-A54) cm2 0.6450 0.6450 0.6450 0.6450 0.6450 0.6452
13 (A55-A58) cm2 20.0000 20.0000 7.3112 7.3112 7.3112 5.6892
14 (A59-A66) cm2 11.2354 9.9604 3.4397 3.4397 3.4397 2.7112
15 (A67-A70) cm2 0.6450 0.6450 0.6450 0.6450 0.6450 0.6450
16 (A71-A72) cm2 0.6450 0.6450 0.6450 0.6450 0.6450 0.6450

Best weight (kg) 236.0334 227.2641 103.4361 94.8585 356.0184 337.7553
Average weight (kg) 268.0583 227.3044 129.3833 94.8953 472.1857 337.8333
Standard deviation 23.0932 0.0311 18.6853 0.0271 65.8768 0.0600
No. Analyses 19,100 6900 6800 4900 4150 4050
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According to Table 5, the CSSPO algorithm with CFRP material performed the best
among its competitors, with the lowest optimal weight of 94.8585 kg, the lowest average
weight of 94.8953 kg, and the highest accuracy of SD = 0.0271. In comparison, GFRP ranked
second, with an optimal weight of 227.2641 kg, an average weight of 227.3044 kg, and a
standard deviation of 0.0311. The results indicate that CSSPO is more reliable and produces
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superior results compared to the other results reported in the literature. Additionally, the
findings demonstrate that using CFRP and GFRP is more efficient than steel. Based on
Table 6, the presented method’s natural frequency constraints were strictly satisfied for
all bounds.

Table 6. Natural frequencies (Hz) for the best design of a 72-member truss.

Materials GFRP CFRP STEEL

Frequency No. SPO CSSPO SPO CSSPO SPO CSSPO

f1 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000
f2 4.0001 4.0001 4.0000 4.0000 4.0001 4.0001
f3 6.0000 6.0000 6.0002 6.0000 6.0000 6.0000
f4 6.0023 6.0049 8.5403 8.2394 8.9257 9.0087
f5 8.7654 8.6107 10.6718 9.7387 9.2840 9.8549

Figure 16 depicts the best weight convergence curves for the SPO and CSSPO with
GFRP, CFRP, and steel for a 72-member truss. This figure demonstrates that the CSSPO
outperforms the SPO. Based on this figure, the CSSPO for all materials requires lower
function evaluations than the SPO. The best convergence curves for CFRP, GFRP, and
steel are compared with each other in Figure 17. According to the details presented in the
figure, CFRP was determined to be a feasible solution and had attained the highest weight
ranking among all the materials examined in this study. In addition, it was observed that
CFRP exhibited the lowest mean weight when employing the CSSPO compared to the
other materials cited (see Figure 18). This figure indicates that the convergence rate of the
CSSPO is better than that of the SPO. Figure 19 shows that CFRP ranked second among its
competitors, with an average weight of 94.8953 kg. In addition, steel fell behind GFRP in
the rankings, placing it at the bottom of the material list.
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Figure 16. The best weight convergence curve for SPO and CSSPO with GFRP, CFRP, and steel for a
72-member truss.
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Figure 17. Comparison of best weight convergence curves for GFRP, CFRP, and steel with the CSSPO
algorithm for a 72-member truss.
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Figure 18. Average weight convergence curve for SPO and CSSPO with GFRP, CFRP, and steel for a
72-member truss.

5.3. A 120-Member Dome Truss

The third benchmark problem is illustrated in Figure 20, which involves optimizing
the size of a 120-member three-dimensional dome truss. This problem was initially studied
by Kaveh and Zolghadr [39], and Table 2 summarizes the design considerations. Non-
structural masses were added at node 1 (3000 kg), nodes 2–13 (500 kg each), and the
remaining free nodes (100 kg each). The elements were categorized into seven groups
based on the assumption of symmetry around both the x-axis and y-axis. The cross-sectional
areas varied between 1 and 129.3 cm2.
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Figure 19. Comparison of the average weight convergence curves for GFRP, CFRP, and steel using
the CSSPO algorithm for a 72-member truss.

The size variables, optimal weight, mean weight, weight standard deviation (STD),
and the number of function evaluations are presented in Table 7. As indicated in this table,
the CSSPO was able to achieve the best weight of 1965.5323 kg by conducting a lower
number of analyses with CFRP, and the corresponding SD was 0.7860. The GFRP material
secured second place, with an optimal response of 5939.8775 kg, and the related SD was
4.2971 using the CSSPO algorithm. These findings suggest that the CSSPO has a lower
computational cost while maintaining high accuracy for composite materials. In addition,
Table 8 displays the outcomes of the natural frequencies. All the algorithms for different
materials successfully adhered to the constraints without any violations, thereby satisfying
the specified requirements.

Table 7. Optimized results of GFRP, CFRP, and steel using SPO and CSSPO for 120-member truss.

Materials GFRP CFRP STEEL

No. Group SPO CSSPO SPO CSSPO SPO CSSPO

1 79.2113 80.0669 24.3782 24.5554 20.9089 19.8347
2 129.2908 129.3000 47.8216 46.4722 39.1228 42.1216
3 39.9363 38.0518 10.7601 11.3803 11.4432 11.4296
4 75.7910 75.1591 20.9776 21.0117 21.0978 21.6645
5 34.4651 33.3149 9.1935 9.3981 11.0651 10.0670
6 40.1374 41.8914 13.3115 12.3117 10.6454 12.9819
7 47.0609 47.8410 11.8182 11.9763 19.7014 15.2824

Best weight (kg) 5943.8442 5939.8775 1968.0971 1965.5323 9245.8842 8885.6721
Average weight (kg) 6749.4283 5942.1393 2169.862 1966.1123 10,457.864 8889.385
Standard deviation 719.3279 4.2971 279.4734 0.7860 1500.93 3.13777

No. Analyses 4400 4150 4850 4550 4100 4400
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Figure 21 displays the best weight convergence curves of the SPO and CSSPO using
GFRP, CFRP, and steel for a 120-member truss. The evidence presented in the figure
unequivocally demonstrates the superior performance of CSSPO in comparison to SPO.
Figure 22 compares the best convergence curves for CFRP, GFRP, and steel. The figure
shows that CFRP achieved a feasible solution and ranked first among all the materials
studied in terms of weight. Additionally, using CSSPO with CFRP resulted in the lowest
average weight among all the materials reviewed (refer to Figure 23). Based on the findings
depicted in this figure, it is evident that CSSPO surpassed all other materials in terms of
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performance. According to Figure 24, among all its competitors, CFRP obtained the best
average weight of 1966.1123 kg and was ranked first.

Table 8. Natural frequencies (Hz) for the best design of a 120-member truss.

Materials CFRP GFRP STEEL

No. Frequency SPO CSSPO SPO CSSPO SPO CSSPO

f1 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000
f2 11.0000 11.0000 11.0000 11.0000 11.0000 11.0000
f3 11.0052 11.0000 11.0000 11.0000 11.0603 11.0000
f4 11.0075 11.0075 11.0033 11.0032 11.0890 11.0096
f5 11.0524 11.0522 11.0530 11.0535 11.1581 11.0494
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Figure 21. Best weight convergence curves for SPO and CSSPO with GFRP, CFRP, and steel for a
120-member truss.
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Figure 22. Comparison of the best weight convergence curves for GFRP, CFRP, and steel with the
CSSPO algorithm for 120-member truss.
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Figure 23. Average weight convergence curves for SPO and CSSPO with GFRP, CFRP, and steel for a
120-member truss.
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Figure 24. Comparison of average weight convergence curves for GFRP, CFRP, and steel using the
CSSPO algorithm for a 120-member truss.

The CSSPO approach was found to be more effective than the standard version of the
SPO, achieving the lowest weight for all the materials. This indicates that the new approach
is an optimal design enhancement that utilizes the existing algorithm. Moreover, according
to Table 8, this approach continues to meet the frequency constraints. The diagram depicted
in Figure 25 illustrates 30 distinct runs of the ultimate weights for both the SPO and CSSPO.
This diagram illustrates the lowest result achieved, represented by the blue line, while the
red line represents the mean of all 30 runs. In reference to this figure, there is a notable
proximity between the best and mean lines for most of the results. This indicates that the
utilization of CFRP in combination with the CSSPO yields significantly superior outcomes
compared to other materials.
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Figure 25. Weights of 30 distinct runs for the SPO and CSSPO for a 120-member truss with different
materials.

5.4. A 200-Member Planar Truss

This section addresses the fourth test problem, which involves minimizing the weight
of a planar structure consisting of 200-member planar truss, as shown in Figure 26. The
problem encompasses 29 sizing variables that pertain to the cross-sectional areas of the
element groups, as outlined in Table 9. The frequency constraints are set to ω1 ≥ 5 Hz,
ω2 ≥ 10 Hz, ω3 ≥ 15 Hz. Non-structural masses of 100 kg are attached to the truss’s upper
nodes (1–5). Table 10 presents the optimizing design of the mentioned structure with three
different materials, showing that CFRP with fewer function number evaluations yielded
the lightest weight of 483.5991 kg with the CSSPO. The best results of CFRP with the CSSPO
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algorithm were lighter than the other materials. This demonstrates the effectiveness of the
hybrid method with composite material over the other algorithms and materials studied in
this test problem.
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Table 10. Optimized results of GFRP, CFRP, and steel using the SPO and CSSPO for a 200-member
truss.

Materials GFRP CFRP STEEL

Member Group SPO CSSPO SPO CSSPO SPO CSSPO

1 2.4229 2.5728 4.9125 0.7093 1.2342 0.5002
2 2.3958 2.1358 0.1000 0.8604 0.1000 0.4979
3 0.1000 0.1000 6.5239 0.1016 0.1369 0.1019
4 0.2973 0.1912 0.1000 0.1000 0.1055 0.1003
5 2.2152 1.9297 0.1923 0.8845 0.2325 0.4506
6 3.9470 4.0269 2.3523 1.4840 2.1007 0.8848
7 0.1000 0.3803 1.9255 0.1024 7.3151 0.1000
8 5.7238 6.2060 0.9830 2.1670 1.0079 1.4102
9 2.2937 0.1000 0.1000 0.1008 12.9035 0.1000

10 7.0010 7.1127 0.7830 2.3657 0.3016 1.5747
11 6.2874 5.0863 2.1217 1.6194 1.9754 1.1112
12 0.6026 0.7847 4.6294 0.1198 0.1000 0.1381
13 12.0973 13.7674 1.4760 3.9790 3.1709 2.9040
14 0.1811 0.1875 0.1000 0.1019 10.6532 0.1008
15 12.8618 15.9121 6.7499 4.0400 3.7011 3.1706
16 7.7501 7.6639 1.8909 1.8853 2.8960 1.5698
17 0.9657 1.9940 5.9667 0.2114 0.1000 0.2814
18 30.0000 26.7505 3.5944 5.6836 6.9783 5.0985
19 30.0000 0.3966 0.2184 0.1149 0.1013 0.1073
20 30.0000 30.0000 4.4254 5.6443 10.8546 5.2830
21 12.2261 12.2957 1.7639 2.0817 3.4605 2.0484
22 30.0000 13.6074 0.7094 0.6481 0.1130 0.4935
23 30.0000 30.0000 13.7444 7.9415 12.5323 7.7323
24 30.0000 21.3507 1.9093 0.1193 2.1160 0.2046
25 29.9999 30.0000 7.8694 7.6309 13.7618 8.1349
26 29.9970 30.0000 1.0521 2.4493 3.0577 2.6627
27 30.0000 30.0000 15.5103 9.1655 10.8998 10.2624
28 29.9985 30.0000 25.3566 18.5299 27.1305 21.3333
29 30.0000 30.0000 29.6547 10.3016 26.2179 10.2026

Best weight (kg) 6245.0062 5645.5521 713.0536 483.5991 3632.2153 2136.1284
Average weight (kg) 10,483.24 5646.58 945.4095 486.1037 6300.8391 2153.1362
Standard deviation 2068.484 2.971819 131.2423 7.5141 1273.747 36.1414

No. Analyses 13,150 6300 15,050 6700 7250 7150

Table 11 demonstrates the natural frequencies of the best SPO and CSSPO methods
designed with CFRP, GFRP, and steel materials. Each algorithm conscientiously complies
with the constraints, ensuring a complete absence of violations and effectively meeting the
prescribed criteria. According to the findings, the CSSPO with CFRP algorithm was able to
generate the best possible answer, with an optimal weight of 483.5991 kg and SD = 7.5441.
This specific instance created a significant challenge for metaheuristic techniques, primarily
due to the significant number of variables. Several metaheuristics were found to be
ineffective in resolving this issue. However, the CSSPO algorithm demonstrated satisfactory
outcomes in contrast to the alternative approaches.

Figure 27 shows the best convergence curves for both methods with CFRP, GFRP,
and steel materials. In reference to this figure, the SPO and CSSPO algorithms reached
the optimal point, but the CSSPO had a faster convergence rate than the SPO. Figure 28
shows the best convergence curves for the hybrid version of SPO for CFRP, GFRP, and steel
materials. The evidence presented in this figure highlights the substantial superiority of
the CSSPO and CFRP combination solution over other materials.
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Table 11. Natural frequencies (Hz) for the best design of a 200-member truss.

Materials GFRP CFRP STEEL

No. Frequency SPO CSSPO SPO CSSPO SPO CSSPO

f1 5.0038 5.0057 5.0000 5.0000 5.0000 5.0000
f2 14.3882 14.9355 14.8533 16.0865 14.7750 13.0865
f3 15.0000 16.0203 19.1823 16.2436 19.0460 15.0000
f4 19.1034 18.9980 19.5299 25.2140 19.5141 20.0789
f5 22.7452 22.2454 25.9642 32.3189 25.8055 22.0192
f6 25.3107 23.9112 26.4719 36.9720 26.2873 25.4215
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Figure 27. Best weight convergence curves for the SPO and CSSPO with GFRP, CFRP, and steel for a
200-member truss.
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Figure 28. Comparison of best weight convergence curves for GFRP, CFRP, and steel using the CSSPO
algorithm for a 200-member truss.

Figure 29 illustrates that the average weight of the CSSPO using the CFRP algorithm
was lower than that of other materials, providing evidence of the superior performance of
the CSSPO algorithm. Moreover, CFRP was ranked first among all competitors, with the
best average weight of 486.1037 kg, as depicted in Figure 30. In this figure, steel claimed
the second position in the rankings, while GFRP achieved last place. Figure 31 presents the
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final weight for this investigation, which was derived from 30 separate runs of the SPO and
CSSPO. In this figure, the blue line represents the minimum achievable result, while the red
line represents the average of all 30 runs. In general, these findings show that the CSSPO
algorithm with CFRP performed better than the other algorithms that were examined, both
in terms of its overall performance and its accuracy.
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6. Statistical Analysis

To determine if there is a statistically significant difference between the population
means of two samples, a t-test can be used. The t-test is a useful tool assessing the similarity
of two samples by evaluating their statistical significance. In this study, a paired t-test
was employed to perform a statistical comparison. If the calculated p-value exceeds 0.05,
it indicates a lack of statistically significant differences between the outcomes of the two
algorithms being compared. Conversely, a p-value below 0.05 suggests the presence of
statistically significant variations in the performance of the two algorithms.

The resulting p-values are displayed in Table 12. Based on this table, all p-values ob-
tained from the examples were less than 0.05, indicating statistically significant differences
in the performance of the two algorithms. Furthermore, Figure 32 presents a QQ plot, com-
monly referred to as a quantile–quantile plot, which is a visual tool employed to compare
two probability distributions by plotting their quantiles against each other. The blue circles
are two sets of quantiles against one another in the QQ plot. The QQ plot displays the
quantiles of the SPO dataset (results from 30 runs) on the x-axis and the quantiles of the
CSSPO dataset on the y-axis. If the datasets are derived from a standard distribution, the
data points on the graph should be aligned along a 45-degree line. Any deviations observed
from this line suggest that the datasets have been obtained from distinct distributions.

Table 12. The p-values obtained using t-tests for all examples.

Examples Algorithms GFRP STEEL CFRP

37-Member truss SPO vs. CSSPO 4.37 × 10−9 1.85 × 10−7 1.06 × 10−8

73-Member truss SPO vs. CSSPO 1.08 × 10−13 2.07 × 10−14 4.38 × 10−16

120-Member truss SPO vs. CSSPO 7.79 × 10−8 1.86 × 10−4 3.87 × 10−7

200-Member truss SPO vs. CSSPO 1.50 × 10−18 9.73 × 10−27 3.29 × 10−25
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7. Conclusions

A hybrid algorithm that combines the Cuckoo Search (CS) and Stochastic Paint Opti-
mizer (SPO) was applied for the first time to the size optimization of truss structures that
use composite materials under frequency constraints. The research conducted an in-depth
comparison of truss structures constructed from various materials, including CFRP, GFRP,
and steel. The composite material was utilized for the first time to optimize the truss design.
The examined design examples demonstrate the effectiveness of the CSSPO algorithm
with composite materials in optimizing final solutions, with statistical results showing
its competitiveness with new metaheuristics. Additionally, the efficiency, accuracy, and
performance of the CSSPO exceed the SPO. However, in larger-scale problems, the rapid
convergence of the CSSPO algorithm to an optimal solution may pose challenges.
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Additionally, statistical analyses demonstrated that the results of the CSSPO had the
lowest standard deviation, indicating a high level of result reliability. The statistical results
obtained from 30 independent runs for each material prove the robustness of the CSSPO
compared to the SPO. The CSSPO is particularly noteworthy because it does not require
parameter tuning. The performance and accuracy of the hybrid version of the SPO exceeded
those of the standard version. The performance of the CSSPO was tested on four different
truss structures. It was found that truss structures composed of composite materials led to
a reduction in weight. This research highlights that using CFRP and GFRP composites in
the fabrication of truss structures results in a significant weight decrease compared to the
use of steel.

As a future direction, it is recommended to evaluate the performance of this com-
putational approach in addressing optimization problems in other areas of design and
engineering through further investigations. Another potential direction for future research
would be to compare the performance of recently developed state-of-the-art methods with
composite materials to the CSSPO for truss structures. The CSSPO is a versatile method
that can be applied to complex engineering problems, including laminated composites,
functionally graded structures, and reliability-based design optimization problems. These
problems often involve high computational costs, making the CSSPO an attractive op-
tion. In addition, a potential area for future research is the application of discrete size
optimization using composite materials for truss and frame structures.
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