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Abstract— Learning generative models is challenging for a
network edge node with limited data and computing power.
Since tasks in similar environments share a model similarity,
it is plausible to leverage pretrained generative models from
other edge nodes. Appealing to optimal transport theory tailored
toward Wasserstein-1 generative adversarial networks (WGANs),
this study aims to develop a framework that systematically
optimizes continual learning of generative models using local
data at the edge node while exploiting adaptive coalescence of
pretrained generative models. Specifically, by treating the knowl-
edge transfer from other nodes as Wasserstein balls centered
around their pretrained models, continual learning of generative
models is cast as a constrained optimization problem, which is
further reduced to a Wasserstein-1 barycenter problem. A two-
stage approach is devised accordingly: 1) the barycenters among
the pretrained models are computed offline, where displacement
interpolation is used as the theoretic foundation for finding
adaptive barycenters via a “recursive” WGAN configuration and
2) the barycenter computed offline is used as metamodel initial-
ization for continual learning, and then, fast adaptation is carried
out to find the generative model using the local samples at the
target edge node. Finally, a weight ternarization method, based
on joint optimization of weights and threshold for quantization,
is developed to compress the generative model further. Extensive
experimental studies corroborate the effectiveness of the proposed
framework.

Index Terms— Continual learning, generative adversarial
networks (GANs), optimal transport theory, Wasserstein
barycenters.

I. INTRODUCTION

THE past few years have witnessed an explosive growth
of the Artificial-Intelligence-of-Things (AIoT) devices at

the network edge. On the grounds that the cloud has abundant
computing resources, the conventional method for artificial
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Fig. 1. Illustration of EI.

intelligence (AI) at the network edge is that the cloud trains the
AI models with the data uploaded from edge devices and then
pushes the models back to the edge for on-device inference
(e.g., Google Edge TPU). However, an emerging view is that
this approach suffers from overwhelming communication over-
head incurred by the data transmission from edge devices to
the cloud, as well as potential privacy leakage. It is, therefore,
of great interest to represent edge data using generative models
because they require a smaller number of parameters than the
data volume, and it is much more parsimonious compared to
sending the edge data to the cloud; furthermore, they can
also help to preserve data privacy [1], [2]. It is clear that
continual learning fits naturally in edge applications consisting
of multiple stages with data collection and learning model
development for the edge. Taking a forward-looking view,
this study focuses on the continual learning of generative
models for edge intelligence (EI) to achieve efficient storage
and accurate representation of edge data.

AI is an approach to build intelligent machines to perform
tasks as humans do. In this regard, AI systems demonstrate
behaviors associated with humans such as learning, problem-
solving, representation, perception, and creativity. In parallel
with AI, EI is a paradigm to build a set of collaborative
intelligent machines at the edge to perform tasks as humans
do [3]. Simply, EI aims to gain collective AI insights by
leveraging limited resources at the network edge (see Fig. 1).
Specifically, there are a variety of edge devices/nodes and
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edge servers, ranging from self-driving cars to robots and
from 5G base station servers to mobile phones. Edge applica-
tions involve computational tasks that require the processing
of edge data to meet users’ requests. In contrast to cloud
computing, in which data centers away from edge nodes
with access to huge datasets are responsible for processing
users’ requests, edge applications process limited data samples
at the network edge to mitigate communication delay and
bandwidth usage. For instance, a general consensus is that
self-driving cars need to be aware of their surroundings and
traffic to safely cruise through the traffic and to arrive at
their destinations. To this end, self-driving cars can connect
with other cars via vehicle-to-vehicle (V2V) and vehicle-
to-everything (V2x) communications to learn about traffic,
make predictions, and take actions, which would be infea-
sible to use conventional methods, such as cloud computing,
due to large amounts of delays in communication between
the car and the cloud. EI envisions developing solutions to
these scalability issues and reducing communication over-
head by carrying out the computational operations at the
network edge.

In regards to scalability issues, deep generative models can
parameterize high-dimensional data samples at edge nodes
effectively, but it is often not feasible for a single edge
node to train a deep generative model from scratch, which
would otherwise require humongous training data and high
computational power [4], [5]. Many edge AI applications
(e.g., autonomous driving, smart robots, safety-critical health
applications, and virtual reality), therefore, require EI and
continual learning capability via fast adaptation with local data
samples and utilizing the prior knowledge over other edge
devices to adapt to dynamic application environments [6], [7].

A general consensus is that learning tasks across different
edge nodes often share a model similarity. For instance,
different robots may perform similar coordination behaviors
according to environment changes. With this sight, we advo-
cate that the pretrained generative models from other edge
nodes are utilized to speed up the learning at a given edge
node and seek to answer the following critical questions.

1) What is the right abstraction of knowledge from multiple
pretrained models for continual learning?

2) How can an edge server leverage this knowledge for
continual learning of a generative model?

The key to answering the first question lies in the effi-
cient model fusion of multiple pretrained generative models.
A common approach is the ensemble method [8], where the
outputs of different models are aggregated to improve the
prediction performance. However, this requires the edge server
to maintain all the pretrained models and run each of them,
which would outweigh the resources available at edge servers.
Another way for model fusion is direct weight averaging [9].
Because the weights in neural networks are highly redundant
and no one-to-one correspondence exists between the weights
of two different neural networks, this method is known to yield
poor performance even if the networks represent the same
function of the input. As for the second question, transfer
learning is a promising learning paradigm where an edge
node incorporates the knowledge from the cloud or another

node with its local training samples. [4], [5]. Recent work
on transferring generative adversarial networks (GANs) [5]
proposed several transfer configurations to leverage pretrained
GANs to accelerate the learning process. However, since
the transferred GAN is used only as initialization, transfer-
ring GANs suffers from catastrophic forgetting. Specifically,
catastrophic forgetting may occur when a pretrained learning
model is further trained using another dataset. Overtraining
the model with new data causes the model to be overtuned
to new data and forget the features learned from previous
data [10]. To tackle these challenges, this work aims to develop
a framework that explicitly optimizes the continual learning
of generative models for the edge, based on the adaptive
coalescence of pretrained generative models from other edge
nodes, using optimal transport theory tailored toward GANs.

To mitigate the mode collapse problem due to the van-
ishing gradients, multiple GAN configurations have been
proposed based on the Wasserstein-p metric Wp, includ-
ing the Wasserstein-1 distance [11] and the Wasserstein-2
distance [12], [13]. Despite that Wasserstein-2 GANs are
analytically tractable, the corresponding implementation often
requires regularization and is often outperformed by the
Wasserstein-1 GAN (W1GAN). With this insight, in this
article, we focus on the W1GAN (WGAN refers to W1GAN
throughout).

A. Basic Setting

Specifically, we consider a setting where a target edge node,
denoted Node 0, learns a generative model for representing
its underlying distribution. Training a WGAN is intimately
related to finding a distribution minimizing the Wasserstein
distance from the underlying distribution µ0 [14]. In practice,
an edge node has a limited number of samples with empirical
distribution µ̂0, which is distant from µ0. A naive approach
is to train a WGAN based on the limited local samples only,
which can be captured via the optimization problem given
by minν∈P W1(ν, µ̂0), with W1(·, ·) being the Wasserstein-1
distance between two distributions and P being the distribution
space. The best possible outcome of solving this optimization
problem can generate a distribution very close to µ̂0, which,
however, could still be far away from the true distribution µ0.
It is clear that training a WGAN simply based on the limited
local samples at an edge node would not be able to obtain a
generative model representing the true distribution µ0.

As alluded to earlier, learning tasks across different edge
nodes may share a similarity, e.g., limited local samples at
Node 0 should be similar to the data samples from other edge
nodes. To facilitate the continual learning at Node 0, pretrained
generative models from other related edge nodes can be
leveraged via knowledge transfer. Without loss of generality,
we assume that there is a set K of K edge nodes with
pretrained generative models. Since one of the most appealing
benefits of WGANs is the ability to continuously estimate
the Wasserstein distance during training [11], we assume that
the knowledge transfer from Node k to Node 0 is in the
form of a Wasserstein ball with radius ηk centered around its
pretrained generative model µk at Node k for k = 1, . . . , K .
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Fig. 2. Continual learning of generative models based on a coalescence
of pretrained generative models {µk , k = 1, . . . , K } and the local dataset at
Node 0 (denoted by µ̂0).

Intuitively, radius ηk represents the relevance (hence utility)
of the knowledge transfer, and the smaller it is, the more
informative the corresponding Wasserstein ball is. Building on
this knowledge transfer model, we treat the continual learning
problem at Node 0 as the coalescence of K generative models
and empirical distribution µ̂0, and cast it as the constrained
optimization problem

min
ν∈P

W1
(
ν, µ̂0

)
, s.t. W1(ν, µk) ≤ ηk ∀k ∈ K. (1)

Observe that the constraints in problem (1) dictate that the
optimal coalesced generative model, denoted by ν∗, lies within
the intersection of K Wasserstein balls (centered around {µk}),
exploiting the knowledge transfer systematically. It is worth
noting that the optimization problem (1) can be extended to
other distance functionals, e.g., the Jensen–Shannon diver-
gence.

B. Main Contributions

The contributions of this work are summarized as follows.
1) We propose a systematic framework to enable continual

learning of generative models via adaptive coalescence
of pretrained generative models from other edge nodes
and local samples at Node 0. In particular, by treat-
ing the knowledge transferred from each node as a
Wasserstein ball centered around its local pretrained
generative model, we cast the problem as a constrained
optimization problem, which optimizes the continual
learning of generative models.

2) Applying Lagrangian relaxation to (1), we reduce
the optimization problem to finding a Wasserstein-1
barycenter of K +1 probability measures, among which
K of them are pretrained generative models, and the
last one is the empirical distribution (not a generative
model though) corresponding to local data samples
at Node 0. We propose a barycentric fast adaptation
approach to efficiently solve the barycenter problem,
where the barycenter ν∗K for the K pretrained generative
models is found recursively offline in edge servers, and
then, the barycenter between the empirical distribution
µ̂0 of Node 0 and ν∗K is solved via fast adaptation at
Node 0 (see Fig. 2). A salient feature in this barycen-
tric approach is that the generative replay, enabled

by pretrained GANs, is used to annihilate catastrophic
forgetting.

3) It is known that the Wasserstein-1 barycenter is notori-
ously difficult to analyze, partly because of the existence
of infinitely many minimizers of the Monge problem.
Appealing to the optimal transport theory, we use dis-
placement interpolation as the theoretic foundation to
devise recursive algorithms for finding adaptive barycen-
ters, which ensures that the resulting barycenters lie in
the baryregion.

4) From the implementation perspective, we intro-
duce a “recursive” WGAN configuration, where a
two-discriminator WGAN is used per recursive step
to find adaptive barycenters sequentially. Then, the
resulting barycenter in off-line training is treated as the
metamodel initialization, and fast adaptation is carried
out to find the generative model using the local samples
at Node 0. A weight ternarization method, based on joint
optimization of weights and threshold for quantization,
is developed to compress the generative model and
enable efficient edge learning. Extensive experiments
corroborate the efficacy of the proposed framework for
fast edge learning of generative models, and the W1-
based recursive WGAN configuration performs better
than the W 2

2 -based one.

C. Use Cases

To further illustrate the motivation behind the problem (1),
we provide two applications in what follows.

1) Privacy is vital in predictive health applications of
edge learning. In a pet disease prediction task, a user
aims to learn her/his pet’s disease by sending the pet’s
photographs to an edge server. Since photographs may
contain private information, it is desired to eliminate
unnecessary information for the detection of the dis-
ease from photos. A personalized WGAN model can
generate unique photographs of the user’s pet with
only the necessary information and prevent the leak-
age of private information. However, a personalized
WGAN model cannot be trained alone on the user’s
phone/laptop because it would require a lot of data
samples and processing power. Instead, the user can
leverage a barycenter WGAN model from the edge
server, which is trained on healthy and unhealthy pet
images offline, to train the user’s personalized WGAN
model, so as to represent the user’s pet’s health condition
without revealing any private information. The training
process can be done on the user’s device as barycentric
fast adaptation requires much less computational power.
Alternative approaches, such as differential privacy, can
provide similar privacy guarantees [15] but suffer from
scalability issues in transferring photographs to an edge
server. Training a barycenter or a personalized WGAN
model via fast adaptation only requires the transfer of
generative models and, hence, mitigates data transfer
amount while preserving privacy.

2) Data storage at the edge is gaining popularity due
to low delay access to data and ease of local data
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management. Even though edge servers are more capa-
ble than user edge devices/nodes, they still have much
less memory and computational power possessed by
cloud data centers. To overcome these challenges,
barycenter WGAN models can be used to repre-
sent datasets for applications requiring less precision.
To exemplify, a single barycenter WGAN model could
represent the information in hundreds of cat image
databases instead of storing the same information in
hundreds of WGAN models with minimum accuracy
loss at the edge server. This accuracy loss can later be
recovered quickly if the barycentric fast adaptation is
applied to the barycenter WGAN model with the desired
database.

The rest of this article is organized as follows. In Section II,
related works about EI, optimal transport theory, and WGAN
literature are discussed. In Section III, the adaptive coalescence
of Wasserstein-1 generative models is mathematically modeled
and analyzed, and a practical algorithm is proposed. The
recursive barycentric fast adaptation algorithm is explained in
detail in Section IV. In Section V, a variety of numerical
experiments are performed and demonstrated. Section VI
articulates the computational complexity of barycentric fast
adaptation algorithm and how it ranks among its counterparts.
Finally, the conclusions are discussed in Section VII.

II. RELATED WORK

Optimal transport theory has recently been studied for
deep learning applications (see [16], [17], and [18]). Agueh
and Carlier [19] have developed an analytical solution to
the Wasserstein barycenter problem. Aiming to numerically
solve the Wasserstein barycenter problem, Cuturi and Doucet
[20] proposed smoothing through entropy regularization for
the discrete setting based on linear programming. Srivastava
et al. [21] employed posterior sampling algorithms in studying
Wasserstein barycenters, and Anderes et al. [22] characterized
Wasserstein barycenters for the discrete setting (cf. [23]). Most
recent studies leveraged optimal transport theory in domain
adaptation [24], cross-domain alignment [25], reinforcement
learning [26], and developed further approximations to the
Wasserstein distance, e.g., Sinkhorn divergence [27]. Nguyen
et al. [24] proposed the use of optimal transport theory to quan-
tify the distance between embedded distributions of source
and target data in the joint space. By minimizing the distance,
TIDOT can mitigate both data and label shifts between dif-
ferent domains. Chen et al. [25] modeled the cross-domain
alignment problem as a graph-matching problem and leveraged
Wasserstein and Gromov–Wasserstein distances for node and
edge matching, respectively. Chen et al. [26] employ optimal
transport theory to solve the difficulties associated with the
application of reinforcement learning in language generation.
Li et al. [27] studied the Sinkhorn divergence and expanded its
applicability to problems with complex data with a nonlinear
structure. In particular, the authors extended the analytical
results in the Euclidean space to the reproducing kernel Hilbert
space.

GANs [28] have recently emerged as a powerful deep learn-
ing tool for obtaining generative models. Arjovsky et al. [11]

have introduced the Wasserstein metric in GANs, which can
help mitigate the vanishing gradient issue to avoid mode
collapse. Using optimal transport theory, recent advances in
Wasserstein GANs have shed light on understanding gen-
erative models. Leygonie et al. [12], Liu et al. [13], and
Korotin et al. [35] proposed transport theory-based GAN
configurations using quadratic Wasserstein-2 cost. In contrast,
for the W1GAN, the discriminator may utilize one of the
infinitely many transport maps from underlying empirical
data distribution to the generative model [17], [18], and it
remains open to decipher the relation between the model
training and transport maps. Along a different line, a variety
of techniques have been proposed for more robust training of
GANs [4], [30], [31].

Pushing the AI frontier to the network edge for achieving
EI has recently emerged as the marriage of AI and edge
computing [3]. There are significant challenges since AI
model training generally requires tremendous resources that
greatly outweigh the capability of resource-limited edge nodes.
To address this, various approaches have been proposed in
the literature, including model compression [32], knowledge
transfer learning [33], [34], hardware acceleration [35], and
collaboration-based methods [36], [37]. Shafiee et al. [32]
proposed an efficient deep neural network of size smaller
than 2.4 MB to solve classification problems. However, the
proposed neural network is designed to only work on small
number of classes. Osia et al. [33] designed a hybrid archi-
tecture where local devices and cloud systems collaborate
on running a deep neural network that has previously been
fine-tuned on the cloud. To achieve privacy, the proposed
technique extracts the minimum necessary information from
the user to transfer to the cloud. Venkataramani et al. [35]
proposed an energy-efficient powerful server architecture to
train deep neural networks, which focused on improving core
utilization, memory bandwidth, and reducing synchronization
overheads to achieve its efficiency. Gao et al. [34] proposed
an adaptive neural network architecture, in which network
architecture adapts to a new task. Continual learning with an
efficient architecture search technique learns which neurons
to leverage for the new task. In regards to privacy, differential
privacy can offer privacy guarantees on distributed learning
systems that include data collection from users [15]. However,
EI is not only concerned with privacy but also with scalabil-
ity problems arising from the large-scale data at the edge.
Therefore, this study adopts a GAN approach to overcome
scalability and privacy concerns in EI applications.

Different from existing studies, this work focuses on the
continual learning of generative models at the edge nodes.
Rather than learning the new model from scratch, continual
learning aims to design algorithms leveraging knowledge
transfer from pretrained models to the new learning task [38],
assuming that the training data of previous tasks are unavail-
able for the new task. Generative replay is gaining more
attention where synthetic samples corresponding to earlier
tasks are obtained with a generative model and replayed in
model training for the new task to mitigate forgetting [39].
In this work, by learning generative models via the adaptive
coalescence of pretrained generative models from other nodes,
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the proposed “recursive” WGAN configuration facilitates fast
edge learning in a continual manner, which can be viewed
as an innovative integration of a few key ideas in contin-
ual learning, including the replay method [40], [41], which
generates pseudosamples using generative models, and the
regularization-based methods [42], which set the regularization
for the model learning based on the learned knowledge from
previous tasks [43].

III. ADAPTIVE COALESCENCE OF WASSERSTEIN-1
GENERATIVE MODELS

Next, we first recast problem (1) as a Wasserstein barycen-
ter problem. Then, we propose a two-stage recursive algo-
rithm, characterize the geometric properties of geodesic curves
therein, and use displacement interpolation as the foundation
to devise recursive algorithms for finding adaptive barycenters.

A. Wasserstein-1 Barycenter Formulation via Lagrangian
Relaxation

Observe that the Lagrangian for (1) is given as follows:

L({λk}, ν) = W1
(
ν, µ̂0

)
+

K∑
k=1

λk W1(ν, µk)−

K∑
k=1

λkηk (2)

where {λk ≥ 0}1:K are the Lagrange multipliers. Based on [44],
problem (1) can be solved by using the following Lagrangian
relaxation with λk = (1/ηk),∀k ∈ K, and λ0 = 1:

min
ν∈P

K∑
k=1

(1/ηk)W1(ν, µk)+W1
(
ν, µ̂0

)
. (3)

It is shown in [45] that the selection λk = (1/ηk),∀k ∈ K,
ensures the same levels of robustness for (3) and (1). Intu-
itively, such a selection of {λk}0:K strikes a right balance,
in the sense that larger weights are assigned to the knowledge
transfer models (based on the pretrained generative models
{µk}) from the nodes with higher relevance, captured by
smaller Wasserstein-1 ball radii. For given {λk ≥ 0}, (3)
turns out to be a Wasserstein-1 barycenter problem (cf. [22]
and [26]), with the new complication that µ̂0 is an empirical
distribution corresponding to local samples at Node 0. Since
µ̂0 is not a generative model per se, its coalescence with other
K general models is challenging.

B. Two-Stage Adaptive Coalescence Approach for
Wasserstein-1 Barycenter Problem

Based on (3), we take a two-stage approach to enable
efficient learning of the generative model at edge Node 0.
The primary objective of Stage I is to find the barycen-
ter for K pretrained generative models {µ1, . . . , µK }. It is
clear that the ensemble method would not work well due
to the required memory and computational resources. With
this insight, we develop a recursive algorithm for the adaptive
coalescence of pretrained generative models. In Stage II, the
resulting barycenter solution in Stage I is treated as the model
initialization and is further trained using the local samples
at Node 0. We propose that the off-line training in Stage I

is performed in the edge server, and the fast adaptation in
Stage II is carried out at the edge server (in the same spirit as
the model update of Google EDGE TPU), as outlined in the
following.

Stage I (Find the Barycenter of K Pretrained Generative
Models Across K Edge Nodes Offline): Mathematically, this
entails the solution to the following problem:

min
ν∈P

K∑
k=1

1
ηk

W1(ν, µk). (4)

To reduce computational complexity, we propose the following
recursive algorithm: take µ1 as an initial point, i.e., ν∗1 = µ1,
and let ν∗k−1 denote the barycenter of {µi }1:k−1 obtained at
iteration k − 1 for k = 2, . . . , K . Then, at each iteration k,
a new barycenter ν∗k is solved between the barycenter ν∗k−1 and
the pretrained generative model µk .

Stage II (Fast Adaptation to Find the Barycenter Between
ν∗K and the Local Dataset at Node 0): Given the solution
ν∗K obtained in Stage I, we subsequently solve the following
problem: minν∈P W1(ν, µ̂0)+W1(ν, ν

∗

K ). By taking ν∗K as the
model initialization, fast adaptation based on local samples is
used to learn the generative model at Node 0.

C. From Displacement Interpolation to Adaptive Barycenters

As noted above, in practical implementation, the W1-GAN
often outperforms Wasserstein-p GANs (p > 1). However,
the Wasserstein-1 barycenter is notoriously difficult to analyze
due to the nonuniqueness of the minimizer to the Monge
problem [18]. Appealing to optimal transport theory, we next
characterize the performance of the proposed two-stage recur-
sive algorithm for finding the Wasserstein-1 barycenter of
pretrained generative models {µk, k = 1, . . . , K } and the local
dataset at Node 0 by examining the existence of the barycenter
and characterizing its geometric properties based on geodesic
curves.

The seminal work [46] has established the existence of
geodesic curves between any two distribution functions σ0 and
σ1 in the p-Wasserstein space, Pp, for p ≥ 1. It is shown
in [18] that there are infinitely many minimal geodesic curves
between σ0 and σ1, when p = 1. This is best illustrated in
N -dimensional Cartesian space, where the minimal geodesic
curves between ς0 ∈ RN and ς1 ∈ RN can be parameterized
as follows: ςt = ς0 + s(t)(ς1 − ς0),, where s(t) is an
arbitrary function of t , indicating that there are infinitely many
minimal geodesic curves between ς0 and ς1. This is in stark
contrast to the case p > 1 where there is a unique geodesic
between ς0 and ς1. In a similar fashion, there exist infinitely
many transport maps, T 1

0 , from σ0 to σ1 when p = 1. For
convenience, let C(σ0, σ1) denote an appropriate transport cost
function quantifying the minimum cost to move a unit mass
from σ0 to σ1. It had been shown in [18] that, when p = 1,
two interpolated distribution functions on two distinct minimal
curves may have a nonzero distance, i.e., C(T̂ 1

0#σ0, T̃ 1
0#σ0) ≥

0, where # denotes the push-forward operator, thus yielding
multiple minimizers to (4). For convenience, define F :=
µ̂0 ∪ {µk}1:K .
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Definition 1 (Baryregion): Let gt (µk, µℓ)0≤t≤1 be any min-
imal geodesic curve between any pair µk, µℓ ∈ F , and define
the union R :=

⋃K
k=1

⋃K+1
ℓ=k+1 gt (µk, µℓ)0≤t≤1. The baryregion

BR is given by BR =
⋃
σ∈R

⋃
ϖ∈R,ϖ ̸=σ gt (σ,ϖ)0≤t≤1.

Intuitively, BR encapsulates all possible interpolations
through distinct geodesics between any two distributions in F .
Since each geodesic has finite length, BR defines a bounded
set in P1. Next, we restate in Lemma 1 the renowned dis-
placement interpolation result [46], which sets the foundation
for each recursive step in finding a barycenter in our proposed
two-stage algorithm. In particular, Lemma 1 leads to the fact
that the barycenter ν∗ resides in BR.

Lemma 1 (Displacement Interpolation [47]): Let
C(σ0, σ1) denote the minimum transport cost between σ0 and
σ1, and suppose that C(σ0, σ1) is finite for σ0, σ1 ∈ P(X ).
Assume that C(σs, σt ), the minimum transport cost between
σs and σt for any 0 ≤ s ≤ t ≤ 1, is continuous. Then,
the following holds true for any given continuous path
gt (σ0, σ1)0≤t≤1:

C
(
σt1 , σt2

)
+ C

(
σt2 , σt3

)
= C

(
σt1 , σt3

)
, 0 ≤ t1 ≤ t2≤t3≤1.

In the adaptive coalescence algorithm, the kth recursion
defines a baryregion, B{ν∗k1

,µk }, consisting of geodesics between
the barycenter ν∗k−1 found in the (k − 1)th recursion and
generative model µk . It is clear that B{ν∗k ,µk } ⊂ BR. View-
ing each recursive step in the above two-stage algorithm as
adaptive displacement interpolation, we have the main result
on the geodesics and the geometric properties regarding ν∗

and {ν∗k }1:K .
Proposition 1 Displacement Interpolation for Adaptive

Barycenters: The adaptive barycenter, ν∗k , obtained at the
output of the kth recursive step in Stage I, is a displacement
interpolation between ν∗k−1 and µk and resides inside BR.
Furthermore, the final barycenter ν∗ resulting from Stage II
of the recursive algorithm resides inside BR.

Remark 1: It is worth noting that different orders for
adaptive coalescence may lead to different final barycentric
W1GAN models although the resulting ν∗ resides in BR
always. Had the quadratic Wasserstein cost W 2

2 been used,
the final barycenter ν∗ would be unique in BR. However,
the corresponding implementation using W 2

2 poses signif-
icant challenges [13], [29] and is often outperformed by
W1GAN, which we will elaborate further in Section IV and
Appendixes B and C.

IV. RECURSIVE WGAN CONFIGURATION FOR
CONTINUAL LEARNING

Based on the above theoretic results on adaptive coalescence
via Wasserstein-1 barycenters, we next turn attention to the
implementation of computing adaptive barycenters. Notably,
assuming the knowledge of accurate empirical distribution
models on discrete support, Cuturi and Doucet [20] introduce
a powerful linear program (LP) to compute Wasserstein-p
barycenters, but the computational complexity of this approach
is excessive. In light of this, we propose a WGAN-based
configuration for finding the Wasserstein-1 barycenter, which,
in turn, enables fast learning of generative models based on

Fig. 3. Two-discriminator WGAN for efficient learning of the kth barycenter
generator in off-line training, where x denotes the synthetic data generated
from pretrained models [see Section IV-1 and (6)].

Fig. 4. Fast adaptation for learning a generative model at Node 0 [see
Section IV-2 and (7)].

the coalescence of pretrained models. Specifically, (3) can be
rewritten as

min
G

max
{ϕk }0:K

Ex∼µ̂0
[ϕ0(x)]− Ez∼ϑ [ϕ0(G(z))]

+

K∑
k=1

1
ηk

{
Ex∼µk [ϕk(x)]− Ez∼ϑ [ϕk(G(z))]

}
(5)

where G represents the generator and {ϕk}0:K are 1−Lipschitz
functions for discriminator models, respectively (see Appendix
D.C in the Supplementary Material for detailed derivation).
Observe that the optimal generator DNN G∗ facilitates the
barycenter distribution ν∗ at its output. We note that the
multidiscriminator WGAN configuration has recently been
developed [30], [48] by using a common latent space to train
multiple discriminators, so as to improve stability. In stark
contrast, in this work, distinct generative models from multiple
nodes are exploited to train different discriminators, aiming to
learn distinct transport plans among generative models.

A naive approach is to implement the above multidiscrim-
inator WGAN in a one-shot manner where the generator
and K + 1 discriminators are trained simultaneously, which,
however, would require overwhelming computation power and
memory. To enable efficient training, we use the proposed
two-stage algorithm and develop a recursive WGAN configu-
ration (see Algorithms 1 and 2) to sequentially compute: 1) the
barycenter ν∗K for the off-line training in the edge servers,
as shown in Fig. 3 and 2) the barycenter ν∗ for the fast adapta-
tion at the target edge node, as shown in Fig. 4. The analytical
relation between one-shot and recursive barycenters has been
studied for Wasserstein-2 distance, and sufficient conditions
for their equivalence are presented in [49], which, would not
suffice for the Wasserstein-1 distance, because of the existence
of multiple Wasserstein-1 barycenters. Proposition 1 shows
that any barycenter solution to a recursive algorithm resides
inside a baryregion, which can be viewed as the counterpart for
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Algorithm 1 Off-Line Training to Solve the Barycenter of K Pretrained Generative Models
Inputs: K pre-trained generator-discriminator pairs {(Gk, Dk)}1:K of corresponding source nodes k ∈ K, noise prior ϑ(z),
the batch size m, learning rate α

1: Set G∗1 ← G1, ψ̃∗1 ← rand() or ψ̃∗1 ← D1; //Barycenter initialization
2: for iteration k = 2, . . . , K do
3: Set Gk ← G∗k−1, ψ̃k ← rand(), ψk ← rand() (or ψ̃k ← ψ ∈ {ψ̃∗k−1, ψ

∗

k−1}, ψk ← Dk) and choose λψ̃k
, λψk ;

4: while generator Gk has not converged do
5: Sample batches of prior samples {z(i)}mi=1, {z(i)

ψ̃k
}

m
i=1, {z(i)ψk

}
m
i=1 independently from prior ϑ(z);

6: Generate synthetic data batches {x (i)
ψ̃k
}

m
i=1 ∼ ν

∗

k−1 and {x (i)ψk
}

m
i=1 ∼ µk by passing {z(i)

ψ̃k
}

m
i=1 and {z(i)ψk

}
m
i=1 through G∗k−1

and Gk , respectively;
7: Compute gradients gψ̃k

and gψk : {gω ← λω∇ω
1
m

∑m
i=1[ω(x

(i)
ω )− ω(Gk(z(i))]}ω=ψ̃k ,ψk

;
8: Update both discriminators ψk and ψ̃k : {ω← ω + α · Adam(ω, gω)}ω=ψk ,ψ̃k

;
9: Compute gradient gGk ←−∇Gk

1
m

∑m
i=1[λψkψk(Gk(z(i)))+ λψ̃k

ψ̃k(Gk(z(i)))];
10: Update generator Gk : Gk ← Gk − α · Adam(Gk, gGk );
11: Assign G∗k ← Gk

12: return generator G∗K for barycenter ν∗K , discriminators ψ̃∗K , ψ∗K .

the one-shot solution. We have also developed the bound on
the gap between one-shot and recursive algorithms, which can
be found in Appendix C. We next highlight a few important
advantages of the “recursive” WGAN configuration for the
barycentric fast adaptation algorithm.

1) Two-Discriminator WGAN Implementation per Recursive
Step to Enable Efficient Training: At each recursive step k,
we aim to find the barycenter ν∗k between pretrained model µk

and the barycenter ν∗k−1 from last round, which is achieved by
training a two-discriminator WGAN as follows:

min
Gk

max
ψk ,ψ̃k

λψk

{
Ex∼µk [ψk(x)]− Ez∼ϑ [ψk(Gk(z))]

}
+λψ̃k

{
Ex∼ν∗k−1

[
ψ̃k(x)

]
− Ez∼ϑ

[
ψ̃k(Gk(z))

]}
(6)

where ψ and ψ̃ denote the corresponding discriminators for
the pretrained model Gk and the barycenter model G∗k−1 from
the previous recursive step, respectively (see Algorithm 1).

2) Model Initialization in Each Recursive Step: For the
initialization of the generator Gk , we use the trained generator
G∗k−1 in the last step. G∗k−1 corresponds to the barycenter ν∗k−1,
and using it as the initialization the displacement interpolation
would move along the geodesic curve from ν∗k−1 to µk [12].
Training GANs with such initializations would accelerate the
convergence compared with training from scratch [5]. Finally,
ν∗K is adopted as initialization to enable fast adaptation at the
target node. As the barycenter ν∗K solved via off-line training,
a new barycenter ν∗ between local data (represented by µ̂0)
and ν∗K , can be obtained by solving the problem

min
G0

max
ψ0,ψ̃0

λψ0

{
Ex∼µ̂0

[ψ0(x)]− Ez∼ϑ [ψ0(G0(z))]
}

+λψ̃0

{
Ex∼ν∗K

[
ψ̃0(x)

]
− Ez∼ϑ

[
ψ̃0(G0(z))

]}
(7)

i.e., by training a two-discriminator WGAN, and fine-tuning
the generator G0 from G∗K would be notably faster and more
accurate than learning the generative model from local data
only (see Algorithm 2).

3) Fast Adaptation for Training Ternary WGAN at Node
0: As outlined in Algorithm 2, fast adaptation is used to
find the barycenter between ν∗K and the local dataset at
Node 0. To further enhance edge learning, we adopt the

Algorithm 2 Fast Adaptation Algorithm to Solve for Learning
the Generative Model at Node 0

Inputs: Final generator G∗K , final discriminators ψ̃∗K , ψ∗K ,
noise prior ϑ(z), the batch size m, learning rate α

1: Set G∗0 ← G∗K , ψ̃∗0 ← rand() or ψ̃∗0 ← ψ ∈ {ψ̃∗K , ψ
∗

K };
2: while generator G0 has not converged do
3: Sample batches of prior samples {z(i)}mi=1 and {z(i)

ψ̃0
}

m
i=1

independently from prior ϑ(z);
4: Get real data batch {x (i)ψ0

}
m
i=1 ∼ µ̂0 and generate

synthetic data batch {x (i)
ψ̃0
}

m
i=1 ∼ ν∗K by passing {z(i)

ψ̃0
}

m
i=1

through G∗K ;
5: Compute gradients gψ̃0

and gψ0 : {gω ←

λω∇ω
1
m

∑m
i=1[ω(x

(i)
ω )− ω(G0(z(i))]}ω=ψ̃0,ψ0

;
6: Update both discriminators ψ0 and ψ̃0: {ω← ω+ α ·

Adam(ω, gω)}ω=ψ0,ψ̃0
;

7: Compute gradient gG0 ←

−∇G0
1
m

∑m
i=1[λψ0ψ0(G0(z(i)))+ λψ̃0

ψ̃0(G0(z(i)))];
8: Update generator G0: G0 ← G0 − α · Adam(G0, gG0);
9: Assign G∗0 ← G0

10: return Generator G∗0 for barycenter ν∗0 .

weight ternarization method to compress the WGAN model
during training. The weight ternarization method not only
replaces computationally expensive multiplication operations
with efficient addition/subtraction operations but also enables
the sparsity in model parameters [50]. Specifically, the ternar-
ization process is formulated as

w′l=Sl · Tern
(
wl ,1

±

l

)
= Sl ·


+1, wl > 1+l

0, 1−l ≤ wl ≤ 1
+

l

−1, wl < 1−l

(8)

where {wl} are the full precision weights for the lth layer, {w′l}
are the weights after ternarization, {Sl} is the layerwise weight
scaling coefficient, and 1±l are the layerwise thresholds. Since
the fixed weight thresholds may lead to accuracy degradation,
Sl is approximated as a differentiable closed-form function
of 1±l so that both weights and thresholds can be optimized
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simultaneously through backpropagation [51]. Let the genera-
tor and the discriminators of WGAN at Node 0 be denoted by
G0, ψ̃0, and ψ0, which can be parameterized by the ternarized
weights {w′lG }

LG
lG=1, {w′l

ψ̃
}

L
ψ̃

l
ψ̃
=1, and {w′lψ }

Lψ
lψ=1, respectively. The

barycenter ν∗ at Node 0, captured by G∗0 , can be obtained
by training the ternary WGAN via iterative updates of both
weights and thresholds, which takes three steps in each iter-
ation: 1) calculating the scaling coefficients and the ternary
weights for G0, ψ̃0, and ψ0; 2) calculating the loss function
using the ternary weights via forward propagation; and 3)
updating the full precision weights and the thresholds via
backpropagation (see Algorithm 3 in supplementary materials
under Appendix E.A).

4) Implementation Challenges in W 2
2 -Based GAN: The

practical success of W1GAN can be largely attributed to the
elegant structural relation between Kantorovich potentials, i.e.,
ϕ = −ψ . Unfortunately, when the quadratic cost W 2

2 is used,
Kantorovich potentials translate to ϕ = ψ∗, where ∗ denotes
the convex conjugate. Note that W2 is a metric, but W 2

2 is not.
When implementing the W 2

2 -based GAN, both Kantorovich
potentials are estimated by two distinct DNNs that must satisfy
the convex conjugate constraint, which is practically challeng-
ing. Very recent studies [12], [13], [29] attempt to enforce
the convex conjugate constraint between these DNNs through
approximations or regularization under certain assumptions,
but it remains not well understood. In this article, we have
carried out experimental studies to compare the performance
of W1- and W 2

2 -based recursive WGAN configurations, and
our findings corroborate that W1GAN performs better (see
Appendixes D.F and D.G in the Supplementary Material).

V. EXPERIMENTS

1) Datasets, Models, and Evaluation: We extensively
examine the performance of learning a generative model,
using the barycentric fast adaptation algorithm, on a variety
of widely adapted datasets in the GAN literature, including
CIFAR10, CIFAR100, LSUN, and MNIST [52], [53], [54].
In experiments, we used various DCGAN-based architec-
tures [55] depending on the dataset as different datasets vary
in image size, feature diversity, and sample size, e.g., image
samples in MNIST have less diversity compared to the rest
of the datasets, while LSUN contains the largest number of
samples with larger image sizes. Furthermore, we used the
weight ternarization method [51] to jointly optimize weights
and quantizers of the generative model at the target edge
node, reducing the memory burden of generative models in
memory-limited edge devices. Details on the characteristics
of datasets and network architectures used in experiments are
relegated to the Supplementary Material. The implementation
details for all the results are provided in the Supplementary
Material, and the implementation can be found in [56].

The lack of baseline experiment settings in EI inspired
the fusion of experiment settings from GAN, transfer learn-
ing, and continual learning literature. To this end, multistage
experiments are designed. First, individual WGAN models are
trained on distinct subsets of a dataset (representing individ-
ual edge nodes) and evaluated using widely adopted scores
from GAN literature [5]. In accordance with GAN literature,

publicly available image datasets are selected, and each dataset
is split into subsets of classes, which represents different
tasks in a continual learning context [39]. The performance
evaluation of different GAN architectures on image datasets
is a well-studied field and provides a fair foundation for
comparing the performance of the barycentric fast adaptation
against other baselines. Therefore, the same, well-established
DNN architectures are used across all techniques. In the
second stage, the fast adaptation technique and its counterparts
are operated on the trained WGAN models from the first stage
to train a fusion WGAN for a different task as in transfer
learning [5]. Finally, the second stage is repeated to constitute
the forgetting of previous tasks in the fusion WGAN model
and compare the performance of candidate techniques.

The Frechet–Inception distance (FID) score [57] is widely
adopted for evaluating the performance of GAN models [5],
[58] since it provides a quantitative assessment of the sim-
ilarity of a dataset to another reference dataset. Therefore,
we use the FID score to evaluate the performance evolution of
the two-stage adaptive coalescence algorithm and all baseline
algorithms during training. We here emphasize that a smaller
FID score of a GAN indicates that it has a better performance.
Note that, to avoid one-sided scores and make a fair compari-
son, other evaluation metrics, in addition to the FID score, are
also leveraged to quantify the performance of all algorithms.
A more comprehensive discussion of FID and other metrics is
relegated to the Supplementary Material. In all experiments,
we use the entire dataset as the reference dataset.

To demonstrate the improvements by using the proposed
framework based on barycentric fast adaptation, we conduct
extensive experiments and compare performance with three
distinct baselines.

1) Transferring GANs [5]: A pretrained GAN model is
used as initialization at Node 0 for training a new
WGAN model by using local data samples.

2) Ensemble Method: The model initialization, obtained by
using pretrained GANs at other edge nodes, is further
trained using both local data from Node 0 and synthetic
data samples.

3) Edge-Only: Only the local dataset at Node 0 is used in
WGAN training. Due to the lack of sample diversity
at the target edge node, the WGAN model trained
using local data only is not expected to attain good
performance. In stark contrast, the WGAN model is
trained using the proposed two-stage adaptive coales-
cence algorithm, inherits the diversity from the pre-
trained models at other edge nodes, and results in better
performance compared to its counterparts. Needless to
say, if the entire dataset were available at Node 0, the
best performance would be achieved.

2) Experiment Setup: We consider the following two
scenarios.

1) Overlapping Case: The classes of the data samples at
other edge nodes and at Node 0 overlap.

2) Nonoverlapping Case: The classes of the data samples at
other edge nodes and at Node 0 are mutually exclusive.

In overlapping experiments, a dataset is equally split into two
subdatasets, and subdatasets are used to pretrain two WGAN
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Fig. 5. Comparison of convergence of barycentric fast adaptation with various baselines. (a) MNIST: nonoverlapping case. (b) MNIST: overlapping case.
(c) CIFAR10: overlapping case. (d) CIFAR100: overlapping case. (e) CIFAR10: overlapping case. (f) LSUN: overlapping case.

models independently. Subsequently, Algorithms 1 and 2 are
used consecutively to find the barycenter and the final WGAN
model at Node 0, respectively. The few data samples to be
used in the fast adaptation stage are randomly selected from
all classes in the dataset. For the transferring GANs method,
the first pretrained model is further trained on the second
subdataset using transfer learning to compute a fused model.
In the final stage, few data samples from all classes in the
dataset are used to train a WGAN model at Node 0 by
leveraging the fused model via transfer learning again. In the
ensemble method, the pretrained models are used to generate
a synthetic dataset. The synthetic dataset is combined with
the few data samples from all the classes, and the combined
dataset is leveraged to train a final WGAN model at Node 0.
Finally, the edge-only method only uses the few data samples
from all the classes to train a WGAN model at Node 0.

In nonoverlapping experiments, randomly drawn samples
from the first 40% of the classes in the dataset are allocated
into the first node, and randomly drawn samples from the
second 40% of the classes are allocated into the second node.
The same steps as in the overlapping case are followed by
using these two subdatasets until the final stage. In the final
stage, a few data samples are randomly selected from the
remaining 20% of the classes and are placed in Node 0.

3) Continual Learning Against Catastrophic Forgetting:
We investigate the convergence and generated image qual-
ity of various training scenarios on CIFAR100 and MNIST
datasets. As illustrated in Fig. 5, barycentric fast adaptation
outperforms all baselines. Transferring GANs suffers from
catastrophic forgetting because the continual learning is per-
formed over local data samples at Node 0 only. On the
contrary, the barycentric fast adaptation and the ensemble
method leverage generative replay, which mitigates the nega-
tive effects of catastrophic forgetting. Furthermore, observe
that the ensemble method suffers because of the limited
data samples at Node 0, which are significantly outnumbered

by synthetic data samples from pretrained GANs, and this
imbalance degrades the applicability of the ensemble method
for continual learning. On the other hand, the barycentric fast
adaptation can obtain the barycenter between the local data
samples at Node 0 and the barycenter model trained offline
and, hence, can effectively leverage the abundance of data
samples from edge nodes and accuracy of data samples at
Node 0 for better continual learning.

4) Impact of Number of Pretrained Generative Models:
To quantify the impact of cumulative model knowledge from
pretrained generative models on the learning performance at
the target node, we consider the scenario where ten classes
in CIFAR10/MNIST are split into three subsets, e.g., the
first pretrain model has classes {0, 1, 2}, the second pre-
trained model has classes {2, 3, 4}, and the third pretrained
model has the remaining classes. One barycenter model is
trained offline by using the first two pretrained models, and
the second barycenter model is trained using all three pre-
trained models, respectively, based on which we evaluate the
performance of barycentric fast adaptation with 1000 data
samples at the target node. Fig. 5(a) and (c) showcases that
the more model knowledge is accumulated in the barycen-
ter computed offline, the higher image quality is achieved
at Node 0. As expected, more model knowledge can help
new edge nodes in training higher quality generative models.
In both figures, the barycentric fast adaptation outperforms
transferring GANs.

5) Impact of the Number of Data Samples at Node 0:
Fig. 5(e) further illustrates the convergence across different
numbers of data samples at the target node on the CIFAR10
dataset. As expected, the FID score gap between barycentric
fast adaptation and edge-only method decreases as the
number of data samples at the target node increases, simply
because the empirical distribution becomes more “accurate.”
In particular, the significant gap of FID scores between
edge-only and the barycentric fast adaptation approaches
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in the initial stages indicates that the barycenter found via
off-line training and adopted as the model initialization for
fast adaptation is indeed close to the underlying model at the
target node, hence enabling faster and more accurate edge
learning than edge-only.

6) Impact of Wasserstein Ball Radii: The Wasserstein ball
radius ηk for the pretrained model k represents the relevance
(hence utility) of the knowledge transfer, which is intimately
related to the capability to generalize beyond the pretrained
generative models, and the smaller it is, the more infor-
mative the corresponding Wasserstein ball is. Hence, larger
weights λk = 1/ηk would be assigned to the nodes with
higher relevance. We note that the weights are determined
by the constraints and, thus, are fixed. Since we introduce
the recursive WGAN configuration, the order of coalescence
(each corresponding to a geodesic curve) may impact the
final barycentric WGAN model and, hence, the performance
of barycentric fast adaptation. To this end, we compute the
coalescence of models of nodes with higher relevance at latter
recursions to ensure that the final barycentric model is closer
to the models of nodes with higher relevance.

7) Ternary WGAN-Based Barycentric Fast Adaptation:
With the model initialization in the form of a full-precision
barycenter model computed in off-line training, we next train
a ternary WGAN with two discriminators for the target node
to compress the generative model further. In particular, we use
the same split of classes as the experiment illustrated in
Fig. 5(e) and compare the image quality obtained by ternary
WGAN-based fast adaptation against both full precision
counterpart and edge-only. As seen in Fig. 5(f), the ternary
WGAN-based barycentric fast adaptation results in negligible
performance degradation compared to its full precision
counterpart and is still much better compared to the edge-only
approach.

8) Performance Evaluation Using Inception Score: In addi-
tion to the FID score, we also use IS, another widely used
metric, to signify the robustness of the performance evaluation.
Each of the three different numerical experiments is repeated
five times, and the performance evaluation using FID and
ISs is illustrated in Fig. 6. It is clear that both FID and
IS evaluations corroborate the superior performance of the
barycentric fast adaptation algorithm, as well as the small
deviation from the mean performance. The worst and best
case performances of the barycentric fast adaptation and its
counterparts are illustrated in Table I. best-mean, worst-mean,
best, and worst denote the best mean performance, the worst
mean performance, the best performance in all five runs, and
the worst performance in all five runs for the corresponding
metrics, respectively. Table I further showcases the superior
performance of barycentric fast adaptation in comparison to
its counterparts, particularly when the number of available
samples at Node 0 is limited.

An important observation herein is that both FID and
IS quantify the quality and class diversity of the generated
images. Specifically, the FID score leverages another large
dataset (reference dataset) (the whole dataset in our experi-
ments) to relatively compute the quality and class diversity

of the generated images, whereas IS does not utilize a
reference dataset, i.e., IS is absolute. A significant implication
of this difference is that the FID score of a generated dataset
can be different with respect to different reference datasets,
while IS will be constant. Therefore, IS cannot quantify
the effects of generator overfitting and the FID score does.
In Fig. 6(c) and (f), only 20 data samples are used to train the
WGAN generator models, and hence, the final WGAN models
are prone to extreme overfitting. The WGAN models might
generate the same images even for different values of (z),
i.e., the image diversity within every class might be very
low. In accordance with the generator overfitting phenomenon,
we observe that the FID scores for all three methods are sta-
tionary after 2000 iterations in Fig. 6(f), whereas the IS curves
continue to improve for edge-only and transferring GANs in
Fig. 6(c). This indicates that generator overfitting occurs in
the WGAN model trained with the edge-only and transferring
GANs methods, whereas both the IS and FID scores for the
barycentric fast adaptation method are stationary, indicating
no generator overfitting.

9) Continual Learning Performance Across Dissimilar Data
Samples: This experiment explores the performance of the
barycentric fast adaptation when off-line barycenter is trained
from pretrained WGAN models that are learned from two
distinct datasets, e.g., CIFAR10 samples are placed in Node 1
and CIFAR100 samples are placed in Node 2. Specifically,
samples from all ten classes in CIFAR10 are placed in Node 1,
and the samples from the random 20 classes of CIFAR100
are placed in Node 2. In the overlapping scenario, Node 0
contained few samples from the same classes placed in Node 1
and Node 2. In the nonoverlapping scenario, Node 0 had few
samples from 20 classes of CIFAR100, which are different
from the classes in Node 2. We run experiments for over-
lapping and nonoverlapping scenarios for various number of
samples at Node 0.

Fig. 7 demonstrates that barycentric fast adaptation out-
performs the baselines for any sample size. The performance
gap between barycentric fast adaptation and its counterparts
increases significantly as fewer data samples are available
at Node 0 because barycentric fast adaptation is better at
retaining the previous knowledge from the edge and mitigating
catastrophic forgetting. It is clear that the performance gap
between barycentric fast adaptation and its counterparts is
higher in this experiment because less model similarity of
pretrained WGAN models amplifies the effects of catastrophic
forgetting.

VI. COMPLEXITY ANALYSIS

Computational cost is important for the success of EI
techniques since edge nodes and edge servers are limited
in computational power. The computational cost of DNN
training, however, heavily depends on the DNN architecture
and input size. To exemplify, a conventional 2-D-convolutional
layer has a computational complexity of O(Ci

2 Ki
2 Hi Wi )

per input, where Ci , Ki , Hi , and Wi denote the number of
channels, the kernel size, and the height and the width of
the output for the i th layer, respectively. The generator and
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Fig. 6. Performance evaluation comparisons of various WGAN model training techniques using FID and inception scores (ISs) tested on CIFAR10. FID and
ISs conclude similar performance results. Note that higher IS and lower FID scores indicate better performance. (a) IS for the overlapping case with 100 data
samples at Node 0. (b) IS for the overlapping case with 50 data samples at Node 0. (c) IS score for the overlapping case with 20 data samples at Node 0.
(d) FID score for the overlapping case with 100 data samples at Node 0. (e) FID score for the overlapping case with 50 data samples at Node 0. (f) FID
score for the overlapping case with 20 data samples at Node 0.

TABLE I
PERFORMANCE COMPARISONS OF DIFFERENT WGAN MODEL TRAINING ALGORITHMS

the discriminator for CIFAR10/100 contain four convolutional
layers with varying channel and activation sizes. The resulting
computational complexity of forward and backward passes is
then becomes O((C†)2 K 2 H †W †) per sample, where C†

=

max
i∈I

Ci , H †
= max

i∈I
Hi , W †

= max
i∈I

Wi , and I denotes the
set of layers in both discriminator and generator. Barycentric
fast adaptation and its counterparts use the same DNNs,
but barycentric fast adaptation leverages two discriminators
against the single discriminator in its counterparts.

Run-times and attained accuracy levels during WGAN
training at Node 0 across different techniques are compared
in Table II. Smaller run-time indicates lower computa-
tional cost, and “DNA” indicates that the corresponding

algorithm did not achieve the image quality level. Results
indicate a significant improvement over edge-only in com-
putational complexity. While barycentric fast adaptation
performs similarly to transferring GANs in lower quality
image generation, barycentric fast adaptation can generate
higher quality images with less training. We here notice
that each training iteration for edge-only and transferring
GANs takes less time compared to barycentric fast adapta-
tion because the latter trains two discriminators. In partic-
ular, the WGAN models trained by the transferring GANs
method suffer from catastrophic forgetting as training pro-
gresses. On the contrary, barycentric fast adaptation can train
WGAN models capable of generating high-quality images
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Fig. 7. Performance evaluation comparisons of various WGAN model training techniques using FID score tested on the mixture of datasets CIFAR10 and
CIFAR100. Note that a lower FID score indicates better performance. (a) Nonoverlapping case: 100 samples at Node 0. (b) Overlapping case: 150 samples at
Node 0. (c) Nonoverlapping case: 400 samples at Node 0. (d) Overlapping case: 600 samples at Node 0. (e) Nonoverlapping case: 2000 samples at Node 0.
(f) Overlapping case: 3000 samples at Node 0.

TABLE II
COMPUTATIONAL COMPLEXITY COMPARISON OF BARYCENTRIC FAST ADAPTION AGAINST ITS COUNTERPARTS

even at later stages of training since it overcomes catastrophic
forgetting.

VII. CONCLUSION

In this work, we propose a systematic framework for
continual learning of generative models via the adaptive
coalescence of pretrained models from other edge nodes.
Particularly, we cast the continual learning problem as a
constrained optimization problem that can be reduced to a
Wasserstein-1 barycenter problem. Appealing to the optimal
transport theory, we characterize the geometric properties
of geodesic curves therein and use displacement interpolation
as the foundation to devise recursive algorithms for finding
adaptive barycenters. Next, we take a two-stage approach to
efficiently solve the barycenter problem, where the barycenter
of the pretrained models is first computed offline in the
edge servers via a “recursive” WGAN configuration based on
displacement interpolation. Then, the resulting barycenter is
treated as the metamodel initialization, and fast adaptation is

used to find the generative model using the local samples at
the target edge node. A weight ternarization method, based on
joint optimization of weights and threshold for quantization,
is developed to compress the edge generative model further.
Extensive experimental studies corroborate the efficacy of the
proposed framework.

APPENDIX A
PROOF OF PROPOSITION 1 FOR WASSERSTEIN-1 GAN

Proof: Let {µk}1:K be any set of probability measures
on a refined forming set and ν∗k denote a continuous proba-
bility measure with no atoms, which minimizes the problem
min
νk

W1(µk, νk) + W1(ν
∗

k−1, νk) [17]. As Proposition 4 in
supplementary materials under Appendix D-E states, there
exist multiple refined forming sets, and the proceeding proof
holds true for any refined forming set induced by the original
set of probability distributions. The proceeding proof utilizes
the geodesic property and the existence of a barycenter in
Wasserstein-1 space, for which the details can be found in [17],
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[47], and [59], respectively. Let the barycenter at iteration
k = 1 be ν∗1 = µ1, and suppose that α ̸∈ BR is a distribution
satisfying

min
ν2

W1(µ2, ν2)+W1
(
ν∗1 , ν2

)
= W1(µ2, α)+W1(µ1, α) (9)

at recursion k = 2. Note that, if α ̸∈ BR, α cannot reside on
the geodesic curve gt (µ1, µ2)0≤t≤1 since gt (µ1, µ2)0≤t≤1 ∈

BR. By considering any distribution β2, which resides on
geodesic curve gt (µ1, µ2), we can also show that

W1(µ1, β2)+W1(µ2, β2) = W1(µ1, β2)+W1(β2, µ2)

= W1(µ1, µ2) < W1(µ1, α)+W1(α, µ2)

= min
ν2

W1(µ2, ν2)+W1
(
ν∗1 , ν2

)
(10)

indicating that β attains a lower cost than the minimizer ν∗2 ,
which is a contradiction, indicating that ν∗2 must reside in BR.
Similarly, ν∗3 must also reside in BR

W1(µ3, β3)+W1
(
ν∗2 , β3

)
= W1(µ3, β3)+W1

(
β3, ν

∗

2

)
= W1

(
µ3, ν

∗

2

)
< W1(µ3, α)+W1

(
α, ν∗2

)
. (11)

By induction, βk ∈ BR attains a lower cost compared with
α ̸∈ BR at the kth iteration

W1(µk, βk)+W1
(
ν∗k−1, βk

)
= W1(µk, βk)+W1

(
βk, ν

∗

k−1

)
= W1

(
µk, ν

∗

k−1

)
< W1(µk, α)+W1

(
α, ν∗k−1

)
. (12)

Hence, ν∗k = βk ∈ BR,∀k. Consequently, all barycenters at
each iteration must reside in the baryregion BR.

Similarly, we can show that, for stage II, the following
holds:

W1(µ0, βK )+W1
(
ν∗K , βK

)
= W1(µ0, βK )+W1

(
βK , ν

∗

K

)
= W1

(
µ0, ν

∗

K

)
< W1(µ0, α)+W1

(
α, ν∗K

)
. (13)

Therefore, ν∗ resides in BR, which completes the proof. □

APPENDIX B
REMARK 1 FOR QUADRATIC WASSERSTEIN-2

COST FUNCTION

For ease of exposition, we restate the seminal result by [19].
Proposition 2: [19] The barycenter (in W 2

2 sense)
of {(µk, λk)}k , i.e., arg min

ν

∑K
k λk W 2

2 (µk, ν), constitutes a

unique solution ν∗ if {µk}1:K vanishes on small sets. The
unique solution is characterized as ν∗ = ∇φk♯µk , where φk is a
convex potential defined in terms of the Kantorovich potentials
[ [19], eq. (3.5)].

Corollary 1: If K = 2, the set of barycenters ν∗t is charac-
terized as

ν∗t = arg min
ν

tW 2
2 (µ1, ν)+ (1− t)W 2

2 (µ2, ν)

=
(
t id+ (1− t)∇φ∗

)
♯µ1 (14)

where id is the identity map and ∇φ∗ is the conjugate Brenier’s
map between µ0 and µ1.

Corollary 1 implies that v∗t is the geodesic curve between
µ1 and µ2. Hence, the solution to the W 2

2 barycenter problem
with K = 2 and the fixed weight pair (t, 1− t) always resides
on the geodesic curve between µ1 and µ2 [19], [46].

Proof: (Displacement Interpolation for Adaptive
Barycenters with W 2

2 Cost Function): Let {µk}1:K be a set
of probability measures on a refined forming set, which
vanish on small sets, and ν∗k denotes a continuous probabil-
ity measure with no atoms, which minimizes the problem
min
νk

W1(µk, νk) + W1(ν
∗

k−1, νk) [17]. The following proof
builds upon Corollary 1. We consider the following barycenter
sequence generated by the recursive W2GAN configuration:

S=
{
ν∗1 = µ1, ν

∗

2 = arg min
ν

tW 2
2 (µ2, ν)+ (1− t)W 2

2

(
ν∗1 , ν

)
,

. . . , ν∗K = arg min
ν

tW 2
2 (µK , ν)+ (1− t)W 2

2

(
ν∗K−1, ν

)}
.

(15)

For ease of exposition, we assign µ1 as the unique barycenter
in the first recursion, i.e., ν∗1 = µ1 ∈ BR. In iteration 2,
the new barycenter can be stated in terms of the previous
barycenter as

ν∗2 (t, 1− t) = arg min
ν

tW 2
2 (µ2, ν)+ (1− t)W 2

2

(
ν∗1 , ν

)
=

(
(1− t)id+ t∇φ∗

)
♯ν∗1 . (16)

We note that ν∗2 (t, 1 − t) = ((1 − t)id + t∇φ∗)♯ν∗1 defines a
geodesic between µ2 and ν∗1 , and hence, ν∗2 (t, 1− t) ∈ BR by
definition. Furthermore, the barycenter, ν∗2 (t, 1− t), is unique
by Proposition 2 and Corollary 1. By induction, the kth
barycenter is expressed as

ν∗k (t, 1− t) = arg min
ν

tW 2
2 (µk, ν)+ (1− t)W 2

2

(
ν∗k−1, ν

)
=

(
(1− t)id+ t∇φ∗

)
♯ν∗k−1. (17)

As before, ν∗k (t, 1 − t)((1 − t)id + t∇φ∗)♯ν∗k−1 ∈ BR and
ν∗k (t, 1 − t) is the unique barycenter for a fixed (t, 1 − t)
pair, and hence, we conclude that all the barycenters in the
sequence S reside inside the baryregion BR. Similarly, for
the fast adaptation stage, the final barycenter ν∗ can be shown
to reside on the geodesic ((1− t)id+ t∇φ∗)♯ν∗K between ν∗K
and µ̂0

ν∗(t, 1− t) = arg min
ν

tW 2
2

(
µ̂0, ν

)
+ (1− t)W 2

2

(
ν∗K , ν

)
=

(
(1− t)id+ t∇φ∗

)
♯ν∗K (18)

and, hence, ν∗ ∈ BR, which completes the proof. □

APPENDIX C
BOUNDS ON THE GAP BETWEEN ONE-SHOT BARYCENTRIC

AND RECURSIVE BARYCENTRIC ALGORITHMS

The W1 barycenter problem is analytically challenging
because the geodesic curve between two distributions is not
unique, which may lead to multiple barycenters at every
recursion (see [21, Example 7.4]). Proposition 1 shows that
every barycenter resides inside the baryregion BR for any {λk}.
It follows that BR also provides a bound on the gap between
the one-shot and recursive Wasserstein barycenter problems
under the W1 cost function. For the W2 cost function, it is
shown in [49] that the approximation gap can be driven to
be 0. Proposition 3 demonstrates how to achieve this by using
the proposed recursive algorithm.
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Proposition 3: Let {λ1, λ2, . . . , λK } and {λµ1 , λµ2 , . . . ,

λµK } denote the weights of the distributions {µ1, µ2, . . . , µK }

in one-shot and recursive W2 barycenter problems, respec-
tively, and let {λν∗1 , λν∗2 , . . . , λν∗K } denote the weights of the
barycenters in the recursive W2 barycenter problem. The
solutions of one-shot and recursive W2 barycenter problems
are the same if λν∗k =

∑k
ℓ=1 λℓ/

∑k+1
ℓ=1 λℓ and λµk =

λk/
∑k+1

ℓ=1 λℓ,
∀k ∈ K.

Proof: Without loss of generality, we assume that∑K
i=1 λi = 1. Then, from Corollary 1, we have that

K = 1→ ν∗1 = µ1; λν∗1 = λµ1 = λ1

K = 2→ ν∗1 = µ1, ν
∗

2 =

(
λν∗1 i.d.+ λµk T ν∗1

µ2

)
♯ν∗1

λν∗1 =
λ1/λ1+λ2, λµ2 =

λ2/λ1+λ2

K = 3→ ν∗1 = µ1, ν
∗

2=T ν∗1
ν∗2
♯ν∗1=

(
λν∗1 i.d.+ λµk T ν∗1

µ2

)
♯ν∗1

ν∗3 =
(
λν∗2 T ν∗1

ν∗2
+ λµ3 T ν∗1

µ3

)
♯ν∗1

=

(
λν∗2λν

∗

1
i.d.+ λν∗2λµ2 T ν∗1

µ2 + λµ3 T ν∗1
µ3

)
♯ν∗1

λν∗1 =
λ1/λ1+λ2, λµ2 =

λ2/λ1+λ2

λν∗2 =
λ1+λ2/λ1+λ2+λ3, λµ3=

λ3/λ1+λ2+λ3. (19)

By induction, we have

K = k → ν∗i =
(
λν∗i−1

T ν∗1
ν∗i−1
+λµi T

ν∗1
µi

)
♯ν∗1 ∀i=1, . . . , k

λν∗i =
∑i

j=1 λ j/
∑i+1

j=1 λ j

λµi+1 =
λi+1/

∑i+1
j=1 λ j∀i = 1, . . . , k − 1. (20)

Then, for K = k + 1, we can show

K = k + 1→ ν∗i+1 =

(
λν∗i T ν∗1

ν∗i
+ λµi+1 T ν∗1

µi+1

)
♯ν∗1

=

(
λν∗i

(
λν∗i−1

T ν∗1
ν∗i−1
+ λµi T

ν∗1
µi

)
+ λµi+1 T ν∗1

µi+1

)
♯ν∗1

=

(
λν∗i λν

∗

i−1
T ν∗1
ν∗i−1
+λν∗i λµi T

ν∗1
µi+λµi+1 T ν∗1

µi+1

)
♯ν∗1 ∀i=1, . . . , k

λν∗i =
∑i

j=1 λ j/
∑i+1

j=1 λ j, λµi+1=
λi+1/

∑i+1
j=1 λ j ∀i=1, . . . , k (21)

which completes the proof. □
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