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ARTICLE INFO ABSTRACT

Keywords: The Old World flycatchers, robins and chats (Aves, Muscicapidae) are a diverse songbird family with over three

Phylogen_etics hundred species. Despite continuous efforts over the past two decades, there is still no comprehensive and well-

f&'“efnat{cj resolved species-level phylogeny for Muscicapidae. Here we present a supermatrix phylogeny that includes all 50
uscicapids

currently recognized genera and ca. 92% of all the species, built using data from up to 15 mitochondrial and 13
nuclear loci. In addition to assembling nucleotide sequences available in public databases, we also extracted
sequences from the genome assemblies and raw sequencing reads from GenBank and included a few unpublished
sequences. Our analyses resolved the phylogenetic position for several previously unsampled taxa, for example,
the Grand Comoro Flycatcher Humblotia flavirostris, the Collared Palm Thrush Cichladusa arquata, and the Taiwan
Whistling-Thrush Myophonus insularis, etc. We also provide taxonomic recommendations for genera that exhibit
paraphyly or polyphyly. Our results suggest that Muscicapidae diverged from Turdidae (thrushes and allies) in
the early Miocene, and the most recent common ancestors for the four subfamilies (Muscicapinae, Niltavinae,

Super-matrix
Multi-locus
Divergence time

Cossyphinae and Saxicolinae) all arose around the middle Miocene.

1. Introduction

Muscicapidae, the chats, robins and Old World flycatchers, is one of
the largest bird families in the world, with 49 — 57 different genera
proposed and 303 — 343 recognized species, depending on the taxonomy
(e.g., Dickinson and Christidis, 2014; Clements et al., 2021; and Gill
et al., 2022). It is widely distributed in various habitats across the entire
Old World and adjacent Australasia and Nearctic (Winkler et al., 2020).
Birds of this family exhibit great diversity in morphology, behaviors,
vocalizations, and life history, which makes Muscicapidae a great study
group to address various questions on evolution, diversity and bioge-
ography. However, for very similar reasons, it also makes resolving the
phylogeny for this species-rich family challenging.

Numerous studies in the past two decades sought to infer the
phylogenetic relationships for subsets of the Muscicapidae family (e.g.,
Roy et al., 2001; Beresford, 2003; Cibois and Cracraft, 2004; Outlaw and
Voelker, 2006; Outlaw et al., 2007; Illera et al., 2008; Lim et al., 2010;

Outlaw et al., 2010; Sangster et al., 2010; Zuccon and Ericson, 2010a;
Zuccon and Ericson, 2010b; Aliabadian et al., 2012; Voelker et al., 2016,
2012; Barve and Mason, 2015; Moyle et al., 2015; Hooper et al., 2016;
Zhang et al., 2016; Zhao et al., 2017; Alstrom et al., 2018; Fjeldsa et al.,
2020; Ng et al., 2022; Wei et al., 2022). Molecular phylogenetic studies
revealed that the so called “flycatchers”, “robins”, and “chats” are not
reciprocally monophyletic groups. Also, some species that were histor-
ically included in other bird families are more closely related to species
in Muscicapidae. For example, Monticola (rock thrushes), Myophonus
(whistling thrushes), Heinrichia (Great Shortwing), Alethe (alethes), and
Brachypteryx (shortwings) were formerly in Turdidae (thrushes and
allies) (Voelker and Spellman, 2004; Sangster et al., 2010), and Bagobo
Robin Leonardina woodi was previously in Timaliidae (Old World bab-
blers) (Oliveros et al., 2012). On the other hand, Cochoa (cochoas) was
transferred from Muscicapidae to Turdidae (Sangster et al., 2010), and
more recently, the monotypic genus Pinarornis (Boulder Chat
P. plumosus) was placed within Turdidae based on unpublished
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molecular data (Fjeldsa et al., 2020). Many of these original placements
were based on evidence of shared morphological or behavioral traits,
which may be misleading due to convergent evolution.

Two of the latest efforts to build a large-scale species-level phylogeny
for Muscicapidae, Sangster et al. (2010) and Zuccon and Ericson
(2010a), laid the foundation for the classification of Muscicapidae and
resolved many taxonomic uncertainties, although their taxon sampling
was limited and with many deep nodes having poor support. Barve and
Mason (2015) assembled another large-scale phylogeny for Muscicapi-
dae using a supermatrix with both increased taxon sampling (252 taxa)
and molecular data (11 molecular markers). This study provides support
for many lineages delineated in previous studies as well as provides
some new insights; however, it lacks comprehensive taxonomic recon-
ciliations, assessments of the phylogenetic relationships, or suggestions
for taxonomic change.

The goal of this study is to reconstruct a comprehensive species-level
phylogeny for Muscicapidae with more extensive taxon and locus sam-
pling than previous studies, which incorporates and synthesizes mo-
lecular data from numerous resources (i.e., nucleotide databases,
genome assemblies, raw sequencing reads, and our own unpublished
Sanger sequencing data). The resulting phylogenetic tree includes 301
species (ca. 92% species coverage based on Clements/eBird Checklist of
Birds of the World v.2021) from all currently recognized genera and
provides a robust basis for the taxonomic classification of Muscicapidae
as well as a resource for comparative studies.

2. Methods
2.1. Taxon name reconciliation

We downloaded all the sequences from the NCBI nucleotide database
(as of Nov 10, 2020) for Muscicapidae and Turdidae, since many mus-
cicapids are placed under Turdidae in GenBank. As GenBank taxa names
do not follow a specific standardized avian taxonomy, we reconciled the
GenBank names to match the Clements/eBird Checklist of Birds of the
World v.2021, which includes 49 genera and 327 species within Mus-
cicapidae (Clements et al., 2021), based on information from Avibase,
online searches, and results presented in Hosner et al. (2022). We
standardized the names based on the Clements/eBird checklist because
it is updated regularly and frequently and intrinsically linked to trait
databases such as Birds of the World (https://birdsoftheworld.org/) and
Macaulay Library (https://macaulaylibrary.org/), which facilitates
downstream phylogenetic comparative analyses. We also implemented
taxonomic updates suggested by IOC World Bird List v12.1 (Gill et al.,
2022) that are shown in Table 1. Collectively, this provided us with a
target set consisting of 326 species from 50 genera.

2.2. Molecular data collection

After taxon name reconciliation, we performed an all by all BLASTN
search on the downloaded nucleotide sequences (Camacho et al., 2009).
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For the BLASTN search, each accession from a nuclear sequence was
transformed into a single FASTA file, and for the mitochondria, each
individual coding or rRNA region was made into a FASTA file. Any pair
of sequences that had a maximum e-value of 1.0e—5 and the pairwise
alignment length covering at least 50% of the length of both sequences
were considered homologous. We then performed single linkage clus-
tering to obtain all groups of sequences (representing homologous loci)
that were linked by significant BLAST hits. If a cluster contained mul-
tiple sequences from a species, we retained only a single, longest
sequence. We manually searched GenBank nucleotide database for
recently published sequences or sequences that may have been missed
by the clustering (as of July 2022).

As noted by Hosner et al. (2022), sequences from closely related
species may still be placed under the previous name in GenBank if they
were split recently. Therefore, we also searched associated literature and
museum vouchers for species with recent splits proposed. In this way,
we identified more sequences, for example, Ficedula luzoniensis from
Ficedula hyperythra (Moyle et al., 2015), Ficedula riedeli from Ficedula
dumetoria (Outlaw and Voelker, 2006), Calliope tschebaiewi from Calliope
pectoralis (Liu et al., 2016), Cyornis pelingensis from Cyornis colonus (Garg
et al., 2018), and Copsychus superciliaris from Copsychus luzoniensis (Lim
et al., 2010). These sequences were added into the supermatrix to
represent their corresponding species.

To further enrich the data matrix, we extracted molecular markers
from genome assemblies and raw sequencing reads (Table 2). We
extracted nuclear loci from the six muscicapids that have genome as-
semblies available on GenBank (i.e., Erithacus rubecula, Saxicola maurus,
Cercotrichas coryphoeus, Oenanthe oenanthe, Copsychus sechellarum, and
Ficedula albicollis) using the Extract_seq pipeline (https://github.com/aa
kankshal2/Extract_seq) which incorporates the nhmmer tool (Wheeler
and Eddy, 2013) to improve the detection of remote homologs for
standard BLASTN (Camacho et al., 2009). We used MitoFinder (Allio
et al., 2020) to extract mitochondrial regions from 27 mitochondrial
genomes, as well as from the UCE target enrichment sequencing reads
for Muscicapa striata that are available in the NCBI SRA database. The
mitochondrial genomes for Muscicapa griseisticta (NC_045181) and
Cyanoptila cyanomelana (NC_015232) were misidentified according to
Sangster and Luksenburg (2021), therefore we did not include them in
our data matrix. We also created a reference fasta file using the nuclear
loci from Erithacus rubecula and mapped whole genome sequencing
reads in the NCBI SRA database for 20 muscicapids, including Cichladusa
arquata, which had no data available in the NCBI nucleotide database (as
of July 2022). We applied the same process as described above to collect
sequence data for three Turdidae species as the outgroup (Catharus
fuscescens, Sialia sialis, and Turdus rufiventris), all with genome assembly
data available on GenBank.

We obtained additional cytochrome ¢ oxidase subunit 1 (COI) se-
quences from the Barcode of Life Data (BOLD) System v4. Lastly, we
included five unpublished sequences for Myophonus insularis [cyto-
chrome b (Cytb), myoglobin intron 2 (Myo), and ornithine

Table 2
Data sources of the molecular markers used. For details of data accessions, see
Supplementary Table S1.

Table 1
Taxonomic updates based on two popular standardized avian taxonomies.
Taxon in Taxon in IOC Name used in Reference
Clements/eBird World Bird List this study
2021 12.1
Cyornis concretus Leucoptilon Leucoptilon (Sangster et al.,
concretum concretum 2021)
Brachypteryx Heteroxenicus Heteroxenicus (Rasmussen and
stellata stellatus stellatus Anderton 2005;
Price et al., 2014)
Thamnolaea Monticola Monticola (Zuccon and
semirufa semirufus semirufus Ericson 2010b)
Pinarornis plumosus  Pinarornis Removed (Fjeldsa et al.,
(Muscicapidae) plumosus 2020)
(Turdidae)

Data Source Species Unique Loci Sequences
sampled species included

GenBank Nucleotide 295 295 28 2053

GenBank Genome 6 0 13 47
Assemblies

GenBank Mitochondrial 27 0 15 133
Genomes

GenBank SRA 21 1 28 203

Barcode of Life Data 19 3 1 19
System

Unpublished Sanger 3 2 4 5

sequencing data
Summary 301 301 28 2460
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decarboxylase introns 6-7 (ODC)], Cyornis banyumas (Cytb), and Fice-
dula albicilla [glyceraldehyde-3-phosphate dehydrogenase intron 11
(GAPDH)]. Genomic DNA from blood or muscle was extracted using the
Qiagen DNeasy Blood & Tissue Kit. PCR amplifications were performed
using the following cycling conditions: 1) for Cytb, 5 min at 95 °C, 40
cycles of 40 sec at 95 °C, 1 min at 45 °C, and 2 min at 72 °C, and a final
extension of 6 min at 72 °C, with primers L14995 and H16065 (Helbig
et al., 1995); 2) for GAPDH, 5 min at 95 °C, 40 cycles of 40 sec at 95 °C,
40 sec at 58 °C, and 1 min at 72 °C, and a final extension of 6 min at
72 °C, with primers G3P13b and G3P14b (Fjeldsd et al., 2003); 3) for
ODC, similar as GAPDH, except using an annealing temperature of
59 °C, with primers OD6 and OD8r (Friesen et al., 1999); 4) for Myo, a
nested PCR using primers Myo2 and Myo3 (Slade et al., 1993) in the first
step (5 min at 95 °C; followed by 20 cycles of 40 s at 95 °C, 40 s at 62 °C,
and 1 min at 72 °C; terminated by 8 min at 72 °C), and primers Myo 2
and 3F (Heslewood et al., 1998) in the second amplification. All genes
were sequenced with the respective PCR primers, except for Cytb which
was sequenced with H15298 and L15722 (Helbig et al., 1995), and
L15152 (5'-GTC CAA TTC GGC TGA CTA ATT CGC AAC CTA CAC GCA
AAC GG-3'). For details of data accessions, see Supplementary Table S1.

2.3. Data verification

We used MAFFT 7.407 (Katoh and Standley, 2013) to align each
locus individually, and we manually checked alignments using MEGA X
(Kumar et al., 2018). We then estimated gene trees in IQ-TREE 2.1.2
(Minh et al., 2020) with 1000 ultrafast bootstrap replicates (—ufboot
1000) by considering all standard substitution models and allowing for
invariable sites and discrete Gamma model for rate heterogeneity (-m
TEST). Gene trees were visualized with FigTree 1.4.4 (Rambaut, 2018).

We examined each gene tree for exceptionally long branches and any
species that appeared far apart from its congeners or in an unexpected
position. This could be caused by sequences that were too short, of poor
quality, or mislabeled. We removed the problematic sequences and
replaced them with alternate sequences if available. For example, in the
initial COI gene tree, Cyornis oscillans appeared close to the outgroup
(Turdidae) instead of in the genus Cyornis or subfamily Niltavinae. The
COI sequence in the BOLD System that was used to build the gene tree
(id: BBIND665-08) was BLASTed and turned out to be most similar to
Pachycephala homeyeri (Pachycephalidae). As there was no other mo-
lecular data available for this species, it was removed from the data
matrix. A second example of mislabeling is that both the Cytb and NADH
dehydrogenase subunit 2 (ND2) sequences of Phoenicurus fuliginosus
(GenBank accessions: KJ024172 & KJ024236), likely belong to Niltava
macgrigoriae. Thus, they were replaced with correctly labeled sequences.
Additionally, we followed the findings in Moyle et al. (2014) and
removed/replaced problematic sequences for Ficedula bonthaina,

Table 3
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F. buruensis and F. subrubra. Only the loci that had data available for a
minimum of 30 taxa were kept for further phylogenetic analyses
(Table 3).

2.4. Phylogenetic analyses

After the process of data verification, we re-aligned the sequences
and re-built gene trees as described above. The concatenated alignment
and NEXUS data block were built using phyutility 2.7.1 (Smith and
Dunn, 2008). Mitochondrial protein coding genes were partitioned by
codon positions (i.e., 1st, 2nd, and 3rd codon positions). We then per-
formed a partitioned analysis for the concatenated data in IQ-TREE
(Minh et al., 2020), which infers phylogenetic trees by maximum like-
lihood and uses a greedy strategy to find the partitioning scheme with
best model-fit (-m TESTMERGE). Tree estimation was run with 1000
ultrafast bootstrap replicates (-ufboot 1000) and edge-proportional
branch lengths between partitions but allowing each partition to have
its own substitution rate (-p). We also ran a partitioned analysis for
mitochondrial and nuclear loci respectively using IQ-TREE with the
same parameter settings as described above.

We used IQ-TREE to run model testing (-m TESTMERGEONLY -mset
mrbayes) similar to PartitionFinder (Lanfear et al., 2012). The best-
fitting partitions and models were then used for a partitioned analysis
with Bayesian inference in MrBayes 3.2.6 (Ronquist and Huelsenbeck,
2003) on the CIPRES Science Gateway (Miller et al., 2010). MCMC
chains were run for 50 million generations (with four chains, chain
temperature of 0.2, and two runs) and sampled every thousand gener-
ations. The first 20% of trees were discarded before summarizing the
trees to a 50-majority-rule consensus tree (contype = Halfcompat). The
mixing of chains was checked in Tracer 1.7.1 (Rambaut et al., 2018) to
ensure all parameters had effective sample sizes (ESSs) > 200. Separate
analyses were performed for all loci, mitochondrial loci only, and nu-
clear loci only.

2.5. Divergence time estimation

To estimate divergence times for Muscicapidae, we used TreePL
under penalized likelihood (Smith and O’Meara, 2012), which allows for
different rates across branches but penalizes rate differences over the
tree with a rate smoothing parameter. Given that the ML tree based on
all loci overall yielded better estimates of the topology than the Bayesian
tree, we used the rooted ML tree inferred from all loci as the phylogeny
for TreePL time calibration. A secondary calibration point for the split
between Muscicapidae and Turdidae [min = 13.5 million years ago
(Mya), max = 22 Mya] from Oliveros et al. (2019) was applied. We used
the thorough option, which allowed the program to continue to iterate
until convergence, and the prime option, which tested different

Molecular markers included in the super-matrix. Taxa number refers to the number of Muscicapidae species with sequences from each locus. Locus length shows the

length of final alignment.

Locus (mitochondrial) Taxa Length Locus (nuclear) Taxa Length
COI (cytochrome ¢ oxidase subunit 1) 162 1563 ACO1 (aconitase 1 intron 9) 42 1052
COII (cytochrome ¢ oxidase subunit 2) 31 684 BRM (brama protein intron 15 and partial cds) 41 378
CO3 (cytochrome ¢ oxidase subunit 3) 31 784 CHDZ (chromosome Z chromo-helicase-DNA binding protein intron A) 45 655
Cytb (cytochrome b) 272 1178 FGB (beta-fibrinogen intron 5 and partial cds) 96 575
ND1 (NADH dehydrogenase subunit 1) 30 978 GAPDH (glyceraldehyde-3-phosphate dehydrogenase intron 11) 135 429
ND2 (NADH dehydrogenase subunit 2) 261 1041 LDH (lactate dehydrogenase) 149 690
ND3 (NADH dehydrogenase subunit 3) 108 412 MUSK (muscle skeletal receptor tyrosine kinase intron 3 and partial cds) 61 615
ND4 (NADH dehydrogenase subunit 4) 31 1378 MYO (myoglobin intron 2 and partial cds) 235 748
NDA4L (NADH dehydrogenase subunit 4L) 31 297 ODC (ornithine decarboxylase introns 6-7 and partial cds) 212 831
ND5 (NADH dehydrogenase subunit 5) 38 1821 PEPCK (phosphoenolpyruvate carboxykinase intron 9 and partial cds) 91 623
ND6 (NADH dehydrogenase subunit 6) 33 519 RAG1 (recombination-activating protein 1 partial cds) 52 2873
ATP6 (ATP synthase membrane subunit 6) 38 684 TGFB2 (transforming growth factor beta-2 intron 5 and partial cds) 65 609
ATP8 (ATP synthase membrane subunit 8) 34 168 Z185 (anonymous nuclear locus Z-185 genomic sequence) 39 898
12Srrn (12S ribosomal RNA) 33 995

16Srrn (16S ribosomal RNA) 64 1620
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optimization possibilities. The optimal rate smoothing parameter was
identified through cross-validation that tested seven values (0.001, 0.01,
0.1,1, 10, 100, 1000); 0.001 was the optimal smoothing parameter that
we used in this analysis.

We also repeated the above analysis twice using different calibration
points: 1) the most recent common ancestor (MRCA) of the three out-
group species, Catharus fuscescens, Sialia sialis, and Turdus rufiventris
(min = 15.15 Mya, max = 20.75 Mya, optimal smoothing parameter =
1000), which corresponds to the crown age for Turdidae estimated in
Selvatti et al. (2015); and 2) the crown age of Muscicapidae (min =
14.09 Mya, max = 19.10 Mya, optimal smoothing parameter = 10) from
Selvatti et al. (2015).

3. Results
3.1. Taxon sampling and genetic data

We assembled genetic data for 301 Muscicapidae species, covering

--------------------- Clade D Saxicolinae (see bottom panel)

Clade C

1 C OSSyp hinae Cossypha poliogtera

heppardia bocagei
Sheppardia sharpei
Sheppardia gunningi
She%pardia gabela
Sheppardia aequatorialis
Sheppardia cyornithopsis
Sheppardia aurantiithorax
Sheppardia lowei
Sheppardia montana
Cossypha archeri
Cossypha anomala
Cossypha caffra
Cossypha humeralis

Cichladusa arquata

78 Cichladusa guttata

Cossypha cyanocampter

COSS}C/,Pha niveicapilfa

ossypha natalensis

Cossypha semirufa
ossypha dichroa

Cossypha heuglini

03 Cossypha aibicapifius

= Chamaetylas choloensis
5 Chamaetylas fuelleborni
7 99 Chamaetylas poliocephala
Chamaetylas poliophrys

Cossypha isabellae
Cossyphicuia roberti
Stiphrornis erythrothorax
Pogonocichia stellata .
Swynnertonia swynnertoni
Erithacus rubecula
Cyornis pelingensis
96 — Cyornis colonus
g8 Cyornis olivaceus
Cyornis poliogenys
Cyornis montanus
Cyornis banyumas
59— Cyornis whitel
Cyornis tickelliae
59 Cyornis rufigastra
Cyornis omissus
Cyornis magnirostris
Cyornis umbratilis
Cyornis pallidipes
Cyornis ruficauda
Cyornis herioti
Cyornis caerulatus
Cyornis turcosus
Cyornis lemprieri
Cyornis superbus
Cyornis rubecuioides
Cyornis hainanus
Cyornis glaucicomans
——— " Cyormis unicolor
L nthipes monileger
Anthipes solitaris
Eumyias panayensis
umyias additus
Eumyias thalassinus
Eumyias indigo
Eumyias albicaudatus
Cyanoptila cyanomelana
Cyanopfila cumatilis
Niltava grandis
Niftava macgrigoriae
Niftava vivida
Niftava davidi
Niftava sundara
Sholicola major
Sholicola albiventris
Leucoptilon concretum

Clade B
Niltavinae

Xenocopsychus ansorgei
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all genera targeted and 92% of recognized species (out of 326 species
and 50 genera). The super-matrix included 2460 sequences from a total
of 28 molecular markers (15 mitochondrial and 13 nuclear; Table 3)
with ca. 30% data coverage and an average of eight loci for each
sampled species. Among them, 263 species were sampled with both
mitochondrial and nuclear loci, 37 species with only mitochondrial loci,
and one species with only nuclear loci. The resulting concatenated
dataset contained 25,098 characters.

3.2. Phylogenetic relationships

Phylogenetic analyses using IQ-TREE (ML tree, Fig. 1) and MrBayes
(the 50-majority-rule consensus tree, hereafter the Bayesian tree, Fig. 2)
based on all taxa and all loci overall yielded similar topologies. Both
trees showed four major lineages with strong support (> 95%), which
corresponded to the four recognized subfamilies: Muscicapinae (Figs. 1
& 2, clade A), Niltavinae (clade B), Cossyphinae (clade C) and Sax-
icolinae (clade D). 86% of the nodes in the ML tree had bootstrap

Clade A
Muscicapinae

Muscicapa aquatica
Muscicapa cassini
luscicapa ?ambagae
Muscicapa striata
* Humbiotia flavirostris
Muscicapa adusta
Muscicapa sethsmithi
Muscicapa sibirica
Muscicapa ferruginea
Muscicapa griseisticta
Muscicapa dauurica
Muscicapa sodhii
Muscicapa muttui
Bradornis mariquensis
Bradornis microrhynchus
Bradornis comitatus
Bradornis ussheri
Bradornis fuliginosus
Bradornis boehmi
98— Melaenornis chocolatinus
Melaenornis brunneus
Meilaenornis fischeri
Melaenornis pammeiaina
97 Melaenornis edolioides
Meiaenornis ardesiacus
Melaenornis sitens
Melaenornis semipartitus
Melaenornis herero
JFraseria lendu
Fraseria olivascens
Fraseria tessmanni
Fraseria caerulescens
Fraseria ocreata
Fraseria griseigularis
Fraseria plumbea
Fraseria cinerascens
Agricola infuscatus
Agricola pallidus
Vauriella goodfellowi
Copsychus niger
opsychus cebuensis
opsychus malabaricus
Copsychus iuzoniensis
Copsychus superciliaris
Copsychus pyrm/)ygus .
5 Copsychus aibospecularis
Copsychus mindanensis
Copsychus sauiaris
Copsychus secheltarum
Copsychus fulicatus
Cercotrichas leucophrys
Cercotrichas hartlaubi
Cercotrichas paena
Cercotrichas galactotes
Cercotrichas podobe
Cercotrichas quadrivirgata
Cercotrichas barbata
Cercotrichas leucosticta
* Cercotrichas signata
Cercotrichas coryphoeus
= Alethe castanea
——— Alethe diademata

A1

75

A2

Fig. 1. Maximum likelihood tree estimated by IQ-TREE using a partitioned dataset containing up to 15 mitochondrial and 13 nuclear loci from 301 Muscicapidae and
three Turdidae species. Clades A — C (top panel) and clade D (bottom panel) represent the four subfamilies. A1 represents the tribe Muscicapini, and A2 represents the
tribe Copsychini. Values at nodes show bootstrap support; 100% bootstrap support is indicated with an asterisk. Red branches denote lineages that are in different
places than in the Bayesian tree in Fig. 2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Oenanthe Jugubris
Oenanthe fugentoides

Clade D Oenanthe leucura
Oenanthe albonigra
Saxicolinae Oenanthe leucopyga

.« Oenanthe chrysopygia
Oenanthe xanthoprymna
Oenanthe lugens
Oenanthe finschii
Oenanthe picata
Qenanthe fusca
Oenanthe scotocerca
Oenanthe dubia
Oenanthe familiaris
QOenanthe melanura
Oenanthe moesta
L Oenanthe phillipsi
Oenanthe albifrons
«Oenanthe melanoleuca
-« Oenanthe cypriaca
Oenanthe pleschanka
Oenanthe hispanica
Oenanthe deserti
Oenanthe monacha
* s Oenanthe isabeliina.
5. Oenanthe heuglini
*—=" Oenanthe bottae
* Oenanthe pileata
r eé Oenanthe oenanthe
+ Myrmecocichia collaris
lyrmecocichia arnotti
Myrmecocichla melaena
lyrmecocichia nigra
Myrmecocichia monticola
Thamnolaea cinnamomeiventris
«Myrmecocichla formicivora
lyrmecocichla tholloni
Myrmecocichia aethiops
Pinarochroa sordida

= Emarginata sinuata
* Emarginata tractrac .
* marginata schlegelii
Campicoloides bifasciatus

55 - Saxicola dacotiae
Saxicola rubicola
Saxicola maurus
Saxicola torquatus
Saxicola tectes
Saxicola stejnegeri
Saxicola leucurus
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Fig. 1. (continued).

support > 90%, and only 6.6% of the nodes had bootstrap support lower
than 75%. The Bayesian tree was less resolved for some of the intra-
generic relationships (e.g., Niltava, Cyornis and Ficedula) and failed to
resolve some of the deep nodes in Niltavinae and Cossyphinae (Fig. 2);
however, it agreed with the ML tree for most intergeneric relationships.
The two tribes within Muscicapinae, Muscicapini (A1) and Copsychini
(A2), are better supported by the ML tree based on all loci [bootstrap
(BS) = (100, 90)] than the Bayesian tree [posterior probability (PP) =
(1.00, 0.76)]. Within Saxicolinae, some of the deep nodes were con-
nected by short internal branches, which were poorly supported in both
ML tree and Bayesian trees (Figs. 1 & 2); however, the shallower re-
lationships were more strongly supported by both analyses.
Mitochondrial and nuclear trees from both ML and Bayesian analyses
all recovered four major clades (Supplementary Figs. S1-54), however,

they differed in the placement of Niltavinae and Cossyphinae. Both
nuclear trees supported that Niltavinae is sister to Saxicolinae and
Cossyphinae (BS = 100; PP = 1.00); the same topology was recovered in
our trees based on all loci, as well as in previous studies (e.g., Sangster
et al., 2010; Zuccon and Ericson, 2010a; Barve and Mason, 2015). In
contrast, in the mitochondrial trees, Niltavinae was found to be sister to
Saxicolinae with only moderate support (BS = 78; PP = 0.72). For
intergeneric relationships within each subfamily, mitochondrial and
nuclear trees largely agreed with each other, but did exhibit a few to-
pological discordances. For example, the nuclear trees supported that
Alethe is sister to the rest of the Muscicapinae species, rendering the tribe
Copsychini (A2) paraphyletic. The mitochondrial trees, on the other
hand, placed Alethe within Copsychini.

Most of the taxa that have not been included in previous
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Fig. 2. The 50-majority-rule consensus tree reconstructed using Bayesian inference based on a partitioned dataset containing up to 15 mitochondrial and 13 nuclear
loci for 301 Muscicapidae species and three Turdidae species as outgroup. Genera that form reciprocally monophyletic clades have been collapsed and are in bold.
Values at nodes show posterior probabilities; full support is indicated with an asterisk. Red branches denote lineages that are in different places than in the ML tree in
Fig. 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

phylogenetic trees were placed in their corresponding genera as defined
by Clements et al. (2021). Twenty-seven of the 34 polytypic genera were
monophyletic in both ML and Bayesian trees based on all loci with high
support (> 90%); however, Muscicapa, Bradornis, Cercotrichas, Vauriella,
Sheppardia, Cossypha and Myrmecocichla were not reciprocally mono-
phyletic (Figs. 1 & 2), with species assigned to Vauriella falling into

different subfamilies, which will be discussed in detail below. All orig-
inal tree files are available in supplementary data. Gene trees estimated
by IQ-TREE are presented in Supplementary Figs. S5-S32.
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3.3. Divergence time estimation

Three TreePL analyses overall provided similar estimates of the
divergence time across Muscicapidae (Table 4). Muscicapidae was
estimated to diverge from Turdidae in the early Miocene and the most
recent common ancestors for the four subfamilies all arose around
middle Miocene. The TreePL tree with a crown age for Muscicapidae
estimated to be 17.43 Mya (Fig. 3; Supplementary Fig. S33) has diver-
gence times most similar to those in Selvatti et al. (2015), so its dates
were used in Discussion below.

4. Discussion

This study provides the most comprehensive species-level time-
calibrated phylogeny for Muscicapidae. Combining molecular data
collected from various sources, most of the nodes were strongly sup-
ported by the phylogenetic analyses. For taxa that exhibited conflicts in
topology among analyses, we discuss in detail below and propose
taxonomic changes (Table 5). We also reconciled the taxon names in IOC
World Bird List 12.1 that differ from those in Clements/eBird 2021
checklist (Table 6).

4.1. Muscicapinae

Clade A1l - paraphyly of Muscicapa flycatchers. The inclusion of
the Grand Comoro Flycatcher Humblotia flavirostris renders Muscicapa
paraphyletic. Although only Cytb was sampled in the data matrix for this
species (GenBank accession: MH307512), concatenated (ML &
Bayesian) and single-locus analyses all strongly support that
H. flavirostris is nested within Muscicapa and is sister to the clade con-
taining M. aquatica, M. cassini, M. gambagae and M. striata (BS = 97; PP
= 1.00; BS = 100 in Cytb gene tree). This sample of H. flavirostris was
collected from Grande Comore, where there are currently no Muscicapa
flycatchers according to eBird sightings (https://ebird.org/region
/KM-G?yr=all). As this species is sufficiently distinct from Muscicapa
flycatchers in morphology, we conclude that it is not a mislabeled
Muscicapa species. Based on our results, Humblotia Milne-Edwards and
Oustalet, 1885 should be subsumed into Muscicapa Brisson, 1760.
Therefore, we propose to rename Humblotia flavirostris as Muscicapa
flavirostris. This is the first time that this species has been included in a
comprehensive phylogenetic study.

Clade A1 - polyphyly of Vauriella jungle-flycatchers. The Mind-
anao Jungle Flycatcher V. goodfellowi is recovered in the Muscicapinae
clade as most closely related to Muscicapini flycatchers, whereas the rest
of the sampled Vauriella species (V. gularis and V. insignis) unexpectedly
formed a well-supported clade with the Bagobo Robin Leonardina woodi
(BS = 100; PP = 0.98) in the Saxicolinae clade, rendering Vauriella
polyphyletic. The ML tree based on all loci placed V. goodfellowi as part
of Muscicapini (BS = 100), whereas the Bayesian tree placed it within

Table 4

Divergence time (million years ago) of major nodes estimated by TreePL using
three different calibration points for our study and results from two previous
studies. An asterisk represents where we put the secondary calibration point in
the analysis. Dates in bold were used in the Discussion.

This study Selvatti et al. Oliveros et al.
(2015) (2019)
Muscicapidae  17.43 18.66 19.10*  16.35 [14.09, NA
19.10]
Muscicapinae  14.76 15.32 16.13 NA NA
Niltavinae 14.00 14.95 15.63 NA NA
Cossyphinae 13.82 14.57 15.16 NA NA
Saxicolinae 14.19 14.98 15.70 NA NA
Turdidae 18.14 20.75* 21.37 17.79 [15.15, NA
20.75]
Muscicapidae ~ 21.96*  24.87 25.62 21.02 [18.42, 17.75 [13.50,
+ Turdidae 24.13] 22.00]
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Bradornis, forming a polytomy with B. ussheri and B. fuliginosus (PP =
0.54). Two previous studies also reported that V. goodfellowi appeared
more closely related to the African flycatchers (Cibois and Cracraft,
2004; Barve and Mason, 2015), but both these were based on the same
RAG1 sequence (GenBank accession: AY307211). There is now also a
mitochondrial COI sequence of V. goodfellowi available on GenBank
(KC354954), and the COI gene tree supports a sister relationship be-
tween V. goodfellowi and all Muscicapa flycatchers (BS = 99; Supple-
mentary Fig. S9), while the RAG1 gene tree supports that V. goodfellowi
is sister to the rest of Muscicapini (BS = 100; Supplementary Fig. S30), as
in our ML tree. These two sequences were collected from different in-
dividuals and sequenced by different institutions (DNA Barcoding of
Philippine Birds project, 2011, voucher MGPF3; Field Museum, 1992,
voucher FMNH 357498), therefore diminishing the possibility that this
“misplacement” was solely due to mislabeling. Although the exact po-
sition of V. goodfellowi is not fully resolved, it is clear that it should be
placed within Muscicapini instead of in Saxicolinae. Since V. insignis is
the type species of Vauriella Wolters, 1980, a new generic name is
warranted for V. goodfellowi, as well as phylogenetic analysis of the
unsampled V. albigularis, which is provisionally assumed to be closely
related to the two other current Vauriella species (see Clade D, below).

Clade Al - taxonomic notes for Bradornis. The Bayesian trees
based on all loci (Fig. 2) and mitochondrial loci (Supplementary Fig. S3)
placed Vauriella goodfellowi within Bradornis, rendering it paraphyletic.
However, both concatenated nuclear trees recovered Bradornis as a
monophyletic clade (BS = 96; PP = 0.98; Supplementary Figs. S2 & 54),
as well as the ML tree based on all loci (BS = 93; Fig. 1), with an esti-
mated crown age at 10.26 Mya. Considering that the position of
V. goodfellowi within Muscicapini was unstable, we also included a
Bayesian inference based on all loci concatenated for just clade Al but
excluding V. goodfellowi. We found that the six sampled Bradornis species
formed a strongly supported clade (PP = 1.00; Supplementary Fig. S34).
Despite the enigma of V. goodfellowi, it is appropriate to continue using
Bradornis as the valid genus name for B. ussheri, B. fuliginosus, B. boehmi,
B. mariquensis, B. microrhynchus and B. comitatus.

Clade A2 - paraphyly of Cercotrichas scrub-robins. Our results
showed that Cercotrichas was paraphyletic, as five of the 10 currently
recognized species form a strongly supported clade that is sister to
Copsychus magpie-robins while the remaining five are sister to that
Copsychus plus Cercotrichas clade. The subdivision of Cercotrichas in our
study agrees with the findings in recent phylogenetic work on this group
(Sangster et al., 2010; Voelker et al., 2014). As suggested by Sangster
et al. (2010), C. podobe, C. galactotes, C. paena, C. hartlaubi and
C. leucophrys should retain the name Cercotrichas as C. podobe is the type
species for Cercotrichas. Since C. signata is the type species for Tychaedon
Richmond, 1917, C. coryphoeus, C. signata, C. leucosticta, C. barbata and
C. quadrivirgata should be placed in Tychaedon, with Salsolicola Oatley,
2004 as synonym.

4.2. Cossyphinae

Clade C - paraphyly of Sheppardia akalats. The clade comprising
the Sheppardia akalats and the Gray-winged Robin-Chat Cossypha
polioptera was strongly supported by both ML and Bayesian trees (BS =
100; PP = 0.99). All trees based on concatenation support a sister
relationship between C. polioptera and S. bocagei, except for the
concatenated nuclear trees (Supplementary Figs. S2 & S4) as S. bocagei
lacks nuclear data. In agreement to several previous studies (Sangster
et al., 2010; Voelker et al., 2010; del Hoyo et al., 2016; Fjelds& and
Bowie, 2021), our results support the placement of C. polioptera in
Sheppardia.

Clade C - polyphyly of Cossypha robin-chats. The phylogenetic
relationships among these African robin-chats remain highly inconsis-
tent across different studies, likely due to incomplete taxon sampling
(Zuccon, 2011). Our study sampled 13 Cossypha species (all currently
recognized species except for C. heinrichi), which were placed in five
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Fig. 3. Divergence time in million years ago (Mya) estimated by TreePL using the topology of the ML tree based on all loci. A secondary calibration point for the split
between Muscicapidae and Turdidae (min = 13.5 Mya, max = 22 Mya) from Oliveros et al. (2019) was applied. Dotted vertical lines were drawn every-five million
years. Genera that form reciprocally monophyletic clades have been collapsed. Tip labels in bold are the taxa that were placed in different positions by the ML and
Bayesian analyses. The tree with all collapsed clades expanded is available in Supplementary Fig. S33.

different positions in the ML tree (Fig. 1): (1) C. polioptera within
Sheppardia (see above); (2) C. isabellae was sister to the monotypic
Cossyphicula (BS = 100; PP = 0.97); (3) C. archeri, C. anomala, C. caffra
and C. humeralis formed a strongly supported clade (BS = 99) that was
sister to the monotypic Angola Cave-Chat Xenocopsychus ansorgei (BS =
94), although C. humeralis showed relatively deep divergence compared
to the other three Cossypha species; (4) C. cyanocampter was sister to the
clade containing the previous four Cossypha species, Xenocopsychus and
Cichladusa palm-thrushes, with moderate support (BS = 78); (5) the
remaining six Cossypha species formed a clade with strong support (BS
= 100; PP = 1.00) that was sister to Chamaetylas alethes (BS = 93).

The Bayesian analysis generally agreed with the above placements,
except that C. cyanocampter was sister to the clade containing six Cos-
sypha species (PP = 0.93; Fig. 2), and that C. humeralis was sister to
Xenocopsychus (PP = 0.90). Given that the branch uniting C. humeralis
and Xenocopsychus appears to be exceptionally long in the Bayesian tree
(two long branches in the ML tree), the sister relationship between these
two species likely resulted from long-branch attraction (Bergsten, 2005).
Both ML and Bayesian mitochondrial trees supported a sister relation-
ship between C. cyanocampter and the six Cossypha species with strong
support (BS = 99; PP = 0.94; Supplementary Figs. S1 & S3). However,
the two nuclear trees placed C. cyanocampter within this clade as sister to
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Table 5

Recommended taxonomic changes given results in our study and previous work.
For taxon names in IOC World Bird List 12.1 that differ from those in Clements/
eBird 2021 checklist and from the results shown in present study, see Table 6 for
reconciliations.

Name in Clements/eBird 2021 and
10C World Bird List 12.1

Recommended name given results in our
study and previous work

Humblotia flavirostris Muscicapa flavirostris
Cercotrichas coryphoeus Tychaedon coryphoeus
Cercotrichas signata Tychaedon signata

Cercotrichas leucosticta
Cercotrichas barbata
Cercotrichas quadrivirgata
Cossypha polioptera
Cossypha isabellae
Cossypha anomala
Cossypha archeri
Cossypha caffra
Cossypha humeralis
Vauriella gularis
Vauriella insignis
Vauriella albigularis
Heinrichia calligyna

Tychaedon leucosticta
Tychaedon barbata
Tychaedon quadrivirgata
Sheppardia polioptera
Cossyphicula isabellae
Caffrornis anomalus
Caffrornis archeri
Caffrornis caffer
Bessonornis humeralis*
Leonardina gularis
Leonardina insignis
Leonardina albigularis
Leonardina calligyna

" See alternative suggestion in Discussion.
" Provisionally assumed to be closely related to L. gularis and L. insignis,
pending further phylogenetic analysis.

Table 6
Recommended taxonomic changes for taxon names in IOC World Bird List 12.1
which differ from those in Clements/eBird 2021 checklist.

Taxon name in I0C Taxon name in Clements/ Recommend name given

12.1 eBird 2021 our results

Empidornis Melaenornis semipartitus Melaenornis semipartitus
semipartitus

Melaenornis Agricola infuscatus Agricola infuscatus
infuscatus

Melaenornis Bradornis mariquensis Bradornis mariquensis
mariquensis

Melaenornis Bradornis microrhynchus Bradornis microrhynchus
microrhynchus

Melaenornis pallidus Agricola pallidus Agricola pallidus

Muscicapa boehmi Bradornis boehmi Bradornis boehmi

Muscicapa Fraseria caerulescens Fraseria caerulescens
caerulescens

Bradornis comitatus
Bradornis fuliginosus
Fraseria lendu
Fraseria olivascens
Fraseria tessmanni
Bradornis ussheri

Bradornis comitatus
Bradornis fuliginosus
Fraseria lendu
Fraseria olivascens
Fraseria tessmanni
Bradornis ussheri

Muscicapa comitata
Muscicapa infuscata
Muscicapa lendu
Muscicapa olivascens
Muscicapa tessmanni
Muscicapa ussheri

Myioparus Fraseria griseigularis Fraseria griseigularis
griseigularis
Myioparus plumbeus Fraseria plumbea Fraseria plumbea

Namibornis herero Melaenornis herero Melaenornis herero

C. niveicapilla (BS = 98; PP = 0.86; Supplementary Figs. S2 and S4),
similarly in Beresford (2003), but not in Sangster et al. (2010). It is
possible that C. cyanocampter might be more closely related to the clade
containing the six Cossypha species than to the other Cossypha robin-
chats. However, due to the disagreement among mitochondrial, nu-
clear and all loci concatenated trees, the exact position of
C. cyanocampter still remains unresolved.

Our concatenated trees all recovered Cossypha isabellae and Cossy-
phicula roberti as sister taxa with strong support (BS = 100; PP = 0.97).
Cossypha isabellae was sampled for Cytb and RAG1, and Cossyphicula
only for Cytb. The RAG1 gene tree (Supplementary Fig. S30) puts
C. isabellae outside the clade containing Cossypha and Chamaetylas (BS =
94), whereas the Cytb gene tree supports a sister relationship for
C. isabellae and Cossyphicula (BS = 99). We tentatively propose to place
C. isabellae in Cossyphicula. Future studies with increased molecular
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sampling should better evaluate their relationship.

Our results suggest that C. caffra, C. archeri, C. anomala and
C. humeralis should have a separate generic status apart from the rest of
the Cossypha robin-chats. Zuccon (2011) pointed out that the name
Caffrornis Roberts, 1922 (type species C. caffra) is available for C. caffra,
C. archeri, and C. anomala, which in our analyses form a well-supported
clade (BS = 100; PP = 1.00) with an estimated most recent common
ancestor at 5.93 Mya. There is strong (BS = 99) or fairly strong (PP =
0.91) support for inclusion of C. humeralis in the same clade as the three
previous species, although it is more anciently diverged from these, with
an estimated divergence time of 9.79 Mya. If these four species are
placed in the same genus, the name Bessonornis (Smith, 1844) (the
corrected spelling for Dessonornis A. Smith, 1836) has priority over
Caffrornis Roberts, 1922. Since Xenocopsychus ansorgei is supported as
either sister to the four others (BS = 94) or as sister to C. humeralis (PP =
0.90), this species is also appropriately placed in the same genus, which
in that case would be Bessonornis A. Smith, 1836, which has priority over
Xenocopsychus Hartert, 1907. An alternative would be to recognize three
genera, Caffrornis (including C. caffer, C. archeri and C. anomalus), Bes-
sonornis (monotypic: B. humeralis) and Xenocopsychus (monotypic:
X. ansorgei).

Clade C - additional taxonomic notes. The ML and Bayesian trees
based on all loci (Figs. 1 & 2) strongly supported Pogonocichla stellata
and Swynnertonia swynnertoni as sister taxa (BS = 96; PP = 1.00). This
sister relationship was also reported in Sangster et al. (2010). Our results
suggest that Swynnertonia Roberts, 1922 could be subsumed in Pogono-
cichla Cabanis, 1847, and S. swynnertoni renamed as Pogonocichla
swynnertoni. However, in view of the deep divergence between these
(11.75 Mya), continued treatment as monotypic genera is equally valid.

4.3. Saxicolinae

Although most of the relationships were well resolved and strongly
supported by the concatenated trees, a few deep nodes in Saxicolinae
still remained poorly supported, especially for the nodes uniting Ficedula
flycatchers and the forest understory birds that are now mainly
distributed in subtropical and tropical Asia (e.g., Enicurus, Myophonus,
Cinclidium, Larvivora, Brachypteryx, Myiomela, Calliope, etc.). These
groups may have evolved through rapid radiations. Therefore, they have
not had the time to accumulate sufficient substitutions, which makes
fully resolving their phylogenetic relationships challenging.

Clade D - paraphyly of Myrmecocichla chats. In the ML tree based
on all loci concatenated (Fig. 1), the Mocking Cliff-Chat Thamnolaea
cinnamomeiventris is nested within Myrmecocichla and sister to
M. monticola, rendering Myrmecocichla paraphyletic, although the sister
relationship between T. cinnamomeiventris and M. monticola was poorly
supported (BS = 61). Sangster et al. (2010) and Barve and Mason (2015)
also reported T. cinnamomeiventris and M. monticola as sister taxa.
However, the mitochondrial ML tree (Supplementary Fig. S1) and the
Bayesian tree based on all loci (Fig. 2) strongly support a sister rela-
tionship between T. cinnamomeiventris and all Myrmecocichla chats (BS
=100; PP = 1.00), as well as in some previous studies (Aliabadian et al.,
2012; Voelker et al., 2012; Alaei Kakhki et al., 2016). In our nuclear
concatenated trees (Supplementary Figs. S2 & S4), T. cinnamomeiventris
is part of an unresolved polytomy with Myrmecocichla chats and the
Moorland Chat Pinarochroa sordida. Collectively, this suggests that
Thamnolaea is more likely to be sister to all Myrmecocichla chats. Future
phylogenetic work with increased molecular sampling for Thamnolaea
and Myrmecocichla chats as well as increased taxon sampling within the
polytypic T. cinnamomeiventris may be warranted.

Clade D - polyphyly of Vauriella jungle-flycatchers. Both ML and
Bayesian trees (Figs. 1 & 2) found that Leonardina woodi is nested with
two current members of Vauriella: V. gularis and V. insignis (BS = 100; PP
= 0.98) and is sister to V. gularis (BS = 92; PP = 0.80). This has also been
reported by Oliveros et al. (2012) and Fjeldsa et al. (2020). Heinrichia
calligyna is strongly supported as sister to these (BS = 100; PP = 1.00),
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with relatively shallow divergence (MRCA at 10.99 Mya) from the
preivous three species (MRCA at 9.99 Mya), and based on this it seems
reasonable to include all of these in a single genus. One option is to
combine V. gularis, V. insignis, and tentatively V. albigularis, with
H. calligyna and L. woodi in Leonardina Mearns, 1905, by priority
(Heinrichia was introduced by Stresemann 1931 and Vauriella by Wolters
1980).

4.4. Taxa in need of further phylogenetic study

Based on the Clements/eBird 2021 checklist (excluding Pinarornis
plumosus), there are 25 unsampled Muscicapidae species in our study
(Supplementary Table S2). Most of them either occur only on islands or
are under threat of extinction. About 30% of the missing taxa are in the
genus Cyornis, including the critically endangered island-dwelling
C. ruckii. Advances in next-generation sequencing technologies (such
as the probe capture for target enrichment) have enabled us to obtain
substantial amount of molecular data from toepad samples in museum
collections, which could be a promising future step for sampling these
difficult species.

Additionally, 17 subspecies in Clements/eBird 2021 checklist, for
example Larvivora komadori namiyei (L. namiyei) and Thamnolaea cin-
namomeiventris coronata (T. coronata), have been elevated to the species
level in IOC World Bird List 12.1 (Supplementary Table S3). Although
these taxa were not included in our study, future studies can easily
incorporate them, since most of them have molecular data available in
GenBank. Careful curation of taxon name, sampling locality and asso-
ciated literature may be required to accurately assign additional Gen-
Bank sequences to the correct taxa in cases of taxonomic change (see
Hosner et al., 2022).

5. Conclusion

Our study provides the most comprehensive species-level phylogeny
for Muscicapidae, covering 92% of the species from all recognized
genera. Most of the nodes are well resolved and strongly supported. For
genera that appeared to be non-monophyletic in our analyses, we pro-
posed taxonomic revisions based on results both from our study and
previous work. Given the number of taxonomic changes already
observed, it is likely that more complete taxon sampling, including
expanded sampling from subspecies and distinct populations, may
further clarify patterns of diversification within the Muscicapidae. In
addition, use of next-generation sequencing approaches may be partic-
ularly helpful to resolve those nodes with limited support, particularly
within the Saxicolinae.
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